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Abstract

Objective: Body volumes (BV) are used for calculating body composition to perform

obesity assessments. Conventional BV estimation techniques, such as underwater

weighing, can be difficult to apply. Advanced machine learning techniques enable

multiple obesity‐related body measurements to be obtained using a single‐camera

image; however, the accuracy of BV calculated using these techniques is un-

known. This study aims to adapt and evaluate a machine learning technique, syn-

thetic training for real accurate pose and shape (STRAPS), to estimate BV.

Methods: The machine learning technique, STRAPS, was applied to generate three‐
dimensional (3D) models from simulated two‐dimensional (2D) images; these 3D

models were then scaled with body stature and BV were estimated using regression

models corrected for body mass. A commercial 3D scan dataset with a wide range of

participants (n = 4318) was used to compare reference and estimated BV data.

Results: The developed methods estimated BV with small relative standard errors of

estimation (<7%) although performance varied when applied to different groups.

The BV estimated for people with body mass index (BMI) < 30 kg/m2 (1.9% for males

and 1.8% for females) weremore accurate than for peoplewith BMI≥ 30 kg/m2 (6.9%

for males and 2.4% for females).

Conclusions: The developed method can be used for females and males with

BMI < 30 kg/m2 in BV estimation and could be used for obesity assessments at

home or clinic settings.
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1 | INTRODUCTION

Contactless reconstruction of individualized three‐dimensional (3D)

models for understanding body shape and size is an emerging

technique in the medical field because of the discreet and rapid

nature.1 Conventional anthropometric measures (e.g., stature,

segment length, girth measurements) and body volume (BV) can be

estimated virtually from the reconstructed 3D models, to subse-

quently estimate the body fat quantity (e.g., body fat percentage)

and distribution.2–5 Conventional techniques such as manual mea-

surement and underwater weighing to obtain these measures can

be difficult to apply because of the requirement of technical

expertise and a complicated test environment. Conventional

anthropometric measures enable obesity‐related measurements

such as waist girth and waist‐to‐hips ratio to determine abdominal

adiposity which is related to health risks such as cardiovascular

disease, diabetes, cancer, and low back pain, and so forth.6–8 BV

can be used to calculate body density for estimation of body fat

percentage,9 which address some limitations of body mass index

(BMI), to enable accurate obesity and health risk assessment.10–13

Further, advanced shape parameters such as principal compo-

nents can also be obtained to provide further information to

improve the estimation of body composition14,15 and somatotype.16

Finally, body shape visualization with 3D human model recon-

struction can improve people's motivation to control weight with

diet and physical activity.17–19

Recently, computer vision and machine learning techniques have

been developed to estimate 3D body shape and pose from single or a

small number of two‐dimensional (2D) images, captured from

general‐purpose digital cameras.5,20 Such techniques facilitate the

portable and cost‐effective reconstruction of 3D human models for

anthropometric measurement and body shape visualization. 3D body

shape, estimated using 2D images, can provide accurate length,

breadth, and girth measurements. Smith et al.21 showed that the

errors of stature, waist and hip girth measurements obtained from

2D images are less than 2 cm; for context, this is better than that

achieved by general practitioners.22,23 Sengupta et al.24 presented a

machine learning technique that generates 3D human models from a

single image, with low reconstruction errors (scale‐corrected per‐
vertex Euclidean error < 2 cm). Like traditional 3D scanning sys-

tems, multiple anthropometry measurements can be acquired from

the 3D human models generated from a single or a small number of

2D images.

By applying these techniques, individualized body models can be

generated without expensive, large, 3D body scanning systems. Only

a consumer‐level digital camera (e.g., smartphone, etc.) is required,

which provides several advantages (e.g., the ubiquitous, portable and

accessible nature of smartphones and digital cameras) when

compared to conventional 3D scanning systems (which typically

cost > $10k) and simplified systems such as Fit3D and Styku, which

require specialized facilities.5 However, the accuracy of BVs esti-

mated from the 3D human models generated from single or a small

number of 2D images is still unknown. Consequently, it is uncertain

whether machine learning techniques can be used to estimate body

fat percentage for obesity assessment.

A few commercial mobile applications enable the estimation of

BV from 2D images. Sullivan et al.25 recently showed the high ac-

curacy of a commercially available application for BV acquisition

from a single image (standard error of estimation < 1.0 L). However,

the validation tests were conducted with limited participant

groups.25 The maximum BMI of participants was 30.9 kg/m2 and thus

no participants were in obesity class II or III (i.e., BMI ≥ 35 kg/m226).

Furthermore, no individualized 3D human models can be generated

using this technique, so body visualizations and other obesity‐related
measures (e.g., waist and hip girths), or other rich body shape pa-

rameters,15,27 cannot be achieved by this approach.

Tian et al.28 developed an approach that can estimate 3D body

shape from images and predict body composition. The results

showed it enables accurate estimation of body fat percentage

comparing with dual‐energy x‐ray absorptiometry scans (root mean

square error <3.5%). However, the estimation and prediction could

be sensitive to the pose variant and silhouettes segmentations.28

Further, the use of handles (to fix arm positions) and manual

annotation that was applied in the previous study,28 decreased the

convenience of assessing obesity from a 2D image.

Among 3D body reconstruction from a single image, Sengupta

et al.24 presented an advanced machine learning technique, synthetic

training for real accurate pose and shape (STRAPS), which can

generate 3D human models from a single image with different poses.

The qualitative results of STRAPS demonstrate better 2D projection

that matches silhouettes than the results shown in Tian et al.28

Furthermore, the low reconstruction error of the STRAPS technique

might lead to improved BV estimation compared with other machine

learning techniques that are validated against conventional anthro-

pometry. To the best of the authors' knowledge, the generation of 3D

models and volumes using single camera images that allow pose var-

iants (e.g., do not need a specific handles) including STRAPS and other

machine learning techniques have not been validated using reference

BV data. Therefore, the aim of this study was to apply and adapt the

STRAPS technique to generate 3D human models for BV estimation.

Furthermore, an evaluation of BV estimates was performed using a

large dataset comprising a wide range of participant body shapes.

2 | METHODS

2.1 | Datasets and participants

The commercial 3D dataset obtained from the world engineering

anthropometry resource (WEAR) was used in this study. This dataset

was collected in the Civilian American and European Surface

Anthropometry Resource Project29 and consists of 3D body scanning

and manually measured anthropometric data from 4431 participants.

Data from participants without complete 3D scan data in a standing

position (e.g., data missing, incomplete scanning data, or data

captured with non‐close‐fitting clothes), or without manually

2 - CHIU ET AL.



measured anthropometric data (stature, body mass) were excluded.

Thus, data from 4318 participants (stature range 124.8–218.3 cm,

body mass range: 37.9–181.4 kg, BMI range: 15.2–57.1 kg/m2) were

used in this study. The scan and anthropometric data were separated

into training and test sets. The training set was used to determine

model coefficients. The test sets were categorized with two BMI

levels with the threshold 30 kg/m2 to evaluate the model accuracy.

Table 1 shows the descriptive characteristics of participants in this

study.

2.2 | Reference body volume acquisition

The raw 3D scanning data in the WEAR dataset contains holes and

noise as shown in Figure 1A. Automatic post‐processing techniques

adapted from the previous development30 were applied to obtain

watertight 3Dmodels from the large datasets for BV acquisitions. The

test–retest of whole BV obtained from the automatic post‐processing
techniques are less than 1 L.30 The automatic technique enables ac-

curate BV compared with manual post‐processing30 the acquired BVs
(error < 1 L) were thus used as reference values for validation. First,

the screened Poisson reconstruction techniques31 were applied to fix

the incomplete scans such as the tops of heads, hands, and feet as

shown in Figure 1B. Then, the reconstructedmeshes were clustered to

remove random points from the main meshes. The floor plane was

setup and the hole‐filling algorithm32 in the open source Python

module, “pymeshfix” (https://pypi.org/project/pymeshfix/), was

applied to reconstruct mesh on foot region and ensure the body mesh

was watertight for reference BV acquisitions as shown in Figure 1C.

The reference BVs (BVreference) were calculated by the open source

Python module, “trimesh” (https://pypi.org/project/trimesh/), which

implements the method presented by Eberly.33

2.3 | Body image rendering

The color images are required for machine learning techniques to

estimate joint positions and silhouettes as input data of the STRAPS

techniques. As no color image data were collected in the WEAR

dataset, the 2D images were generated with the 3D scanning data.

The vertex colors of the watertight meshes were determined by the

closest point color on the raw 3D scanning data as shown in

Figure 1D. The colored watertight meshes were then used for

generating body images as shown in Figure 2A,B. The open source

Python module “pyrender” (https://pypi.org/project/pyrender/) was

used to render body images. A virtual camera was set to provide a

frontal view of the human model. The captured images were then

cropped to minimize the effect of the background.

2.4 | Individualized 3D model generation

After generating the body image, the joint locations and silhouettes

were predicted by machine learning techniques, Keypoint‐RCNN34

and PointRend,35 respectively as shown in Figure 2C–F. The STRAPS

technique was then used to estimate the pose and shape parameters

of a deformable mesh to fit the silhouettes and joint locations. Once

the pose and shape parameters of the deformable mesh are deter-

mined, individualized 3D human models can be obtained as shown in

Figure 2G–J.

TAB L E 1 The descriptive
characteristics of the selected

participants in this study

Male Female

Training set

N 1661 1787

Stature (cm) 178.0 � 8.4 (147.5–207.3) 164.5 � 7.5 (124.8–194.2)

Body mass (kg) 83.3 � 17.2 (45.8–181.4) 68.0 � 16.5 (37.9–156.5)

BMI (kg/m2) 26.2 � 4.7 (16.5–55.1) 25.1 � 5.7 (15.2–55.2)

Testing set with BMI ≥ 30

N 56 68

Stature (cm) 178.5 � 6.9 (161.7–193.9) 163.5 � 7.4 (150.1–186.0)

Body mass (kg) 107.1 � 15.2 (80.8–156.7) 97.2 � 18.2 (71.9–156.5)

BMI (kg/m2) 33.5 � 3.7 (30.0–51.0) 36.3 � 5.9 (30.1–57.1)

Testing set with BMI < 30

N 332 414

Stature (cm) 177.6 � 8.6 (156.6–218.3) 165.0 � 7.5 (144.5–194.8)

Body mass (kg) 77.1 � 11.6 (48.2–125.3) 62.8 � 9.7 (43.3–103.4)

BMI (kg/m2) 24.4 � 2.8 (16.1–29.9) 23.0 � 2.8 (17.0–29.9)
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2.5 | Body volume estimation

The models generated by the STRAPS technique are clean and

watertight, and BV can be calculated directly. To avoid mesh self‐
intersection (e.g., arm meshes inside of the body meshes for people

with obesity) which might lead to failure volume estimation, BV

(BVstraps) was measured by generating 3D models that were

reposed to a standard “T‐pose” by eliminating body pose

parameters (i.e., setting body poses equal to zeros) without post‐
processing (e.g., filling holes and deleting noise). The method pre-

sented by Eberly33 that was used to calculate reference BV data

was also used to estimate BVs. Like other methods that generate

3D human models from a small number of images, the STRAPS

technique suffers from an unknown absolute scale. To overcome

this, the scale of the 3D models was adjusted by the ratio of

reposed model height and real stature manually measured, as

F I GUR E 1 Automatic post‐processing for the raw 3D scanning data in the WEAR dataset. (A) The raw 3D scanning data in the WEAR
dataset contains holes on hands, bodies, feet, and noise such as the floor. (B) Screen Poisson reconstruction techniques applied and fixed the
incomplete scanning on the tops of heads, hands, and feet. (C) Cluster techniques were used to remove random noise (e.g., mesh for the floor).
Floor plane was set up and hole‐filling techniques was applied to reconstruct mesh on foot. (D) Vertices color assigned to the reconstructed

watertight meshes

4 - CHIU ET AL.



shown in Figure 2K,L. Scaled BVs (BVscale) were measured using

the scaled model. Because of ambiguous depth of single images,

the BV obtained from scale models (BVscale) might still contain

some error. Body mass (M) and scaled BV (BVscale) were used as

the input to gender‐specific linear regression models to minimize

the depth ambiguity and obtain corrected BV (BVregression). The

coefficient of the regression model was determined with the

training datasets.

2.6 | Evaluation tests

The estimated BVs (BVstraps, BVscale, and BVregression) of the test

datasets were compared with the reference BVs. The formula pre-

sented by Siri et al.9 was used to estimate body fat percentage

(BFreference, BFregression) from BVs (BVreference, BVregression) to identify

the difference between the reference and proposed methods in

acquiring body composition. As there was no breath control in the 3D

F I GUR E 2 Body image rendering and 3D human model generation. (A, B) Examples of rendering images for male and female participants,

respectively. (C, D) Joint location estimated by Keypoint‐RCNN method. (E, F) Silhouettes generated from the PointRend method. (G, H) Front
views of individualized 3D human models predicted by the STRAPS technique. (I, J) Vertices of the generated model overlay on 2D body image.
(K, L) Reposed and scaled 3D human models used for body volume calculation
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scanning protocol of the WEAR dataset, the BVs were corrected by

subtracting the tidal, expiratory reserve, and residual volumes.36

Standard error of the estimation (SEE) and Bland and Altman limits of

agreement were conducted to determine the accuracy of the pro-

posed methods.

2.7 | Statement on ethics approval

The ethics approval of this study was given by the University Ethics

Committee.

3 | RESULTS

Participants exhibited a wide BMI range from 15.2 to 57.1 kg/m2.

Around 16% of participants had obesity (BMI ≥ 30 kg/m2) and 55% of

participants were of normal weight (BMI < 25 kg/m2). The evaluation

test results are shown in Table 2. BVs were overestimated from the

model generated from the STRAPS technique (mean errors > 10 L;

standard deviations of errors > 10 L) and usually underestimated

from the results of stature correction (mean errors < −2 L; standard

deviations of errors > 3 L apart from females without obesity). The

BVs estimated using the STRAPS technique had higher SEEs (>15 L),

absolute mean errors (>10 L), standard deviations of errors (>10 L),

and wider limits of agreement than the ones estimated with stature

correction and the regression model applications (SEEs < 15 L; ab-

solute mean errors < 10 L and standard deviations of errors < 10 L).

After applying the regression model, the SEEs and standard deviations

of errors were less than 3 L (relative SEEs < 3%) for BV across all the

groups apart from the men with obesity (relative SEE = 6.9%).

The bias (absolute mean errors) and the standard deviation er-

rors of BV (−1.1 � 7.6; limit of agreement = (−15.9, 13.7)) and body

fat percentage (−3.5 � 24.8; limit of agreement = (−52.1, 45.0)) for
male participants with obesity were higher than the ones for other

groups. BV estimates for males and females with obesity had higher

SEEs (>2 L) and standard deviation errors (>2 L) than the ones for

the group without obesity (<2 L).

4 | DISCUSSION

The STRAPS technique was applied and adapted to generate 3D

human models for BV estimation. An evaluation using a wide range of

body morphologies was conducted and shows that the developed

methods enable accurate BV estimated for people with BMI < 30 kg/

m2 (relative SEE 1.9% for males and 1.8% for females). Cloud

computing techniques can be applied to implement these developed

techniques so the individualized models could be generated in a short

period (typically within 1 min) with an inexpensive, ubiquitous,

portable, and accessible device such as a smartphone. Thus, the

developed method can be used for females and males with

BMI < 30 kg/m2 in BV estimation and could be used for obesity

assessments at home or clinic settings for regular obesity assessment

and visualization.

The error of BV acquired from the STRAPS technique is a large

SEE (SEE > 10 L), which led to more than 10% relative SEE. The

probable reason is that the reference meshes were reconstructed

from 2D images with computer vision techniques indirectly instead of

obtained from the 3D body scanning technique directly and the scale

ambiguities were not considered while computing the reconstruction

error in the previous study.24 Further research to develop new ma-

chine learning techniques to estimate 3D body shapes and poses

should consider using volumetric capturing37 and scale correction to

conduct direct comparison for quantifying reconstruction error to

improve the BV estimation.

Using stature can improve the accuracy of BV estimation to

reduce the limits of agreement (standard deviation errors decrease

to less than 10 L). This improvement by involving stature confirms

that using single 2D images contains some scale ambiguities.5 How-

ever, BV estimated with the correction with stature for males and

females with obesity contains higher SEEs and limits of agreement

than BVs for the group without obesity. The body shapes variation of

the group with obesity might be more complicated than for the non‐
obesity group so it is hard to predict from a 2D image with current

models. Further model improvement might be required to acquire

correct BV values for specific groups such as participants with

obesity. Using body mass in a regression model can further reduce

the SEEs of BV estimation which shows that using a few manual

anthropometric measurements enhances the reconstruction of indi-

vidual human models from 2D images. It is highly recommended that

further development that estimates 3D body shape from a 2D image

should combine with a few manual anthropometric data which could

be measured precisely with minimal training such as stature and body

mass to improve the model accuracy.

The BV obtained from the STRAPS technique with a regression

model enabled accurate estimation for people without obesity

(SEE ≤ 1.5; relative SEE < 2%). The SEE was a little higher than for

commercial mobile apps (SEE < 1.0).25 Comparing the results of the

groups with obesity and without obesity, accuracy decreases as BMI

increases (Table 2). The proportion of participants in overweight and

obesity and the BMI range in evaluation tests for this study (45%;

15.2–57.1 kg/m2) is higher than the ones in the previous study (31%;

18.6–30.9 kg/m2).25 Most participants in the previous study were in

the normal‐weight group25 so the commercial mobile apps might lead

to poor accuracy when applied to those with different degrees of

obesity. It is necessary to conduct evaluation tests with a large

representative sample that contains many participants with obesity

before using commercial tools for obesity assessment. The tech-

niques that estimate 3D human models from 2D images can provide

more useful information (conventional anthropometric measures,

body visualization, BVs) than commercial software which merely

estimate BVs. Considering the advantages of multiple measure-

ments6–13 and body visualization,17–19 further development to refine

the accuracy of BVs estimated from 3D human models generated

from 2D images should be encouraged and continue. More effort
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should be made to improve the accuracy for the group with obesity

before applying it to obesity assessment.

The evaluation test in this study showed that the developed

methods have different performances in estimating BV (BVregression)

and body fat percentage (BFregression) when applied to different

groups. The accuracy of BV and body fat percentage for male par-

ticipants with obesity are worse than the ones for other participants

(males without obesity and females). This suggests that using a linear

regression model might not be appropriate to estimate volume for

males with obesity. The current formula used for calculating body fat

percentage is sensitive to BV error3 which leads to poor accuracy in

body fat percentage for the male group with obesity. Multiple views

or non‐linear correction models should be considered in the future

development to minimize the depth ambiguity, especially for males

with obesity. Wong et al.38 presented a novel method that estimated

body fat percentage from 3D body shape instead of volume. How-

ever, the model is not publicly available. The method was developed

with a simplified 3D scanning system (Fit3D ProScanner37) which

TAB L E 2 Evaluation tests result for
body volume and body fat percentage
evaluation

Mean ± std SEE (%SEE) Mean error ± std LOA

Males with obesity (51.0 ≥ BMI ≥ 30, n = 56)

BVreference 109.4 � 20.3 ‐ ‐

BVstraps 126.9 � 22.8 21.7 (19.9) 17.5 � 13.0 −7.9, 43.0

BVscale 99.7 � 14.6 12.2 (11.2) −9.7 � 7.6 −24.5, 5.2

BVregression 108.3 � 15.6 7.6 (6.9) −1.1 � 7.6 −15.9, 13.7

BFreference 41.1 � 27.0 ‐ ‐

BFregression 37.6 � 3.8 24.8 −3.5 � 24.8 −52.1, 45.0

Females with obesity (57.1 ≥ BMI ≥ 30.1, n = 68)

BVreference 101.3 � 20.4 ‐ ‐ ‐

BVstraps 163.5 � 7.4 40.5 (40.0) 36.8 � 17.1 3.3, 70.3

BVscale 94.3 � 15.8 10.4 (10.3) −7.0 � 7.7 −22.1, 8.0

BVregression 100.9 � 18.9 2.5 (2.4) −0.4 � 2.4 −5.2, 4.4

BFreference 53.0 � 10.3 ‐ ‐ ‐

BFregression 51.6 � 3.0 9.4 −1.3 � 9.4 −19.8, 17.1

Males without obesity (29.9 ≥ BMI ≥ 16.1, n = 332)

BVreference 77.9 � 11.6 ‐ ‐ ‐

BVstraps 90.5 � 14.8 16.8 (21.6) 12.6 � 11.2 −9.3, 34.4

BVscale 75.6 � 11.6 4.2 (5.4) −2.3 � 3.5 −9.2, 4.6

BVregression 78.0 � 11.9 1.5 (1.9) 0.1 � 1.5 −2.8, 3.0

BFreference 32.4 � 9.5 ‐ ‐ ‐

BFregression 32.6 � 5.3 9.3 0.2 � 9.4 −18.2, 18.5

Females without obesity (29.9 ≥ BMI ≥ 17.0, n = 414)

BVreference 64.9 � 10.2 ‐ ‐ ‐

BVstraps 85.9 � 17.0 23.7 (36.5) 20.9 � 11.1 −0.9, 42.8

BVscale 65.4 � 11.5 3.4 (5.2) 0.5 � 3.3 −6.1, 7.0

BVregression 65.0 � 10.4 1.2 (1.8) 0.0 � 1.2 −2.3, 2.4

BFreference 43.6 � 9.5 ‐ ‐ ‐

BFregression 43.5 � 5.3 9.1 0.0 � 9.1 −17.8, 17.8

Note: Unit for BMI is kg/m2; relative SEE is %; body volume is the liter (L) and body fat percentage is %.

Abbreviations: BFreference, body fat percentage obtained from 3D scanning data; BFregression, body fat

percentage acquired with BVregression; BVreference, body volume obtained from 3D scanning data;

BVregression, body volume after body mass adjustment; BVscale, body volume after stature correction;

BVstraps, body volume estimated with the synthetic training for real accurate pose and shape

techniques; LOA, lower and upper bound of the limit of agreement; Mean � std, mean value with

standard deviation; Mean error � std, mean error value and standard deviation error; SEE, standard

error of the estimate; %SEE, relative standard error of the estimate.
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might not be compatible with the conventional 3D scanning system

(Cyberware and Vitronic scanner29) and STRAPS estimation which

generated 3D models in different resolutions. Public and updated

formulae or models that can estimate body fat percentage from

different 3D reconstruction techniques including conventional and

simplified scanner and 2D image estimation (e.g., STRAPS) should be

developed and used to reduce the sensitivity of BV error for obesity

assessment. For instance, Pointnet++39 which can process 3D point

clouds in different resolutions could be applied to develop the public

method for estimating body fat percentage from 3D reconstruction

results.

Evaluation tests were conducted with the synthesized data

generated with the datasets established for more than 20 years.

Similar techniques are widely used in computer vision for developing

machine learning models.21,24 Although the BV obtained from 3D

scanning data enables reference data acquisition, some assumptions

and errors still exist in 2D image rendering, mesh post‐processing,
and residual lung volume estimation. Some random errors caused by

camera optics or hardware were ignored. To the authors' knowledge,

there are no public datasets that include 2D images and reference BV

data, obtained directly obtained using medical methods such as air

displacement plethysmography and dual‐energy x‐ray absorptiome-

try. This is the first study that has applied and adapted methods to

generate 3D models using single images that allows pose variants, to

compare to validated BV data across a large dataset. The evaluation

tests in this study demonstrate a protocol and a benchmark for

future computer vision and machine learning research to improve BV

estimation and body visualization from single 2D images. Further

studies can use the protocols presented here to evaluate the devel-

oped methods with synthesized data before collecting data directly.

This provides an alternative solution for research institutes without

access to devices for medical measurements.

5 | CONCLUSION

This study adapted computer vision techniques to generate individ-

ualized 3D models for the estimation of BV; a wide range of body

morphologies was used to assess the validity of BV estimates. The

proposed approach generated body visualizations and accurate BV

estimates could be made using a consumer‐level digital camera for

females and males without obesity (BMI < 30 kg/m2). The proposed

approach does not require expensive 3D scanning equipment, and as

such, could be used in home or clinic settings for obesity management

and monitoring. Further research should be conducted to improve

estimation for individuals with obesity, eliminate gender differences,

and validate using directly collected data.
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