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ABSTRACT 

Smart devices such as smartphones, smartwatches, etc. are promising platforms that are being used for automatic 
recognition of human activities. However, it is difficult to accurately monitor complex human activities due to 
inter-class pattern similarity, which occurs when different human activities exhibit similar signal patterns or 
characteristics. Current smartphone-based recognition systems depend on the traditional sensors such as 
accelerometer and gyroscope, which are inbuilt in these devices. Therefore, apart from  using information from 
the traditional sensors, these systems lack contextual information to support automatic activity recognition. In 
this article, we explore environment contexts such as  illumination(light conditions) and noise level to support 
sensory data obtained from the traditional sensors using a hybrid of Convolutional Neural Networks and Long 
Short Time Memory(CNN_LSTM) learning models. The models performed sensor fusion by augmenting the low-
level sensor signals with rich contextual data to improve recognition and generalisation ability of the proposed 
solution. Two sets of experiments were performed to validate the proposed solution. The first set of experiments 
used  inertial sensing data whilst the  second set of extensive experiments combined inertial signals with 
contextual information from environment sensing data. Obtained results demonstrate that contextual 
information such as environment noise level and illumination using hybrid deep learning models achieved 
better  recognition accuracy than  the traditional activity recognition models without  contextual information. 
 
Keywords: Contextual information;  deep hybrid learning model; activity recognition; Sensors; Smart devices. 

 

1. INTRODUCTION 
 
In the last two decades, the study of Human Activity Recognition (HAR) has been significantly enhanced because 
of the  emergence of smart computing devices, availability of huge datasets  and unprecedented breakthrough in 
the development of machine learning/artificial intelligence algorithms  that can provide real-time predictions of 
various daily human activities and movements[1-2]. Today, the number of smartphone users worldwide has 
surpassed the three billion mark and is projected to increase by several hundred million in the next few years1. 
This surge has resulted in rapid development of several intelligent application domains that leverage on the use 
of inbuilt sensing capabilities of smartphones. These domains among others include smart homes [3], healthcare 
[4-5] personalised content recommendations [6-7]manufacturing [8] and self-driving cars [9]. Whilst these 
domains may have certain peculiarities regarding the activities involved, each domain, within its own contexts, 
involves several combinations of simple and complex activities, particularly in the domain of human activity 
monitoring in ambient environments. Although significant progress has been achieved in the HAR domain, most 
works have focused on simple activities compared to complex activities that reflect people’s real daily lives [2, 10-
11]. Whilst complex activities are characterised by several different simple activities, they are also prone to inter-
class similarity problems. According to [10], an inter-class similarity  occurs when activities that are different 
exhibit similar patterns in their sensor signals. Because of these similar signals from sensing devices, discriminating 
between simple and complex activities  becomes more difficult for HAR models. To address the inter-class 
similarity problem, not just  the use of more sensory data is required but also the use of algorithms capable of 
discriminating patterns in these activity signals, considering the contexts of such activities[10] .  

To emphasise the inter-class problem in HAR, let us consider the  following scenarios that illustrate typical 
situations where a mix of simple and complex activities can be misclassified when they exhibit inter-class similarity 
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when contextual information is not taken into consideration. A driver, for example, may be distracted with a 
personalised mobile content recommendation because a model confuses driving with running. Both activities  

lying in the bed with sun-bathing. These are two examples of activities that involve lying down but the latter is a 
complex activity typically involving substantial amount of sunshine(illumination)  and sometimes noise in a specific 
location usually on the beach. A final example is walking and mountain-climbing. Again, these are two activities 
that are very similar but contextually different. Mountain-climbing involves walking but, at the same time, the 
contexts are quite different. Usually, factors such as high altitude are associated with low temperature and 
humidity. Therefore, to effectively discriminate between these similar activities, information such as spatial-
temporal and environment contexts are required.  

The examples above demonstrate clearly that simple  and complex activity recognition from sensor data does 
pose several challenges. First, the underlying activities of a complex activity are mostly dependent [12]. 
Particularly, in one complex activity, the temporal relatedness of several simple activities often manifest itself in 
several different forms. As a result, the complicated temporal combinations often lead to semantic meanings for 
understanding a complex activity [13]. Second, multiple complex activities share one or more common and related 
simple activities. The driving and eating examples above clearly illustrate this. Another good example is making 
sandwiches which is expected to be more similar to making coffee than cycling in terms of activity patterns. Third, 
complex activities, compared to simple activities, contain higher level semantics that are often more complicated 
and are known to be more reflective of the daily lives e.g., driving, eating and relaxing. Finally, complex activities 
often take longer to detect compared to the simple ones [14-15]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the past, as illustrated in Figure 1, researchers  have solved HAR using the traditional machine learning 
techniques and hand-crafted feature extraction methods[16-17].  Although this process is known to help reduce 
overfitting the model, reduce training time, and improve accuracy, the downside is that when features are hand-
crafted, the model becomes susceptible to classification errors. Handcrafted feature extraction is also limited by 
human domain expertise, that is, a deep knowledge of the application domain is required. Lastly, because this 
approach only helps extract shallow features, the performance of the model is largely undermined resulting in 
poor generalisation [11]. 
 
Recently, Deep Convolutional Neural Networks (DNN) began to deliver on its promises of automatic feature 
extraction and achieve state-of-the-art results for HAR. When DNN is applied to raw time series data and because 
of its automatic feature extraction capabilities, it often outperforms models trained on heuristic hand-crafted 
features[18]. Deep learning models also have capabilities to extract high-level representation within the deep 
layer making it more applicable to complex activity recognition problems[11].The most common DNNs for HAR 
are the Convolutional Neural Network, Recurrent Neural Network (RNN) and the Long-Term Short Memory 
(LSTM) networks. CNNs are specifically designed to effectively process image data solving computer vision 
problems such as image classification, image captioning and object localisation[19]. Compared to CNNs, RNNs can 
learn and keep memories of temporal dependencies of time series data by relying on its dynamic temporal 
behaviours. LSTM networks are an extension of RNNs, possessing complex memory cells which help it avoid the 
long-term dependency problem of vanilla RNNs. Since DNNs can adaptively learn spatial hierarchies of features 

 
Figure 1. An Overview of Traditional Activity Recognition Processes 
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to discover low- and high-level patterns in the dataset, new datasets and new sensor modalities can be quickly 
adopted with minimal configuration. Several authors have demonstrated the effectiveness of DNNs on HAR  
systems with state-of-the-art results and recently using hybrid deep learning models [20]as we  discuss in section 
2.  
The aim of this study is to distinguish between simple and complex human activities of daily living and address 
the associated inter-class similarity problems using a combination of traditional motion and ambient sensing data 
with hybrid deep neural networks. The proposed  deep hybrid feature model combines rich context-aware data 
from ambient sensors with low-level inertial sensor signals as shown in Figure 2. The motion sensors include the 
accelerometer, gyroscope, as well as other sensors such as magnetometer while the ambient signals, which serve 
as the context data include signals from the sound and light sensors of the smartphone.  The hybrid model 
efficiently combines the diverse capabilities of CNNs and LSTM to form a CNN-LSTM hybrid model. This hybrid 
model has previously demonstrated  very good  accuracy  in the speech recognition domain [21-22].  

The key research question addressed in this article is “how do we  determine the extent to which rich contextual 
information could improve the accuracy of deep hybrid learning models in generalising simple and complex 
activities of daily living while also addressing the inter-class similarity problems?”.  To answer this question, the 
contributions of this article are five-fold: 

• The article proposes  a deep hybrid feature model capable of discriminating  between simple and complex 
activity signal patterns by augmenting low-level inertial signals with contextual signals to improve recognition 
and generalisation accuracy. 

• An extensive review of state-of-the-art in human activity recognition, context-awareness, deep learning 
algorithms,  and inter-class similarity problems in human activity recognition. 

• We optimize the hybrid models’ hyperparameters using grid search method. 

• We demonstrate through extensive experiments the  efficacy of  CNN-LSTM model for realising  state-of-the-
art results using raw sensor signals without heuristic hand-crafted features.  

• We demonstrate the efficacy of smartphone rich contextual data for solving inter-class similarity problem of 
simple and complex activities of daily living. 

The remainder of the article is structured as follows: In section 2  we review  related works in aspects covered by 
the proposed solution. In section 3, we present  the proposed solution. Experimental validation of the proposed 
solution is presented in section 4. In section 5, we discuss the experimental results and their significance. Finally, 
section 6 draws conclusions and presents recommendations for future work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Literature Review and Related Work 
In this section, the article examines existing literature in the area of simple and complex activities, 
machine learning, and context awareness for complex HAR systems. 

 
Figure 2.High-level view of the hybrid model 
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2.1  Simple and complex human activities 

The HAR domain has witnessed huge attention by research studies involving simple activity recognition. 
However, there is limited support of studies focusing on complex activities. This is evident in several 
independent surveys conducted by other researchers [2, 10-11, 23-24]. They have suggested that lack 
of studies is attributed to the data associations inherent in complex activities. For instance, 
[2]  categorised complex activities into three broad groups: composite activities comprising a series of 
simple activities; concurrent activities occurring when a user engages in more than one simple activities 
at the same time; and Multi-occupant activities suggesting more than one user engaging in a set of 
activities in a multi-resident environment. Moreover, using an approach-based tree-structured 
taxonomy,[23] categorised human activities into two broad groups: single-layered and hierarchical 
activities. The single-layered activities are likened to simple activities such as gestures and actions with 
sequential characteristics whilst the hierarchical activities are high-level activities with multiple single-
layered activities. Another definition given by [25] suggested that the differentiating factor is the 
duration. In their paper, they referred to simple activities as single-person actions with short duration, 
while complex activities are regarded as a complex sequence of actions performed by several 
individuals over a long time. Although several authors have used different terminologies for their 
categorisation, [26] argue that the boundaries of these classes are still not clearly demarcated. One 
thing that these existing studies agree on is that human activities can be further categorised into simple 
and complex activities to better reflect activities of daily living. In this article, we have adopted the 
classification taxonomy developed by [2] and  [23].  
For HAR models to achieve state-of-the-art performance when discriminating between simple  and 
complex activities, Blanke et al[27] suggested that collecting data from multiple sensors should be 
explored because of the hierarchical structures in determining the different levels of physical activities. 
Although [10] agrees with this heterogenous data collection approach, they also identify the prevalent 
inter-class similarity challenges associated with HAR, most especially when the dataset comprises both 
simple and complex activities. They define inter-class similarity as the potentials for activity classes that 
are fundamentally different to exhibit very similar patterns in the signal data. Finally, they recommend 
applying an Activity Recognition Chain (ARC) to mitigate against these challenges. ARC is a specific 
activity recognition system behavior that comprises signal processing, pattern recognition, and 
machine learning algorithms. 

2.2 Context Awareness and Inter-similarity in Complex HAR 

The role of context recognition in complex activity detection cannot be overemphasised. Therefore, 
understanding the context in which an activity is performed can enhance the ability of HAR models to 
identify the complexity of such activity[28]. Researchers have, over the years, developed models for  
activity contexts recognition  using additional sensor signals other than the traditional inertial sensors 
(accelerometer, gyroscope, and magnetometer). The rationale is to acquire as much information as 
possible from integrated or nearby ambient sensing devices and use the same to train the deep neural 
networks. Using this rich contextual information, existing research works have been able to recognise 
different activities that are difficult to identify using fewer sensor modalities. In recent research 
conducted by [29] they used ambient signals from audio sensors combined with inertial signals to pre-
train a CNN model for automatic human activity recognition. Similarly, [30] combines ambient signals 
from audio sensors and video cameras in addition to other inertial sensors to detect activities of the 
elderly in order to recommend early intervention and rehabilitation.  To address inter-class similarity in 
HAR, [31] relied on camera signals from sports videos and developed a model that employs hierarchical 
matching using a Consistency-correlation driven Feature Selection. To address the same challenge, [32] 
combine sensing information from multiple sensor modalities including traditional sensors 
(accelerometer and gyroscope) and ambient sensors (atmospheric pressure, temperature and humidity 
sensors).  
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In a way, these works are very similar to the current work, however, we did not only use inertial signals 
from smartphones, but we also investigated the significance of ambient sensing in conjunction with the 
inertial sensors to address the challenge of interclass similarity in the dataset.  Thus, in addition  to the 
traditional inertial sensors, we proposed two (2) extra ambient signals (ambient illumination and noise 
level signals) to augment the traditional inertial sensing signals.  

2.3 Machine Learning for Complex HAR     

Early  2012, [26] conducted one of the first studies to have focused on simple and complex activities 
recognition using data collected from smartphone accelerometers and gyroscope sensors. Although 
the model had a poor 50% accuracy at recognising complex activities, it achieved over 93% for simple 
activities suggesting that relying on smartphone sensors alone may be inadequate for detecting 
complex activities. However, other studies revealed that the size of the segmentation window could 
lead to poor performance of the model for classifying complex activities, suggesting that some efforts 
are required to determine the optimal window size [33-34]. The model is designed in a way that 
automatically detects the appropriate window size, thus, obviating the need for a pre-specified window 
length.  

In addition, recognition of several different complex activities has contributed immensely to providing 
context-aware feedback in various well-being mobile applications [35]. Unlike the proposed model, 
most of these works focus on one complex activity and several simple activities. For instance, Ramos-
[36] focused on eating while [37] concentrated on smoking. In addition, most of these studies used data 
from accelerometers and gyroscopes only, while the work explores a few more complex activities using 
additional sensors such as the smartphone magnetometer. Although another piece of work combined 
data from accelerometer, gyroscope and magnetometer on the wrist to detect smoking puffs, the 
models were only able to detect smoking activity [38]. The work explores the application of deep 
learning models to generalise more than one complex activity in human activities of daily living. 

So, how has deep learning helped in generalising complex activities? There have been a good number 
of works, which explore the application of Deep Neural Networks (DNN) to HAR models. Early works 
carried out by some authors [19, 39] to examine the feasibility of deep learning in the HAR space paved 
the way to other related studies in this field. Motivated by this, other scholars [16-17] attempted 
activity classification by starting with a hand-crafted feature extraction process. The models performed 
very poorly simply because the Deep Convolutional Neural Network (CNN) was only explored as a 
classification model and certainly not used for feature extraction. On the other hand, Hammerla et 
al(2016) achieved a better result when they employed a 5-hidden-layer CNN to carry out automatic 
feature extraction and classification.  Similarly, other studies have been able to replicate and achieve 
similar results[14, 40]. This new approach allows  feature extraction and model building tasks to be 
done through the network at the same time, thus making it suitable for classifying composite activities. 
Although the work also leverages CNN’s automatic feature extraction, we additionally investigated the 
impact of different window lengths on the recognition accuracy as suggested by [41]. Furthermore, we 
explored the recommendations from other studies [10, 42-44]. by incorporating temporal and 
environmental parameters such as noise level and illumination data respectively into the model. These 
authors have all suggested that contextual information, when combined in an optimal manner, can 
significantly improve HAR model’s generalisation ability.   

Several other works explored the Deep Recurrent Neural Networks (RNN), a deep learning model 
known to be widely applicable in natural language processing and speech recognition. However, these 
works have some limitations: consuming too a lot of  resources and a long learning curve[45-48]. [49] 
applied the RNN successfully on a number of HAR datasets with impressive results. They commented 
on the limitation of CNNs to operate effectively on fixed-size windows of sensor data, a limitation that 
Long Short-Term Memory Networks (LSTM) does not suffer from. LSTM is a specific type of RNN widely 
used with time-series data because of its ability to learn temporal dependencies in a sequence. In a 
related study conducted to detect anomalies in time series, [50] demonstrated the ability of the LSTM 
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networks to maintain long-term memory and learn sequences of data containing long-term patterns of 
unspecified length. This capability of LSTM makes it a suitable candidate for the complex activity 
recognition system. More often than not, complex activities take longer to detect compared to the 
simple counterparts [14-15]. By splitting the window sequences into sub-sequences, we are able to 
reuse the same CNN model when reading in each sub-sequence of data separately. We achieved this  

by wrapping the CNN layers in a Time Distributed wrapper and applied the entire model once per input 
subsequence. The extracted features are then flattened and provided to the LSTM model to read, 
extracting its own features before a final mapping to an activity is made. 

Existing works rely on using an LSTM with a CNN to tackle the identified  challenges  resulting in a CNN-
LSTM or ConvLSTM model[2]. This combination of CNNs and RNNs is an emerging methodology 
adopted lately by researchers to replace the previously conventional independent learning for multiple 
related tasks. One of such works by [51] implemented the hybrid model: a combination of CNNs and 
unidirectional RNN-based Long Short-Term Memory (LTSM) recurrent layers to classify activities from 
wearable sensors. Another work by [47] examined the impact of different deep learning models 
employing the deep feed-forward network, CNN, and bi-directional LSTM network on HAR problems. 
In the same vein, [52] implemented a hybrid CNN-LSTM model and recorded significant improvement 
in comparison to previous works using similar datasets.  

Recently, some studies [14, 19, 53] focused on activity recognition by taking advantage of the hybrid 
multi-task learning models. In their work, [19] implemented a CNN model combined with a bi-
directional LSTM network to extract task-dependent simple activities and classify complex activities. 
The model, tagged AROMA, utilises the CNN layer to extract deep features followed by a Softmax 
classifier for predicting simple activities. The deep features from the CNN layer are then concatenated 
together to form a deep feature layer which serves as input for the LSTM network. AROMA then 
implements another Softmax classifier to predict complex activities. Also, [53] adopted the multi-task 
learning approach to discriminate between simple and complex activity labels. The results are most 
impressive, suggesting that combining CNN with LSTM network can achieve higher generalisation 
accuracy than just using either of them alone. These works provide the basis for the research although 
not even one of these studies explores the combination of rich contextual information provided by the 
smartphone ambient sensors to augment the inertial sensing signals. The work is unique in that we took 
a step further to improve recognition accuracy significantly by exploring these contextual 
dependencies.  

 More specifically, the proposed solution  only utilises sensor data from smartphones as opposed to 
other models that require multiple wearable and non-wearable sensors, which are far from ideal and 
intrusive. Although there are similar works that demonstrate the adequacy of smartphone sensor data 
in activity recognition [40, 54-58] to the best of the knowledge, the proposed work is the first to 
combine rich contextual information from ambient sensors with low-level sensors signals from the 
inertial sensors to distinguish between simple and complex activities and address associated inter-class 
similarity problems. The proposed solution also demonstrates significant improvement of recognition 
accuracy using raw sensor signals without heuristic hand-crafted features. 

 3. Proposed Methodology 
In this section, we present the approach and methods of the proposed solution for  
generalising simple and complex activities using raw sensing signals from smartphone sensors.  

3.1 Problem Definition 

We start by clarifying a few terminologies. Figure 3 below represents the high-level workflow 
of the work. Experiments on smartphone-based activity recognition require activity signals 
being collected from the user via smartphone sensors [2]. The sensing signals are usually 
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multivariate time-series data. Multivariate refers to multiple inputs, for example, the 
accelerometer signals come in 3 axes (x, y, z). Moreover, the smartphone has several sensors  
ranging from inertial, ambient, and environmental sensors. When signals are collected from 
multiple sensors, such a dataset is referred to as multimodal i.e. multiple sensor modes. State-
of-the-art HAR models are usually trained using a multimodal multivariate dataset [18]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
As illustrated in Figure 2 in section 1, the input data consists of a combination of inertial and 
ambient data signals. In the next section, we describe the input data in detail. 

3.2 Inertial Sensor Signals 

According to a recent survey conducted by [53] the inertial sensors, also known as motion 
sensors, are the most commonly used for HAR systems. These set of sensors, compared to the 
videos-based sensors, capture body movements effectively without posing any privacy issues. 
The accelerometer, gyroscope and magnetometer are the most popular examples of inertial 
sensors which are now freely integrated into smartphones, smartwatches and sometimes on 
clothes. In this work, we utilised sensing signals from the 3 sensors to train the baseline model, 
just like many other studies[38, 51]. The raw signals from the inertial sensors are pre-processed 
and passed to a convolution filter for feature extraction. 
The accelerometer, for instance, is used to measure acceleration, same as rate of change of 
velocity of an object. The unit of measurement is meters per second squared  (m/s2) along the 
3 axes (x, y, and z). Therefore, each sample is made up of a tri-variate time series. The 
gyroscope is another motion sensor used for measuring orientation and angular velocity. The 
unit of measurement is degree per seconds (o/s). In contrast to the accelerometer which 
measures change in linear velocity, the gyroscope is a more advanced sensor which captures 
angular and lateral orientation of an object. Lastly, the magnetometer is a motion sensor often 
installed together with an accelerometer and gyroscope into an inertial unit. It helps measure 
the change in magnetic field at specific locations. Recently, the magnetometer, often installed 
in aircrafts, has become a common sensing equipment in mobile devices to detect orientation 

 

 

Figure 3. Overview of the proposed context-aware smartphone-based human activity recognition 
using Hybrid CNN-LSTM Model 
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relative to the Earth’s magnetic north [2]. Likewise, the magnetometer captures signals in three 
axes i.e. tri-variate as the accelerometer and gyroscope.  

3.3 Environment sensor signals 

Interactions between humans and the environment are usually captured using ambient 
sensors embedded on devices present in the same physical location. These sensors are good 
at detecting multi-occupant activities [2]. Examples of ambient sensors include WiFi, 
Bluetooth, sound, light, pressure sensors etc. In this work, the approach is to augment 
traditional inertial sensing data with rich contextual data captured by ambient sensors to train 
the classifier to distinguish between simple and complex activities. Several other works used a 
similar approach to achieve state-of-the-art results [29]. However, their work did not combine 
the audio and light sensors as proposed in this article. In addition to the inertial signals, we 
utilised ambient signals from the audio and light sensors to train and improve the baseline 
model to create a context-aware model. 

The sound or audio sensors are usually made up of microphones and speakers. The 
microphone receives ultrasound signals while the speaker transmits same. The idea is that 
human movement activities and interactions create different level of environmental sounds, 
and these can be captured by the microphone as noise level contexts. Likewise, the light sensor 
captures the intensity of light i.e. illumination level as at the time these interactions occur. 
Together, these two sensors create rich contextual data that can be passed to the classifier to 
make it context aware. 

3.4. The Proposed CNN-LSTM Hybrid Model 
The proposed  CNN-LSTM hybrid model uses the Time Distributed CNN sub-model for 
automatic learning and extraction of discriminatory features from raw input signals, and the 
LSTM networks for frequency and temporal modelling. First, a CNN as illustrated in Figure 4 is 
usually made up of the following components: an input layer, multiple hidden layers, and an 
output layer. The input layer is determined by the input signals. Each of the multiple hidden 
layers can either be a convolutional layer followed by an activation function, a pooling layer, 
and a fully connected layer (FC). The main difference between the two models is at the 
TimeDistributed input layer where one model trains on 9 input features as against 11 in the 
other.  
 
a. The Convolutional (Conv1D) layer: between the convolutions, data processing happens 

layer by layer as the output of one layer is the input of another layer. Let us assume that 
𝑥𝑖

𝑎 = [𝑥1, 𝑥2, … , 𝑥𝑁] are the inputs from the sensors, and a represents the axis of the 
sensor. Going by the literatures, given l number of convolution layers, the feature map of 
the l-th layer is derived using the following equation: 

   𝑧𝑖
𝑙,𝑗

= 𝜎(∑𝐾
𝑘=1 𝑤𝑘

𝑗
𝑥𝑖+𝑘−1

𝑙−1,𝑗
+ 𝑏𝑗

𝑙)     (1) 

where 𝑤𝑘
𝑗
 and 𝑏𝑗

𝑙  represents the weight and bias of the j-th term of the l-th layer. While l 

stands for the index of the current layer, 𝜎 is the activation function and 𝑥𝑖+𝑘−1
𝑙−1,𝑗

is the input 
patch. K is the size of the CNN kernel or filter.  

b. The Pooling layer: we added a pooling layer to the CNN sub-model to reduce the spatial 
size of representations i.e. a form non-linear down-sampling operation to help reduce the 
feature maps. It is a common practise to have a pooling layer between successive 
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convolutions in a CNN [14]. In this article, we use the max-pooling operation in mapping 
the output of the preceding layer. 

   𝑓𝑖
𝑙+1 =  𝑚𝑎𝑥𝑘=1

𝑟 (𝑓𝑖+𝑘
𝑙 )      (2) 

where 𝑓𝑖
𝑙 is the value of the 𝑖-th unit in layer 𝑙, and 𝑟 is the length of the pooling. 

c. The Flatten layer: we included a Flatten layer in the model just immediately after the 
pooling layer. The flatten layer, upon receiving the output of the pooling layer, converts 
the reduced feature maps into a single column vector. These are one-dimensional vector 
of features such that 𝑓𝑙 = [𝑓1, 𝑓2 … , 𝑓𝑙], where l represents the number of nodes in the last 
pooling layer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
d. The LSTM Networks: an interesting part of the model in the introduction of the LSTM 

networks immediately after the Flatten layer. This is where the current work differs 
significantly to that conducted recently by researcher in Otebolaku et al in [59]. According 
to [22] for models that need to learn the temporal patterns in input data, preceding an 
LSTM network with a CNN sub-model always outperforms models with only one of the two. 
LSTM, like any other recurrent neural network, supports forward and backward 
propagation within its networks. Made up of several LSTM units, the LSTM networks use 
its memory cells to master the temporal context in input data. Each of the units has a 
memory cell 𝑐𝑡 which is readable, updatable, and erasable [14]. As mentioned earlier, 

 

 
Figure 5. A single layer of  LSTM Network 

 

 

 

 

 

Figure 4.Automatic Feature Extraction Using CNN 
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LSTMs comprises the input gate 𝑖𝑡, forget gate 𝑓𝑡, and output gate 𝑜𝑡 which control reading, 
memory update, and writing operations, respectively.  

 
A typical one-layer LSTM network as illustrated in Figure 5 comprises specified LSTM units, 
each of which takes input data 𝑥𝑡, cell state 𝑐𝑡−1, and hidden state ℎ𝑡−1 from the previous 
LSTM unit. At every time step t, the hidden state gets updated. This operation can be 
summarised as follows: 

𝑖𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)     (3) 
𝑓𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)    (4) 

𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡°𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)   (5) 
𝑜𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑥𝑜𝑥𝑡 +  𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡−1 +  𝑏𝑜)   (6) 
ℎ𝑡 =  𝑜𝑡°𝑐 𝑡)        (7) 

where 𝑐𝑡 and ℎ𝑡 are the outputs of the LSTM unit that can be passed to the successive LSTM 
unit  in the next time step and the iteration continues until the last LSTM unit in the network. 
Operator ° is the element-wise multiplication. 𝑊 represents the weight matrix, with subscripts 
indicating from-to relationship. 𝑊𝑥𝑖 and 𝑊ℎ𝑓 are the input-input gate and hidden-forget gate 

matrices, respectively. Variables 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐 , and 𝑏𝑜 are the bias vectors. 

As shown in Figures 5 & 6(Figure 6 representing, LSTM architecture) we implemented a single-
layer LSTM network according to[18]. By passing the output of the previous LSTM unit into the 
next, the network can begin to perform frequency and temporal modelling of the activity 
contexts. The purple boxes are the inputs i.e. the one-dimensional vector of features from the 
Flatten layer of the TimeDistributed CNN sub-model. As suggested by[22] and [51], we passed 
the output of the single-layer LSTM network to a fully connected dense layer with a Softmax 
activation function. 
e. The Fully Connected (FC) layer: this is a dense layer, known for producing higher-order 

feature representation that is easily interpreted into the different activity classes by a 
SoftMax classifier. Finally, we are ready to predict the activity labels. Before then, let us see 
how the dense layer implements the probability distribution. Given the output from the 
LSTM layer i.e. ℎ𝑡, predictions can be performed and the activity probability distribution 
vector pc = [𝑝𝑐1, 𝑝𝑐2, … , 𝑝𝑐𝑚] is derived as follows: 

𝑝𝑐 = 𝑠(𝑊ℎ𝑚
𝑇 ℎ𝑡 + 𝑏𝑚)      (8) 

 
where m is the number of activity classes, 𝑊ℎ𝑚 and 𝑏𝑚 are the weight and bias, respectively, 
for the output layer. The 𝑠() is the softmax function with the following equation: 

𝑓(𝑥) = 𝑃(𝑥) =
𝑒𝑝𝑐𝑦𝑎𝑙

∑𝑛
𝑗=1 𝑒

𝑝𝑐𝑗
     (9) 

 
 
 
 
 
 
 
 
 

 
                             Figure 6. Architecture of LSTM Cell 
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where 𝑎𝑙 is an activity label, 𝑦 is the output of the activity classifier 𝑓(𝑥), 𝑛 is the number of 
activity labels, and 𝑝𝑐𝑗 means the 𝑗-th element of unnormalized log probability vector 𝑝𝑐. The 

predicted activity label is assigned to the one with the highest probability, i.e.,  
𝑎𝑙 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑙=1

𝑛 𝑃(𝑦 = 𝑎𝑙|𝑥). In the case, both the simple and complex activities are learnt 
concurrently since the dataset is single label. We used the classification methodology 
suggested by [23, 53]  to categorise activities within the dataset into simple and complex labels. 
 

3.4 Data Pre-processing and segmentation 

To achieve the fixed length windows, one key requirement is  to divide the standardized data 
into segments using a temporal sliding window algorithm. According to [18], the algorithm 
divides the data into windows of signals, where a given window is associated with a specific 
activity and usually have one to a few seconds of observation data. Two parameters are 
configured to achieve this: the size of the window and the shift [60]. The shift parameter helps 
create the overlap between windows as seen in Figure 7 below. In the case of a 50% shift, 
which is commonly used in many HAR literatures, an overlap is created such that the first half 
of  a window contains the observations from the last half of the previous window[32, 47, 61]. 
In this work, we used a window length of 32 (circa 0.75 seconds of sensor signals) and a 50% 
shift. Detailed analysis of different window lengths and how we arrived at the choice of 32 can 
be found section 4.4.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 Sliding window with 50% overlap 
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3.5 Hyper-Parameter Tuning 

To ensure optimal performance for the model, we evaluated the influence of several hyper-
parameter settings on performance of the model. This process is referred to as 
Hyperparameter tuning. We adopted the grid search methodology, a tested and reliable 
method for  tuning hyperparameters[16, 52]. Grid search methodology proved to be the 
optimal approach for setting the hyper-parameters by creating a grid of a certain range and 
then looping through the candidate elements to find the best values for each hyperparameter. 
There are several studies that provide sufficient guidance on how to approach grid search, 
especially when a hybrid CNN-LSTM model is involved. [22, 61]. Both works analysed the effect 
and shared the many benefits of adding the CNN layers before the LSTM to solve speech and 
activity recognition problems. We approached the hyper-parameter tuning by first optimising 
specific components of the model and then, we moved on to tuning the model for overfitting.  
For the sub-component tuning, a common practise is to have 2 consecutive CNN layers 
followed by a dropout and a max-pooling layer[18]. We adopted this simple structure for the 
CNN-LSTM model and train the 2 fully connected 1-Dimensional convolutional (Conv1D) layers 
with 9 feature maps representing the 3 (x, y, z) axes of the 3 inertial sensors (accelerometer, 
gyroscope and magnetometer). The number of nodes in the hidden layer was replaced by the 
number of filter maps and kernel size which we grid-search as well. The number of filters 
ranges between (16, 32, 64, 128, 256) while the kernels investigated are between 2 and 7 in 
the following order (2, 3, 4, 5, 7). 
Moreover, for Conv1D layers, the input data must be in the form of [samples, timesteps, 
features] where features map onto the channels [18] and, in the case, it is 9 for the 9 variables 
we have from the inertial sensors. The approach to implementing this model is to split each 
window of 64 time-steps, for example, into sub-sequences for the CNN model to process. The 
64 time-steps in each window can then be split into 4 sub-sequences of 16 time-steps. As a 
result, we defined  a CNN model that reads in sequences with a length of 16 time-steps and 9 
features. The entire CNN model is also wrapped in a TimeDistributed layer to allow the same 
CNN model to read in each of the  sub-sequences in the window. The extracted features are 
then flattened and provided to the LSTM model to read, extracting its own features before a 
final mapping to an activity is made. 
 
Another important parameter that requires tuning is the batch size. The training data is fed to 
the model in one or more batches. A batch represents the collection of samples that the model 
processes prior to its weights being updated. Depending on the dataset, adequate measures 
must be taken to ensure that the model is being fed with the right batch size for it to learn 
optimally [62]. Using the grid search, we passed batches ranging from 16 to 512 to train the 
model for each window length to inspect in what way the interaction between the two 
parameters affects model performance.  
To prevent the model from overfitting, we optimised several parameters including weight 
decay, dropout regularisation, number of epochs and learning rate. Weight decay or weight 
regularisation provides an approach to reduce overfitting on the training data and improve 
generalisation capability on new data. We tuned the L2 weight regularisation for both the CNN 
layers and the LSTM cells. We confirmed from literature that the CNN layers usually require 
small L2 weight decay to perform optimally [59, 63].  
Dropout regularisation is another way to prevent the model from overfitting. This is often 
referred to as Dropout rate, which can be specified for different layers of the model, and it 
defines the probability of setting each input to the layer to zero [18, 64]. In other words, a 
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dropout rate of 0.3 informs the hidden layer to set 30% of inputs to zero. For the hybrid model, 
we grid search between 0 and 0.9 dropout rates for each of the hidden layers i.e. the CNN 
layers and the LSTM cells.  
Models often overfit or underfit when they train continuously to the end of a fixed number of 
epochs. Two things happen when a fixed number of epochs is set: either the model is 
interrupted while it is still learning i.e., underfit or it learns so much that it starts memorising 
the training data i.e. overfitting. The literature identifies two methods suitable for preventing 
this: early stopping and model checkpointing[61]. We invoked the Keras EarlyStopping call-
back and specified the validation loss as the performance metric to monitor in order to end 
training. We also set a patience of 8 epochs to add a delay before stopping. Finally, we added 
a second call-back called ModelCheckpoint to save the best model achieved during the training 
process. 
Finally, deep neural networks are trained using the stochastic gradient descent optimization 
algorithm which estimates the error gradient of the model being trained and then update the 
model’s weights by passing this error back to it in a process known as back-propagation  [16, 
22, 47]. The amount of the model’s weight that is being updated during this training is known 
as the learning rate. It is often regarded as the most important hyperparameter for deep neural 
networks [47]. The value is usually between 0.0 and 1.0 and choosing the sub-optimal rate is 
always a challenge. Masters and Luschi in [62], in one of their interesting papers, recommend 
tuning the learning rate after all other parameters. They suggested that even if the learning 
rate had been tuned earlier, effort should still be made to further re-optimise it at the end of 
all other parameter tuning because the learning rate tends to interact slightly with other 
parameters. In this article, we did tune the learning rate twice, one before tuning the sub-
components of the model and the other at the very end of all other hyper-parameters. 

4. Experiments and Evaluation 

In this section, we present the evaluation experiments of the proposed solution. First, we 
discuss the main two types of data used in the experiments: the traditional inertial sensors 
data and the ambient contextual data. 

4.1 Experimental Setup 

The dataset for this experiment was collected exclusively from the built-in inertial and ambient 
sensors of a smartphone. A comprehensive description of the entire data collection process 
can be found in these papers [42, 65]. To the best of the knowledge, there is not one publicly 
available HAR dataset that is exclusively collected over the smartphone and comprises both 
traditional sensor signals and rich contextual information from the ambient sensors. Similarly, 
other authors who have used custom datasets in their work also corroborated this fact[32, 66].  
To answer the research question, two experiments were conducted in this study. What 
differentiates the two experiments is the dataset used. In the first experiment, we trained the 
deep hybrid model using traditional inertial sensor signals, while in the second experiments, 
we used a richer dataset containing additional signals from the ambient sensors. The model 
was consistent for the two experiments, only the datasets changed. Next, we describe the two 
datasets. In the next section, we present details of the different experiments and the datasets 
used.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 March 2022                   doi:10.20944/preprints202203.0363.v1

https://doi.org/10.20944/preprints202203.0363.v1


 14 

4.2 Traditional  inertial sensory  data  

For this experiment, we used data collected from the traditional inertial sensors i.e. 
accelerometer and gyroscope. We also used data from the magnetic sensors unlike previous 
studies that used data from one or two of these sensors [26, 33, 36-37, 67]. Subsequently, we 
refer to this experiment as Non-contextual. The dataset was collected using a mobile app 
developed by  
Otebolaku and Andrade [65] and customised specifically for collecting context-aware human 
activities. Figure 8 highlights the dataset’s distribution per activity class. Basic exploratory data 
analysis reveals that the dataset suffers from an extreme class imbalance with only about 4 
activity classes representing approximately 77% of the entire dataset. The choice of evaluation 
metric thus takes this into consideration.  
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

4.3 Inertial and Environment  Contextual Data  

For the second experiment, which we refer to as Contextual, additional sensing data was 
introduced compared to the Non-contextual experiment. To increase the sensor modality and 
investigate the significance of rich contextual information on the model, we augment the 
inertial sensing data in the Non-contextual experiment with additional sensor signals from the 
ambient sensors. The ambient sensors used include the audio(microphones) and the light 
sensors in addition to the traditional inertia sensors used initially. This makes a total of five 
sensor modalities - accelerometer, gyroscope, magnetometer, audio and light – altogether 
collecting sensing signals for 12 activity classes. Further processing was carried out on the 
audio and light sensor signals to transform them into the representations of environmental 
noise level and illumination data. 

 
The absence of other similar datasets relevant to the research is one drawback that we plan to 
address in the future research. Lastly, all the experiments were implemented in Python using 
the TensorFlow machine learning framework which comes bundled with Keras high-level API 
[68]. 

 

 
Figure 8: Activity classes by number of samples 
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4.4 Simple and Complex Activities Taxonomy 

Given that the dataset is a mix of both simple and complex activities and following the 
classification approach suggested by other researchers [2, 23], we were able to identify the 
simple activities in the dataset to include Sitting, Standing and Walking. Others are Jogging, 
Lying and Running. The complex activities which fall under either of composite, concurrent or 
multi-occupant activities include Elevator Up, Elevator Down, Ascending Stairs, Descending 
Stairs, Mountain Climbing, and Riding in a car. We determined the simple activity category by 
analysing which activities are atomic i.e. cannot be further broken down, and those that can 
be broken down into other atomic activities are categorised as complex in nature. For instance, 
riding in a car can easily be broken down into sitting down and in motion (see Table 1 for the 
break-down).  
 

 Table 1. Simple and Complex Activities within dataset 

# Activity Category Sub-activity 

1 Jogging Simple N/A 

2 Lying Simple N/A 

3 Running Simple N/A 

4 Sitting Simple N/A 
5 Standing Simple N/A 

6 Walking Simple N/A 

7 Ascending Stairs Complex Walking + in motion against gravity 

8 Descending Stairs Complex Walking + in motion in line with gravity 

9 Elevator Down Complex Standing + in motion in line with gravity 
10 Elevator Up Complex Standing + in motion against gravity 

11 Mountain Climbing Complex Walking + under high altitude 
12 Riding in car Complex Sitting + in motion 

4.5. Evaluation Metrics 

We evaluated the classifiers from the two experiments using a hold-out test dataset. The hold-
out test data came from users whose data were not used as part of the training and validation 
data. As part of the data pre-processing stage, the entire dataset was split into training, 
validation, and testing sets. The test data came from a user, validation data from 2 other users 
while the remaining data from 4 other users were used during training. This approach is often 
referred to as leave-one-subject-out validation in literature [10].  
For both of the experiments, we used the following metrics: Precision, Recall, F-Score and the 
Confusion matrix. According to many authors, these are the most commonly used metrics in 
the field of activity recognition [10, 69-70]. As clearly illustrated in Figure 10, the dataset suffers 
from class imbalance. Accuracy as a performance measure, therefore, will be inappropriate for 
the experiments. This is a common position shared in several literatures. For instance, Peng et 
al.[14] explained that, when presented with a class imbalanced dataset, the number of samples 
from the majority class will certainly overwhelm the number of samples in the minority class. 
Suffice to say that even the worst model can achieve high accuracy above the 90% mark 
depending on the severity of the class imbalance. Given the highly imbalanced nature of the 
dataset, the choice of evaluation metrics - Precision, Recall, F1-Score and the Confusion matrix 
are well justified. 
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Before  discussing Precision, Recall and the F-Score, let us first define the confusion matrix. 
This is because the precision and recall values, as well as the harmonic mean of precision and 
recall i.e. the F-score can all be computed from the confusion matrix. The confusion matrix 
provides a summary of the number of instances of different activity classes that the model is 
confused about i.e. misclassified by the model[10]. For a more fine-grained analysis of 
predictions by the model, the confusion matrix provides insight into not only the performance 
of a predictive model, but also a breakdown of which classes are being predicted correctly 
(True Positive and True Negative), incorrectly (False Negative and False Positive) and the type 
of errors being made. However, the numbers can be strongly biased by dominant activity 
classes compared to the minority classes, more so when a class imbalance dataset is involved.  

Precision is computed as the sum of True Positives (TP) predictions across all classes divided 
by the sum of True Positive predictions and False Positive (FP) predictions across all classes. 
Precision is defined as:  
    P = TP/(TP+FP).  

Recall is another metric that computes the number of True Positive predictions divided by the 
sum of True Positive and False Negative predictions i.e.  

    R = TP/(TP+FN) 
 
Finally, once the precision and the recall metrics are known, we then compute the F-score 
which is the harmonic mean between the recall and precision. The F-score provides a way to 
combine the precision and recall measures into a single measure that reflects both properties. 
The F-score remains the most commonly used metric for class imbalanced datasets (He & Ma, 
2013, p. 27). Considering the imbalance nature of the dataset and the tendency of the classifier 
to skew towards the more frequent classes during training, we adopted the macro-average F-
score previously used successfully by other scholars [47, 59]. This metric truly reflects the 
representation of small classes within the dataset and it is calculated as follows:  

F-Score (R, P) = 2*RP/(R+P) 
 
Just like the Precision and Recall measures, a perfect F-score is 1.0 and a poor F-score is 0.  

4.6 Experiments and Performance Evaluation 

We conducted the experiments using the Google Colab environment, an open-source python-
based machine learning platform that leverages the power of Google hardware, including GPUs 
and TPUs. Google Colab is known for its tremendous support for training neural networks. 
Moreover, it requires zero configuration, free access to GPUs and much faster than any other 
easily accessible hardware. This environment also provides leverage on the open-source 
interfaces such as the TensorFlow machine learning framework which comes bundled with 
Keras high-level API [68].  

In this work, two different  models were built, one from the Non-contextual experiment and 
the other from the Contextual experiment. We refer to the Non-contextual model as the 
baseline model.  The baseline model was trained using the inertial signals only. While the 
Contextual model was trained on both the inertial and ambient signals. We compare results 
from the two different models using the F-measure. We trained the models on the training 
data and validated the model with the validation dataset. Class prediction using test data that 
is totally new to the model is the approach adopted to test the performance of the final model. 
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In a bid to ensure that all the different activity classes are well represented in each of the sets, 
we split the custom dataset into train and test sets using ratio 85:15. A further split on the train 
set to create train and validation sets was at ratio 80:20, giving us a 68:17:15 split between the 
train, validation and test sets. Figure 9 illustrates the splits showing training (blue signals), 
validation (orange signals) and test (green) samples of the accelerometer x-axis for Ascending 
Stairs activity. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Prior to the two main experiments, a series of preliminary experiments was carried out to 
investigate the impact of several different hyper-parameters on the performance of the model. 
Moreover, we tuned the model appropriately to prevent it from overfitting.  For the Non-
contextual experiment, we investigated the performance of the model in distinguishing 
between simple and complex activities using a dataset with inter-class similarity. Lastly, the 
Contextual experiment helps us evaluate the extent to which rich contextual information can 
help improve the model’s performance in recognising simple and complex activities. 

4.6.1 Tuning for Conv1D filter and kernel 
After conducting a grid search to determine the number of neurons for the Conv1D, Figures 
10 and 11 show the model’s performance by number of filters and kernel size respectively. 
Clearly, the model performance continues to improve as the number of filters increases. A 
decline is however noticed after the 256-mark suggesting this might be the peak. Accuracy was 
on a steady downward trend as the number of kernels increases also suggesting smaller kernels 
give better performance.  

   Table 2. Accuracy per kernel size for filter size 64 
 
 
 
 
 
 

kernel=2: 97.674% (+/0.395) 
kernel=3: 97.900% (+/0.307) 
kernel=4: 97.703% (+/0.423) 
kernel=5: 97.514% (+/0.273) 
kernel=7: 97.099% (+/0.513) 
 

 
Figure 9. Accelerometer (x-axis) data samples for Ascending Stairs Activity 
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Figure10. Average Accuracy by Number of Filters 

 

 
Figure 11. Average Accuracy by Kernel Size 
 

We examined the interaction between the two and discovered that, once again, larger kernel 
size does not appear to yield better accuracy. As shown in the boxplot below (Figure 12), kernel  
 
 
 
 
 
 
 
 
 
 
 
 
 
size 3 and filter size 64 provide a good balance between classification accuracy and 
computational efficiency.  
Boxplots showing results of all other pairs of filter sizes (16, 32, 64, 128, 256, 512) and kernel 
sizes (2, 3, 4, 5, 7) can be found in the appendix. Although there are few other pairs with better 
average accuracy, for instance, filter size 256 and kernel size 2, this does come at the expense 
of more computational cost.   

4.6.2 Tuning for Window Size segmentation 

As part of the hyperparameter tuning, we investigated the optimal window size for the baseline 
model. For the dataset, about 128 samples are captured every 3 seconds from both the inertial 
and ambient sensors on the smartphone [7, 65]. Some scholars suggested that sensing a 
complex activity from the smartphone sensors may require a longer window length compared 
to the simple activities [14-15]. How true, and if true, how long is suitable for the dataset? It is 
crucial we experiment with different window lengths to ascertain the optimal window 
segmentation required to capture the complex activities in the dataset. Using the sliding 
window algorithm, we investigated several different window lengths ranging between 32 and 
256. Concurrently, we examined the interaction between the window length and various batch 
sizes on a model's performance since the model learns from one batch of data at a time before 
its weight is being updated [18].  

 
Figure 12. Box plot of different kernels for filter size 64 
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The result (Figures 13 and 14) shows that increasing the window length degrades the 
performance drastically, while increase in batch size proves contrary. However, there is no 
significant improvement once the batch size passes the 64-mark. The drop in performance as 
window length increases may not have come as a surprise as some authors have suggested 
that models containing LSTM layers suffer from poor parallelism across longer window lengths 
[61]. Although we did not investigate further, Chambers and Yoder [61] suggest that increasing 
the LSTM layers can enhance the model’s capacity to learn longer window lengths. 

 
Figure 13. Performance by Window Length 

 
Figure 14. Performance by Batch Size 

 

Instead, we investigated the interaction between the two parameters (Figure 13) and 
discovered that window length of 32 and any batch size between 64, 128 and 512 are good for 
the proposed model(Figures 13 & 14). We chose the smallest of the three i.e., 64 for the 
subsequent experiments following similar work of [62] suggesting that smaller batch sizes help 
improve accuracy and stable convergence(Figure 15). Although batch size 64 slowed down the 
learning process significantly, it does, in the final stages, converge to a more stable model 
characterized by lower variance in generalisation accuracy.  

  Table 3. Average % Accuracy per batch size for window length 32 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Batch Size=16: 94.197% (+/0.908) 
Batch Size=32: 97.625% (+/0.372) 
Batch Size=64: 98.518% (+/0.216) 
Batch Size=128: 98.767% (+/0.171) 
Batch Size=256: 98.684% (+/0.175) 
 

 
Figure 15. Box plot of different batch sizes for window length 32 
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4.6.3 Tuning for overfitting 

a. Weight Decay 

As part of measures to prevent overfitting, we benchmark model performance against weight 
decay ranging between 1e-6 and 1e-1. Setting the model’s weight decay at 1e-6 and 1e-5 for the 
CNN and the LSTM respectively results in sub-optimal performance for the model (Figure 16). 
 

 
           (a)                         (b) 

 
Figure 16. Line plot showing Accuracy over the weight decay between 1e-1 and 1e-6 for (a) the CNN layer 
and (b) the LSTM cells. 

b.  Dropout Regularization 

The line plots in Figure 17 highlight the learning performance of the model as we grid-search for 
dropout rate for the two main sub-models i.e. the CNN layer and the LSTM networks. We can see 
that performance continues to decline as we increase dropout for the CNN layer, likewise the LSTM 
networks. We, therefore, set the CNN dropout rate at 0.1 and the LSTM to none since the LSTM 
cells appear to perform optimally without dropout. 

 

  
        (a)                        (b) 

Figure 17. CNN-LSTM Model Dropout regularization plots. (a) shows the CNN layer accuracy for training 
and validation over dropout rate between 0 and 0.9 (b) shows the LSTM cells accuracy for training and 
validation over dropout rate between 0 and 0.9 

c.  Number of epochs 

Using the Keras early stopping of training via a call-back, we specify the validation loss as the 
performance metric to monitor in order to end training. We conducted several experiments and was 
able to gauge the range of epochs required for the model to prevent overfitting. Consequently, we set 
the number of epochs to 100 with a patience of 8 to add a delay before stopping. Finally, we added a 
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second call-back called ModelCheckpoint to save the best model achieved during the entire training 
process.  

d. Tuning for Learning Rate  

The learning rate plays a substantial role in the model's overall learning capability. Therefore, it is 
important  to thoroughly investigate the best learning rate for the baseline model. Instead of choosing 
a fixed learning rate, we evaluated the learning rate between 10-8 and 10-1 using the learning rate 
scheduler. We can see from Figure 18 that the model records its lowest learning loss at the 10-3 mark. 
While it is recommended that the learning rate should be re-optimised at the end of all other hyper-
parameter tuning [62] the sub-optimal learning rate remained the same before and after the hyper-
parameter tuning. Consequently, we set the learning rate at 10-3 (same as 1e-4 if you prefer the 
exponential).   

         
                           Figure 18. Line plot of loss over learning rate 

As soon as we conclude the tuning for overfitting, we are left with the baseline model which 
doubles as the Non-contextual model. Table 4 below shows the optimised parameter values. In 
section 5 , we discuss the results of the two models i.e. Non-contextual and Contextual models. 
 

Table 4. Training Parameters (tuned and default) used for baseline model 

 
Parameter Recommended Feasible Tuned 

Conv1D layers 2  No 

ConvID - Kernel Size 3 2 Yes 
ConvID - Filter Size 64 256 Yes 

LSTM Cells 100  No 

Optimiser Adam  Yes 

Dropout CNN=0.1  Yes 
Weight Decay CNN=1e-6, LSTM=1e-5  Yes 

Window Length (size of 
input vector) 

32 64 Yes 

Number of input channels 9   

Batch Size 64 32 Yes 

Subsequence steps 4  No 

Learning Rate 1e-4 3e-4 Yes 

Early Stopping 
Patience: 10 
epoch: 50-100 

Patience: 8 
epoch: 40-80 

Yes 

ModelCheckpoint save_best_only: True  No 

5. Result and Discussion 

In the previous section, we analysed the impact of several different hyperparameters on the 
performance of the model. We also carried out a series of tuning to prevent the model from 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 March 2022                   doi:10.20944/preprints202203.0363.v1

https://doi.org/10.20944/preprints202203.0363.v1


 22 

overfitting, which finally led us to the baseline model. The baseline model which doubles as 
the Non-contextual model was trained using the traditional inertial sensing signals from 3 axes 
each of accelerometer, gyroscope, and magnetometer sensors, altogether making 9 channels 
of signals. In the second experiment, while keeping all parameters at optimal settings (as 
shown in Table 4), we trained another model using a combination of traditional inertial sensing 
signals and additional data from the ambient sensors, resulting in 11 channels of signals (2 
additional from audio and light sensors). We tagged the model from the second experiment 
Contextual simply because it uses the ambient sensing as rich contextual information to create 
a context-aware model. In this section, using the hold-out test set, we analyse results from 
these models by measuring the significance of performance differences and investigate how 
accurate the models are in generalising simple and complex activities.  

5.1 Analysis of  training and validation data 

The Non-contextual model started converging after about 60 epochs as indicated in the 
accuracy and loss plots in Figure 19. Compared to the Non-contextual, the Contextual model 
(Figure 20) converged much earlier at about 30 epochs. Although it took the Contextual about 
161 seconds to be interrupted by the early-stopping call-back, the Non-contextual model ran 
for another 100 seconds more before being interrupted. This is, however, surprising given that 
the Contextual model is exposed to more input signals and is expected to take longer time to 
train. This suggests to us that the Contextual model was faster in discovering the temporal 
relatedness between the signals using the additional ambient signals. Although given the 
stochastic nature of deep learning algorithms, convergence as a function of number of epochs 
sometimes varies[24].  
 

  
    (a)             (b) 
Figure 19. Line graph showing (a) accuracy plot and (b) loss plot as a function of number of epochs for 
the Non-contextual Model 

   
    (c)             (d) 
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Figure 20. Line graph showing (c) accuracy plot and (d) loss plot as a function of number of epochs for 
the Contextual Model 
 

Moreover, the training accuracy and loss plots (Figure 21) show how the two models compare 
during training. It is obvious that the Contextual model, for the most part of the training 
process, continues to outperform the Non-contextual model. Although the two models 
seemed to match one another in performance towards the tail end, at point in time the Non-
contextual model trained better.  In Figure 22, we compare the two models’ performance with 
the validation data. Once more, the Contextual model quickly edges out the Non-contextual 
model in the first 10 epochs and even throughout the validation process suggesting that the 
additional input signals from the ambient sensors might be responsible. The line plot however 
appears wavy due to some noise in the input data. While neural networks are known to be 
robust to noise, model accuracy often improves when time series data are pre-processed for 
noise reduction and smoothing using median filters [32].   

 
    (a)            (b) 
Figure 21. Line plot comparing (a) Training Accuracy and (b) Training Loss between the two models 
during training 

 
    (a)            (b) 
Figure 22. Line plot comparing (a) Validation Accuracy and (b) Validation Loss between the two models 
during training 

5.2 Recognition accuracy for simple and complex activities 

The confusion matrices in Figures 23 and 24 give insight into the classification errors being 
made by the Non-contextual and Contextual models respectively. This result is based on the 
performance of the models’ classifier after being evaluated on the hold-out test dataset that 
was never used during the training and validation phases. Table 6 provides the percentage 
accuracy by class using the macro average f-score. It is not surprising to see the weighted 
average or the micro average having higher percentages, this is often due to the skewness in 
the dataset. As earlier noted in section 4.2, the macro-average percentage ensures that, 
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despite the imbalanced dataset, each class has equal representation in the overall accuracy 
percentage however little the class samples. Overall, the Contextual model achieved 98.72% 
accuracy while the Non-contextual model trails behind at 96.19% indicating that the rich 
context data provided by the ambient sensors are instrumental to the improved performance. 
This results in about 2.62% overall model improvement by just increasing the sensor 
modalities.  

 
Figure 23. Confusion Matrix for the Non-contextual model 

 
 

Figure 24. Confusion Matrix for the Contextual model 
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In Table 6, we also evaluated the performance based on simple and complex activities following 
the  activity category table in section 4.4. The Non-contextual model achieved an outstanding 
performance of 98.7% on simple activities and a modest 93.7% on complex activities. However, 
the Contextual model was able to achieve a state-of-the-art performance in both simple and 
complex activities recording average performance of 99.6% and 97.8 respectively. Both models 
were able to distinguish between several different simple activities effectively. Although the 
two models recorded their individual lowest accuracies for simple activities in the Jogging and 
Sitting labels, the Contextual model still manages to record at least 99% in these two classes 
(Table 7). In the complex activity category, the Non-contextual model performed woefully 
generalising the Mountain Climbing activity with a 77.4% accuracy compared to 98.1% by the 
Contextual model. Interestingly, the two models performed equally well in recognising Driving 
activity. Nevertheless, the Contextual model did not perform less in any activity class under the 
simple and complex activity categories. Instead, it continues to prove that a model trained with 
rich contextual data from ambient sensors can consistently outperform the same model 
trained with only traditional inertia signals. 

To answer the research question regarding the improvement observed, the Contextual model, 
going by Table 6, has demonstrated about 0.91% and 4.38% improvement on simple and 
complex activities respectively compared to the Non-contextual model.  
 

Table 5. Overall Model Accuracy 

Model Accuracy 

Non-contextual 96.19% 

Contextual 98.72%  

Table 6. Model Accuracy by Activity Category 

Model 

Activity category 

Simple Complex 

Non-contextual 98.7% 93.7% 

Contextual 99.6% 97.8%  

Table 7. Model Accuracy by Activity Class 

# Activity 

F-Score 

Non-contextual Contextual 

1 Jogging 0.976 0.992 

2 Lying 0.998 1.000 

3 Running 0.993 1.000 

4 Sitting 0.970 0.990 

5 Standing 0.995 0.997 

6 Walking 0.991 0.996 

7 Ascending Stairs 0.944 0.961 

8 Descending Stairs 0.943 0.955 

9 Elevator Down 0.985 0.992 

10 Elevator Up 0.984 0.991 

11 Mountain Climbing 0.774 0.981 

12 Riding in car 0.990 0.990 
 accuracy 0.989 0.995 

macro avg 0.962 0.987 

weighted avg 0.989 0.995 
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To test the hypothesis that combining inertial and ambient sensing signals would produce a 
better performance for the hybrid model, we measure the significance of performance 
differences using a pairwise t-test at 5% significance level. For us to have adequate samples to 
carry out the hypothesis tests, we trained and evaluated the 2 models repeatedly for about 20 
times. Each time, we noted the macro-average F-score for both models. Given the stochastic 
nature of deep learning algorithms, the specific results fluctuated for both models after each 
round of training. Nevertheless, in the end, we obtained an extremely small p-value which 
prompted us to reject the null hypothesis that the Non-contextual model is at par with the 
Contextual model in terms of average performance. In other words, with a 95% confidence 
interval, the Non-contextual model’s mean performance F-score is significantly lower than that 
of the Contextual model. As a result, we conclude that the average generalisation ability of the 
Contextual model is superior to that of the Non-contextual model. Given that both models 
share the same architecture, matching parameters, and training environment, we can only 
attribute this improvement to the main difference between the two models which is, without 
doubt, the additional signal inputs. The ambient signals have proved to be the distinguishing 
factor in this study. Not only that, the Contextual model, despite the additional sensor 
modalities, was able to achieve convergence well before the Non-contextual model. 

5.3 Interclass Similarity Analysis 

we provide in this section experimental evidence that details performance results with respect 
to the prevalent interclass similarity issues between simple and complex activities. Mindful of 
the fact that it is not uncommon for models to experience poor classification capability in the 
presence of highly correlated input data [31], we once again, using Table 1 in section 4.4  as a 
guide, compare how the two models perform with activities that appear similar in nature. The 
Non-contextual model, for example, recorded the highest classification error with the 
Mountain Climbing activity. A quick look at the confusion matrix (Figure 23) for the Non-
contextual model reveals that the model confuses Mountain Climbing activity with Walking at 
least once every three tries. The model also had some difficulties with Ascending and 
Descending Stairs, which it often confuses with Walking. This is not surprising since Walking is 
obviously a sub-activity of these other complex activities (Table 1). In the case of the Contextual 
model, there was a slight improvement on the classification error regarding the Ascending and 
Descending stairs being confused with Walking. With about 27% improvement compared to 
the Non-contextual model, the Contextual model recorded its single biggest generalisability 
improvement in the Mountain Climbing activity. Once again, the ambient signals have helped 
the model obviate inter-class similarity confusion during classification. Other suspected inter-
class similar activities such as Standing, Elevator Up and Down, Driving and Sitting, do not seem 
to pose any challenge to either of the models. Following the recommendation from [32] to 
combine multiple sensor modalities was instrumental to addressing inter-class similarity 
challenge. Taken together, the indicate that models trained with both inertial and ambient data 
consistently outperforms models trained with only inertial data. in the next section we discuss 
the conclusion and recommendations for  future work. 

6. Conclusion and Future Work 
In this article, we investigated the benefits of combining environment sensing as contextual 
data with traditional inertial sensing data to distinguish between simple and complex human 
activities of daily living. We designed a context-aware hybrid deep learning model that can 
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distinguish between inter-similar class labels by adding rich contextual signals. To the best of 
the knowledge, this is the first study to have focused on utilising raw sensing data collected 
exclusively from smartphone sensors to generalise simple and complex human activities. The 
inertial sensors used in data collection include the accelerometer, gyroscope, and 
magnetometer. The environment sensors that provide the rich contextual information 
comprise the audio and light sensors.  
 
The main goal was to demonstrate that, apart from the inertial sensing data, signals from the 
smartphone audio and light sensors, which represent environmental noise level and 
illumination respectively can serve as rich contextual information for determining fine-grained 
complex activities with high recognition accuracy. We proposed and designed two CNN-LSTM 
hybrid models: Non -Contextual and Contextual models. The Non-contextual model represents 
the baseline model while the Contextual one is the improved model. Extensive experiments 
were conducted  to benchmark the recognition capabilities of the two models.  
 
First, using the grid-search approach, we executed a series of experiments tuning several 
different hyperparameters of the baseline model to ensure optimal performance and save it 
from overfitting.  These initial experiments informed the decision to set the models’ 
hyperparameters as summarised in Table 4. Next, we performed another round of experiments 
to benchmark the performance of the baseline model using only raw signals from the inertial 
sensors. Using the Keras API call-backs – early-stopping and model checkpointing – we were 
able to save the best performing model achieved during training to file. We then referred to 
this model as the Non-contextual model since it was trained with just inertial signals.  

Expectedly, the Non-contextual model recorded state-of-the-art results generalising simple 
activities, achieving more than 99% F-score in 4 out of 6 simple activities with an average 
overall F-score of 98.7%. The Non-contextual model has a significant 2.77% improvement in 
generalisation accuracy compared to a similar work by [65] where they similarly to investigate 
the effect of imbalanced dataset on model classification accuracy. Their model architecture did 
not combine LSTM with CNN like we did, it only managed to achieve about 93.6% accuracy. 
The inclusion of LSTM networks did improve the performance of the model substantially. 
However, the results were not as high for complex activities with an average overall F-score of 
93.7%. The Non-contextual model confused a few complex activities for simple activities, for 
instance, the model confused Walking for Ascending Stairs or Mountain Climbing. These three 
activities suffer from inter-class similarity [32]. As a result, this mix-up is understandable as 
both activities appear similar in a way. We described the inter-class similar activities in more 
detail in Table 1. 

Subsequently, we trained a second model, in another set of experiments, using a combination 
of raw inertial and environment sensing signals. We introduced the environment signals to 
provide rich contextual information for the new model and then tagged it Contextual. 
Experimental results confirmed that combining raw inertial and ambient signals from a single 
smartphone resulted in an improved model compared to the Non-contextual model. For simple 
and complex activities, the Contextual model achieved average overall F-scores of 99.6% and 
97.8% respectively. This is a substantial 2.6% improvement in combined overall recognition 
capability compared to the Non-contextual model. Specifically, the Contextual model was able 
to effectively distinguish between Walking and Ascending Stairs or Mountain Climbing 
activities, overcoming the initial weak point of the Non-contextual model to inter-class 
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similarity issues. Moreover, a pairwise t-test statistics to compare the performance difference 
between the two models proved significant, further confirming that the generalisation ability 
of HAR models improves significantly when trained with a dataset containing contextual 
information collected from environment sensors. 

It is also important to mention that the Contextual model is a CNN-LSTM hybrid model, which 
automatically extracts features from raw sensor signals using the CNN layers, and the LSTM 
layers for temporal modelling before class predictions are made. This further demonstrates 
the dominance of deep learning models over classical algorithms that rely heavily on heuristic 
hand-crafted features [11]. Interestingly, it also justified the applicability of the CNN-LSTM 
hybrid model to achieve state-of-the-art results with time series data, more importantly with 
activity context recognition [14, 51, 53, 61, 70] and speech recognition problems [22]. 
 

Finally, in the future, we plan to deploy the model on a mobile phone to evaluate how effective 
it is with helping people track and collect Time-Use Data (TUD). We also plan to tweak the 
architecture of the CNN-LSTM hybrid model to include bi-directional LSTM stacks, multi-
headed CNNs and perhaps a deep multi-tasking learning model to improve the overall 
recognition accuracy for complex activities. This will require, but not limited to, expanding the 
dataset by collecting a multi-label classification dataset using the smartphone exclusively. In 
this dataset, we will have the opportunity to annotate several simple activities that make up a 
specific complex activity e.g. Sitting, Eating and Drinking to represent a complex activity like 
dining with friends. Given the lack of rich contextual datasets collected entirely over the 
smartphone sensors, we also plan to collect other wide-ranging environment sensing signals. 
We intend to collect more data on activities with significantly low sample size to create a 
dataset with balanced class labels. All this will allow the opportunity to test several different 
combinations of rich contextual data for developing a fine-grain complex activity recognition 
system in the nearest future. 
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