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Mesh-free modelling of liquid crystals using modified smoothed particle
hydrodynamics

M.V. Yakutovich1, C.M. Care1, C.J.P. Newton2 and D.J. Cleaver1
1Materials and Engineering Research Institute, Sheffield Hallam University,

Howard Street, Sheffield, S1 1WB, United Kingdom
2Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS12 6QZ, United Kingdom

We present a generalisation of the Modified Smooth Particle Hydrodynamics simulation technique
capable of simulating static and dynamic liquid crystalline behaviour. This generalisation is then
implemented in the context of the Qian-Sheng description of nematodynamics. To test the method,
we first use it to simulate switching in both a Fréedericksz setup and a chiral hybrid aligned nematic
cell. In both cases, the results obtained give excellent agreement with previously published results.
We then apply the technique in a 3-dimensional simulation of the switching dynamics of the post
aligned bistable nematic device.

PACS numbers: 61.30.-v,42.79.Kr,47.50.Cd

I. INTRODUCTION

Computer simulation has played a significant role in
furthering both the fundamental understanding of liquid
crystalline (LC) behaviour and the applications of or-
dered fluids in optical and other device applications [1].
For example, molecular simulations of hard-particle sys-
tems confirmed and quantified Onsager’s prediction that
shape anisotropy alone provides a sufficient condition for
nematic ordering [2] and observation of biaxial nematic
behaviour from generic particle simulations [3] preceded
experimental claims of such a phase for small-molecule
mesogens [4, 5]. At a more coarse-grained level, contin-
uum modelling has been central to the development of
devices such as the bistable ZBD cell [6, 7], and mod-
elling has also driven exciting recent developments in the
field of LC colloids [8]. There are now well-established
methods for the simulation of LCs at atomistic, molecu-
lar and continuum levels [1]. Continuum level simulations
are generally implemented using grid-based methods such
as finite element and Lattice Boltzmann approaches, and
commonly resort to reduced dimensionality. However,
while these approaches can be discretised to a level that
approaches the dimensions of generic molecular systems,
there remain some meso-level behaviours that are not
well described by any currently-available approach. For
example, simulation of the dynamical behaviour of three-
dimensional director field arrangements involving moving
interfaces and/or LC defects remains a considerable chal-
lenge.

Mesh-free methods are a promising class of numerical
techniques developed in the last decade as an alterna-
tive to traditional grid-based methods such as the finite
difference method (FDM) and the finite element method
(FEM). The central goal in mesh-free approaches is to
find an accurate solution to appropriate partial differen-
tial equations on a set of randomly distributed points.
In contrast to FEM and FDM, however, there is no need
for an underlying mesh or any connections between the
elements. This allows a greater range of problems to

be tackled, such as free surfaces flows, moving interfaces
and discontinuities, due to the relative ease of handling
large deformations. Indeed, mesh-free methods appear
well suited to addressing many of the multiscaling issues
currently being addressed by the modelling community.

Smoothed Particle Hydrodynamics (SPH) is the oldest
mesh-free method, having originally been introduced in
the late 1970’s to simulate unbounded three-dimensional
problems in astrophysics [9, 10]. It is a truly mesh-
free Lagrangian technique, which has been successfully
applied to a broad range of problems such as free sur-
face flows [11], underwater explosions [12], problems of
heat conduction [13], dynamic response with material
strength [14] and many other fluid and mechanical ap-
plications [15]. In spite of its wide application, it has
two inherent weaknesses, namely the boundary deficiency
problem and tensile instability, which have motivated the
development of improved techniques. For example, the
reproduced kernel particle method [16] was developed to
improve the consistency of the SPH approach. Also, the
Corrected Smoothed Particle Method (CSPM) [13] has
addressed both the tensile instability and the inconsis-
tency problems. More recently, Modified Smoothed Par-
ticle Hydrodynamics (MSPH) has been introduced as a
further enhancement over the CSPM. This method was
developed simultaneously and independently by Zhang
and Batra [17] and by Liu and Liu [18], whose works
should be consulted for further details.

MSPH is a promising technique which overcomes the
two main problems with SPH while still retaining its
best features and robustness. While MSPH is a rela-
tively new method, it has been demonstrated to work
well for the simulation of the Navier-Stokes equations
for isotropic fluids [19] in a range of mechanical prob-
lems [20–22]. In this paper, we present a scheme for
generalising the MSPH method to the nematodynamic
simulation of LCs with variable orientational order pa-
rameter. Due to the mesh-free foundations of the MSPH
approach, our generalisation can readily be implemented
in 1-, 2-, or 3-dimensions. Also, due to the way the cen-
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tral derivatives are calculated, addition of extra depen-
dencies, i.e. multiphysics, is straightforward and does not
introduce significant computational overhead. As imple-
mented, the resulting algorithm includes five independent
Leslie viscosities, a Landau-de Gennes free energy which
introduces three or more elastic constants, a tempera-
ture dependent order parameter, surface anchoring and
chirality. Adherence to, e.g., a conventional Landau-de
Gennes approach is not a necessity, however, and there
is scope for replacing the above with a more microscopic
description capable of exhibiting thermal fluctuations.
The remainder of this paper is organised as follows.

In the next two Sections, we present the Qian-Sheng de-
scription of nematodynamics and the basis of the mesh-
free MSPH approach to isotropic fluid simulation. Fol-
lowing this, we introduce our generalised MSPH ap-
proach for ordered fluids. We then demonstrate its ap-
plication by using it to simulate two quasi 1-dimensional
systems. These test systems are chosen such that they al-
low us to compare directly with analytical solutions and,
so, credibly assess the accuracy of our approach. We then
report on our attempts to use this same MSPH approach
to simulate the switching dynamics of the post aligned
bistable nematic device (PABN). Finally, we close with
some conclusions and discuss possible future extensions
and applications.

II. QIAN-SHENG EQUATIONS

In this section, we outline the Qian and Sheng for-
mulation [7, 23] for the flow of a nematic LC whose
orientational order is described by a Q tensor. The
Qian-Sheng formalism is a generalisation of Ericksen-
Leslie–Parodi (ELP) theory complemented with Landau-
de Gennes (LdG) theory, in which orientational order
is described using the second rank, traceless, symmetric
tensor Q

Qαβ =
S

2
(3n̂αn̂β − δαβ) +

P
B

2

(
l̂α l̂β − m̂αm̂β

)
. (1)

Here, Greek indices represent orthogonal Cartesian co-
ordinates, while δαβ is the Kronecker delta symbol. S
and P

B
are the uniaxial and biaxial order parameters

with n̂, l̂ and m̂ being orthogonal unit vectors as-
sociated with the principle axes of Q. The director,
n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), is the eigenvector cor-
responding to the largest eigenvalue of Q. In the uniaxial
approximation, P

B
= 0 whereas in the ELP approxima-

tion, the scalar order parameter S → S0 is a constant.
The Landau-de Gennes (LdG) free energy func-

tional [24] is defined as

FGlobal = FBulk + FSurface =

∫
Ω

{fB}+
∫
Γ

{fS}

=

∫
Ω

{fLdG + fD + fEM}+
∫
Γ

{fS}, (2)

where Ω is an open-bounded set with boundary Γ, fB is
the total bulk free energy density, fLdG is the LdG free
energy density of the bulk, fD is the free energy density
due to elastic contributions, fEM is the term due to the
effect of any applied electromagnetic field and fS is the
surface free-energy density. For simplicity, we omit any
flexoelectric contributions.

The LdG bulk free energy density fLdG ≡ fLdG(Q)
is given by an expansion in the scalar invariants of the
Q tensor, normally truncated at the fourth-order terms,
which provides a general description effectively represent-
ing the uniaxial phase [25]:

fLdG(Q) = fiso +
1

2
αFQαβQβα − βFQαβQβγQγα

+γFQαβQβαQµνQνµ. (3)

Here, and in the remainder of this article, the tensor
summation convention over repeated Greek indices is
assumed. Here, fiso is the free energy density of the
isotropic fluid, and αF , βF and γF are parameters deter-
mining the phase of the thermotropic LC, which can be
isotropic, nematic or biaxial.

The elastic free energy density fD ≡ fD(∂Q) should
be invariant to arbitrary rotations or translations. This
implies that not all of the combinations of Q derivatives
are allowed and, thus, the distortion free energy fD can
be compactly expanded as:

fD(∂Q) =
1

2
L1∂µQνγ∂µQνγ +

1

2
L2∂µQνµ∂γQνγ

+
1

2
L3∂µQνγ∂γQνµ +

1

2
L4Qµν∂µQγτ∂νQγτ

+
4πL1

Pch
εµνγQµτ∂νQγτ

−4πL4

Pch
εµνγQµηQητ∂νQγτ

+
6π2

P 2
ch

(L1QµνQνµ − L4QµνQντQτµ) , (4)

where Li, i = 1, . . . , 4 are the elastic constants and Pch is
the pitch of any chirality. εαβγ is the Levi-Civita symbol.

The free energy density in the presence of an electro-
magnetic field (E, H) is linear in the Q tensor and is
written as

fEM ≡ fEM (Q) = −1

3
ϵ0∆ϵmaxEαQαβEβ − 1

6
ϵ0ϵγγE

2

−1

3
µ0∆χmaxHαQαβHβ − 1

6
µ0χγγH

2, (5)

where ϵ is the dielectric tensor and χ diamagnetic tensor
with ∆ϵmax and ∆χmax being the maximal anisotropies
(i.e., those corresponding to S = 1).

The surface free energy density for weak anchoring can
take several forms, the simplest being

fS ≡ fS(Q) =
W

2

(
Qαβ −Qo

αβ

)2
, (6)
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where W is the anchoring strength and Qo
αβ the preferred

surface order tensor. For the more complicated case of
planar degenerate anchoring the following form has been
suggested [26]:

fS = c1ν.Q.ν + c2(ν.Q.ν)2 + c3ν.Q
2.ν, (7)

where the ci are anchoring coefficients and ν is the vec-
tor of the surface normal. Here, the effective anchor-
ing strength differs slightly from the standard Rapini-
Papoular form, and can be expressed as W = 2

3S0(3c1 +
(c3 − 2c2)S0).
The central equations in the Qian-Sheng formalism,

which describe the evolution of momentum and order for
incompressible (∂αuα = 0) nematodynamics, are

ρu̇β = ∂α
(
−Pδαβ + σv

αβ + σd
αβ + σEM

αβ

)
, (8)

and

JQ̈αβ = hαβ + hv
αβ − λδαβ − εαβγλγ , (9)

where the superposed dot ( ˙ ) denotes the material time
derivative: ∂t+uα∂α. Here, the local variables are ρ, the
LC density, u, the fluid velocity, P , the pressure, and J ,
the moment of inertia. This is usually negligible and we
therefore set J = 0. λ and λγ are Lagrange multipliers
chosen to ensure thatQ remains symmetric and traceless.
σd and h are the distortion stress tensor and molecular
field defined by the LdG free energy as

σd
αβ = − ∂fB

∂(∂αQµν)
∂βQµν , (10)

hαβ = − ∂fB
∂Qαβ

+ ∂γ
∂fB

∂(∂γQαβ)
. (11)

σv and hv, the viscous stress tensor and viscous molec-
ular field, are given by

σv
αβ = β1QαβQµνAµν + β4Aαβ + β5QαµAµβ

+β6QβµAµα +
µ2Nαβ

2
− µ1QαµNµβ

+ µ1QβµNµα, (12)

and

hv
αβ = −1

2
µ2Aαβ − µ1Nαβ . (13)

Here βi, µi are viscosities coefficients which can be di-
rectly mapped on to ELP viscosities using the depen-
dencies given in [23], while Nαβ = Q̇αβ − εαµνωµQνβ −
εβµνωµQαν . Aαβ = 1

2 (∂αuβ + ∂βuα) and Wαβ =
1
2 (∂αuβ − ∂βuα) are the symmetric and anti-symmetric
velocity gradient tensors with the vorticity being ωγ =
1
2εγαβWαβ .

σEM is the stress tensor arising from externally applied
electromagnetic fields

σEM
αβ =

1

2
(HαBβ +HβBα)−

HγBγ

2
δαβ

+
1

2
(EαDβ + EβDα)−

EγDγ

2
δαβ , (14)

where E (H) is the electric (magnetic) field strength, D
the electric displacement vector and B the magnetic flux
density.

Direct calculation of the trace and off-diagonal ele-
ments of Eq. (9) shows that the Lagrange multipliers are
given by λ = 1

3 (hγγ) and λγ = 1
2εαβγhαβ .

Following [27], the viscous stress tensor and the equa-
tion of motion Eq. (9) can be recast in the alternative
form

σv
αβ = β1QαβQµνAµν + β4Aαβ + β5QαµAµβ

+β6QβµAµα +
µ2hαβ

2µ1
− µ2λδαβ

2µ1
− µ2εαβγλγ

2µ1

−µ2
2Aαβ

4µ1
−Qαµhµβ +Qαµεµβγλγ +

µ2QαµAµβ

2

+Qβµhµα −Qβµεµαγλγ − µ2QβµAµα

2
, (15)

Q̇αβ =
hαβ

µ1
− λδαβ

µ1
− εαβγλγ

µ1
− µ2Aαβ

2µ1

+εαϵλωϵQλβ + εβϵλωϵQαλ (16)

which is better suited to mesh-free simulation,
Finally, we state the equations imposed on the bound-

aries. As a rule, we impose non-slip boundary conditions
on the velocity. For infinitely strong anchoring, the Q
tensor is specified according to Eq. (1), in which the re-
quired director and order parameter value S are kept
fixed. In cases of weak anchoring, however, the order
tensor at the surface evolves according to

µS∂tQαβ = hS
αβ − λSδαβ − εαβγλ

S
γ (17)

where hS
αβ = − ∂fB

∂(∂τQαβ)
ν̂τ − ∂fS

∂Qαβ
, λS = 1

3h
S
γγ , λS

γ =
1
3εαβγh

S
αβ , ν̂ is an outward pointing surface unit normal

vector and µS is the surface viscosity defined through
µS = µ1lS , where lS is a characteristic surface length
typically in the range lS ≈ 100−1000 [28]. We note that
it has been shown that such use of localised boundary
terms as a means of imposing weak anchoring can lead
to numerical instabilities when discontinuous changes are
made to applied bulk field terms [29]. Nevertheless, we
have persisted with this approach since, as observed by
Fang and co-workers [30], such anomalies are inherent
in the formulation of a coherent continuum approach.
Further, for the parameters and setups considered here,
we have seen no significant or long-lived surface-region
anomalies in our simulations when bulk field terms have
been switched. As a result, there does not appear to be
a strong case here for adopting a distributed approach to
imposing surface viscosity.

III. THE MSPH METHOD

Before describing its implementation in the context of
the Qian-Sheng equations of nematodynamics, we first
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rehearse the fundamentals of the MSPH approach [17,
18]. We assume the following conventions: fi denotes the
value of a function f at point (or particle) i, f,α denotes a
derivative of the function f with respect to α and xα de-
notes the α-coordinate of a vector x. The main concept
underlying SPH techniques is the assumption that any
sufficiently smooth field variable f can be interpolated
over a spatial domain Ω using a weight-function-based
integral representation. This allows the action of the dif-
ferentiation operator to pass from the function itself to
the weight function. Further, the resultant interpolated
function can be discretised onto a set of randomly dis-
tributed points to give a stable and robust model which
can be implemented using dynamic particle-based simu-
lation methods.
To show this in more detail, we consider a general Tay-

lor expansion of an arbitrary, smooth function f near a
fixed point xi in d-dimensional space. From this, we ob-
tain, for fi = f(xi):

f(x) ≃ fi + fi,α(x
α − xα

i ) + . . . , (18)

where α ranges from 1 to d and fi,α = ∂f/∂xα
i . Multi-

plying both sides of Eq. (18) with a smoothing function
(or weight function) W = W (xi − x, h) or its first-order
derivative W,γ = ∂W/∂xγ , and then integrating over the
problem space Ω yields∫

Ω

f(x)WdV ≃ fi

∫
Ω

WdV + fi,α

∫
Ω

(xα − xα
i )WdV,

∫
Ω

f(x)W,γdV ≃ fi

∫
Ω

W,γdV + fi,α

∫
Ω

(xα − xα
i )W,γdV.

(19)
These integrals can be calculated at an arbitrary set of
points i using the standard SPH discretisation process∫

Ω

f(x)W dV →
∑
j

fjWijmj/ρj , (20)

whereWij = W (xi−xj , h), and the summation runs over
the neighbours in the support domain of each specified
point i. Typically, the smoothing function W has a com-
pact support domain, defined by the smoothing length
h.
In the conventional SPH method, Eq. (20) is used as

the main method of approximation. This leads to a
dynamic particle-based simulation model (a particle be-
ing associated with each point i) which is well suited
to unbounded systems. Modifications need to be intro-
duced, however, to remedy deficiencies associated with,
e.g., boundary conditions and tensile instability. In the
main, such modifications have been introduced at the
particle-model level. There is no established route to
implementing these, however, and some of these modifi-
cations have been criticised as being arbitrary and shown
to worsen some problems while solving others.
In contrast, the more holistic MSPH approach avoids

such difficulties by retaining all of the terms in eqns (19).

This both improves the accuracy of the method and gives
a rigorous approach for the implementation of bound-
aries. This improvement comes, though, at the cost of
some extra computational effort, since the values of the
function f and its derivatives now need to be evaluated
at each point from the set of linear equations

BF = T. (21)

For the three-dimensional case, the matrices B, F and T
are

BIJ =

N∑
j=1

Φ(I)Θ(J)
mj

ρj
, TI =

N∑
j=1

fjΦ(I)
mj

ρj
, (22)

F = {fi, fi,x, fi,y, fi,z}T , I, J = 1, 2, 3, 4

Φ(1) = Wij , Φ(2) = Wij,x,

Φ(3) = Wij,z, Φ(4) = Wij,y (23)

Θ(1) = 1, Θ(2) = xj − xi,

Θ(3) = yj − yi, Θ(4) = zj − zi.

The system of simultaneous linear equations (21) has a
solution at each interpolation point provided that the
matrix B is not ill-conditioned. The method’s accuracy
can be further improved by retaining higher-order deriva-
tives in the Taylor expansion eqn. (18). This, though,
again introduces additional computational effort, since
the number of linear equations in (21) increases accord-
ingly.

Partial differential equations describing real physical
phenomena very often include higher order derivatives.
For example, eqn. (8) in the Qian-Sheng description ef-
fectively contains third order derivatives. In the MSPH
approach, these can be calculated in two different ways.
Firstly, the derivatives can be calculated directly by re-
taining all terms up to the required order in the Tay-
lor expansion of the field function (18). This approach
is computationally expensive, since the number of equa-
tions in (21) increases rapidly with both the number of
expansion terms and the problem’s dimensionality. An
alternative approach is to calculate higher order deriva-
tives directly as first-order derivatives of the lower order
derivatives. This nested approximation retains the same
order of accuracy as the full solution and is, therefore, our
preferred approach in the calculations presented here.

As indicated in Section I, a number of alternative
mesh-free methods have been developed since the original
appearance of the SPH model. An interesting and useful
feature of the MSPH and SPH solvers which is not found
in other mesh-less techniques is that weight functions of
the former are always positive. In mesh-free methods
which do not have this feature, constructions based on
weight functions can lead to negative values of density,
energy, etc. in certain regions. While this is mathemat-
ically sound, it leads to non-physical behaviours which,
when particle-based simulation methods are used, can
effectively break the physical simulation.
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Conversely, fluid particles, or interpolation points, in
the MSPH approach can always be taken to have real
masses and to move in a problem space according to
forces and torques calculated from pair-wise particle-
particle interactions. In our implementation, these fol-
low naturally from eqn. (8). These fluid particles have a
real volume ∆V but do not have fixed shape. As well as
having unambiguous physical meaning, this additionally
opens up possibilities for multiscaling.

In the simulation of flows using the SPH approach,
spurious oscillations can occur in both the velocity and
pressure fields. These numerical instabilities originate
from algorithmic pathologies in the approximations used
for parabolic or hyperbolic systems. Sometimes, these
can be resolved by the introduction of an artificial vis-
cosity. When, in preliminary work, we applied the ba-
sic SPH approach to simulate the Qian-Sheng equations,
we observed significant numerical instabilities even after
the introduction of an artificial viscosity. These proved
to derive from the rather complex nature of the driving
equations. Also, the low accuracy of the SPH method
near to or at system boundaries made it impossible to
impose anything more complex than Dirichlet boundary
conditions. This line of work was therefore abandoned,
on the basis that it was not capable of yielding an LC
simulator fit for purpose, and the more complex MSPH
approach adopted instead.

From a mathematical point of view, MSPH is simply
a tool for solving partial differential equations at a set
of randomly distributed points. The method’s accuracy
usually increases with increase in the number of inter-
polation points in a given region. Combination of these
two aspects leads to an interesting property of the MSPH
method: the method’s resolution automatically increases
in regions where flow is directed. We believe this can be
an important feature for an MSPH model of LCs, espe-
cially for the modelling of defects.

By its nature, MSPH is an adaptive and Lagrangian
mesh-free method in which particles are free to move. In
some problems, however, the particles can be held fixed
in space. This feature is relevant to the simulation of LCs
in situations where Q evolution (governed via eqn (16))
needs to be considered but the velocity field (governed
via eqn (8)) can be neglected. In such a circumstance,
the computational effort involved is greatly decreased,
since the matrix B in Eq.(21) needs to be estimated only
once. The method’s accuracy can be further improved by
appropriate tuning of the smoothing length h and achiev-
ing a uniform distribution of the particle positions [18]. It
has been shown that, in such circumstances, the method’s
accuracy can exceed that of FEM approaches [21]. In
other cases, however, such as free surface flows, and sys-
tems involving high gradients, multi-resolution, complex
geometries etc. the full Lagrangian description with free
moving particles is needed.

IV. MSPH NEMATODYNAMICS

We now describe the algorithm we have developed to
simulate LC behaviour using the MSPH technique. The
core algorithm is explained in Sec. IVA. The way we
solve electric field is then described in Sec. IVB while
the implementation of boundary conditions is described
in Sec. IVC.

A. The algorithm description

In order to solve the Qian-Sheng equations of Sec. II
we additionally associate a traceless, symmetric, order
tensor, Qαβ , with each fluid particle. Microscopically,
these order tensors convey information about the state of
the average orientational ordering of the molecules which
are assumed to be represented by each fluid particle.

The resulting simulation algorithm centres, then, on
solving the set of Qian-Sheng eqns. (8)-(17) on a set of
randomly distributed points in 1-, 2-, or 3-dimensions
using the MSPH method described in Sec. III. Initially,
particles are uniformly located on a problem’s domain
and are given starting values of velocity, density and Q.
Then, eqns. (8) and (16) are considered for each particle,
with their right-hand sides replaced by the appropriate
kernel estimates. We use the nested approach to calcu-
late the derivatives involved in these, and retain all of the
derivatives in the Taylor expansion (18) up to the second
order. We have found that retaining third order deriva-
tives does not significantly improve the model’s accuracy,
whereas it does add an appreciable computational over-
head.

Firstly, we estimate the velocity gradients, and thus
find Aα,β , Nα,β . After that, knowing all Q derivatives
up to second order, we estimate all stress tensors on the
right hand side of Eq. (8) and the molecular field hαβ

on the right hand side of Eq. (16). Finally, we calcu-
late the right-hand side of Eq. (8) by estimating the first
order derivatives. We adopt a simple two step predictor-
corrector scheme to integrate the resulting linear ordi-
nary differential equations to second order accuracy.

As noted above, in some LC problems there is no need
to calculate the velocity field, i.e. if one is interested only
in solving the flow-free Q-field described by Eq. (16). In
such cases, we can set all initial velocities to zero and keep
the simulated particles fixed in space. This approach sig-
nificantly reduces the computational effort required since
it avoids the extra loop associated with the estimation of
the derivatives in Eq. (8). In circumstances such as this,
MSPH is employed as a purely mathematical technique
which calculates derivatives on a set of randomly dis-
tributed points, and the positivity of the weight function
is not exploited.

SPH was originally introduced for problems with small
dissipation. In the standard SPH formulation, an artifi-
cial viscosity is usually introduced when simulating liq-
uids. This artificial viscosity is added to the pressure
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term in order to resolve shocks numerically and so pre-
vent nonphysical particle penetrations in the event of any
high velocity, head-on collisions. In the MSPH formula-
tion, however, there is no need to use an artificial viscos-
ity since proper viscosity terms appear in Eq. (8). It is
also pertinent that there are no large velocities in typical
LC simulations.
In practice, the choice of particle separation has a di-

rect influences on both the accuracy of the final solution
and the computational efficiency. For this reason, we
have developed a criterion for determining how particle
separation should be set in runs employing fixed parti-
cle locations. This issue is especially pertinent to the
simulation of complex LC structures since in these it is
generally the case that the relevant characteristic lengths
can vary across the system. For example, large order
tensor gradients found in the vicinity of orientational de-
fects require a high density of points (the characteristic
length is short) whereas the order in the mid-region of
a twisted nematic cell can be well-described with a low
point density (the characteristic length is large). Whilst
it is possible to derive an analytical expression to gauge
MSPH particle density for some simple systems, this is
a highly non-trivial task for an LC model based on the
Qian-Sheng equations. In our simulations, therefore, we
have used the condition number of matrix B from eq.
(21) as a key parameter by which to set the local den-
sity density of particles. Specifically, we have imposed
the requirement that these condition numbers lie in the
range 25 to 100. We have found that systems become
prone to numerical instabilities when the condition num-
bers exceed 100, but that this is remedied by increasing
the particle density. Conversely, whilst condition num-
bers below 25 lead to some improvements in accuracy,
these do not justify the associated computational cost,
so we normally decrease the local particle density as a
compromise between accuracy and efficiency.
In the MSPH approach, it is necessary to use the quasi-

incompressible equation of state for incompressible fluids,
since fluid pressure is an explicit function of local fluid
density and use of the actual equation of state necessi-
tates adoption of a very small time step. While LCs are
incompressible, in our simulations they are treated as
slightly compressible via the artificial equation of state.
For this, we use the equation of state due to Morris et.
al. [31]

P = c2ρ, (24)

where c is the speed of sound.
We use the B-spline weight function due to Monaghan

and Lattanzio [32] in our simulations

W (R, h) = αd ×


2
3 −R2 + 1

2R
3 0 ≤ R < 1

1
6 (2−R)3 1 ≤ R < 2

0 R ≥ 2
(25)

where αd is a normalisation factor which is equal to 1/h,
15/(7πh2) and 3/(2πh3) in 1-, 2- and 2-dimensions, re-
spectively. To date, this has been the most widely used

kernel function in the SPH literature and it has been
shown to give good results in the MSPH simulations of
Ref. [21]. We employ a smoothing length h which is 1.1
times larger than the initial particle separation. When
particles i and j have different smoothing lengths hi and
hj , their interaction is symmetrised by using a mean
smoothing length hij = (hi + hj)/2.

B. Electric field implementation

LCs are anisotropic dielectric and diamagnetic media
and their dielectric permittivities and magnetic suscepti-
bilities are different along the directions parallel and per-
pendicular to the LC director. Thus, when an external
voltage is applied to a model LC device, it is necessary to
solve Maxwell’s equations in order to determine the elec-
tric field E at each interpolation point. The equations
we solve are

∂αDα = 0,

Dα = ϵ0ϵαβEβ ,

Eβ = −∂βV,

ϵαβ = (2∆ϵmaxQαβ + ϵγγδαβ)/3, (26)

where V is the local potential and ϵγγ = 2ϵ⊥ + ϵ∥. In
general, these equations need to be solved at a randomly
distributed set of points. In order to achieve this, we first
employ MSPH to calculate all of the derivatives appear-
ing in Eqs. (26). We then solve Eqs. (26) numerically us-
ing a successive over-relaxation method at each time-step
when the Q-tensors are known at each particle. Usually,
only a few iterations are needed at each time-step in or-
der to achieve the required accuracy. An external electric
field is applied by imposing boundary conditions of the
form V = const.

C. Boundary conditions

Boundary condition implementation is always a non-
trivial task in mesh-free methods and there is no uni-
versal approach for imposing same. Unlike mesh-based
methods, boundaries in mesh-free methods are not dis-
cretised, but rather are represented by particles. Since
most mesh-free techniques have non-local interpolations
as their foundation, the consequent lack of particles near
to boundaries usually leads to accuracy deterioration
in adjacent regions. This is especially pronounced in
the original SPH method, which does not even achieve
zeroeth-order consistency at boundaries. This situation
is greatly improved in the MSPH method, where the con-
sistency condition at and near to a boundary depends on
both the number of higher order derivatives retained in
Eq. (18) and the placement of the boundary particles.

We use virtual or ghost particles [15] to implement
boundary conditions. Unlike the interior particles, these
boundary particles are always held fixed in space. They
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then contribute in the normal way to the interactions of
the interior particles as well as exerting a penalty force
similar to the Lennard-Jones interatomic potential [14],
to prevent the interior particles from penetrating the
boundary.
In the case of infinitely strong orientational anchor-

ing, the Q-tensor held is fixed at boundary particles
Qαβ = const. This amounts to imposition of simple
Dirichlet boundary conditions. In the case of weak an-
choring, however, the Q-tensor at the boundary parti-
cles is left free to evolve in accordance with Eq. (17).
Since Eq. (17) is based on first order derivatives, the ac-
curacy of its solution at the boundary is the same as
that achieved in the bulk when using the MSPH. This
consistency makes the implementation of weak anchor-
ing boundary conditions reasonably straightforward.

V. NUMERICAL EXAMPLES

In this section we present two initial examples to
demonstrate the application of the algorithms just de-
scribed and assess their validity for the modelling of
electro-optical devices. Due to the relatively complex
nature of the partial differential equations describing
LC phenomena, we limit ourselves here to quasi 1-
dimensional examples which can be partly compared ei-
ther with analytical solutions or with previous simula-
tions. Our ultimate goal is to apply our MSPH nema-
todynamics approach to a range of physical and device
phenomena; its use to simulate 3-dimensional applica-
tions and these will be addressed in future publications
is therefore examined in Sec. VI.
In Sec. VA we demonstrate application of the method

to the simulation of the classic Fréedericksz transition in
order to assess both electric field and Q-solvers while ne-
glecting flow. In Sec. VB we then simulate the behaviour
of a dual-frequency chiral hybrid aligned nematic LC cell,
in order to validate the full implementation of the MSPH
solver (i.e. with flow included).

A. Fréedericksz Transition

We first consider the splay geometry variant of the
well known Fréedericksz transition behaviour. In this,
we switch off the velocity field and consider only the
evolution of the Q-tensor and electric field as the ap-
plied voltage is varied. In order to maintain consistency
with analytical treatments, we assume infinite anchoring
boundary conditions on both plates, with the director
fixed parallel to the plates.
In the splay geometry, the critical Fréedericksz voltage

Vc is given by

Vc = π

√
K11

ϵ0∆ϵ
, (27)

where ∆ϵ is the LC’s dielectric anisotropy and K11 is the
splay elastic constant.

For an applied voltage V > Vc the maximum distortion
angle θm of the director in the centre of the cell can be
found numerically from the following equation [33, 34]

V

Vc
=

2(1 + γ sin2 θm)
1
2

π

∫ π
2

0

G(θm, κ, γ, λ)

(1 + γ sin2 θm sin2 λ)2
dλ,

(28)
where γ = ∆ϵ/ϵ⊥, κ = (K33 −K11)/K11 and

G(θm, κ, γ, λ) =
(1 + κ sin2 θm sin2 λ)(1 + γ sin2 θm sin2 λ)

1− sin2 θm sin2 λ
.

(29)
The resulting equilibrium director profile can then be

determined from

z =
1

2

∫ ϕ

0
G(θm, κ, γ, λ)2 dλ∫ π

2

0
G(θm, κ, γ, λ)2 dλ

, ϕ = sin−1

(
sin θ

sin θm

)
, (30)

where z = z/d is the reduced distance. In the above
equation, 0 ≤ z ≤ 1

2 ; the solution for 1
2 ≤ z ≤ 1 is

obtained from the symmetry condition θ(z) = θ(1 − z).
Equations (28,30) were derived using an assumption of
fixed order parameter. Despite this, we use them here to
compare with our results since, in our simulations of this
system, the maximal change in order parameter we have
observed is 0.002.

Inserting the uniaxial order tensor definition into
eqn (3) and making the usual assumptions of linear tem-
perature dependance of the first Landau-de Gennes coef-
ficient, leads to the algorithmically convenient form

fLdG(Q) = fiso + a(T − T ∗)S2 −BS3 + CS4 (31)

where a(T − T ∗) = 3αF /4, B = 3βF /4, C = 9γF /4
and T ∗ = TNI − B2/4aC. Setting these coefficients
to a = 65000 J m−3 K−1, B = 530000 J m−3, and
C = 980000 J m−3, which are suitable for 5CB [35], with
elastic constant values (K11 = 17, K22 = 13, K33 =
30) × 10−12 N, we have simulated the Fréedericksz ef-
fect for a cell of width d = 1 µm at temperature T =
TIN−4(TIN−T ⋆). In order to achieve a marked response
to the applied field, we have set the dielectric anisotropy
to be relatively large ∆ϵ = 10.3, with ϵ∥ = 12.87 and
ϵ⊥ = 2.57. For this choice of parameters, the critical
Fréedericksz voltage is 1.36 V.

The evolution of the director profile for a uniformly-
spaced 100 point simulation of this system on application
of a 3 V potential to an initially uniform LC cell is shown
in Fig. (1). These profiles represent snapshots taken from
a run performed with a time-step of 10−7 s. The cor-
responding equilibrium director profile determined from
eqn. (30) is also shown, and is in excellent agreement with
the long-time simulation profile. The Q-solver element of
this simulation was computationally very efficient, and
the bulk of the run-time was taken up by the relatively
rudimentary E-field solver used here.
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FIG. 1: Time evolution of the angle which director makes
with x-axis across the cell. Analytical curve in equilibrium is
found from Eq. (30).

TABLE I: Table of the percentage error in the simulated
director angle in the cell centre depending on the number
of interpolation points and their distribution (uniform and
non-uniform). An analytical value of 65.66◦ is found from
eqn. (28).

Number Uniform distribution, Non-uniform distribution,
of points percentage error percentage error

30 3.4 1.1
50 1.4 0.7
70 0.8 0.5
100 0.5 0.3

In order to assess the effect of the number and dis-
tribution of the interpolation points on the accuracy of
this simulation, we have performed a number of equiv-
alent runs and found that small discrepancies can arise
when regions with high director gradients have low point
density. We quantify this effect in Table I which shows
the percentage overshoot in the central director angle
obtained for different choices of point distribution. This
error is reduced below 0.5% for 100 uniformly spaced
points or 70 non-uniformly spaced points. Here, a sim-
ple arithmetic progression was used to concentrate the
non-uniform point distribution on the region with high
director gradient, but it would be straightforward to im-
plement a scheme which iteratively distributed points ac-
cording to their local Q gradients.
Finally, in this Section, we note that time-dependant

profiles of the electric potential are routinely determined
in our method. We illustrate this behaviour in Fig. (2).
Initially, when Q is uniform across the cell, the electric
field is necessarily constant, leading to a linear potential
profile. As Q(z) develops splay-bend distortions, how-
ever, the field becomes concentrated in those regions with
highest dielectric constant, leading to marked nonlinear-
ities in the electric potential V (z). There is no analytical
formula for the time-dependent electric potential across
the Fréedericksz cell.

FIG. 2: Time evolution of the electric potential across the
Fréedericksz cell.

B. Fast switching dual-frequency chiral HAN cell

Having validated the order-tensor aspects of our MSPH
approach against the standard Fréedericksz setup, we
now assess the full model by turning on the flow ef-
fects. To illustrate this, we consider the switching of
a dual-frequency chiral hybrid aligned nematic liquid-
crystal cell (CHAN) [36, 37]. In such a device, a chiral
LC with a frequency-dependant dielectric permittivity is
used, so as to achieve fast switching times. The prin-
ciples underlying the operation of this device are that
both of its switching behaviours are field driven, whereas
the relaxation of a simple Fréedercksz cell is a passive
process whose speed is dictated by material properties
such as elastic constants and viscosity coefficients. The
two states of the CHAN device are zero field chiral HAN
arrangement and a high-frequency-field-induced twisted
nematic arrangement. Both states are accessed from the
same intermediate vertically aligned state, induced by a
low frequency field pulse.

This CHAN system was chosen as a test for our full
MSPH LC simulator because, as we demonstrate be-
low, its behaviour is strongly dependant on the veloc-
ity field. It therefore gives us the opportunity to assess
the ability of the MSPH approach to properly recover
the physical nature of the partial differential equations
describing LC flow (i.e. eqn. (8)). Note that the par-
tial differential equations governing the LC description
used for this system also necessarily contain terms in-
troducing chirality. A further reason for considering the
CHAN set-up is that it has recently been the subject of
a combined experimental and theoretical study by Sam-
bles and Jewell [36, 37]. Here, therefore, we are able
to adopt the same cell and material parameters as were
used in refs [36, 37] and make a direct comparison with
their results. Thus, the cell width is set at 4.94 µm,
with homeotropic anchoring on one surface and planar
anchoring on the other. The elastic constants used are
(K11 = 16.7, K22 = 10, K33 = 20.9) × 10−12 N and
the pitch is Pch = 13.0 µm. The viscosity coefficients
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are (α1 = −10, α2 = −300, α3 = 25, α4 = 170, α5 =
190, α6 = −85) × 10−3 kg m−1 s−1 and the density
is ρ = 1.01× 103 kg m−3. The dielectric anisotropies are
∆ϵ = 2.6 at low frequency and ∆ϵ = −2.3 at high fre-
quency. The modelling work presented in refs [36, 37]
was based on the Leslie-Eriksen-Parodi director-based
description of nematodynamics, and achieved by itera-
tively time-stepping through the velocity and orientation
profile variations.

Initially, we have obtained the CHAN cell’s equilib-
rium configuration by setting the LC alignment to be
uniform except at the boundaries, which were fixed at
homeotropic and planar, and letting the Q tensor evolve
in the absence of an applied field. In the course of time,
the order tensor arrangement then relaxed to the equi-
librium configuration. To allow meaningful comparison
of our data with those of [36], we have used our particle
Q tensors to construct director tilt and azimuthal an-
gle profiles; for the equilibrium configuration, these are
plotted in Figs. 3 (a,b) with the time label t = 0. Slight
non-linearities are apparent here, reflecting the difference
in the splay and bend elastic constants.

Following [36], we then applied a low-frequency 7 V
pulse to the system for 20 ms immediately followed by a
high frequency pulse with the same voltage for 80 ms.
The twist and tilt profiles obtained during these two
time windows are shown in Figs. 3. Like ref [36], we
have held all z-components of the velocity at zero in
our 1-dimensional modelling of this device. In contrast
to [36], however, we have embedded dielectric permittiv-
ities within our model and simply imposed constant ap-
plied voltages. Due to both this and the Q-tensor nature
of our model, while we expect the qualitative behaviour
observed here to be equivalent to that seen by Sambles
and Jewell, small quantitative discrepancies can be an-
ticipated.

When the low-frequency voltage was applied to this
CHAN system, the director tilt profile (Fig. 3a) switched
monotonically from approximately linear to tanh-like,
the action of the applied field being to promote
homeotropic alignment in the upper half of the cell. The
accompanying changes in the associated twist profiles
(Fig. 3b) have little physical significance since they pre-
dominate in the growing homeotropic region in which
twist is relatively meaningless. When we ran an equiv-
alent simulation with all velocities set to zero, no differ-
ences were apparent in the initial and final low-frequency-
field profiles, but the intermediate profiles showed slower
convergence in the homeotropic region.

When the frequency of the applied voltage was
changed, at t = 20 ms, a backflow effect was produced
which significantly influenced the director profiles. This
is particularly apparent from Fig. 3 (d) which shows a
large jump in the twist profile immediately after the fre-
quency shift. Physically, this corresponds to the director
tilting backwards, leading to an instantaneous 180 degree
step in the twist values observed at high z. This led to a
region with high twist gradient forming in the central re-

gion of the cell, which itself promoted formation of a max-
imum in the associated tilt profile. Subsequently, these
high twist gradient and high tilt features dilated and the
cell relaxed into what was, predominantly, a twisted ne-
matic arrangement. To illustrate the backflow behaviour
responsible for these director profile rearrangements, we
plot, in Fig. 4, a series of profiles of the x-component
of the velocity during application of the high frequency
applied field. By comparing these with Fig. 3 (c), it can
be seen that the peaks in the director tilt profiles corre-
spond to the maxima in this velocity field. Furthermore,
by conducting equivalent simulations with the velocity
field switched off, we have found that no twist jumps or
tilt maxima are observed when backflow is suppressed.
This is entirely consistent with the findings of Sambles
and Jewell.

VI. PABN SWITCHING BEHAVIOUR

In this section we apply our MSPH technique to the
switching dynamics of the PABN device. The PABN de-
vice is a LC cell in which one substrate is flat whereas the
other is populated with an array of microscopic posts, as
depicted in the micrograph Fig. 5. This cell arrangement
leads to bistability, i.e. there are two optically distinct
long-lasting field-off states [38], which are further referred
to as planar (P) and tilted (T ).

Experimentally, switching between these bistable
states is achieved via the application of monopolar square
electric field pulses, the sign of which dictates the final
state. Bidirectional switching is only possible with nega-
tive dielectric LC materials. A positive pulse is needed in
order to achieve T – P switching, while a negative pulse
is needed to switch from P to T state. The flat substrate
imposes homeotropic boundary conditions, i.e. it fixes
the director to be strictly perpendicular to the surface
plane. The boundary conditions on the lower substrate
are of a tangent type, which restricts the director locally
to be in the plane of the surface.

We have previously reported MSPH simulations of
static configurations of the PABN device [40]. Here we
extend these by investigating the PABN T – P switching
behaviour. In this, we use an identical geometry setup
to that described in [40]. Periodic boundary conditions
are imposed in the x and y directions, the xy repeat unit
representing a single post. We describe the height h of
the post as a function of the x and y coordinates using
the functional form:

h(x, y) = tanh (π (s1x− p1)− tanh (π (s2x+ p2)))×
tanh (π (s1y − p1)− tanh (π (s2y + p2))) .

(32)
The following parameters were used in our simulations:
p1 = 0.825, p2 = 1.375, s1 = 4p1 and s2 = 4p2. The post
parametrised according to these values has height 1.0 and
is shown in Fig. 6. Unlike the geometries considered in
previous simulation studies of PABN behaviour [39, 41],
where the posts were approximated either as rectangular
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FIG. 3: Time evolution of the director twist and tilt angle profiles when the low-frequency voltage is applied (a,b) and when
the high-frequency voltage is applied (c,d).

FIG. 4: Time evolution of the x-velocity across the CHAN
cell as a function of reduced distance z.

bars or rectangular bars with rounded corners, this ge-
ometry is smooth and so avoids the effects of unrealisti-
cally sharp substrate features. Further, since the edges of
the posts considered here are slightly asymmetric, there
is not necessary to impose the direction of director tilt,
as was done in the dynamic finite element simulation of
Ref [42].

The post was modelled as an isotropic dielectric mate-
rial with permittivity ϵ = 5.0. The same dielectric con-
stant was used for a 0.5µm layer immediately adjacent
to the post in order to represent the bottom transparent
electrode of the PABN device. We have not represented
the top electrode in our simulations, since doing so would
introduce an unnecessary computational effort without

FIG. 5: The PABN device [38, 39].

making any practical difference, given the uniform field
and director arrangements in this region.

We applied an external field across the model cell by
fixing the potential on the ground electrode and on the
upper homeotropic layer of the LC. The bottom elec-
trode was set to have zero potential, the upper plate
potential being set to +20V. During each time step,
Maxwell’s equations of electromagnetism were solved to
determine the electric field inside the PABN cell. The
external potential difference was applied for 3ms and,
after its removal, the LC was allowed to relax into an
equilibrium configuration. The LC was taken to have
negative dielectric anisotropy, which was set to ∆ϵ =
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FIG. 6: An example of the analytical rectangular post shape
given by eq. (32), with p1 = 0.825, p2 = 1.375, s1 = 4p1 and
s2 = 4p2.

−4.85. The elastic constants were set to (K11 = 13.7,
K22 = 7.3, K33 = 22.1, K24 = 3) × 10−12 N and
the following set of Landau thermotropic coefficients was
used: αF = 65000 Jm−3 K−1, βF = 533000 Jm−3 and
γF = 975000 Jm−3. In order to impose planar degener-
ate anchoring on the post surface, we used the free energy
term given by eq. (7). In this, we set c1 = −80·10−5 J/m2

and c2 = c3 = 0. This value of c1 was found to be strong
enough to maintain planar alignment but not so strong
that the surface nodes showed marked biaxiality.

In order to simulate the T – P transition, we took an
equilibrated T configuration system and set the potential
of the upper plate to +20V. Fig. 7 shows a series of snap-
shots of the director field along the cross-section of the
post’s diagonal during the subsequent T – P transition.
Fig. 8 shows snapshots of the LC director on the PABN
post itself. The corresponding snapshots in Figs. 7 and
8 were taken at the same moments in time.

The snapshots show that, following application of
the electric field, the bulk LC quickly reoriented itself
into a planar arrangement due to the negative dielec-
tric anisotropy of the simulated LC. The director field
of the PABN post itself, on the other hand, showed in-
significant changes on this time-scale, as can be seen in
Fig. 8.2. This was due to the effects of the LC surface
viscosity, which made this region respond more slowly
to external influences. If the applied electric field was
removed at this point, the director field was found to
revert to the original tilted state T . This is consistent
with experimental observations in which the applied field
pulse is too short-lived for the device switching to latch.
As a technical point, we note that, despite our use of
a substrate-localised description of surface viscosity, we
have not observed any numerical instabilities following
the application of the electric field [29]. Presumably, this
is due to the relatively slow switching in this system [43].

Continued application of the applied electric field, how-
ever, caused the LC on the post’s surface to reorient into
the planar configuration, as can be seen in Figs. 8(3-6).
This led to a consequent realignment of the adjacent bulk
LC, which transformed from an inflection-like configura-
tion in-between the posts into a

∪
-like one. Fig. 8 depicts

the PABN post from such an angle that the post’s edge,
which hosts a defect line in the planar state, is clearly
visible. Initially, when the LC on the post just starts to
adopt the planar configuration, the LC on the edge still
maintains the ‘tilted state’ arrangement. Later, though,
the adjacent faces become increasingly planar aligned,
and the defect line develops along this edge. The finite el-
ement simulations of Ref [42] found that, for square post
shapes, the mechanism of the T – P transition was dom-
inated by point defects initially at the upper and lower
corners of this edge: the switching was founded on the
lower defect migrating up the post edge and annihilat-
ing with the upper defect. For the smoother post profile
considered here, however, the locations and mobilities of
these orientational defects are seen to be rather different.
Particularly, the upper defect is initially located on the
top of the post rather than at the upper corner of the
trailing edge. Furthermore, it migrates significantly dur-
ing the switching process, as is shown clearly in the first
three images in Fig. 6. We have found that this qualita-
tive description holds for a range of post shapes. Thus,
while the post geometry affects the relative and absolute
stabilities of the two states, it does not appear to affect
the T – P switching mechanism.

When the electric field was completely removed, the
LC in these simulations relaxed into the planar state.
It should be noted that the effective optical switching
between these states was much faster than the latching
time. This is because the bulk LC was rapidly reoriented
into the planar state by the applied electric field. The
later stages of this switching, i.e. the reorientation of the
LC in the post region, were crucial for zero-field stabili-
sation of the planar state but did not lead to significant
optical change.

VII. CONCLUSIONS

In this paper, we have presented a generalisation of
the MSPH technique capable of simulating static and dy-
namic LC behaviour. This generalised method has then
been tested by comparing its outputs with previous con-
tinuum treatments of two pseudo 1-dimensional device-
switching scenarios. In both cases, the MSPH simula-
tions exhibited the expected qualitative behaviour and
showed minor quantitative modifications consistent with
the use of a Qian-Sheng, rather than an ELP descrip-
tion of nematodynamics. Alternative mesh-free and par-
ticle based approaches, such as SPH and DPD, have not
proved sufficiently robust to yield a simulation model ca-
pable of fully representing such behaviour. We then have
studied the switching process in the PABN device. In
this, we have achieved the forward T – P switching direc-
tion, in which the system equilibrated into the P1 state
after the external field was removed provided that the
field pulse was sufficiently long-lived. The core mecha-
nism underlying this switching was found to be a slow
reorientation of the LC on the post surface.
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FIG. 7: Series of snapshots depicting snapshots of the director alignment in cross-sections of the post’s diagonal during switching
between the tilted and planar states of the PABN device. In these, t1 = 0ms, t2 = 0.9ms, t3 = 1.4ms, t4 = 1.5ms, t5 = 2.5ms,
t6 = 3.0ms

FIG. 8: Series of snapshots depicting snapshots of the director alignment in the post’s surface during switching between the
tilted and planar states of the PABN device. In these, t1 = 0ms, t2 = 0.9ms, t3 = 1.4ms, t4 = 1.5ms, t5 = 2.5ms, t6 = 3.0ms
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The motivation for developing this alternative ap-
proach for nematodynamics simulation stems from a de-
sire to open up certain problems which are inaccessible
to other current approaches. Here, we have shown that
the MSPH approach appears capable of manifesting a
full Qian-Sheng + LdG representation whilst retaining
the fundamental simplicity of implementations associ-
ated with mesh-free methods. Further, extension from
1-d to full 3-d simulations is straightforward to imple-
ment.
Importantly, the method is intrinsically multi-scale in

that the sampling point density does not need to be fixed.
Thus, unlike finite element and Lattice Boltzmann ap-
proaches, it is straightforward to concentrate sampling
(and computational effort) in regions of interest (e.g. at
surfaces, around defects). It is also possible to incor-
porate thermal fluctuations into MSPH methods. These
properties raise the prospect of MSPHmethods providing
a useful basis for hybrid simulation approaches. As al-
luded to in previous sections, the methodology is equally
applicable to alternative underlying descriptions such as
microscopically derived descriptions of thermal response
or additional physical features in the bulk and/or sur-
face terms. This will aid in achieving consistency of de-

scription across any overlap regions in any possible hy-
brid simulation scheme. A related observation that arises
when considering multi-scale modelling in a nematic liq-
uid crystal context is that there appears to be a strong
case for introducing some length-scale dependence in the
order-field description.

In future work, we shall exploit the potential of this
new method more fully by applying it to further nema-
todynamic systems in which order parameter variation
and boundary complexity significantly effect system be-
haviour. This will include scenarios in which LC defects
play a significant role in either the static or the dynamic
behaviour, such as LC colloids and bistable switching de-
vices.
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