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Super-resolution microscopy has become an increasingly
popular and robust tool across the life sciences to study minute
cellular structures and processes. However, with the increasing
number of available super-resolution techniques has come an
increased complexity and burden of choice in planning imaging
experiments. Choosing the right super-resolution technique to
answer a given biological question is vital for understanding
and interpreting biological relevance. This is an often-
neglected and complex task that should take into account
well-defined criteria (e.g., sample type, structure size, imaging
requirements). Trade-offs in different imaging capabilities are
inevitable; thus, many researchers still find it challenging to
select the most suitable technique that will best answer their
biological question. This review aims to provide an overview
and clarify the concepts underlying the most commonly
available super-resolution techniques as well as guide re-
searchers through all aspects that should be considered before
opting for a given technique.

Optical microscopy has long been considered indispensable
for biological research. Beginning with the development of cell
theory in Hooke’s iconic Micrographia in 1665 (1), microscopy
techniques have underpinned many of the field’s most exciting
discoveries, from the theory of evolution (2) to observing
molecular machines (3). Despite their successes, microscopy
techniques have long been plagued by limitations imposed by
the laws of physics, preventing these optical systems from
resolving features below a certain size, known as the diffraction
limit. The diffraction limit stems from a combination of the
wave nature of light combined with the inability of our optical
systems to focus these waves to a single point below a certain
diameter. This limit, which determines the minimum distance
that needs to separate two points in order for them to be
resolved by a given optical system, was first defined in 1873 by
the German physicist, Ernst Abbe (4, 5). This distance is
dependent on the wavelength of light, refractive index of the
medium through which that light travels, and angles of dif-
fracted light that can be collected by the microscope objective.
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The latter two of these factors are used to calculate the nu-
merical aperture (NA) of specific objectives, which represents
a unitless measure of the range of angles across which that
objective can accept incoming light, and thus affects the res-
olution achievable with that objective. Indeed, Abbe (4, 5)
showed that the diffraction limit is roughly equal to the
wavelength of light (λ) divided by twice the NA for lateral
resolution, and to roughly 2λ/NA2 for axial resolution. This
means that for a standard fluorescence system, such as a
confocal microscope operating in the visible spectrum, the
resolution is limited to around 170 to 250 nm laterally and
around 470 to 670 nm axially, when detecting wavelengths
between 470 and 700 nm.

Prior to 2000, the only techniques able to image sub-
diffraction features were near-field-based techniques, which
use nanometric detectors placed very close to the sample to
detect evanescent waves (6). Since the turn of the millennium,
however, an increasing number of far-field techniques have
emerged that are able to overcome the diffraction limit, and
these will be the focus of this review. Super-resolution tech-
niques can be broadly split into two categories: super-resolved
ensemble microscopy techniques, which improve the resolu-
tion of overall structures, and super-resolved single fluo-
rophore microscopy techniques, which use localizations of
individual fluorescent molecules to build up an overall struc-
ture. REversible Saturable OpticaL Fluorescence Transition
(RESOLFT) ensemble techniques include stimulated emission
depletion (STED) microscopy and the similar ground state
depletion/RESOLFT techniques, structured illumination mi-
croscopy (SIM), pixel reassignment techniques, and arguably
the sample preparation–based expansion microscopy (ExM).
Single-fluorophore techniques, meanwhile, include the col-
lective single-molecule localization microscopy (SMLM)
techniques, most notably direct stochastic optical reconstruc-
tion microscopy (dSTORM), photoactivated localization mi-
croscopy (PALM), and DNA-based point accumulation for
imaging in nanoscale topography (DNA-PAINT).

Since their inception, super-resolution techniques have
steadily gained in popularity, with these techniques leading to
ever increasing discoveries that previously eluded detection.
Indeed, the impact of super-resolution techniques on research
has been such that the 2014 Nobel Prize in Chemistry was
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JBC REVIEWS: Choosing the right super-resolution microscopy technique
awarded to Stefan W. Hell, Eric Betzig, and William E.
Moerner; Stefan Hell for the development of STED micro-
scopy, and Eric Betzig and William Moerner for work leading
to the development of PALM and subsequent single-molecule
localization techniques (7). Given the wealth of available
super-resolution techniques, it can be a nontrivial task to
select that which will provide the right information to address
a specific research question. This review therefore aims to
provide insight into the important considerations for selecting
the best super-resolution technique for the problem at hand.
This review does not focus on an in-depth explanation of each
super-resolution technique but rather seeks to help biologists
assess which capabilities are most important for answering
their research question and to thus select the most compatible
super-resolution technique for their needs.

Brief overview of key super-resolution techniques

Ensemble super-resolution techniques

STED is a confocal laser scanning–based technique, with
super-resolution achieved through the addition of high-
powered torus-shaped STED lasers. The STED lasers are
aligned with the excitation beam and deplete the emission of
fluorescent molecules in the overlapping region (Fig. 1Ai) (8,
9). This depletion is achieved through interruption of the in-
ternal conversion process undergone by excited electrons, with
the high-energy depletion laser forcing the excited fluorescent
molecules to immediately return to the ground state. This
results in the release of a photon with a wavelength equal to
the depletion laser wavelength used, which is easily removed
with filters (Fig. 1Aii) (8, 9). STED was initially implemented
using two-photon lasers for depletion but is now commonly
commercially implemented with continuous wave (CW) lasers
or pulsed lasers with longer pulse lengths (8, 9). CW depletion
lasers simplify implementation by removing the need for
synchronization of laser pulses (10); however, this results in
the sample being exposed to the STED beam between exci-
tation pulses, when it does not contribute to image formation,
increasing photobleaching. Unlike pulsed STED, where all the
depleting photons arrive shortly after excitation of the sample,
CW implementations suffer from the added issue of lower
instantaneous STED intensities meaning that a greater number
of molecules are not exposed to enough STED photons to be
depleted, degrading the attainable resolution (11). This has
given rise to time-gated STED, in which short-lifetime emitted
photons are removed by time gating as they are unlikely to
have had sufficient opportunity to undergo STED (11, 12).
Pulsed implementations also benefit from time gating. Com-
mercial pulsed systems use STED lasers with a ~1 ns pulse
length, as compared with the picosecond or femtosecond 2-
photon lasers initially used. The longer pulse length allows
for the laser power to spread over a longer duration, reducing
photobleaching (13), and can also overcome issues observed
with shorter pulse lengths including polarization effects (14)
and laser synchronization jitter (15). STED efficiency is slightly
lower with longer pulse lengths, but this reduction is elimi-
nated through the use of time gating (16).
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Details within samples are detected by microscopes as
combinations of light waves of different frequencies. However,
microscope optics are inherently limited in which frequencies
they can sample, meaning the highest-frequency information
(i.e., the highest-resolution details in the sample) are lost. SIM
techniques take advantage of a phenomenon known as the
Moiré effect, whereby the interference of two differing high-
frequency patterns when overlaid will produce a sum of the
frequencies (very high) and the difference between the fre-
quencies (low). Therefore, by using an illumination pattern
just below the diffraction limit of the microscope, it is possible
to move high-frequency information in the sample into the
sampling range of the microscope. By controlling the orien-
tation and phase of the illumination pattern, the original high-
frequency information can be back-calculated from the
detected image (Fig. 1B) (17). To achieve a full reconstruction,
several images need to be collected with the illumination
patterns in different positions and orientations to reconstruct
the final SIM image (Fig. 1B) (17).

Laser scanning confocal-based systems generally acquire
data point by point onto a detector comprising a single pixel.
Pixel reassignment techniques improve spatial resolution by
combining point-scanning illumination with multipixel array
detectors to create a higher spatial frequency component of
an image. The central pixel of the adapted detector array
plays the role of the confocal pinhole, but the additional
pixels allow more light to be collected and provide additional
structural data acquisition. Perhaps the best known of these
techniques is Zeiss’s Airyscan, which uses a detector
composed of 32 elements, each equivalent to a point detector
with a 0.2 airy unit pinhole (Fig. 1C) (18). Each element of
the detector array acts as a separate pinhole, meaning that
the fluorescence is captured 32 times rather than once. By
correcting for the displacement of each element from the
optical axis, the image can be reconstructed with a higher
spatial resolution (18).

ExM relies not on adapting the microscope to surpass the
resolution limit but rather on physical expansion of the sample
itself, which increases the effective resolving power of a
diffraction-limited microscope. This is achieved by embedding
of the sample within a hyperswellable hydrogel with long
chains and cross-linking agents, creating an extremely dense
linked mesh (19). During gelation, proteins and fluorophores
are anchored to the gel. The permeated sample is then me-
chanically homogenized with various techniques (high tem-
perature, detergents, proteases, etc) to avoid resistance from
the sample to the expansion, before addition of water that
triggers swelling of the polymer, up to 100× its original size
(Fig. 1D) (19). Expanded samples can then be imaged on a
standard widefield or confocal microscope.

Single fluorophore detection techniques

SMLM techniques are numerous and varied, but all rely on
the same principle of being able to differentiate individual
fluorophores in time rather than in space; fluorophores within
subdiffraction distances, which cannot be differentiated when



Figure 1. Ensemble super-resolution microscopy techniques. A, stimulated emission depletion (STED) microscopy: (i) STED laser is aligned with excitation
laser and depletes emission of fluorescent molecules in overlapping regions; (ii) depletion occurs though interruption of internal conversion process
undergone by excited electrons, forcing excited fluorescent molecules to immediately return to ground state, resulting in the release of a photon with a
shorter lifetime and a red-shifted wavelength that can be excluded from detection by band filtering. B, structured illumination microscopy (SIM): patterned
light interferes with high-frequency sample details to produce lower-frequency Moiré fringes used to reconstruct a super-resolved image. C, pixel reas-
signment example—Airyscan detector: confocal pinhole substituted with 32-element detector array; each detector is equivalent to a 0.2 AU pinhole, but the
array maintains light collection efficiency of a 1.25 AU pinhole. D, expansion microscopy: samples are embedded within a swellable hydrogel; fluorophores
are anchored to the gel before crosslinking and digestion of cellular structures and finally expansion.
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fluorescing at the same time (Fig. 2Ai) can be pinpointed if
they fluoresce one by one (Fig. 2Aii). Individually fluorescing
fluorophores will emit hundreds to thousands of photons,
producing a diffraction-limited intensity pattern, and when
multiple fluorophores are within subdiffraction distance of one
another, their emission patterns will overlap (20, 21). In the
absence of emission from neighboring fluorophores, the light
from a single fluorescing fluorophore will still be diffraction
limited, but the distribution of the photons it emits can allow
for calculation of a central localization with subpixel precision
(20, 21). All SMLM techniques therefore rely on having dyes or
fluorophores switch between on and off states, but each
technique achieves this in a unique way.

The most commonly used SMLM techniques are dSTORM
and PALM. dSTORM uses specialized buffers to drive
standard organic fluorescent molecules into long-lived dark
states, in which the fluorophores cannot be excited without
first returning to the ground state (Fig. 2B) (22, 23). The
optimal buffer composition is selected to maximize the rate of
entry into the dark state and minimize rates of escape from
this state or photobleaching. This is commonly achieved
through the inclusion of reducing buffers and reduction of
dissolved oxygen. If a sufficiently large proportion of fluo-
rophores reside in this long-lived dark state at any one time,
molecules returning to the ground state will momentarily emit
photons and their detected emissions will be isolated. A
number of publications have focused on optimal buffer
composition and can provide further information on the
subject (24–26). PALM, on the other hand, uses specific
photoactivatable or photoswitchable fluorophores, which are
J. Biol. Chem. (2021) 297(1) 100791 3



Figure 2. Single fluorophore detection–based super-resolution microscopy techniques. A, principle of SMLM. B, dSTORM uses buffers with reducing
conditions to drive fluorescent molecules into short-lived (T1) or long-lived (D) dark states to cause molecules to blink. C, PALM uses photoactivatable
fluorophores that need to be activated by 405 nm light before being excited. D, fluctuation-based example—SOFI: intensity fluctuations from emitters
tracked through time-lapse images, then used to refine emitter localization. E, MinFlux: blinking fluorophores are combined with a torus-shaped excitation
beam with a central intensity minimum; determining the point with minimum emission provides precise localization coordinates. dSTORM, direct stochastic
optical reconstruction microscopy; PALM, photoactivated localization microscopy; SMLM, single-molecule localization microscopy; SOFI, super-resolution
optical fluctuation imaging.
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generally genetically encoded. The most common photo-
activatable fluorophores are natively found in an off state, in
which illumination with the excitation wavelength will not
produce fluorescence (27). Illumination of the fluorophores
with an activation wavelength, often UV, causes a conforma-
tional change that then allows the fluorophore to be excited by
the excitation wavelength to produce fluorescence (Fig. 2C)
(27). Photoswitchable fluorophores, in comparison, normally
photoconvert between a shorter fluorescent species to a longer
wavelength form, and this can be one way or reversible (28).
Detection of single-molecule emission in this technique is
therefore achieved by cycling low levels of activation light to
turn on or switch a subset of the fluorophores and then allowing
these to bleach (27). Although organic dyes are typically
brighter and more photostable than fluorescent proteins, there
is extreme variability between different dyes, and these prop-
erties also depends upon experimental conditions (29). Choice
of dye or fluorophore is therefore important as the number of
photons will directly affect localization accuracy (20).
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Fluctuation-based techniques such as Super-resolution Op-
tical Fluctuation Imaging (SOFI) (30) and Super-Resolution
Radial Fluctuations (31) take advantage of natural variations
in the intensity of light emitted by fluorophores as they tran-
sition through fluorescent and nonfluorescent states (Fig. 2D).
Unlike SMLM techniques, fluctuation-based super resolution
does not detect or localize individual fluorophores but instead
calculates statistical properties of the variations across the
entire frame (30, 31). The more probes fluctuate, the better the
achievable resolution will be, meaning these techniques
therefore work very well with dSTORM or PALM samples;
however, they are also compatible with standard fluorescent
samples prepared for widefield or confocal imaging.

Minimal photon flux imaging (MINFLUX) combines the
concepts of STED and SMLM to achieve nanometer resolution.
For MINFLUX imaging, fluorophores are required to blink or
switch as in dSTORM or PALM, but this is combined with
excitation using a torus-shaped beam with an intensity mini-
mum at the center (32). This means that fluorophores exactly
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under the centre of the beam will not be excited, and this can be
used to pinpoint precise coordinates for their localization (32).
Excitation at multiple positions is used to centre in on the
excitation minimum as emission intensity will decrease as the
fluorophore position approaches this minimum (Fig. 2E) (32). In
contrast with many other techniques, this approach is very
photon efficient, requiring up to 100-fold fewer photons to
achieve equivalent resolutions to state-of-the-art SMLM tech-
niques (33). Moreover, MINFLUX far surpasses these techniques
in both lateral and axial localization precision (34). However,
MINFLUX is a relatively computationally intensive technique
and, having first been commercially produced in December
2019, is not widely available.

The different available super-resolution techniques each
encompass distinct strengths and limitations. When designing
a super-resolution experiment, it is thus vital to select a
technique that can appropriately answer the core biological
question. Biological questions that can be investigated using
super-resolution microscopy can be broadly categorized into
those concerned with defining high-resolution structures of
interest, those concerned with live-cell dynamics, and those
concerned with molecular interactions. The following sections
will discuss each of these categories and the important factors
in selecting a super-resolution technique within each.
Selecting a super-resolution technique for defining
structures of interest

Perhaps the most obvious and frequent application of super-
resolution microscopy is in addressing questions of subcellular
localization or colocalization, which require precision beyond
the diffraction limit. While most super-resolution techniques
will allow for a labeled target to be localized at subdiffraction
resolution, improvements in spatial resolution will always be
met with a trade-off in other abilities of the system, such as
temporal resolution, multicolor imaging, or avoidance of
phototoxicity/photobleaching.

It is therefore essential to consider the requirements of each
specific experiment to determine which super-resolution
technique will provide optimal image data. While detailed
considerations are discussed later, a simplified flow diagram
for selecting the appropriate super-resolution technique is
presented in Figure 3.
Resolution

The first aspect that should be taken into consideration is
the resolution required to answer the biological question. The
resolution of an optical system can be defined as the smallest
distance between two points at which the two can still be
distinguished as separate entities. The resolution of super-
resolution techniques varies widely (Fig. 4)—from pixel reas-
signment techniques, which produce around a 1.4× improve-
ment in resolution or an effective resolution of down to
120 nm (35, 36), to the recently developed MINFLUX tech-
nique, which has a reported resolution of down to 1 nm (34).
Techniques such as STED and SIM inherently allow for
improvements in axial resolution, albeit to different extents;
however, SMLM applications will generally require adapta-
tions such as deformation of the point spread function (PSF) to
provide axial super resolution (37).

The differences in resolution of these techniques make them
suited to different questions of localization. For example,
detailed analysis of mitochondrial morphology is often per-
formed using less high-resolution techniques, such as Airyscan
(38, 39). Localization of proteins to specificmembrane domains,
on the other hand, can involve resolving distances of under
50 nm and are therefore better suited to higher resolution
techniques. For example, SMLM techniques have been widely
used for localization of receptors within membranes (40–43),
and MINFLUX has recently been used to analyze the organi-
zation of mitochondrial contact site and cristae organizing
system components, suggesting that several molecules of the
Mic60 protein form rings at individual crista junctions (44).

While it might be tempting to always opt for the highest-
resolution system available, this may in fact detract from the
usable information encoded within the image data by sacrificing
other necessary information.When selecting a super-resolution
technique, one should therefore consider all the factors inherent
in the experimental setup, which will affect the data acquired.

Multicolor localization

Another major consideration will be the suitability of
different techniques to multicolor imaging. While SIM,
fluctuation-based and pixel-reassignment techniques, and
ExM have no specific requirements in terms of fluorophore
selection and are therefore easily compatible with multicolor
imaging, this is not the case for all super-resolution tech-
niques. Multicolor STED is possible, with up to four-color
imaging having been demonstrated to date (45). However,
this is dependent on the STED lasers present on the system,
and the availability of efficiently depleted fluorophores can
become limited as the number of desired colors increases (46).

Multicolor imaging can be particularly difficult when it
comes to single-molecule localization. PALM uses photo-
activatable or photoswitchable fluorophores, and thus far,
most currently available options either emit green or red
fluorescence upon activation or switch from green to red. This
means that options for multicolor imaging by PALM are
generally limited to two-color experiments (47, 48). Similar
limitations exist for dSTORM, as many dyes with good
blinking properties have different buffer requirements for
inducing blinking, making it difficult, though not impossible,
to combine these for multicolor imaging (49–51). PALM and
dSTORM can also be combined to increase multicolor options
(52). In all cases of multicolor SMLM, it is important to
consider balancing the brightness of different channels.
Multicolor imaging can either involve acquisition of channels
simultaneously or sequentially. With sequential acquisition,
illumination and detection sensitivity can be optimized for
each fluorophore/dye, but this will increase overall imaging
time and require drift correction between the channels (53).
Simultaneous acquisition, meanwhile, can be performed on a
single camera with the detector split between the two
J. Biol. Chem. (2021) 297(1) 100791 5



Figure 3. Simplified guide to choosing a super-resolution technique.
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channels, though this does not allow for independent adjust-
ment of detection sensitivity, or on two cameras (54). Both
these simultaneous options, however, require registration of
the two channels in postprocessing, which needs to be per-
formed at super-resolution levels of correction, which is
nontrivial (55). Finally, multicolor SMLM suffers from issues
of chromatic aberration, resulting in different resolutions and
lack of colocalization of different wavelength fluorophores
(56).

DNA-PAINT represents an alternative option for single-
molecule localization, which has more opportunities for
multicolor imaging. In DNA-PAINT, molecules of interest in
the sample are labeled with antibodies bound to single DNA
strands (57). Complementary DNA strands labeled with fluo-
rophores are introduced into the solution, and these tran-
siently bind to the complementary strands on the sample (57).
Blinking in DNA-PAINT does not require special buffers or
photoswitching/photoactivation but instead results from dye
molecules being immobilized in the imaging plane during the
transient binding events (57). Multicolor imaging through
6 J. Biol. Chem. (2021) 297(1) 100791
DNA-PAINT is therefore straightforward as different dyes can
be coupled to target-specific DNA sequences. Multicolor im-
aging can be taken even further through the use of exchange-
PAINT, whereby sequential use of DNA-PAINT labels with
washing in between allows for essentially unlimited use of even
a single color fluorophore for labeling different structures of
interest (57).

Sample thickness

The choice of technique for simple localization experiments
will also be impacted by the thickness of the sample and depth
of the region to be imaged within that sample. Thicker samples
suffer from increased out-of-focus light, and imaging deep
within samples increase spherical aberration because of
refractive index mismatch between the sample and the optical
elements (58). Both these factors will influence lateral and axial
resolution, though certain techniques are able to minimize
these effects. SMLM techniques are commonly performed on
total internal reflection fluorescence (TIRF) setups, limiting
imaging to structures very close to the coverslip. TIRF



Figure 4. Spatiotemporal resolutions achieved by different super-resolution techniques as compared with confocal laser scanning microscopy
(CLSM). A, point spread functions (PSFs) for each technique at minimal lateral (XY) and axial (Z) resolutions typically achievable on biological samples. Color
coded according to temporal resolution scale in C. Adapted from Ref. (124). B, temporal resolution of each technique compared with timescales of biological
processes. For single fluorophore detection techniques, such as SMLM and MINFLUX, each individual localization and the tracking of single particles can be
acquired very rapidly, while imaging of gross structural changes requires numerous localizations and is relatively slow. C, ranges of lateral, axial, and
temporal resolutions typically achieved using each technique on biological samples. *Temporal resolution is highly dependent on imaging area for laser
scanning techniques. SMLM, single-molecule localization microscopy.
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microscopes use a laser inclined past a critical angle (typically
between 50� and 70�) and a mismatch in refractive index of the
immersion medium and the sample medium to cause the laser
light to reflect off the coverslip (59). This results in illumina-
tion of the sample by an evanescent field emanating from the
laser light (59). Penetration of this evanescent wave is depen-
dent on excitation wavelength and the NA of the objective but
typically range from under 100 nm to a maximal penetration of
around 200 nm (60). While this is ideal for studies of mem-
brane biology, including secretion and exocytosis (61, 62), it
precludes imaging of entire cell volumes or of organelles
deeper within the cell. SMLM techniques are also compatible
with highly inclined laminated optical sheet illumination,
where the laser passes through the sample at a sharp angle,
allowing imaging of a diagonal slice up to a depth of 10 μm,
and can be easily performed on TIRF setups but only allows for
a small field of view (63). Even thicker samples can be imaged
through the use of selective plane illumination microscopy
(64). For monolayer samples, 3D SMLM is also achievable in
widefield setups, for example, through engineering of the PSF
to produce astigmatism whereby a cylindrical lens breaks the
symmetry of the PSF above and below the focal plane (65) or
by using two focal planes as in biplane imaging (58).

Standard SIM imaging is based on a widefield setup and is
therefore sensitive to out-of-focus light, making it difficult on
samples thicker than 5 to 10 μm (66). However, adapted SIM
systems with slit-confocal structured illuminations have shown
success in blocking out-of-focus light allowing for SIM imag-
ing of thicker samples (67). Confocal-based techniques, such as
STED, naturally provide optical sectioning, removing out-of-
focus light. However, these techniques remain susceptible to
spherical aberration at greater imaging depths (68). Thicker
samples will also suffer from issues of light penetration
regardless of the super-resolution technique; this can be
J. Biol. Chem. (2021) 297(1) 100791 7
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overcome by combining super resolution with two-photon
microscopy. Two-photon excitation has been successfully
combined with multiple super-resolution techniques,
including PALM (69), STED (70, 71), and SIM (72, 73).

ExM can provide an alternative solution for mitigating
penetration issues, as the expanded sample inherently un-
dergoes decrowding of biomolecules, and the final sample is
composed of 99% water, making it relatively optically trans-
parent (19). It is, however, worth noting that this expansion
will also result in a much larger imaging volume, resulting in
much longer imaging times for large or 3D acquisitions.

Other considerations

Choice of super-resolution techniques may also be affected
by the need for quantitative analysis. This is particularly rele-
vant in the use of SMLM for analyzing clustering of proteins.
In theory, single-molecule imaging should allow for absolute
determination of numbers of molecules within cellular struc-
tures. In practice, however, there are numerous factors that
can contribute to artifacts such as overcounting and artificial
clustering.

Approaches that include labeling with antibodies can be
particularly problematic as multiple antibodies may bind a
single protein of interest producing multiple localizations per
labeled molecule (74). Antibodies can also induce artificial
clustering by crosslinking proteins to one another (75). For
true measures of protein stoichiometry and clustering, it is far
better to use one-to-one tagging of proteins either via genet-
ically expressed fluorophores or through the use of self-
labeling enzymes. Moreover, the size of labels on structures
of interest should be considered. Typical IgG antibodies are
generally around 10 to 15 nm in size; labeling of structures
with primary and secondary antibodies could therefore result
in a signal 30 nm away from actual protein of interest, which is
particularly problematic as the resolution of the imaging
technique improves (76). This linkage error can be minimized
through the use of smaller labeling molecules, for example,
primary antibody antigen-binding fragments bound directly to
fluorescent dyes, or through non-IgG–based techniques, such
as labeling with nanobodies or aptamers (76–78).

Additional complexity arises from the blinking of dyes,
which produces multiple localizations per dye or fluorophore
(74). PALM should theoretically overcome this issue, with each
fluorophore being activated and continuously imaged until
photobleached, and therefore only counted once. However,
this model is somewhat oversimplified as there is evidence that
photoactivatable fluorophores are also able to enter dark states
during PALM imaging, resulting in blinking and multiple
localization counts (79). While complex modeling of blinking
properties can be used to somewhat address these issues
during analysis, these blinking kinetics vary between dyes/
fluorophores and can be affected by environmental conditions
and photobleaching (29, 80). The development of qPAINT has
sought to overcome these issues by basing quantitation on
predictable label-binding kinetics rather than complex dye
kinetics and has the added advantage of being immune to
8 J. Biol. Chem. (2021) 297(1) 100791
photobleaching as the transient binding means that fresh la-
bels are constantly replacing bleached molecules (81). It is
beyond the scope of this review to cover the very important
aspects of data processing strategies, avoidance of artifacts, and
quantifying SMLM data. This has been covered extensively
elsewhere (56, 82, 83).

Finally, it is worth noting that while some super-resolution
techniques (e.g., super-resolution radial fluctuation, ExM,
SMLM) can be performed on standard widefield or confocal
systems, others will require expensive equipment and may not
be as ubiquitously accessible within research departments.
However, specialized super-resolution facilities are becoming
more widespread, including open access facilities such as our
own, catering to a larger research community.

Selecting a super-resolution technique for assessing
live-cell dynamics

Not all imaging experiments will focus simply on static
questions of localization but may in addition incorporate
questions of live-cell dynamics. While the considerations dis-
cussed previously remain relevant, additional factors come into
play for super-resolution imaging of live samples, tracking of
molecular dynamics, and even in vivo imaging in live animals,
and these are discussed below.

Live-cell imaging

When it comes to live-cell imaging, it is not only lateral and
axial resolution that are important but also temporal resolu-
tion. This represents the speed at which sequential images can
be captured and will define what type of processes can be
analyzed. Cellular dynamics can occur on a time scale of mi-
croseconds to days and will thus be suited to different imaging
techniques. Several super-resolution techniques require
acquisition of multiple raw frames to produce an image of
global structures in the sample; typically 9 to 15 for 2D or 3D
SIM, hundreds for fluctuation-based techniques, and thou-
sands for SMLM (84). This causes obvious limitations in the
achievable frame rate for tracking live-cell dynamics (Fig. 4B).

Other considerations for live-cell super resolution include
phototoxicity and suitability of labeling strategy. While pho-
todamage and photobleaching will also affect fixed cell ex-
periments, phototoxicity may be one of the primary
considerations for live-cell imaging, as it may disrupt the very
processes being analyzed. Two main factors that will affect
degree of phototoxicity are illumination wavelength and illu-
mination intensity. There is clear evidence that irradiation
sensitivity worsens with decreasing excitation wavelength (85,
86). For certain techniques, excitation with particularly
phototoxic 405 nm light is unavoidable; many photoactivatable
or photoswitchable fluorophores used for PALM, for example,
are activated by 405 nm illumination (87). In these cases,
photodamage can be reduced by minimizing total irradiation
time to reduce the photon burden on the sample (86).
Conversely, other techniques such as STED are compatible
with longer wavelength dyes and fluorophores but require the
use of high-powered depletion lasers with irradiation
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intensities 3 to 5 orders of magnitude higher than the excita-
tion intensities (86). While phototoxicity does not necessarily
make these techniques incompatible with live-cell imaging,
stringent tests should be employed to ensure that irradiation
does not impact the cellular processes being imaged (88). The
gentlest techniques for live-cell imaging are generally pixel
reassignment techniques or SIM, which require much lower
irradiation intensities, and these may therefore be the most
appropriate for long time-lapse imaging experiments.

Labeling strategy is particularly important for live-cell
dSTORM experiments. While single-molecule imaging in live
cells is generally performed by PALM, live-cell dSTORM is not
impossible. However, the buffers with reducing and oxygen-
scavenging properties that are generally used to induce blinking
of dyes will cause stress to live cells and should be avoided (86).
The intracellular environment does itself display these properties,
albeit to a lesser extent, meaning that live-cell dSTORM is
possible without the use of stress-inducing buffers with the use of
selected dyes such as TMR-Star or Alexa Fluor 647, which will
blink even under these milder conditions (89, 90).

A number of super-resolution techniques have even been
applied to in vivo imaging in live animals. However, these
techniques generally require adaptation to overcome the
complexities of in vivo imaging, including optical aberrations
introduced by deeper imaging and vibrations caused by vital
functions such as heart beats, which can introduce image
distortion. In vivo SIM has been used to image live zebrafish
larvae and mice brains, overcoming the aforementioned issues
using adaptive optics in combination with shorter frame
acquisition times and frame-to-frame registration (91). In vivo
STED, meanwhile, has been successfully implemented to super
resolve neurons and synaptic proteins in living mouse brains
with the use of a custom advanced mounting stage to reduce
thermal drift and sample-induced vibrations (92, 93).

Molecular dynamics

Traditional techniques for determining molecular dynamics
have historically consisted of fluorescent recovery after pho-
tobleaching (FRAP) or fluorescence correlation spectroscopy,
both of which measure diffusion of fluorescent molecules.
While both techniques can provide useful information on real-
time dynamics, they remain diffraction limited and can only
provide average rather than molecule-specific data. Both these
have been combined with super-resolution techniques. Fluo-
rescence correlation spectroscopy, for example, has been
combined with SOFI to correlate diffusion dynamics with
subdiffraction mapping of pores within materials such as
hydrogels (94, 95), and with STED to assess lipid membrane
dynamics (96, 97). FRAP, meanwhile, has been combined with
SMLM to assess membrane dynamics of transforming growth
factor-β receptors, showing that this receptor is transported to
the plasma membrane primarily in monomeric form (98). In
this approach, FRAP was used to bleach existing fluorescent
molecules at the basal cell membrane, and SMLM was then
performed to get super-resolved information on recruitment
of new receptor molecules (98).
Analysis of molecular dynamics on an individual molecule
basis can also be performed through single-particle tracking
(SPT) techniques. Not all single-molecule techniques are
compatible with SPT in cells; as discussed previously, buffers
for dSTORM are incompatible with live samples, and DNA-
PAINT generally requires antibody labeling of fixed samples.
There are, however, options for SPT using either sptPALM or
adapted PAINT techniques, such as Tag-PAINT (99), which
binds DNA docking strands to SNAP or Halo Tags, and LIVE-
PAINT (100), which uses genetically expressed peptide se-
quences rather than antibody-linked DNA labels.

Selecting a super-resolution technique for assessing
molecular interactions

A final experiment type that will have additional consider-
ations to those discussed previously relates to questions of
protein–protein interactions or interactions of other mole-
cules. While molecular interaction techniques have historically
been able to provide information about interactions occurring
at <10 nm distances, they could not spatially resolve these
interactions across subdiffraction features within a sample.
The advent of super-resolution microscopy has now allowed
for subdiffraction regional differences in these interactions to
be observable, providing new insight as compared with his-
torical techniques, which provided average information from
across a sample. Selection of a technique for these types of
experiments is less clear cut, and for the best evidence of
molecular interaction, these techniques should be combined
with biochemical assays to show more than just proximity.
However, super-resolved microscopy techniques can still be
invaluable in these types of experiments as they can combine
interaction data with subdiffraction location information.

Microscopy techniques can be used to detect interprotein
interactions and even intraprotein interactions in terms of
conformational changes. The standard microscopy technique
for assessing these interactions is FRET (101). This technique
measures the process of transfer of energy from a donor flu-
orophore to an acceptor fluorophore when these come into
close proximity (102). Standard FRET techniques do not
provide a spatially super-resolved image but do provide in-
formation about interactions occurring at 1 to 10 nm distances
(102). However, FRET has also been combined with super-
resolution techniques to provide single-molecule FRET
(smFRET). smFRET was first implemented in 1996 using near-
field microscopy techniques that overcome the diffraction
limit by minimizing the distance between the detector and
sample (<10 nm) (103). Newer applications of smFRET use
quantum dot–based FRET nanosensors (104, 105) or SMLM-
like blinking methods such as photoactivatable (106) or
PAINT-based FRET probes (107, 108) to enable single
molecule–level detection. While smFRET is usually performed
in vitro on free proteins in solution, it has been demonstrated
within live cells to show processes such as individual SNARE
proteins interacting with membrane-tethered complexes (109)
and conformational changes of rapidly accelerated fibrosar-
coma proteins (110). smFRET is more widely applicable to
J. Biol. Chem. (2021) 297(1) 100791 9
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analyzing other molecular interactions, such as protein–DNA
interactions (111, 112), DNA–DNA interactions (113, 114),
and protein–RNA interactions (115, 116), to name but a few.

Protein–protein interactions can also be assessed at high
resolution and single-molecule level through combinations of
super-resolution techniques with bimolecular fluorescence
complementation (BiFC). BiFC involves fusing proteins of in-
terest to two nonfluorescent fragments of a fluorophore, which
will interact to produce fluorescence when in close proximity
(117). BiFC has been successfully combined with SOFI (118),
RESOLFT (119), and PALM (120, 121). Finally, fluctuation-
based super-resolution techniques such as SOFI can be com-
bined with fluorescence fluctuation increase by contact,
whereby fluctuations of fluorescent proteins will speed up when
they come into close proximity (122). The super-resolution
technique with which interaction detection methods are com-
bined will determine the spatial resolution that is achievable.
BiFC can provide a more sensitive measure of protein–protein
interactions, as even small fractions of complementary fluo-
rophore fragments will combine and fluoresce (123). However,
this generation of fluorescence is irreversible and cannot be used
to track dynamics (123). smFRET and fluorescence fluctuation
increase by contact are both reversible processes and are thus
more powerful in determining spatiotemporal dynamics (123).

Conclusions

Anticipating what an experiment should achieve at the
outset is key to any successful imaging experiment. Careful
consideration of the available methods is therefore vital to
ensure that the correct technique is used to fully answer the
scientific question. There is a lot to take into account: the
specimen itself (size, live/fixed, thickness, opacity, etc), the
aspect of the specimen under study (i.e., cell structures, sur-
faces, single molecules), and the temporal sensitivity required
(i.e., for molecular dynamics, interactions, etc). Nevertheless,
as with any method, each of those discussed in this review has
inherent pros and cons. Moreover, there will always be the
trade-off between spatial and temporal resolution to consider
for any imaging experiment. Having provided an overview of
numerous super-resolution microscopy techniques and their
most suitable applications, we have aimed to provide a
framework for selection of the most appropriate method
depending on the experimental question, specimen of interest,
and available instrumentation.
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