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Abstract
Hydroelasticity of marine structures with and without forward speed is studied directly using time dependent Boundary Integral 
Equation Method with Neumann-Kelvin linearisation where the potential is considered as the impulsive velocity potential. The 
exciting and radiation hydrodynamic parameters are predicted in time with transient wave Green function whilst the structural 
analysis is solved with Euler-Bernoulli beam method at which modeshapes are defined analytically. The modal analysis is used 
to approximate the hydroelastic behaviour of the floating systems through fully coupling of the structural and hydrodynamic 
analyses. As it is expected, it is found with numerical experience that the effects of the rigid body modes are greater than elastic 
modes in the case of stiff structures. The predicted numerical results of the present in-house computational tool ITU-WAVE are 
compared with experimental results for validation purposes and show the acceptable agreements. 
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Linearisation, Euler-Bernoulli Beam

Introduction
The fluid-structure interactions of the floating system result in 
rigid or elastic motions which depend on the disturbance of pres-
sure field around marine structures. If the effects of the rigid body 
modes are greater than elastic modes, the contribution of elastic 
modes to the disturbance of the pressure field is not important 
which implicitly means that the floating system is a stiff structure 
and the structural and hydrodynamic analyses are weakly coupled 
and two analyses can be done separately [1-3]. If the radiation field 
is affected significantly with the structural deformation, the hydro-
elastic analysis, which considers the fully coupling of the structur-
al and hydrodynamic analysis, needs to be taken into account for 
the prediction of the motion of the floating systems [4, 5]. Hydro-
elasticity plays significant role especially for the high-speed crafts 
and larger marine vehicles. In the case of larger floating systems, 
the incident wave frequencies and natural frequency are closer to 
each other whilst the frequency range that results in the hull-girder 
vibrations approaches the encounter frequency of the high-speed 
crafts. 

The elastic deflection of the structures in air can be predicted accu-
rately with modeshapes, however, in the case of floating systems, 
due to the effects of the radiation pressure field the modeshapes 
need to be determined at current time and the elastic deformation 
of the floating structures may be predicted with the modeshape su-

perpositions. The dry modeshapes in air can be used to predict the 
elastic deformation of the floating systems, alternatively, elastic 
deflection in fluid may be represented with orthogonal polynomi-
als or orthogonal beam of a uniform beam [1, 4, 6]. The rigid body 
modes are considered as the part of the elastic modes under the 
same boundary conditions in the hydroelastic analysis. It is expect-
ed that the effects of higher modes on elastic motions would not be 
significant as the interactions between the natural frequencies of 
the higher modes and incident wave frequencies would be weaker 
compared to those of lower modes. 

The frequency domain or time domain methods may be used to 
predict the hydroelastic behaviour and analysis of the floating sys-
tems [1-3, 5]. Two-dimensional strip theory methods are one of the 
options that may be used for the approximations of the hydrody-
namic and hydroelastic parameters [7, 8]. However, the strip the-
ory method has shortcomings at bow and stern regions of floating 
systems, global loads approximations, complex geometries, high 
forward speed, and low frequency ranges. These shortcomings 
of the strip theory methods could be overcome with the use of 
three-dimensional methods both in frequency and time domains 
which include the interactions amongst panels automatically. 

The hydrodynamic parameters can be predicted with two popular 
numerical methods both in frequency and time domains includ-
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ing wave Green function  and Rankine panel methods[2, 9-11]. 
The wave Green function methods satisfy the condition at infinity 
and free surface boundary condition automatically which results in 
only discretisation of the body surface under mean water level to 
satisfy the body boundary condition. In the case of Rankine panel 
method, both some part of the free surface and body surface un-
der mean position need to be discretised to satisfy the condition at 
infinity and body boundary condition respectively. in the context 
of linear analysis, the frequency and time domain results depend 
on each other via Fourier transform. The time domain methods are 
better suited to predict the nonlinear cable forces, unsteady ma-
noeuvring, motions with large amplitudes, and nonconstant for-
ward speed compared to frequency domain methods. 

The finite element method with three-dimensional shell elements, 
two-dimensional plate elements using Kirchoff or Mindlin plates 
or one-dimensional beam elements using Vlasov, Timoshenko and 
Euler-Bernoulli beams are used to predict the hydroelastic be-
haviour of the floating systems including eigenvectors and eigen-
values [1-3, 5, 12, 13]. The body boundary conditions for elastic 
floating bodies, which include rigid body boundary conditions, are 
obtained through the extension of unified theory [1, 4, 5, 14].
 
The fluid forces and velocities are predicted with potential 
three-dimensional formulation and transient wave green function 
whilst the structural parameters are obtained with one-dimensional 
Euler-Bernoulli beam approximation in the present paper. The free 
stream is selected as a basis flow which results in the linearisation 
of the initial boundary value problem. The time dependent bound-
ary integral equation is obtained using the three-dimensional tran-
sient wave green function and green theorem [2, 3, 5, 15-21]. The 
present in-house ITU-WAVE computational numerical results are 
validated against the experimental results which shows acceptable 
agreements [22, 23]. 

Equation of Motion of Elastic Floating Systems
The body-fixed Cartesian coordinate system x⃗=(x,y,z) in Fig. 1 
is used to represent the fluid behaviour around the elastic floating 
systems. The positive directions of x, y and z directions are defined 
with the positive direction of a right-hand coordinate system. The 
free surface is coincident with z = 0 plane. The elastic floating 
body moves forward in positive x direction with forward speed U0. 
The fluid domain in Figure. 1 is identified with boundary at infinity 
S∞, boundary on free surface Sf (t), boundary of body surface Sb (t) 
and interaction between free surface and body Γ(t) [2, 15]. 

Figure 1: Fluid boundaries and Coordinate system

It is assumed that the fluid is inviscid, incompressible and the flow 
of the fluid is irrotational. These assumptions result in the fluid 
velocities to be represented as the gradient of the velocity potential 
V⃗(x⃗,t) = ∇Φ(x⃗, t) and Laplace equation governs the fluid domain 
∇2 Φ(x⃗,t) = 0. The time dependent equation of motions includes 
the inertia term, elastic hydrostatic and hydrodynamic restoring 
coefficients which is represented with convolution integral and ex-
citation force due to incident wave which is also represented with 
convolution integral [24].

where j =1,2,3,…,K and the coefficients in Eq. (1) are given as

The displacement, velocity and acceleration of elastic floating sys-
tem are given in Eq. (1) with xk (t), ẋk (t) and ẍk (t) respectively. 
The structural mass matrix Eq. (2) where ωj is the part of the mode 
shapes u⃗j = (0,0,ωj), structural stiffness matrix Eq. (3), and hydro-
static restoring force coefficients Eq. (4) are represented with Mjk, 
kjk, and Cjk respectively. The nondimensional stiffness parameter S 
= EI/ρgL5, which is the function of the hydrostatic restoring force 
and structural stiffness, is developed assuming the mass m per unit 
length and structural stiffness EI are uniformly distributed along 
longitudinal direction [25]. The nondimensional parameter S = 0 
is used for fully elastic structure whilst S = ∞ is for fully rigid 
structures. The generalised modes with separation of variables 
are used to represent the total displacements of the elastic floating 
structures.
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where time dependent principal coordinates xk (t) and modeshapes 
depending on spatial variables (x, y, z) are given with x_k (t) and 
u⃗k (x,y,z) respectively. The elastic mode shapes u⃗k (x, y, z) include 
the rigid body modes such that u⃗3 (0,0,1) is used for heave mode 
whilst u⃗5 (0,1,0)× x⃗ is used for pitch mode.

The convolution integral at the left-hand side of Eq. (1) is the func-
tion of the radiation Impulse Response Functions (IRFs) Kjk (t) and 
the velocity ẋk(t) of the elastic floating systems. This convolution 
integral represents the wave damping or hydrodynamic restoring 
force coefficients. The time dependent IRFs Kjk (t) represent the 
memory or free surface effect. The frequency and time indepen-
dent infinite added mass, damping and restoring force related co-
efficients are given with ajk, bjk, and cjk respectively. The time inde-
pendent instantaneous fluid response and the steady displacement 
of the elastic structure due to forward speed effect are given with 
ψ1k (P) and ψ2k (P) respectively. The transient behaviour of elastic 
floating system due to free surface effect is considered with the 
time dependent potential χk(t) [26].

The convolution integral in the right-hand side of Eq. (1) is the 
function of the exciting IRFs KjD (t) and incident wave elevation 
ζ(t) which is impulsive and defined at the centre of the fixed coor-
dinate system with heading angle β in Fig. 1. The exciting IRFs KjD 
(t) have two components; one of them is due to incident waves KjI 
(t) in Eq. (11) whilst the second one is due to the effects of the scat-
tering waves KjS (t) in Eq. (12) respectively. The time dependent 
impulsive pressure is given with p̂(t) whilst the scattering wave 
potential which results from the interactions of the incident waves 
with floating systems is given with ϕŜ (t)[10].

Deflection of Elastic Floating Bodies
The bending moments and shear forces of elastic floating systems 
with three-dimensional finite element methods can be predicted 
with the free vibration of the marine structures defining the defor-
mations with modeshapes [2, 3, 27]. Free-free beam, Chebyshev 
and Legendre polynomials or Fourier series could be also used 
to determine the deformation of the elastic marine structures [4, 
6]. Euler-Bernoulli beam theory with free-free beam modes and 
nondimensional coordinates q = 2x/L, which satisfy the boundary 
conditions of zero shear forces and bending moments at the end 
points, is used in the present paper [6]. 

where nondimensional normalized coordinate q∈ [-1,1] and mode 
index j = 1,2,3,…. As the rigid body modes are the part of the 
elastic modes, the first elastic mode is the heave rigid body mode 
u_0 (q)=1 whilst the second elastic mode is the pitch rigid body 
mode u1 (q) = -qL/2. The u⃗k= (0,0,uk (q)) vector represents the 
modeshapes in Eq. (13) and Eq. (14) in which the κj parameters are 
determined with Eq. (15).

The free-free beam modeshapes of the elastic modes, which include 
the rigid modes of heave and pitch, are presented in Figure. 2.

Figure 2: The first six free-free beam modes and the first six first 
derivatives of free-free beam modes which include the rigid body 
modes of heave and pitch.
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An Elastic Slender Barge for Hydroelastic Analysis
An elastic slender barge in head seas floating freely is used to pre-
dict the deformable modes which include heave and pitch rigid body 
modes. The elastic barge has zero speed with draft to beam ratio T/
B=0.5 and length to beam ratio L/B=10. Total 516 panels are used to 
discretise the elastic barge including 3 panel in vertical direction, 6 
panels in transverse direction and 40 panels in longitudinal direction 
as presented in Figure . 3. 

Figure 3: Total 516 panels are used with 3 panel in vertical direc-
tion, 6 panels in transverse direction and 40 panels in longitudinal 
direction

It is assumed that the structural stiffness and mass are distributed 
uniformly in longitudinal direction of the elastic floating systems 
such that mass matrix with constant mass distribution is given as

where the Kroenecker delta function and elastic beam’s total mass 
are given with δjk and M = mL respectively [4]. The structural stiff-
ness kjk with constant EI is given as

where the modulus of elasticity and second moment of inertial are 
given with E and I respectively. The off-diagonal elements of the 
stiffness and mass matrices are zero as these matrices are symmetric. 

The deformable nondimensional radiation IRFs of elastic barge 
including 7,8,9,…,14 elastic modes are presented in Figure. 4 in 
which the area under each elastic mode represents the available en-
ergy for each mode. It may be noticed in Fig. 4 that available energy 
decreases with increasing elastic mode numbers which implies that 
the effects of the higher elastic modes to the total displacements are 
not significant. 

Figure 4: The first 8 deformable modes of nondimensional radiation 
IRFs of the elastic barge

The time domain radiation IRFs Kjk (t) and frequency domain add-
ed-mass Ajk (ω) and damping coefficients Bjk (ω) in the context of 
linear analysis depend on each other through Fourier transform for 
each elastic mode as presented in Eq. (18) and (19).

Fourier transform of radiation IRFs Kjk (t) in Figure. 4 is used to 
obtain the frequency dependent added-mass Ajk (ω) and damping 
coefficients Bjk (ω) in Figure. 5. As in the case of IRFs in Fig. 4, 
the same behaviour may be observed in Fig. 5 as the amplitude of 
the added-mass and damping coefficients are decreasing with the 
increasing mode numbers.

Figure 5: The first 8 deformable modes of nondimensional add-
ed-mass and damping coefficients

The regular or irregular incident wave ζ(t), which is defined at the 
centre of body-fixed coordinate system in Fig. 1, is used to excite 
the elastic floating systems whilst the time dependent incident wave 
potential φI (x⃗,t) is known and analytically defined in Eq. 20.

where the absolute frequency of the incident waves, encounter fre-
quency, wave number in infinite water depth, incident wave heading 
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The free-free beam modeshapes of the elastic modes, which include the rigid modes of heave and pitch, 

are presented in Fig. 2. 
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where the modulus of elasticity and second moment of inertial are given with E and I respectively. The off-
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angle and positions on the free surface with respect to heading angle 
are given with ω, ωe=ω-U0 k cos(β), k = ω2 ⁄ g, β and ϖ = x cos  
(β)+y sin (β) respectively.

Froude-Krylov IRFs, diffraction IRFs and exciting IRFs which are 
obtained by the superposition of Froude-Krylov and diffraction IRFs 

are presented in Figure.6 for the first three deformable modes in-
cluding 7, 8 and 9 modes. The area under these IRFs represent the 
available energy that would be absorbed by the elastic floating sys-
tems during the interactions of incident waves and elastic marine 
structures.
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Figure 6: Nondimensional Froude-Krylov, diffraction, and exciting IRFs for the first three deformable modes of 7, 8 and 9

As in the case of radiation analysis, the time dependent Froude-Kry-
lov, diffraction and exciting IRFs are linked to frequency depen-
dent Froude-Krylov, diffraction and exciting force amplitude and 
phase angles through Fourier transform as presented in Eq. (21).

where the frequency dependent exciting force parameters in com-
plex form are given with Xj (ωe ) in which the exciting force am-
plitudes including Froude-Krylov and diffraction are the absolute 
value of complex exciting force Xj (ωe ) whilst those of phase an-
gles is the arguments of Xj (ωe ). The frequency dependent exciting 
force amplitudes and phase angles in Figure. 7 are obtained via 
Fourier transform of time dependent IRFs in Figure. 6.
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Figure 7: Nondimensional exciting force amplitudes and phase angles of elastic slender barge for the first 8 deformable modes including 
7, 8 and 9 modes.

Response Amplitude Operators (RAOs) or deflections of an elastic 
floating systems in frequency domain may be written as in Eq. (22).

where normalised coordinate in nondimensional form is given with 
q = 2x/L. The xk (q), which is the function of the absolute wave 

frequency ω and normalised coordinates q, is the complex form of 
the elastic RAOs in which the absolute value is the amplitude of the 
response whilst the argument is the phase angle of the response. The 
nondimensional stiffness parameter S for fully rigid, hydroelastic 
effect significant, and fully flexible elastic slender barge are giv-
en with S=1, S=10-5, and S=0 for the first eight deformable elastic 
modes in Figure. 8.
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Figure 8: Nondimensional RAOs of elastic slender barge with stiffness factor S=1, S=10e-5, S=0 for the first 8 deformable modes

The effects of the deformable modes to the response of elastic slen-
der barge in the case of fully rigid condition S=1 is not significant 
and almost zero whilst in the case of fully elastic condition S=0, 
the effects of elastic deformable modes to RAOs are considerable 
and significant. 

The RAOs, which are predicted using Eq. (22), at stern (-L/2), 

midship (0xL) and bow (L/2), are presented for different stiffness 
factor S. It may be noticed from Figure. 9 that there are no differ-
ences with the results of S=10-1 and rigid body motion whilst there 
are also no differences with those of stiffness parameter S=10-8 and 
S=0. It can be withdrawn from Figure. 9 results that the range of 
10-8 < S <10-2 has the significant hydroelastic effects.
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Fig. 9: Sum of nondimensional RAOs Eq. (22) for elastic slender barge with a range of nondimensional stiffness factor 

          

 

It is known that the maximum response occurs when the elastic floating body length equals the incident 

wavelength ( =0.785 rad/s). The RAOs and the superposition of RAOs are presented in Table 1 using eight 

deformable elastic modes in the case of nondimensional stiffness factor S = 10^-4 at the location of L/4 and 

L/2 (bow). The convergence up to three decimals are achieved with four elastic deformable modes as can 

be observed from Table 1. 

 

Table 1: RAOs and sum of 8 free-free beam loads at L/4 and L/2 (bow) at the frequency with wavelength equals 

floating body length 

Mode L/4 L/4-Sum L/2 L/2-Sum 

7 0.077235 0.077235 0.778619 0.778619 

8 0.062694 0.139929 0.107215 0.885834 

9 0.003279 0.143209 0.005280 0.891114 

10 0.000484 0.143693 0.001891 0.893005 

11 0.000032 0.143725 0.000115 0.893120 

12 0.000170 0.143894 0.000258 0.893378 

13 0.000002 0.143897 0.000003 0.893382 

14 0.000015 0.143912 0.000057 0.893439 

 

The derivative of the shear force is used to obtain the load distribution Eq. (23)[5]  
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Figure 9: Sum of nondimensional RAOs Eq. (22) for elastic slender barge with a range of nondimensional stiffness factor S = EI/ρgL5

It is known that the maximum response occurs when the elastic 
floating body length equals the incident wavelength (ω = 0.785 
rad/s). The RAOs and the superposition of RAOs are presented in 
Table 1 using eight deformable elastic modes in the case of non-

dimensional stiffness factor S = 10-4 at the location of L/4 and L/2 
(bow). The convergence up to three decimals are achieved with 
four elastic deformable modes as can be observed from Table 1.

Mode L/4 L/4-Sum L/2 L/2-Sum
7 0.077235 0.077235 0.778619 0.778619
8 0.062694 0.139929 0.107215 0.885834
9 0.003279 0.143209 0.005280 0.891114
10 0.000484 0.143693 0.001891 0.893005
11 0.000032 0.143725 0.000115 0.893120
12 0.000170 0.143894 0.000258 0.893378
13 0.000002 0.143897 0.000003 0.893382
14 0.000015 0.143912 0.000057 0.893439

Table 1: RAOs and sum of 8 free-free beam loads at L/4 and L/2 (bow) at the frequency with wavelength equals floating body length

The derivative of the shear force is used to obtain the load distri-
bution Eq. (23)[5] 

where Fj is the unknown force coefficients. The first and the sec-
ond integrations of Eq. (23) are used to determine the shear force 
and bending moment respectively. The equation of motion in Eq. 
(1) is used to determine the unknown force coefficient Fj in time 
domain with Eq. (24).

11 
 

       
   ∑     

       
 

   
                  

 

where    is the unknown force coefficients. The first and the second integrations of Eq. (23) are used to 

determine the shear force and bending moment respectively. The equation of motion in Eq. (1) is used to 

determine the unknown force coefficient    in time domain with Eq. (24). 

 

               ∫               
 

  
 ∑{(       ) ̈         ̇     (       )      ∫            ̇    

 

 
}

 

   
        

 

and in the frequency domain with Eq. (25) 

                     ∑{   (          )              }      
 

   
             

 

Fig. 10 shows the shear forces as a function nondimensional wave number at symmetric locations in 

longitudinal direction of the elastic slender barge.    

 

  
Fig. 10: Nondimensional shear force of elastic slender barge Eq. (23) with stiffness factor S=1 (completely rigid) and (-) 

is for aft of mid-ship, (+) for front of mid-ship 

 

The shear force and bending moment are numerically tested to determine the effects of the hydroelasticity 

in Fig. 11 and 12 at which nondimensional shear force and bending moment are presented at the location 

of q=-L/4, q=0, and q=L/4 in arrange of stiffness factor S. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40

F*
L/

(R
O*

g*
VO

L*
Am

p)

kL

S=1

-L/4[m]

L/4[m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40

F*
L/

(R
O*

g*
VO

L*
Am

p)

kL

S=1

-L/8[m]

L/8[m]

(23)



       Volume 5 | Issue 1 | 64J Mari Scie Res Ocean, 2022 www.opastonline.com

9 
 

It is known that the maximum response occurs when the elastic floating body length equals the incident 

wavelength ( =0.785 rad/s). The RAOs and the superposition of RAOs are presented in Table 1 using eight 

deformable elastic modes in the case of nondimensional stiffness factor S = 10^-4 at the location of L/4 and 

L/2 (bow). The convergence up to three decimals are achieved with four elastic deformable modes as can be 

observed from Table 1. 

 

Insert Table 1: RAOs and sum of 8 free-free beam loads at L/4 and L/2 (bow) at the frequency with 

wavelength equals floating body length 

 

The derivative of the shear force is used to obtain the load distribution Eq. (23)[5]  

       
   ∑     

       
 

   
      

 

where    is the unknown force coefficients. The first and the second integrations of Eq. (23) are used to 

determine the shear force and bending moment respectively. The equation of motion in Eq. (1) is used to 

determine the unknown force coefficient    in time domain with Eq. (24). 

 

              

 ∫               
 

  

 ∑{(       ) ̈         ̇     (       )      ∫            ̇    
 

 
}

 

   
      

 

and in the frequency domain with Eq. (25) 

                     ∑{   (          )              }      
 

   
      

 

Figure. 10 shows the shear forces as a function nondimensional wave number at symmetric locations in 

longitudinal direction of the elastic slender barge.  

 

  

Insert Figure 10: Nondimensional shear force of elastic slender barge Eq. (23) with stiffness factor S=1 

(completely rigid) and (-) is for aft of mid-ship, (+) for front of mid-ship 

 

The shear force and bending moment are numerically tested to determine the effects of the hydroelasticity in 

Figure. 11 and 12 at which nondimensional shear force and bending moment are presented at the location of 

q=-L/4, q=0, and q=L/4 in arrange of stiffness factor S. 9 
 

It is known that the maximum response occurs when the elastic floating body length equals the incident 

wavelength ( =0.785 rad/s). The RAOs and the superposition of RAOs are presented in Table 1 using eight 

deformable elastic modes in the case of nondimensional stiffness factor S = 10^-4 at the location of L/4 and 

L/2 (bow). The convergence up to three decimals are achieved with four elastic deformable modes as can be 

observed from Table 1. 

 

Insert Table 1: RAOs and sum of 8 free-free beam loads at L/4 and L/2 (bow) at the frequency with 

wavelength equals floating body length 

 

The derivative of the shear force is used to obtain the load distribution Eq. (23)[5]  

       
   ∑     

       
 

   
      

 

where    is the unknown force coefficients. The first and the second integrations of Eq. (23) are used to 

determine the shear force and bending moment respectively. The equation of motion in Eq. (1) is used to 

determine the unknown force coefficient    in time domain with Eq. (24). 

 

              

 ∫               
 

  

 ∑{(       ) ̈         ̇     (       )      ∫            ̇    
 

 
}

 

   
      

 

and in the frequency domain with Eq. (25) 

                     ∑{   (          )              }      
 

   
      

 

Figure. 10 shows the shear forces as a function nondimensional wave number at symmetric locations in 

longitudinal direction of the elastic slender barge.  

 

  

Insert Figure 10: Nondimensional shear force of elastic slender barge Eq. (23) with stiffness factor S=1 

(completely rigid) and (-) is for aft of mid-ship, (+) for front of mid-ship 

 

The shear force and bending moment are numerically tested to determine the effects of the hydroelasticity in 

Figure. 11 and 12 at which nondimensional shear force and bending moment are presented at the location of 

q=-L/4, q=0, and q=L/4 in arrange of stiffness factor S. 

(24)

(25)

Figure. 10 shows the shear forces as a function nondimensional wave number at symmetric locations in longitudinal direction of the 
elastic slender barge.
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Figure 10: Nondimensional shear force of elastic slender barge Eq. (23) with stiffness factor S=1 (completely rigid) and (-) is for aft 
of mid-ship, (+) for front of mid-ship

The shear force and bending moment are numerically tested to determine the effects of the hydroelasticity in Figure. 11 and 12 at which 
nondimensional shear force and bending moment are presented at the location of q=-L/4, q=0, and q=L/4 in arrange of stiffness factor S.

12 
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Figure 11: Nondimensional shear forces of elastic slender barge Eq. (23) with a range of non-dimensional stiffness factor S=EI/ρgL5

It can be observed from Figure. 11 that the bending moment and 
shear force decays to zero when the nondimensional stiffness fac-
tor approach the fully flexible condition of S=0. The effects of the 

hydroelasticity for elastic slender barge play significant role at 
10-8< S<10-2.



       Volume 5 | Issue 1 | 65J Mari Scie Res Ocean, 2022 www.opastonline.com

12 
 

 
Fig. 11: Nondimensional shear forces of elastic slender barge Eq. (23) with a range of non-dimensional stiffness factor 

          

 

It can be observed from Fig. 11 that the bending moment and shear force decays to zero when the 

nondimensional stiffness factor approach the fully flexible condition of S=0. The effects of the 

hydroelasticity for elastic slender barge play significant role at     < S<    .  

 

 
Fig. 12: Nondimensional bending moments of elastic slender barge Eq. (23) in a range of nondimensional stiffness 

factor           

 

4.1. Validation of ITU-WAVE numerical results with experimental results of a flexible barge 

The experimental results[23] for vertical RAOs (deflection) at head seas and zero forward speed are used to 

validate the in-house ITU-WAVE computational numerical results of the elastic barge in Fig. 1. The length L, 

length to draught ratio L/T, and length to beam ratio L/B, vertical bending stiffness EI of the elastic flexible 

barge are given with 2.445m, 20.375, 4.075, and 175 Nm2 respectively. The given length dimension and 

vertical bending stiffness results in the prediction of nondimensional stiffness factor     
          

     implying that hydroelastic effect is expected to be significant. Total 1080 elements are used to 

discretise the flexible barge with 5 elements in vertical direction, 10 elements in transverse direction, 49 

elements in longitudinal direction whilst  √  ⁄       is used for nondimensional time step size for ITU-

WAVE numerical prediction. It can be seen from Fig. 13 that ITU-WAVE numerical results show acceptable 

level of agreement with the experimental results[23] for vertical deflection (RAOs).  

        

  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40

F*
L/

(R
O*

g*
VO

L*
Am

p)

kL

-L/4[m]

S = 10e-1

S = 10e-2

S = 10e-3

S = 10e-4

S = 10e-5

S = 10e-6

S = 10e-7

S = 10e-8

S = 10e-9

S = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40

F*
L/

(R
O*

g*
VO

L*
Am

p)

kL

0L[m]
S = 10e-1

S = 10e-2

S = 10e-3

S = 10e-4

S = 10e-5

S = 10e-6

S = 10e-7

S = 10e-8

S = 10e-9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40

F*
L/

(R
O*

g*
VO

L*
Am

p)

kL

L/4[m]
S = 10e-1

S = 10e-2

S = 10e-3

S = 10e-4

S = 10e-5

S = 10e-6

S = 10e-7

S = 10e-8

S = 10e-9

0

0.001

0.002

0.003

0.004

0.005

0.006

0 10 20 30 40

M
/(

RO
*g

*V
OL

*A
m

p)

kL

-L/4[m]
S = 10e-1

S = 10e-2

S = 10e-3

S = 10e-4

S = 10e-5

S = 10e-6

S = 10e-7

S = 10e-8

S = 10e-9

0

0.002

0.004

0.006

0.008

0.01

0 10 20 30 40

M
/(

RO
*g

*V
OL

*A
m

p)

kL

0L[m]
S = 10e-1

S = 10e-2

S = 10e-3

S = 10e-4

S = 10e-5

S = 10e-6

S = 10e-7

S = 10e-8

S = 10e-9

0

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20 25 30 35 40

M
/(

RO
*g

*V
OL

*A
m

p)

kL

L/4[m]
S = 10e-1

S = 10e-2

S = 10e-3

S = 10e-4

S = 10e-5

S = 10e-6

S = 10e-7

S = 10e-8

S = 10e-9

Figure 12: Nondimensional shear forces of elastic slender barge Eq. (23) with a range of non-dimensional stiffness factor S=EI/ρgL5

Validation of ITU-WAVE numerical results with experi-
mental results of a flexible barge
The experimental results for vertical RAOs (deflection) at head 
seas and zero forward speed are used to validate the in-house ITU-
WAVE computational numerical results of the elastic barge in Fig-
ure. 1 [23]. The length L, length to draught ratio L/T, and length to 
beam ratio L/B, vertical bending stiffness EI of the elastic flexible 
barge are given with 2.445m, 20.375, 4.075, and 175 Nm2 respec-
tively. The given length dimension and vertical bending stiffness 

results in the prediction of nondimensional stiffness factor 
S =EI / ρgL5 =1.99×10-4 implying that hydroelastic effect is ex-
pected to be significant. Total 1080 elements are used to discretise 
the flexible barge with 5 elements in vertical direction, 10 elements 
in transverse direction, 49 elements in longitudinal direction whilst 
t√(g ⁄ L)=0.05 is used for nondimensional time step size for ITU-
WAVE numerical prediction. It can be seen from Figure. 13 that 
ITU-WAVE numerical results show acceptable level of agreement 
with the experimental results for vertical deflection (RAOs) [23]. 
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Figure 13: Vertical RAOs of flexible barge at mid-ship (0) and bow (L/2) with heading angle β =1800 , Fn = 0.0 and stiffness factor 
S = EI/ρgL5=1.99 x10-4.

Validation of ITU-WAVE numerical tool with experimental re-
sults of a stiff Wigley hull form
ITU-WAVE numerical results of heave and pitch RAOs, and bend-
ing moment and shear force are validated with experimental re-

sults of Wigley hull form in Figure. 14 with Fn = 0.2, heading 
angle β=1800, length L=2.5m, length to draught ratio L / T=18, 
length to beam ratio L / B=7 [22]. 
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Figure 14: Total 648 panels is used to discretise Wigley form with 12 panels along the girth direction and 54 panels in longitudinal 
direction.

The convergence test results are presented in Figure. 15 for heave 
and pitch IRFs. The convergence test is done both with respect to 
nondimensional time step (t√(g / L)=0.01, 0.03, 0.05) and pan-
el numbers (64, 144, 225, 324, 441). The nondimensional time 

step t√(g / L)=0.05 and panel number 324 on half part of Wigley 
hull form due to symmetry are used for the numerical predictions 
of ITU-WAVE numerical results as the numerical results are con-
verged at these nondimensional time step and panel number.
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Figure 15: Nondimensional radiation heave and pitch IRFs of Wigley hull form at Fn = 0.2

The convergence test is presented in Figure.16 for exciting heave and pitch IRFs and the numerical results of ITU-WAVE are converged 
with nondimensional time step t√(g / L)=0.05 and panel number 324 on half part of Wigley hull form due to symmetry as in radiation 
convergence test.
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Figure 16: Nondimensional exciting heave and pitch IRFs of Wigley hull form at Fn = 0.2 and β = 1800

The heave and pitch RAOs of ITU-WAVE numerical results at 
heading angle β =1800 are presented in Figure.17 together with ex-
perimental results for comparison purpose which show satisfacto-
ry agreement [22]. The numerical solution of the RAOs in Figure. 
17 are obtained using the frequency domain coupled heave-pitch 

equation of motion [28]. The frequency domain radiation and ex-
citing parameters for frequency domain equation motion are ob-
tained with Fourier transform of IRFs of Figure. 15 and Figure. 16 
for radiation and exciting IRFs respectively. 
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Figure 17: Heave and pitch RAOs of Wigley hull form at Fn = 0.2 and β = 1800

If the floating body does not deform much compared to rigid body 
motion, it can be considered as stiff structure implying that contri-
bution of rigid body modes to the disturbance of the pressure field 
is much greater compared o elastic deformable modes. In this case 

Eq. (24) and Eq. (25) can be modified to take only contribution of 
rigid body modes for unknown force coefficients as in presented 
in Eq. (24a) and Eq. (25a) in which the summation boundary 2 is 
used for heave and pitch rigid body modes.
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The shear force and bending moment of Wigley hull form at heading angle        and Froude number 

Fn=0.2 are presented in Figure. 18 in which the present ITU-WAVE computational results are compared 

with the experimental results [22]. Eq. (25a) is used to obtain the force coefficients       which is then used 

for the prediction of the shear force and bending moment in Eq. (23). 

  

Insert Figure 18: Shear force and bending moment of Wigley hull form at Froude number Fn = 0.2 and 

heading angle        using 8 free-free Euler-Bernoulli elastic beam modes 
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Figure 18: Shear force and bending moment of Wigley hull form at Froude number Fn = 0.2 and heading angle β = 1800 using 8 free-
free Euler-Bernoulli elastic beam modes

Conclusions 
The application of ITU-WAVE computational tool is extended to 
include the hydroelastic behaviour of the floating marine struc-
tures in the present paper. The hydrodynamic part is solved with 
a three-dimensional potential panel method whilst Euler Bernoulli 
beam analysis in which modeshap is defined analtically is used for 
the prediction of the structural behaviour. 

A non-dimensional structural stiffness parameter S=EI/ρgL5 is 
used and depending on this stiffness parameter the hydroelastic 
effects of floating slender barge are studied for RAOs, bending 
moments, and shear forces. It is found out that the hydroelastic 
effects are dominant in the range of 10-8<S<10-2 for a slender 
barge. A Wigley hull form is then studied as a stiff structure in 
order to determine the effects of elastic modes due to rigid body 
modes only which are coupled with elastic modes. As opposite 
to the traditional approaches, the effects of the different incident 
wave lengths and geometry of floating bodies are taken into ac-
count for the prediction of bending moments and shear forces in 
the present study. 

Numerical results (including the added-mass and damping co-
efficients as well as the amplitudes of exciting forces and phase 
angles which can be obtained by Fourier transform of radiation 

and exciting IRFs respectively) were presented to demonstrate 
the convergence of the developed computer code for the radiation 
and exciting IRFs. The numerical predictions for heave and pitch 
RAOs, bending moment, and shear force at mid-ship of Wigley 
hull form are shown to be in satisfactory agreement with the ex-
perimental results.
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