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the VISta datasets, a combination 
of inertial sensors and depth 
cameras data for activity 
recognition
Laura Fiorini  1,4 ✉, Federica Gabriella  Cornacchia Loizzo2,4, alessandra Sorrentino2, 
Erika Rovini1, alessandro Di Nuovo  3 & Filippo Cavallo1,2

this paper makes the VISta database, composed of inertial and visual data, publicly available for 
gesture and activity recognition. the inertial data were acquired with the SensHand, which can 
capture the movement of wrist, thumb, index and middle fingers, while the RGB-D visual data were 
acquired simultaneously from two different points of view, front and side. The VISTA database was 
acquired in two experimental phases: in the former, the participants have been asked to perform 10 
different actions; in the latter, they had to execute five scenes of daily living, which corresponded to a 
combination of the actions of the selected actions. In both phase, Pepper interacted with participants. 
The two camera point of views mimic the different point of view of pepper. Overall, the dataset includes 
7682 action instances for the training phase and 3361 action instances for the testing phase. It can 
be seen as a framework for future studies on artificial intelligence techniques for activity recognition, 
including inertial-only data, visual-only data, or a sensor fusion approach.

Background & Summary
Over the last years, human activity recognition has gained considerable success due to the importance of under-
standing what a person is performing during normal daily activities. The correct understanding of human-being 
activities is playing a fundamental role also in the field of human-robot interaction (HRI). Indeed, robots can 
collaborate with humans and help people accomplish their actions. The recognition of activities can be achieved 
by exploiting different kinds of sensors, such as inertial or visual ones. However, no single modality sensor can 
cope with all the situations that occur in the real world; just to give an example, if the person makes two very 
similar gestures involving the whole body that differ only in the movement of the hand, the camera cannot 
correctly differentiate the two, while an inertial sensor placed on the hand can; indeed it can capture the fine 
movement of the hands, while the camera is focused on the recognition of the total body movement (i.e. wide 
movement). Additionally, the presence of multiple and multimodal sensors can introduce redundancy to the 
system, thus improving the accuracy of the activity recognition system.

In the literature, many open datasets are available for human activity recognition, as shown in Table 1. 
In the context of human activity recognition, accelerometers are the most widely used sensors thanks to 
their low power consumption and their ability to capture body movements meaningfully. One of the data-
sets which exploits this technology is the FallAllD1,2, which consists of a multitude of files collected using 
three data-loggers worn on the wrist, waist and neck of the participants. In the UniMiB dataset3, a Samsung 
Galaxy Nexus equipped with a Bosh acceleration sensor has been used. The University of Dhaka (DU) Mobility 
Dataset (MD)4 is another publicly available dataset built using a single wrist-mounted wearable sensor. In addi-
tion to ADLs, the latter three datasets also contain data related to different types of falls. olor video cameras are 
also often used in human activity recognition to monitor several human people activities. As an example, the 
Multiview Cooking Actions dataset (MoCA)5 is a bi-modal dataset in which six VICON infrared cameras are 
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used to collect Motion Capture data and video sequences from multiple views of upper body actions in a cook-
ing scenario. Even if this approach is very interesting, it is based on a very complex and cumbersome system 
such as the VICON, which cannot be transported and easily installed in a domestic environment. Furthermore, 
only upper limbs data are present in the MoCA dataset. A similar but more convenient system for monitor-
ing people at home is based on RGB-D cameras, which are used in the following works to collect data. The 
RGBD-HuDaAct6 is a human activity video database containing synchronized color-depth video streams of 12 
daily living activities. Similarly, the Cornell Activity Dataset7,8, that contains CAD-60 and CAD-120, comprises 
RGB-D video sequences and tracked skeletons of four subjects performing activities which are recorded using 
the Microsoft Kinect sensor. Another very important dataset is the MSRDailyActivity3D9, which has been 
created by using a Kinect device.

The above mentioned datasets available in the literature have been created by considering only one modality 
sensor. However, by combining multiple sensors it is possible to create more complete datasets. Some examples 
comprehend the MEX dataset10 and the Up-Fall Detection Dataset11. In this context, we propose the VISTA 
database as a unique compromise for the recognition of activities of daily living between datasets based on visual 
sensors and those based on the inertial ones. Particularly, the added values of the VISTA database, that make it 
unique compared to the others, are:

•	 Daily Actions and Activities For VISTA actions selection we referred to the Cornell Activity Dataset (CAD-60) 
and the MSR Daily Activity 3D Dataset. Ten actions in common between the two datasets were selected, choosing 
actions similar in pairs. The rationale is to create a dataset composed of very similar pairwise activities for what 
concerns the wide body movement, but that differs from fine movements of the hand. In this sense, this dataset 
could be used to test the accuracy of a recognition system in distinguish very similar movements.

•	 Presence of ADL scenes In addition to providing data related to simple gestures or ADLs, our dataset pro-
vides data related to 5 ADL scenes, which are “combined” data of single actions. In this way we provide data 
related to the individual ADLs and data related to the transitions between one action and another.

•	 Multimodal data The VISTA database proposes the combination of RGB-D cameras and inertial sensors 
positioned on the fingers and on the wrist of the subjects. This allows the creation of a complete and heter-
ogeneous database, in which the cameras give an indication of the wide movement of the limbs during the 
movement, while the inertial modules placed on the fingers acquire data that allow to recognize the fine 
movements, which are the ones that differentiate the most similar actions. The comparison with the other 
datasets on this aspect is better highlighted in the Table 1 in the column’Sensors’.

Dataset Sensorsa Activitiesb

FallAllD1, 2
Wide: accelerometer, gyroscope, 
magnetometer, barometer on the chest, 
wrist or waist; Fine: -

Basic Gestures: several types of fall; walking, sitting down, lying 
down,..; ADL: jogging, clap hands, climbing stairs,..; Scene: -

UniMiB dataset3
Wide: Samsung Galaxy Nexus 
smartphone equipped with a Bosh 
acceleration sensor; Fine: -

Basic Gestures: several types of fall; walking, standing up, lying 
down, sitting down; ADL: running, going downstairs, going 
upstairs, jumping; Scene: -

DU-MD Dataset4 Wide: single wrist-mounted wearable 
sensor; Fine: -

Basic Gestures: several types of falls; walking, sitting, laying, 
standing; ADL: jogging, staircase climbing, staircase down; Scene: -

RGBDHuDaAct6 Wide: color video camera and depth 
sensor; Fine: -

Basic Gestures: get up, sit down, stand up, enter and the room; 
ADL: make a phone call, mop the floor, go to bed, get up, eat meal, 
drink water, take off the jacket and put on the jacket; Scene: -

Cornell Activity Dataset7, 8 
(CAD-60) Wide: Microsoft Kinect camera; Fine: -

Basic Gestures: talking on couch; ADL: Rinsing mouth, brushing 
teeth, wearing contact lenses, talking on the phone, drinking water, 
opening pill container, cooking (chopping), cooking (stirring), 
relaxing on couch, writing on whiteboard, working on computer; 
Scene: -

MSR Daily Activity 3D9 Wide: Microsoft Kinect camera; Fine: -
Basic Gestures: sitting still, lying down on sofa, walking, standing 
up, sitting down; ADL: drinking, eating, reading book, calling cell 
phone, writing on a paper, using laptop, using vacuum cleaner, 
cheering up, tossing paper, playing games, playing guitar; Scene: -

MEX dataset10
Wide: Pressure mat, a depth camera 
and two accelerometers on the wrist 
and the thigh; Fine: -

Basic Gestures: -; ADL: exercises related to Musculoskeletal 
Disorders (MSD), i.e. knee-rolling, bridging, pelvic tilt, the clam, 
repeated extension in lying, prone punches, superman; Scene: -

Up-Fall Detection Dataset11
Wide: Five IMUs (waist, thigh, wrist, 
chest, foot), one EEG headset, two 
cameras, six infrared in grid; Fine: -

Basic Gestures: different types of fall; walking, standing, sitting, 
laying; ADL: picking up an object, jumping; Scene: -

MoCA Dataset5
Wide: six VICON infrared cameras 
(markers on shoulder, elbow, wrist, 
palm, index and little finger knuckles); 
Fine: -

Basic Gestures: -; ADL: 20 cooking actions; Scene: preparing an 
omelet, grating cheese, melting ingredients, making a sandwich, 
preparing a lemonade

VISTA Datasets
Wide: two color and depth cameras; 
Fine: one wearable inertial glove 
SensHand

Basic Gestures: walk; ADL: drink, eat, brush teeth, use laptop, 
write on a paper, talk on the phone, sweep, relax, read; Scene: 
having lunch, house cleaning, relax, working, personal hygiene

Table 1. A comparison of the VISTA dataset with existing benchmarks. a‘Wide’ and ‘Fine’ indicate the sensors 
used to recognize the wide and fine movements, respectively. bThe actions were clustered into ‘Basic Gesture’, 
e.g. walking, sitting, lying, ‘ADL’, related to a specific activity of daily living, and ‘Scene’, which includes all the 
activities composed by two or more activities without restrictions in the passage from one to the other.
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•	 Multiple views One of the drawbacks of using a vision system is the camera occlusion that can occur if the 
subject is not positioned frontally to the camera. The VISTA database offers the simultaneous video records 
from two different perspectives, in front of the camera and laterally, with the purpose to investigate whether 
the use of a multi-modal approach could improve the accuracy of the recognition when the subject is not in a 
frontal position, thus mimicking very realistic operative conditions.

•	 Human - Robot Interaction The VISTA database was acquired from the interaction with the Pepper robot. 
The participants interacted with the robot and performed what it was explaining and requiring.

These features make the dataset usable in different applications: just to name a few, the recognition of actions 
and scenes, the analysis of the transitions between the actions, he development of customized machine learning 
algorithms, the comparison of approaches using different sensor modalities. The implications of such research 
efforts are important in the field of activity recognition, but also in the field of human-robot interaction, since 
the understanding of the actions and the context can improve the robot perception ability.

Methods
In this section we highlight the main properties of our data collection. We start describing the design of the 
study and the setup, including a description of the acquisition system.

Study design. Phase 1: Single action - Training phase. In the literature, there is not a common agreement on 
the definition of action or activity recognition. Often, these terms are used as synonymous. Atomic actions12 are 
movements of a person describing a certain motion that can be part of more complex activities, whereas gestures 
are considered as primitive movements of the body. Activity is hierarchically defined as a sequence of actions13. 
The first part of the experimentation consisted of the training phase, in which each participant had to simulate 
10 different actions, sequentially. Each action was carried out for one minute and this phase took a total of almost 
15 minutes per subject. The complete description of the selected actions is reported in Table 2. It is worth point-
ing out that these actions have been selected in such way to have pairs of actions very similar between them, i.e. 
actions whose wide movement can make them seem equal, but that differ for the fine movement and grip of the 
hand. This makes the pairs of actions equal for the cameras and different for the inertial modules placed on the 
hand (Brush teeth (BT), Eat with the fork (EF); Drink from a glass (DG), Talk on the phone (TP); Read a book 
(RB), Relax on the couch (RC);Write on a paper (WP), Use laptop (UL); Sweep with the broom (SB), Walk (WK)).

Phase 2: ADL Scene composition - Testing phase. The second part of the experimentation was called Testing 
phase. In this phase the user was required to perform the same actions performed in the first phase but sim-
ulating 5 scenes of daily living: Having Lunch (HL), Personal Hygiene (PH), House Cleaning (HC), Working 
(WO) and Relax (RE). Each scene was performed for one minute. In this time frame, the subject had to execute 
the different actions composing the scene, as reported in Table 2. Before starting the execution, the robot gave 
indications on which scene to execute and among which actions he could choose. The person was free to choose 
when to switch from one action to another and for how long to carry each of them out within the minute, having 
also the possibility to re-perform them. This phase lasted approximately 15 minutes.

Data acquisition tools. The data were acquired using the following devices:

•	 SensHand: The SensHand is a wearable sensor consisting of four inertial modules placed on the wrist and 
on the thumb, index and middle finger. In this paper it is used to capture the fine movements of the fingers. 
Each module is made of a complete 9-axis inertial sensor (6-axis geomagnetic module LSM303DLHC and 
3-axis digital gyroscope L3G4200D, STMicroelectronics, Italy) and includes a microcontroller (ARM®-based 

PHASE 1 (Training): each action for one minute PHASE 2 (Testing): each scene for one minute

Action Description Position HC HL PH WO RE

EF Take the fork, eat and put it back Sitting on the chair X

DG Take the glass, drink and put it back Sitting on the chair X X

BT Take the toothbrush, brush teeth and put it back Sitting on the chair X

UL Type on the keyboard with both hands Sitting on the chair X

WP Take a pen and write on a paper Sitting on the chair X

TP Take the phone, talk on it and put it back Sitting on the chair X X

WK Walk forward and backward repeatedly Standing X

SB Take the broom, sweep and put it back at the end Standing X

RC Sit comfortably on the couch and relax Sitting on the couch X

RB Take the book, read it and turn pages repeatedly Sitting on the couch X

Table 2. Description of actions and of the associated scenes included in the dataset. For the actions, ‘EF’ stands 
for ‘eat with the fork’, ‘DG’ for ‘drink from a glass’, ‘BT’ for ‘brush teeth’, ‘UL’ for ‘use laptop’, ‘WP’ for ‘write 
on a paper’, ‘TP’ for ‘talk on the phone’, ‘WK’ for ‘walk’, ‘SB’ for ‘sweep with the broom’, ‘RC’ for ‘relax on the 
couch’ and ‘RB’ for ‘read a book’. For the scenes, ‘HC’ stands for ‘house cleaning’, ‘HL’ for ‘having lunch’, ‘PH’ for 
‘personal hygiene’, ‘WO’ for ‘working’ and ‘RE’ for ‘relax’.

https://doi.org/10.1038/s41597-022-01324-3
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32-bit STM32F10RE MCU, STMicroelectronics, Italy) which can acquire, filter and store data at a frequency 
of 100 Hz14. The system is based on a standard Controller Area Network (CAN), where the module placed on 
the forearm acts as coordinator of the entire system. It collects and transmits data at 100 Hz towards a generic 
control station through a wireless communication based on the ESD 210 (Parani) Bluetooth serial device. The 
other modules are positioned on the distal phalanx of the thumb, index and middle finger, as shown in Fig. 1. 
The device is powered by a small, rechargeable and light-weight Li-Ion battery that ensures autonomy of the 
system for about four hours.

•	 Pepper robot and RGB-D camera: Pepper is the world’s first social humanoid robot able to recognize faces 
and basic human emotions15. The robot is characterized by 20 degrees of freedom for natural movements, 
giving the impression of interacting with a human being. It has touch sensors, speech synthesis, LEDs and 
microphones for multimodal interactions. An Intel® RealSense™ depth camera has been mounted on Pepper 
tablet, as showed in Fig. 2, allowing us to obtain colored and depth images, since the latter were not available 
using only Pepper’s sight. The Intel® RealSense™ depth camera D435i is a stereo tracking solution, which 
offers RGB images and quality depth for several applications. In order to let Pepper act properly for the exper-
imentation, it was re-programmed through the software Choregraphe: several behaviors, one for each action 
to be classified, were created and installed on the robot. The depth camera was positioned on the robot’s 
chest, frontally with respect to the subject. In order to save time, another Intel® RealSense™ depth camera 
was placed laterally to the subject at the same height, providing an additional point of view. This allowed us 
to record simultaneously the two video streams during the experimental session without requesting the par-
ticipant to execute the test twice.

Experimental set up. The experimentation was performed in Sheffield (UK), in the Smart Interactive 
Technology (SIT) research laboratory of the Sheffield Hallam University in a dedicated room. The experimental 
setup is depicted in Fig. 2.

Before starting the tests, each subject had to wear the SensHand by placing the IMUs on the wrist and on the 
intermediate phalanges of the thumb, index and middle finger of the dominant hand (as in Fig. 1) and sit in front 
of the robot. Each participant was requested to perform the training and the test phases. During both phases, 
Pepper gave instructions to the person on how to perform the actions and the scenes. In order to be sure that the 
person understood how to perform the action, an explanatory GIF was shown on Pepper’s tablet for the entire 
duration of the exercise, as showed in Fig. 3. In case of necessity, the user could ask Pepper to repeat the expla-
nation. When the user was ready to start, the robot gave instructions on when to start and when to stop. For the 
duration of the experimentation, there was no interaction between the robot and the subject for safety reasons; 
indeed, it was far from the subject during the whole session. Another person was always present in the room to 
observe the experiment, annotate the data and intervene in case of necessity.

Participants. Twenty healthy young people were enrolled for the experimental protocol among the staff and 
the students of the Sheffield Hallam University. They were a cohort of multicultural and right-handed people. 
Thirteen subjects were female, seven males, and their age ranged from 19 to 44 years old.

Data synchronization. The data were synchronized through a dedicated web interface. In particular, 
SensHand sent one data package for each sample. Each package was composed of a series of values from accel-
erometers, gyroscopes and magnetometers for wrist, thumb, index and middle finger sensors along x, y and 
z axes. The frequency of acquisition of the wearable glove was 100 Hz. After each acquisition, all information 

Fig. 1 SensHand glove.
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Fig. 2 Setup for experimental session.

Fig. 3 GIFs explaining the movement for the ten activities. Participant has granted the permission to publish 
these photos.

Fig. 4 Data collection interface when Training (left) and Testing (right) are selected, respectively.

https://doi.org/10.1038/s41597-022-01324-3
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collected was organized in a tabular format in dedicated files. A column containing the timestamps was added for 
each sample, allowing us to keep track of the time of the signal and synchronise it with the camera’s data during 
post-processing.

With regard to the acquisition of RGB and depth images from cameras, it was necessary to integrate the two 
cameras in Robot Operating System (ROS), which comprehends a set of software libraries and tools to develop 
robot applications. Since two cameras were involved at the same time, it was necessary to start streaming images 
at the same time. In order to reduce the computational load and speed up the acquisition, compressed images 
were recorded by the two cameras.

The creation of this custom interface, showed in Fig. 4, allowed us to customize the saving of information in 
dedicated rosbag files, that were assembled according to the different phases that constituted the experimenta-
tion. As an example, every time the data acquisition started, i.e. every time the button ‘Start’ was pressed, a new 
.txt file, containing inertial data, and two.bag files, containing images from the two cameras, were created. 
An artificial counter was added on the interface to keep track of the number of times the’Start’ button was 
pressed for each action.

Data annotation. In the VISTA database, the data annotation was performed in real-time by the external 
observer, who administrated the exercise, through the custom web interface described in the previous para-
graph (Fig. 4). During the training phase, the acquisition was unique for each activity and only one action was 
performed for each session. For this reason, we just saved the name of the corresponding action as name of the 
training files, e.g. s_user1_t1_bt_1.txt. During the testing phase, we followed a different approach. As it 
is shown in Fig. 4, when the’Testing’ phase and the desired scene were selected in the interface, the names of the 
actions concerning that particular scene became visible together with the corresponding button. Each time the 
person changed activity within the scene, the label button of the new activity was pressed by the external observer. 
The timestamp and the label were saved in a .txt file. Saved timestamps allowed us to synchronize data.

Table 3 shows the instances’ distribution for the training and testing sequences after annotation. The per-
centages are computed over the total number of action instances annotated on the training (7682) and testing 
(3361) set, respectively.

approval of ethics committee. The approval of the ethics committee was obtained from Sheffield Hallam 
University (UK) Ethical Committee. As a token of gratitude, each participant received an Amazon e-voucher 
of £10 after completing the experiment. This expense, covered by the HEIF funding allocated for this project, 
encouraged the participation in the experiment. The participants received an information sheet and they were 
verbally informed that they had the right to withdraw from the experiment at any time. Participants were asked to 
indicate age and gender and to fill out the informed consent before the beginning of the procedure in which they 
consented to the video-recording of the session. To protect information and prevent data from being misused, 
all the data were stored in an anonymous and secure way. To ensure that the ethical issues were handled properly 
and that the right to privacy was respected, a codification system in data handling was used. Specific attention was 
paid to the procedures related to informed consent, the confidentiality of the information, data storage, fair and 
lawful processing of data. There were no risks or any possible negative consequences for participants: the robot 
used for the experimental session is a commercial platform, proved safe for HRI, integrated into the standard 
environment and under constant control by experienced technicians.

Data Records
Due to privacy restrictions, the VISTA database includes two sections: the Public dataset and the Dataset on 
request. Both datasets are stored by the Sheffield Hallam University Research Data Repository (SHURDA)16. 
The Public dataset is public and anyone can access and use it. This contains all the inertial data acquired with 
SensHand, only the depth images acquired by the camera and the spatial coordinates of the skeleton joints 
extracted from the RGB images. All this information is itself anonymous. The Dataset on request is not public 
and it will be made available upon request and for research purposes only. The Dataset on request includes raw 
RGB and depth images acquired with the camera that couldn’t be anonymised.

The organization of the two datasets is similar and is illustrated in Fig. 5. The names of the specific files 
depend on the specific activity that the subject performed during the experimentation. The files corresponding 

Activity Training Testing

Eat with the fork (EF) 10% 12%

Drink from a glass (DG 10% 15%

Brush teeth (BT) 10% 12%

Use laptop (UL) 10% 7%

Write on a paper (WP) 10% 9%

Talk on the phone (TP) 10% 10%

Walk (WK) 10% 9%

Sweep with the broom (SB) 10% 11%

Relax on the couch (RC) 10% 6%

Read a book (RB) 10% 9%

Table 3. Activities instances distribution in training and testing sequences.

https://doi.org/10.1038/s41597-022-01324-3
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to each user are contained in a specific folder, whose name is the id of the user himself. Each folder, specific for 
each participant, contains two more folders: one with the data acquired during the phase 1 (i.e. Training) and 
the other containing the ones acquired during the phase 2 (i.e. Testing). In the former, there are ten more folders, 
one for each activity. In the latter, there are only five, one for each scene.

The Public dataset contains the following files for each activity or scene folder:

•	 a .txt  file, which contains inertial data, as explained in more detail in the section “SensHand data 
organization”;

•	 two .csv files, which include the 2D skeleton coordinates extracted from the RGB images recorded by the 
two cameras, as detailed in the section “Camera data organization”;

•	 two .bag files, containing the depth images from the two cameras (see section “Camera data organization”);
•	 in the testing folder, a .txt label file containing information on the moments in time in which the person 

passed from one activity to another during the testing phase.

The Dataset on request is not anonymised, for this reason it will made available on request, exclusively for 
specific research purposes, under a Data Processing agreement. The files available in each action or scene folder 
of this dataset are:

•	 a .txt file, containing the inertial data (see section “SensHand data organization”);
•	 two .bag files, containing colored and depth images from the two cameras (see section “Camera data 

organization”);
•	 in the testing folder, a .txt label file containing information on the moments in time in which the person 

passed from one activity to another during the testing phase.

For both datasets, the string name of each file is made of:

•	 the id of the user: s_user1,.., s_user20;
•	 the phase: t1 for ‘Training’, te for ‘Testing’;
•	 the action, with the abbreviations reported in Table 2;
•	 the counter;
•	 only for the visual data, the indication of the camera: cam1 for the lateral camera, cam2 for the frontal one;
•	 only for the depth data, the depth label, indicating that the .bag files in the Public dataset contain only the 

depth information.

For instance, considering the Public dataset, while collecting data from s_user1, selecting the ‘Training 1’ 
and the action ‘brush teeth (BT)’, in case the “Start” button is pressed for the first time, the names of the files are:

•	 s_user1_t1_bt_1_cam1_depth.bag,
•	 s_user1_t1_bt_1_cam2_depth.bag,
•	 s_user1_t1_bt_1_cam1.csv,

Fig. 5 Organization of the VISTA database.

https://doi.org/10.1038/s41597-022-01324-3
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•	 s_user1_t1_bt_1_cam2.csv
•	 s_user1_t1_bt_1.txt.

Instead, by collecting data from s_user1, selecting ‘Testing’ phase and ‘HOUSE CLEANING (HC)’ scene, 
the names of the files are:

•	 s_user1_te_HC_cam1_depth.bag,
•	 s_user1_te_HC_cam2_depth.bag,
•	 s_user1_te_HC_cam1.csv
•	 s_user1_te_HC_cam2.csv
•	 s_user1_te_HC_label.txt,
•	 s_user1_te_HC.txt.

SensHand data organization. The .txt file containing the inertial data has a table format, in which each 
package (each row) is characterized by the series of values reported below:

•	 Timestamp represents the record of the time of occurrence of the particular event, i.e. when a new packet 
with inertial data has arrived. This allows us to time the signal and synchronise it with the camera’s data. As 
far as rows are concerned, every time a new package is received, a line is added at the bottom of it.

•	 Count is an artificial counter which increments by 1 unit each time a new data packet is received and which 
resets when it reaches 255.

•	 CountMicro is the internal counter of the microcontroller which increments by 1 each time a new data 
packet is received and which resets when it reaches 255. If CountMicro corresponds to Count at each 
iteration, it means that the inertial glove SensHand didn’t lose any data.

•	 Freq is an artificial counter which increments by 1 unit each time a new data package is received and which 
resets when it reaches 100.

•	 Time is an artificial counter which increments by 1 each time Freq reaches 100. It keeps track of the time 
indicating how many seconds have passed, considering that the frequency of acquisition of the wearable glove 
is 100 Hz.

•	 Accx, Accy, Accz, Girx, Giry, Girz, Magx, Magy, Magz are the accelerometers, gyro-
scopes and magnetometers data along x,y,z axes for the wrist, thumb, index, and middle finger, respectively.

Number of joint Joint type

0 Nose

1 Neck

2 Right Shoulder

3 Right Elbow

4 Right Wrist

5 Left Shoulder

6 Left Elbow

7 Left Wrist

8 Mid Hip

9 Right Hip

10 Right Knee

11 Right Ankle

12 Left Hip

13 Left Knee

14 Left Ankle

15 Right Eye

16 Left Eye

17 Right Ear

18 Left Ear

19 Left Big Toe

20 Left Small Toe

21 Left Heel

22 Right Big Toe

23 Right Small Toe

24 Right Heel

25 Background

Table 4. Number of joint and associated joint type.
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Camera data organization. For what concerns the visual data, every time a new action or scene was per-
formed, the data contained in the ROS messages were recorded in two appropriate files, one corresponding to the 
frontal camera and the other to the lateral one. The file containing the messages is called bag and has the exten-
sion.bag. The advantage offered by bag files is to have a recording that can be used several times, reproducing each 
time the exact operating scenario in which the bag was registered. The following list of topics are available for the 
bag files in the Dataset on request:

•	 /camera1/color/image_raw
•	 /camera2/color/image_raw
•	 /camera1/depth/image_rect_raw
•	 /camera2/depth/image_rect_raw

In order to reduce the dimensions of the bag files, we recorded a compressed version of the colored and depth 
images from the camera.

After the experimentation, the colored images were extracted from the bag files and were used to create video 
files. The OpenPose software was then employed to detect human body, hand, face and foot keypoints on single 
frames. For each video, the OpenPose output consisted in .json files containing the body part locations and 
detection confidence formatted as x_1,y_1,c_1,x_2,y_2,c_2, .., where x and y are the 2D coordinates 
of the skeleton, while c is the confidence score in the range [0, 1]. A total of 25 keypoints were estimated for the 

Fig. 6 Skeleton tracking.

Index + Wrist Index/Wrist

Wrist acc. mean Index acc. mean Acc. mean

Wrist acc. stdev Index acc. stdev Acc. stdev

Wrist acc. RMS Index acc. RMS Acc. RMS

Wrist acc. skewness Index acc. skewness Acc. skewness

Wrist acc. kurtosis Index acc. kurtosis Acc. kurtosis

Wrist acc. SMA Index acc. SMA Acc. SMA

Wrist acc. power Index acc. power Acc. power

Wrist ang. vel. mean Index vel. power Ang.vel. mean

Wrist ang. vel. power Ang.vel. stdev

Ang.vel. power

Table 5. The first two columns show the features selected after the correlation analysis from the combined 
Index + Wrist dataset, while the third one shows the ones selected from Index and Wrist dataset when analysed 
on their own.
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body; the coordinates are organized as showed in Table 4. The same approach has been followed to extract also 
21 hand features, as follows:

•	 0: wrist;
•	 from 1 to 4: joints of the thumb;
•	 from 5 to 8: joints of the index finger;
•	 from 9 to 12: joints of the middle finger;
•	 from 13 to 16: joints of the ring finger;
•	 from 17 to 20: joints of the little finger.

All finger joints are numbered in ascending order from palm to fingertip. All the .json files were then 
converted to .csv files, which have been made available for the Public dataset. Scholars and researchers can 
select the most appropriate keypoints configuration to validate their algorithms. After extracting the skeleton 
information, the topics related to the colored images were manually eliminated from the bag files in the public 
version of the dataset, making it anonymous.

Repository. The VISTA database, which comprosies both the Public dataset and Dataset on request, is availa-
ble at this link https://doi.org/10.17032/shu-180021.16 To access any file on the repository, including the Readme 
file, there is a log in requirement. Interested people just register with their email address and a username and pass-
word. Within the supplementary material, we included a draft of the Data Processing Agreement for the access 
to the restricted Dataset on request. The Public dataset is available under the Creative Commons Attribution 

Fig. 7 Scheme of the feature-level fusion.

Index (I) Wrist (W) I + W

A R F P A R F P A R F P

SVM 0.72 0.72 0.72 0.73 0.72 0.72 0.71 0.73 0.56 0.56 0.55 0.63

RF 0.56 0.57 0.57 0.59 0.58 0.57 0.57 0.60 0.66 0.66 0.66 0.67

KNN 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.81 0.81 0.81 0.82

Frontal camera (FC) Lateral camera (LC)

A R F P A R F P

SVM 0.84 0.84 0.84 0.85 0.60 0.60 0.61 0.66

RF 0.71 0.72 0.72 0.72 0.64 0.65 0.64 0.65

KNN 0.90 0.90 0.90 0.90 0.81 0.81 0.82 0.81

Table 6. Results obtained by stand-alone systems.‘A’ stands for Accuracy, ‘R’ for Recall, ‘F’ for F-measure and ‘P’ 
for Precision.
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licence (CC-BY). Access to the Dataset on request is regulated by a Data Processing Agreement. For the Public 
dataset, licensees may copy, distribute, display and perform the work and make derivative works and remixes 
based on it only if they give the authors the full attribution, also including a citation to this article and the dataset 
on SHURDA16. The Dataset on request contains the raw RGB video data that could be made available on request 
under a Data Processing Agreement, which will only allow verification and validation of the research presented 
in this article.

technical Validation
In this section we provide a baseline analysis for the recognition of human activities, reporting some prelimi-
nary results of a possible application of the VISTA Public dataset. In particular, in this section, we will neglect 
the depth information obtained by the cameras and the magnetometer’s data retrieved by the SensHand. For 
this analysis, we merged and mixed the training and the testing parts of the VISTA dataset into one; this choice 
was made because training and testing data were acquired differently, but the samples of both were labeled 
with the id of the ten actions. As a first step, the raw data coming from the cameras and from SensHand were 
pre-processed, some features were extracted from them and then selected. This approach was carried out in 
parallel for the two sensor modalities, as described below.

pre-processing and feature extraction. For what concerns the pre-processing and the extraction of the 
features related to the visual data, we followed the approach described in the Usage Notes to extract each frame 
from the bag files and to create the videos from the frames. Then, the OpenPose software was employed to retrieve 
the 2D coordinates of the skeleton’s joints, which constituted the features of the visual data, as showed in Fig. 6.

Based on the results obtained by previous analyses17, we only considered a subset of skeleton joints, such 
as head, neck, hands, feet and torso. This restricted set of joints correspond to the most significant joints of the 
body and has shown itself to be the most discriminating one for activity recognition, allowing reduction of com-
plexity for the further steps of computation. The coordinates were then normalized considering the coordinates 
of the torso joint as a reference17, obtaining a final dataset which was independent from the person’s size and 
from the relative position of the camera. The final feature vector was composed by 12 attributes for each frame 
(x and y coordinates of head, neck, hands and feet). The signal was then segmented by 50%-overlapping moving 

I + FC W + FC IW + FC

A R F P A R F P A R F P

SVM 0.76 0.76 0.76 0.78 0.81 0.80 0.79 0.80 0.67 0.66 0.64 0.72

RF 0.75 0.75 0.76 0.77 0.76 0.77 0.77 0.77 0.77 0.78 0.78 0.79

KNN 0.89 0.89 0.89 0.89 0.88 0.88 0.89 0.88 0.89 0.89 0.89 0.90

I + LC W + LC IW + LC

A R F P A R F P A R F P

SVM 0.63 0.63 0.64 0.67 0.56 0.56 0.55 0.58 0.67 0.66 0.64 0.72

RF 0.74 0.75 0.75 0.76 0.73 0.73 0.73 0.74 0.77 0.78 0.78 0.79

KNN 0.77 0.77 0.78 0.82 0.77 0.77 0.79 0.82 0.89 0.89 0.89 0.90

Table 7. Fusion at Feature-level’s Results. ‘A’ stands for Accuracy, ‘R’ for Recall, ‘F’ for F-measure and ‘P’ for 
Precision.

Fig. 8 Spider plot which contains the F-measure values of the best classifiers on all datasets divided into those 
related to the frontal camera, on the left, and those related to the lateral one, on the right. All F-measure values 
are relative to individual actions.
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windows with 3 seconds’ size, considering as final value of each window the mean value of each instance, i.e. 
each of the 12 attributes. This procedure was followed for the visual data acquired by both frontal and lateral 
camera. The size of the 3-second window was chosen taking into account the duration of each movement linked 
to the ten activities, which on average falls within 3 seconds.

Regarding the pre-processing and the extraction of the features related to the inertial data, the raw accel-
eration values from accelerometers and the raw angular velocity values from the gyroscopes were filtered. In 
particular, a 4th order digital low-pass Butterworth filter was used with the cut-off frequency set to 5 Hz. In the 
same way as the visual data, these data were then segmented into 3 seconds overlapping windows and several 
features were extracted from each window: 10 related to acceleration values (mean, standard deviation, variance, 
mean absolute deviation (MAD), root mean square (RMS), skewness, kurtosis, signal magnitude area (SMA), 
normalized jerk and power) and 6 to angular velocity ones (mean value, standard deviation, variance, MAD, 
RMS and power).

activity dataset creation and feature selection. At this stage, we created 5 separated datasets by con-
sidering the inertial and the visual features alone (Frontal Camera, Lateral Camera, Index finger, Wrist and Index 
finger + Wrist). In order to understand the reason behind the creation of the different datasets, it is important to 
highlight two aspects:

•	 for what concerns the visual data, we did not create combined datasets of lateral and frontal visual data. 
Indeed, the robot is placed frontally or laterally with respect to the person and it cannot be in both positions 
at the same time;

•	 for what concerns the inertial data, according to previous works18, we only considered data coming from the 
wrist and index finger sensors of SensHand.

After the extraction of the features and the creation of the datasets, we performed a feature selection sepa-
rately for visual and inertial data. In particular, we first applied a Kruskal Wallis test, which confirmed that the 
ten gestures were statistically different for all the features under investigation (p < 0.05). Then, we performed 
a correlation analysis, through which only the statistically uncorrelated attributes were selected, considering a 
correlation coefficient of <0.85. For what concerns the visual features, all of them were statistically considered 
significant and uncorrelated, so the selected visual features matched the extracted ones. On the contrary, only a 
subset of inertial features was selected, as reported in Table 5.

At this stage, we combined the inertial and the visual features through a fusion at feature-level, ending up 
with the eleven datasets listed below:

•	 FC: Frontal Camera
•	 LC: Lateral Camera
•	 I: Index finger
•	 W: Wrist
•	 IW: Index finger and Wrist
•	 I + FC: Index finger with Frontal Camera
•	 I + LC: Index finger with Lateral Camera
•	 W + FC: Wrist with Frontal Camera
•	 W + LC: Wrist with Lateral Camera
•	 IW + FC: Index finger and Wrist with Frontal Camera
•	 IW + LC: Index finger and Wrist with Lateral Camera

As previously stated, each signal was divided into overlapping windows. The number of rows in each dataset 
corresponded to the number of windows created. In total, 11043 windows were created for each combination of 
data concerning the frontal camera (FC, I + FC, W + FC, IW + FC) and inertial sensors alone (I, W, IW), while 
10455 for the ones concerning the lateral camera (LC, I + LC, W + LC, IW + LC). As concerns the number of 
columns present in each dataset, it depended on the features retained after the feature selection process.

activity recognition. After creating the datasets, we wanted to test them by performing human activity 
recognition, in particular making a distinction among the ten activities listed above. According to the state of 
the art, we chose three different supervised machine learning techniques, which are very often used to classify 
multi-modal data, such as inertial and visual ones: Support Vector Machine (SVM), Random Forest (RF) and 
K-Nearest Neighbor (KNN), as reported in Fig. 7.

The 11 datasets were classified through a 10-fold cross validation technique and the final results were 
obtained as the average on the performances of the ten models created after training the system. These datasets 
were analysed using Matlab2020a and the classification performances were evaluated in terms of accuracy, pre-
cision, f-measure and recall.

The results showed in Table 6 come from the stand-alone datasets, i.e. I, W, I + W, FC and LC. These evi-
dences show that the system is able to recognize the ten gestures with 73% of accuracy, recall, f-measure and 
precision when considering the index or wrist sensors alone and 81% when combining the two of them. The 
camera alone performs better and allows the system to reach 90% of accuracy when it is frontally positioned and 
81% when it is lateral.

Similarly, we show the results after the fusion at feature-level in Table 7. In most cases, the combination of 
inertial sensors with visual ones enhance the capabilities of the system of recognizing activities of daily living. In 
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particular, the system obtains 89% of accuracy with the combination of index sensor with the frontal camera and 
of index + wrist sensors with the frontal camera. 88% of accuracy is obtained by the combination of wrist sensor 
with the same camera. Instead, when considering the lateral camera, we obtain 77% of accuracy combining the 
camera with index or wrist sensors, and a big improvement is achieved by fusing index, wrist and lateral camera 
altogether.

In order to show the performances of the best classifiers on the single actions, in Fig. 8 we report a spider plot 
that shows the f-measure values of the best classifiers of all the combinations of datasets. This kind of analysis 
allowed us to study and compare different kinds of sensors to perform the best human action recognition. These 
evidences show that good results can be achieved with our dataset, reaching up to 90% of accuracy with the best 
configuration of sensors.

Usage Notes
For the Public dataset, the steps needed to visualize the compressed depth bag files are the following ones:

 1. Launch roscore
 2. In a third terminal, to visualize the depth bag file, launch rosrun image_view image_view 

image: = /camera1/depth/image_rect_raw_image_transport: = compressedDepth
 3. In a third terminal, enter the folder where the bag file is and launch rosbag play’namefile.bag’.

For what concerns the Dataset on request, the bag files contain also the colored information. Also in this case, 
the steps needed to visualize the compressed RGB bag files are similar:

 1. Launch roscore
 2. In a second terminal, to visualize the RGB bag file, launch rosrun image_view image_view im-

age: = /camera1/color/image_raw _image_transport: = compressed
 3. In a third terminal, enter the folder where the bag file is and launch rosbag play’namefile.bag’

Furthermore, the steps needed to convert rosbag files into videos are herein reported:

•	 Install ffmpeg in Ubuntu: sudo apt-get install ffmpeg
•	 To extract image frames from the rosbag file, create a folder where you will store images frames and move 

there. Enter the folder and execute the following command: rosrun image_view extract_images 
_sec_per_frame: = 0.01 image:=<IMAGETOPICINBAGFILE> where IMAGETOPICINBAG-
FILE is one of the topics listed by running rosbag info <BAGFILENAME>

•	 Open a new terminal and run rosbag play <BAGFILENAME>
•	 To obtain the video, in the images folder, run:ffmpeg –r <FPS> -b <BITRATE> -i frame%04d.

jpg <OUTPUT>.avi where FPS is the number_of_messages_for_image_topic/duration_in_sec, 
BITRATE is KilyBytes/Sec and OUTPUT is the name of the video.

Code availability
The lightweight processing needed to visualize and to decompress the bag files is described in the previous 
section. Processing code for data analysis is available on the supplementary material.
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