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Abstract: Modern space missions often require satellites to perform guidance, navigation, and
control tasks autonomously. Despite their limited resources, small satellites are also involved in this
trend, as in-orbit rendezvous and docking maneuvers and formation flying have become common
requirements in their operational scenarios. A critical aspect of these tasks is that these algorithms are
very much intertwined with each other, although they are often designed completely independently
of one another. This paper describes the design and simulation of a guidance and relative navigation
architecture for the rendezvous of two cooperating CubeSats. The integration of the two algorithms
provides robustness to the solution, by simulating realistic levels of noise and uncertainty in the
guidance law implementation. The proposed guidance law is derived based on the linearized
equations of orbital motion, written in terms of spherical coordinates. The trajectory is iteratively
corrected at a fixed time step, so that errors from the navigation and the initial orbital condition
can be recovered. The navigation algorithm processes the bearing and range measurements from
a camera and an intersatellite link through an unscented filter to provide the information required
from the guidance law. A Monte Carlo campaign based on a 3-DOF simulation demonstrates the
effectiveness of the proposed solution.

Keywords: small satellites; cubesat; rendezvous; docking; guidance; navigation

1. Introduction

The use of small satellites in modern space missions has become an important factor in
the aerospace industry, thanks to the versatility, reliability, and low cost of these platforms.
As the scenarios involving small satellites are growing in numbers and complexity, more
advanced technological solutions are needed to address the new tasks of these missions.
Autonomous guidance, navigation, and control (GNC) systems for small satellites, for ex-
ample, are crucial for implementing challenging tasks, such as rendezvous and docking [1],
formation flying [2], and space debris removal [3].

Guidance algorithms for rendezvous are usually based on the classical Hill–Clohessy–
Wiltshire (HCW) equations, either under the impulsive thrust approximation or assuming
finite thrust. Seminal publications on impulsive rendezvous have been written by Pruss-
ing [4,5], who investigated minimum-fuel rendezvous trajectories including two, three, or
four velocity changes. By using the HCW equations, Carter [6] focused on finite thrust
rendezvous with an upper bound on thrust magnitude, and proved that at most seven
thrust/coast intervals can occur. Later, Carter and Humi [7] investigated fuel-optimal
rendezvous relative to a point in a general Keplerian orbit, and demonstrated that no
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singular arc exists if the orbit is noncircular. Most recently, Pontani and Conway [8] ad-
dressed the problem of finding a variety of minimum-fuel rendezvous trajectories by using
finite thrust and proved a remarkable symmetry property of optimal rendezvous paths.
Although all the preceding contributions employ the HCW equations, Prussing and Chiu
used the nonlinear equations of Keplerian motion, for the purpose of minimizing fuel
consumption [9] under the impulsive thrust approximation. Pontani et al. [10] found
both impulsive and finite thrust, fuel-optimal rendezvous trajectories by using a particle
swarm algorithm. Other works use alternative deterministic and heuristic methods for
rendezvous optimization and guidance, such as the glideslope multipulse technique [11],
optimally timed trajectory correction maneuvers [12], H∞ and µ-synthesis techniques [13].
However, in actual operational scenarios, rendezvous trajectories are affected by orbit
perturbations, which make both the HCW linear equations and the Keplerian nonlinear
equations relatively inaccurate for precise orbit rendezvous. Moreover, the assumption
of perfect information on the relative spacecraft dynamics is not realistic, and an accu-
rate rendezvous is likely to be infeasible without an effective navigation system, due to
measurement noise or unavailable variables needed to compute the guidance command.
This circumstance points out the need of an integrated, iterative guidance and navigation
architecture, capable of performing correction maneuvers on the basis of the estimated
state provided by the navigation system.

This paper analyzes the design of a relative guidance and navigation architecture for
the rendezvous of two CubeSats, a target and a chaser, which are assumed to travel orbits
in close proximity. The proposed guidance algorithm is based on the iterative application
of the HCW linear equations of motion [14], written in terms of spherical coordinate
displacements, under the assumption that both vehicles travel nearby orbits with small
eccentricities. This simple approach aims at finding the correction maneuvers, modeled as
impulsive velocity changes, that are necessary to maintain the chaser on track to the target.
The orbital motion of both spacecraft is described by integrating the nonlinear equations of
motion, which can include all the orbit perturbations relevant to the dynamical context.

The iterative nature of the guidance strategy allows accounting for the update of
the target estimated orbit, provided by the navigation state, which is obtained from the
measurements of the on-board sensors. Small space platforms have light architectures
and weight constraints that require innovative navigation solutions, such as vision-based
navigation. With this approach, a single [15] camera or multiple [16] cameras are employed
on the chaser to measure the angular displacement to the target. A problem arising with
the single-camera solution is the unavailability of relative range information [17], which
affects the accuracy of the guidance law unless specific maneuvers are realized to improve
the range observability [18,19]. Range becomes observable if the camera is offset with
respect to the center of mass of the chaser [20], but not if the camera is placed in the line
of sight between the target and the chaser, which is often the case. A thorough analysis
of the performance of monocular visual navigation system is presented in [21]. Another
possibility arises when the target is cooperative: in this case, direct range measurement
becomes available thanks to an on-board intersatellite link (ISL), as in the case of the Milani
6U CubeSat mission [22].

The relative navigation solution is provided in real time by a recursive state estimator
of the Kalman filter family of algorithms. Given the nature of the relative navigation equa-
tions, nonlinear Kalman filters are needed for this task, such as the extended Kalman filter
(EKF) and the unscented filter (UF). The EKF has been a standard in relative navigation prob-
lems for a long time [23,24]. However, EKF’s poor performance against highly-nonlinear
systems and even divergences have led to the wide adoption of the UF, for navigation
problems in either its regular [25] or square-root [26] versions. In fact, the UF provides a
more accurate and robust solution to the estimation problem [27] than EKF; therefore UF is
chosen for this work.

The paper is organized as follows: the mathematical model that represents the relative
motion of the spacecraft is described in Section 2; the design of the guidance and navigation
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algorithms is given in Section 3; the setup of the numerical simulations and the results are
presented in Section 4; conclusions and final remarks are given in Section 5.

2. Equations of Motion

In order to write the equations of the relative orbital motion, a reference Keplerian
circular orbit is defined in an inertial reference frame with axes N̂, M̂, ĥ, as seen in Figure 1.
Axes N̂ and ĥ are aligned respectively with the line of the ascending node and the angular
momentum of the reference Keplerian orbit. The latter is circular and therefore has a fixed
radius RR, inclination iR, and RAAN ΩR. In the preceding frame, orbital motion of a space
vehicle (subject to thrust and perturbing accelerations) is identified by the instantaneous
radius r, right ascension ξ, declination φ, radial velocity vr, transverse velocity vt, and
normal velocity vk. Using these variables the equations of orbital motion are:

Figure 1. Representation of the inertial and moving frames.


ṙ = vr

ξ̇ =
vt

r cos φ

φ̇ =
vk
r


v̇r = −

µ

r2 +
v2

t + v2
k

r
+ ar

v̇t =
vt

r
(vk tan φ− vr) + at

v̇k = −
v2

t
r

tan φ− vrvk
r

+ ak

, (1)

where µ is the gravitational parameter of the main attracting body and~a = {ar, at, ak} is the
vector containing the three components of the external accelerations, due to either thrust or
orbital perturbations.

The guidance law is obtained by linearizing Equation (1) around the reference orbit,
assuming that the variables are perturbed by small displacements, denoted with δ, from
the respective values, associated with the reference circular orbit, i.e.,


r = Rr + δr
ξ = ξr + δξ
φ = φr + δφ


vr = vrR + δvr = δvr

vt = vtR + δvt =

√
µ

Rr
+ δvt

vk = vkR + δvk = δvk

, (2)

At this point, it is useful to define a new set of coordinates:

x = δr, y = RRδξ, z = RRδφ. (3)
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By using the definitions in Equations (2) and (3), expanding Equations (1) to the first
order, and neglecting higher-order terms, the well-known Hill–Clohessy–Wiltshire (HCW)
equations are obtained, in terms of spherical coordinates x, y, z,

ẍ− 3ω2
Rx− 2ωRẏ = ar

ÿ + 2ωR ẋ = at
z̈ + ω2

Rz = ak

. (4)

3. Guidance and Navigation

This section describes the guidance and navigation scheme used for the rendezvous of
the two satellites. The guidance law is an iterative algorithm that calculates the steering
maneuvers to achieve the final position of the target, using the available information
on the position and velocity of both vehicles. The navigation subsystem estimates the
information needed to calculate the guidance command by using the measurements from
the on-board sensors. In this paper, it is assumed that an ISL and a camera provide range
and bearing measurements.

3.1. Guidance

This work assumes that both the chaser and the target travel orbits sufficiently close to
the reference circular Keplerian orbit. This implies that the orbital dynamics of both vehicles
can be described by using the HCW Equation (4). Let δr := [x y z] and δv := [ẋ ẏ ż].
Due to the linear nature of the governing Equation (4), the time evolution of the displaced
position and velocity vectors δr(t) and δv(t) is given by [14][

δr(t)
δv(t)

]
=

[
M(τ) N(τ)
S(τ) T(τ)

][
δr(tk)
δv(tk)

]
, (5)

where τ = t− tk. The closed-form expressions of the (3× 3) matrices M, N, S, and T are
reported in [14].

The rendezvous maneuver is assumed to have a specified duration ∆ttot. At a generic
time tk (0 ≤ tk ≤ ∆ttot), the maneuver at hand can be designed by using Equation (4), by
including a pair of impulsive changes of velocity, the first at time tk and the second at
time ∆ttot. Superscripts + and − are associated with the time instants immediately before
and after each velocity changes, i.e.,{

∆v1 = δv(t+k )− δv(t−k )
∆v2 = δv(∆t+tot)− δv(∆t−tot)

. (6)

The final goal is to get the position and velocity of the target at time ∆ttot, i.e.,{
δr(∆ttot) = ∆rT(ttot)
δv(∆t+tot) = ∆vT(ttot)

, (7)

where subscript T refers to the target. The magnitudes and directions of ∆v1 and ∆v2 are
given by the following vector equations, obtained by combining the previous relations{

∆v1 = N−1
f [δrT(∆ttot)− ∆r(tk)]− δv(t−k )

∆v2 = δvT(∆ttot)−
[
S f δr(tk) + Tf δv(t+k )

] , (8)

where subscript f denotes the value of the respective matrix, evaluated at τ = ∆ttot − tk.
Let ∆tS represent the time interval between two consecutive iterations. The guidance
algorithm is based on the following iterative steps, to perform at each time tk:

• calculate tk+1 = tk + ∆tS; if tk+1 ≥ ∆ttot, then set tk+1 = ∆ttot;
• evaluate the displacement vectors δr and δv1 at t−k ;
• calculate ∆v1 by using Equation (8);
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• using the definitions of the displaced position and velocity coordinates, obtain the
spherical coordinates of position and velocity of the chaser (r, ξ, φ, vr, vt, vk) at tk;

• propagate numerically the nonlinear Equation (1) in the interval [tk, tk+1];
• if tk+1 = ∆ttot, then evaluate δv2 at ∆ttot.

It is worth remarking that the algorithm at hand evaluates iteratively δv1, whereas
δv2 is evaluated only at the final time.

3.2. Navigation

The navigation system consists of an algorithm that processes the available measure-
ments ζ to reconstruct the target estimated state χ̂, defined as

χ̂ = {r̂T , ξ̂T , φ̂T , v̂rT , v̂tT , v̂kT}. (9)

The model assumed for the motion of the target is that of Equation (1), where the
external accelerations~a are considered to be null, i.e., the target is not maneuvering and no
orbital perturbations are considered. The equations that describe the three measurements
(one distance, and two angles) are the following:

ζ1 = ||(x2 − x1, y2 − y1, z2 − z1)||+ νrange

ζ2 = arctan
y2 − y1

x2 − x1
+ νbear1

ζ3 = arctan
z2 − z1√

(x2 − x1)2 + (y2 − y1)2
+ νbear2

, (10)

where νrange ∈ N (0, σνrange), νbear1 ∈ N (0, σνbear ) and νbear2 ∈ N (0, σνbear ) are three random
signals representing the noise on the measurements, whereas subscripts 1 and 2 correspond
to the two satellites. Because of the optical nature of the sensor, the intensity of the noise
signal on the range measurement depends on the distance between the two spacecraft.
Therefore, it is assumed that the variance σνrange is equal to the 10% of the true range value,
as proposed in [22].

Given the high non-linearity of the model in Equation (1) and of the measurements in
Equation (10), the algorithm considered for the state estimation is the UF in its standard
version [28]. The process noise covariance matrix Q for this problem is defined as

Q =

q0
∆t3

S
3

I(3) q0
∆t2

S
2

I(3)

q0
∆t2

S
2

I(3) q0∆tS I(3)

, (11)

where q0 is a tuning parameter of the filter, ∆tS is the sampling time, and I(n) is the identity
matrix of dimensions n× n.

4. Numerical Simulations

In this section, the effectiveness of the proposed guidance and navigation scheme is
assessed by means of a numerical simulation campaign of the 3-DOF equations of motion.
The first simulation consists of a nominal case in which only the guidance law is tested.
The second simulation tests both the guidance and the navigation systems on a set of 100
Monte Carlo runs. The main parameters of the simulation are reported in Table 1, where ∆tF
is the duration of the firing impulse of the spacecraft that generates the ∆v of Equation (8).
The nominal initial condition x0 in both simulations consists in the two satellites being on
the same circular, equatorial orbit at a distance of 10 km along the tangent direction.
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Table 1. Simulation parameters.

Quantity Value Quantity Value Quantity Value

σr 500 m σξ 1◦ σφ 1◦

σvr 1 m/s σvt 1 m/s σvk 1 m/s

σνbear 1◦ q0 5 × 10−7 ∆ttot 600 s

∆tF 0.25 s ∆tS 0.25 s

4.1. Nominal Simulation

In the nominal simulation, the guidance system is tested without the navigation
solution, i.e., assuming perfect information in Equation (8). Figure 2 shows that the
displacement along x and y go to zero at the end of the simulation. The obtained miss
distance is indeed very small at 5 cm. It is worth noting that a distance smaller than 1 m is
deemed adequate to start a docking maneuver between two small satellites [29].

0 100 200 300 400 500 600

time [s]

0

0.1

0.2

0.3

x
 e

rr
o

r 
[k

m
]

0 100 200 300 400 500 600

time [s]

-10

-5

0

y
 e

rr
o

r 
[k

m
]

Figure 2. Position errors in the x and y directions.

The difference between the velocity of the two spacecraft is shown in Figure 3. It can
be seen that the two velocities are aligned in both directions after the application of the
δv2 command of Equation (8) at the end of the simulation. Having nulled the difference
in position and velocity between the two spacecraft in the orbital plane, the nominal
simulation can be, therefore, considered successful. The out-of-plane motion, in fact, is null
in this case, as the considered orbits are Keplerian and no perturbations have been taken
into account.
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Figure 3. Velocity errors in the radial and transversal directions.

4.2. Monte Carlo Simulation

A set of 100 Monte Carlo runs has been prepared for the second simulation, varying
the initial conditions x̂0|0 ∈ N (x0,

√
P0|0), with P0|0 selected as:

P0|0 = diag[σ2
r , σ2

ξ , σ2
φ, σ2

vr , σ2
vt , σ2

vk
], (12)

where the variances σ are given in Table 1.
The cumulative distribution of the miss distance obtained in the simulation campaign

is shown in Figure 4. The results indicate that a miss distance shorter than 1 m is obtained
in 85% of the cases, in line with the requirement on the final miss distance expressed in [29].
The accuracy obtained by the relative navigation filter in reconstructing the estimated
state (9) is reported in Table 2. As can be seen by comparing the values of Table 2 with the
variance of the initial guess and the level of the measurement noise, the filter is able to
converge to a more accurate estimate of the variable. The only variable whose estimation
accuracy has not been improved by the filter is the out-of-plane component of the velocity.
This can be explained by the fact that there is no out-of-plane motion of the spacecraft
in this case, as the orbit is assumed totally Keplerian. Thus, the out-of-plane motion is
completely unobservable and the estimate of v̂kT remains bounded by the variance σvk .

Table 2. Estimation accuracy.

Variable Accuracy Variable Accuracy Variable Accuracy

r 20 m ξ 0.001◦ φ 0.001◦

vr 0.25 m/s vt 0.4 m/s vk 1 m/s
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Figure 4. Miss distance cumulative distribution obtained in the simulation campaign.

5. Conclusions

This paper has presented a guidance and navigation scheme for the rendezvous of two
CubeSats. Autonomous sensing and maneuvering capabilities are becoming a requirement
of many space missions, even when small satellites are employed. Therefore, it is very
important to investigate algorithms that can provide the necessary GNC capabilities and to
test them together in simulation so that they can be validated.

The guidance law developed for this work is an iterative algorithm that calculates a
discrete firing command ∆v1 at a specific sampling time, based on the linear rendezvous
theory and the HCW equations. The necessary information for the guidance law is derived
from the navigation solution, which is based on a UF that processes the available on-board
measurements (range and bearing).

This scheme was tested in a 3-DOF simulation in both the nominal case (perfect
information) and against a Monte Carlo campaign (incomplete information), assuming
values compatible with CubeSat systems and applications. The Monte Carlo simulation
allows us to take into account the variations in the measurement noise and the initial guess
on the target’s orbit. The results show that the obtained miss distance between the two
spacecraft is below 1 m, a value suitable for the start of the docking operations.

Further work on this topic should include a trade-off study of the proposed solution
against different sampling and firing times. Furthermore, the 3-DOF model should be
improved to account for the main orbital perturbations, such as the Earth’s oblateness and
the aerodynamic drag.
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Abbreviations
The following abbreviations are used in this manuscript:

DOF Degrees Of Freedom
EKF Extended Kalman Filter
GNC Guidance, Navigation, and Control
HCW Hill-Clohessy-Wiltshire
ISL Inter-Satellite Link
RAAN Right Ascension of the Ascending Node
UF Unscented Filter
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