
Workflow simulation and multi-threading aware task
scheduling for heterogeneous computing

KELEFOURAS, Vasilios <http://orcid.org/0000-0001-9591-913X> and
DJEMAME, Karim

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/30435/

This document is the Published Version [VoR]

Citation:

KELEFOURAS, Vasilios and DJEMAME, Karim (2022). Workflow simulation and
multi-threading aware task scheduling for heterogeneous computing. Journal of
Parallel and Distributed Computing, 168, 17-32. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Journal of Parallel and Distributed Computing 168 (2022) 17–32

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Workflow simulation and multi-threading aware task scheduling for

heterogeneous computing

Vasilios Kelefouras ∗, Karim Djemame

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2022
Received in revised form 19 May 2022
Accepted 24 May 2022
Available online 30 May 2022

Keywords:
Task scheduling
HEFT
Heterogeneity
Scheduling time
Makespan

Efficient application scheduling is critical for achieving high performance in heterogeneous computing
systems. This problem has proved to be NP-complete even for the homogeneous case, heading research
efforts in obtaining low complexity heuristics that produce good quality schedules. Such an example is
HEFT, one of the most efficient list scheduling heuristics in terms of makespan and robustness.
In this paper, we propose two task scheduling methods for heterogeneous computing systems that can be
integrated to several task scheduling algorithms. First, a method that improves the scheduling time (the
time for obtaining the output schedule) of a family of task scheduling algorithms is delivered without
sacrificing the schedule length, when the computation costs of the application tasks are unknown.
Second, a method that improves the scheduling length (makespan) of several task scheduling algorithms
is proposed, by identifying which tasks are going to be executed as single-threaded and which as multi-
threaded implementations, as well as the number of the threads used. We showcase both methods by
using HEFT popular algorithm, but they can be integrated to other algorithms too, such as HCPT, HPS,
PETS and CPOP.
The experimental results, which consider 14580 random synthetic graphs and five real world applications,
show that by enhancing HEFT algorithm with the two proposed methods, significant makespan gains and
high scheduling time gains, are achieved.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Heterogeneous Computing Systems (HCS) offer important ben-
efits over homogeneous systems in various areas such as perfor-
mance, power consumption, cost etc, leading research efforts on
overcoming the challenges that heterogeneity brings at all levels.
One of the challenges is the efficient application scheduling, which
is the topic of this paper.

A popular representation of an application in this context is
the Directed Acyclic Graph (DAG), which includes the characteris-
tics of the application program, such as the application tasks, their
computation costs, the data transfer time between tasks and task
dependencies [3] [48] [22]. The computation costs can be found by
simulation, emulation or by running the tasks on the processors;
for the rest of this paper, we will use the word simulation.

The objective of the Task Scheduling (TS) problem is to map
the DAG’s tasks on the (co)-processors and order their execution
so that task precedence requirements are satisfied and a minimum
schedule length (aka makespan) is obtained (for the reminder of
this paper we will refer to both processors and coprocessors as

* Corresponding author.
E-mail address: v.kelefouras@plymouth.ac.uk (V. Kelefouras).
https://doi.org/10.1016/j.jpdc.2022.05.011
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
processors). This problem has proven to be NP-complete [6], even
for the homogeneous case, heading research efforts on obtaining
low-complexity heuristics that produce good schedules [3], which
is the topic of this paper. Such an example is the Heterogeneous
Earliest Finish Time (HEFT) [48] algorithm, which is considered
one of the most efficient list scheduling algorithms in terms of
makespan and robustness [3].

In this paper, we propose two TS methods for HCS and DAG-
based applications that can be integrated to several TS algorithms.
We showcase both methods by using HEFT algorithm, as it is
one of the most efficient list scheduling heuristics in terms of
makespan and robustness [3]. In our future work we are planning
to apply and evaluate our methods to other algorithms too such
as HCPT [19], HPS [23], PETS [22], CPOP [48] and others. Note that
this work is an extension of the conference paper in [25].

Our first method, entitled ‘Task Scheduling method Reducing
the number of task Simulations’ (TSRS), reduces the scheduling
time of HEFT when the computation costs are unknown. TSRS
reduces the number of computation costs required by HEFT and
therefore, the number of simulations required/performed, without
sacrificing the length of the output schedule. Instead of simulat-
ing/running all tasks on every processor (to generate the DAG’s
computation costs) and then schedule the tasks (by using HEFT),
we combine these two phases using an iterative approach; the
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2022.05.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.05.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:v.kelefouras@plymouth.ac.uk
https://doi.org/10.1016/j.jpdc.2022.05.011
http://creativecommons.org/licenses/by/4.0/

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
generation of the DAG’s computation costs and the scheduling of
the tasks are applied together, in an iterative approach. First, the
DAG is generated whose computation costs refer to one core of
the reference processor only. Then, the proposed method is applied
which extends the processor selection phase of the algorithm used,
in this case HEFT. In the new processor selection phase, we iden-
tify the processors which cannot minimize the specific heuristic
cost function used, for the current task (let t), regardless of their
computation costs; these processors are never selected for t by the
algorithm and therefore there is no reason t to be simulated on
those processors, reducing the number of simulations performed.

Our second method, ‘Multi-threading Effective Task Scheduling’
(METS), provides low-complexity heuristics for HCS to find which
tasks are going to be executed as Single-Threaded (ST) and which
as Multi-Threaded (MT) CPU implementations, as well as the num-
ber of the threads used. We show that HEFT’s performance is
improved without increasing its time complexity (for large DAGs).
The application tasks are assumed moldable [8] with the restric-
tion that tasks can only be allocated to the physical cores of one
CPU only; moldable tasks are the tasks that can be executed by
more than one processor but the number of processors is fixed
before execution and stays unchanged afterwards; Pthreads and
OpenMP programs are typical examples of moldable tasks [21].

The contributions of this paper are the following:

• A TS method (TSRS) reducing the scheduling time of HEFT
popular algorithm, when the computation costs are unknown.

• A low-complexity TS method (METS) improving the scheduling
length of HEFT.

• TSRS and METS can be combined reducing both the scheduling
time and length.

The evaluation of the proposed methods includes 14580 ran-
dom synthetic DAGs as well as five real world applications. The
experimental results show that TSRS provides simulation gain val-
ues from x1.34 to x3.11, while METS provides makespan gains from
x1.1 up to x2.3, over HEFT. By combining TSRS with METS, both im-
proved schedule lengths (average speedup of x1.12), and schedul-
ing time (from x4.5 up to x24 fewer simulations), are achieved.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the TS problem. In Section 3, the related work
is reviewed. The proposed methods are given in Section 4, while
the experimental results are discussed in Section 5. Finally, Sec-
tion 6 is dedicated to conclusions.

2. Task scheduling formulation

Resource model: The hardware (HW) platform consists of a
fixed set of p heterogeneous devices with diverse computation
capabilities. The multi-core CPUs are treated as m-core devices,
where m = [1, cores] and cores is the number of the physical CPU
cores.

Workflow model: A workflow application is modeled as a DAG,
G = (V , E), where V is the set of u nodes and each node u ∈ V
represents an application task, which includes instructions that
must be executed on the same processor. E is the set of e com-
munication edges between tasks; each e(i, j) ∈ E represents the
task-dependence constraint such that task ti should complete its
execution before task t j is started [3]. The n × p computation cost
matrix W stores the computation costs of the tasks, where n is the
number of the tasks and p is the number of the processors; each
element wt, j ∈ W refers to the estimated time to execute task t
on processor p j (note that in the next paragraphs matrix W be-
comes n × p ×cores, as multi-threaded implementations exist). The
W values can be found by simulation, emulation or by running the
18
tasks on the HW; for the rest of this paper, we will use the word
simulation. The execution of any task is considered nonpreemptive.

Each edge e(i, j) ∈ E is associated with a non-negative weight
value di, j that represents the amount of data to be transmitted
from task ti to task t j . The data transfer rate between any two pro-
cessors on the network is assumed to be fixed and constant [12].
The communication cost of an edge (ti, t j) equals to the amount
of data transmitted from task ti to task t j , or di, j , divided by
the data transfer rate of the network. Since the data transfer rate
of the intra-processor bus is much higher than the data transfer
rate of the interprocessor network, the communication cost be-
tween two tasks scheduled on the same processor is taken as zero.
These model simplifications are common in this scheduling prob-
lem [3] [48] [12].

TSRS problem definition: This problem is the static scheduling
of a single application, whose computation cost matrix W is un-
known, in a set of p heterogeneous devices, in such a way that
both the scheduling length and the scheduling time (to deliver the
output schedule), are minimized. It is important to note that the
scheduling time highly depends on the time needed to simulate
the tasks and get their computation costs.

Standalone TSRS assumes rigid (non-moldable) tasks, i.e., each
task is executed by one only processor. Monotonic computation
costs are assumed.

Definition 1. The notion of monotonic computation costs is de-
fined as follows. Consider a task t1 and two different processors
(p1, p2). If (wt1,p2 ≥ wt1,p1) for task t1, then we assume that
(wt,p2 ≥ wt,p1) for every task t .

METS problem definition: This problem is the static scheduling
of a single application, consisting of a set of n moldable tasks, in
a set of p heterogeneous devices, in such a way that the schedul-
ing length is minimized. The application tasks are assumed mold-
able [8] (a single task can be executed by more than one processor)
with the restriction that tasks can be allocated to the physical
cores of one CPU only; moldable tasks are the tasks being allo-
cated to a fixed number of processors before execution and stay
unchanged afterwards. OpenMP programs typify moldable tasks as
users can specify the number of the threads before the execution
of a parallel program. Thus, given a multi-core CPU with cores
physical cores, we consider every task as an m-threaded imple-
mentation, where m = [1, cores]. The computation cost matrix W
becomes n × p × cores; if the processor is not a multi-core CPU
(e.g., GPU or single-core CPU), m = 1 (wt, j,1). The CPU core utiliza-
tion factor is defined as, f actort, j,m = wt, j,1/wt, j,m . Unlike TSRS,
the computation cost matrix W is known and therefore the previ-
ous assumption about monotonic costs is not applied here.

TSRS+METS problem definition: In this paper, METS is applied
together with TSRS, in order to optimize for both scheduling time
and length. This problem is the static scheduling of an applica-
tion consisting of a set of n moldable tasks, whose computation
cost matrix W is unknown, in a set of p heterogeneous devices, in
such a way that both the scheduling time and scheduling length,
are minimized. We make the following assumptions which are
common in moldable tasks [8] [21]: a) wt,i, f 1 ≤ wt,i, f 2, where
f 1 ≥ f 2, f 1 ≤ cores, and, b) every task scales equally in differ-
ent CPUs (f actort,i, f = f actort, j, f). Thus, if wt,i,1 ≤ wt, j,1, then
wt,i, f ≤ wt, j, f but wt,i, f 1 � wt, j, f 2, where f 1 < f 2.

Next, we present some common attributes used in TS problem
[3] [48] [12], which we will refer to in the following sections.

Definition 2. pred(ti) denotes the set of immediate predecessors
of task ti in a given DAG [48].

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
Definition 3. makespan or schedule length denotes the finish time
of the last task in the scheduled DAG [48] and is defined as:

makespan = max{A F T (texit)} (1)

where A F T (texit) denotes the Actual Finish Time of the exit task.

Definition 4. E ST (ti, p j, m) denotes the Earliest Start Time (EST) of
task ti on processor p j using m threads and each thread is mapped
on a specific CPU core (if p j is not a CPU, m = 1) and defined as

E ST (ti, p j,m) = max

{
T Avail(p j,m), T pred(ti, p j)

}

T pred(ti, p j) = max
tl∈pred(ti)

{A F T (tl) + cl,i}
(2)

where T Avail(p j, m) is the earliest time at which the m cores (that
the m threads run) of processor p j are ready and T pred(ti, p j) is
the time at which all data needed by task ti arrive at the processor
p j . The communication cost cl,i is zero if the predecessor task tl is
assigned to processor p j . For the entry task, E ST (tentry, p j, m) = 0.

Definition 5. E F T (ti, p j, m) denotes the Earliest Finish Time (EFT)
of a task ti on processor p j using m threads:

E F T (ti, p j,m) = E ST (ti, p j,m) + wt, j,m (3)

which is the EST of a task ti on the m cores of processor p j ,
plus the computation cost of the m-threaded implementation of
ti on processor p j . For the rest of this paper we will refer to
E F T (ti, p j, 1) as E F T (ti, p j).

3. Related work and background knowledge

TS can be performed at compile-time or at run-time, referred as
static or dynamic scheduling. In the static scheduling case, all the
information regarding the application and computing resources is
assumed available a priori. In the dynamic case, such information
is not available and decisions are made at runtime. A taxonomy of
all the task mapping methodologies (both static and dynamic) is
given in [44].

The static TS algorithms are classified in two main categories.
The first one includes algorithms that are based on heuristics, such
as list scheduling [3] [48], clustering [9] or node duplication [42],
while the second includes stochastic search algorithms, where the
problem is modeled as an optimization problem using either ILP
[47], CP models [32] or hybrid ILP-CP models along with advanced
algorithms in order to reduce the simulation time [16]. Cluster-
ing heuristics are mainly proposed for homogeneous systems [9].
The duplication heuristics produce shorter makespans than list
scheduling heuristics, but result in higher time complexity and
more processor availability and power [3]. List scheduling heuris-
tics, on the other hand, produce the most efficient schedules, with-
out compromising the makespan and with a low complexity [3].
Some of the most important list scheduling heuristics for hetero-
geneous systems are: PEFT [3], HEFT [48], HCPT [19], HPS [23],
PETS [22], Lookahead [7], MOHEFT [14], LDCP [12], SDBATS [37],
DVR HEFT [43], LB-HEFT [31], HOFT [33]. In [18], HEFT is modi-
fied to consider a budget limit for the hourly-based cost model of
modern Infrastructure as a Service (IaaS) clouds. In [50], HEFT is
integrated with a fuzzy dominance sort mechanism in order to op-
timize both the cost and the makespan in IaaS clouds. [36] and
[45] propose HEFT hybrid variants for HCS.

HEFT algorithm assumes rigid tasks (non-moldable) and is
shown in Algorithm 1; it has a prioritizing and a processor selec-
tion phase. In the first phase, task priorities are defined by using
ranku which represents the cost of the longest path from ti to the
19
Algorithm 1 HEFT Algorithm.
1: Set the computation costs of tasks and communication costs of edges with

mean values
2: Compute ranku for all tasks by traversing graph upward, starting from the exit

task
3: Sort tasks in a scheduling list by decreasing order of ranku values
4: while there are unscheduled tasks in the list do
5: Select the first task, ti , from the list for scheduling
6: for each processor p j in the processor-set do
7: Compute E F T (ti , p j) value using the insertion-based scheduling policy
8: end for
9: Assign task ti to the processor p j that minimizes EFT of task ti

10: end while

exit node, including the computation cost of ti and is given by
ranku(ti) = wi +maxt j∈succ(ti){c(i, j) + ranku(t j)}. The bar over num-
bers indicates mean values. For the exit task, ranku(texit) = wexit .
The task list is ordered by decreasing value of ranku . The task
with the highest rank is scheduled first. In the processor selec-
tion phase, the task with the higher ranku value is assigned to the
processor giving the EFT.

All the aforementioned algorithms take as input a DAG con-
taining the computation and communication costs and therefore
the quality of the output schedule is affected by the DAG values
too. The tasks’ execution time estimation problem is not as well-
developed as the scheduling problem, because several straightfor-
ward techniques exist which provide acceptable performance [11].
Regarding the popular list scheduling algorithms such as HEFT,
HCPT, HPS, PETS etc., they consider the execution time of a task
on a processor, as a constant value. However, there are algorithms
that a) don’t use the execution time values of the tasks, but in-
stead use a list of tasks ordered by their execution time [30], b) use
knowledge of the expected execution time value and the variance
in order to measure the uncertainty of the workflow execution
time [1], c) use the worst case execution time values (WCET), d)
use the execution time estimates as random variables instead of
keeping them constant, and provide complete information about
them at maximum precision [11].

To the best of our knowledge there is no similar work to TSRS,
addressing the static TS problem and the problem of generating
the computation costs, together.

On the other hand METS is close to the problem of schedul-
ing moldable tasks with the restriction that tasks can only use
the cores of one CPU [8] [21]; most of the existing works are
based on a two-phase approach. First, the number of processors
assigned for each task is selected and second, the rigid (non-
moldable) tasks are scheduled by using a TS algorithm. In [8],
they present a new algorithm combining dual approximation and
ILP for moldable tasks on hybrid platforms of identical GPUs and
CPUs. In [21], a new algorithm is proposed that supports arbi-
trary run-time functions of moldable tasks on identical processors.
In [15], a scheduling algorithm with a tunable performance guar-
antee is developed, for homogeneous multicluster platforms. An
extensive comparison of several TS algorithms for moldable tasks
is carried out in [17], for identical processors (both theoretical and
experimental). [28] employs ILP for streaming applications while
[39] employs ILP considering inter intra task communications. Last,
in [2] they present efficient algorithms for scheduling an applica-
tion on hybrid platforms of identical CPUs and GPUs. Comparing
to the aforementioned methods, METS achieves lower time com-
plexity and is applicable to HCS. Nevertheless, in this paper, METS
is applied together with TSRS and not as a standalone method
and thus the moldable problem is addressed without requiring all
the computation costs in the DAG, further reducing the scheduling
time.

SKOPE [35] is a framework that produces a descriptive model
about the semantic behavior of a workload. StarPU [4] provides
designers with a convenient way to execute parallel tasks over

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
heterogeneous hardware and tune scheduling algorithms. The Pe-
gasus Workflow Management System [13] is a framework for map-
ping complex scientific workflows onto distributed resources. A
technique to reduce the number of simulations needed during
system-level design space exploration is proposed in [41]. SimSo
[10] is a simulation tool that facilitates the comparison of differ-
ent schedulers. The SESAME [40] framework, which is part of the
Daedalus framework [38], provides modeling and simulation meth-
ods and tools for the efficient design space exploration of heteroge-
neous embedded multimedia systems. In [27] [26], novel methods
scheduling the co-running threads in multi-core platforms are pro-
posed. In [29], a novel model-based data partitioning algorithm is
proposed.

4. Proposed TS method & heuristics

In this section we introduce two novel Task Scheduling (TS)
methods for heterogeneous computing systems (HCS), a TS method
Reducing the number of task Simulations performed (TSRS) which
is given in Subsection 4.1 and Multi-threading Effective Task
Scheduling (METS) heuristics which are given in Subsection 4.2.
In Subsection 4.3, TSRS and METS are combined.

4.1. Task scheduling method reducing the number of task simulations
(TSRS)

In Algorithm 2, we show how TSRS is applied to HEFT. TSRS
consists of two stages, an initialization stage (line 1 in Algo-
rithm 2), where all the processors are sorted in an increasing
computational capability (CC) order and the main stage (line 6 in
Algorithm 2). The main stage of TSRS extends/modifies the proces-
sor selection phase, lines 6-8 in Algorithm 1. As it can be observed,
Algorithm 1 and Algorithm 2 differ only in line 1 and lines 6,
7, where the initialization and main stage are performed, respec-
tively.

Algorithm 2 HEFT with TSRS / HEFT with TSRS+METS.
1: Sort in an increasing order all the groups of processors according to their com-

putation capability (CC). Set the computation costs of tasks according to pref

only (wt,pref ,1) and the communication costs of edges with mean values
2: Compute ranku for all tasks by traversing graph upward, starting from the exit

task
3: Sort tasks in a scheduling list by decreasing order of ranku values
4: while there are unscheduled tasks in the list do
5: Select the first task, ti , from the list for scheduling
6: [wti ,i,1(), SL()]=TSRS(ti); / [wti ,i,m(), SL()]=TSRS+METS(ti);
7: for each processor p j in SL (simulation list) do
8: Compute E F T (ti , p j) / E F T (ti , p j , m) value with/without the insertion-

based scheduling policy
9: end for

10: Assign task ti to the processor p j that minimizes EFT of task ti

11: end while

In line 1 (Algorithm 2), the DAG is initialized with the computa-
tion costs of the tasks on the one core of pref only (reference pro-
cessor), i.e., wt,pref ,1. Furthermore, all the processors are classified
into groups, according to their computation capability (CC); a ran-
dom task is run on every processor and the execution time values
are measured. Then, all the processors are classified into groups ac-
cording to the execution time values measured. In the case where
the execution time values of the random task on two different
processors are approximately the same, we can consider both pro-
cessors in the same processor group. All the groups are sorted
in an increasing CC order, e.g., proc_order = (ptype2, ptype3, ptype1).
The processor achieving the minimum execution time value is con-
sidered as the one with the highest CC; regarding multi-core CPUs,
the CC refers to one core only (ST implementations).
20
The generation of the other computation costs and the schedul-
ing of the tasks are applied together, in an iterative approach; in
line 6, TSRS discards the processors which cannot minimize the
specific heuristic cost function used for the current task (regard-
less of their computation costs), while all the others are simulated
and their computation costs are returned.

The DAG is initialized with the computation costs on the ref-
erence processor (pref) only and therefore the ranku values are
no longer computed using the average costs but using the com-
putation costs on pref , slightly affecting the task priority list; the
priority list is not substantially affected because the computation
costs are assumed monotonic. In [49], the rank function of HEFT al-
gorithm is investigated by using the mean, median, worst and best
computation costs; it is shown that for random computation costs
(not monotonic as in our case) first, different ways of computing
ranku affect HEFT performance and second, the mean computa-
tion costs are not the best choice. In Subsection 5.3, we show that
HEFT’s schedule length is not degraded by TSRS and in addition to
[49], we showcase that the mean computation costs do not pro-
vide better solutions than the pref ones. In terms of makespan, it
is more efficient to select a Highest Computational Capability Pro-
cessor (HCCP) as pref (a last group’s processor). However, in METS
(Subsection 4.3), pref cannot be a HCCP in all cases, because it has
to be the multi-core processor containing the maximum number
of cores (must be a CPU). Thus, given that TSRS is applied as both
standalone method and together with METS, we will not consider
pref as a fixed value.

The main step of TSRS (line 6 in Algorithm 2) is given by
Subsection 4.1.2 and Subsection 4.1.1, when the insertion based
scheduling policy is used or not, respectively.

4.1.1. TSRS without insertion based scheduling policy
The main step of TSRS reduces the number of candidate proces-

sors in the processor selection phase. The procedure follows. The
EFT is given by Eq. (3) and consists of two parts, E ST and wi, j, f .
The second part of Eq. (3) (wi, j, f) is an unknown value, as task t is
not simulated on every processor group but on pref only, while the
first part of Eq. (3) is known, as it refers to the processor availabil-
ity time as well as to the finish time of the previously scheduled
tasks. Given that first, the processor groups are sorted in an in-
creasing CC order and second, the first part of Eq. (3) is known,
we are able to reduce the number of candidate processors for task
t , without excluding any processor with minimum EFT value. As an
example, assume that the EFT values of t on 4 different single core
processors are those in Eq. (4) and also pref = p3.

E F T (t, p1) = wt,1,1 + 10.

E F T (t, p2) = wt,2,1 + 9.

E F T (t, p3) = 2 + 9.

E F T (t, p4) = wt,4,1 + 13.

(4)

Given that (wt,1,1 ≥ wt,2,1 ≥ wt,3,1 = 2 ≥ wt,4,1), there is no
need to simulate t on p1 and p2 as these two processors always
give a larger EFT value than p3 and therefore they will never be
allocated for t by HEFT.

The proposed method is given in Algorithm 3. In step1, we com-
pute the EFT values for all the processors by using wt,pref ,1 instead
of wt, j,1 and put the minimum EFT value of every processor group
i in S(i) (lines 3-6 in Algorithm 3). All the processors inside a
group have identical computation costs, i.e., wt,i,1.

In step2, we compare S(i) with S(j), where always holds (i >
j) (and therefore wt,i,1 ≤ wt, j,1). If the E F T (t, i) value referring
to processor group i is smaller or equal to any other E F T (t, j)
value to a slower group j, then j is not a candidate group and

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
Algorithm 3 TSRS without using the insertion based scheduling
policy.

1: [wt,i,1(), SL()] = TSRS (t) {
2: //step1. Compute the EFT values
3: for (i = 1, Proc.groups) do
4: compute E F T (t, j) for every p j in group i, by using wt,i,1 = wt,pref ,1

5: Put the min E F T (t, j) value from every processor group i in S(i)
6: end for
7: //step2. Reduce the search space
8: Put all processor groups in the simulation list (SL)
9: for (i = Proc.groups, 2, −1) do

10: for (j = i − 1, 1, −1) do
11: if (S(i) ≤ S(j)) then
12: remove processor group j from SL
13: end if
14: end for
15: end for
16: //step3. this step is optional
17: if (pref /∈ HC C P group) then
18: for (i = 1, Proc.groups − 1) do
19: if (S(i) ≤ min_E F T _on_pHCC P) then
20: remove pHCC P group from SL
21: end if
22: end for
23: end if
24: Get the wt,i,1 values that i ∈ SL (if any) //t is simulated
25: Return wt,i,1(), SL() }

it is removed from the simulation list (SL). Let us follow the
above example of Eq. (4), where E F T (t, p1) = 12, E F T (t, p2) = 11,
E F T (t, p3) = 11, E F T (t, p4) = 15). First, the E F T (t, p4) value is
compared to E F T (t, p3), E F T (t, p2) and E F T (t, p1) but the if-
condition in line 13 is never true. Then, the E F T (t, p3) value is
compared to E F T (t, p2) and E F T (t, p1) and because E F T (t, p2)

and E F T (t, p1) give larger or equal values, they are both excluded
from SL etc. Thus, the processor groups with j = 1 and j = 2 are
removed from the list. The number of candidate processors is re-
duced without excluding any processors with minimum EFT value.

In case that (pref ∈ HCC P group), step3 (Algorithm 3) is not
needed. On the other hand, when pref is not a HCCP, the method
given in step3 (Algorithm 3) is not able to reduce the number of
simulations on the HCCP group. To do so, we have to define a
lower bound value regarding how fast the HCCP is. We can de-
fine a very low unreachable lower bound value on the HCCP, e.g.,
task t will never run 50 times faster than pref (wt,pref ,1/50 ≤
wt,pHCC P ,1 ≤ wt,pref ,1) for every task t . This procedure is given in
step3; if S(i) (where i < Proc.groups - Proc.groups is the HCCP
group) is lower or equal to the minimum E F T (t, HCC P) value that
the HCCP group can get, then the HCCP group is removed from the
SL. Let us follow the previous example (Eq. (4)), where step2 has
already excluded p1 and p2 from the SL. If we apply step3 with
(min_E F T _on_pHCC P = 2/50 + 13), then the minimum value that
p4 can get is always larger than (E F T (t, p3) = 11) and thus p4 is
also excluded from SL.

However, step3 slightly degrades HEFT’s output schedule length
because the wt,pref ,1 value is used instead of the real simulation
time values (wt,i,1) and we do not know how larger the wt,i,1

values can be in comparison with wt,pref ,1. Let us give an example,
consider we have to compute the EFT values of t on 4 different
single core processors and p3 is the pref . Moreover, consider that
Eq. (3) gives the following values:

E F T (t, p1) = wt,1,1 + 9.

E F T (t, p2) = wt,2,1 + 9.

E F T (t, p3) = 2 + 15.

E F T (t, p4) = wt,4,1 + 13.

(5)

In this case, step2 will exclude p1 (when S(2) is compared
to S(1)) and p3 (when S(4) is compared to S(3)) from the SL.
21
In step3, (min_E F T _on_pHCC P = 2/50 + 13), and thus p4 is ex-
cluded from the SL, as S(2) ≤ min_E F T _on_pHCC P , meaning that
t is assigned on p2, which is not always the processor with the
minimum EFT (it depends on the wt,2,1 value); we know that
(wt,2,1 ≥ 2), but we don’t know how large wt,2,1 is; thus, if
(wt,2,1 + 9 > (2/50 + 13)) and therefore (wt,2,1 > 2/50 + 4), then
t may run faster on p4 than on p2, and in that case, it shouldn’t
have been removed from the list. In Subsection 5.3, we show that
the more the processor groups, the more the makespan degrada-
tion. However, the above refer to special cases only and therefore
the makespan degradation is very low.

At last, t is simulated for the processors in SL only (line 27) and
the computation costs are returned (line 28).

The time complexity of Algorithm 3 is O (y2), where y is the
number of the processor groups; the maximum value of y is the
number of the processors. Thus, TSRS slightly increases HEFT’s
complexity from O (e × p) to O (e × p2), where e and p is the
number of the tasks and processors, respectively. Nevertheless, the
algorithm’s complexity is undermined as the generation of the DAG
computation costs and the scheduling of the tasks are applied
together, in an iterative approach, and the time needed for gen-
erating the DAG is much higher.

4.1.2. TSRS with insertion based scheduling policy
Some of the task scheduling algorithms, including HEFT, HPS

and PETS, compute the EFT value using the insertion based
scheduling policy; this policy considers the possible insertion of a
task in an earliest idle time slot between two already-scheduled
tasks on a processor. The length of an idle time-slot, i.e., the
difference between execution start time and finish time of two
tasks that were consecutively scheduled on the same processor,
should be larger or equal to the computation cost of the task
to be scheduled, i.e., (slot ≥ wt,i,1). Additionally, scheduling on
this idle time slot should preserve the precedence constraints, i.e.,
T pred(t, i) < Tavail(i) and slot ∈ [T pred(t, i), Tavail(i)).

The above policy needs the computation costs of all processors.
The key idea of our method to overcome this problem is that al-
though we do not know wt,i,1 value for every i, we use wt,pref ,1
value to find out whether a possible slot exists or not. In par-
ticular, we leverage the fact that if there is no available slot for
the minimum wt,i,1 value, then there is no slot for any value as
(slot ≥ wt,i,1) and therefore the computation costs are not needed.
On the other hand, if there is an available slot for the minimum
wt,i,1 value, there is no guarantee that there is a slot for any wt,i, j
value. In case there is an available slot for group i and i belongs to
the SL, only then we simulate t on i, get the wt,i,1 value and find
out whether the slot truly exists or not and when. The number of
simulations performed is higher than Algorithm 3.

The procedure is given in Algorithm 4. In lines 4-8 we find the
minimum wt,i,1 value for i. Regarding i < pref , always wt,pref ,1 ≤
wt,i,1 (the groups are sorted). Regarding i > pref , we use a very
low computation cost value that will never be reached, e.g.,
wt,pref ,1/50. In line 10, T 2 variable takes the finish time value
of the last task issued on p j . A valid free slot can occur only
when T pred(t, j) < Tavail(j) (line 11). In that case, we search for
possible slots (if any) using the insertion scheduling policy and
wt,i,1 = min_wt,i . If a slot is found then i is inserted in the inser-
tion list (I) and the St variable gets the start time of the free slot.
It is important to note that the slots found in lines 2-22 in Algo-
rithm 4, are likely slots not certain. Thus, in the case that a slot
has been found, the E F T (t, j) is not given by a single variable but
from an inequality, i.e., between [min_E F T (t, j), max_E F T (t, j)]
(lines 18,19). If a slot has not been found, E F T (t, j) value is given
by a single value as the minimum and maximum values are the
same. The above procedure is applied for all the processors. In line
25 (Algorithm 4), we apply a procedure similar to that in Lines

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
Algorithm 4 TSRS with insertion scheduling policy.
1: [wt,i,1(), SL()] = TSRS (t) {
2: for (i = 1, Proc.groups) do
3: for (j = 1, common.procs) do
4: if (i ≤ pref) then
5: min_wt,i = wt,pref ,1

6: else
7: min_wt,i = wt,pref ,1/50
8: end if
9: Find T pred(t, j)

10: T 2 = Tavail(j), St = Tavail(j)
11: if (T pred(t, j) < Tavail(j)) then
12: Search for possible slots (if any) by using insertion scheduling policy

and wt,i,1 = min_wt,i

13: if (there is a slot) then
14: St=start time of the slot
15: put i in insertion scheduling policy list (I)
16: end if
17: end if
18: min_E F T (t, j) = wt,pref ,1 + max(T pred(t, j), St)
19: max_E F T (t, j) = wt,pref ,1 + max(T pred(t, j), T 2)

20: Put the min min_E F T (t, j) value from every group i in S ′(i, 1). Put in
S ′(i, 2), the max_E F T (t, j) value of S ′(i, 1).

21: end for
22: end for
23:
24: //Reduce the search space
25: Update SL (apply step3 of Algorithm 3, but use S ′(i, 1) and S ′(i, 2) instead of

S(i))
26:
27: for (i = Proc.groups, 1, −1) do
28: if ((i ∈ I)&(i ∈ SL)) then
29: Simulate t on i - get wt,i,1
30: Compute the best EFT value (insertion policy enabled) amongst all p j in

group i
31: Reduce the search space - update the SL (apply step2 and step3 of Algo-

rithm 3, but use S ′(i, 1) and S ′(i, 2) instead of S(i))
32: end if
33: end for
34: Reduce the search space - update the simulation list (apply step2 and step3 of

Algorithm 3)
35: Get the wt,i,1 values that i ∈ SL (if any)
36: Return wt,i,1(), SL() }

9-25 (Algorithm 3) in order to reduce the number of candidate
processors. However, in this case, the S(i) values are given by an
inequality [S ′(i, 1), S ′(i, 2)]. So, in line 12 (Algorithm 3), S(i) and
S(j) are replaced by S ′(i, 2) and S ′(j, 1), respectively. Moreover, in
line 21 (Algorithm 3), the S(i) is replaced by S ′(i, 2).

The slots found in lines 2-22 (Algorithm 4), are likely slots not
certain. Therefore, no task is simulated (in order to get its wt,i,1
value) before we ascertain that its slot is true. This process is held
in lines 27-30; the task is simulated only to the processor groups
where a) they belong to the simulation list and b) a likely slot has
been found. After we get the wt,i,1 value of task t, we compute
the E F T (t, j) values for all the p j in group i; this step is applied
because in the case that a slot is not true, or the true St value
is larger, another processor of the same group may give a bet-
ter E F T (t, i) value for t . After computing the E F T (t, i) value for
a group of processors, we update the simulation list (line 31) - the
list is likely to be further reduced and so the if condition in line 28
becomes true. The loop in line 27 is executed backwards because
fast processors are more likely to be used by HEFT and therefore
the SL is more likely to be reduced. In line 34 the simulation list
is updated again - in line 34 the E F T (t, i) values are single values.

4.1.3. Extensibility of TSRS
TSRS is applicable to several popular task scheduling heuristics

such as HCPT [19], HPS [23], PETS [22], CPOP [48] [5] list schedul-
ing algorithms, [9] [20] clustering algorithms, and others. All the
above use the minimum EFT value as the heuristic cost function.

In HCPT, the average earliest start time and the average lat-
est start time are computed using mean values; our method is
22
applicable if wt,pref ,1 values are used instead of the mean val-
ues and apply T S R S to reduce the number of candidate proces-
sors. HPS can be extended just by using the T S R S routine. PETS
can be extended by computing the average computation cost with
wt,pref ,1 instead of the mean values and using T S R S to reduce the
candidate processors. Regarding CPOP, first, we compute the up-
ward and downward rank values by using wt,pref ,1 instead of the
mean values, second we set the HCCP as the critical path proces-
sor and third we use T S R S routine. Although TSRS is applicable
to heuristics using duplication too, such as [5] and [20], they are
not preferred because duplication increases the number of simula-
tions performed. TSRS is applicable to MOHEFT [14] too, which is
the first multi-objective optimization proposal that extends a list-
based heuristic, but the simulation gain is expected to be very low
because MOHEFT builds several intermediate workflow schedules
in parallel in each step; however, there are still solutions being
‘dominated’ by others and therefore they are discarded. TSRS is
not applicable to Lookahead [7] and PEFT [3] (in its current form).

Although we have not applied TSRS to the above algorithms, we
expect that the makespan degradation (if any) would be insignif-
icant. In Subsection 5.3, we show that for HEFT, the makespan
is not degraded. In general, TSRS reduces the number of candi-
date processors without excluding any processor with a minimum
EFT value, apart from the case where the optional step3 in Algo-
rithm 3 is applied to further reduce the scheduling time. However,
the ranku values are now computed using the computation costs
on pref and not the average ones and this slightly affects the task
priority list. So, the reason for any potential makespan degrada-
tion (if any) is the new priority list. In [49], the rank function of
HEFT algorithm is investigated by using the mean, median, worst
and best computation costs; it is shown that for random compu-
tation costs (not monotonic as in our case) first, different ways of
computing ranku affect HEFT performance and second, the mean
computation costs are not the best choice. In addition to [49], in
Subsection 5.3 we show that the mean computation costs do not
provide better solutions than the pref ones.

4.2. Multi-threading effective task scheduling (METS)

In this Subsection, we propose low complexity heuristics to
find which tasks are going to be implemented as single-threaded
(ST) implementations, which as multi-threaded (MT) implemen-
tations, as well as the number of threads used. It is important
to note that by scheduling all the tasks as MT implementations,
less processing elements are available but with higher CC and vice
versa. An example is given in Fig. 1 for two quad-core CPUs. Given
that HEFT algorithm assumes rigid (non-moldable) tasks, we have
implemented HEFT using ST CPU implementations (SHEFT) only
and max-threaded CPU implementations (MHEFT) only. The default
HEFT implementation can be considered that of SHEFT. In Fig. 1,
we show the schedules that SHEFT and MHEFT give for a sample
task graph. Note that t1 needs 22.60 time units (see table in Fig.1)
to run on the one core of P1 and 11.32 time units to run on all the
four cores of P1 (MT implementation). Although MHEFT performs
better than SHEFT in this example, this is not always the case; a
detailed comparison and analysis is performed in Section 5.

METS enhances HEFT algorithm by introducing the following
key points:

1. ST implementations are more efficient for tasks with high
Communication to Computation Ratio (CCR) values.

2. MT implementations are more efficient when the task paral-
lelism is low.

3. When the task parallelism is high, ST/MT implementations are
more efficient when the range of wt,i, j values among different
tasks, is low/high, respectively.

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32

Fig. 1. Sample task graph and schedules for a) SHEFT (makespan 83.6), b) MHEFT (makespan 64.7), c) METS (makespan 58.7).
4. If a MT task scales well on a multi-core processor, it will scale
well to other multi-core processors too, with equal or fewer
cores.

METS is given in Algorithm 5. Algorithm 5 enhances HEFT to
support moldable tasks. In line 6, the decision whether a task is
going to run as ST or not, is taken. If the task is ST, then HEFT re-
mains unchanged. Otherwise, the implementation giving the min-
imum EFT for task t is selected, no matter the number of the
23
threads used. All the coefficients in Algorithm 5 are found experi-
mentally. The key points of METS are further explained below.

Regarding the first key point in Algorithm 5, ST implementa-
tions are more efficient than the MT ones, for tasks with high CCR
values. This is because the data transfer cost from a task to another
is minimized when both tasks are executed on the same processor;
this means that the data remain in the processor’s disk/memory.
The more the tasks each processor can handle in parallel (i.e., the
more the cores each processor contains), the less the communi-

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
Algorithm 5 METS.
1: Set the computation costs of tasks and communication costs of edges with

mean values
2: Compute ranku for all tasks by traversing graph upward, starting from the exit

task
3: Sort tasks in a scheduling list by decreasing order of ranku values
4: while there are unscheduled tasks in the list do
5: Select the first task, ti , from the list for scheduling
6: T=METS_kernel(ti)
7: if T==ST then
8: //tasks are faced as ST only
9: for each processor p j in the processor-set do

10: for each CPU core mk in p j do
11: Compute E F T (ti , p j , 1) using the insertion-based scheduling policy
12: end for
13: end for
14: Assign task ti to processor p j and core mk that minimizes EFT of task ti

15: else
16: //tasks are faced as both ST and MT
17: for each processor p j in the processor-set do
18: for each thread number f , where 1 ≤ f ≤ cores do
19: for each CPU core combination, using f threads do
20: Compute E F T (ti , p j , f) using the insertion-based scheduling pol-

icy
21: end for
22: end for
23: end for
24: Assign task ti to the CPU cores of p j that minimize EFT of task ti

25: end if
26: end while
27:
28: T=METS_kernel(t) {
29: A ← next 6 ready tasks
30: B ← next ’Threshold’ tasks
31: C ← ready tasks that (Ranku > 0.7 × Ranku(t)) //tasks executed in near future
32: if (at least half of the tasks in A contain an edge cn,m (either parent or child

edge), where cn,m/wt,pref ,1 ≥ 1.5) then
33: return ST //task is ST only, as the CCR value is high (1st key point)
34: else if (at least one task in B is not ready) then
35: //Task parallelism is low
36: return ST&MT //this task can be either ST or MT (2nd key point)
37: else
38: // task parallelism is high
39: //if the range of wt,pref ,1 values among different tasks is high (3rd key point)
40: if (Ranku(t) > (1.3 × min(Ranku(C))) then
41: if (f actort,pref , f > good. f actor(f), f is the max number of threads) then
42: return ST&MT //this task can be either ST or MT (4th key point)
43: else
44: if ((f actort,pref ,� f /2	 > good. f actor(� f /2)) AND ((� f /2) > 1)) then
45: return ST&MT //this task can be either ST or MT (4th key point)
46: else
47: return ST //this task is ST only
48: end if
49: end if
50: else
51: return ST //this task is ST only
52: end if
53: end if

cation cost, as the intra-processor transfer cost is very low. The
if-condition in line 32 (Algorithm 7) implements the above idea. In
line 32, we refer to both parent and child edges for the follow-
ing reasons. By using a ST implementation for a parent task that
gives too much data to its children, we reduce the probability of its
children tasks to get data from another processor(s). On the other
hand, by using a ST implementation for a child task which gets
too much data from its parents, we increase the probability of the
other children (with the same parents) to be assigned to the same
processor and therefore minimize the data transfer cost.

As far as the second key point is concerned, when the number
of the ready tasks is smaller than the number of the processors,
there is no reason to save any cores, and thus the implementation
giving the minimum EFT value is selected, no matter the number
of the cores used (the implementation giving the minimum EFT
is not always MT). It is important to note that a) the best MT EFT
24
value is not always the one using the maximum number of threads
and b) the MT EFT value is not always lower than the ST EFT, e.g.,
consider the case where the five out of six cores are not available
in the near future. The if-condition in line 34 (Algorithm 5) im-
plements the above idea. In Algorithm 5, ST&MT means that we
seek for the solution giving the minimum EFT value no matter the
number of threads/cores used.

Let us explain the second key point further. Consider there are
four identical multi-core processors and only 4 ready tasks. In that
case, it is not efficient to save any cores and therefore MT im-
plementations for all the tasks is the best option no matter the
number of the threads used. However, if there are 5 ready tasks,
it might not be efficient to use MT implementations for all the
tasks, because other thread combinations have to be investigated
too. This is why we have used the ‘Threshold’ value in line 30 (Al-
gorithm 5), indicating the number of ready tasks should exist in
order to use ST&MT implementations; in this case, the ‘Threshold’
value in line 30 must be (T hreshold = 4). Keep in mind that MT
refers to the best multi-threaded solution, no matter how many
threads are used. Now consider the case that there are 5 ready
tasks and a heterogeneous HW environment with three identical
multi-core processors and one GPU (let us assume that the tasks
run two times faster on the GPU). One could think that it is not
efficient to use MT implementations for all the multi-core proces-
sors because one ready task will have to wait until another finishes
its execution. However, if the tasks are executed 2 times faster on
the GPU than on the CPU (using a max-threaded implementation),
the GPU will have executed 2 tasks until the three processors fin-
ish their execution. Thus, the GPU ‘counts’ for 2 CPUs and there
is no reason to save any cores. In this case, the ‘Threshold’ value
must be (T hreshold = 5) and not (T hreshold = 4). The ‘T hreshold’
value depends on a) the number of the processors, b) the num-
ber of the cores each processor has, c) how faster/slower is one
processor to another. The ‘T hreshold’ value is application indepen-
dent and depends solely on the HW infrastructure. Thus, it can
be found ‘off-line’. In Section 4, (Procs ≤ T hreshold < 2 × Procs),
where Procs is the number of the processors.

Regarding the third key point above, i.e., when the number of
ready tasks is larger than the ‘T hreshold’ value, the MT implemen-
tations are efficient only in the case where the range of the wt,i, j
values for different tasks is high and in particular for the tasks
having large wt,i, j values (run the heavy tasks as MT and the
light tasks as ST implementations). This is because the core uti-
lization factor value is always lower than the number of the cores
and therefore the time needed for a task to be executed as an f -
threaded implementation is always higher than executing f tasks.
Let us give an example, consider 8 identical tasks ready for exe-
cution and two identical 4-core processors. Also consider that the
eight tasks need (10, 6, 4, 3) secs to be executed, using (1, 2, 3, 4)

threads, respectively. If all the tasks are considered as ST, then 10
secs are required for them to be executed. On the other hand,
by using 4-threaded or 2-threaded implementations only, 12 secs
are needed. However, if half of the tasks need (15, 9, 6, 4.5) and
the other half need (10, 6, 4, 3) seconds to be executed by using
(1, 2, 3, 4) threads, respectively, then using only ST implementa-
tions is not the best option. If we run the heavy tasks as 4-thread
implementations and the light ones as ST ones, then the overall ex-
ecution time is 14.5 secs, while by using ST only, it is 15 secs. The
if-condition in line 40 (Algorithm 5) satisfies that only the tasks
with high wt,i, j values are considered as MT. If a task’s rank value
is larger than 1.3 times the minimum rank value of C (the tasks
that are going to be executed in the near future), it is further pro-
cessed as an ST&MT implementation, otherwise it is assigned as a
ST.

In contrast to line 36, where an ST&MT implementation is al-
ways selected regardless of whether t is effectively split into mul-

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
tiple threads or not, in line 40, the number of tasks waiting for
execution is higher than the number of processors and thus we
have to consider the scenario that t may give a low core-utilization
factor. Thus, we get wt,pref , f value, where f is the maximum num-
ber of threads, and compute the utilization factor. If the factor
is large enough, we use a ST&MT implementation, otherwise, we
give a second chance for t to be executed with fewer threads,
i.e., � f /2	 (line 27). The good utilization factor values used are
(1.6, 2.35, 3.4, 3.9, 4.7) for (2, 3, 4, 5, 6) threads, respectively.

Fig. 1 shows an example of the proposed method with Thresh-
old=2. First, tasks 1,3,4,6 are scheduled using 4-threaded imple-
mentations (line 36 in Algorithm 5). Tasks 9,5,8,7 are then sched-
uled using 1-threaded implementations (line 51). Afterwards, task
2 is scheduled using the maximum number of threads (three) be-
cause of line 36. Last, task 10 is scheduled according to line 36,
but in this case a ST implementation achieves a lower EFT value
than a MT.

In terms of time complexity, METS gives O (e × p ×cores), where
cores is the maximum number of physical CPU cores that a multi-
core processor supports. The complexity of lines 7-14 is O (e × p),
as in HEFT, where e is the number of edges and p is the over-
all number of processors (in this context p equals to the number
of processors multiplied by the number of their cores). The com-
plexity of lines 16-24 is O (e × p × cores). Note that the core com-
bination value in line 19 does not include the exact thread-core
mapping, e.g., there is just one combination when (f == cores)
and not many. For large graphs and small cores values, the com-
plexity remains O (e × p).

4.3. TSRS and METS (TSRS+METS)

In this Subsection, METS is applied together with TSRS, in or-
der to optimize for both scheduling time and length. TSRS+METS
is shown in Algorithm 7. First, TSRS_for_METS routine finds the
candidate processors for task t (line 3). If there is no multi-core
candidate processor, the procedure is trivial. Otherwise, the multi-
ple if-conditions take place finding whether the selected processor
will use a ST or a ST&MT implementation. In the case that a ST

Algorithm 6 TSRS (Algorithm 3) when it is called by METS (with-
out insertion based scheduling policy).

1: [SL(), S(), M()] = TSRS_for_METS (t) {
2:
3: //step1. Compute the EFT values
4: for (i = 1, Proc.groups) do
5: compute E F T (t, j, 1) for every p j in group i, by using wt,i,1 = wt,pref ,1

6: compute E F T (t, j, f) for every p j in group i and for all the thread combi-
nations f, by using wt,i,1 = wt,pref ,1 and wt,i, f = wt,pref ,1 × f act.(f)

7: Put the min E F T (t, j, 1) and E F T (t, j, f) values from every processor group
i in S(i) and M(i), respectively

8: end for
9:

10: //step2. Reduce the search space
11: Put all the processor groups in the simulation list (SL)
12: for (i = Proc.groups, 2, −1) do
13: for (j = i − 1, 1, −1) do
14: if (min(S(i), M(i)) ≤ min(S(j), M(j))) then
15: remove processor group j from SL
16: end if
17: end for
18: end for
19:
20: //step3. this step is optional
21: if (pref /∈ HC C P group) then
22: for (i = 1, Proc.groups − 1) do
23: if (S(i) ≤ min_E F T _on_pHCC P) then
24: remove pHCC P group from SL
25: end if
26: end for
27: end if
28: Return SL(), S(), M() }
25
implementation is selected, we simulate t as ST only. Otherwise, if
a ST&MT implementation is selected, we simulate t either as ST or
MT, not as both.

The new version of TSRS is given in Algorithm 6 and is sim-
ilar to Algorithm 3. Unlike standalone TSRS, where every proces-
sor group has a unique computation cost, in TSRS+METS, a CPU
group has as many computation costs as its number of cores
(cores). However, in TSRS+METS we apply just one simulation
for every processor group (line 5-6 in Algorithm 6); we assume
that every task scales equally on different CPUs (Section 2). The
E F T (t, j, 1) values for the ST implementations are computed as in
Algorithm 3, while the E F T (t, j, f) values for the MT implementa-
tions are computed by using median core utilization factor values,
(f act. = 1.5, 2, 2.8, 3, 3.5) for (2, 3, 4, 5, 6) cores, respectively (line
5 in Algorithm 6). The best ST and MT EFT value for each pro-
cessor group is stored into S(i) and M(i), respectively. In step2, a
processor group is removed from the SL if both the best ST and MT

Algorithm 7 TSRS+METS.
1: [wt,i,thr(), SL()] = TSRS+METS (t) {
2:
3: [SL(),S(),M()]=TSRS_for_METS(t);
4: if (SL contains no multi-core processor) then
5: Get the wt,i,1 values that i ∈ SL (if any) - thr = 1
6: else
7: A ← next 6 ready tasks
8: B ← next ’Threshold’ tasks
9: C ← ready tasks that (Ranku > 0.7 × Ranku(t)) //tasks executed in near fu-

ture
10: if (at least half of the tasks in A contain an edge cn,m (either parent or child

edge), where cn,m/wt,pref ,1 ≥ 1.5) then
11: [wt,i,1(), SL()] = kernel (ST,t); //processors are faced as ST only
12: else if (at least one task in B is not ready) then
13: // Task parallelism is low.
14: // Use the implem. giving the min EFT, no matter the # of the threads
15: [wt,i,thr(), SL()]= kernel (ST&MT,t);
16: else
17: // task parallelism is high
18: //if the range of wt,pref ,1 values among diff. tasks is high
19: if (Ranku(t) > (1.3 × min(Ranku(C))) then
20: Get wt,pref,f , where f is the max number of threads in SL
21: f actort,pref , f = wt,pref ,1/wt,pref , f

22: if (f actort,pref , f > good. f actor(f)) then
23: //Use the implem. giving the min EFT, no matter the # of threads
24: Use f actort,pref , f to update EFT to other procs
25: [wt,i,thr(), SL()] = kernel (ST&MT,t);
26: else
27: Get wt,pref,�f/2	
28: f actort,pref ,� f /2	 = wt,pref ,1/wt,pref ,� f /2	
29: if ((f actort,pref ,� f /2	 > good. f actor(� f /2)) AND ((� f /2) > 1))

then
30: //Use the implem.giving the min EFT, no matter the # of threads
31: Use f actort,pref ,� f /2	 value to update EFT to other processors
32: [wt,i,thr(), SL()] = kernel (ST&MT,t);
33: else
34: [wt,i,1(), SL()] = kernel (ST,t); //processors are faced as ST only
35: end if
36: end if
37: else
38: [wt,i,1(), SL()] = kernel (ST,t); //processors are faced as ST only
39: end if
40: end if
41: end if
42: Return wt,i,thr(), SL(); }
43:
44: [wt,i,thr(), SL()] = kernel (T,t) {
45: if (T == ST) then
46: [SL(),S(),M()] = TSRS_for_METS(t) - by using S() only, not M()
47: Get the wt,i,1 values that i ∈ SL (if any) - thr = 1
48: else
49: [SL(),S(),M()] = TSRS_for_METS(t)
50: Get the wt,i,thr values (if any) where i ∈ SL and thr is the number of threads

of the min(S(i), M(i))
51: end if
52: Return wt,i,thr(), SL(); }

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
values are larger than those of another group. Variations with bet-
ter scheduling lengths but worse scheduling times are feasible by
using upper and lower core utilization factors for computing M(i)
in line 13. Algorithm 4 (insertion policy) is extended in a similar
way, but in this case the makespan improvement is not significant
compared to the simulation loss.

In TSRS+METS we use f actort,i, f 1 value to update f actort, j, f 2,
where f 1 > f 2. We assume that f actort,i, f = f actort, j, f , where
i, j are different multi-core processors. Moreover, we measure the
f actort,i, f 1 value and update the f actort, j, f 2 value accordingly,
where f 1 > f 2; f actort, j, f 2 = (f 2 × f actort,i, f 1)/ f 1. This pro-
cedure is applied in lines 24 and 31 (Algorithm 7) in order to
update the EFT values on the other processors according to the
f actort,pref , f value.

4.3.1. Extensibility of METS and TSRS+METS
TSRS+METS is applicable to all the algorithms that TSRS is ap-

plicable to, such as HCPT [19], HPS [23], PETS [22], CPOP [48],
[5] [9] [20]. This is straightforward as all the above works use
the minimum EFT value as the heuristic cost function. Standalone
METS is applicable to all the algorithms that TSRS+METS is appli-
cable to, plus more algorithms such as PEFT [3], lookahead [7] and
MOHEFT [14].

Regarding PEFT [3], it uses the Optimistic EFT value (O E F T =
E F T + O C T) as a heuristic cost function. METS can be applied to
PEFT as follows. The O C T values are computed exactly as in [3],
i.e., wt,i,1 values are used, but in the processor selection phase,
METS determines whether a ST or MT implementation is applied
and the number of threads used. Regarding Lookahead [7], the ap-
propriate resource is selected that minimizes either the maximum
EFT value for the given task’s children or the weighted average of
EFT value; as in PEFT, our method can decide whether a ST or MT
implementation is applied as well as the number of the threads.

5. Experimental results

This section shows the application of TSRS and METS to HEFT
algorithm. We have evaluated our work to 14580 different random
DAGs and 5 real world applications.

The comparison metric used for evaluating the schedule’s
length is speedup (Eq. (6)) which is computed by dividing the se-
quential execution time by the parallel execution time (makespan).
The sequential execution time is computed by assigning all tasks to
a single processor that minimizes the cumulative of the computa-
tion costs, i.e., Highest Computational Capability Processor (HCCP);
if the HCCP is a multi-core processor, then the numerator of Eq. (6)
refers to max-threaded implementations.

Speedup = minp j∈P {∑ti∈V wi, j, f }
makespan

(6)

The simulation gain (Eq. (7)) is given by dividing the overall
number of simulations needed to generate matrix W by the num-
ber of simulations performed by our method (simulations). The
numerator is given by ((

∑P
i=1 ci +co) ×tasks), where P is the num-

ber of multi-core processor groups, ci is the number of group i
cores and co is the number of non-CPU groups.

Simulation.gain = (
∑P

i=1 ci + co) × tasks

simulations
(7)

5.1. Hardware infrastructure

The Hardware (HW) infrastructure used in this paper, con-
sists of 9 different groups of processors (6 multi-core CPU and
26
3 GPU groups), 3 common processors in each group (27 pro-
cessors in total) and 6 cores per processor at maximum. The
groups of processors are sorted in increasing computational ca-
pability (CC), i.e., (wt,9,1 ≤ wt,8,1 ≤ ... ≤ wt,1,1). The HW in-
frastructure is described by D.P (9), C .P (3) and cores(6) arrays,
giving the number of different processors, common processors
and cores, respectively. So, for instance, the HW infrastructure
described by {D.P (0, 0, 0, 1, 1, 1, 1, 0, 0), C .P (0, 0, 0, 1, 2, 3, 1, 0, 0)

and cores(0, 0, 0, 2, 4, 6)}, refers to one 2-core CPU of type4, two
4-core CPUs of type5, three 6-core CPUs of type6 and one GPU
of type7. The GPUs are of higher CC than CPUs and therefore
they always refer to processors with number 7, 8 and 9. More-
over, to make the HW infrastructure more realistic, we assume that
(wt,7,1 ≤ 5 × wt,6,1).

5.2. Random graphs

First, we evaluate our work to random generated application
graphs with random computation/communication costs. For this
purpose, we used the synthetic DAG generation program Daggen
[46] with five different parameters defining the DAG’s shape:

• n: number of DAG nodes. Four different values are used n =
(50, 100, 200, 300).

• fat: this parameter affects the height and the width of the
DAG. The width of the DAG is the maximum number of tasks
that can be executed concurrently. A small value will lead to
a thin DAG with low task parallelism, whereas a large value
induces a fat DAG with a high degree of parallelism. The fol-
lowing fat values are used f at = (0.2, 0.5, 0.8).

• density: determines the number of edges between two levels
of the DAG, with a low value leading to few edges and a large
value leading to many edges, density = (0.2, 0.5, 0.8).

• regularity: the regularity determines the uniformity of the
number of tasks in each level. A low value indicates that
levels contain dissimilar numbers of tasks, whereas a high
value indicates that all levels contain similar numbers of tasks,
regularity = (0.2, 0.5, 0.8).

• jump: indicates that an edge can go from level l to level l +
jump, jump = (1, 2, 4).

To obtain the random computation and communication costs,
the following parameters have been used:

• βw (Range percentage of computation costs among different
tasks for pref): A high value implies wider computation costs
among tasks while a low value implies narrower costs. βw =
(0.5, 1, 1.5). In Eq. (8), w is the average computation cost of
the DAG and is selected randomly.

w × (1 − βw

2
) ≤ wt,pref ,1 ≤ w × (1 + βw

2
) (8)

• CCR: Communication-to-Computation Ratio: ratio of the sum
of the edge weights to the sum of the node weights on pref ,
CCR = (0.1, 0.2, 0.5, 1, 2, 5, 10).

• βc (Range percentage of communication costs among the
edges of the DAG): A high value implies wider communica-
tion costs among different edges while a low value implies
narrower costs. βc is given by the following formula where
c is the average communication c value of the DAG and c =
w ∗ CC R . βc = (0.5, 1, 1.5).

c × (1 − βc

2
) ≤ ci, j ≤ c × (1 + βc

2
) (9)

All the parameters above give 14580 DAGs.

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32

Fig. 2. Evaluation of TSRS (972 different DAGs).
The computation costs for the other processors are generated
according to the computation costs on pref . The computation costs
of the remaining processors (pi) are random values within the fol-
lowing range: wt,pref ,1 × R(i, 1) ≤ wt,i,1 ≤ wt,pref ,1 × R(i, 2), where
R=(2,2.5; 1.8,2; 1.4,1.5; 1.2,1.3; 1.05,1.15; 1,1; 0.12,0.2; 0.08,0.18;
0.05,0.15). Regarding multi-threaded computation costs, we have
used random realistic speedup range values, i.e., wt,i, f = wt,i,1 ×
speedup(f), where the speedup value is a random value within the
following range (1.1, 1.9), (1.2, 2.8), (1.3, 3.7), (1.4, 4.5), (1.5, 5.4),
for (2, 3, 4, 5, 6) threads, respectively. We assume that (wt,i, f 1 ≤
wt,i, f 2), where f 1 ≥ f 2. It is important to note that we have used
both wider and narrower values than R and the results are similar.

5.3. Evaluation of TSRS

In this Subsection, TSRS is evaluated. The results are illustrated
by using boxplots in Matlab. On each box, the central red line indi-
cates the median value, the displayed value shows the mean, and
the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme
data points not considered outliers, and the outliers are plotted in-
dividually using the ‘+’ symbol.

The TSRS is evaluated in the case where pref is a HCCP and
not (Fig. 2). In the second case, the extra and optional loop ker-
nel is executed (step3 in Algorithm 3), slightly degrading HEFT’s
scheduling length but increasing the simulation gain. The ‘Sim’
indicates the simulation gain, while the ‘ins.’ indicates that the
insertion scheduling policy is used. In this subsection, all the pro-
cessors are either single-core CPUs or GPUs. The top figure in
Fig. 2, refers to single-core CPUs only where ‘4P’ and ‘5P’ indi-
cate 4 and 5 different single-core CPUs, respectively. The bottom
figure in Fig. 2 refers to single-core CPUs and one GPU, where
the ‘3+1P’ value indicates 3 different single-core CPUs and one
GPU. In Fig. 2, 972 different DAGs have been used (all differ-
ent fat, regularity, density and jump combinations) with n = 100,
CC R = (0.1, 0.5, 2, 10), βw = βc = (0.5, 1, 1.5) as well as several
processor configurations. In the first figure of Fig. 2, TSRS uses a
HCCP as pref , while in the second it uses a 2nd HCCP, and there-
fore, the Ranku values have been computed by using a 1st/2nd
HCCP, respectively. It is important to note that the speedup val-
ues are low in the second figure, because the numerator of Eq. (6)
refers to a fast GPU ((wt,7,1 ≤ 5 × wt,6,1)).

As far as the quality of the output schedule length is concerned
(makespan), when pref is a HCCP and therefore step3 of Algo-
rithm 3 is not used, the TSRS makespan is approximately the same
27
as that of the standalone HEFT, in all cases. On the other hand,
when pref is not a HCCP, the TSRS makespan is slightly degraded
(Subsection 4.1); the more the processor groups are, the more the
makespan degradation, as the ‘min_E F T _on_pHCC P ’ in Algorithm 3
is compared with more processor groups. Furthermore, both meth-
ods perform better by using the insertion scheduling policy but the
gains are small.

Regarding the simulation gain values, when pref is not a HCCP,
the gain values are larger on average, but when pref is a HCCP, the
gain values are very wide giving both larger and smaller values.
This is because in the latter case the number of candidate proces-
sors is reduced by using just one phase/step (step2 in Algorithm 3),
while in the first case two steps are used (step2 and step3). This
makes the latter case more sensitive to different DAGs and there-
fore giving both very high and low gain values. As it was expected,
by using the insertion scheduling policy lower simulation gain val-
ues occur because in Algorithm 4 the number of computation costs
needed is higher. It is important to note, that the purpose of this
subsection is not to compare the gain values between the first and
second figure of Fig. 2 as a) they both refer to different hardware
configurations, b) the gain values strongly depend on the DAG set
used.

5.4. Evaluation of METS

In this Subsection, standalone METS is evaluated (Fig. 3). HEFT
algorithm assumes rigid (non-moldable) tasks and therefore for a
comparison to be made, we have implemented HEFT to use either
ST CPU implementations (SHEFT) only or max-threaded CPU im-
plementations (MHEFT) only. Note that the default/original version
of HEFT is SHEFT. Regarding our method, pref = 6 in all cases; in
METS the pref is always the CPU with the maximum number of
cores.

Among all the DAG parameters given in Subsection 5.2, METS is
affected the most by the type of the processors (multi-core CPUs
or non-CPUs), the ratio of the number of tasks to the number of
processors and the tasks parallelism (fat value). Skinny DAGs give
lower speedup values (in all methods), compared to the fat DAGs.
This is because in skinny DAGs the task parallelism is low and task
dependencies force many processors to remain idle, while in fat
DAGs, the task parallelism is high and most of the processors work
in parallel, further increasing the speedup value. SHEFT is more
efficient than MHEFT when the task parallelism is medium/high, as
by providing more CPU cores, more tasks are executed in parallel.
On the other hand, when the task parallelism is low, MHEFT gives

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32

Fig. 3. Evaluation of METS (14580 different DAGs).
higher speedup values, as it is preferable to use fewer processors
but with higher CC.

In Fig. 3, METS is evaluated for all the parameter combinations
in Subsection 5.2 (14580 DAGs) and six different HW configura-
tions. The left three HW configurations in Fig. 3 refer to HW plat-
forms where only multi-core CPUs are used, while the right three
configurations refer to platforms with both CPUs and GPUs. When
only CPUs are used, the heuristics given in Subsection 4.3 perform
very well and give high speedup values. In the first HW configura-
tion, where the number of the available processors is small, SHEFT
performs much better than MHEFT, while on the last is exactly the
opposite; by increasing the number of the processors, MHEFT out-
performs SHEFT, as it uses processors with higher CC. Our method
provides better makespan values in all cases.

Regarding the right three HW configurations in Fig. 3, METS
gives significant speedup values, but lower speedup values com-
pared to the left three HW configurations. The reason lies in the
fact that HEFT is a greedy algorithm as it always chooses the pro-
cessor giving the minimum EFT value; therefore, if the GPUs are
many times faster than the CPUs, they never become idle and push
aside the CPUs; thus, most of the tasks are scheduled on the GPUs,
and the key points of METS have a lower impact. In the last con-
figuration, the proposed method gives low speedup values because
the number of processing units per task is high. Note that when
the number of processing units per task is high, the TS problem
has a lower impact compared to the case where the number of
processing units per task is low.

5.5. Evaluation of TSRS+METS

In this Subsection, TSRS+METS is evaluated (Fig. 4). We have
evaluated TSRS+METS without using the insertion scheduling pol-
icy because the makespan improvement is insignificant compared
28
to the simulation loss. Unlike our method, SHEFT and MHEFT use
the insertion scheduling policy. pref = 6 in all cases.

As it can be observed, METS provides better makespan values
than TSRS+METS, because a) in Algorithm 6 the EFT values are not
computed by using the real computation costs, b) TSRS+METS does
not use the insertion policy.

As in METS, among all the DAG parameters given in Subsection
5.2, the studied methods are affected the most by the type of the
processors (multi-core CPUs or non-CPUs), the ratio of the number
of tasks to the number of processors and the tasks parallelism (fat
value). Skinny DAGs give lower speedup but higher simulation gain
values, while fat DAGs give higher speedup but lower simulation
gain values. As far as the simulation gain values are concerned, in
skinny DAGs, most of the tasks are assigned to the high CC pro-
cessors while the lower CC ones remain idle a significant amount
of time; in that case T Avail(i) < T pred(t, i) more often and there-
fore E ST (t, i) = max(T Avail(i), T pred(t, i)) = T pred(t, i); thus, Algo-
rithm 3 is more likely to reduce the number of simulations as
T pred(t, i) value remains constant among different processors, e.g.,
most of the constant values in Eq. (4) are equal.

In Fig. 4, TSRS+METS is evaluated for all the parameter com-
binations in Subsection 5.2 (14580 DAGs) and six different HW
configurations. The left figure in Fig. 4 refers to HW platforms
where only multi-core CPUs are used, while the right refers to both
CPUs and GPUs. When only CPUs are used, the heuristics given
in Subsection 4.3 perform very well and give significant speedup
values. In the first HW configuration, where the number of the
available processors is small, SHEFT performs much better than
MHEFT, while on the last is exactly the opposite; by increasing the
number of the processors, MHEFT outperforms SHEFT, as it uses
processors with higher CC. Our method provides better makespan
values in all cases. Moreover, the higher the number of the proces-

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32

Fig. 4. Evaluation of TSRS+METS (14580 different DAGs).
sors, the higher the simulation gain as the lower CC processors are
more likely to be excluded from the SL.

Regarding the right figure in Fig. 4, when very fast GPUs are
used too, TSRS+METS gives improved but low makespan gains over
the default HEFT algorithm (SHEFT) in most cases. Furthermore,
TSRS+METS gives similar schedule lengths to the best of SHEFT and
MHEFT, i.e., similar makespan values to SHEFT/MHEFT when the
number of processors is small/high, respectively. The higher the
number of the GPUs, the less the makespan gain of TSRS+METS.
The reason lies in the fact that HEFT is a greedy algorithm as
it always chooses the processor giving the minimum EFT value;
therefore, if the GPUs are many times faster than the CPUs, they
never become idle and push aside the CPUs; thus, most of the
tasks are scheduled on the GPUs, and the key points of METS have
lower impact. This is why all three methods give close makespan
values in cases (d) and (f), where the number of GPUs is high com-
pared to the CPUs. In the last case (f), where there are nine GPUs,
most of the tasks are scheduled on the GPUs. Still, the proposed
TSRS+METS follows the trend of the best of the two. Note that the
default HEFT algorithm is SHEFT not MHEFT. As far as the simu-
lation gain is concerned, it is higher when no GPU exists. In this
case, pref and not a GPU is the fastest and the most preferable
processor and thus most of the tasks are scheduled on pref whose
computation costs have already been computed in the initializa-
tion phase. On the other hand, when GPUs exist, most of the tasks
are allocated on the GPUs (pref > 6) while pref = 6 and as a con-
sequence a larger number of extra simulations is required.

5.6. Evaluation on real world applications

In addition to the random graphs, we evaluated our work to
5 real world applications (Fig. 5). These are Montage, CyberShake,
Epigenomics, LIGO, SIPHT [34] [24]. We have used small, medium
and large graphs for each one of the 5 applications (from 50 up
to 200 tasks, Fig. 5) as well as real communication and computa-
tion costs for wt,pref ,1, taken from [34] [24]. The computation costs
for the other processors and the multi-threaded implementations,
have been selected as random values as in Subsection 5.2.

METS gives impressive speedup values in all cases (Fig. 5).
TSRS+METS gives improved makespan values over the default HEFT
algorithm (SHEFT) in most cases. Furthermore, TSRS+METS follows
the trend of the best between SHEFT and MHEFT in all cases, and
it is even better than both when no GPUs are used. TSRS+METS
achieves simulation gain values from x4.2 up to x11.6.
29
In Montage application most of the time is spent in I/O oper-
ations and therefore SHEFT performs better than MHEFT in most
cases, especially when the number of tasks is high. By using more
ST implementations, the data transfer cost is reduced, as tasks are
more likely to be executed on the same processor. The more the
tasks each processor handles in parallel, the less the communica-
tion cost as the intra-processor transfer cost is very low. Regarding
CyberShake, the communication costs are higher than the compu-
tation costs too, but not as much as in Montage; in CyberShake,
by proving more cores, SHEFT and MHEFT give close speedup val-
ues. When the number of the processors is low, METS achieves
up to x2.3/x2.2 times better schedule lengths for Montage/Cyber-
Shake, respectively. Note that when the number of processors is
low, selecting the right processor for each task highly impacts the
makespan value. Our methods perform better mainly because of
the first key point in Subsection 4.2.

Regarding Epigenomics and LIGO, the communication costs are
comparable to the computation costs. SHEFT performs better than
MHEFT when the number of processors is low (less or equal to
5), while MHEFT performs better than SHEFT when the number
of processors is higher. This is because in the first case, MHEFT
uses only a few processing elements, e.g., in the top left figure in
Fig. 5, SHEFT uses 20 processing elements (CPU cores) of low CC
while MHEFT uses just 4 processing elements but of higher CC. As
in Montage and CyberShake, METS achieves high speedup values
when the ratio of processors per task is low, and lower speedup
values when the ratio is high. This is more clear in the last figure
where METS is way more efficient for large DAGs.

SIPHT is primarily a CPU-bound workflow and most of its run-
time is spent on a few tasks only. This is why MHEFT performs
always better than SHEFT. Both METS and TSRS+METS give lower
speedup values in SIPHT, compared to the other applications. This
is because most of the execution time is spent on a few tasks only
and if one of these tasks is assigned to a low CC processor, then
the overall makespan is degraded.

6. Conclusions and future work

We have presented two methods for effective TS in HCS. Al-
though we have integrated both methods to HEFT algorithm only,
we have shown that both methods are applicable to other algo-
rithms too.

TSRS modifies HEFT’s processor selection phase in order to dis-
card all the processors which cannot minimize the heuristic cost

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32

Fig. 5. Evaluation of METS and TSRS+METS, for 5 real world applications. Six different hardware configurations are shown. The default version of HEFT is SHEFT.
30

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
function, regardless of their computation costs; this way, the DAG
computation costs required by HEFT become limited. Although
TSRS, never excludes a processor minimizing the heuristic cost
function (here EFT), it slightly affects the task priority list. How-
ever, the experimental results show that for monotonic computa-
tion costs the output makespan is not degraded; as in [49], we
show that the mean Ranku computation costs are not the best
choice. The insertion scheduling policy is not preferred as the
makespan improvement is not significant comparing to the sim-
ulation loss.

METS refers to low-complexity heuristics to find which tasks
are going to be split into multiple threads as well as the number
of the threads used. By enhancing HEFT with METS, high makespan
gain values are achieved over the default HEFT algorithm (SHEFT)
in all cases (from x1.1 up to x2.3). For large graphs and CPUs with
not many cores, HEFT’s complexity remains unchanged.

TSRS and METS are also applied together to optimize for both
scheduling time and length. We have shown that by enhancing
HEFT with TSRS+METS, significant/low speedup values are achieved
over the default HEFT algorithm (SHEFT) in HCS without/with fast
coprocessors (average gain x1.12); this is because HEFT is a greedy
algorithm and it always selects the processor giving the mini-
mum EFT value; therefore, the fast coprocessors never become idle
and push aside the slower CPUs, meaning that most of the tasks
are executed on the coprocessors. In this case, the key points of
METS (Subsection 4.2) have a lower impact. Standalone METS pro-
vides better makespan values than TSRS+METS in all cases, as first
the computation cost matrix is known and second it includes the
insertion-based scheduling policy.

In our future work, we intend to apply and evaluate TSRS, METS
and TSRS+METS to other TS algorithms such as HCPT, HPS, PETS,
CPOP and others, in terms of makespan and simulation gain.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is partly supported by the European Commission
under H2020-ICT-20152 contract 687584 - Transparent heteroge-
neous hardware Architecture deployment for eNergy Gain in Oper-
ation (TANGO) project.

References

[1] A. Afzal, J. Darlington, A.S. McGough, Stochastic workflow scheduling with QoS
guarantees in grid computing environments, in: 5th International Conference
on Grid and Cooperative Computing GCC, Changsha, Hunan, China, 21-23 Oc-
tober 2006, Proceedings, 2006, pp. 185–194.

[2] M. Amaris, G. Lucarelli, C. Mommessin, D. Trystram, Generic algorithms for
scheduling applications on hybrid multi-core machines, in: 23rd International
European Conference on Parallel and Distributed Computing (EuroPar), Santi-
ago de Compostela, Spain, 2017, https://hal .inria .fr /hal -01420798.

[3] H. Arabnejad, J.G. Barbosa, List scheduling algorithm for heterogeneous sys-
tems by an optimistic cost table, IEEE Trans. Parallel Distrib. Syst. 25 (3) (2014)
682–694, https://doi .org /10 .1109 /TPDS .2013 .57.

[4] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures, Concurr. Comput.
Pract. Exp. 23 (2) (2011) 187–198, https://doi .org /10 .1002 /cpe .1631.

[5] S. Baskiyar, P. SaiRanga, Scheduling directed a-cyclic task graphs on hetero-
geneous network of workstations to minimize schedule length, in: Proc. Int’l
Conf. Parallel Processing Workshops, vol. 2003, IEEE, 2003, pp. 97–103.

[6] O. Beaumont, V. Boudet, F. Rastello, Y. Robert, Matrix multiplication on hetero-
geneous platforms, IEEE Trans. Parallel Distrib. Syst. 12 (10) (2001) 1033–1051.

[7] L.F. Bittencourt, R. Sakellariou, E.R.M. Madeira, Dag scheduling using a looka-
head variant of the heterogeneous earliest finish time algorithm, in: 18th Eu-
romicro Conference on Parallel, Distributed and Network-based Processing, PDP
’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 27–34.
31
[8] R. Bleuse, S. Hunold, S. Kedad-Sidhoum, F. Monna, G. Mounié, D. Trystram,
Scheduling independent moldable tasks on multi-cores with GPUs, IEEE Trans.
Parallel Distrib. Syst. (2017) 14, https://doi .org /10 .1109 /TPDS .2017.2675891.

[9] C. Boeres, J.V. Filho, V.E.F. Rebello, A cluster-based strategy for scheduling task
on heterogeneous processors, in: Proceedings of the 16th Symposium on Com-
puter Architecture and High Performance Computing, SBAC-PAD ’04, IEEE Com-
puter Society, Washington, DC, USA, 2004, pp. 214–221.

[10] M. Chéramy, P.-E. Hladik, A.-M. Déplanche SimSo, A simulation tool to evaluate
real-time multiprocessor scheduling algorithms, in: 5th International Work-
shop on Analysis Tools and Methodologies for Embedded and Real-time Sys-
tems (WATERS), Madrid, Spain, 2014, 6 p, https://hal .archives -ouvertes .fr /hal -
01052651.

[11] A.M. Chirkin, A.S.Z. Belloum, S.V. Kovalchuk, M.X. Makkes, Execution time es-
timation for workflow scheduling, in: 9th Workshop on Workflows in Sup-
port of Large-Scale Science, WORKS ’14, IEEE Press, Piscataway, NJ, USA, 2014,
pp. 1–10.

[12] M.I. Daoud, N. Kharma, A high performance algorithm for static task scheduling
in heterogeneous distributed computing systems, J. Parallel Distrib. Comput.
68 (4) (2008) 399–409, https://doi .org /10 .1016 /j .jpdc .2007.05 .015, http://www.
sciencedirect .com /science /article /pii /S0743731507000834.

[13] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G.B. Berriman, J. Good, A. Laity, J.C. Jacob, D.S. Katz, Pegasus: a framework for
mapping complex scientific workflows onto distributed systems, Sci. Program.
13 (3) (2005) 219–237, https://doi .org /10 .1155 /2005 /128026.

[14] J.J. Durillo, R. Prodan, Multi-objective workflow scheduling in amazon EC2,
Clust. Comput. 17 (2) (2014) 169–189, https://doi .org /10 .1007 /s10586 -013 -
0325 -0.

[15] P. Dutot, H. Casanova, F. Suter, T. N’Takpé, Scheduling parallel task graphs on
(almost) homogeneous multicluster platforms, IEEE Trans. Parallel Distrib. Syst.
20 (2009) 940–952, https://doi .org /10 .1109 /TPDS .2009 .11.

[16] A. Emeretlis, G. Theodoridis, P. Alefragis, N.S. Voros, A hybrid ILP-CP model
for mapping directed acyclic task graphs to multicore architectures, in: 2014
IEEE International Parallel & Distributed Processing Symposium Workshops,
Phoenix, AZ, USA, May 19-23, 2014, 2014, pp. 176–182.

[17] L. Fan, F. Zhang, G. Wang, Z. Liu, An effective approximation algorithm for the
malleable parallel task scheduling problem, J. Parallel Distrib. Comput. 72 (5)
(2012) 693–704, https://doi .org /10 .1016 /j .jpdc .2012 .01.011.

[18] H.R. Faragardi, M.R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer, N. Rasouli,
GRP-HEFT: a budget-constrained resource provisioning scheme for workflow
scheduling in IaaS clouds, IEEE Trans. Parallel Distrib. Syst. 31 (6) (2020)
1239–1254.

[19] T. Hagras, J. Janecek, A simple scheduling heuristic for heterogeneous com-
puting environments, in: 2nd International Conference on Parallel and Dis-
tributed Computing, ISPDC’03, Washington, DC, USA, 2003, pp. 104–110, http://
dl .acm .org /citation .cfm ?id =1899290 .1899305.

[20] C. Hui, A high efficient task scheduling algorithm based on heterogeneous
multi-core processor, in: 2nd International Workshop on Database Technology
and Applications (DBTA), IEEE, 2010.

[21] S. Hunold, One step towards bridging the gap between theory and practice in
moldable task scheduling with precedence constraints, Concurr. Comput. Pract.
Exp. 27 (4) (2015) 1010–1026, https://doi .org /10 .1002 /cpe .3372.

[22] E. Ilavarasan, P. Thambidurai, Low complexity performance effective task
scheduling algorithm for heterogeneous computing environments, J. Comput.
Sci. 3 (2007) 94–103.

[23] E. Ilavarasan, P. Thambidurai, R. Mahilmannan, High performance task schedul-
ing algorithm for heterogeneous computing system, in: Proceedings of the 6th
International Conference on Algorithms and Architectures for Parallel Process-
ing, ICA3PP’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 193–203.

[24] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi, Characterizing
and profiling scientific workflows, Future Gener. Comput. Syst. 29 (3) (2013)
682–692, https://doi .org /10 .1016 /j .future .2012 .08 .015.

[25] V. Kelefouras, K. Djemame, Workflow simulation aware and multi-threading
effective task scheduling for heterogeneous computing, in: 2018 IEEE 25th
International Conference on High Performance Computing (HiPC), 2018,
pp. 215–224.

[26] V. Kelefouras, G. Keramidas, N. Voros, Cache partitioning + loop tiling: a
methodology for effective shared cache management, in: 2017 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2017, pp. 477–482.

[27] V. Kelefouras, G. Keramidas, N. Voros, Combining software cache partitioning
and loop tiling for effective shared cache management, ACM Trans. Embed.
Comput. Syst. 17 (3) (2018) 72.

[28] C. Kessler, S. Litzinger, J. Keller, Static scheduling of moldable streaming tasks
with task fusion for parallel systems with DVFS, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 39 (11) (2020) 4166–4178, https://doi .org /10 .1109 /
TCAD .2020 .3013054.

[29] H. Khaleghzadeh, R.R. Manumachu, A. Lastovetsky, A novel data-partitioning
algorithm for performance optimization of data-parallel applications on het-
erogeneous HPC platforms, IEEE Trans. Parallel Distrib. Syst. 29 (10) (2018)
2176–2190, https://doi .org /10 .1109 /TPDS .2018 .2827055.

[30] V. Korkhov, Hierarchical resource management in grid computing, Ph.D. thesis,
University of Amsterdam, 2009.

http://refhub.elsevier.com/S0743-7315(22)00126-5/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
https://hal.inria.fr/hal-01420798
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1002/cpe.1631
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0E9F1E8E40BB79E800B0CC9433830CF4s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0E9F1E8E40BB79E800B0CC9433830CF4s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0E9F1E8E40BB79E800B0CC9433830CF4s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibF9A7BC96DEB26940301447BA0EDC45B8s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibF9A7BC96DEB26940301447BA0EDC45B8s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib577D0F049AFF607AA6A88E6E7AF9294Es1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib577D0F049AFF607AA6A88E6E7AF9294Es1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib577D0F049AFF607AA6A88E6E7AF9294Es1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib577D0F049AFF607AA6A88E6E7AF9294Es1
https://doi.org/10.1109/TPDS.2017.2675891
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibFB56C6CFDA5B5FD176697C125DC11863s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibFB56C6CFDA5B5FD176697C125DC11863s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibFB56C6CFDA5B5FD176697C125DC11863s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibFB56C6CFDA5B5FD176697C125DC11863s1
https://hal.archives-ouvertes.fr/hal-01052651
https://hal.archives-ouvertes.fr/hal-01052651
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibD72749910E71E75279B310239E18F36Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibD72749910E71E75279B310239E18F36Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibD72749910E71E75279B310239E18F36Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibD72749910E71E75279B310239E18F36Fs1
https://doi.org/10.1016/j.jpdc.2007.05.015
http://www.sciencedirect.com/science/article/pii/S0743731507000834
http://www.sciencedirect.com/science/article/pii/S0743731507000834
https://doi.org/10.1155/2005/128026
https://doi.org/10.1007/s10586-013-0325-0
https://doi.org/10.1007/s10586-013-0325-0
https://doi.org/10.1109/TPDS.2009.11
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibF7BEFC67E4B1DDF3A03D496537760671s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibF7BEFC67E4B1DDF3A03D496537760671s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibF7BEFC67E4B1DDF3A03D496537760671s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibF7BEFC67E4B1DDF3A03D496537760671s1
https://doi.org/10.1016/j.jpdc.2012.01.011
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib63C4DA4FDE984FA5C719CDCF2147AB7Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib63C4DA4FDE984FA5C719CDCF2147AB7Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib63C4DA4FDE984FA5C719CDCF2147AB7Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib63C4DA4FDE984FA5C719CDCF2147AB7Fs1
http://dl.acm.org/citation.cfm?id=1899290.1899305
http://dl.acm.org/citation.cfm?id=1899290.1899305
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib88FC20CED31357413700DE94BFC5D25Es1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib88FC20CED31357413700DE94BFC5D25Es1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib88FC20CED31357413700DE94BFC5D25Es1
https://doi.org/10.1002/cpe.3372
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibD0D64110D9563247DAD835D349E9B507s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibD0D64110D9563247DAD835D349E9B507s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibD0D64110D9563247DAD835D349E9B507s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAA59DEE700607CCC8DEF3AE41FF9EC23s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAA59DEE700607CCC8DEF3AE41FF9EC23s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAA59DEE700607CCC8DEF3AE41FF9EC23s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAA59DEE700607CCC8DEF3AE41FF9EC23s1
https://doi.org/10.1016/j.future.2012.08.015
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib3A8E4C06E471595F6EB262BB9B5582D9s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib3A8E4C06E471595F6EB262BB9B5582D9s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib3A8E4C06E471595F6EB262BB9B5582D9s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib3A8E4C06E471595F6EB262BB9B5582D9s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAAF2F89992379705DAC844C0A2A1D45Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAAF2F89992379705DAC844C0A2A1D45Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAAF2F89992379705DAC844C0A2A1D45Fs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAE7BE26CDAA742CA148068D5AC90EACAs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAE7BE26CDAA742CA148068D5AC90EACAs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAE7BE26CDAA742CA148068D5AC90EACAs1
https://doi.org/10.1109/TCAD.2020.3013054
https://doi.org/10.1109/TCAD.2020.3013054
https://doi.org/10.1109/TPDS.2018.2827055
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib98F13708210194C475687BE6106A3B84s1

V. Kelefouras and K. Djemame Journal of Parallel and Distributed Computing 168 (2022) 17–32
[31] H. Mahmoud, M. Thabet, M. Khafagy, F. Omara, An efficient load balancing
technique for task scheduling in heterogeneous cloud environment, Cluster
Computing 24 (2021) 3405–3419, https://doi .org /10 .1007 /s10586 -021 -03334 -z.

[32] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, F. Charot, Constraint pro-
gramming approach to reconfigurable processor extension generation and
application compilation, ACM Trans. Reconfigurable Technol. Syst. 5 (2)
(2012) 10:1–10:38, https://doi .org /10 .1145 /2209285 .2209289, http://doi .acm .
org /10 .1145 /2209285 .2209289.

[33] T. McSweeney, N.S. Walton, M. Zounon, An efficient new static scheduling
heuristic for accelerated architectures, Comput. Sci. – ICCS 2020 (12137) (2020)
3–16.

[34] G. Mehta, G. Juve, Workflow generator, https://confluence .pegasus .isi .edu /
display /pegasus /WorkflowGenerator.

[35] J. Meng, X. Wu, V. Morozov, V. Vishwanath, K. Kumaran, V. Taylor, SKOPE: a
framework for modeling and exploring workload behavior, in: 11th ACM Con-
ference on Computing Frontiers, CF ’14, New York, NY, USA, 2014, pp. 6:1–6:10,
http://doi .acm .org /10 .1145 /2597917.2597928.

[36] S. Muhammad, H. Zahid, L. Mustapha, W. Muhammad, T. Shanshan, An evolu-
tionary computing-based efficient hybrid task scheduling approach for hetero-
geneous computing environment, J. Grid Comput. 19 (1) (2021) 11.

[37] E.U. Munir, S. Mohsin, A. Hussain, M.W. Nisar, S. Ali, SDBATS: a novel algorithm
for task scheduling in heterogeneous computing systems, in: IPDPS Workshops,
IEEE, 2013, pp. 43–53, http://dblp .uni -trier.de /db /conf /ipps /ipdps2013w.html.

[38] H. Nikolov, T. Stefanov, E. Deprettere, Systematic and automated multiprocessor
system design, programming, and implementation, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 27 (3) (2008) 542–555, https://doi .org /10 .1109 /TCAD .
2007.911337.

[39] H. Nishikawa, K. Shimada, I. Taniguchi, H. Tomiyama, Scheduling of moldable
fork-join tasks with inter- and intra-task communications, in: Proceedings of
the 23rd International Workshop on Software and Compilers for Embedded
Systems, SCOPES ’20, Association for Computing Machinery, New York, NY, USA,
2020, pp. 7–12.

[40] A.D. Pimentel, C. Erbas, S. Polstra, A systematic approach to exploring embed-
ded system architectures at multiple abstraction levels, IEEE Trans. Comput.
55 (2) (2006) 99–112, https://doi .org /10 .1109 /TC .2006 .16.

[41] R. Piscitelli, A.D. Pimentel, Design space pruning through hybrid analysis in
system-level design space exploration, in: DATE, IEEE, 2012, pp. 781–786,
http://dblp .uni -trier.de /db /conf /date /date2012 .html.

[42] S. Ranaweera, P. Agrawal, A task duplication based scheduling algorithm for
heterogeneous systems, in: Proceedings of the 14th International Symposium
on Parallel and Distributed Processing, IPDPS ’00, IEEE Computer Society,
Washington, DC, USA, 2000, p. 445, http://dl .acm .org /citation .cfm ?id =846234 .
849341.

[43] S. Sandokji, F.E. Eassa, Dynamic variant rank HEFT task scheduling algorithm
toward exascle computing, Proc. Comput. Sci. 169 (2019) 482–493.

[44] A.K. Singh, M. Shafique, A. Kumar, J. Henkel, Mapping on multi/many-core sys-
tems: survey of current and emerging trends, in: Proceedings of the 50th An-
nual Design Automation Conference, DAC ’13, ACM, New York, NY, USA, 2013,
pp. 1:1–1:10, http://doi .acm .org /10 .1145 /2463209 .2488734.

[45] M. Sulaiman, Z. Halim, M.M. Waqas, D. Aydın, A hybrid list-based task
scheduling scheme for heterogeneous computing, J. Supercomput. 77 (2021)
10252–10288.

[46] F. Suter, DAGGEN: a synthetic task graph generator, https://github .com /
frs69wq /daggen.

[47] G. Theodoridis, N. Vassiliadis, S. Nikolaidis, An integer linear programming
model for mapping applications on hybrid systems, IET Comput. Digit. Tech.
3 (2009) 33–42.

[48] H. Topcuouglu, S. Hariri, M.-y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst.
13 (3) (2002) 260–274, https://doi .org /10 .1109 /71.993206.

[49] H. Zhao, R. Sakellariou, An experimental investigation into the rank function of
the heterogeneous earliest finish time scheduling algorithm, in: Parallel Pro-
cessing: 9th International Euro-Par Conference, Springer, Berlin, Heidelberg,
2003, pp. 189–194.

[50] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, S. Hu, Minimizing cost and makespan
for workflow scheduling in cloud using fuzzy dominance sort based HEFT, Fu-
ture Gener. Comput. Syst. 93 (2019) 278–289.

Dr. Vasilios Kelefouras was awarded a Ph.D at the
University of Patras, Greece, in 2013, and is currently
a Lecturer (Assistant Professor) in University of Ply-
mouth (UK), School of Engineering, Computing and
Mathematics. His research expertise lies in the field of
High Performance Computing, code optimization, task
scheduling and embedded systems. Dr. Kelefouras has
published more than 35 papers.

Prof. Karim Djemame was awarded a Ph.D. at the
University of Glasgow, UK, in 1999, and is currently
holding a Professor position at the School of Comput-
ing, University of Leeds. His main research areas focus
on Grid/Cloud computing, including system architec-
tures, resource management, and energy efficiency.
Dr. Djemame is a member of the IEEE.
32

https://doi.org/10.1007/s10586-021-03334-z
https://doi.org/10.1145/2209285.2209289
http://doi.acm.org/10.1145/2209285.2209289
http://doi.acm.org/10.1145/2209285.2209289
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAC0B6CBAF4AA93B999918CD0BF757645s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAC0B6CBAF4AA93B999918CD0BF757645s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibAC0B6CBAF4AA93B999918CD0BF757645s1
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://doi.acm.org/10.1145/2597917.2597928
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib3EEB477AA068DBADC8A65E46679759BFs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib3EEB477AA068DBADC8A65E46679759BFs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib3EEB477AA068DBADC8A65E46679759BFs1
http://dblp.uni-trier.de/db/conf/ipps/ipdps2013w.html
https://doi.org/10.1109/TCAD.2007.911337
https://doi.org/10.1109/TCAD.2007.911337
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0EC5FBFF9C430FD73B6FA033A8731838s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0EC5FBFF9C430FD73B6FA033A8731838s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0EC5FBFF9C430FD73B6FA033A8731838s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0EC5FBFF9C430FD73B6FA033A8731838s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib0EC5FBFF9C430FD73B6FA033A8731838s1
https://doi.org/10.1109/TC.2006.16
http://dblp.uni-trier.de/db/conf/date/date2012.html
http://dl.acm.org/citation.cfm?id=846234.849341
http://dl.acm.org/citation.cfm?id=846234.849341
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibC8268793D16D79571DFAFA1DD6D07131s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibC8268793D16D79571DFAFA1DD6D07131s1
http://doi.acm.org/10.1145/2463209.2488734
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibBE25D1192C763CF9E5757FB0D75C8918s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibBE25D1192C763CF9E5757FB0D75C8918s1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bibBE25D1192C763CF9E5757FB0D75C8918s1
https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib8BC3B4D83FE8FE05F95D8B27428EE17Es1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib8BC3B4D83FE8FE05F95D8B27428EE17Es1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib8BC3B4D83FE8FE05F95D8B27428EE17Es1
https://doi.org/10.1109/71.993206
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib8D55CC5497F203CE9814CAEEB42DBEFFs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib8D55CC5497F203CE9814CAEEB42DBEFFs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib8D55CC5497F203CE9814CAEEB42DBEFFs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib8D55CC5497F203CE9814CAEEB42DBEFFs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib87DBA6B5E5E739D7A8506BBCEB19E4BEs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib87DBA6B5E5E739D7A8506BBCEB19E4BEs1
http://refhub.elsevier.com/S0743-7315(22)00126-5/bib87DBA6B5E5E739D7A8506BBCEB19E4BEs1

	Workflow simulation and multi-threading aware task scheduling for heterogeneous computing
	1 Introduction
	2 Task scheduling formulation
	3 Related work and background knowledge
	4 Proposed TS method & heuristics
	4.1 Task scheduling method reducing the number of task simulations (TSRS)
	4.1.1 TSRS without insertion based scheduling policy
	4.1.2 TSRS with insertion based scheduling policy
	4.1.3 Extensibility of TSRS

	4.2 Multi-threading effective task scheduling (METS)
	4.3 TSRS and METS (TSRS+METS)
	4.3.1 Extensibility of METS and TSRS+METS

	5 Experimental results
	5.1 Hardware infrastructure
	5.2 Random graphs
	5.3 Evaluation of TSRS
	5.4 Evaluation of METS
	5.5 Evaluation of TSRS+METS
	5.6 Evaluation on real world applications

	6 Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

