
Things Data Interoperability Through Annotating oneM2M
resources for NGSI-LD Entities

KUMAR, Sunil, JEONG, SeungMyeong, AHN, Il-Yeop and JARWAR,
Muhammad Aslam <http://orcid.org/0000-0002-5332-1698>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/30680/

This document is the Accepted Version [AM]

Citation:

KUMAR, Sunil, JEONG, SeungMyeong, AHN, Il-Yeop and JARWAR, Muhammad
Aslam (2022). Things Data Interoperability Through Annotating oneM2M resources
for NGSI-LD Entities. In: 2022 IEEE International Conferences on Internet of Things
(iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE
Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData)
and IEEE Congress on Cybermatics (Cybermatics). Los Alamitos, California., IEEE
Computer Society Conference Publishing Services, 119-124. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Things Data Interoperability Through Annotating
oneM2M resources for NGSI-LD Entities

Sunil Kumar1, SeungMyeong Jeong1, Il Yeup Ahn1, and Muhammad Aslam Jarwar2

1Autonomous IoT Research Center, Korea Electronics Technology Institute (KETI),

 #25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-816, Korea
2Department of Computing, Sheffield Hallam University, Sheffield, UK

sunil75umar@keti.re.kr, sm.jeong@keti.re.kr, iyahn@keti.re.kr, a.jarwar@shu.ac.uk

Abstract—In this era of Information and Communication

Technology (ICT) and the Industrial Internet of Things (IIoT),

semantic interoperability plays an important role in

interworking among different standards. One such standard is

oneM2M, which supports semantic interoperability between

non-semantic oneM2M resource model and semantic data, but

it is only limited to Resource Description Framework (RDF)

triple data. Where Next Generation Service Interfaces – Linked

Data (NGSI-LD) – provides information model and protocol for

enhancing the capabilities to represent more complex structures

of Linked Data, limited research has been conducted regarding

such framework or protocol to support the interpretation and

translation among these two different standards. This paper

proposes a mapping protocol for interpreting and translating

non-semantic oneM2M resource data to NGSI-LD interfaces.

Keywords— mapping ontology, RDF based mapping, IoT data

interoperability

I. INTRODUCTION

In the fourth industrial revolution, more challenges related
to the Internet of Things (IoT) and distributed environment are
being resolved using No Sequel databases, Graph models and
Semantic Web technologies, etc. Graph databases have been
considered viable in different research as well as enterprise
solutions, yet there exist some key differences among various
formats in which Resource Description Format (RDF), Web
Ontology Language (OWL) and Labelled Property Graph
(LPG) are widely used [1], [2]. The essential difference
between RDF triple and LPG is their structural organization.
The LPG has a complex structure where the relation or an edge
connecting the two nodes can also have its properties
(attributes) as well as can have another connection point
through a relation, to be connected with a third node or a
relation. Whereas in RDF triples (formed by the components
- subject, predicated, and object), the relation (predicate) can
only have a subject and an object as two connection points.
Besides the structural differences, their applications also vary.
RDF and OWL formalizations are leveraged, where semantic
annotation, description logics, and reasoning are required,
such as interworking services, taxonomy-based research, etc.
Whereas LPG is preferred for complex structural
representation and faster as well as complex graph analytic
functions, as they provide compact storage space and
serialization with higher graph analytics features.

The oneM2M standard, which is a global initiative for
establishing M2M communication through a middleware
architecture solution and protocols, has also extended its
support for semantics through base ontology as well as
integration schemes to map and add the RDF triples, either by

referencing or by adding as a semantic descriptor resource [3].
It also supports advanced features such as reasoning, semantic
mash-up as well as ontology mapping for interworking with
different domain ontologies. However, semantic support in
oneM2M is limited to RDF triples, and mechanisms to
leverage the LPG knowledge graph are not sufficient.

NGSI-LD is a set of interfaces, developed by the Context
Information Management Industry Specification Group of the
European Telecommunication Standards Institute (ETSI ISG
CIM), which established a hybrid approach, defining RDF-
based vocabulary (NGSI-LD meta-model) [4] as the
groundings for graph structures that can be mapped directly to
LPG, allowing enhanced knowledge expressivity with
efficient graph analytics. The meta-model is comprised of
Entity, which represents a concept in the data; Properties,
describing the characteristics of an Entity; Value, quantifying
or qualifying the Properties; Relationship, connecting two
Entities or even another Relationship. Using the meta-model,
different domain models can also be extended, similar to
domain ontologies in RDF and OWL.

Conversion of RDF to LGP graphs has been researched
through different methods such as RDF statement or blank-
node based NGSI-LD reification [4]. In that case, the
translation of the oneM2M non-semantic resources to NGSI-
LD-based LPG becomes a two-step process: first, annotating
the resources into RDF triples; and, then, converting the triples
into NGSI-LD Entities. This process is presumably tedious,
complex, and still cannot guarantee a concise representation
of annotated LPG data since it has been translated from triple
data (edges with only two connection points).

Another possibility of translating oneM2M resources is
through new protocol and resource specifications, which also
must be aligned with the existing oneM2M specifications,
similar to the specifications for RDF-based semantic support.
However, the existing semantic support in oneM2M does not
specify the exact annotation and translation techniques, as the
standard is open to different oneM2M compliant RDF-based
implementations, and does not declare a generalized
annotation mechanism.

In this paper, we propose a mapping framework to bridge
the gap between linked data support of oneM2M and NGSI-
LD, by mapping the oneM2M resources to NGSI-LD concepts
using RDF triples. Using the RDF mapping, it can be
annotated into the NGSI-LD-based LPG. The resource
management is handled at the data layer. These non-semantic
resources can be translated to knowledge graphs at the upper
layers where knowledge creation and extraction are performed

using NGSI-LD. This framework can be implemented in the
existing oneM2M systems and does not require modification
or addition of its specifications.

II. RELATED WORK

There have been different efforts for mapping the IoT data,
such as Amazon Web Service (AWS) IoT Things Graph [5]
and Smart Geo Layers (SGeoL) [6], which have realized the
need for interoperability among devices representing similar
data, but in different formats. Both the AWS IoT Things
Graph and SGeoL emphasize a uniform data model for
achieving interoperability. SGeoL has been adapted by
LGeoSIM [7], which is an NGSI-LD-based RDF Ontology,
supporting further abstractions for different urban domains.
Unlike SGeoL and AWS IoT Things Graphs, in LGeoSIM the
applications extend the ontology model for their domain-
specific requirements. Nonetheless, LGeoSIM requires data
validation with its core ontology model.

 Relational Database (RDB) to RDF Mapping Language
(R2RML) [8], standardized by W3C, is a significant effort to
map records in relational database to the instances in the RDF
graph. This work is then extended by RML [9], supporting
other data formats such as XML and JSON. Its potential has
been realized by different researches, focusing on different
domains including healthcare [10].

The NGSI-LD has been adopted by different frameworks
and solutions. For the security domain, Gonzalez-Gil et al.
[11] proposed DS4IoT ontology. For the proof of concept,
they used search engine called IoTCrawler [12] and mapped
DS4IoT ontology to NGSI-LD meta-model, as IoTCrawler
utilizes it as a data exchange format. This straightforward
mapping scenario is adequate if the graphs do not require LPG
characteristics. However, it does not optimize the LPG
characteristics to achieve complex and, very often, concise
knowledge representation than RDF graphs.

Bauer et al. proposed a Morphing Mediation Gateway
(MMG) [13] for interworking between different IoT platforms
including FIWARE, oneM2M Z-Wave, and GS1. The data
translation is a two-step process: source data is translated to
internal data format (which is the NGSI context information
model), and then to target data format. This modular approach
allows each source data to have a dedicated translation
module. In that period, NGSI specifications were not based on
linked data. For translating oneM2M resources to NGSI
format, pre-defined semantic annotations (as semantic
descriptors in oneM2M) were required. In this case, mapping
examples for different use-cases have been defined [14].
However, the exact algorithm for generalized mapping is not
provided, as solution architecture is dependent on the
individual one-to-one mappings. This work has been recently
supported with Machine Learning based semi-automated
solution to aid the human expert in simplifying the translation
procedure [15]. However, the mappings are based on the
similarities between source and target data, and the NGSI-LD
is considered as the neutral format.

Most relevant work regarding annotating the IoT data to
NGSI-LD has been proposed in Aquedücte [16], and
FED4IoT [17]. Aquedücte aims at integrating heterogeneous
IoT data to NGSI-LD, through REST API as well as through
file upload. For the annotation, the supported mapping is
required to be embedded either within the data or in the NGSI-
LD @context. For mapping representation, different mapping
attributes (as key-value pairs) have been defined, along with

mapping for the GeoProperty type. However, it limits the
mapping to a simple form of one-to-one mapping, and does
not consider complex mapping possibilities which may
require specific keys/sub-keys to be selected for their
respective values/sub-values.

Fed4IoT [17] is an EU project aimed at IoT virtualization
supporting data interoperability. Particularly they have
proposed translation schemes between oneM2M and NGSI-
LD with some consideration and specifications. Unlike MMG,
they do not entirely rely on semantic descriptors to perform
the mapping from RDF data to NGSI-LD. In addition,
translation does not require additional intermediary internal
data. Their core strategy is to traverse and interpret the labels
in the data. In addition, they also specified mapping based on
the oneM2M resource hierarchy involving Application Entity,
Containers, and Content Instances. The mapping
specifications are adequate in terms of translating the required
information. However, they put tighter constraints on
oneM2M resource definition considerations, whereas
oneM2M specifications are very flexible in terms of resource
usage. In addition, they require each NGSI-LD property and a
relationship to be mapped as a separate container resource in
oneM2M. In this case, the data size of oneM2M resource
(representing a single NGSI-LD Entity) can immensely
increase as each resource also includes its own meta
information, specific to oneM2M protocol [18].

This work has proposed a mapping model and a protocol,
to map a non-semantic oneM2M resources to NGSI-LD-based
LPG. The proposed mapping considers to some extent, the
complex structural representations in JSON values, based on
the location of the relevant attribute. In addition, this protocol
can be implemented in oneM2M system without modifying or
restricting its existing specifications, using the existing
oneM2M semantic support.

III. MAPPING CONSIDERATIONS

Different oneM2M resource (hereby referred to as
“resource” or “resources”) formats are allowed in oneM2M,
including Extensible Markup Language (XML) and
JavaScript Object Notation (JSON). For the scope of this
work, JSON is considered the resource format, since it
maintains a high level of commonality with JSON-LD, the
serialization format for NGSI-LD. Nonetheless, different
factors have to be considered between resource and NGSI-LD
representation structure. First, the resource attributes and their
format can vary based on the application domain and the
schema it utilizes. For example, one domain may define local
coordinates as key-value pairs, whereas the other may use an
array. Second, the resource data may not include concepts that
can be mapped directly to LPG. In this case, nodes and edges
need to be identified and annotated. Finally, some level of
semantics is required for identifying the usage scope of NGSI-
LD concepts defined in the meta-model and contexts, which
may not be available in the resources.

A. Mapping Considerations based on Semantic Descriptor

Resource

In this approach, we leverage Semantic Descriptor
Resource (SMD) to map its respective resources. The
mappings in an SMD involve the RDF triples, specifying the
source elements mapped to their respective target elements.
The source elements represent the data defined as the JSON
key-value pairs in oneM2M Container (CNT) and the
oneM2M Content Instance resources (CIN). The target

elements represent the data in JSON-LD. Through the SMD,
we utilize the underlying oneM2M semantic infrastructure to
support interoperability with NGSI-LD.

To achieve simplicity in aligning the resource hierarchy
with NGSI-LD concepts, a structure has been proposed: the
top-level resource (CSE, AE, or CNT) [18] and their child
resources should potentially represent a single NGSI-LD
Entity. Following that resource hierarchy, the underlying data
will potentially map to the NGSI-LD Properties and Values,
belonging to that Entity, as well as the Relationships linked to
other NGSI-LD Entities (the NGSI-LD concepts: Entity,
Property, Relationship, and Value are hereby referred to as
Entity, Property, Relationship, and Value respectively). In the
case of CNTs, multiple Entities can be represented by the top-
level CNTs, under a single AE or a CSE. These structural
considerations are adapted from the work by Detti et al. [17].

Fig 1. The placement and the resources mapped (indicated by red dashed
arrows) by the respective SMD resource. a) Considered approach. b) The

approach to be avoided.

In oneM2M, the SMD is used to annotate the parent
resource, except when the parent is a CNT. In this work, SMD
is assumed to provide the mapping for the direct sibling CIN,
and the direct parent CNT in the resource hierarchy. In the
case of multiple sibling CINs, a single SMD will be used. The
reason for this restriction is to simplify the location and
discovery of the appropriate SMD in the hierarchy. These
considerations can be visualized in Fig. 1.

B. Mapping Ontology

To map the JSON-based key-value pairs to the concepts in
NGSI-LD, a simple ontology has been defined, which can be
used for the RDF mappings. Fig. 2 shows the ontology model.

This ontology is an extension of the NGSI-LD meta-
model. The concept with prefix definition “ngsi-ld:” are the
core concepts of NGSI-LD, whereas the ones with prefix

definition “annotation:” represent the proposed mapping
concepts. The properties “sourceKey”, “targetKey”,
“sourceValue” and “targetValue” have key involvement in
the mapping. Through these properties, the addresses or the

values of source elements (resources) can be mapped to their
respective target elements (NGSI-LD data). In addition, an
XML Schema Definition (XSD) datatype has been defined
with URI “annotation:reference”. This is used to indicate that
the rdf:range in the above-specified properties is an address
to the key or value in the source or target elements. The
property “hasDomainType” can be used to label an Entity
type in a user-defined @context. The property

“targetValueType” is used to specify a special type defined in

NGSI-LD. Finally, the property “hasEntityId” is used to map

the Entity identifier.

Fig. 2. RDF Mapping Ontology

IV. MAPPING GENERATION AND INTERPRETATION

The mapping generation process involves a user who has
the knowledge of both resource data and structure as well as
the NGSI-LD. In a mapping application, the user manually

selects the keys and values to be mapped to a single target
Entity and its respective Properties and Relationships.

A. Mapping the NGSI-LD Entities and its Properties

Initially, the instance definitions of NGSI-LD concepts
are defined by the user based on the given context. At the
backend, the application will generate their respective

instances of the rdf:Resource type. Then, for each of those
instances, key and value mappings are defined using the RDF
properties from mapping ontology. For the rdf:range of these
properties, if the selected type is “annotation:reference”,

then during the annotation, the application has to dereference
the address, to locate the actual value in the data for the
translation. Here two different addressing schemes have been
adopted: one for resources and one for NGSI-LD. In

oneM2M, “.” (dot) is used for accessing the resources in the
hierarchy. Similarly, while using the
“annotation:reference”, the “.” followed by a name specifies
the sub-resource. While accessing the content of the CIN, “.”

specifies the JSON keys and their respective values as objects
to be accessed further. The starting point of the address is
always the SMD itself in the hierarchy. To access the parent
resource “..” (double dots) can be used. For addressing the

NGSI-LD values, “/” (forward slash) has been used instead
of “.”. In case of NGSI-LD, the values will only correspond
to the values of Properties or Relationships for a specific
Entity. In both addressing schemes, there will be some cases
where some part of the value is static, whereas another part
has to be dereferenced. To distinguish between the two, the
reference part has to be enclosed with “{}” (curly braces)
inside which the same addressing scheme will be followed as
defined above. In this case, the system treats the value as an

XSD String until it locates the address enclosed in “{}”.
Therefore “{}” are considered as reserved for this purpose.

Commonly, the “sourceValue” is not required, as the
“sourceKey” can be used to access the value of that Key.

However, when the source value needs to be translated as
some complex JSON structure, then “sourceValue” or
“targetValue” can be useful. The specification of properties
defined in mapping ontology has been formalized in table 1.

TABLE I. MAPPING ONTOLOGY USAGE

rdf:Property Usage

hasDomainTy
pe

Specify the type of the Entity instance as a
direct/indirect subclass of ngsi-ld:Entity

hasEntityId
Specify the @type of Entity instance if its value is
not in accordance to the required URI format

hasSourceKey

Specify an address or a value of a key, defined in
the resource data for mapping the respective
attributes of the Entity, Relationship, Property or a
Value.

hasTargetKey
Specify an address or a value of a key, to be defined
as a mapped attribute of the Entity, Relationship,
Property or a Value.

hasSourceVal
ue

Specify an address or a value, representing the value
defined in the resource data for mapping the
respective attribute value of the Entity,
Relationship, Property or Value.

hasTargetValu
e

Specify an address or a value to be defined as a
mapped attribute of the Entity, Relationship,
Property or a Value.

targetValueTy
pe

Specify the explicit type (which cannot be
determined from the resource) of the value to be
defined as a mapped attribute of the Entity,
Relationship, Property or a Value.

The complex relations in the NGSI-LD, such as Property
of a Property, can be mapped using the properties defined in
the NGSI-LD meta-model, such as ngsi-ld:hasProperty.

The instance representation of NGSI-LD concepts can be
uniquely identified from their respective RDF resource URI in
the mapping. However, mapping an instance of ngsi-ld:Entity
is often not straightforward in a user-defined @context. For
example, “ParkingLot” is defined as “Zone” and “Zone” is
defined as ngsi-ld:Entity. In such case, if the instance in the
mapping is specified as of type “ParkingLot”, then the
translation system will be unable to identify it as a ngsi-
ld:Entity, and then the user-defined @context has to be
accessed and interpreted for each translation. Therefore, we
have defined such types using “annotation:hasDomainType”
to retain the information for both ngsi-ld:Entity and a user-
defined @context. Some information representing an Entity
may not be available in the CIN, such as @Id, @type, etc. This
information then must be available at the CSE, AE, or the top-
level CNT, to be retrieved and mapped. This supports our
assumption of SMD, mapping its direct parent resource. This
mapping process is formalized using the following steps:

1) Locate the top resource representing NGSI-LD Entity.

2) Define the rdf:Resource of type ngsi-ld:Entity.

a) In case the type is specified in user-defined

@context, define the type using rdf:Property

“annotation:hasDomainType”.

3) Locate the resource attribute and define the

rdf:Property “annotation:hasEntityId”.

4) Locate the data representing ngsi-ld:Property in the

child CNT or CIN resources.

5) Define the rdf:Resource of the type as either ngsi-

ld:Property or the one defined in the @context to represent

the located attribute.

6) Link the previously defined rdf:Resource of type ngsi-

ld:Entity with the above-defined rdf:Resource of type ngsi-

ld:Property using ngsi-ld:hasProperty.

7) Locate resource attributes and define the mappings

using annotation properties from Mapping Ontology.

8) If the ngsi-ld:Property is linked with another ngsi-

ld:Property, then perform step 4 to step 7 with a small

variation in step 6: instead of ngsi-ld:Entity, the two

rdf:Resource of type ngsi-ld:Property will be linked.

9) Repeat step 5 to step 9 for the rest of the properties.

B. Mapping the Relationships among NGSI-LD Entities

Specifying the Relationships is complex due to the
following reasons: the system may not be able to identify the
relations in the resources as most often they are not structured
like a graph; Entities have Relationships with other Entities,
represented by resources located far away in the system. Such
relations will require an additional discovery process in the
oneM2M system; the resources may not exist all at once;
defining such Relationships requires updating the NGSI-LD
data later, when the required resources are available.

Relationships can be mapped at three different stages: i) in
the oneM2M system before the mapping process; ii) in the
SMD during the mapping process; and iii) in the NGSI-LD
data after the translation process. At the first and third stage,
there are many possibilities where the process can be handled
by different services and will be application dependent.
Therefore, we limit the scope of this research to the mapping
stage.

Considering the second stage, there can be two
possibilities for mapping the Relationships: the Relationships
are explicitly defined in the resources; the Relationships are
not defined in the resources but are explicitly defined in the
mapping. In the former case, the mapping will be defined in
similar way to the one defined for Properties in section IV.A,
where the Relationships will be mapped using ngsi-
ld:hasRelationship and the target will be mapped using the
mapping ontology. For the latter case, either Semantic Web
Rule Language (SWRL) [19], or SPARQL Protocol and RDF
Query Language (SPARQL) [20] can be utilized.

Some information is required based on which SWRL or

SPARQL can be utilized to map the Relationship. Consider a
scenario where a Relationship “hasParkingSpot”, has to be
generated between the Entities “ParkingLot” and
“ParkingSpot”. To identify the Relationship, two pieces of

information can be helpful: local coordinates defined in
resources for “ParkingLot” and “ParkingSpot”; and the key
“parkingLotRef” (defined in the resource representing
“ParkingSpot”), whose value specifies the id of the resource

representing “ParkingLot”. After mapping the two Entities,
the SWRL rule or SPARQL query can be defined which can
compare the local coordinates of both Entities as well as
compare the value of “parkingLotRef” with the

“annotation:hasEntityId” of the “ParkingLot” Entity instance.
In the case of SWRL, the resultant Relationship will be
defined using “ngsi-ld:hasRelationship” (and some other
RDF concepts if required) in the consequent of the rule. Upon

performing the inference (using an inference engine such as

Pellet [21], HermiT [22], etc.), the appropriate Relationship

will be generated. However, the utilization of SWRL requires
the OWL representation of NGSI-LD meta-model as well as
Mapping Ontology, which is straightforward to define
following the Ontology defined in NGSI-LD specification.

One of the limitations of SWRL-based mapping is that it is
highly dependent on the Inference engine: sending a lot of
mapping instances to the Inference engine may consume a lot
of time resulting in poor performance.

The above limitation can be resolved by using SPARQL,
which is flexible as it supports all the CRUD operations as
well as some complex operations. In case of the SPARQL
query, the antecedent part of SWRL will be defined as the
WHERE and FILTER clause, and the consequent will be

defined as the INSERT clause. However, SPARQL queries
cannot be formally stored and executed using an inference
engine like SWRL. They can be stored as a string literal of an
RDF property or by utilizing Shapes Constrained Language

(SHACL) [23]. Otherwise, a triple database (TDB) enabled
with the SPARQL engine is required to store the mapping.

V. USE CASE BASED ON PARKING DATA

Consider a scenario where the parking system utilizes
oneM2M-based architecture for managing the parking-related
data, which needs to be annotated into NGSI-LD-based LPG
for different services such as recommending nearby available
parking lots or parking spaces. Different types of resources
need to be created such as parking lot, parking spot, parking
lot congestion, parking floor congestion, etc.

Fig.3. Parking Spot Data in CIN

Fig. 3. shows sample data for a parking spot in the
Republic of Korea. Here “…” in the third and third last row
represents the data that is not relevant to be shown for
annotation. This data usually involves the mandatory or
optional resource attributes based on oneM2M specifications.

Fig. 4 shows the respective mapping of the parking spot
data to a single Entity. Most of the RDF resources represent
the key or id of the elements in NGSI-LD such as
“parking:name”, “parking:unit”, etc. They act as the value of
“targetKey” in the mapping. The URIs of these RDF resources
are defined based on the @context for the parking domain.
This @context has to be available to the mapping and the
translation module in advance. The dot “.” representation
scheme for resources can be observed in the range values of
properties “sourceKey” and “sourceValue”. At the beginning
of each value, “/la” denotes the latest CIN resource content in
the case of multiple CIN resources. A part of the value for
“hasEntityId”, which is enclosed in “{}”, shows the address to

be referenced, whereas, the value outside “{}” indicates the
static value to be added as the prefix.

Fig. 4. RDF-based Mapping Representation in SMD. The diagram legends
show the rdf:type of the RDF resource and properties.

In Fig. 4, the mapping related to “parking:location” (“loc”
in Fig. 3) is an example of complex value mapping, where two
“ngsi-ld:Value” instances map the respective longitude and
latitude information. The value format of “targetValue”
differs from that of the source, as the longitude and latitude
values are mapped as first and second elements in the array
respectively, represented by an index enclosed in “[]”. In
addition, the property “targetValueType” has been used to
explicitly define the Value type used in NGSI-LD, which is
not determined in Fig. 3. The mapping related to
“parking:unit”, defined in Fig. 4, shows another usage of
“targetValue” based on simple conditioning. The translation
system checks if the “sourceValue” is “m”, the type in NGSI-
LD will be defined as “meter”, through interpreting the
“targetValue”. For multiple conditions, instances of type
“ngsi-ld:Value” can be defined, linked together with
“parking:unit” using “ngsi-ld:hasValue”, where each instance
will represent a single condition. The mapping related to
“observation”, defined in Fig. 4 shows the usage of predefined
Property “observedAt”.

The final NGSI-LD Entity representation can be seen in
Fig. 5. Here the value of “id” (which has been mapped using
the literal value of “hasEntityId” (see Fig. 4), has “yatap_540”
as its postfix, which has been retrieved following the reference
“{../cnt.rn}” in the mapping, specifying the parent CNT
resource attribute.

The current mapping protocol has some limitations
regarding Value mapping as it cannot provide complex value
objects to the full extent. For instance, the time stamp for the
Property can be mapped if the resource data has defined the
time stamp value using the XSD data type. It will not support
any other custom non-standard time stamp. Support for such
complex values and other JSON object structures is the scope
of future study.

Fig. 5. Annotated Parking Spot data in NGSI-LD

VI. CONCLUSION

In this paper, we proposed a novel approach to utilize RDF
for annotating oneM2M resources into NGSI-LD. The
mapping protocol has been applied to the smart parking use
case. The mapping can provide an interpretation of value at
some level of complexity. The value-to-value mapping with
different standards still has limitations and requires manual
work. However, this issue can be resolved using reasoning
such as using SWRL. Linking the NGSI-LD Entities is also an
important aspect of this research whose implementation
feasibility is yet to be explored. The resolution of these
challenges will improve the mapping capabilities, which is
also the future work of this study.

ACKNOWLEDGMENT

This work was supported by Korea Environment Industry
& Technology Institute (KEITI) through Intelligent
Management Program for Urban Water Resources Program,
funded by Korea Ministry of Environment (MOE)
(RE201903069).

REFERENCES

[1] M. Yahya, J. G. Breslin, and M. I. Ali, “Semantic Web and Knowledge
Graphs for Industry 4.0,” Appl. Sci., vol. 11, no. 11, p. 5110, May 2021.

[2] G. Buchgeher, D. Gabauer, J. Martinez-Gil, and L. Ehrlinger,
“Knowledge Graphs in Manufacturing and Production: A Systematic
Literature Review,” IEEE Access, vol. 9, pp. 55537–55554, 2021.

[3] oneM2M, "Semantic Support", oneM2M, Rep. TS-0034-V3.0.1, 2019.

[4] ETSI, "Context Information Management (CIM); Information Model
(MOD0)", ETSI, Rep. ETSI GS CIM 006 V1.1.1, Jul. 2019.

[5] “AWS IoT Things Graph.”, AWS IoT Things Graph.
https://aws.amazon.com/iot-things-
graph/?nc2=h_ql_prod_it_tg%0Ahttps://aws.amazon.com/iot-things-
graph/. (accessed Apr. 21, 2022).

[6] A. Souza et al., “A geographic-layered data middleware for smart
cities,” in Proc. WebMedia '18: Proc. of the 24th Brazilian Symp. on
Multimedia and the Web., Oct. 2018, pp. 411–414.

[7] B. Rocha, E. Cavalcante, T. Batista, and J. Silva, “A Linked Data-
Based Semantic Information Model for Smart Cities,” in 2019 IX
Brazilian Symp. on Comput. Syst. Eng. (SBESC), Nov. 2019, pp. 1-8.

[8] R2RML: RDB to RDF Mapping Language, W3C Standard TR/r2ml/,
Sep 2012. [Online]. Available: https://www.w3.org/TR/r2rml/.
[Accessed: 21-Apr-2022].

[9] A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, and R.
V. D. Walle, “RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data,” presented at the Linked Data on the
Web (LDOW2014) - Workshop at WWW2014, Seoul, Korea, Apr. 8,
2014.

[10] R. Reda, F. Piccinini, and A. Carbonaro, “Towards consistent data
representation in the IoT healthcare landscape,” in DH '18: Proc. of the
2018 Int. Conf. on Digit. Health., Apr. 2018, pp. 5–10.

[11] P. Gonzalez-Gil, J. A. Martinez, and A. F. Skarmeta, “Lightweight
Data-Security Ontology for IoT,” Sensors, vol. 20, no. 3, p. 801, Feb.
2020, doi: https://doi.org/10.3390/s20030801.

[12] A. F. Skarmeta et al., “IoTCrawler: Browsing the internet of things,”
in 2018 Glob. Internet Things Summit (GIoTS), Nov. 2018, pp. 1-6,
doi: 10.1109/GIOTS.2018.8534528.

[13] M. Bauer, “Morphing Mediation Gateway with Management and
Configuration Functions R2,” Rep. D2.2, ver. 1.0, Aug. 21, 2017.

[14] Y. Saleem, M. Bauer, and S. Jeong, “Semantic Interoperability
Components R2,” Rep D2.5, ver 1.0, Nov. 17, 2017.

[15] M. Bauer, "IoT Virtualization with ML-based Information Extraction"
in 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), 2021,
pp. 915-920.

[16] J. G. Almeida, J. Silva, T. Batista, and E. Cavalcante, “A linked data-
based service for integrating heterogeneous data sources in smart
cities,” in Proc. of the 22nd Int. Conf. on Enterprise Inf. Syst. (ICEIS
2020), 2020, pp. 205–212.

[17] A. Detti et al., "System Architecture - First Release," Rep. D2.2,
March. 31, 2019.

[18] oneM2M, “Functional Architecture,” oneM2M, Rep. TS-0001-
V3.27.0, March. 03, 2022.

[19] SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
W3C Standard SUBM-SWRL-20040521/, May 21, 2004. [Online].
Available: https://www.w3.org/Submission/SWRL/. [Accessed: 21-
Apr-2022].

[20] SPARQL 1.1 Query Language, W3C Standard TR/sparql11-query/,
March 21, 2013. [Online]. Available:
https://www.w3.org/TR/sparql11-query/. [Accessed: 21-Apr-2022].

[21] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A Practical OWL-DL Reasoner,” J. of Web Semantics, vol. 5, no. 2, pp.
51-53, 2007.

[22] B. Glimm, I. Horrocks, B. Motik, and G. Stoilos, “HermiT: An OWL
2 Reasoner,” J. of Automated Reasoning, vol. 53, no. 3, pp. 245–269,
May 2014.

[23] Shapes Constraint Language (SHACL), W3C Standard TR/shacl/, Jul.
20, 2017. [Online]. Available: https://www.w3.org/TR/shacl/.
[Accessed: 21-Apr-2022].

