
The VISTA datasets, a combination of inertial sensors and
depth cameras data for activity recognition

FIORINI, Laura <http://orcid.org/0000-0001-5784-3752>, CORNACCHIA
LOIZZO, Federica Gabriella, SORRENTINO, Alessandra, ROVINI, Erika, DI
NUOVO, Alessandro <http://orcid.org/0000-0003-2677-2650> and CAVALLO,
Filippo

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/30248/

This document is the Supplemental Material

Citation:

FIORINI, Laura, CORNACCHIA LOIZZO, Federica Gabriella, SORRENTINO,
Alessandra, ROVINI, Erika, DI NUOVO, Alessandro and CAVALLO, Filippo (2022).
The VISTA datasets, a combination of inertial sensors and depth cameras data for
activity recognition. Scientific Data, 9: 218. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

1

Data Processing Agreement – VISTA database

The VISTA dataset, a combination of inertial sensors
and depth cameras for activity recognition

Laura Fiorini, Federica G. Cornacchia Loizzo, Alessandra Sorrentino, Erika Rovini, Alessandro

Di Nuovo and Filippo Cavallo

SUPPLEMENTARY MATERIAL

DATA PROCESSING AGREEMENT TEMPLATE ... 2

DATA ANALYSIS (Matlab code) ... 7

Inertial data .. 7

Visual data .. 9

Feature Extraction .. 12

Feature Selection ... 14

2

Data Processing Agreement – VISTA database

DATA PROCESSING AGREEMENT TEMPLATE

This Data Processing Agreement ("Agreement") forms part of the Contract for Services ("Principal

Agreement") between

Cornacchia Loizzo, Federica
Di Nuovo, Alessandro
Fiorini, Laura
Cavallo, Filippo
Sorrentino, Alessandra
Rovini, Erika

(the “Creators”) of the VISTA, Visual and Inertial Sensor for recogniTion of human Activities database.

and

(the “Data Processor”)

(together s the “Parties”)

WHEREAS

(A) The Creators acts as a Data Controller.

(B) The Creators consent to use personal data of the VISTA database to the Data Processor for

research purposes.

(C) The Parties seek to implement a data processing agreement that complies with the

requirements of the current legal framework in relation to data processing and with the

Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on

the protection of natural persons with regard to the processing of personal data and on the

free movement of such data, and repealing Directive 95/46/EC (General Data Protection

Regulation).

(D) The Parties wish to lay down their rights and obligations.

IT IS AGREED AS FOLLOWS:

1. Definitions and Interpretation

1.1 Unless otherwise defined herein, capitalized terms and expressions used in this Agreement

shall have the following meaning:

1.1.1 "Agreement" means this Data Processing Agreement and all Schedules;

3

Data Processing Agreement – VISTA database

1.1.2 "VISTA Personal Data" means any Personal Data Processed by a Data Processor

with the written consent of the Creators pursuant to or in connection with the

Principal Agreement;

1.1.3 "Data Processor" means a researcher that has access to the VISTA Personal Data
for research purposes.

1.1.4 "Data Protection Laws" means EU Data Protection Laws and, to the extent

applicable, the data protection or privacy laws of any other country;

1.1.5 "EEA" means the European Economic Area;

1.1.6 "EU Data Protection Laws" means EU Directive 95/46/EC, as transposed into

domestic legislation of each Member State and as amended, replaced or

superseded from time to time, including by the GDPR and laws implementing or

supplementing the GDPR;

1.1.7 "GDPR" means EU General Data Protection Regulation 2016/679;

1.1.8 "Data Transfer" means:

1.1.8.1 a transfer of VISTA Personal Data from the Creators to a Processor;

or

1.1.8.2 an onward transfer of VISTA Personal Data from a Processor to a

Subcontracted Processor, or between two establishments of a

Processor,

in each case, where such transfer would be prohibited by Data Protection Laws

(or by the terms of data transfer agreements put in place to address the data

transfer restrictions of Data Protection Laws);

1.1.9 "Services" means the

Creators provides.

services the

1.1.10 "Subprocessor" means any person appointed by or on behalf of Processor to

process Personal Data on behalf of the Creators in connection with the

Agreement.

1.2 The terms, "Commission", "Controller", "Data Subject", "Member State", "Personal Data",

"Personal Data Breach", "Processing" and "Supervisory Authority" shall have the same

meaning as in the GDPR, and their cognate terms shall be construed accordingly.

2. Processing of VISTA Personal Data

2.1 Processor shall:

2.1.1 comply with all applicable Data Protection Laws in the Processing of VISTA

Personal Data; and

2.1.2 not Process VISTA Personal Data other than on the relevant Creators’

documented instructions.

4

Data Processing Agreement – VISTA database

2.2 The Creators instructs Processor to process VISTA Personal Data.

3. Processor Personnel

Processor shall take reasonable steps to ensure the reliability of any employee, agent or contractor of any

Contracted Processor who may have access to the Creators Personal Data, ensuring in each case that access

is strictly limited to those individuals who need to know / access the relevant Creators Personal Data, as

strictly necessary for the purposes of the Principal Agreement, and to comply with Applicable Laws in the

context of that individual's duties to the Contracted Processor, ensuring that all such individuals are subject

to confidentiality undertakings or professional or statutory obligations of confidentiality.

4. Security

4.1 Taking into account the state of the art, the costs of implementation and the nature, scope, context and

purposes of Processing as well as the risk of varying likelihood and severity for the rights and freedoms of

natural persons, Processor shall in relation to the Creators Personal Data implement appropriate technical

and organizational measures to ensure a level of security appropriate to that risk, including, as appropriate,

the measures referred to in Article 32(1) of the GDPR.

4.2 In assessing the appropriate level of security, Processor shall take account in particular of the risks that are

presented by Processing, in particular from a Personal Data Breach.

5. Subprocessing

5.1 Processor shall not appoint (or disclose any Creators Personal Data to) any Subprocessor unless required

or authorized by the Creators.

6. Data Subject Rights

6.1 Taking into account the nature of the Processing, Processor shall assist the Creators by implementing

appropriate technical and organizational measures, insofar as this is possible, for the fulfilment of the

Creators obligations, as reasonably understood by Creators, to respond to requests to exercise Data Subject

rights under the Data Protection Laws.

6.2 Processor shall:

6.2.1 promptly notify Creators if it receives a request from a Data Subject under any Data Protection

Law in respect of Creators Personal Data; and

6.2.2 ensure that it does not respond to that request except on the documented instructions of

Creators or as required by Applicable Laws to which the Processor is subject, in which case

Processor shall to the extent permitted by Applicable Laws

inform Creators of that legal requirement before the Contracted Processor responds to the

request.

7. Personal Data Breach

7.1 Processor shall notify Creators without undue delay upon Processor becoming aware of a Personal Data

Breach affecting Creators Personal Data, providing Creators with sufficient information to allow the

Creators to meet any obligations to report or inform Data Subjects of the Personal Data Breach under the

Data Protection Laws.

5

Data Processing Agreement – VISTA database

7.2 Processor shall co-operate with the Creators and take reasonable commercial steps as are directed by

Creators to assist in the investigation, mitigation and remediation of each such Personal Data Breach.

8. Data Protection Impact Assessment and Prior Consultation

Processor shall provide reasonable assistance to the Creators with any data protection impact

assessments, and prior consultations with Supervising Authorities or other competent data privacy

authorities, which Creators reasonably considers to be required by article 35 or 36 of the GDPR or

equivalent provisions of any other Data Protection Law, in each case solely in relation to Processing of

Creators Personal Data by, and taking into account the nature of the Processing and information available

to, the Contracted Processors.

9. Deletion or return of Creators Personal Data

9.1 Subject to this section 9 Processor shall promptly and in any event within

10 business days of the date of cessation of any Services involving the Processing of Creators Personal Data

(the "Cessation Date"), delete and procure the deletion of all copies of those Creators Personal Data.

9.2 Processor shall provide written certification to Creators that it has fully complied with this section 9 within

10 business days of the Cessation Date.

10. Audit rights

10.1 Subject to this section 10, Processor shall make available to the Creators on request all information

necessary to demonstrate compliance with this Agreement, and shall allow for and contribute to audits,

including inspections, by the Creators or an auditor mandated by the Creators in relation to the Processing

of the Creators Personal Data by the Contracted Processors.

10.2 Information and audit rights of the Creators only arise under section 10.1 to the extent that the Agreement

does not otherwise give them information and audit rights meeting the relevant requirements of Data

Protection Law.

11. Data Transfer

11.1 The Processor may not transfer or authorize the transfer of Data to countries outside the EU and/or the

European Economic Area (EEA) without the prior written consent of the Creators. If personal data processed

under this Agreement is transferred from a country within the European Economic Area to a country

outside the European Economic Area, the Parties shall ensure that the personal data are adequately

protected. To achieve this, the Parties shall, unless agreed otherwise, rely on EU approved standard

contractual clauses for the transfer of personal data.

12. General Terms

12.1 Confidentiality. Each Party must keep this Agreement and information it receives about the other Party and

its business in connection with this Agreement (“Confidential Information”) confidential and must not use

or disclose that Confidential Information without the prior written consent of the other Party except to the

extent that:

(a) disclosure is required by law;

(b) the relevant information is already in the public domain.

6

Data Processing Agreement – VISTA database

12.2 Notices. All notices and communications given under this Agreement must be in writing and will be

delivered personally, sent by post or sent by email to the address or email address set out in the heading of

this Agreement at such other address as notified from time to time by the Parties changing address.

13. Governing Law and Jurisdiction

13.1 This Agreement is governed by the laws of the United Kingdom.

13.2 Any dispute arising in connection with this Agreement, which the Parties will not be able to resolve

amicably, will be submitted to the exclusive jurisdiction of the courts of the United Kingdom.

IN WITNESS WHEREOF, this Agreement is entered into with effect from the date first set out below.

On behalf of the Creators

Signature Name:

 Title:

 Date Signed:

Processor

Signature Name

 Title

 Date Signed

7

Data Analysis – VISTA Dataset

DATA ANALYSIS (Matlab code)

Inertial data

%% Inertial data

% From the initial inertial dataset, I extracted only the data related to the

wrist and index finger.

wr_accx = data(:,5);
wr_accy = data(:,6);
wr_accz = data(:,7);
wr_gyrx = data(:,8);
wr_gyry = data(:,9);
wr_gyrz = data(:,10);
wr_magx = data(:,11);
wr_magy = data(:,12);
wr_magz = data(:,13);
in_accx = data(:,23);
in_accy = data(:,24);
in_accz = data(:,25);
in_gyrx = data(:,26);
in_gyry = data(:,27);
in_gyrz = data(:,28);
in_magx = data(:,29);
in_magy = data(:,30);
in_magz = data(:,31);

lastcolumn = data(:,end);

%% Fast Fourier Transform

% First, a Fourier analysis was performed to have a good idea of the frequencies

of the signal and the frequencies of the noise. In this case the main

frequencies of the signal were between 0 and 5, so a 4th order digital low-pass

Butterworth Filter was used to cut off all the other frequencies which only

represented noise. After that, the accelerations and angular velocities’ norms

were computed.

fc = 5;

fs = 100;

[b,a] = butter(4, fc/(fs/2));
filteredwrist_accx = filter(b,a,wr_accx);
filteredwrist_accy = filter(b,a,wr_accy);
filteredwrist_accz = filter(b,a,wr_accz);
filteredindex_accx = filter(b,a,in_accx);
filteredindex_accy = filter(b,a,in_accy);
filteredindex_accz = filter(b,a,in_accz);

filteredwrist_avx = filter(b,a,wr_gyrx);
filteredwrist_avy = filter(b,a,wr_gyry);
filteredwrist_avz = filter(b,a,wr_gyrz);
filteredindex_avx = filter(b,a,in_gyrx);
filteredindex_avy = filter(b,a,in_gyry);
filteredindex_avz = filter(b,a,in_gyrz);

% Filtered Norm

% Accelerations

8

Data Analysis – VISTA Dataset

filteredwrist_acc = sqrt(filteredwrist_accx.^2 + filteredwrist_accy.^2 +

filteredwrist_accz.^2);
filteredindex_acc = sqrt(filteredindex_accx.^2 + filteredindex_accy.^2 +

filteredindex_accz.^2);

% Angular Velocities

filteredwrist_av = sqrt(filteredwrist_avx.^2 + filteredwrist_avy.^2 +

filteredwrist_avz.^2);
filteredindex_av = sqrt(filteredindex_avx.^2 + filteredindex_avy.^2 +

filteredindex_avz.^2);

9

Data Analysis – VISTA Dataset

Visual data
%% Visual data

% Starting from the csv file with the joints’ coordinates extracted by OpenPose,

only some joints of interest were considered in the analysis.

Frames_cam1 = Skeleton_cam1(:,1);
Head_cam1 = Skeleton_cam1(:,2:4);
Neck_cam1 = Skeleton_cam1(:,5:7);
RHand_cam1 = Skeleton_cam1(:,14:16);
LHand_cam1 = Skeleton_cam1(:,23:25);
Torso_cam1 = Skeleton_cam1(:,26:28);
RFoot_cam1 = Skeleton_cam1(:,35:37);
LFoot_cam1 = Skeleton_cam1(:,44:46);
Labels_cam1 = Skeleton_cam1(:,end);

% STD NORM
dist2D_nt_cam1 = (sqrt((Neck_cam1(:,1)-Torso_cam1(:,1)).^2 + (Neck_cam1(:,2)-

Torso_cam1(:,2)).^2));
HeadSTD_cam1 = ((Head_cam1(:,1:2) - Torso_cam1(:,1:2)) ./ dist2D_nt_cam1);
NeckSTD_cam1 = ((Neck_cam1(:,1:2) - Torso_cam1(:,1:2)) ./ dist2D_nt_cam1);
LHandSTD_cam1 = ((LHand_cam1(:,1:2) - Torso_cam1(:,1:2)) ./ dist2D_nt_cam1);
RHandSTD_cam1 = ((RHand_cam1(:,1:2) - Torso_cam1(:,1:2)) ./ dist2D_nt_cam1);
LFootSTD_cam1 = ((LFoot_cam1(:,1:2) - Torso_cam1(:,1:2)) ./ dist2D_nt_cam1);
RFootSTD_cam1 = ((RFoot_cam1(:,1:2) - Torso_cam1(:,1:2)) ./ dist2D_nt_cam1);
jointsSTD_cam1 = [HeadSTD_cam1 NeckSTD_cam1 LHandSTD_cam1 RHandSTD_cam1

LFootSTD_cam1 RFootSTD_cam1 Labels_cam1];

%% Signal segmentation

% The signal was segmented by 3 seconds’ windows with 50% overlapping.

% Inertial

n_window = 300;
overlap = 150;
n_start = 1;
n_max = length(filteredwrist_acc);
max_count = ceil((length(filteredwrist_acc)-n_window)/(n_window-overlap))+1;

for count = 1: max_count
 n_end = n_start + n_window - 1;
 if n_end > n_max
 wr_acc_segm(count, 1:n_max-n_start+1) =

filteredwrist_acc(n_start:n_max);
 wr_accx_segm(count, 1:n_max-n_start+1) =

filteredwrist_accx(n_start:n_max);
 wr_accy_segm(count, 1:n_max-n_start+1) =

filteredwrist_accy(n_start:n_max);
 wr_accz_segm(count, 1:n_max-n_start+1) =

filteredwrist_accz(n_start:n_max);
 wr_av_segm(count, 1:n_max-n_start+1) = filteredwrist_av(n_start:n_max);
 in_acc_segm(count, 1:n_max-n_start+1) =

filteredindex_acc(n_start:n_max);
 in_accx_segm(count, 1:n_max-n_start+1) =

filteredindex_accx(n_start:n_max);
 in_accy_segm(count, 1:n_max-n_start+1) =

filteredindex_accy(n_start:n_max);
 in_accz_segm(count, 1:n_max-n_start+1) =

filteredindex_accz(n_start:n_max);

10

Data Analysis – VISTA Dataset

 in_av_segm(count, 1:n_max-n_start+1) = filteredindex_av(n_start:n_max);
 label_segm(count, 1:n_max-n_start+1) = lastcolumn(n_start:n_max);
 else
 wr_acc_segm(count,:) = filteredwrist_acc(n_start:n_end);
 wr_accx_segm(count,:) = filteredwrist_accx(n_start:n_end);
 wr_accy_segm(count,:) = filteredwrist_accy(n_start:n_end);
 wr_accz_segm(count,:) = filteredwrist_accz(n_start:n_end);
 wr_av_segm(count,:) = filteredwrist_av(n_start:n_end);
 in_acc_segm(count,:) = filteredindex_acc(n_start:n_end);
 in_accx_segm(count,:) = filteredindex_accx(n_start:n_end);
 in_accy_segm(count,:) = filteredindex_accy(n_start:n_end);
 in_accz_segm(count,:) = filteredindex_accz(n_start:n_end);
 in_av_segm(count,:) = filteredindex_av(n_start:n_end);
 label_segm(count,:) = lastcolumn(n_start:n_end);
 end
 n_start = n_end - overlap;
end

% Cameras

n_window_cam = round(fps * 3);

overlap_cam = round(n_window_cam/2);
jointsSTD_n_start = 1;
jointsSTD_n_max = length(jointsSTD_cam1);
jointsSTD_max_count = ceil((length(jointsSTD_cam1)-n_window_cam)/(n_window_cam-

overlap_cam))+1;

for jointsSTD_count= 1: jointsSTD_max_count
 jointsSTD_n_end = jointsSTD_n_start + n_window_cam - 1;
 if jointsSTD_n_end > jointsSTD_n_max
 jointsSTD_1_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,1);
 jointsSTD_2_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,2);
 jointsSTD_3_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,3);
 jointsSTD_4_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,4);
 jointsSTD_5_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,5);
 jointsSTD_6_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,6);
 jointsSTD_7_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,7);
 jointsSTD_8_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,8);
 jointsSTD_9_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1)

= jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,9);
 jointsSTD_10_cam1(jointsSTD_count, 1:jointsSTD_n_max-

jointsSTD_n_start+1) = jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,10);
 jointsSTD_11_cam1(jointsSTD_count, 1:jointsSTD_n_max-

jointsSTD_n_start+1) = jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,11);
 jointsSTD_12_cam1(jointsSTD_count, 1:jointsSTD_n_max-

jointsSTD_n_start+1) = jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,12);
 label_cam1(jointsSTD_count, 1:jointsSTD_n_max-jointsSTD_n_start+1) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_max,13);
 else

11

Data Analysis – VISTA Dataset

 jointsSTD_1_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,1);
 jointsSTD_2_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,2);
 jointsSTD_3_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,3);
 jointsSTD_4_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,4);
 jointsSTD_5_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,5);
 jointsSTD_6_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,6);
 jointsSTD_7_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,7);
 jointsSTD_8_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,8);
 jointsSTD_9_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,9);
 jointsSTD_10_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,10);
 jointsSTD_11_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,11);
 jointsSTD_12_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,12);
 label_cam1(jointsSTD_count,:) =

jointsSTD_cam1(jointsSTD_n_start:jointsSTD_n_end,13);
 end
 jointsSTD_n_start = jointsSTD_n_end - overlap_cam;
end

12

Data Analysis – VISTA Dataset

Feature Extraction

% For each window, different features were extracted from inertial data: mean,

standard deviation, variance, mean absolute deviation (MAD), root mean square

(RMS), skewness, kurtosis, signal magnitude area (SMA), normalized jerk and

power.

% Wrist
% Accelerations
wr_mean_acc = mean(wr_acc_segm,2);
wr_stdev_acc = std(wr_acc_segm,0,2);
wr_var_acc = var(wr_acc_segm,0,2);
wr_mad_acc = mad(wr_acc_segm,0,2);
wr_rms_acc = rms(wr_acc_segm,2);
wr_skewness_acc = skewness(wr_acc_segm,1,2);
wr_kurtosis_acc = kurtosis(wr_acc_segm,1,2);
wr_SMA_acc = sum(abs(wr_accx_segm),2) + sum(abs(wr_accy_segm),2) +

sum(abs(wr_accz_segm),2);
wr_jerk_diff_acc = diff(wr_acc_segm,1,2)./(1/fs);
wr_jerk_mean_acc = mean(wr_jerk_diff_acc,2);
wr_rmse_JERK_acc = sqrt(1/length(wr_jerk_diff_acc).*sum((wr_jerk_diff_acc-

wr_jerk_mean_acc).^2,2));
wr_FFT_acc_segm = fft(wr_acc_segm);
wr_pow_acc = wr_FFT_acc_segm.*conj(wr_FFT_acc_segm);
wr_pow_acc = sum(wr_pow_acc,2);

% Angular Velocities
wr_mean_av = mean(wr_av_segm,2);
wr_stdev_av = std(wr_av_segm,0,2);
wr_var_av = var(wr_av_segm,0,2);
wr_mad_av = mad(wr_av_segm,0,2);
wr_rms_av = rms(wr_av_segm,2);
wr_FFT_av_segm = fft(wr_av_segm);
wr_pow_av = wr_FFT_av_segm.*conj(wr_FFT_av_segm);
wr_pow_av = sum(wr_pow_av,2);

wr_features= [wr_mean_acc wr_stdev_acc wr_var_acc wr_mad_acc wr_rms_acc

wr_skewness_acc wr_kurtosis_acc wr_SMA_acc wr_rmse_JERK_acc wr_pow_acc

wr_mean_av wr_stdev_av wr_var_av wr_mad_av wr_rms_av wr_pow_av];

% Index
% Accelerations
in_mean_acc = mean(in_acc_segm,2);
in_stdev_acc = std(in_acc_segm,0,2);
in_var_acc = var(in_acc_segm,0,2);
in_mad_acc = mad(in_acc_segm,0,2);
in_rms_acc = rms(in_acc_segm,2);
in_skewness_acc = skewness(in_acc_segm,1,2);
in_kurtosis_acc = kurtosis(in_acc_segm,1,2);
in_SMA_acc = sum(abs(in_accx_segm),2) + sum(abs(in_accy_segm),2) +

sum(abs(in_accz_segm),2);
in_jerk_diff_acc = diff(in_acc_segm,1,2)./(1/fs);
in_jerk_mean_acc = mean(in_jerk_diff_acc,2);
in_rmse_JERK_acc = sqrt(1/length(in_jerk_diff_acc).*sum((in_jerk_diff_acc-

in_jerk_mean_acc).^2,2));
in_FFT_acc_segm = fft(in_acc_segm);

13

Data Analysis – VISTA Dataset

in_pow_acc = in_FFT_acc_segm.*conj(in_FFT_acc_segm);
in_pow_acc = sum(in_pow_acc,2

% Angular Velocities
in_mean_av = mean(in_av_segm,2);
in_stdev_av = std(in_av_segm,0,2);
in_var_av = var(in_av_segm,0,2);
in_mad_av = mad(in_av_segm,0,2);
in_rms_av = rms(in_av_segm,2);
in_FFT_av_segm = fft(in_av_segm);
in_pow_av = in_FFT_av_segm.*conj(in_FFT_av_segm);
in_pow_av = sum(in_pow_av,2);

in_features= [in_mean_acc in_stdev_acc in_var_acc in_mad_acc in_rms_acc

in_skewness_acc in_kurtosis_acc in_SMA_acc in_rmse_JERK_acc in_pow_acc

in_mean_av in_stdev_av in_var_av in_mad_av in_rms_av in_pow_av];

% For what concerns the cameras, the mean values of the joints’ coordinates were

computed for each window.

jointsSTD_1_cam1 = mean(jointsSTD_1_cam1,2);
jointsSTD_2_cam1 = mean(jointsSTD_2_cam1,2);
jointsSTD_3_cam1 = mean(jointsSTD_3_cam1,2);
jointsSTD_4_cam1 = mean(jointsSTD_4_cam1,2);
jointsSTD_5_cam1 = mean(jointsSTD_5_cam1,2);
jointsSTD_6_cam1 = mean(jointsSTD_6_cam1,2);
jointsSTD_7_cam1 = mean(jointsSTD_7_cam1,2);
jointsSTD_8_cam1 = mean(jointsSTD_8_cam1,2);
jointsSTD_9_cam1 = mean(jointsSTD_9_cam1,2);
jointsSTD_10_cam1 = mean(jointsSTD_10_cam1,2);
jointsSTD_11_cam1 = mean(jointsSTD_11_cam1,2);
jointsSTD_12_cam1 = mean(jointsSTD_12_cam1,2);
label_cam1 = mode(label_cam1,2);

joints_cam1 = [jointsSTD_1_cam1 jointsSTD_2_cam1 jointsSTD_3_cam1

jointsSTD_4_cam1 jointsSTD_5_cam1 jointsSTD_6_cam1 jointsSTD_7_cam1

jointsSTD_8_cam1 jointsSTD_9_cam1 jointsSTD_10_cam1 jointsSTD_11_cam1

jointsSTD_12_cam1];

14

Data Analysis – VISTA Dataset

Feature Selection

% Kruskal Wallis
kw = zeros(size(data_features,2),1);

 for i=1:(size(data_features,2)-1)
 kw(i) = kruskalwallis(data_features(:,i),data_features(:,end),'off');
 end

parameters = find(kw < 0.05);
matrix = data_features(:,parameters);

% Finally, the correlated features were removed (correlation coefficient <

0.85).
columns= CorrelationAnalysis(matrix,0.85);
FinalDataset = matrix(:,columns');

