Sheffield
 Hallam
 University

Measuring straight time in elite short track speed skating relays

HEXT, Andrew http://orcid.org/0000-0003-2070-6601, HELLER, Ben, KELLEY, Jon and GOODWILL, Simon

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/30130/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

HEXT, Andrew, HELLER, Ben, KELLEY, Jon and GOODWILL, Simon (2016). Measuring straight time in elite short track speed skating relays. In: The Engineering of Sport 11, Delft, The Netherlands, 11-14 Jul 2016. (Unpublished)

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Measuring straight time in elite short track speed skating relays

Andrew Hext, Ben Heller, John Kelley and Simon Goodwill

Overview

- Background
- Introduction
- Method
- Results
- Discussion
- Practical implications

Background

Background

- Advancement through the competition, and medal colour, is dependent on finishing position not finishing time.
- Strategy and tactics play an important role for success in short track speed skating.

Introduction

- 3000 m (27 laps) and 5000 m (45 laps).
- Races involve 3-6 teams, consisting of 4 skaters each.
- Additional strategic component to races: the relay exchange.
- Allows a team to change the skater involved in the pack race.

Introduction

Introduction

- Typically executed every $1 \frac{1}{2}$ laps (17 and 29 exchanges).
- Time can be gained or lost during this period of the race due to the execution of the relay exchange.
- Only temporal measurement reported is lap time, of which the relay exchange accounts for less than 30 \%.

Introduction

Aim: To validate a method for measuring a more appropriate temporal measurement of relay exchange performance.

Sheffield
Centre for Sports
Hallam Engineering
University Research

Introduction

- The time taken to complete the straight where the relay exchange was executed.

Method

- High speed video provides highest temporal resolution.
- Not viable in competition environment.

Sheffield Hallam
 Centre for Sports University neering
 Research

Method

- Method uses a single HD camcorder (50 Hz , progressive scan).

Method

Sheffield \mid Centre for Sports
Hallam Engineering
University Research

Method

Sheffield \mid Centre for Sports
Hallam Engineering
University Research

Method

Method

Straight $_{\text {start }}$ Frame

Straight $_{\text {End }}$ Frame

- Straight time calculated using the frame number difference between start and end frames, at a resolution of 0.02 seconds.

Sheffield
 Centre for Sports
 Hallam Engineering University Research

Method

Validation Procedure:

- Captured a 5000 m relay race at the National Performance Centre for Short Track Speed Skating, Nottingham, UK.
- Eight skaters (two relay teams).
- All participants were members of the Great Britain short track speed skating performance programme.

Method

Method

Method

Method

Method

Method

Statistical analysis:

- Root mean square error was used to measure the differences in straight time between the synchronised cameras and single HD camcorders.
- Agreement was measured between the two methods using Bland and Altman's 95 \% limits of agreement.

Method

Bland \& Altman 95 \% limits of agreement:

- Allows fixed and proportional bias to be assessed.
- If 95 confidence intervals include 0 , infers that no bias present.

Sheffield
 Centre for Sports
 Hallam Engineering
 University Research

Results

Results

Near Straight:

- 0.011 second root mean square error.
- -0.0054 seconds, $95 \% \mathrm{Cl}[-0.0085,-0.0024]$ mean difference.
- -0.021 seconds, $95 \% \mathrm{CI}[-0.0851,0.0430]$ intercept.

Sheffield
 Centre for Sports
 Hallam Engineering
 University Research

Results

Far straight:

- 0.011 second root mean square error.
- -0.0027 seconds, $95 \% \mathrm{CI}[-0.0059,0.0004]$ mean difference.
- -0.018 seconds, $95 \% \mathrm{CI}[-0.0473,0.0842]$ intercept.

Sheffield
 Centre for Sports
 Hallam Engineering
 University Research

Discussion

- RMSE less than 0.02 second temporal resolution of camera.
- Single HD camcorder invariant to race speed.
- Small fixed bias was found for the near straight:
- $\sim 25 \%$ of the 0.02 second temporal resolution.
- 0.2% of the overall mean straight time.
- Magnitude of fixed bias minimal.
- Occlusion at the end of the near straight.

Discussion

- Occlusion is a problem for all image based measurement systems.
- Study did not fully recreate occlusion of a typical relay race.
- Results based on a single camera view point.
- The validity of the method may be sensitive to changes in camera position.

Practical implications

- A single HD camcorder can be used to measure straight time.
- A more specific temporal measurement can now be used to assess whether the execution of the relay exchange allows time to be gained or lost.
- Method could be developed to measure corner entry and exit time.

Any questions?

