
Nonlinear optimal control and its application to a two-wheeled robot

KOKKRATHOKE, Surapong

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/29927/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/29927/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Nonlinear Optimal Control and Its Application
to a Two-Wheeled Robot

A thesis submitted in partial fulfilment of the requirements of

Sheffield Hallam University

for the degree of Doctor of Philosophy

Surapong Kokkrathoke

November 2021

i

Abstract

This research studies two advanced nonlinear optimal control techniques, i.e.,

the freezing control and the iteration scheme, and their associated applications,

such as a single inverted pendulum (IP) on a cart system and a two-wheeled

robot (TWR) system. These techniques are applied to stabilise the highly

unstable nonlinear systems in the vertical upright position when facing different

initial pitch angles. Different linear optimal controllers (linear quadratic regulator

and linear quadratic Gaussian) and nonlinear optimal controllers are designed

and applied to the models for concurrent control of all state variables. The

controlled systems are tested in simulation and the best performing control design

is eventually implemented on a robot prototype built with an educational kit – the

LEGO EV3, after practical factors such as motor voltage limitation, gyro sensor

drift and model uncertainties have been considered, analysed and dealt with.

Simulations and experiments on the TWR robot prototype demonstrate the

superiority of the nonlinear freezing optimal control technique, showing larger

operation ranges of the robot pitch angle and better response performances (i.e.,

shorter rise time, less overshoot and reduced settling time) than the linear optimal

control methods. In particular, a novel mixing method to create a new nonlinear

model (Model AB) from two different models on the same physical prototype with

an increased controllable region of the TWR system is introduced, for the first

time, for the calculations of optimal feedback gains for the system. Significantly,

the utilisation of this mixed model, combined with the nonlinear freezing

controller, achieves true global control of the TWR, even from an initial pitch angle

of 90° (i.e., the horizontal position), when a motor with a saturated voltage of 48V

and nominal torque of 298 mNm is adopted in simulation tests. This is wider than

the angle achievable from the primary model (Model A) and any other single

feedback control method on TWR reported in the literature. Robustness tests

when introducing model uncertainties by adding mass and height on the TWR

also illustrate excellent control performances from the nonlinear optimal control

in both simulations and hardware implementations.

ii

Declaration

I hereby declare that:

1. I have not been enrolled for another award of the University, or other

academic or professional organisation, whilst undertaking my research

degree.

2. None of the material contained in the thesis has been used in any other

submission for an academic award.

3. I am aware of and understand the University's policy on plagiarism and

certify that this thesis is my own work. The use of all published or other

sources of material consulted have been properly and fully acknowledged.

4. The work undertaken towards the thesis has been conducted in

accordance with the SHU Principles of Integrity in Research and the SHU

Research Ethics Policy.

5. The word count of the thesis is 32,693.

Name Surapong Kokkrathoke

Date November 2021

Award PhD

Faculty Department of Engineering and Mathematics

Director(s) of Studies Dr Xu Xu(DoS), Dr Alex Shenfield and Prof.

Ian Halliday

iii

Acknowledgement

First and foremost, I would like to express my great thanks to my principal

supervisor, Dr Xu Xu, for her invaluable advice and enthusiastic encouragement

during the research study. Also, I am thankful for her kindness, concerns and

suggestions while living out of my home country. Moreover, I would like to thank

other supervisors, Dr Alex Shenfield and Professor Ian Halliday, and the

university staff for their support.

Furthermore, I would like to thank the Royal Thai Government and the

Synchrotron Light Research Institute (public organization), my workplace, for the

doctoral’s degree scholarship. This research would have been impossible without

their support.

Special thanks to my beloved wife, Tipsuda, who is alongside me on this journey

and my life. Thank you for your encouragement. I would like to extend my thanks

to our families for their support and for looking after us. Finally, I also would like

to thank my grandfather for spiration and waiting for me back to our home country

after finishing my doctoral study.

iv

Table of Contents

Abstract………………………………………………………….………… i

Acknowledgements…………………………………………..…………… iii

Table of Content…………………………………………….…………….. iv

List of Tables……………………………………………………….…….. ix

List of Figures…………………………………………………………..… x

Nomenclature…………………………………………………………..… xxii

Abbreviations……………………………………………………...……… xxvi

Chapter 1: Introduction……………………………………………….. 1

1.1 Background…………………………………………………….…….. 1

1.2 Aims and Objectives………………………….…………............… 2

1.3 Publications and Presentations Resulted from This PhD Study… 4

1.4 Thesis Structure……………………………………………………… 6

Chapter 2: Literature Review………………………………………… 9

2.1 Introduction…………………………………………………………… 9

2.2 Inverted Pendulum System and Applications……………………… 9

2.3 System Modelling……………………………………………………. 14

2.4 Linear Control Techniques………………………………………….. 17

 2.4.1 PID Controller………………………………………………… 18

 2.4.2 Linear Quadratic Regulator…………………………………. 19

 2.4.3 Linear Quadratic Gaussian……………………………………. 20

 2.4.4 Fuzzy Logic Control……………………………………………. 22

 2.4.5 Model Predictive Control………………….…………………. 24

v

2.5 Nonlinear Control Techniques……………………………………… 25

 2.5.1 Freezing Control Technique………………………………..…. 25

 2.5.2 Freezing Control Technique with Extended Kalman Filter… 27

 2.5.3 Iteration Scheme……………………………………………… 29

 2.5.4 Sliding-Mode Control…………………………………………. 30

 2.5.5 Neural Network Control……………………………………… 31

Chapter 3: Hardware and Software Descriptions of a Self-

Balancing Robot………………………………………………………… 35

3.1 Introduction…………………………………………………………… 35

3.2 Hardware…………………………………………………………….. 35

 3.2.1 History…………………………………………………………. 35

 3.2.2 LEGO Mindstorms EV3 Specifications……………………… 38

3.3 Software………………………………………………………..…….. 45

 3.3.1 RIS (Robotics Invention System)…………………………… 45

 3.3.2 brickOS………………………………………………………… 46

 3.3.3 NXT-G………………………………………………………….. 46

 3.3.4 LEGO Mindstorms EV3 Software…………………………… 46

 3.3.5 leJOS………………………………………………………….. 47

 3.3.6 Python………………………………………………………….. 47

 3.3.7 MATLAB & Simulink………………………………………….. 48

Chapter 4: Modelling of Inverted Pendulum and Two-Wheeled

Robot Systems…………………………………………………………... 49

4.1 Introduction…………………………………………………………… 49

vi

4.2 Mathematical Model…………………………………………………. 49

 4.2.1 Inverted Pendulum on a Cart Model………………………… 49

 4.2.2 Self-Balancing Two-Wheeled Robot Model…………………. 53

4.3 Converting Control Inputs from Forces to Voltages ……………… 62

4.4 Linearisation of the Two-Wheeled Robot Model………………… 67

Chapter 5: Linear Control Designs and Implementations……… 70

5.1 Introduction…………………………………………………………… 70

5.2 Linear Quadratic Regulator (LQR)…………………………………. 70

 5.2.1 Linear Quadratic Regulator (LQR) Theory………………… 70

 5.2.2 Controllability…………………………………………………. 73

 5.2.3 Simulation Results…………………………………………… 74

 5.2.3.1 The Effect of Matrices 𝑄 and 𝑅………………………. 74

 5.2.3.2 Simulations of IP and TWR without Input

 Saturations……………………………………………. 84

 5.2.3.3 Simulations of TWR with Input Saturations………… 88

 5.2.4 Experimental Results……………………………………….. 90

5.3 Linear Quadratic Gaussian (LQG)………………………………… 94

 5.3.1 Linear Quadratic Gaussian (LQG) Strategy………………… 94

 5.3.2 Observability………………………………………………….. 97

 5.3.3 Simulation Results…………………………………………… 98

 5.3.3.1 Kalman Filter Testing…………………………………. 98

 5.3.3.2 Simulations of TWR without Input Saturations…… 101

 5.3.3.3 Simulations of TWR with Input Saturations………… 104

vii

 5.3.4 Experimental Results………………………………………… 106

5.4 Conclusion……………………………………………………………. 109

Chapter 6: Nonlinear Control Designs and Implementations…… 111

6.1 Introduction…………………………….…………………………….. 111

6.2 Nonlinear Freezing Control Strategy……………………………… 111

 6.2.1 Freezing Technique - Input Saturation……………………. 114

 6.2.2 Freezing Technique and Extended Kalman Filter………… 118

6.3 Nonlinear Iteration Scheme Strategy……………………………..… 120

6.4 Controllability and Observability…………………………………… 122

 6.4.1 Controllability………………………………………………….. 122

 6.4.2 Observability………………………………………………….. 132

6.5 Simulation Results …………………………………………………. 136

 6.5.1 Simulations of IP and TWR without Input Saturations…… 136

 6.5.2 Simulations of TWR with Input Saturations…………………. 155

 6.5.3 Simulation Results on Model Uncertainty…………………… 175

6.6 Experimental Results (TWR)………………………………………… 179

 6.6.1 Implementations from Varied Initial Pitch Angles………… 179

 6.6.2 Alternative Models’ Implementations……………………… 186

 6.6.3 Model Uncertainty Implementations………………………… 188

6.7 Conclusion…………………………………………………………… 193

Chapter 7: Conclusions and Further Work…………………………. 197

7.1 Conclusions………………………………………………………….. 197

 7.1.1 Mathematical Models………………………………………… 197

viii

 7.1.2 Linear Control Implementations………………………………. 198

 7.1.3 Nonlinear Control Implementations…………………………… 199

7.2 Recommendation and Future Work……………………………… 202

References……………………………………………………………….. 204

Appendix A: MATLAB Codes…………………………………………… 210

Appendix B: Simulink Block Diagrams………………………………… 298

ix

List of Tables

Table 3.1: Sensors specification…………………………………………...………43

Table 3.2: Actuator specification……….…………………………………..………43

Table 4.1: Physical parameters of the self-balancing two-wheeled robot……..55

Table 6.1: The maximum initial pitch angle stabilisable from different

controllers with input constraints 8.3V and12V………………………….………170

Table 6.2: Motor specifications from Maxon company, series EC 32 flat

15W (Maxongroup, EC 32 flat 15W, 2020)………………………………………171

Table 6.3: The maximum initial pitch angle stabilisable from different

controllers, with varying motor voltages………………………………………….172

Table 6.4: The motor specifications of the series EC 60 flat 100W motor

from Maxon company (Maxongroup, 2020)……………………………………...173

Table 6.5: The maximum initial pitch angle stabilisable from different

controllers, with the 48V series EC 60 flat motor………………………………..173

Table 6.6: The maximum initial pitch angles achieved using different

controllers, in simulations and in practical implementations………………...…192

Table B3.1: A partial lookup table of LQR feedback gains for the TWR

Model A………………………………………………………………………………307

Table B3.2: A partial lookup table of LQR feedback gains for the TWR

Model B………………………………………………………………………………308

Table B3.3: A partial lookup table of LQR feedback gains for the TWR

Model AB…………………………………………………………………………….309

Table B3.4: Gains K1-K4 in the lookup table………………………………..….310

Table B3.5: A partial lookup table of Kalman feedback gains for the TWR

 model A……………………………………………………………………………..316

Table B3.6: A partial lookup table of Kalman feedback gains for the TWR

model B………………………………………………………………………………317

Table B3.7: A partial lookup table of Kalman feedback gains for the TWR

Model AB…………………………………………………………………………….318

Table B3.8: Gains P31-34 in the lookup table…………………………………..319

x

List of Figures

Figure 2.1: The single inverted pendulum on a cart (LEGO Mindstorms EV3..10

Figure 2.2: Single (left) and multi-link (right) inverted pendulum…………….....10

Figure 2.3: Rotary Inverted Pendulum (Quanser, 2020)………………….....….11

Figure 2.4: Self-balancing two-wheeled robot (LEGO Mindstorms EV3)

(LEGO, 2021)…………………………………………………………………………13

Figure 2.5: Segway PT (Personal Transporter) (Segway, 2021)…………..…..13

Figure 2.6: Jyrobike - Auto Balance Bicycle (Kickstarter, 2021)…………….....14

Figure 3.1: LegWay Balancing robots based on LEGO RCX………………..…36

Figure 3.2: NXTway self-balancing robot by using LEGO Mindstorms NXT

(Yamamoto, 2009)……………………………………………………………………37

Figure 3.3: Self-balancing robot using LEGO Mindstorms EV3……………..…38

Figure 3.4: Rechargeable DC lithium-ion battery of LEGO Mindstorms EV…..40

Figure 3.5: Battery voltage measured by the multimeter…………..……………41

Figure 3.6: Voltage measured using Simulink block diagram………..…………41

Figure 3.7: (a) Edimax N150 Wi-Fi Nano USB Adapter and (b) NetGear N150

(WNA1100) Wi-Fi USB Adapter (Netgear, 2020)…………………………………45

Figure 4.1: An inverted pendulum on a cart (Xu, Zhang, & Carbone, 2017)….49

Figure 4.2: Self-balancing two-wheeled robot (LEGO EV3), (a) side view and

(b) top view………………………………………………………...………………….54

Figure 4.3: Self-balancing two-wheeled robot diagram, (a) side view and

(b) top view (Yamamoto, 2009)……………………………………………..………54

Figure 4.4: DC motor schematic (Chiasson, 2005)…………………………..….63

xi

Figure 5.1: Structure of the linear quadratic regulator (LQR) (Burns, 2001)….72

Figure 5.2: Structure of the linear quadratic regulator (LQR) and tracking

system (Burns, 2001)……………………….……………………………………….73

Figure 5.3: Dynamical evolution of state variable x1-x4 and control signal u

over time, with varying Q11 values………………………………………………...75

Figure 5.4: Dynamical evolution of state variable x1-x4 and control signal u

over time, with varying Q22 values………………………………………………...76

Figure 5.5: Dynamical evolution of state variable x1-x4 and control signal u

over time, with varying Q33 values………………………………………………...76

Figure 5.6: Dynamical evolution of state variable x1-x4 and control signal u

over time, with varying Q44 values………………………………………………...77

Figure 5.7: Dynamical evolution of state variable x1-x5 and control signal u

over time, with varying R values……………………………………………………77

Figure 5.8: Dynamical evolution of state variables x1-x5 and control signal u

over time, with varying Q11 values………………………………………………...78

Figure 5.9: Dynamical evolution of state variable x1-x5 and control signal u

over time, with varying Q22 values………………………………………………...80

Figure 5.10: Unstable system when the Q22=4.2…………………..……………80

Figure 5.11: Dynamical evolution of state variable x1-x5 and control signal u

over time, with varying Q33 values………………………………………………...81

Figure 5.12: Dynamical evolution of state variable x1-x5 and control signal u

over time, with varying Q44 values………………………………………………...81

Figure 5.13: Dynamical evolution of state variable x1-x5 and control signal u

over time, with varying Q55 values………………………………………………...82

Figure 5.14: Dynamical evolution of state variable x1 between 10 - 20 s., with

varying Q55 values……………………………….………………………………….82

xii

Figure 5.15: Dynamical evolution of state variable x1-x5 and control signal u

over time, with varying R values……………………………………………………83

Figure 5.16: The stabilisation on different initial pendulum angles (x3)…..…...84

Figure 5.17: Unstable system responses from initial pendulum angle x3=43°.85

Figure 5.18: (a) Robot’s reference position before setting the initial pitch angle

(Ψ), (b) Wheel angle (θ) shifted after the initial pitch angle set……………..…..86

Figure 5.19: The stabilisation from different initial pitch angles (x3)………..….86

Figure 5.20: The unstable system response at initial pitch angles x3= 65.8°...87

Figure 5.21: Stabilisation from the initial pitch angles (x3) at 15° with and

without saturation……………………………………………………….……………88

Figure 5.22: Stabilisation of the initial pitch angles (x3) at 20.9° with and

without saturation………………………………………………….…………………89

Figure 5.23: Unstable system with input saturation at the initial pitch

angles (x3) 21°………………………………………………………………………..90

Figure 5.24: The stabilisation from different initial pitch angles x3= 15° and 16°

implemented on LEGO EV3 robot……………………………………………...…..91

Figure 5.25: The stabilisation on different initial pitch angles x3 at 15° and 16°

implemented on LEGO EV3 robot over 20 seconds………………………..……91

Figure 5.26: The stabilisation implemented by LEGO EV3 robot compared to

simulation at the initial pitch angles x3 15°……………………………..……...…93

Figure 5.27: LQG Controller and tracking system block diagram (Anderson &

Moore, 1989)……………………………………………………………..……...…...94

Figure 5.28: Schematic of state-space control using Kalman filter and LQR

(Anderson & Moore, 1989)………………………………..……….……………..…96

Figure 5.29: Simulation results of noise filtering on a gyro sensor………….…99

xiii

Figure 5.30: The magnified simulation results of noise filtering on a gyro

sensor……………………………………………………………………………..….99

Figure 5.31: The simulation of sensor drift reduction…………….…………....100

Figure 5.32: The stabilisation between LQR and LQG controller at the initial

pitch angles (x3) 15° without saturation…………….……………………………102

Figure 5.33: The stabilisation between LQR and LQG controller at the initial

pitch angles (x3) 30° without saturation………………….………………………102

Figure 5.34: The stabilisation between LQR and LQG controller at the initial

pitch angles (x3) 65.7° without saturation……………………….……………….103

Figure 5.35: Unstable responses of the LQG control at the initial pitch angles

(x3) 65.8°……………………………………………..……………………………..104

Figure 5.36: The stabilisation using LQR and LQG controllers at the initial

pitch angles x3= 15° with saturation………………..…………………………….104

Figure 5.37: The stabilisation using LQR and LQG controllers at the initial

pitch angles x3= 20.9° with saturation………………………...……..………...105

Figure 5.38: The outcomes of sensor drift reduced at initial pitch angles

x3=15° implemented by LEGO EV3 robot……………………………….....……106

Figure 5.39: The stabilisation on different initial pitch angles (x3) 15° and

16°implemented by LEGO EV3 robot…………………………………………….107

Figure 5.40: Unstable system starting from the initial pitch angle 16.5°……..108

Figure 5.41: The stabilisation implemented on LEGO EV3 robot compared

to simulation at the initial pitch angles x3=15°……………..…………………..108

Figure 6.1: Structure of freezing control technique and tracking system.…...114

Figure 6.2: Structure of freezing technique with EKF and tracking system....119

Figure 6.3: The rank of controllability matrix for the nonlinear inverted

pendulum and cart system………………………………………………………...123

xiv

Figure 6.4: The rank of controllability matrix for the nonlinear two-wheeled

robot system - without input saturation…………..……………………….……..124

Figure 6.5 : The rank of controllability matrix for the nonlinear TWR system

-without input saturation (Model B)…………………..…………………………..126

Figure 6.6 : The rank of controllability matrix for the nonlinear TWR system

- without input saturation (Model C)……………..……………………………….126

Figure 6.7 : The rank of controllability matrix for the nonlinear TWR system

-without input saturation (Model AB)..……………………………………………127

Figure 6.8: The rank of controllability for freezing technique system

– with input saturation………………………………………………………………128

Figure 6.9: Controllability plot for the TWR system (with input saturation),

(a) cross-section at x4=0°/s. Note, the coordinates (x3, x6) of the 2 points

marked by red asterisks are (-90°,-8.4×1015) and (-90°,8.6×1015), (b) cross-

section at x3= 0°. Note, the coordinates (x4, x6) of the 2 points marked by red

asterisks are (-200°/s,-8.4×1015) and (-200 °/s,8.6×1015)………..…………..129

Figure 6.10: The rank of controllability matrix of TWR for the freezing

technique – with input saturation (Model B)……………………………...……..130

Figure 6.11: Controllability plot for the TWR system of Model B (with input

saturation), (a) cross-section at x4=0°/s. (b) cross-section at x3= 0°………...130

Figure 6.12: The rank of controllability matrix for the TWR system

– with input saturation (Model AB)………………………………………….…….131

Figure 6.13: Controllability plot for the TWR with Model AB (input saturation),

(a) cross-section at x4=0°/s. Note, the coordinates (x3, x6) of the 2 points

marked by red asterisks are (-10°,-8.4×1015) and (-10°,8.6×1015), (b) cross-

section at x3= 0°. Note, the coordinates (x4, x6) of the 2 points marked by red

asterisks are (-200°/s,-8.4×1015) and (-200 °/s,8.6×1015),………..………….132

Figure 6.14: The rank of observability matrix for a 4th order nonlinear

inverted pendulum system………………………………………..…………….…133

xv

Figure 6.15: The rank of observability matrix for the 5th order nonlinear TWR

system - without input saturation………………….……….……….…………..133

Figure 6.16: The rank of observability matrix for the 6th order nonlinear TWR

system – with input saturation……………………………………………………134

Figure 6.17: The rank of observability matrix for the 6th order nonlinear

TWR system (with input saturation) by cross-section at (a) x4=0°/s and (b)

x3=0°…………………………………………………………………………………135

Figure 6.18: The stabilisation of an inverted pendulum system by the

nonlinear freezing technique, from different initial pitch angles x3….…..…….137

Figure 6.19: Unstable system response of an inverted pendulum system at

the initial pitch angle x3=80.6°, using the freezing technique………….………137

Figure 6.20: The stabilisation of an IP system from the initial pitch angle x3=

60°, using the nonlinear iteration method, at different iteration steps…..……138

Figure 6.21: The stabilisation of an inverted pendulum system by the iteration

scheme (40th) from different initial pitch angles x3 – converged responses….139

Figure 6.22: Unstable system responses from the initial pitch angle x3=61.4°,

using the iteration scheme (40th)…………………………………………………140

Figure 6.23: Stabilisation of the IP system using three different controllers,

starting from an initial pitch angle x3= 42.9°……………………………………..140

Figure 6.24: The stabilisation of a TWR system using freezing technique from

different initial pitch angles x3………………………………………..…………...142

Figure 6.25: The stabilisation of a TWR system using freezing technique from

initial pitch angle x3= 87.2°……………..…………………………………………142

Figure 6.26: Uncontrollable system at the initial pitch angles x3=87.3°, with

the freezing technique applied……..…………………………………………….143

Figure 6.27: The rank of controllability and dynamical evolution of state

variables x3 and x4 at the initial pitch angles: (a) x3=30° and (b) x3=87.2°,

controlled by the freezing technique……………………………………………..144

xvi

Figure 6.28: The rank of controllability and dynamical evolution of state

variables x3 and x4 at the initial pitch angles: (a) x3=87.3° and (b) x3=90°,

controlled by the freezing technique………………………..……………….…..145

Figure 6.29: The stabilisation of a TWR system using the freezing technique

with EKF from different initial pitch angles x3………..……………………..…..146

Figure 6.30: The stabilisation of a TWR system using the freezing technique

with EKF from the initial pitch angle x3=87.2°……………..…………………….146

Figure 6.31: Unstable system from the initial pitch angles x3=87.3°, using

freezing technique with EKF……………………………………………………….147

Figure 6.32: The rank of controllability matrix and dynamical evolution of state

variable x3 and x4 from the initial pitch angles x3=87.2°, using freezing

technique with EKF……………………………………………………………...148

Figure 6.33: The rank of controllability matrix and dynamical evolution of

state variable x3 and x4 from the initial pitch angles x3=87.3°, using

freezing technique with EKF………….…….……………………………….…...148

Figure 6.34: Stabilisation of a TWR system by four controllers from the initial

pitch angles x3= 15°……………….………………………………………………149

Figure 6.35: Stabilisation of a TWR system by four controllers from the initial

pitch angles x3= 30°……………………………………………………………….149

Figure 6.36: Stabilisation of a TWR system by four controllers from the initial

pitch angle x3= 60°………….……………………………………………………..150

Figure 6.37: Stabilisation of a TWR system by four controllers from the initial

pitch angles x3= 65.7°……………..……………………………………………….151

Figure 6.38: Magnified dynamical evolution of x3 from the initial pitch angle

x3= 65.7° using four controllers…………………………………………………..151

Figure 6.39: Stabilisation of a TWR system by freezing controllers, using

Models B and AB at the initial pitch angle x3= 90°…………………………….153

xvii

Figure 6.40: The rank of controllability matrix and dynamical evolution of x3

and x4 from the initial pitch angles x3=90°, using freezing technique alone

and with EKF for: (a) Model B and (b) Model AB……………………...………..154

Figure 6.41: Stabilisation of a TWR system by four controllers from the initial

pitch angle x3= 14.1° with input saturation: (a) x1-x5 and u against time and

(b) x6 with logarithmic scale against time………………………………………..155

Figure 6.42: The rank of controllability matrix and dynamical evolution of

state variables x3 and x4 from the initial pitch angle x3=14.1°, using (a)

freezing technique and (b) freezing technique with EKF……………….………157

Figure 6.43: Unstable system using freezing technique and EKF from initial

pitch angle x3= 14.2° with input saturation: (a) x1-x5 and u against time and

(b) x6 with logarithmic scale against time……………………...………………...158

Figure 6.44: The rank of controllability matrix and dynamical evolution of state

variables x3 and x4 from the initial pitch angle x3=14.2°, using freezing

technique and EKF……………………….…..……………………………………159

Figure 6.45: Stabilisation results from three controllers at the initial pitch

angles x3= 16.8° with input saturation: (a) x1-x5 and u against time and

(b) x6 with logarithmic scale against time………………...……………………...160

Figure 6.46: The rank of controllability matrix and dynamical evolution of state

variables x3 and x4 at the initial pitch angle x3=16.8°, using freezing

technique…………………………………………………………………………….161

Figure 6.47: Unstable system response using freezing technique at the initial

pitch angle x3= 16.9° with input saturation: (a) x1-x5 and u against time and

(b) x6 with logarithmic scale against time………………………………………..162

Figure 6.48: The rank of controllability matrix and dynamical evolution of

state variables x3 and x4 at the initial pitch angle x3=16.9°, using freezing

technique…………………………………………………………………………….162

xviii

Figure 6.49: Stabilisation of the TWR system using freezing controllers with

EKF from on Models A, B and AB at the initial pitch angles x3=14.1°:

(a) x1-x5 and u against time and (b) x6 with logarithmic scale against time..163

Figure 6.50: The rank of controllability matrix and dynamical evolution of state

variables x3 and x4 from (a) Model B and (b) Model AB, at initial pitch angle

x3=14.1°, using freezing technique and EKF…………………………........…...164

Figure 6.51: Uncontrollable system responses generated using freezing

controllers with EKF for Model B at the initial pitch angle x3=14.2°: (a) x1-x5

and u against time and (b) x6 with logarithmic scale against time……………165

Figure 6.52: The rank of controllability matrix and dynamical evolution of

state variables x3 and x4 of Model B from initial pitch angle x3=14.2°, using

freezing technique and EKF (Right figure: Magnified)…………………….……166

Figure 6.53: Stabilisation of Model AB using freezing controller with EKF at

initial pitch angle x3=14.3°: (a) x1-x5 and u against time and (b) x6 with

logarithmic scale against time……………………………………………………..167

Figure 6.54: The rank of controllability matrix and dynamical evolution of state

variables x3 and x4 of Model AB from initial pitch angles x3=14.3°, using

freezing technique and EKF (Right figure: Magnified) ….…………………….167

Figure 6.55: Stabilisation of the TWR system (Model A) by four controllers

with hard constraint at initial pitch angle x3=20.9°……………………….……..168

Figure 6.56: Stabilisation of the TWR system using four controllers on Models

B and AB with hard constraint at the initial pitch angle x3= 20.8°……………..169

Figure 6.57: Stabilisation of TWR Models A, B and AB (with model

uncertainties) by freezing controller with EKF from initial pitch angle

x3=12.5°……………………………………………………………………………..176

Figure 6.58: Unstable response of TWR Models A and B (with model

uncertainties), by freezing control with EKF from initial pitch angle

x3=12.6°…………………………………………………………………..……..…..176

xix

Figure 6.59: Stabilisation of TWR Model AB (with model uncertainties) by

freezing controller with EKF from the initial pitch angle x3=13°……………….177

Figure 6.60: Unstable response of TWR Model AB (with model uncertainties),

by freezing controller with EKF at initial pitch angle x3=13.1°……….………..177

Figure 6.61: Stabilisation of LQG controller at the initial pitch angle

x3= 19.7°…………………………………………………………………………….178

Figure 6.62: Uncontrollable system of LQG controller at the initial pitch angle

x3=19.8°………………………………………………………………………….....178

Figure 6.63: The stabilising freezing control implemented on LEGO EV3

robot compared to simulation, at initial pitch angles (x3): (a) 8° and

(b) 16.8°……………………………………………………………………………...180

Figure 6.64: The stabilisation from different initial pitch angles (x3) 16.6° and

18°, implemented on LEGO EV3 robot using freezing technique……………..181

Figure 6.65: Unstable responses from the initial pitch angle18.5°, implemented

on LEGO EV3 robot using freezing technique………………………..…………182

Figure 6.66: Stabilising control of the LEGO EV3 robot compared to

simulation at the initial pitch angles: (a) x3=8° and (b) x3=14°,using freezing

technique with EKF…..183

Figure 6.67: The stabilisation from different initial pitch angles (x3) 14° and

18°, implemented on LEGO EV3 robot using freezing technique with EKF

(sensor drift reduced)………………………………………………………………185

Figure 6.68: Unstable responses from the initial pitch angle 18.5°,

implemented on LEGO EV3 robot using freezing technique with EKF….……185

Figure 6.69: Unstable response from the initial pitch angle x3= 0°,

implemented on LEGO EV3 robot using freezing technique with EKF on

Model B…………………………………………………………………….………..186

Figure 6.70: The stabilisation from initial pitch angle x3= 20°, implemented

on LEGO EV3 robot using freezing technique with EKF on Model AB……….187

xx

Figure 6.71: Unstable response from initial pitch angle x3= 20.5°,

implemented on LEGO EV3 robot using freezing technique with EKF on

Model AB………………………………………………………………………….…187

Figure 6.72: The stabilisation from initial pitch angle x3= 15°, implemented

on LEGO EV3 robot using LQG controller with added mass and height.…….189

Figure 6.73: Unstable response from initial pitch angle x3= 15.5°,

implemented on LEGO EV3 robot using LQG controller with added mass

and height…………………………………………………………………..……….189

Figure 6.74: The stabilisation from initial pitch angle x3= 16° implemented on

LEGO EV3 robot using freezing control and EKF on Model A, with added

mass and height…………………………………………….………………………190

Figure 6.75: Unstable responses from initial pitch angle x3= 17°,

implemented on LEGO EV3 robot using freezing control and EKF on Model A

with added mass and height………………………………….……………………190

Figure 6.76: The stabilisation from initial pitch angle x3= 18°, implemented

on LEGO EV3 robot using freezing control and EKF on Model AB, with added

mass and height…………………………………………………………………191

Figure 6.77: Unstable responses from initial pitch angle x3= 19°, implemented

on LEGO EV3 robot using freezing control and EKF on Model AB, with added

mass and height……………………………………………………………………191

Figure B1.1: The 5-states control of linear quadratic regulator (LQR) in

Simulink, adapted from (Roslovets, 2020)…………………….………………...298

Figure B1.2: Theta (x1) reference block diagrams…….………………………298

Figure B1.3: Tracking system block diagrams……………….…….…………..298

Figure B1.4: Waiting for setup block diagrams……………….………………..299

Figure B1.5: EV3 release button…………….…………………………………..299

Figure B1.6: LEGO EV3 block diagrams………………….…………………….299

xxi

Figure B1.7: EV3 hardware block diagrams…………………..………………..299

Figure B1.8: Gyro sensor block diagrams…………………..………………….300

Figure B1.9: Remove Low High Signal During Setup block diagrams…..….300

Figure B1.10: Data rearranged block diagrams…………..……………………300

Figure B1.11: LQR Controller block diagrams………………….………………301

Figure B1.12: Data2theta……………………………………..…………………..301

Figure B1.13: V2PWM block diagrams……………………………..…….……..301

Figure B1.14: Reset Integral Time block diagrams…………..…………….…..301

Figure B2.1: The linear quadratic Gaussian (LQG) control block diagrams in

Simulink. Noticeably, merely pitch angle will be filtered……….……………….302

Figure B2.2: LQR controller block diagrams….………………………….…….302

Figure B2.3: Select signal block diagrams……………………………..……….303

Figure B2.4: Kalman filter block diagrams………………………..……………..303

Figure B2.5: Kalman filter2 block diagrams………..……………………………303

Figure B3.1: The nonlinear freezing control in Simulink…………….………...304

Figure B3.2: NLQR controller block diagrams……………………….…………304

Figure B3.3: The nonlinear freezing control with EKF in Simulink…………...310

Figure B3.4: LEGO EV3 block diagrams………………………..………………311

Figure B3.5: Nonlinear Lookup table block diagrams…………...……………..311

Figure B3.6: LQR Controller block diagrams……………………………………319

Figure B3.7: Extended Kalman filter block diagrams………..…………………320

Figure B3.8: Kalman filter2 block diagrams……..………………………………320

Figure B3.9: A_LCxXhat block diagrams………..………………………………320

xxii

Nomenclature

Variable Description Units

IP system

𝑚1 Mass of cart 𝑘𝑔

𝑚2 Mass of pendulum 𝑘𝑔

𝑟 Length of the pendulum 𝑚

𝑥1 Cart displacement 𝑚

�̇�1 and 𝑥2 Cart velocity 𝑚/𝑠

�̈�1and �̇�2 Cart acceleration 𝑚2/𝑠

𝑥3 and 𝜃 Pendulum angle 𝑟𝑎𝑑

�̇�3 and 𝑥4 Pendulum angular velocity 𝑟𝑎𝑑/𝑠

�̇�4 and �̈� Pendulum angular acceleration 𝑟𝑎𝑑2/𝑠

𝑢 Control input 𝑁

𝑓 Generalised force 𝑁

TWR system

𝑃𝑊𝑀 Pulse-width modulation %

𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 Battery voltage 𝑉

𝑉𝑐𝑎𝑙 Voltage coefficient for converting battery

voltage to pulse-width modulation

𝑉

𝑚 Mass of robot’s wheel 𝑚

𝑀 Mass of robot’s body 𝑚

𝑅 Robot’s wheel radius 𝑚

𝑊 Robot’s body width 𝑚

𝐷 Robot’s body depth 𝑚

𝐻 Robot’s body height 𝑚

xxiii

𝐿 Distance between wheel axle

and centre of robot

𝑚

𝐽𝑤 Inertia moment of robot’s wheel

𝑘𝑔𝑚2

𝐽𝜓 Inertia moment of robot pitch

𝑘𝑔𝑚2

𝐽𝜙 Inertia moment of robot yaw

𝑘𝑔𝑚2

𝐽𝑚 Inertia moment of DC motor

𝑘𝑔𝑚2

𝑅𝑚 Resistance of DC motor

Ω

𝐾𝑏 Back EMF constant of DC motor

𝑉 ∙ 𝑠𝑒𝑐/𝑟𝑎𝑑

𝐾𝑡 Torque constant of DC motor 𝑁.𝑚/𝐴

𝑛 Gear ratio -

𝑓𝑚 Coefficient of friction between

robot and DC motor

-

𝑓𝑤 Coefficient of friction between

wheel and floor

-

𝜓 and 𝑥3 Robot pitch angle 𝑟𝑎𝑑

�̇� and 𝑥4 Robot pitch angular velocity 𝑟𝑎𝑑/𝑠

�̈� and �̇�4 Robot pitch angular accelerator 𝑟𝑎𝑑2/𝑠

𝜙 and 𝑥5 Robot yaw angle 𝑟𝑎𝑑

�̇� and 𝑥6 Robot yaw angular velocity 𝑟𝑎𝑑/𝑠

�̈� and �̇�6 Robot yaw angular accelerator 𝑟𝑎𝑑2/𝑠

𝜃 and 𝑥1 Wheel angle 𝑟𝑎𝑑

�̇� and 𝑥2 Wheel angular velocity 𝑟𝑎𝑑/𝑠

�̈� and �̇�2 Wheel angular accelerator 𝑟𝑎𝑑2/𝑠

𝜃𝑙 Left wheel angle 𝑟𝑎𝑑

𝜃𝑟 Right wheel angle 𝑟𝑎𝑑

𝑧𝑏 Z-axis of robot’s body 𝑚

𝑧𝑚 Z-axis of robot’s wheel 𝑚

𝑦𝑙 Y-axis of robot’s left wheel 𝑚

xxiv

𝑦𝑟 Y-axis of robot’s left wheel 𝑚

𝑦𝑏 Y-axis of robot’s body 𝑚

𝑦𝑚 Z-axis of between two wheels 𝑚

𝑥𝑙 X-axis of robot’s left wheel 𝑚

𝑥𝑟 X-axis of robot’s left wheel 𝑚

𝑥𝑏 X-axis of robot’s body 𝑚

𝑥𝑚 X-axis of between two wheels 𝑚

𝐹𝜃 Force of wheel angle 𝑁

𝐹𝜙 Force of yaw angle 𝑁

𝐹𝜓 Force of pitch angle 𝑁

𝑣𝑙,𝑟 Right and left voltages of DC motor 𝑉

𝑣𝑙 Left voltage of DC motor 𝑉

𝑣𝑟 Right voltage of DC motor 𝑉

𝑖𝑙,𝑟 Current of DC motor 𝐴

𝐿𝑚 Inductance of DC motor 𝐻

𝛼 and 𝛽 Coefficients of motor voltage and force -

 Others

𝐿 The Lagrangian 𝑁.𝑚

𝑉 Total potential energy 𝑁.𝑚

𝑇 Total kinetic energy 𝑁.𝑚

𝑔 Acceleration due to gravity 𝑚2/𝑠

𝜆 Limitation of control signal saturation 𝑉

𝑣 and

𝜙(𝑥𝑛 + 1)

Voltage input saturation 𝑉

𝑡𝑓 The final time 𝑆𝑒𝑐

𝐽 Cost function value -

𝑄 States weight matrix -

𝑅 Control weight matrix -

xxv

𝐴 System matrix -

𝐵 Control matrix -

𝐶 Output matrix -

𝐾 Optimal feedback gains -

𝑃 The solution of the algebraic matrix Riccati

equation

-

𝒞 Controllability matrix -

𝒪 Observability matrix -

𝐼 and 𝐺 Identity matrix

𝑤𝑛 Process noise of the Kalman filter -

𝑣𝑛 Measurement noise of the Kalman filter -

𝑄𝐾 Process noise matrix -

𝑅𝐾 Measurement noise matrix -

𝐾𝑓 The Kalman filter gain -

�̂� State estimation of state variable 𝑥 -

𝑤 Artificial control signal -

𝑄𝑎 State weight matrix of voltage saturation input -

𝐹 The final time penalty matrix -

𝑖 Iteration number -

xxvi

Abbreviations

ANN Artificial neural network

CAD Computer-aided design

CMG Control moment gyroscope

CPU Central processing unit

DBD Delta-bar-delta algorithm

DC Direct currrent

DOF Degrees of freedom

EKF Extended Kalman filter

EMF Electric and magnetic fields

Eq Equation

FC-PDPS Fuzzy controller with parallel distributed pole assignment

scheme

FSUC Fuzzy swing-up controller

GPC Generalized predictive control

GPS Global positioning system

INS Inertial navigation system

IP Inverted pendulum

LQG Lnear quadratic Gaussian

LQR Linear quadratic regulator

LTV Linear, time-varying

MEMS Micro-electromechanical system

MPC Model predictive control

NASA The National Aeronautics and Space Administration

ODEs Ordinary differential equations

PD Proportional derivative

PID Proportional-integral-derivative

PWM Pulse-width modulation

RBFNNs Radial basis function neural networks

RCX Robotic Command eXplorers

RIS Robotics invention system

SDRE State-dependent Riccati equation

xxvii

SISO Single-input single-out

TWD Threshold with delay

TWR Two-wheeled robot

T-S Takagi–Sugeno

UAV Unmanned aerial vehicle

USB Universal serial bus

WFLC Weighted-frequency Fourier Linear Combiner

CHAPTER 1 INTRODUCTION

1

Chapter 1

Introduction

1.1 Background

During the past decade, various existing linear controls have been applied to

regulate linear and nonlinear systems. Some of the linear control methods are

well-known, for instance, proportional-integral-derivative (PID) control, Linear

Quadratic Regulator (LQR) and linear quadratic Gaussian (LQG). These

techniques use local linearisation around the small neighbourhood of an

equilibrium of the system, which limits their operational range and therefore their

applications and performances. By contrast, there are some existing nonlinear

techniques that illustrate outstanding control outcomes for very nonlinear

systems, because the system can be controlled globally using its nonlinear

system models.

To begin with, Banks and Mhana (1992) first introduced a nonlinear

freezing control technique by extending the LQR theory to control nonlinear

systems in the form of

�̇� = 𝐴(𝑥, 𝑢)𝑥 + 𝐵(𝑥, 𝑢)𝑢 (1.1)

where 𝒙 is a state variable vector, 𝑨(𝒙) and 𝑩(𝒙) represent the nonlinear system

matrices which form controllability matrices and 𝒖 is the nonlinear optimal control.

This method can be generalised to more complicated nonlinear systems, e.g.

optimal altitude control for a single inverted pendulum on a cart (Harrison, 2003),

CHAPTER 1 INTRODUCTION

2

F-8 crusader (Çimen & Banks, 2004a), and a double inverted pendulum on a cart

(Xu, Zhang, & Carbone, 2017) etc.

Furthermore, another nonlinear control method, an iteration scheme, was

created by Banks and McCaffrey (1998), which introduced linear, time-varying

(LTV) approximations to the infinite-time horizon nonlinear optimal affine control

problem. There has been a wide range of applications using this technique, for

example, super-tankers autopilot design (ÇImen & Banks, 2004b), optimal

altitude control for spacecraft (Zheng, Banks, & Alleyne, 2005), optimal drug

therapy control in cancer treatment (Itik, Salamci, & Banks, 2009), velocity

tracking in a hydraulic press (Du, Xu, Banks, & Wu, 2009) and the dynamics of a

tunnel diode oscillator (Itik, 2016).

Of interest here are the characteristics of nonlinear systems and how

different control techniques can be applied to nonlinear systems for control design

in software simulation and hardware implementation. Moreover, these techniques

can be applied to nonlinear systems (for instance, synchrotron light orbit stability)

within the Synchrotron Light Research Institute (Thailand), which provided the

scholarship for this PhD research study.

1.2 Aims and Objectives

The project aims to study advanced nonlinear control techniques, mathematical

modelling and signal filtering estimation of various sensors, applied to a self-

balancing two-wheeled robot (a classical system based on inverted pendulum

theory, centred on system stability). In particular, these techniques can be applied

CHAPTER 1 INTRODUCTION

3

to any nonlinear systems directly, without the need to linearise systems locally

around the equilibrium points.

The objectives of this project and the steps in achieving them are as follows:

1. Develop nonlinear models of a two-wheeled robot from the principle of the

single inverted pendulum methods and analyse the non-unique mathematical

models in the correct pseudo-linear (nonlinear) forms.

2. Apply classical linear control (e.g., LQR and LQG) and advanced nonlinear

controls (e.g., freezing control technique and the iteration scheme) theoretically

to the two-wheeled robot models for optimal control designs and develop

simulations of the control systems in MATLAB to verify the theoretical results.

3. Conduct controllability tests on different nonlinear models of the two-wheeled

robot to create a larger controllable range and new capability.

4. Implement suitable control techniques to a two-wheeled robot prototype (built

with Lego Mindstorms EV3), taking into account of physical factors and practical

conditions. Then, summarise advantages and disadvantages of the advanced

nonlinear control techniques against the linear control strategies.

5. Design effective signal filtering estimation (e.g., Kalman filter estimation) to

support the self-balancing control of the two-wheeled robot.

CHAPTER 1 INTRODUCTION

4

1.3 Publications and Presentations Resulted from This PhD Study

- Journal paper

• Kokkrathoke, S., Rawsthorne, A., Zhang, H., and Xu, X., (in press).

Nonlinear Optimal Stabilising Control of a Two-wheel Robot. International

Journal of Modelling, Identification and Control.

- Conference papers

• Kokkrathoke, S., & Xu, X. (2021). Implementation of Nonlinear Optimal

Control of Two-wheel Robot with Extended Kalman Filter. 2021 IEEE

International Conference on Automatic Control & Intelligent Systems

(I2CACIS). Shah Alam, Malaysia. (pp.19-25). IEEE.

• Kokkrathoke, S., & Xu, X. Controllability Study of Two-Wheel Robot for

Nonlinear Optimal Control and Implementation [Manuscript accepted for

publication and presentation]. 2021 IEEE Conference on Systems,

Process & Control (ICSPC2021). Shah Alam, Malaysia.

CHAPTER 1 INTRODUCTION

5

- Presentations

• Kokkrathoke, S., (2018, December). Supervisors: Xu, X., Halliday, I. and

Shenfield, A. Nonlinear Freezing Control of Inverted Pendulum. [Poster

presentation]. Winter Poster Event 2018, Sheffield Hallam University.

• Kokkrathoke, S., (2019, May). Supervisors: Xu, X., Halliday, I. and

Shenfield, A. Nonlinear Freezing Control of Inverted Pendulum and Cart

System. [Poster presentation]. Materials and Engineering Research

Institute (MERI) Research Symposium 2019, Sheffield Hallam University.

• Kokkrathoke, S., (2019, December). Supervisors: Xu, X., Halliday, I. and

Shenfield, A. Nonlinear Control Design and Implementation of Self-

Balancing Lego Robot. [Poster presentation]. BMRC & MERI Winter

Poster Event 2019, Sheffield Hallam University.

• Kokkrathoke, S., (2020, December). Supervisors: Xu, X., Halliday, I. and

Shenfield, A. Nonlinear Optimal Control of Self-Balancing Two-Wheel

Robot. [Poster presentation]. I2RI Winter Poster Event 2019, Sheffield

Hallam University.

• Kokkrathoke, S., (2021, June). Supervisors: Xu, X., Halliday, I. and

Shenfield, A. Tracking and Balancing Control of the LEGO Two-Wheel

Robot with Extended Kalman Filter. [Oral presentation]. Materials and

Engineering Research Institute (MERI) Research Symposium 2021,

Sheffield Hallam University.

CHAPTER 1 INTRODUCTION

6

1.4 Thesis Structure

Chapter 1: Introduction

This chapter presents an overview of the PhD research, of which the aim

is to study advanced nonlinear control methods in theoretical design, simulation

and implementation, and compare them against linear ones, by applying all

methods to the single inverted pendulum and self-balancing two-wheeled robot

systems. Furthermore, the research outcomes, such as paper publications and

presentations, are listed in this chapter.

Chapter 2: Literature Reviews

 This chapter reviews existing research work, relating to inverted pendulum

systems, such as single and multiple inverted pendulums on a cart, rotary

inverted pendulums, two-wheeled scooters, and self-balancing two-wheeled

robots. Furthermore, the results of applying various linear controllers, e.g., PID,

LQR, LQG, Fuzzy logic and model predictive control (MPC) to inverted pendulum

systems are investigated. Additionally, prominent research work and

development in nonlinear controls, e.g., freezing control, iteration scheme,

sliding-mode control and neural network, applied to inverted pendulum and two-

wheeled robot, are also examined in this chapter.

CHAPTER 1 INTRODUCTION

7

Chapter 3: Hardware and Software Descriptions of a Self-Balancing Robot

 This chapter illustrates the history of LEGO robots hardware and software.

LEGO Mindstorms EV3 is used as a prototype of the self-balancing robot to test

different control designs, in this research. Moreover, the specification of LEGO

Mindstorms EV3 is provided.

Chapter 4: Modelling of Inverted Pendulum and Two-Wheeled Robot

Systems

 This chapter analyses the single inverted pendulum equations of motion,

converting them to mathematical models using the Lagrangian method. Likewise,

the dynamic system of the LEGO Mindstorms EV3 robot is transformed into state-

space representation. Significantly, for the LEGO EV3 model, the control input in

terms of force is converted to motor voltages for practical considerations.

Chapter 5: Linear Control Designs and Implementations

 This chapter presents and analyses the capability of two linear control

techniques. Firstly, a LQR controller is applied to stabilise an inverted pendulum

on a cart model, a two-wheeled robot model and a robot prototype. Secondly, the

LQG controller is utilised on the two-wheeled robot model and prototype to

provide state estimation and deal with a challenging sensor drift issue, from the

LEGO EV3 robot prototype.

CHAPTER 1 INTRODUCTION

8

Chapter 6: Nonlinear Control Designs and Implementations

 This chapter introduces three nonlinear control methods: an iteration (or

LTV approximation) scheme, a freezing optimal control, and the freezing control

with extended Kalman filter, applied to the inverted pendulum and two-wheeled

robot. Before simulating these models, controllability tests are performed and

analysed, which leads to an investigation of the effect of different state-space

models on controllability; especially, when these models are created from the

same set of 1st order dynamical ordinary differential equations (ODEs).

Furthermore, the experimentations on a practical two-wheeled robot are

examined and discussed, where the results of stabilising the system are obtained

by linear and nonlinear techniques.

Chapter 7: Conclusion

 This chapter summarises the comparison of performances between linear

and nonlinear controls approach on the classical benchmark models, the single

inverted pendulum, and the self-balancing two-wheeled robot. Furthermore, the

contributions to existing knowledge are presented in this chapter.

CHAPTER 2 LITERATURE REVIEW

9

Chapter 2

Literature Review

2.1 Introduction

The literature review for this project can be divided into four categories. The first

section illustrates the various applications based on inverted pendulum control

theory. Secondly, different types of system modelling used to simulate the self-

balancing robots are introduced. Then, a representative selection of linear control

techniques for self-balancing robot and others are discussed. Finally, the widely

used nonlinear control methods and their applications are reviewed.

2.2 Inverted Pendulum System and Applications

To begin with, an inverted pendulum is a classical benchmarking tool for studying

feedback control by mounting the pendulum on a cart, which can move

horizontally to balance the pendulum in the vertical upright position, as presented

in Figure 2.1. However, the pendulum is unstable without control, it will fall over;

therefore, the feedback controller is needed. Furthermore, the advantage of

studying the inverted pendulum model is that it is convenient to design the system

modelling in several forms, such as, Newton’s equation, Lagrangian method,

State-Space Modelling and physical CAD modelling, etc. Moreover, many

applications are built from the inverted pendulum model, e.g., rotatory inverted

pendulums, two-wheeled robots, two-wheeled vehicles and self-balancing

CHAPTER 2 LITERATURE REVIEW

10

bicycles. As the inverted pendulum is a nonlinear and unstable system,

controlling it outside the traditionally linearised range is a challenge.

The single inverted pendulum on a cart is a basic model to research, as shown

in Figure 2.2 (left). Additionally, a more complicated model than the single

inverted pendulum is known as multi-link inverted pendulum (i.e., double link or

high-link), as presented in Figure 2.2 (right). Both models are stabilised by force

𝑢 in the horizontal axis to maintain all rods in the vertical upright position, which

means all pitch angles 𝜃 equal to 0°.

Figure 2.1: The single inverted pendulum on a cart (LEGO Mindstorms EV3)

Figure 2.2: Single (left) and multi-link (right) inverted pendulum

on cart (Xu, Zhang, & Carbone, 2017).

CHAPTER 2 LITERATURE REVIEW

11

For instance, the simulation of single inverted pendulum on a cart control was

presented in Alkamachi (2020), Tao et al. (2008) and Banks & Dinesh (2000) and

Harrison (2003) with different control techniques. Moreover, a double inverted

pendulum on a cart was modelled and analysed by Xu, Zhang, & Carbone (2017).

In particular, the physical implementation of the single inverted pendulum on a

cart was realised using the LEGO EV3 robot introduced by Xu, Zhang, & Carbone

(2017) with a nonlinear freezing control technique.

Furthermore, the balancing theory of inverted pendulum has been applied to the

Furuta pendulum (or known as the rotatory inverted pendulum), as shown in

Figure 2.3. However, the cart is transformed into a fixed base and is stabilising

the inverted pendulum by a driven arm in the horizontal axis.

Figure 2.3: Rotary Inverted Pendulum (Quanser, 2020)

The simulation results of the rotatory inverted pendulum can be found in Zabihifar

et al. (2020). The authors applied the adaptive neural network control to the

Furuta pendulum CAD model (the performance will be discussed in Section 2.3).

Moreover, the implementations of rotatory inverted pendulum are presented by

many researchers, for instance, by Seman et al. (2013), and Aranda-Escolástico

(2016) (the approaches will be detailed in Section 2.4).

CHAPTER 2 LITERATURE REVIEW

12

Additionally, the inverted pendulum theory has been investigated and analysed

for two-wheeled robot systems, as shown in Figure 2.4; therefore, the pendulum

with four-wheeled cart system has been transformed to two-wheeled instead. The

torque of motors from two wheels is used to balance the pendulum or the robot’s

body. The angle between the robot’s body and the robot’s balancing point in the

vertical upright position is called the pitch angle. Likewise, the robot's rotation

angle in the horizontal axis is known as the yaw angle. For instance, Grasser et

al. (2002) introduced the prototype of a two-wheeled mobile inverted pendulum

known as JOE. The two state-space controllers with pole placement were applied

to stabilise the system. Moreover, Yamamoto (2009) presented the self-balancing

two-wheeled robot from the LEGO NXT, which the LQR technique was selected

to balance the system. Yamamoto (2009) presented better performance with

LQR than in Grasser et al. (2002) with pole placement when implementing on the

two-wheeled robot for position tracking. The robot pitch angle of LEGO NXT with

LQR control had slight oscillation between ±6°, using the linear optimal control

technique, before moving to track the reference; by contrast, the JOE robot

showed more than doubling of pitch angle swing, between ±14°, for the same

distance of tracking implementation. Similarly, other researchers studying the

self-balancing two-wheeled robot also applied the inverted pendulum theory; for

example, in Ahn & Jung (2014) and da Silva & Sup (2017) with linear control, and

also Jung & Kim (2008) and Cruz, García, & Bandala (2016) with nonlinear

control. Analysis and comparisons of the techniques used and the associated

performances will be given in Sections 2.4 and 2.5.

CHAPTER 2 LITERATURE REVIEW

13

Figure 2.4: Self-balancing two-wheeled robot (LEGO Mindstorms EV3)

(LEGO, 2021)

Moreover, the self-balancing two-wheeled robot has been developed to use in

personal transportation, as shown in Figure 2.5. This is because these vehicles

are compact, easy to manoeuvre and comfortable for travel on either smooth or

bumpy surfaces. The system models of two-wheeled vehicles are similar to the

two-wheeled robot which are also based on the inverted pendulum theory. For

instance, Tsai et al. (2010) presented a self-balancing two-wheeled scooter and

applied adaptive neural network control to stabilise the system. Similarly, a

seated transportation two-wheel vehicle was introduced by Kim & Jung (2016).

The vehicle was controlled by one PD (Proportional-derivative) control, and two

PID (proportional-integral-derivative) controls. More details will be given in

Section 2.4.

Figure 2.5: Segway PT (Personal Transporter) (Segway, 2021)

CHAPTER 2 LITERATURE REVIEW

14

Likewise, the theory of inverted pendulum has been applied to self-balancing

bicycles. The gyroscopic effect or control moment gyroscope (CMG) method is

utilised to stabilise bicycles in the upright position, as presented in Figure 2.6,

using one or more flywheels, depending on the control design. The simulation of

self-balancing bicycle was introduced by Chu & Chen (2017). The system model

combined a bicycle with two flywheels and the model predictive control (MPC)

was selected to stabilise the system. The control design and performance of this

application will be discussed in Section 2.4.

Figure 2.6: Jyrobike - Auto Balance Bicycle (Kickstarter, 2021)

2.3 System Modelling

Mathematical models of single and multiple inverted pendulum on a cart were

considered in Xu, Zhang, & Carbone (2017), and a self-balancing two-wheeled

robot was investigated in Yamamoto (2009). These models have been used in

almost all research work in this area. They can be created from system analysis,

based on the First Principles modelling method, to derive mathematical equations

with linear or nonlinear characteristics (according to the specific system

considered). In particular, mathematical equations represent physical

CHAPTER 2 LITERATURE REVIEW

15

phenomena and can be obtained using Newton’s law of motion (as shown in

Banks & Dinesh (2000) and Grasser et al. (2002)). Additionally, there is another

method for creating dynamic models: the Euler–Lagrange formulation, based on

a system’s kinetic and potential energy, see e.g. Harrison (2003), Yamamoto

(2009) and Xu, Zhang, & Carbone (2017). The benefit of the Euler–Lagrange

approach is its simplicity in summarising energy terms; therefore, force analysis

and the associated force directions in the Newton method is not necessary. On

the other hand, the complicated partial derivative calculation of Lagrange’s

equation when the system is complex and of high order is a disadvantage. These

dynamical equations from both techniques can be transformed into a state-space

form, which is useful for simulation and internal monitoring purposes. The state

space approach also generally has the advantages of being applicable to

nonlinear and time-variant, or multiple-input-multiple-output, or multivariable

systems, over the traditional frequency domain models.

In other literature, such as Kharola & Patil (2017a), appropriate dynamic

equations are obtained and then simulated using Simulink block functions instead

of a state-space model to stabilise one wheeled mobile robot, because the

Simulink block functions can be applied for the dynamic equations directly. The

linearisation process is not needed because nonlinear equations can be utilised

straightforwardly in implementation. In particular, a nonlinear control method was

used in this research, which is a neural network control system. Therefore, this

technique is suitable for researchers who require a nonlinear model but do not

require coding using programming language such as MATLAB script file or C-

programming language etc. However, this technique has not been widely used,

CHAPTER 2 LITERATURE REVIEW

16

as it is an inconvenience to wire Simulink block functions when there are many

variables in the nonlinear system modelling equations. The block functions are

complexly wired and therefore this process is not as neat and efficient as the

alternatives.

On the other hand, some researchers have not established mathematical

dynamical equations, rather, they have used physical software model instead; for

instance, the single inverted pendulum based on track model presented by

Alkamachi (2020). The author applied SolidWorks CAD design imported to

Simulink Simscape tool in the MATLAB program. This extension tool was formerly

known as SimMechanics, which was used to simulate mechanical systems. The

inverted pendulum model was investigated with the state feedback control to

balance the system. Moreover, another physical software model, namely MSC

Nastran was introduced by Ahmad & Siddique (2011). The authors presented a

fuzzy logic control to stabilise the visual model of the two-wheelchair in Simulink.

The software modelling is applied to analyse the structure of applications, known

as Visual Nastran 4D. It has been developed by the MSC software (MacNeal-

Schwendler Corporation) company, which was previously named as Nastran

(NASA Structural Analysis) software. The MSC company granted the first

contract in this software to NASA in 1965 (MSCsoftware, 2020). The advantage

of Visual Nastran 4D programme over the SolidWorks CAD design, presented by

Alkamachi (2020), is that the Simscape transformation is not needed as

researchers can import the dynamic model from Visual Nastran 4D to Simulink

directly. Furthermore, Zabihifar et al. (2020) also presented an adaptive neural

network to stabilise a rotary inverted pendulum model, using the multibody

CHAPTER 2 LITERATURE REVIEW

17

dynamics software, namely ADAMS, which is a product of MSC software

company, similar to the one used in Ahmad & Siddique (2011). The ADAMS

software is similar to Visual Nastran 4D in term of multibody simulation; however,

there are a few differences between the two software: Visual Nastran 4D is can

model more structure details, e.g., strength and stiffness. The systems which

have already created 3D CAD models can gain advantage from this physical

software model by combining with the dynamic equations directly; in particular,

the linearisation is not necessary for these system modelling.

2.4 Linear Control Techniques

Although almost all systems in reality are nonlinear, linear control techniques are

often used to regulate both linear and nonlinear systems. This is because linear

control theory is more mature and much more well understood. Before being able

to apply linear control techniques to a nonlinear system, linearisation is performed

to approximate the nonlinear system to a linear one. After the systems are

modelled using dynamic differential equations, they can be linearised around an

equilibrium (operating point). Around this operating point, Taylor series are often

applied to expand the equations with small deviations that gives the required

linear system approximation (Dutton, Thompson, & Barraclough, 1997). This

subsection reviews different linear control methods, including PID control, LQR

control, LQG control, fuzzy control and model predictive control.

CHAPTER 2 LITERATURE REVIEW

18

2.4.1 PID Controller

Firstly, the well-known classical linear control method is the three-term controller

or Proportional–Integral–Derivative (PID) controller. It has been used in many

industrial applications for approximately a century because of its simplicity for

understanding and implementation. It is also used as a standard or fundamental

linear control technique to benchmark control performances when compared

against others. PID control has been used to control many self-balancing two-

wheeled robots, e.g. a service two-wheel robot with two arms (Ahn & Jung, 2014)

and a two-wheel chair robot (Kim & Jung, 2016).

Ahn & Jung (2014) presented two PID controllers, controlling the orientation angle

(yaw angle) and the robot position (displacement), whilst another PD controller is

used to balance the robot’s pitch angle. The authors applied the three (2 PID + 1

PD) controllers to stabilise the system separately, but the three variables are

coupled in the dynamics and therefore affect the control design. In tuning the PID

gain parameters, when one parameter was changed, the performance of other

variables was also affected meaning all other PID parameters also need to be re-

tuned. That is one disadvantage of the PID control technique. Moreover, the

disturbing external force at robot’s body was limited to a small range, within

approximately ±10N, as linear controllers were applied to stabilise the robot;

therefore, the pitch angle of balancing robot was restricted, which was presented

at a narrow-angle range of ±2°.

Regarding the two-wheel chair robot (Kim & Jung, 2016), the authors applied the

three linear PID controllers from Ahn & Jung (2014) to the personal vehicle

CHAPTER 2 LITERATURE REVIEW

19

transportation, namely TransBOT. The vehicle presented self-balancing with the

passenger on board. Nevertheless, the pitch angle was balanced within

approximately ±5°, which was not too far from the two-wheel robot (Ahn & Jung,

2014). Noticeably, different weights of the riders would affect the PID gain

parameters to stabilise the overall system. Therefore, the authors prepared

various PID gains in the two PID controllers (pitch angle and robot position) to

take into account of passengers’ weight range. In the next section, the use of

LQR control technique, where one controller can control multiple variables in the

generalised coordinates of the system, will be discussed.

2.4.2 Linear Quadratic Regulator

Secondly, a more complex linear controller applied to self-balancing two-wheeled

robots is the linear optimal control. This technique (also known as linear quadratic

regulator (LQR)) optimises the system to achieve the best possible performance

using a mathematical algorithm which minimises a quadratic performance index

(cost function) with feedback controller (Dutton, Thompson, & Barraclough,

1997).

For instance, the linear optimal control was applied to a self-balancing two-

wheeled robot, namely NXTway-GS robot (Yamamoto, 2009). The LEGO robot

was controlled in three generalised coordinates, including the wheel angle, the

body pitch angle and yaw angle. These coordinates were analysed to create a

nonlinear system model. Then, linearisation was applied to the model for

generating feedback gains in the LQR control system. The pitch and yaw angles

were controlled by the same LQR feedback gain, but the wheel angle was

CHAPTER 2 LITERATURE REVIEW

20

controlled through a separate feedback gain in order to check the robot’s position.

Furthermore, a tracking system was designed to enhance the control

performance to include robot displacement. The results of both simulation and

implementation in Yamamoto (2009) showed the maximum pitch angle of the two-

wheeled robot to be balanced was at approximately ±6°, and the robot position

tracking design functioned well.

Another research of linear LQR control related to self-balancing robot was

conducted by da Silva & Sup (2017). The authors developed an adult walking aid

with handlebar based on the two-wheeled robot. The LQR control design was

similar to Yamamoto (2009); however, there were two tracking systems used to

control the robot’s displacement and robot’s heading angle (acting at the

handlebar angle in the yaw axis). The authors designed an LQR feedback

controller for both the pitch angle and the robot displacement, and the yaw angle

was controlled by a separate LQR feedback controller. The maximum pitch angle

for stabilisation achieved in da Silva & Sup (2017) was similar to other linear

controls, at approximately ±6°. Significantly, the researches of Yamamoto (2009)

and da Silva & Sup (2017) were based on the LQR method. They applied an

LQR feedback controller from multiple outputs; on the other hand, the PID control

technique presented by Ahn & Jung (2014) and Kim & Jung (2016) was only

designed to control one variable at a time.

2.4.3 Linear Quadratic Gaussian

Furthermore, many researchers have experienced issues such as noise,

vibration, or signals drift of measurement tools during physical implementations

CHAPTER 2 LITERATURE REVIEW

21

of their control designs. To deal with these issues, a state-space feedback control

system can be developed to supervise the inaccurate signal outputs by combining

with a Kalman filter (Kalman & Bucy, 1961). The Kalman filter is used to estimate

the state variables for the purpose of feedback, utilising measurements made at

the inputs and outputs, and the plant is required to be observable.

In Hanselmann & Engelke (1988), the authors illustrated the implementation of a

hard disk head position, controlled by the linear quadratic Gaussian technique

(LQG). The method combined the classical LQR control with the Kalman filter;

therefore, the Kalman technique was applied to estimate the position of magnetic

disk heads on desired tracks at the high frequency.

Similarly, Chang & Liu (2007) introduced a vibration absorber control in optical

disk drive using the LQG method. The active vibration absorber was controlled

by a state feedback control method, namely LQR, with the assistance from the

Kalman filter, presenting vibration amplitudes reduction of up to 50% in the

implementation.

Moreover, the Kalman filter has been applied to overcome sensor drift issues.

For instance, gyro drift correction was implemented in a head controlled mouse

for disabled people who were unable to use a standard computer mouse, as

presented by Du et al. (2017). The authors applied the Kalman filter with the

Weighted-frequency Fourier Linear Combiner (WFLC) and the threshold with

delay (TWD) control. Note, this review is to concentrate on gyro drift issue, which

is in the MEMS-gyroscope sensor, based on advantages of the Kalman filter;

therefore, control methods used in the research of Du et al. (2017) are neglected.

CHAPTER 2 LITERATURE REVIEW

22

It was shown that the gyro drift problem in gyroscopic head-borne mouse was

significantly reduced once the signals were processed by the Kalman filter. For

example, the implementation of filtering signal in the micro-electromechanical

system(MEMS)-gyroscope model MLX90609 reduced inaccurate angular

position measurements. Before the filtering process, the signal was drifting over

−20° from the reference position at the 80th second; however, when the Kalman

filter was applied, the sensor drift problem was eliminated during the same period

of time. The authors suggested that one Kalman filter on its own could only

reduce the noise and sensor drift, but not eliminate them. However, if the other

signal processors, such as WFLC and TWD, were combined with the Kalman

filter, results showed that both the signal noise and drift issues were completely

removed and therefore the performance was much improved.

2.4.4 Fuzzy Logic Control

In this section, Fuzzy Logic Control is considered as a linear control method

because various studies in the literature applied this technique to linearised

systems for control. However, it is worth noting that the fuzzy logic control method

can be applied to nonlinear systems too, due to the flexibility of its rule base.

In 1985, Takagi & Sugeno developed the fuzzy logic control technique known as

Takagi–Sugeno (T-S) fuzzy model (Takagi & Sugeno, 1985) and nonlinear

systems can be transformed into a T–S fuzzy model linearised in each fuzzy

region on its if-then rules (fuzzy rules). This method has been widely used and

applied to swinging up the inverted pendulum on the limited rail presented by Tao

et al. (2008), with two fuzzy hybrid controls. To begin with, the first fuzzy swing-

CHAPTER 2 LITERATURE REVIEW

23

up controller (FSUC) with fewer fuzzy rules was applied to make the inverted

pendulum swing from an upside-down position upwards to reach the upright

position, by moving the cart in the horizontal axis. Secondly, the Takagi-Sugeno

(T-S) Fuzzy Model, controlled by the second fuzzy controller with parallel

distributed pole assignment scheme (FC-PDPS), was used to balance the

pendulum and cart on the rail at the equilibrium point in a small range, operating

at approximately ±17°(±0.3 rad). In terms of balancing control in the upright

position, the FC-PDPS was compared to the LQR control in the simulation test.

Noticeably, the pendulum swinging up process was conducted with the same

technique, which was the FSUC. The results showed that the performance using

the FC-PDPS method was better than LQR as no oscillations in the pitch angle

appeared around the equilibrium point. In particular, the cart was almost frozen

in the horizontal axis for stabilising the system when implementing the FC-PDPS

method; by contrast, the LQR technique presented significant movement of the

cart between -0.3 m and 0.3 m.

Similarly, Aranda-Escolástico et al. (2016) presented the practical single and

double rotary pendulum, stabilised by the Takagi–Sugeno (T-S) fuzzy model

controller in the equilibrium position as well. This technique was compared to the

full state feedback control and LQR method. In the case of swinging up the

pendulum, an energy control method (Åström & Furuta, 2000) was applied. The

authors introduced the region of attraction at the equilibrium point, which was the

maximum angle α when the pendulum switched from swinging up control to

stabilisation control. The implementation showed that the fuzzy model presented

CHAPTER 2 LITERATURE REVIEW

24

significantly the widest angle at +40.2° over the full state feedback control

(+31.5°) and LQR method (+34.2°).

2.4.5 Model Predictive Control.

In Chu & Chen (2017), the authors illustrated the linear control method of model

predictive control for a self-balancing bicycle model. The gyroscopic effect

(control moment gyroscope) was utilised for the system to maintain the vehicle in

the upright vertical position using torque from two flywheels. Subsequently, the

mathematic model of the system was linearised for the model predictive control

scheme, which was used to predict horizon behaviour of the model for preparing

the input parameters balancing the bicycle in the equilibrium point. The simulation

demonstrated that the roll angle reached the desired angle at 20° and gimbal

angles of the flywheels were 49.7° to maintain the desired angle.

Other applications of the model predictive control include, for instance: the

implementation of a Furuta pendulum or inverted rotary pendulum by Seman et

al. (2013). The authors introduced the two-step control for swinging-up the

pendulum. Firstly, the classical energy control was compared with an

exponentiation operation for swing-up the pendulum. After swinging the

pendulum up by the two controllers, model predictive control was used to balance

the pendulum in the vertically upright position. Note, the dynamic equations of the

system needed to be linearised before be able to apply the predictive model. The

results of both techniques to swing-up pendulum were similar; however, the

computational time of the exponentiation control was slightly shorter as pre-

calculation of pendulum energy was not needed. Because of this, the

CHAPTER 2 LITERATURE REVIEW

25

exponentiation control was selected to operate with the MPC by Seman et al.

(2013) and they presented satisfactory result for stabilising the inverted

pendulum.

2.5 Nonlinear Control Techniques

Nonlinear theories have been demonstrated to generate excellent control results

for highly nonlinear systems. Linearisation around the equilibrium is not

necessary when using nonlinear methods, because the system can be controlled

globally using pseudo-linear (nonlinear) system equation with advanced control

techniques discussed below.

2.5.1 Freezing Control Technique

First of all, the extension of the LQR theory to control nonlinear systems, known

as the freezing control technique (Banks & Mhana, 1992), showed superior

control performance over all linear control techniques. Theoretical details of the

nonlinear freezing technique will be presented in Chapter 6, but here a review of

previous work using this method is conducted.

Harrison (2003) applied the nonlinear freezing control on an inverted pendulum

on a cart model in simulation and demonstrate a number of benefits comparing

against the LQR method. Most importantly, it was demonstrated that the

stabilised system from an unconstrained nonlinear control provided a more

comprehensive operation range than the linear control, at the initial pitch angle

over 55.2°. The linearly controlled system was unstable over this angle, but the

CHAPTER 2 LITERATURE REVIEW

26

nonlinear method could stabilise the system from an initial pitch angle up to 73.8°

as well as between 96° and 179°.

Similarly, Xu, Zhang, & Carbone (2017) presented simulation results of a single

and a double inverted pendulum on a cart model using the freezing control

technique. Both models were stabilised from much wider initial pitch angles than

using any linear control methods. For instance, the single pendulum was

demonstrated to balance from initial pitch angles 60° ,180° and 240°, and the

double pendulum was stabilised from initial pitch angles 𝑥3 = 45° and 𝑥5 = 30°

(where 𝑥3 and 𝑥5 are lower and upper pendulum angle), respectively.

Furthermore, Xu, Zhang, & Carbone (2017) applied the freezing control technique

to the prototype of a single inverted pendulum on a cart using a built LEGO

Mindstorms EV3 robot. The pendulum was well balanced from the initial pitch

angle 10° and maintained at the upright position. These results demonstrated that

the nonlinear freezing control technique was able to control the highly nonlinear

inverted pendulum systems away from the usual, linearised region.

The freezing control technique was also referred to as a state-dependent Riccati

equation (SDRE) control (Çimen & Banks, 2004a), which was applied to various

other systems. For example, Çimen & Banks (2004a) presented this nonlinear

method, compared with the LQR control, in flight control system of an F-8 aircraft

model. The SDRE technique produced better performance than the LQR method

in terms of stronger stabilisation when subject to different disturbances in the

angle of attack (the angle between the chord line and flight path), in which the

SDRE displayed capability of rejecting a wider disturbance angle, of up to 32.08° ;

CHAPTER 2 LITERATURE REVIEW

27

by contrast, the LQR, which was itself an optimal technique, was restricted

at 29.79° of disturbance rejection.

Based on the literature review and advantages discussed above, it is decided

that the nonlinear freezing control would be one of the primary nonlinear control

methods to be investigated and applied in this PhD research.

2.5.2 Freezing Control Technique with Extended Kalman Filter

Recall that in the cases of linear control in Section 2.4.3, the LQG method

consists of the LQR control and the Kalman filter. Similarly, in nonlinear control,

the extended Kalman filter (EKF), suitable for nonlinear systems, can be

combined with the freezing control technique as well.

This technique has been applied in many applications: for instance, missile

guidance simulation presented by Çimen & Merttopçuoğlu, (2008). The freezing

control technique was applied to tracking systems used in military and the benefit

was the ability to optimise the nonlinear tracking system globally. Furthermore,

EKF was applied to estimate the state variables so they are available for feedback

to control the missile trajectory, including the relative position vector, the relative

velocity vector, and the target acceleration vector. Çimen & Merttopçuoğlu,

(2008) presented the advantage of the combination of this nonlinear control and

estimation technique, leading the missile (with a velocity of 500 m/s) to attack the

target at a very distant position (initially 10 km away) in 20 s, in which the target

had a speed velocity of 250 m/s.

Furthermore, the SDRE with EKF was applied to drug regimens in cancer

treatment (Batmani & Khaloozadeh, 2013). The system model of tumour growth,

CHAPTER 2 LITERATURE REVIEW

28

which was the cause of cancer, included four state variables: the tumour cells

size, the number of normal cells, the drug concentration and the immune cells.

The authors decided to only estimate the number of normal cells by EKF as the

measurements were corrupted with noise but the size measurement of tumour

cells where accurate from the medically professional equipment. Significantly, the

simulation presented estimations of the number of normal cells with much

reduced noise; moreover, the combination of the SDRE and EKF techniques

showed efficiency in calculation the drug regimen, which eliminated the cancer

cells completely.

Additionally, Nemra & Aouf (2010) introduced the INS/GPS sensor fusion

technique for Unmanned Aerial Vehicle (UAV) by using the state-dependent

Riccati equation (SDRE) with nonlinear filtering. Inside the UAV, the gyroscope

and accelerator sensors are used to measure the dynamic system. The location

is then calculated by INS/GPS sensor. In any real-world applications, these

sensors come with noise. Therefore, an estimation of the state feedback system

was performed using an extended Kalman filter. In terms of the flight control

system, the SDRE was utilised in this implementation. The SDRE with extended

Kalman filter (SDRE-EKF) control was compared with the linear Kalman filter

control (KF) and a standalone EKF. SDRE-EKF presented the best performance

on the UAV position estimated with smooth trajectory as well as strong

nonlinearities. Then, the EKF control came 2nd with decent tracking trajectory, but

not strong enough nonlinearities which caused undesirable oscillations. The

linear KF produced the worst performance with a fair estimation trajectory,

showing very oscillatory signals.

CHAPTER 2 LITERATURE REVIEW

29

2.5.3 Iteration Scheme

Banks & McCaffrey (1998) introduced another nonlinear control technique,

named iteration scheme, using linear, time-varying (LTV) approximations, which

are arbitrarily close to the exact solution. This approximation solves the infinite-

time horizon of pseudo-linear optimal control problem.

This control theory was applied to the inverted pendulum on a cart, for instance,

using a sequence of time-varying iterative approximations with the optimal control

(Banks & Dinesh, 2000). The simulations showed an increase of state sequences

approximation to stabilise the inverted pendulum with initial pitch angles 20° and

50°. The results showed that the pitch angle converged rapidly to the reference

position and the settling time was shorter when implementing with system using

a higher order of state sequences; in this case, the simulation compared the 3rd

order sequence with the 1st order one.

Furthermore, the nonlinear iteration control theory can be extended to complex

nonlinear systems and there are a wide range of applications. For example,

Çimen & Banks (2004b) presented the iteration scheme with linear-quadratic

control for super-tankers autopilot. The model of oil-tank ship was simulated by

increasing the state sequences of approximation with 1st, 5th and 20th orders to

track the desired course heading of the ship. The best performance of tracking

system was illustrated using the highest state sequences (order 20th) with the

lowest error of heading angle.

Moreover, Itik, Salamci, & Banks (2009) introduced an optimal drug therapy

control in cancer treatment using the iteration scheme combined with the LQR

CHAPTER 2 LITERATURE REVIEW

30

optimal control. The order (10th) of state sequences approximation simulated the

model of tumour growth accurately, where the number of tumour is the cause of

cancer. This combined control method was shown to lead to reduced tumour cells

and chemotherapy; moreover, the simulation results suggested that cancer could

be eliminated by providing an appropriate amount of drug at optimised times.

Additionally, in Du et al. (2009), the authors presented velocity tracking of a

hydraulic press model by using a sequence of linear time-varying systems with a

sliding mode controller, disturbed with reaction force. The simulation showed that

the error of the velocity tracking was reduced significantly at a higher-order

sequence (i.e., 5th) rather than the 1st order sequence, which was demonstrated

to be globally convergent under a certain force.

Another application is the dynamics control of tunnel diode oscillator. Itik (2016)

demonstrated the advantage of the iteration scheme technique, approximating

the mathematical model of an electric current at the 5th, 10th and 20th order

sequences. The highest sequence (20th) presented a convergence graph closer

to the reference position than the rest, obtaining a more stabilised system for the

electric circuits.

2.5.4 Sliding-Mode Control

The sliding-mode control method has been known as one of the complicated

nonlinear control designs. Mun-Soo Park & Dongkyoung (2009) demonstrated

swinging up and stabilisation of an inverted pendulum system (including inverted

pendulum on cart and Furuta-pendulum) using a coupled sliding-mode surface,

which were composed of actuated and unactuated systems. They demonstrated

CHAPTER 2 LITERATURE REVIEW

31

in simulation semi-global asymptotic stabilisation using this control technique

over the upper half-plane of the inverted pendulum systems, which could balance

the pendulum at a large initial pitch angle at 88° rather than the classical linear

controls, such as the simulation result of LQR controller (55.2°) in Harrison (2003).

In the case of the Furuta pendulum, sliding control was applied and implemented

to both the swing-up and stabilisation controls of the rotary pendulum. This

method contrasted other linear controls using hybrid strategy, e.g., Seman et al.

(2013) and Aranda-Escolástico et al. (2016). Moreover, the results showed

asymptotic stabilisation of rotary pendulum with impulse disturbances, and also

demonstrated aggressive swinging-up of the pendulum from an unactuated

status to the vertically upright position. There has been recent advancement in

sliding mode control - a new technique introduced by Zhu (2021). The author

demonstrated that the novel complete model-free sliding mode control

(CMFSMC) technique could be used to control and observe systems without the

need of obtaining plant models, which could be applied to control more complex

robotic systems in the future.

2.5.5 Neural Network Control

Neural network control is an intelligence nonlinear control technique which can

learn to create appropriate parameters to control the system. It can be trained

and can learn how to optimise output parameters depending on layers, weights,

etc., to control the nonlinear systems.

In Cruz, García, & Bandala (2016), the implementation of a self-balancing two-

wheeled robot was demonstrated using artificial neural network (ANN) control

CHAPTER 2 LITERATURE REVIEW

32

with the extended delta-bar-delta algorithm (DBD) and the DBD algorithm was

applied to increase the speed of convergence in ANNs weight. For instance, in

terms of the pitch angle, the ANN control structure was designed as four feedback

error inputs of desired pitch angle (including a recent error and three past errors),

three neurons hidden layers, and two output layers (left and right motor voltages).

After the ANN learning was completed, the implementation showed largely

stabilised result of the robot’s pitch angle with oscillations of approximately ±1.7°

when the initial pitch angle was set at approximately 5°; moreover, the yaw angle

was retained at the reference angle. In cases of displacement, the robot deviated

from the reference position of 0 m and settled at 0.055 m, which was caused by

oscillation.

Furthermore, the ANN could also be integrated with another control method, such

as the model predictive control (MPC). For instance, Kokkrathoke (2018)

implemented this combination to the self-balancing two-wheeled robot model.

The author utilised ANN for the plant model which predicted future evolutions of

the model by optimising a cost function, called Generalized Predictive Control

(GPC). This mixed control method was compared against a classical PID

controller with the same impulse disturbance, and the results demonstrated that

the ANN method presented overshoots of lower amplitudes in the pitch angle

than the PID controller approximately 2° after facing disturbance. However, both

techniques could not control the robot displacement - they diverged from the

reference position. This is because both MPC and the single PID controller could

only be applied to control single-input single-out (SISO) systems.

CHAPTER 2 LITERATURE REVIEW

33

Nevertheless, many researchers combined the neural network with linear

controls. Therefore, the system model was linearised and applied to the neural

network model; for instance, Jung & Kim (2008) introduced the neural network

with PID controller for stabilising a two-wheel mobile inverted pendulum. The

control system is similar to research presented by Cruz, García, & Bandala

(2016); moreover, the PID controller was enhanced in the output of ANN to

achieve real-time control. The structure of ANN is composed of six inputs (three

variables of pitch angle and three variables of robot position), six outputs and nine

hidden layers, which the outputs connect to the 6 feedback gains of 2 PID

controllers. Note that the yaw angle control was neglected. The result of this

technique was compared with the one using classical linear PID controller. When

using PID control, the practical robot was balancing in the upright position, but

the displacement diverged from the reference position. After that, the robot was

disturbed by force, causing the pitch angle to go over 5° and the balancing robot

toppled over. In terms of the ANN with PID controller implementation, the robot

pitch angle was disturbed to approximately 8°, but the system stabilised well

without a crash and maintained the desired position with a slight deviation after

numerous impacts.

In another approach similar to the ANN with linear controller, Tsai et al. (2010)

applied two adaptive controls with the radial basis function neural networks

(RBFNNs) for balancing a two-wheeled scooter, compared with a state-feedback

controller. The controllers were divided into the yaw angle control and pitch angle

monitor. Similar to other linear controls, the mathematical model of system was

linearised before being combined with the neural network method for control. The

CHAPTER 2 LITERATURE REVIEW

34

simulation presented that both controllers stabilised the system from the initial

pitch angle up to, approximately 17°. Moreover, the reference position tracking of

yaw and pitch angles using the two adaptive controls with RBFNNs presented

faster settling time than the state-feedback controller method. When implemented

on the two-wheeled scooter, the two adaptive control methods were selected to

control the practical vehicle and the results matched well to the simulations.

In conclusion, the first section of this chapter described the inverted

pendulum on a cart system and its applications, e.g., rotatory inverted pendulum,

self-balancing two-wheeled robot, two-wheeled personal transportation, and self-

balancing bicycle. In the next section, methods to create mathematical models of

the inverted pendulum were demonstrated, such as the Newton’s law of motion

and the Euler–Lagrange formulation (with the advantage force analysis is not

necessary for obtaining the dynamic equations of the system. In addition, some

researchers presented CAD modelling instead of the mathematical model. In

cases of control strategy sections, various linear and nonlinear control methods

were illustrated. Many linear controllers showed smaller operation ranges than

nonlinear controllers as linearisation was needed. In particular, the freezing

control, a nonlinear optimal control technique, demonstrated its capability of

stabilising an inverted pendulum system with the broadest operation ranges over

the linear and nonlinear controllers in this review.

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

35

Chapter 3

Hardware and Software Descriptions of a Self-Balancing Robot

3.1 Introduction

This chapter introduces the specification of the self-balancing two-wheeled robot

and its programme, of which LEGO EV3 robot is selected as an application, for

analysis, in this research. The chapter is organised as follows: In section 3.2, the

evolution of the LEGO robotic and hardware specification are introduced. Then,

the various software of LEGO EV3 are presented in section 3.3. The use of

readily available hardware enhances the reproducibility of this work.

3.2 Hardware

This section provides information on hardware used in this research, including

LEGO hardware history, LEGO EV3 specifications and their various sensors and

an actuator.

3.2.1 History

To begin with, the 1st LEGO robotic tools set has been known as Robotics

Invention System (RIS), based on LEGO building blocks. It can be programmed

using an intelligent brick inside and was introduced by the LEGO group company

in 1998 (LEGO, LEGO® Mindstorms, 2020a). The LEGO robotic kit has been

named as RCX (Robotic Command eXplorers) brick, including a few sensors and

executing programs by an infrared interface with a computer. For example,

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

36

LegWay balancing robots were built using the LEGO RCX (Hassenplug, 2003),

as shown in Figure 3.1.

Figure 3.1: LegWay Balancing robots based on LEGO RCX.

Reprinted from Steve's LegWay by Steve Hassenplug, 2003

(http://www.teamhassenplug.org/robots/legway). Copyright 2003 by Steve

Hassenplug. Reprinted with permission.

The 2nd generation of LEGO Mindstorms product known as NXT was

released in 2006. The interface was also upgraded using USB and Bluetooth

connection with a computer. This set includes much hardware, e.g. servo motors,

an intelligent brick, an ultrasonic sensor, a sound sensor, a touch sensor, and a

light sensor; moreover, in 2009, the LEGO Mindstorms NXT was upgraded to

version 2.0 by adding a colour sensor and remote control applications (Ford,

2011). For instance, one interesting application of LEGO Mindstorms NXT is

presented as an NXTway self-balancing robot (Yamamoto, 2009), as shown in

Figure 3.2.

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

37

Figure 3.2: NXTway self-balancing robot by using LEGO Mindstorms NXT

(Yamamoto, 2009)

In addition, the 3rd generation of LEGO Mindstorms, namely EV3, was

launched in 2013, as shown in Figure 3.3. This version is the current robotic kit

of LEGO Mindstorms. In particular, the PC interface is upgraded to Wi-Fi

connectivity, which is convenient for the user when implementing with high-speed

wireless connection. Moreover, various sensors and hardware are introduced as

follows (LEGO, 2020b):

- An Intelligent Brick, compatible with 32-bit CPU ARM9 processor, Wi-Fi

USB port, Micro SD card reader, 4 motor ports and 5 buttons.

- Other hardware, including 3 servo motors, a gyro sensor, an ultrasonic

sensor, a colour sensor and 2 touch sensors etc.

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

38

Figure 3.3: Self-balancing robot using LEGO Mindstorms EV3

In this research, the LEGO Mindstorms EV3 has been selected as the newest

version of LEGO robotic kit, and also the latest version of EV3 firmware has been

updated, in 2020. Furthermore, the EV3 robot has been widely used by

researchers in many educational institutes as it is flexible to reconfigure and

reprogramme and readily available.

3.2.2 LEGO Mindstorms EV3 Specifications

In this subsection, the hardware of LEGO Mindstorms EV3 is

demonstrated, in the context of technical specifications used in this research, as

follows:

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

39

EV3 Intelligent Brick with Education Version

- CPU ARM9 processor 32-bit with Linux operating system

- Four input ports with 1,000 samples/sec

- Four output ports for actuators

- FLASH memory 16 MB (5 MB left for creating or downloading a file)

- RAM 64 MB

- 178x128 pixel display

- USB port supported Wi-Fi dongle

- SD Card reader port

- Bluetooth communication

- Powered by lithium-ion 2200 mAh rechargeable DC battery or 6 AA

batteries

Note that the EV3 brick firmware used is the developer edition version

1.09D, which is an alternative version from the LEGO company for high-level

developers to connect the Wi-Fi network with MATLAB & Simulink. This is

because the official firmware version for Home Edition and Education Edition

(1.09H and 1.09E) does not allow remote Telnet access and is protected by non-

administrative rights, controlling LEGO EV3 on Wi-Fi connection for beginner

level developers (LEGO, 2020c).

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

40

Rechargeable DC Battery

The rechargeable DC lithium-ion battery of LEGO Mindstorms EV3 has a

capacity of 2200 mAh 7.4V on its label from manufacturer, as shown in Figure

3.4. However, the voltage can sometimes present a higher value, for example,

when being tested by a multimeter as shown in Figure 3.5. Therefore, the

maximum voltage supply of LEGO EV3 battery will be examined before being

used as a parameter for voltage input saturation. Details about control input

saturation will be explained for both simulation and hardware implementation in

Chapters 5 and 6.

Figure 3.4: Rechargeable DC lithium-ion battery of LEGO Mindstorms EV3

Firstly, the maximum voltage of the power supply can be measured directly by a

multimeter when the battery is charged fully, as shown in Figure 3.5.

7.4V/2200 mAh

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

41

Figure 3.5: Battery voltage measured by the multimeter

It can be seen in Figure 3.5 that the voltage is not 7.4V, the value given by the

manufacturer; instead, the maximum voltage measured here is approximately

8.3V.

Alternatively, the Simulink block program can be used to measure the voltage of

LEGO EV3 from the battery meter block diagram, as shown in Figure 3.6.

Figure 3.6: Voltage measured using Simulink block diagram

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

42

As can be seen from Figure 3.6, the voltage value read off the Simulink block

diagram, at approximately 8.3 V, matches that measured by the multimeter. This

voltage measurement made using the Simulink block diagram in the control

system programme during implementation is very useful, as the programme could

convert the percentage of PWM accurately. Furthermore, it is possible that the

actual battery voltage may reduce because the power is dropped from

implementation. Thus, the battery meter has been applied to the balancing control

system.

The equation used to convert the input voltage of DC motor to PWM is given by,

𝑃𝑊𝑀(%) = 𝑉𝑐𝑎𝑙 ×
100

𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦
 , (3.1)

where 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the voltage from the EV3 rechargeable DC battery, which is read

by the battery block diagram in Simulink, as shown in Figure 3.6, and 𝑉𝑐𝑎𝑙 is the

voltage supplied to the EV3 DC motor by the control system optimisation.

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

43

Sensors and Actuator

In terms of sensors and actuator description, specifications are provided

in Tables 3.1-3.2.

Table 3.1: Sensors specification

Sensor Output Unit Accuracy Data Type Maximum
Sample Rate

Gyro
Sensor

Angular
velocity

(-440 to
440 deg/s)

deg/s ± 3 deg int32

1 kHz

Rotary
Encoders

Angle deg ± 1 deg int32 1 kHz

Ultrasonic
Sensor

Distance

(5-255cm)

cm ±1 cm uint8

100 Hz

Note: The output and accuracy are given in (LEGO, 2020b); moreover, the data

type and maximum sample rate are provided in (Mathworks, 2020).

Table 3.2: Actuator specification

Actuator Input Unit Input Range

(%)

Speed

Running

Torque

(N.cm)

Stall

Torque

(N.cm)

Large

EV3

Motor

PWM % -100 to 100 160-170 RPM

 or

960-1,020 deg/s

20 40

Note: The input range is stated in (Mathworks, 2020) whilst the speed and torque

are given in (LEGO, 2020b).

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

44

As shown in Table 3.1, a gyro sensor is used to measure and calculate the robot

body pitch angle in this research; however, it could generate a sensor drift when

using only one sensor type for computing the pitch angle. Therefore, a

combination of accelerometer and gyro sensor is an option to improve the

accuracy of pitch angle calculation. Alternatively, in the case of only one available

sensor in LEGO Mindstorm EV3, a state-estimation technique, namely, the

Kalman filter, can be used to reduce the sensor drift and noise in feedback

systems. This is because the signal output from the gyroscope is provided to the

state-observer, which is used to estimate a more accurate signal before

transferring the data to the controller. Secondly, the wheel angles of a LEGO

robot are detected by the rotary encoders, which are attached inside the Large

EV3 Motor. Next, an ultrasonic sensor is used as an non-touching starting button

by the user. The advantage of this is to avoid touching any physical button, which

would affect the initial pitch angle before running the programme.

In the case of the actuator, there are two types in LEGO Mindstorms EV3:

medium and large motors. In this research, the two large motors with higher

torques are chosen with description given in Table 3.2.

USB Wi-Fi dongle

Wi-Fi communication between the LEGO brick and the computer is

necessary as it provides a long-range networking comparing with Bluetooth, and

the USB cable is not needed to avoid physical movement restrictions. Therefore,

an external USB Wi-Fi dongle is required. The Wi-Fi module supported by LEGO

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

45

is NetGear N150 (WNA1100) Wireless USB Adapter (LEGO, LEGO®

Mindstorms, 2020a). However, there is an alternative USB Wi-Fi dongle for

developers, which is Edimax N150 Wi-Fi Nano USB Adapter, shown in Figure

3.7. Moreover, the Edimax adapter has a smaller size, and less weight than the

NetGear N150. Hence, the Edimax N150 is chosen as being more appropriate

for this research.

 (a) (b)

Figure 3.7: (a) Edimax N150 Wi-Fi Nano USB Adapter and (b) NetGear N150

(WNA1100) Wi-Fi USB Adapter (Netgear, 2020)

3.3 Software

The computation programmes widely used in LEGO robotics will be presented in

this section; for instance, RIS, brickOS, NXT-G, LEGO Mindstorms EV3

Software, leJOS, Python and MATLAB and Simulink. More details of software are

provided in the following sections:

3.3.1 Robotics Invention System (RIS)

The official programme RIS is compatible with LEGO RCX which is the 1st

graphical programming environment design tool for the LEGO set. It was released

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

46

in 1998. This LEGO programming is also called RCX code blocks, which

programmes the LEGO RCX by building blocks functions; next, the Infrared

transmitter is applied to transfer data between the RCX and computer (LEGO,

1999).

3.3.2 BrickOS

BrickOS is a popular programme for LEGO RCX used in Legway, of which the

previous name is LegOS, developed by Markus L. Noga (Hassenplug, 2003).

Although it is an alternative software for LEGO RCX, the software is suitable for

advanced developers, as it provides a C/C++ programming language

environment.

3.3.3 NXT-G

NXT-G is an official software that comes bundled with the LEGO Mindstorms

NXT 1.0 and 2.0, which is a graphical programming environment with a design

similar to the RIS; however, the programming tools of NXT-G are simpler to the

users than the RIS. Furthermore, the data connection between the NXT

programme and the LEGO robot is upgraded by using a USB cable and Bluetooth

connections, which provide a wider range and is more stable than the Infrared

transmitter.

3.3.4 LEGO Mindstorms EV3 Software

Lego Mindstorms EV3 is the latest official graphical programming software of

the LEGO Mindstorms products, for the EV3 version. The programming interface

is similar to RIS and NXT-G as it uses the building blocks’ functions to programme

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

47

the LEGO robot. Furthermore, there are 43 programming blocks containing more

function than the NXT-G software (35 blocks). Moreover, the Wi-Fi connection is

utilised to transfer data between the robot and computer, obtaining a broader

transferring data range than the previous official LEGO software.

3.3.5 leJOS

The java programming language leJOS is used for all LEGO Mindstorms. The

first leJOS used for the LEGO Mindstorms RCX was divided from TinyVM project

in 2000. Then, the leJOS was ported to LEGO Mindstorms NXT in 2006, known

as leJOS NXJ. Finally, the leJOS for the EV3 was released in 2013 (LeJOS,

2009).

3.3.6 Python

This high level and open-source programming language is applied to LEGO

Mindstorms products, including NXT and EV3. There are official and alternative

softwares used for LEGO Mindstorms EV3. Firstly, the Debian Linux-based

operating system, namely, ev3dev, is an alternative software for high-level

developers (ev3dev, 2020). Next, a collaboration of LEGO and ev3dev (2020)

released an official software for LEGO Mindstorms and has been known as EV3

MicroPython (ev3dev, 2020), which is suitable for beginner-to-intermediate level

developers. In particular, both software need to install a memory card inside the

LEGO EV3 brick, used for the Python programming language.

CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT

48

3.3.7 MATLAB & Simulink

The well-known programme MATLAB, together with its powerful Simulink

graphical programming environment, have been used for many types of research.

The programme also has support packages for the LEGO Mindstorms NXT and

EV3. There are a number of applications coded in MATLAB and Simulink

programme on LEGO Mindstorms NXT and EV3, e.g. NXTway (Yamamoto,

2009), Rotary Inverted Pendulum (Masakatsu, 2015) and Gyroboy (Roslovets,

2020). Moreover, the MATLAB programme is a high-level programming

language to control the LEGO Mindstorms NXT and EV3 via USB, Bluetooth and

Wi-Fi (only EV3) connection, utilising MATLAB script and function files.

Furthermore, developers can also design a control system using Simulink block

diagrams, combining with MATLAB script and function files. The version used is

MATLAB & Simulink R2019b with an academic license.

To summarise, in this research, the LEGO EV3 robot is selected for

implementation, which is widely used in various other research; furthermore, it is

compatible with MATLAB & Simulink programmes, and there are numerous tools

for monitoring and controlling real-time systems, provided by MATLAB &

Simulink, which are very useful and effective for researchers. However, the

battery voltage and memory capacity of LEGO EV3 have limitations and therefore

need to be considered carefully during the design and programming stages.

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

49

Chapter 4

Modelling of Inverted Pendulum and Two-Wheeled Robot

Systems

4.1 Introduction

In this chapter, mathematical representations of an inverted pendulum on a cart

and a self-balancing two-wheeled robot are introduced and studied as the

mathematical model of the TWR is applied to robot prototype, LEGO EV3, in the

experimentation sections in Chapters 5 and 6. This chapter can be divided into

three parts. Firstly, the mathematical models are analysed in Section 4.2. Then,

in Section 4.3, a revised mathematical representation, where the control inputs

are transferred from forces to the motor voltages is presented. Finally,

linearisation of the model is demonstrated in Section 4.4.

4.2 Mathematical Model

4.2.1 Inverted Pendulum on a Cart Model

Figure 4.1: An inverted pendulum on a cart (Xu, Zhang, & Carbone, 2017)

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

50

The self-balancing two-wheeled robot has been developed from the classical

benchmarking system known as an inverted pendulum on a cart, shown in Figure

4.1. The control objective is to balance the pendulum in the vertically upright but

unstable position.

The mathematical models of an inverted pendulum describe equations of

motions and are often obtained by analysing forces, using Newton's laws. There

are also other methods for obtaining the mathematical models of these systems,

for example, using the Lagrangian approach based on the system's potential

energy and kinetic energy. Xu, Zhang, and Carbone (2017) presented nonlinear

models of the inverted pendulum system shown in Figure 4.1, using the

Lagrangian method. This is because the Lagrangian technique utilises only two

terms energy and the calculations are simpler than using the Newton’s method,

which require a number of force component equations.

In terms of potential energy (𝑉), the amount of energy in the vertical

displacement of an inverted pendulum is analysed and given by (Xu, Zhang, &

Carbone, 2017)

𝑉 = 𝑚2𝑔(𝑟 + 𝑟 𝑐𝑜𝑠 𝜃), (4.1)

where

 𝑚2 is the mass of pendulum (0.1 𝑘𝑔),

𝑔 is the acceleration due to gravity (9.8 𝑚2/𝑠),

 and 𝑟 is the length of the pendulum (0.5 𝑚).

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

51

In the case of kinetic energy (𝑇), the amount of energy along the horizontal axis

can be written as (Xu, Zhang, & Carbone, 2017)

 𝑇 =
1

2
𝑚1�̇�1

2 +
1

2
𝑚2 [

𝑑

𝑑𝑡
𝑥1 + 𝑟 𝑠𝑖𝑛 𝜃]

2

+
1

2
𝑚2 [

𝑑

𝑑𝑡
(𝑟 𝑐𝑜𝑠 𝜃)]

2

 =
1

2
𝑚1�̇�1

2 +
1

2
𝑚2(�̇�1 + 𝑟�̇� 𝑐𝑜𝑠 𝜃)

2 +
1

2
𝑚2(−𝑟 �̇�𝑠𝑖𝑛 𝜃)

2

=
1

2
(𝑚1 +𝑚2)�̇�1

2 +𝑚2𝑟�̇�1�̇� 𝑐𝑜𝑠 𝜃 +
1

2
𝑚2𝑟

2�̇�2,

(4.2)

where 𝑚1 is the mass of cart (2 𝑘𝑔), 𝑥1 is the cart displacement (𝑚) and 𝜃 is the

pendulum angle (𝑟𝑎𝑑).

 The Lagrangian (𝐿) is given by the difference between total kinetic energy

(𝑇) and the total potential energy (𝑉) as follows:

 𝐿 = 𝑇 − 𝑉. (4.3)

Thus, substituting (4.1) and (4.2) into (4.3), the following Lagrangian is obtained

𝐿 =
1

2
(𝑚1 +𝑚2)�̇�1

2 +𝑚2𝑟�̇�1�̇� 𝑐𝑜𝑠 𝜃 +
1

2
𝑚2𝑟

2�̇�2 − 𝑚2𝑔(𝑟 + 𝑟 𝑐𝑜𝑠 𝜃) (4.4)

Lagrange’s equation is

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�𝑖
−
𝜕𝐿

𝜕𝑥𝑖
= 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝑛,

(4.5)

where 𝑥𝑖 is the 𝑖th generalised coordinate, 𝑓𝑖 is the 𝑖th generalised force and 𝑛 is

the number of the degrees of freedom (DOF).

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

52

There are two generalised coordinates in the inverted pendulum on a cart system

presented in Figure 4.1, which are the cart replacement 𝑥1 and the pitch angle 𝜃

as given by

𝑓1 = 𝑢, and 𝑓2 = 0. (4.6)

Then the Lagrange’s equation becomes

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�1
−
𝜕𝐿

𝜕𝑥1
= 𝑢, 𝑎𝑛𝑑

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜃
= 0

(4.7)

Substituting Eq.(4.4) into (4.7) (Xu, Zhang, & Carbone, 2017) for the single

inverted pendulum on a cart system, the result is as follows:

�̈�1 =
𝑚2𝑟�̇�

2 𝑠𝑖𝑛 𝜃 − 𝑚2𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝑢

𝑚1 +𝑚2 𝑠𝑖𝑛2 𝜃

�̈� =
−𝑚2𝑟�̇�

2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + (𝑚1 +𝑚2)𝑔 𝑠𝑖𝑛 𝜃 − 𝑢 𝑐𝑜𝑠 𝜃

𝑟(𝑚1 +𝑚2 𝑠𝑖𝑛2 𝜃)
,

(4.8)

which can be transferred into standard state-space model equations by defining

variables 𝑥2 = �̇�1, 𝑥3 = 𝜃 and 𝑥4 = �̇�3. Therefore, a state-space representation of

the inverted pendulum on a cart is given by

�̇�1 = 𝑥2

�̇�2 =
𝑚2𝑟𝑥4

2 𝑠𝑖𝑛 𝑥3 −𝑚2𝑔 𝑠𝑖𝑛 𝑥3 𝑐𝑜𝑠 𝑥3 + 𝑢

𝑚1 +𝑚2 𝑠𝑖𝑛2 𝑥3

�̇�3 = 𝑥4

�̇�4 =
−𝑚2𝑟𝑥4

2 𝑠𝑖𝑛 𝑥3 𝑐𝑜𝑠 𝑥3 + (𝑚1 +𝑚2)𝑔 𝑠𝑖𝑛 𝑥3 − 𝑢 𝑐𝑜𝑠 𝑥3
𝑟(𝑚1 +𝑚2 𝑠𝑖𝑛2 𝑥3)

,

(4.9)

which can be rewritten into a non-unique nonlinear state-space matrix form as

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

53

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

0 1 0 0

0 0
−𝑚2𝑔 sin 𝑥3 cos 𝑥3
(𝑚1 +𝑚2 sin

2 𝑥3)𝑥3

𝑚2𝑟𝑥4 sin 𝑥3
𝑚1 +𝑚2 sin

2 𝑥3
0 0 0 1

0 0
(𝑚1 +𝑚2)𝑔 sin𝑥3
𝑟(𝑚1 +𝑚2 sin

2 𝑥3)𝑥3

−𝑚2𝑟𝑥4 sin 𝑥3 cos 𝑥3
𝑟(𝑚1 +𝑚2 sin

2 𝑥3))

(

𝑥1
𝑥2
𝑥3
𝑥4

)

+

(

0
1

𝑚1 +𝑚2 sin
2 𝑥3

0
− cos𝑥3

𝑟(𝑚1 +𝑚2 sin
2 𝑥3))

𝑢.

(4.10)

Additionally, the linear model of an inverted pendulum on a cart can be

expressed by limiting 𝑥3 and 𝑥4 as ‘small’ quantities in Eq.(4.10) and therefore

several approximations follows:

𝑠𝑖𝑛(𝑥3) ≈ 𝑥3, 𝑐𝑜𝑠(𝑥3) ≈ 1, 𝑥4 𝑠𝑖𝑛(𝑥3) ≈ 0 and 𝑠𝑖𝑛 (𝑥3)
2 ≈ 0 (4.11)

Thus, a linear state-space model of the inverted pendulum on a cart system can

be represented in the form of

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

0 1 0 0

0 0
−𝑚2𝑔

𝑚1
0

0 0 0 1

0 0
(𝑚1 +𝑚2)𝑔

𝑟𝑚1
0
)

(

𝑥1
𝑥2
𝑥3
𝑥4

)+

(

0
1

𝑚1
0
−1

𝑟𝑚1)

𝑢.

(4.12)

4.2.2 Self-Balancing Two-Wheeled Robot Model

As a classical benchmarking model, an inverted pendulum on a cart is widely

used to test control strategies, the model of which was described in Section 4.2.1.

In this subsection, the inverted pendulum theory will be extended to the self-

balancing two-wheeled robot, of which the LEGO EV3 robot is selected as a

prototype, for the analysis and investigation. A LEGO self-balancing two-wheeled

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

54

robot is shown in Figures 4.2-4.3. Figure 4.2 presents the prototype TWR with

the three generalised coordinates: the robot pitch angle 𝜓, the robot yaw angle 𝜙

and the wheel angle 𝜃 (Yamamoto, 2009). More details of the TWR on the X,Y

and Z coordinates for designing the motion equation can be seen in Figure 4.3.

(a) (b)

Figure 4.2: Self-balancing two-wheeled robot (LEGO EV3),

(a) side view and (b) top view.

(a) (b)

Figure 4.3: Self-balancing two-wheeled robot diagram,

(a) side view and (b) top view (Yamamoto, 2009).

Note that 𝑙 and 𝑟 mean left and right. For instance, 𝜃𝑙 and 𝜃𝑟 are the left and right

wheel angles; similarly, 𝑍𝑙 and 𝑍𝑟 are the height of left and right wheel in 𝑍

coordinate.

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

55

Physical parameters of the self-balancing two-wheeled robot are given in Table

4.1. Note that the values of parameters1-11 were measured and calculated from

the LEGO EV3 for this research and the parameters12-18 are presented in

Yamamoto (2009).

Table 4.1: Physical parameters of the self-balancing two-wheeled robot

No. Parameters Description Value

1 𝑚 Mass of wheel 0.05 𝑘𝑔

2 𝑀 Mass of robot body 0.64 𝑘𝑔

3 𝑅 Wheel radius 0.027 𝑚

4 𝑊 Robot’s body width 0.105 𝑚

5 𝐷 Robot’s body depth 0.1 𝑚

6 𝐻 Robot’s body height 0.21 𝑚

7 𝐿 = 𝐻/2 Distance between wheel axle

and centre of robot

0.105 𝑚

8 𝑔 Acceleration due to gravity 9.81 𝑚2/𝑠

9 𝐽𝑤 = 𝑚𝑅
2/2 Inertia moment of wheel 0.0000162 𝑘𝑔𝑚2

10 𝐽𝜓 = 𝑀𝐿
2/3 Inertia moment of robot pitch 0. 002352 𝑘𝑔𝑚2

11 𝐽𝜙 = 𝑀(𝑊
2 + 𝐷2)/12 Inertia moment of robot yaw 0.001121𝑘𝑔𝑚2

12 𝐽𝑚 Inertia moment of DC motor 1 × 10−5 𝑘𝑔𝑚2

13 𝑅𝑚 Resistance of DC motor 6.69 𝛺

14 𝐾𝑏 Back EMF constant of DC motor 0.468 𝑉 ∙ 𝑆𝑒𝑐/𝑟𝑎𝑑

15 𝐾𝑡 Torque constant of DC motor 0.317 𝑁𝑚/𝐴

16 𝑛 Gear ratio 1

17 𝑓𝑚 Coefficient of friction between

robot and DC motor

0.0022

18 𝑓𝑤 Coefficient of friction between

wheel and floor

0

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

56

Table 4.1, Yamamoto (2009) provided the physical parameters for the LEGO NXT

model, which is a different version to the robot (LEGO EV3) used in this research.

However, Roslovets (2020) verified that these parameters could be utilised for

the LEGO EV3 as he presented a self-balancing two-wheeled robot from the

LEGO EV3, namely the Gyroboy, in his Simulink simulation and the

implementation sections.

For the two-wheeled robot, the Lagrangian method is also applied to analyse the

mathematical model based on the system's potential and kinetic energy, as

indicated in Figure 4.3. Yamamoto (2009) produced the total kinetic energy and

potential energy equations from the LEGO two-wheeled robot using the

Lagrangian technique, which can be expressed as

The kinetic energy (𝑇)

𝑇1 =
1

2
𝑚(�̇�𝑙

2 + �̇�𝑙
2 + �̇�𝑙

2) +
1

2
𝑚(�̇�𝑟

2 + �̇�𝑟
2 + �̇�𝑟

2) +
1

2
𝑀(�̇�𝑏

2 + �̇�𝑏
2 + �̇�𝑏

2) (4.13)

𝑇2 =
1

2
𝐽𝑤�̇�𝑙

2 +
1

2
𝐽𝑤�̇�𝑟

2 +
1

2
𝐽𝜓�̇�

2 +
1

2
𝐽𝜙�̇�

2 +
1

2
𝑛2𝐽𝑚(�̇�𝑙 − �̇�)

2 +
1

2
𝑛2𝐽𝑚(�̇�𝑟 − �̇�)

2. (4.14)

The potential energy (𝑉)

𝑉 = 𝑚𝑔𝑧𝑙 +𝑚𝑔𝑧𝑟 +𝑀𝑔𝑧𝑏 . (4.15)

The motion equations are given by

(𝑥𝑚, 𝑦𝑚, 𝑧𝑚) = (∫ �̇�𝑚 𝑑𝑡,∫ �̇�𝑚 𝑑𝑡, 𝑅) , (�̇�𝑚, �̇�𝑚) = (𝑅�̇�𝑐𝑜𝑠 𝜙 , 𝑅�̇� 𝑠𝑖𝑛 𝜙) (4.16)

(𝑥𝑙, 𝑦𝑙 , 𝑧𝑙) = (𝑥𝑚 −
𝑊

2
𝑠𝑖𝑛 𝜙 , 𝑦𝑚 +

𝑊

2
𝑐𝑜𝑠 𝜙 , 𝑧𝑚) (4.17)

(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) = (𝑥𝑚 +
𝑊

2
𝑠𝑖𝑛𝜙 , 𝑦𝑚 −

𝑊

2
𝑐𝑜𝑠 𝜙 , 𝑧𝑚) (4.18)

(𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) = (𝑥𝑚 + 𝐿 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜙 , 𝑦𝑚 + 𝐿 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜙 , 𝑧𝑚 + 𝐿𝑐𝑜𝑠 𝜓) (4.19)

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

57

(𝜃, 𝜙) = (
(𝜃𝑙 + 𝜃𝑟)

2
,
𝑅(𝜃𝑟 − 𝜃𝑙)

𝑊
). (4.20)

The kinetic energy (𝑇1) can be rewritten by substituting Eqs.(4.16)-(4.19) into Eq.

(4.13):

𝑇1 =
1

2
𝑚 [(𝑅�̇� 𝑐𝑜𝑠 𝜙 −

𝑊

2
�̇� 𝑐𝑜𝑠 𝜙)

2

+ (𝑅�̇� 𝑠𝑖𝑛 𝜙 −
𝑊

2
�̇� 𝑠𝑖𝑛 𝜙)

2

]

+
1

2
𝑚 [(𝑅�̇� 𝑐𝑜𝑠 𝜙 +

𝑊

2
�̇� 𝑐𝑜𝑠 𝜙)2 + (𝑅�̇� 𝑠𝑖𝑛 𝜙 +

𝑊

2
�̇� 𝑠𝑖𝑛 𝜙)2]

+
1

2
𝑀 [(𝑅�̇� 𝑐𝑜𝑠 𝜙 − 𝐿 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛𝜙�̇� + 𝐿 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓�̇�)

2

+ (𝑅�̇� 𝑠𝑖𝑛 𝜙 + 𝐿 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠 𝜙�̇� + 𝐿 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓�̇�)
2

+ (−𝐿 𝑠𝑖𝑛𝜓�̇�)
2
]

=
1

2
𝑚 [2𝑅2�̇�2 +

𝑊2

2
�̇�2]

+
1

2
𝑀[𝑅2�̇�2 + 𝐿2 𝑠𝑖𝑛2𝜓 �̇�2 + 2𝑅𝐿�̇�𝑐𝑜𝑠 𝜓 �̇� + 𝐿�̇�2].

(4.21)

Equation (4.20) can be transformed as

𝜃𝑟 = 𝜃 +
𝑊𝜙

2𝑅

(4.22)

𝜃𝑙 = 𝜃 −
𝑊𝜙

2𝑅
.

(4.23)

Rewriting the kinetic energy (𝑇2) by substituting Eqs.(4.22)-(4.23) into Eq.(4.14):

𝑇2 =
1

2
𝐽𝑤 (�̇� −

𝑊�̇�

2𝑅
)

2

+
1

2
𝐽𝑤 (�̇� +

𝑊�̇�

2𝑅
)

2

+
1

2
𝐽𝜓�̇�

2 +
1

2
𝐽𝜙�̇�

2

+
1

2
𝑛2𝐽𝑚(�̇� −

𝑊�̇�

2𝑅
− �̇�)2 +

1

2
𝑛2𝐽𝑚 (�̇� +

𝑊�̇�

2𝑅
− �̇�)

2

=
1

2
𝐽𝑤 (2�̇�

2 −
𝑊2�̇�2

2𝑅2
) +

1

2
𝐽𝜓�̇�

2 +
1

2
𝐽𝜙�̇�

2

+
1

2
𝑛2𝐽𝑚 [2�̇�

2 + 2�̇�2 − 4�̇��̇� +
𝑊2�̇�2

2𝑅2
].

(4.24)

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

58

The potential energy (V) can be rewritten by substituting Eqs.(4.16)-(4.19) into

Eq.(4.15):

𝑉 = 𝑚𝑔𝑅 +𝑚𝑔𝑅 +𝑀𝑔(𝑅 + 𝐿𝑐𝑜𝑠 𝜓)

= 2𝑚𝑔𝑅 +𝑀𝑔𝑅 +𝑀𝑔𝐿𝑐𝑜𝑠 𝜓.

(4.25)

The Lagrangian (𝐿) is now defined as the following:

𝐿 = 𝑇1 + 𝑇2 − 𝑉. (4.26)

Therefore, the Lagrange equations are given by

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜃
= 𝐹𝜃,

(4.27)

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜓
= 𝐹𝜓,

(4.28)

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜙
= 𝐹𝜙.

(4.29)

Evaluating Eqs. (4.27) - (4.29) produces the following (Yamamoto, 2009)

differential equations, which represent the two-wheel robot system:

[(2𝑚 +𝑀)𝑅2 + 2𝐽𝑤 + 2𝑛
2𝐽𝑚]�̈� + (𝑀𝐿𝑅𝑐𝑜𝑠𝜓 − 2𝑛

2𝐽𝑚)�̈�

 −𝑀𝐿𝑅�̇�2 𝑠𝑖𝑛 𝜓 = 𝐹𝜃,

(4.30)

(𝑀𝐿𝑅𝑐𝑜𝑠𝜓 − 2𝑛2𝐽𝑚)�̈� + (𝑀𝐿
2 + 𝐽𝜓 + 2𝑛

2𝐽𝑚)�̈� − 𝑀𝑔𝐿 𝑠𝑖𝑛𝜓

 −𝑀𝐿2�̇�2 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠𝜓 = 𝐹𝜓,

(4.31)

[
1

2
𝑚𝑊2 + 𝐽𝜙 +

𝑊2

2𝑅2
(𝐽𝑤 + 𝑛

2𝐽𝑚) + 𝑀𝐿
2𝑠𝑖𝑛2𝜓] �̈�

 +2𝑀𝐿2�̇� �̇�𝑠𝑖𝑛 𝜓𝑐𝑜𝑠𝜓 = 𝐹𝜙.

(4.32)

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

59

Then, transferring variables 𝜃, 𝜓, and 𝜙 into standard state-space model variables

as follows:

 𝑥1 = 𝜃, 𝑥2 = �̇�, then �̇�2 = �̈�,

 𝑥3 = 𝜓, 𝑥4 = �̇�, then �̇�4 = �̈�,

 𝑥5 = 𝜙, 𝑥6 = �̇�, then �̇�6 = �̈�,

we re-write Eqs. as (4.30) - (4.32) as

[(2𝑚 +𝑀)𝑅2 + 2𝐽𝑤 + 2𝑛
2𝐽𝑚]�̇�2 + (𝑀𝐿𝑅𝑐𝑜𝑠(𝑥3) − 2𝑛

2𝐽𝑚)�̇�4

 −𝑀𝐿𝑅𝑥4
2 𝑠𝑖𝑛(𝑥3) = 𝐹𝜃,

(4.33)

(𝑀𝐿𝑅𝑐𝑜𝑠(𝑥3) − 2𝑛
2𝐽𝑚)�̇�2 + (𝑀𝐿

2 + 𝐽𝜓 + 2𝑛
2𝐽𝑚)�̇�4 −𝑀𝑔𝐿 𝑠𝑖𝑛(𝑥3)

 −𝑀𝐿2𝑥6
2 𝑠𝑖𝑛(𝑥3) 𝑐𝑜𝑠(𝑥3) = 𝐹𝜓,

(4.34)

[
1

2
𝑚𝑊2 + 𝐽𝜙 +

𝑊2

2𝑅2
(𝐽𝑤 + 𝑛

2𝐽𝑚) + 𝑀𝐿
2𝑠𝑖𝑛2(𝑥3)] �̇�6

 +2𝑀𝐿2𝑥4 𝑥6 𝑠𝑖𝑛(𝑥3) 𝑐𝑜𝑠(𝑥3) = 𝐹𝜙

(4.35)

This PhD research work focuses on the stabilisation in the robot pitch

angle 𝜓. Therefore, the robot yaw angle 𝜙 is not considered. Moreover, the

computation of three generalised coordinates requires a large amount of memory

capacity when the robot’s CPU is processing with nonlinear freezing optimal

control; thus, the associated equation for the yaw angle 𝜙 is neglected and no

yaw control is provided. For more details see in Chapter 6, Section 6.6:

Experimental Results.

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

60

Therefore, the nonlinear system equations of the two-wheeled robot model

with two generalised coordinates (the robot pitch angle 𝜓 and the wheel angle 𝜃)

are written by extending Eqs.(4.33)-(4.34), which can be used as the state-space

representation of the system, as the following:

Firstly, the �̇�1 equation can be defined as

�̇�1 = 𝑥2 (4.36)

Next, the �̇�2 equation can be written as

�̇�2 = 𝑥4 ×
𝑥4𝑠𝑖𝑛(𝑥3)(𝑀

2𝑅𝐿3 + 2𝑀𝑅𝐿𝑛2𝐽𝑚 +𝑀𝑅𝐿𝐽𝜓)

𝑎 + 𝑏(𝑥3)

+
2𝑛2𝐽𝑚𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3) − 𝑀

2𝑅𝐿2𝑐𝑜𝑠(𝑥3)𝑔 𝑠𝑖𝑛(𝑥3)

𝑎 + 𝑏(𝑥3)

+ 𝐹𝜓 ×
(2𝑛2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3))

𝑎 + 𝑏(𝑥3)

+ 𝐹𝜃 ×
(𝑀𝐿2 + 2𝑛2𝐽𝑚 + 𝐽𝜓)

𝑎 + 𝑏(𝑥3)

(4.37)

where 𝑎 and 𝑏 are given by

𝑎 = 2𝐽𝑤𝐽𝜓 + 2𝑚𝑅
2𝑀𝐿2 + 4𝑚𝑅2𝑛2𝐽𝑚 + 2𝑀𝑅

2𝑛2𝐽𝑚 + 2𝑛
2𝐽𝑚𝑀𝐿

2

 +2𝑚𝑅2𝐽𝜓 +𝑀𝑅
2𝐽𝜓 + 2𝐽𝑤𝑀𝐿

2 + 4𝐽𝑤𝑛
2𝐽𝑚 + 2𝑛

2𝐽𝑚𝐽𝜓,

(4.38)

𝑏(𝑥3) = 𝑀
2𝑅2𝐿2 𝑠𝑖𝑛(𝑥3)

2 + 4𝑀𝐿𝑅𝑐𝑜𝑠(𝑥3)𝑛
2𝐽𝑚 (4.39)

Let

𝑒23(𝑥3) = 2𝑛
2𝐽𝑚𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3) − 𝑀

2𝑅𝐿2𝑐𝑜𝑠(𝑥3)𝑔 𝑠𝑖𝑛(𝑥3),

𝑒24(𝑥3, 𝑥4) = 𝑥4𝑠𝑖𝑛(𝑥3)(𝑀
2𝑅𝐿3 + 2𝑀𝑅𝐿𝑛2𝐽𝑚 +𝑀𝑅𝐿𝐽𝜓),

𝑓21 = 𝑀𝐿
2 + 2𝑛2𝐽𝑚 + 𝐽𝜓

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

61

and

𝑓22(𝑥3) = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3),

which can be used to rewrite Eq.(4.37) as follows:

�̇�2 =
𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒24(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4 +

𝑓21
(𝑎 + 𝑏(𝑥3))

× 𝐹𝜃

+
𝑓22(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝐹𝜓

(4.40)

Then, define the �̇�3 equation as

�̇�3 = 𝑥4 (4.41)

Next, the �̇�4 equation is represented as

�̇�4 = 𝑥4 ×
𝑥4𝑠𝑖𝑛(𝑥3)(−𝑀

2𝑅2𝐿2𝑐𝑜𝑠(𝑥3) + 2𝑀𝑅𝐿𝑛
2𝐽𝑚)

𝑎 + 𝑏(𝑥3)

+
𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3)(2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2 + 2𝑛2𝐽𝑚)

𝑎 + 𝑏(𝑥3)

+𝐹𝜃 ×
(2𝑛2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3))

𝑎 + 𝑏(𝑥3)

+𝐹𝜓 ×
(2𝑛2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2)

𝑎 + 𝑏(𝑥3)
.

(4.42)

Also let

𝑒43(𝑥3) = 𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3)(2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2),

𝑒44(𝑥3, 𝑥4) = 𝑥4𝑠𝑖𝑛(𝑥3)(−𝑀
2𝑅2𝐿2𝑐𝑜𝑠(𝑥3) + 2𝑀𝑅𝐿𝑛

2𝐽𝑚),

𝑓41(𝑥3) = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3)

and

𝑓42 = 2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

62

which can be rewritten from Eq.(4.42) as follows:

�̇�4 =
𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒44(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4 +

𝑓41(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝐹𝜃

+
𝑓42

(𝑎 + 𝑏(𝑥3))
× 𝐹𝜓

(4.43)

Therefore, the nonlinear state-space model of the self-balancing two-wheeled

robot controlled by two forces: the pitch angle force 𝐹𝜓 and the wheel angle force

𝐹𝜃, can be represented as follows:

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

0 1 0 0

0 0
𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0 0 0 1

0 0
𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3))

(

𝑥1
𝑥2
𝑥3
𝑥4

)

+

(

0 0
𝑓21

𝑎 + 𝑏(𝑥3)

𝑓22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓42
𝑎 + 𝑏(𝑥3))

(
𝐹𝜃
𝐹𝜓
).

(4.44)

4.3 Converting Control Inputs from Forces to Voltages

The system dynamics of a self-balancing two-wheeled robot, controlled by forces

were presented in the previous section. In real-world applications, forces are

generated from the hardware; for instance, the LEGO EV3 robot is controlled by

forces, produced from the DC motors. This section, therefore, presents voltage

conversion of the LEGO EV3 robot from forces, and then applies to the state-

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

63

space model, which is used to balance the two-wheel robot in the subsequent

chapters.

 The standard DC motor schematic is presented in Figure 4.4.

Figure 4.4: DC motor schematic (Chiasson, 2005)

Kirchhoff’s voltage law is applied to summarise the electrical circuits in Figure

4.4, given the equation as follows (Yamamoto, 2009):

𝐿𝑚
𝑑𝑖𝑙,𝑟
𝑑𝑡

= 𝑣𝑙,𝑟 + 𝐾𝑏(
𝑑𝜓

𝑑𝑡
−
𝑑𝜃𝑙,𝑟
𝑑𝑡
) − 𝑅𝑚𝑖𝑙,𝑟 ,

(4.45)

where 𝑖𝑙,𝑟 is the DC motor current.

In DC circuits, the inductance of motor in steady-state operation behaves like a

short circuit; therefore, it can be approximated as zero, and then Eq. (4.45) can

be rewritten as:

𝑖𝑙,𝑟 =
𝑣𝑙,𝑟 + 𝐾𝑏(�̇� − �̇�𝑙,𝑟)

𝑅𝑚
.

(4.46)

Yamamoto (2009) demonstrated the generalised forces of the DC motor torque

and viscous friction as follows:

(𝐹𝜃, 𝐹𝜓) = (𝐹𝑙 + 𝐹𝑟 , 𝐹𝜓) (4.47)

𝐹𝑙 = 𝑛𝐾𝑡𝑖𝑙 + 𝑓𝑚(�̇� − �̇�𝑙) − 𝑓𝑤�̇�𝑙 (4.48)

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

64

𝐹𝑟 = 𝑛𝐾𝑡𝑖𝑟 + 𝑓𝑚(�̇� − �̇�𝑟) − 𝑓𝑤�̇�𝑟 (4.49)

𝐹𝜓 = 𝑛𝐾𝑡𝑖𝑙 − 𝑛𝐾𝑡𝑖𝑟 − 𝑓𝑚(�̇� − �̇�𝑙) − 𝑓𝑚(�̇� − �̇�𝑟) (4.50)

Therefore, the generalised forces 𝐹𝜃 and 𝐹𝜓 in terms of motor voltage from

Eq.(4.46) are given by

𝐹𝜃 = 𝛼(𝑣𝑙 + 𝑣𝑟) − 2(𝛽 + 𝑓𝑤)�̇� + 2𝛽�̇� (4.51)

𝐹𝜓 = −𝛼(𝑣𝑙 + 𝑣𝑟) + 2𝛽�̇� − 2𝛽�̇� (4.52)

where

𝛼 =
𝑛𝐾𝑡
𝑅𝑚

, 𝛽 =
𝑛𝐾𝑡𝐾𝑏
𝑅𝑚

+ 𝑓𝑚.
(4.53)

Then Eqs.(4.51)-(4.52) can be rewritten in the standard state-space model

variables, given by

𝐹𝜃 = 𝛼(𝑣𝑙 + 𝑣𝑟) − 2(𝛽 + 𝑓𝑤)𝑥2 + 2𝛽𝑥4 (4.54)

𝐹𝜓 = −𝛼(𝑣𝑙 + 𝑣𝑟) + 2𝛽𝑥2 − 2𝛽𝑥4 (4.55)

Now, the state-space representation of the two-wheeled robot would be

transferred from generalised forces to voltages by substituting Eqs. (4.54)-(4.55)

to Eq.(4.37) as follows:

�̇�2 = 𝑥2 × (
2𝛽𝑓22(𝑥3)

𝑎 + 𝑏(𝑥3)
−
2(𝛽 + 𝑓𝑤)𝑓21
𝑎 + 𝑏(𝑥3)

) +
𝑒23(𝑥3)

𝑎 + 𝑏(𝑥3)

+ 𝑥4 × (
𝑒24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
+
2𝛽(𝑓21 − 𝑓22(𝑥3))

𝑎 + 𝑏(𝑥3)
)

+ 𝑣𝑙 ×
𝛼(𝑓21 − 𝑓22(𝑥3))

𝑎 + 𝑏(𝑥3)
+ 𝑣𝑟 ×

𝛼(𝑓21 − 𝑓22(𝑥3))

𝑎 + 𝑏(𝑥3)

(4.56)

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

65

Let

𝑒𝑚22(𝑥3) = 2𝛽𝑓22(𝑥3) − 2(𝛽 + 𝑓𝑤)𝑓21,

𝑒𝑚24(𝑥3, 𝑥4) = 𝑒24(𝑥3, 𝑥4) + 2𝛽(𝑓21 − 𝑓22(𝑥3)),

𝑓𝑚21(𝑥3) = 𝛼(𝑓21 − 𝑓22(𝑥3))

and

𝑓𝑚22(𝑥3) = 𝛼(𝑓21 − 𝑓22(𝑥3)),

which can be rewrite Eq.(4.56) as below:

�̇�2 =
𝑒𝑚22(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑥2 +

𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒𝑚24(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4

+
𝑓𝑚21

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑙 +

𝑓𝑚22(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑟

(4.57)

Next, for the �̇�4 equation, substituting Eqs. (4.54)-(4.55) into Eq.(4.42):

�̇�4 = 𝑥2 × (
2𝛽𝑓42

𝑎 + 𝑏(𝑥3)
−
2(𝛽 + 𝑓𝑤)𝑓41(𝑥3)

𝑎 + 𝑏(𝑥3)
) +

𝑒43(𝑥3)

𝑎 + 𝑏(𝑥3)

+𝑥4 × (
𝑒44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
+
2𝛽(𝑓41(𝑥3) − 𝑓42)

𝑎 + 𝑏(𝑥3)
)

+ 𝑣𝑙 ×
𝛼(𝑓41(𝑥3) − 𝑓42)

𝑎 + 𝑏(𝑥3)
+ 𝑣𝑟 ×

𝛼(𝑓41(𝑥3) − 𝑓42)

𝑎 + 𝑏(𝑥3)

(4.58)

Also let

𝑒𝑚42(𝑥3) = 2𝛽𝑓42 − 2(𝛽 + 𝑓𝑤)𝑓41(𝑥3),

𝑒𝑚44(𝑥3, 𝑥4) = 𝑒44(𝑥3, 𝑥4) + 2𝛽(𝑓41(𝑥3) − 𝑓42),

𝑓𝑚41(𝑥3) = 𝛼(𝑓41(𝑥3) − 𝑓42)

and

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

66

𝑓𝑚42(𝑥3) = 𝛼(𝑓41(𝑥3) − 𝑓42),

which can simplify Eq.(4.58) as follows:

�̇�4 =
𝑒𝑚42(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑥2 +

𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒𝑚44(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4

+
𝑓𝑚41(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑙 +

𝑓𝑚42(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑟 .

(4.59)

In summary, from the above derivations, the nonlinear state-space model of the

two-wheeled robot with voltage input control is represented as the following:

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

0 1 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0 0 0 1

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3))

(

𝑥1
𝑥2
𝑥3
𝑥4

)

+

(

0 0
𝑓𝑚21(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓𝑚41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3))

(
𝑣𝑙
𝑣𝑟
).

(4.60)

Many dynamical systems require high accuracy to maintain their setpoints,

by removing steady-state errors. Therefore, we now proceed to a tracking

system, which can be designed to remove the steady-state error in state variable

𝑥1 (wheel angle), to ensure the robot is stabilised at the reference position

(tracking a pre-defined trajectory) by adding an integrator of state variable 𝑥1 as

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

67

the 5th state-variable of system. Hence, the nonlinear state-space model of the

two-wheeled robot with tracking system is represented in the form:

(

�̇�1
�̇�2
�̇�3
�̇�4
�̇�5)

=

(

0 1 0 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0

0 0 0 1 0

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0

1 0 0 0 0)

(

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

+

(

0 0
𝑓𝑚21(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓𝑚41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0)

(
𝑣𝑙
𝑣𝑟
).

(4.61)

4.4 Linearisation of the Two-Wheeled Robot Model

A suitable nonlinear state-space model of the two-wheeled robot was deployed

in the previous section and the dynamic equations were complicated. Thus, it is

possible to simplify the mathematical model of a nonlinear system by applying

the well-known method: linearisation. Linearisation is a technique to approximate

a nonlinear system into a linear form, (where in the system is operating around

an equilibrium point) by applying Taylor series expensions and the signals are

considered as small quantities (Ogata & Yang, 1970). The linearised model is

suitable for the applications of linear controllers, e.g. PID, LQR and LQG

controller.

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

68

In this section, the nonlinear model of the self-balancing two-wheeled

robot given in Eq.(4.61) is linearised by assuming 𝑥3 and 𝑥4 are small quantities.

Then, approximations can be taken as follows:

𝑠𝑖𝑛(𝑥3) ≈ 𝑥3, 𝑐𝑜𝑠(𝑥3) ≈ 1, 𝑥4 𝑠𝑖𝑛(𝑥3) ≈ 0 and 𝑠𝑖𝑛 (𝑥3)
2 ≈ 0 (4.62)

Some defined parameters of the �̇�2 equations are rewritten accordingly as follows:

𝑓22𝐿 = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿,

𝑓𝑚21𝐿 = 𝛼(𝑓21 − 𝑓22𝐿),

𝑓𝑚22𝐿 = 𝛼(𝑓21 − 𝑓22𝐿).

𝑒23𝐿(𝑥3) = 𝑥3 × (2𝑛
2𝐽𝑚𝐿𝑀𝑔 −𝑀

2𝑅𝐿2𝑔)

= 𝑥3 × 𝑒23𝐿 ,

𝑒24𝐿 = 0,

𝑒𝑚22𝐿 = 2𝛽𝑓22𝐿 − 2(𝛽 + 𝑓𝑤)𝑓21,

𝑒𝑚24𝐿 = 2𝛽(𝑓21 − 𝑓22𝐿),

Let 𝑒23𝐿 = 2𝑛
2𝐽𝑚𝐿𝑀𝑔 −𝑀

2𝑅𝐿2

Similarly, the revision of parameters of the �̇�4 equation is carried out to obtain

𝑓41𝐿 = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿,

𝑓𝑚41𝐿 = 𝛼(𝑓41𝐿 − 𝑓42),

𝑓𝑚42𝐿 = 𝛼(𝑓41𝐿 − 𝑓42).

𝑒43𝐿(𝑥3) = 𝑥3 ×𝑀𝑔𝐿(2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2)

= 𝑥3 × 𝑒43𝐿 ,

𝑒44𝐿 = 0,

𝑒𝑚42𝐿 = 2𝛽𝑓42 − 2(𝛽 + 𝑓𝑤)𝑓41𝐿 ,

𝑒𝑚44𝐿 = 2𝛽(𝑓41𝐿 − 𝑓42),

Let 𝑒43𝐿 = 𝑀𝑔𝐿(2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2)

CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS

69

Then Eq.(4.39) is rewritten as

𝑏𝐿 = 4𝑀𝐿𝑅𝑛
2𝐽𝑚, (4.63)

which transforms Eq.(4.57) to the following:

�̇�2 =
𝑒𝑚22𝐿
(𝑎 + 𝑏𝐿)

× 𝑥2 +
(𝑥3 × 𝑒23𝐿)

(𝑎 + 𝑏𝐿)𝑥3
× 𝑥3 +

𝑒𝑚24𝐿
(𝑎 + 𝑏𝐿)

× 𝑥4

+
𝑓𝑚21𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑙 +
𝑓𝑚22𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑟 .

(4.64)

Also, Equation(4.59) can be rewritten as follows:

�̇�4 =
𝑒𝑚42𝐿
(𝑎 + 𝑏𝐿)

× 𝑥2 +
(𝑥3 × 𝑒43𝐿)

(𝑎 + 𝑏𝐿)𝑥3
× 𝑥3 +

𝑒𝑚44𝐿
(𝑎 + 𝑏𝐿)

× 𝑥4

+
𝑓𝑚41𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑙 +
𝑓𝑚42𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑟

(4.65)

Therefore, the linear state-space model of self-balancing two-wheeled robot is

represented as the following:

(

�̇�1
�̇�2
�̇�3
�̇�4
�̇�5)

=

(

0 1 0 0 0

0
𝑒𝑚22𝐿
𝑎 + 𝑏𝐿

𝑒23𝐿
𝑎 + 𝑏𝐿

𝑒𝑚24𝐿
𝑎 + 𝑏𝐿

0

0 0 0 1 0

0
𝑒𝑚42𝐿
𝑎 + 𝑏𝐿

𝑒43𝐿
𝑎 + 𝑏𝐿

𝑒𝑚44𝐿
𝑎 + 𝑏𝐿

0

1 0 0 0 0)

(

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

+

(

0 0
𝑓
𝑚21𝐿

𝑎 + 𝑏𝐿

𝑓
𝑚22𝐿

𝑎 + 𝑏𝐿
0 0

𝑓
𝑚41𝐿

𝑎 + 𝑏𝐿

𝑓
𝑚42𝐿

𝑎 + 𝑏𝐿
0 0)

(
𝑣𝑙
𝑣𝑟
).

(4.66)

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

70

Chapter 5

Linear Control Designs and Implementations

5.1 Introduction

This chapter illustrates a modern linear control strategy widely used in controlling

linear systems, known as linear quadratic regulator (LQR) and its widespread

application extension, named linear quadratic Gaussian (LQG). The chapter is

organised as follows: the LQR is applied to control an inverted pendulum on a

cart and a two-wheeled robot will be presented in Section 5.2, and the addition of

the LQG with the two-wheeled robot system will be shown in Section 5.3. Each

section presents the control strategy, controllability and observability analysis,

simulation, and experimental results, respectively.

5.2 Linear Quadratic Regulator (LQR)

5.2.1 Linear Quadratic Regulator (LQR) Theory

LQR is a traditional solution of optimal control formulation. The theory is

considered in terms of continuous or discrete problem. This research, however,

will be concentrated on the continuous version. The further extensions applied

the LQR techniques to inverted pendulum systems can be found in Yamamoto

(2009), Fang (2014), Prasad, Tyagi, & Gupta (2014),and da Silva & Sup (2017).

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

71

The cost function of the quadratic is defined by

𝐽 = ∫ (𝒙𝑻𝑸𝒙 + 𝒖𝑻𝑹𝒖)𝑑𝑡
∞

0

 (5.1)

where the matrix 𝑸 is positive semi-definite, and the matrix 𝑹 is positive definite

applied to discipline states and applied to control objective, respectively;

moreover, 𝒙 is an 𝑛 − state variable vector, 𝒖 is an 𝑚 − control variable vector

(Harrison, 2003).

The general linear time invariant system is in the form of

�̇� = 𝑨𝒙 + 𝑩𝒖, (5.2)

where 𝑨 and 𝑩 form the pair of controllability matrix.

The control defined above leads to the linear optimal feedback control given by

𝒖 = −𝑲𝒙 (5.3)

𝑲 = 𝑹−1𝑩𝑇𝑷 (5.4)

where the matrix 𝑲 provides optimal feedback gains to the system and the matrix

𝑷 is the solution of the algebraic matrix Riccati equation:

0 = 𝑷𝑨 + 𝑨𝑻𝑷 − 𝑷𝑩𝑹−𝟏𝑷 + 𝑸. (5.5)

Computationally, Eq. (5.5) can be solved by applying the linear quadratic

regulator function in MATLAB function as shown in Appendix A.5.1.

Therefore, the optimal control is implemented by substituting Eqs. (5.3) and (5.4)

into Eq. (5.2):

�̇� = 𝑨𝒙 − 𝑩(𝑹−𝟏𝑩𝑻𝑷𝒙)

 = (𝑨 − 𝑩𝑹−𝟏𝑩𝑻𝑷)𝒙, (5.6)

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

72

which obtains stabilisation of the control system in the linearisation term subject

to the condition of observability (𝑸𝟎.𝟓, 𝑨) (Xu, Zhang, & Carbone, 2017).

In terms of the single inverted pendulum on a cart model analysed in

Chapter 4, the 4th order linearised state-space model from Eq. (4.12), which

contains the matrices 𝑨 and 𝑩, can be calculated the state feedback gain matrix

𝑲 shown in Figure 5.1 by selecting the 𝑸 and 𝑹 weight matrices based on a desire

to minimize wheel angle (𝑥1) and pitch angle (𝑥3) of the robot.

Figure 5.1: Structure of the linear quadratic regulator (LQR) (Burns, 2001)

In the case of the two-wheeled balancing robot, the dynamical model with

5 state variables from Eq. (4.66) is investigated in this research by combining it

with a tracking system, as demonstrated in Figure 5.2.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

73

Figure 5.2: Structure of the linear quadratic regulator (LQR) and tracking system

(Burns, 2001)

5.2.2 Controllability

The controllability of a dynamic system can be examined by a controllability test,

which is applied to the matrices 𝑨 and 𝑩. The model matrices are used to form

the controllability matrix 𝓒 as shown below (Dutton, Thompson, & Barraclough,

1997):

𝓒 = [𝑩 𝑨𝑩 … 𝑨𝒏−𝟏𝑩] (5.7)

where 𝒏 represents the number of state variables of the system.

Therefore, for the 4th order inverted pendulum on a cart system, the controllability

test matrix is

𝓒 = [𝑩 𝑨𝑩 𝑨𝟐𝑩 𝑨𝟑𝑩]. (5.8)

The required system model is said to be completely state controllable if the rank

of 𝓒 is equal to the number of rows in matrix 𝑩 and thus 𝓒 is full rank (Dutton,

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

74

Thompson, & Barraclough, 1997). Hence, the controllability is directly affected by

the system's state-space representations.

The rank of the controllability matrix was determined using MATLAB (see in

Appendix A.5.2). The result given is Rank (𝓒) = 4, equal to the number of rows in

matrix 𝑩 ; therefore, the system is said to be completely state controllable.

Likewise, the controllability test of a two-wheeled robot model with 5-state

variables is given by

𝓒 = [𝑩 𝑨𝑩 𝑨𝟐𝑩 𝑨𝟑𝑩 𝑨𝟒𝑩]. (5.9)

Hence, the system is completely controllable when Rank (𝓒) = 5.

5.2.3 Simulation Results

In this section, the LQR will be used to control two linearised systems: the

inverted pendulum model and the two-wheeled robot model. The control objective

is to balance both the inverted pendulum and the robot in the otherwise unstable

vertical upright reference position.

The simulation is conducted using MATLAB script files rather than in Simulink,

for faster computation. The MATLAB programme demonstrated in Appendix

A.5.3 for an inverted pendulum system and Appendix A.5.4 for the TWR system,

which the structure of LQR feedback control in Figure 5.2 was applied.

5.2.3.1 The Effect of Matrices 𝑸 and 𝑹

The matrices 𝑸 and 𝑹 are weighting matrices for the states and the control signal,

respectively. The trial and error method can be applied to select 𝑸 and 𝑹 until the

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

75

desired transient response is achieved (Van De Vegte, 1990). Likewise,

Yamamoto (2009) stated the experimental trial and error method, which was used

to select the suitable matrices 𝑸 and 𝑹 for balancing a TWR. Next, the matrices

were implemented in the simulation of stabilisation with an initial pitch angle (𝑥3)

of 15° performed in MATLAB.

- Inverted Pendulum on a Cart System

 In the case of the single inverted pendulum model, the stabilising system

is investigated by varying the state weighting matrix 𝑸 and control weighting

quantity 𝑅 (Remark: 𝑅 is a scalar quantity in the single inverted pendulum model

as a scalar control is used). The results are presented in Figures 5.3-5.7.

 Firstly, it can be seen in Figure 5.3 that an increase of 𝑄11 affects the 𝑥1

graph significantly by reducing the settling time and also decreasing the cart

movement for stabilising the pendulum. However, the undershoot of pendulum

angle 𝑥3 is larger when 𝑄11 is raised.

Figure 5.3: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over

time, with varying 𝑄11 values

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

76

Next, there are slight effects when 𝑄22 is raised, as shown in Figure 5.4.

For instance, the cart takes a longer time, travelling to the original position in the

𝑥1 graph.

Figure 5.4: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over

time, with varying 𝑄22 values

Then, in Figure 5.5, when the 𝑄33 value is set to be 10 times higher, the

undershoot of pendulum angle 𝑥3 is decreased. Similarly, the overshoot of cart

displacement 𝑥1 is dropped.

Figure 5.5: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over

time, with varying 𝑄33 values

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

77

Moreover, in Figure 5.6, the settling time in the pendulum angle graph

takes longer to settle to the reference position and the amplitude of 𝑥1 graph is

larger when the 𝑄44 is raised.

Figure 5.6: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over

time, with varying 𝑄44 values

Additionally, an increase of control weighting R leads to significant

decrease of the cart displacement amplitude, as well as reduction of the settling

time in the 𝑥3 graph. Furthermore, the magnitude of control signal is doubled, as

shown in Figure 5.7.

Figure 5.7: Dynamical evolution of state variable 𝑥1-𝑥5 and control signal 𝑢 over

time, with varying 𝑅 values

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

78

To summarise, when increasing certain parameters in the 𝑸 matrix, the cart

displacement decreases; by contrast, it obtains a larger pendulum swing angle

before stabilising the system, such as 𝑄11. However, the advantage of increasing

𝑄33 is to reduce an undershoot in pendulum angle 𝑥3 and also to improve an

overshoot in cart displacement 𝑥1 in the same way. Moreover, a smaller amount

of R demonstrates a decrease in cart displacement amplitude and a decrease of

the pendulum angle undershoot. Therefore, the 𝑸 = diag {1,1,100,1} and 𝑅 =0.01

are chosen to simulate the single inverted pendulum model in the implementation

step next.

- Two-Wheeled Robot System

In terms of the two-wheeled robot model, the matrices 𝑸 and 𝑹 will be

selected to apply to the prototype LEGO EV3 two-wheeled robot. Other physical

parameters are given in Table 4.1. Therefore, the effect of changing weight

matrices will be investigated more intensively than the inverted pendulum case.

The outcomes are given in Figures 5.8-5.15. (Note that the control signal graph

presents merely one signal from two motors, which have the same values).

Figure 5.8: Dynamical evolution of state variables 𝑥1-𝑥5

and control signal 𝑢 over time, with varying 𝑄11 values

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

79

Firstly, Figure 5.8 presents the effect of varying 𝑄11 values when the rest

of matrix 𝑸 (𝑄22 − 𝑄55) are fixed. 𝑄11 corresponds to the first state variable, which

is the wheel angle (𝑥1). The blue plot represents 𝑄11 = 2 and the red plot

represents 𝑄11 = 20 . It can be seen that by increasing the value of 𝑄11 (weighting

on 𝑥1) , the wheel angle 𝑥1 and the integral of wheel angle 𝑥5 display reduced

magnitude of deviation from the required values; on the other hand, the time

taken to reach the steady-states is marginally longer. Additionally, the pitch angle

(𝑥3) is slightly affected, showing increased oscillation when the value of 𝑄11 rises.

It is obvious that both peak magnitudes of the wheel angular velocity 𝑥2

(~1500°/𝑠) in the simulations shown in Figure 5.8 exceed the hardware

specification (LEGO EV3 motor) at approximately 1,000°/𝑠. Similarly, the control

signals from both 𝑄11 peak at around 18 V which are beyond the Lego EV3 motor

voltage limit at 8.3 V (see in Chapter 3 for details about hardware specification).

In these simulations, the input motor voltage is not constrained to any range,

therefore the generated magnitudes of the state variables could also exceed

physically realistic ranges. The effect of limiting the input motor voltages in

simulation and in Lego EV3 robot implementation will be discussed in later

sections.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

80

Figure 5.9: Dynamical evolution of state variable 𝑥1-𝑥5 and control signal 𝑢 over

time, with varying 𝑄22 values

Figure 5.10: Unstable system when the 𝑄22=4.2

Secondly, increasing 𝑄22 parameter produces some minor effects to the

state variables 𝑥1 and 𝑥3 in Figure 5.9. However, there is a more significant effect

to state variable 𝑥5 which could be seen as an increase in the peak amplitude,

and the undershoot of control signal 𝑢 appears when the 𝑄22 is increased. As

observed from simulation experiments, when 𝑄22 varies within the range of [1, 4],

the controlled system’s response is stable. However, when 𝑄22 is outside this

range, for example, as shown in Figure 5.10, when 𝑄22 = 4.2, the closed-loop

system appears to be unstable.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

81

Figure 5.11: Dynamical evolution of state variable 𝑥1-𝑥5

and control signal 𝑢 over time, with varying 𝑄33 values

 Moreover, Figure 5.11 presents slight differences on all state variables and

the control, when 𝑄33 varies as shown.

Figure 5.12: Dynamical evolution of state variable 𝑥1-𝑥5

and control signal 𝑢 over time, with varying 𝑄44 values

Likewise, the changing of 𝑄44 parameter does not influence the state

variables and control signal, as shown in Figure 5.12.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

82

Figure 5.13: Dynamical evolution of state variable 𝑥1-𝑥5

and control signal 𝑢 over time, with varying 𝑄55 values

Figure 5.14: Dynamical evolution of state variable 𝑥1 between 10 - 20 s., with

varying 𝑄55 values

Additionally, the 𝑄55 factor relates to the state variable 𝑥5 (the integral of

wheel angle, used to track horizontal distance of the robot from starting point) is

changed with results shown in Figure 5.13. The noticeable difference when

increasing increasing 𝑄55 illustrates that steady-state error and magnitude are

reduced, which is the main purpose of introducing the state variable 𝑥5 to monitor

the time spent by robot moving back to the reference position. Moreover, the

wheel angle 𝑥1 is influenced by increasing 𝑄55. It can be seen that the robot is

taken a time faster back to the centre position in state variable 𝑥1 shown in Figure

5.14.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

83

In terms of the effect of modifying matrix 𝑹, by contrast, the results are

shown in Figure 5.15, when 𝑸 is fixed.

Figure 5.15: Dynamical evolution of state variable 𝑥1-𝑥5

and control signal 𝑢 over time, with varying 𝑹 values

The primary function of 𝑹 is to supervise the control signal 𝑢. When the value of

𝑹 is increased ten times from 𝑹 = 𝑰𝟐×𝟐 to 𝑹 = 𝟏𝟎𝑰𝟐×𝟐, the reduction in the

amplitude of control 𝑢 is observed. Moreover, the oscillation of wheel angular

velocity 𝑥2 and the pitch angle 𝑥3 are slightly reduced, as shown in Figure 5.15.

Noticeably, the displacement configuration 𝑥1 in the horizontal axis takes longer

to reach steady state, as the voltage of the motor (control signal) driving the robot

is dropped. The increase in matrix 𝑹 achieved some advantages to the system

with reduced voltage demand.

Therefore, after conducting trial and error tests on matrices 𝑸 and 𝑹, the

𝑸 =diag{20,1,1,1,5} and 𝑹 = 10𝑰𝟐×𝟐 were selected to implement in the simulation.

This parameter set requires low voltage to control system, appropriate to the

battery of LEGO EV3; moreover, simulation results using these factors 𝑄11 and

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

84

𝑄55 present satisfying performance for system stabilisation, in terms of requiring

shorter wheel displacement before reaching the reference position.

5.2.3.2 Simulations of IP and TWR without Input Saturations

- Inverted Pendulum Simulation Results

Now, the single inverted pendulum model under unconstrained control input

condition, represented by Eq. (4.12) is stabilised starting from several different

initial pendulum angles 𝑥3. The simulation results are presented in Figures 5.16-

5.17.

Figure 5.16: The stabilisation on different initial pendulum angles (𝑥3)

Figure 5.16 demonstrates the ability of the LQR technique to control and

stabilise a single inverted pendulum on a cart from three initial pendulum angles:

15°, 30° and 42.9°. It can be seen from the cart displacement (𝑥1) graph that the

amplitude rises when initial pendulum angle becomes wider; moreover, the

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

85

undershoot magnitude in the pendulum angles graph 𝑥3 also becomes larger.

Furthermore, there are strong oscillations in the other state variable and the

control graphs when the initial pendulum angle is 42.9° (because the control

system reaches the limit for stabilisation). Beyond this angle, the inverted

pendulum model will crash as the linear optimal controller fails to stabilise it, as

shown in Figure 5.17.

Figure 5.17: Unstable system responses from initial pendulum angle 𝑥3 = 43°.

- Two-Wheeled Robot Simulation Result

This subsection demonstrates the simulation of the balancing two-wheeled robot

model represented by Eq.(4.66) with different initial pitch angles (𝑥3). The robot

in Figure 5.18 (a) shows the robot’s reference position before setting the initial

pitch angle (𝛹 = 𝑥3) to non-zero and Figure 5.18 (b) presents the initial pitch

angle shifted for simulation. It can be seen that it is not merely the initial pitch

angle (𝛹) shifted, but the wheel angle (𝜃) is also shifted with the same value

together in the hardware implementation. Therefore, the wheel angle will be

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

86

initialised at the same value as the initial pitch angle (𝛹) in the simulation. The

direction of the wheel and pitch angles are presented in Figure 5.18. When the

robot moves forward (towards right-hand side in the figure), the direction of wheel

and pitch angles are positive.

(a) (b)

Figure 5.18: (a) Robot’s reference position before setting the initial pitch angle

(𝛹), (b) Wheel angle (𝜃) shifted after the initial pitch angle set.

Figure 5.19: The stabilisation from different initial pitch angles (𝑥3)

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

87

In Figure 5.19, the blue curve represents the responses of the state

variables and the control signal when starting from a narrow initial pitch angle at

15° followed by increases of the initial angle to 30°, 45° and 65.7° shown by red,

black and pink curves, respectively. The maximum deviation of all state variables

and the control signal magnitude are raised when the initial pitch angle is

increased. In particular, note the oscillations on the pitch angle and the pitch

angular velocity from the initial pitch angle 65.7° as the capability of the LQR

technique to stabilise this nonlinear system reaches its limit. Furthermore, the

overshoot of wheel angle reaches approximately 1,200° at the maximum initial

pitch angle, which means that the TWR diverges from the reference position by

approximately 0.56 m.

Figure 5.20: The unstable system response at initial pitch angles 𝑥3 = 65.8°

Figure 5.20 exhibits the failure of system control at the initial pitch angle

65.8°. The magnitudes of other state variables 𝑥1, 𝑥2, 𝑥4, 𝑥5 and control signal are

at unrealistically high levels (approaching infinity), and the pitch angle oscillated

continually; moreover, the simulation stopped after only 0.5 seconds as the

instability caused the simulation to crash.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

88

5.2.3.3 Simulations of TWR with Input Saturations

In the section 5.2.3.2, it can be seen that the control signal needed voltage over

the limitation of any real-world implementation, for example, when the LEGO EV3

robot was used. Therefore, before implementing using hardware, simulations

including input saturations need to be conducted first.

This section illustrates the hard constraints applied as saturations on the

control signal using the LEGO EV3 motor range: -8.3 to 8.3 V on each motor with

the following function:

𝑢 = {
𝜆, 𝑢 ≥ 𝜆
𝑢, |𝑢| ≤ 𝜆

−𝜆, 𝑢 ≤ −𝜆,
 (5.10)

where 𝝀 is the control signal saturation limited at 8.3 volts.

The stabilisation simulations of the two-wheel model with control constraints,

starting from initial pitch angles 15° and 20° are presented in Figures 5.21-5.23.

Figure 5.21: Stabilisation from the initial pitch angles (𝑥3) at 15°, with and

without saturation.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

89

At the initial pitch angle 15° in Figure 5.21, the magnitudes in the state

variables 𝑥1, 𝑥3 and 𝑥5 increase, compared with the unconstrained signals;

however, the derivative in signals 𝑥2 and 𝑥4 , and also the control input 𝑢 present

noticeable cut-off magnitudes as the input saturation is provided. For instance,

the state variable 𝑥4 presents an undershoot reaching -250°/s when simulated

with the unconstrained control input; however, the undershoot is cut-off at

approximately -140°/s when an input saturation is applied (Note, the maximum

angular velocity provided by the LEGO gyroscope is ±440°/s as shown in Table

4.1).

Figure 5.22: Stabilisation of the initial pitch angles (𝑥3) at 20.9°with and without

saturation.

Figure 5.22 presents the maximum initial pitch angle of saturation input

implementation at 20.9°. The increase of the initial angle demonstrates different

significant outcomes of all constrained signals. Firstly, the magnitude of 𝑥1, 𝑥3

and 𝑥5 in the constrained graphs are more than doubled. Moreover, the obvious

oscillations are also present in the pitch angular velocity (𝑥4). Furthermore, the

wheel velocity and control signal noticeably show cut-off features of constraint at

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

90

both the maximum and minimum when reaching the saturation limits. After this

point (when the initial pitch angle goes above 20.9°), unstable behaviour will

appear, as shown in Figure 5.23.

Figure 5.23: Unstable system with input saturation at the initial pitch angles 21°

5.2.4 Experimental Results

With the simulation tests of the self-balancing two-wheeled robot model with the

linear-quadratic regulator are completed, hardware implementation of the

controlled system using LEGO EV3 robot is conducted. The results from running

the Simulink program are detailed in Appendix B (Figure B1.1), including the

robot’s sensors and motors, LQR feedback control and tracking system block

diagrams. Moreover, the experiment is set up in a closed environment with no

wind disturbance when implementing the TWR, and the floor is covered by a

carpet. Therefore, the outcomes were presented in Figures 5.24-5.26 as follows.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

91

Figure 5.24: The stabilisation from different initial pitch angles 𝑥3 = 15° and 16°

implemented on LEGO EV3 robot

Figure 5.25: The stabilisation on different initial pitch angles 𝑥3 at 15° and 16°

implemented on LEGO EV3 robot over 20 seconds

Figure 5.24 illustrates the result of state variables and control signal on

two different initial situations. The blue and red graphs present the initial pitch

angle at 15°and 16°, respectively. The initial pitch angle 16° demonstrate the

limit of LQR method to balance the system in the upright position in the hardware

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

92

implementation, which is similar to the simulation at initial pitch angle 20° under

input saturation. Furthermore, the magnitude of wheel angle and pitch angle at

the initial pitch angle 16° presented higher overshoot signals than 15° as it needed

more mobility, when increasing the initial angle for stabilisation. Moreover, the

state variable 𝑥5 in the two plots present noticeable divergence caused by gyro

sensor error. More details will be described with the other information in Figure

5.25.

In terms of Figure 5.25, the graph shows a longer period of time than

Figure 5.24 to present the significant sensor error which caused system

instability. The plots of wheel angle 𝑥1 and wheel angle integral 𝑥5 produce

upward signal drifts; by contrast, the pitch angle 𝑥3 drifted downwards. This issue

is caused by the measurement of gyroscope sensor drift, generating pitch angle

error and affecting the wheel angle and wheel angle integral, which is

compensating the error. This challenge can be overcome by using a state

observer or state estimator. Related theory and subsequent implementation will

be given in the next section.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

93

Figure 5.26: The stabilisation implemented by LEGO EV3 robot compared to

simulation at the initial pitch angles 𝑥3 15°

Furthermore, the average magnitude of each state variable’ response of

the Lego EV3 robot is very similar to the simulation result, as in Figure 5.26; for

instance, the peak magnitudes of the wheel angles in simulation and

experimentation are approximately 160° and 150°, respectively. Likewise, the

maximum deviation of pitch angle in the simulation and the experimentation are

also similar, at approximately −5° and −8°, respectively. Furthermore, the state

variable trends are also comparable during the two methods. Therefore, this

hardware experiment can be analysed by the simulation, although there were

some differences as the hardware implementation has many interfering factors.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

94

5.3 Linear Quadratic Gaussian (LQG)

5.3.1 Linear Quadratic Gaussian (LQG) Strategy

In Section 5.2, the capability of the LQR was demonstrated. It can be seen in the

experimentations that a gyro sensor drift was discovered in the pitch angle, which

also affected the wheel angle displacement, causing the system to be unstable.

This section will illustrate the strategy that handles the inaccurate sensor

measurement used for optimal feedback control. This technique is known as

linear quadratic Gaussian (LQG), which is a combination of an LQR and a Kalman

filter shown in Figure 5.27. The additional applications of the Kalman filter can be

found in Kalman (1960), Hanselmann & Engelke (1988), Chang & Liu (2007) and

Du et al. (2017).

Figure 5.27: LQG Controller and tracking system block diagram (Anderson &

Moore, 1989)

The Kalman filter is a mathematical algorithm which achieves minimum

state estimation errors, utilising output measurements (Burns, 2001). It was

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

95

developed by Kalman and Bucy (Kalman & Bucy, 1961). The advantage of the

Kalman filter is the ability to estimate a single state variable instead of full state

variables interfered with noise. In order to achieve this, the 𝑨 and 𝑪 matrices are

required to be observable (Brunton & Kutz, 2019). This research will also be

focused on the continuous system, corresponding to the LQR; hence consider a

general continuous time-invariant systems given by (Lewis, Xie, & Popa, 2007)

as follows:

�̇� = 𝑨𝒙 + 𝑩𝒖 + 𝑮𝒘𝒏, (5.11)

 𝒚 = 𝑪𝒙 + 𝒗𝒏, (5.12)

where 𝒚 is the vector of measured outputs, 𝑪 is the output matrix, and 𝑮 is an

identity matrix. The 𝒘𝒏 and 𝒗𝒏 are supposed process noise and measurement

noise, respectively, as presented in Figure 5.27.

The Kalman filter supposes that both white noise signals 𝒘𝒏 and 𝒗𝒏 have zero

mean (�̅�𝒏 = 0, �̅�𝒏 = 0) and also satisfy covariance functions (𝒘𝒏𝒘𝒏
𝑻̅̅ ̅̅ ̅̅ ̅̅ = 𝑸𝒌,

𝒗𝒏𝒗𝒏
𝑻̅̅ ̅̅ ̅̅ ̅ = 𝑹𝒌), which are symbolised as 𝒘𝒏 ~(0, 𝑸𝒌) and 𝒗𝒏 ~(0, 𝑹𝒌); moreover,

𝑸𝒌, and 𝑹𝒌 are symmetric and positive semi-definite matrices (Lewis, Xie, &

Popa, 2007).

The state estimator of dynamic systems is defined as follows (Lewis, Xie, & Popa,

2007):

�̇̂� = 𝑨�̂� + 𝑩𝒖 + 𝑲𝒇(𝒚 − 𝑪�̂�), (5.13)

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

96

which can be rewritten as:

�̇̂� = (𝑨 − 𝑲𝒇𝑪)�̂� + 𝑩𝒖 + 𝑲𝒇𝒚, (5.14)

where 𝑲𝒇 is the Kalman filter gain, which is similar to the feedback gain 𝑲 of linear

quadratic regulator. The schematics of the system with the Kalman filter is shown

in Figure 5.28. The Kalman filter gain 𝐾𝑓 is given by:

𝑲𝒇 = 𝑷𝑪𝑻𝑹𝒌
−𝟏 (5.15)

where 𝑷 is the solution of the algebraic Riccati equation defined as follows

(Anderson & Moore, 1989):

𝑨𝑷 + 𝑷𝑨𝑻 − 𝑷𝑪𝑻𝑹𝒌
−𝟏𝑪𝑷 + 𝑸𝒌 = 0 (5.16)

Equation (5.16) can be solved by applying the linear quadratic regulator in a

MATLAB function shown in Appendix A.5.5.

Figure 5.28: Schematic of state-space control using Kalman filter and LQR

(Anderson & Moore, 1989)

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

97

5.3.2 Observability

As mentioned above, the system must be observable, in order for a Kalman filter

design to be possible. In this section, the observability test, which is a test to

determine whether the state variables of a system can be estimated by using

measurements made at the outputs, will be conducted. The test combines

matrices 𝑨 and 𝑪 , and the matrices are used to form the observability matrix 𝓞,

as shown below:

𝓞 = [

𝑪
𝑪𝑨
⋮

𝑪𝑨𝒏−𝟏

]
(5.17)

where 𝒏 represents the number of state variables of the system.

Therefore, for the 4th order single inverted pendulum on a cart system, the

observability matrix is

𝓞 = [

𝑪
𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑

] (5.18)

The required system model is said to be completely state observable if the rank

of 𝓞 equal to the number of columns in the matrix 𝑪 and thus 𝓞 is of full rank

(Dutton, Thompson, & Barraclough, 1997).

The rank of the observability matrix can be calculated in MATLAB (see Appendix

A.5.6) and the result shows Rank(𝓞) = 4, which equals the number of columns in

matrix 𝑪 = 𝑰𝟒×𝟒 ; therefore, the system is said to be completely state observable.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

98

That means the state variables are able to be reconstructed from the system

outputs (𝒚). This test demonstrates that the linear quadratic Gaussian is

applicable for this system.

Similarly, the observability matrix of the two-wheel self-balancing robot with 5-

state variables is shown as

𝓞 =

[

𝑪
𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑

𝑪𝑨𝟒]

 (5.19)

Thus, the system is completely state observable when the Rank(𝓞) = 5.

5.3.3 Simulation Results

In this section, LQG will be applied to the control problem of the self-balancing

two-wheeled robot model in MATLAB, compared to the LQR. The control

objective is to balance the robot in the otherwise unstable vertical upright position;

moreover, reduction on drift signal error of the gyro sensor will be considered.

The simulation of the LQG is conducted in MATLAB and the script files are

included in Appendix A.5.7. (Noticeably, only the state variable 𝑥3 known as the

pitch angle will be selected to have the Kalman filter estimation technique applied

on.)

5.3.3.1 Kalman Filter Testing

According to the benefits of the Kalman filter explained above, noise filtering and

signal drift reduction will be implemented to the two-wheeled robot model

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

99

conducted in MATLAB in this section. There are two noise disturbances

considered in the LQG control, including the process white noise 𝒘𝒏 ~(𝟎, 𝐐𝒌)

and the measurement white noise 𝒗𝒏 ~(𝟎, 𝐑𝒌). Therefore, only the measurement

noise will be implemented with varying 𝑹𝒌 values for eliminating the gyro sensor

error; by doing this, the process noise will be fixed at 𝑸𝒌 = 𝑰𝟒×𝟒.

Firstly, the noise filtering in a gyro sensor will be demonstrated by applying

the different 𝑹𝒌 factors to reduce the random white noise from MATLAB

programme in the state variable 𝑥3. The outcomes of state estimation �̂�3 is given

in Figures 5.29-5.30.

Figure 5.29: Simulation results of noise filtering on a gyro sensor.

Figure 5.30: The magnified simulation results of noise filtering on a gyro sensor.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

100

In Figure 5.29, the white noise interfered with the state variable 𝑥3 , which is

shown in green. The state estimations �̂�3 named as “Xhat” (Circumflex), are

generated using the values of 𝑹𝒌 parameters of 0.01𝑰𝟒×𝟒 and 𝑰𝟒×𝟒 and plotted in

red and blue, respectively. The results of noise filtering in the central region are

magnified and demonstrated in Figure 5.30. It can be seen that the white noise

is decreased by Kalman filter described above. Moreover, the noise signals are

reduced by increasing the 𝑹𝒌 parameters from 𝑹𝒌 = 𝟎. 𝟎𝟏𝑰𝟒×𝟒 to 𝑰𝟒×𝟒 . This

method has the benefit of stabilising the system interfered with noise.

Secondly, an essential advantage of the linear quadratic Gaussian in this

research is that the sensor drift is reduced. Figure 5.31 presents the outcomes of

state estimation in a gyro sensor drift condition.

Figure 5.31: The simulation of sensor drift reduction.

Generally, the LQG controller can be applied to full state feedback; by contrast,

the state variable 𝑥3 was the only variable selected to have state estimation

applied in this simulation. The black dashed curve represents the sensor drift;

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

101

moreover, the red and blue plots represent the stabilisation of the system when

the state estimation is activated by two 𝑹𝒌 parameters in Figure 5.31. Noticeably,

the signal drift introduced by the gyro sensor is divergent from the graph of pitch

angle (𝑥3); on the other hand, the Kalman filter reduces the signal drift and shows

signal convergence. The increased 𝑹𝒌 factor reduces the signal drift more

effectively and also decreases the settled wheel displacement (𝑥1) from the

reference position. This advantage will be applied to the LEGO EV3 robot in the

experiment section.

5.3.3.2 Simulations of TWR without Input Saturations

This section demonstrates the simulation of balancing two-wheeled robot model

from different initial pitch angles (𝑥3) between the LQG and the LQR without input

saturation. The 𝑸 and 𝑹 matrices of LQG controller were selected similar to the

LQR in Section 5.2.3 by using 𝑸 = diag{20,1,1,1,5} and 𝑹 = 10𝑰𝟐×𝟐 ; moreover,

the white noise matrices 𝑸𝒌 and 𝑹𝒌 of the Kalman filter method were applied

when 𝑸𝒌 = 𝑰𝟒×𝟒 and 𝑹𝒌 = 0.2𝑰𝟒×𝟒. The stabilisation of the system without input

constraints is presented in Figures 5.32-5.35. (Recall that the state variable 𝑥3

was the only variable applied to state estimation in the LQG controller.)

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

102

Figure 5.32: The stabilisation between LQR and LQG controller at the initial

pitch angles (𝑥3) 15° without saturation.

To begin with, in Figure 5.32, the outcomes of LQR and LQG controllers

are very similar to each other at the initial narrow pitch angle at 15°.

Figure 5.33: The stabilisation between LQR and LQG controller at the initial

pitch angles (𝑥3) 30° without saturation.

Secondly, the two controllers present slightly different magnitudes, when

the initial pitch angle is modified to a wider angle at 30° in Figure 5.33.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

103

Figure 5.34: The stabilisation between LQR and LQG controller at the initial

pitch angles (𝑥3) 65.7° without saturation.

Moreover, the maximum initial pitch angle (65.7°) of both controllers are

similar in Figure 5.34. Significantly, state variables 𝑥1−𝑥4 and control signal of the

LQG are less oscillatory than the LQR control as the estimation method is

applied. Furthermore, the wheel integral’s magnitude 𝑥5 of LQG control is

noticeably higher than the LQR, because the wheel angle 𝑥1 of the LQG takes a

longer time to reduce steady state error than the LQR. Above this initial angle,

the LQG control results in an unstable system, shown in Figure 5.35, which is

similar to the LQR method.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

104

Figure 5.35: Unstable responses of the LQG control

at the initial pitch angles (𝑥3) 65.8°

5.3.3.3 Simulations of TWR with Input Saturations

This section illustrates the simulation of the two-wheeled balancing robot model

with different initial pitch angles (𝑥3) between the LQG and the LQR control with

input saturation. The stabilisation of the system with input constraints are

presented in Figures 5.36-5.37.

Figure 5.36: The stabilisation using LQR and LQG controllers at the initial pitch

angles 𝑥3 = 15° with saturation.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

105

It can be seen from Figure 5.36, the outcomes are largely similar between

the two controllers at the narrow initial pitch angle of 15°, with control constraint.

Figure 5.37: The stabilisation using LQR and LQG controllers at the initial pitch

angles 𝑥3 = 20.9° with saturation.

Figure 5.37 demonstrates that the maximum initial pitch angle of both

controllers are the same, at 20.9°, for the system to be stabilised with the control

constraint condition. When the initial pitch angle went beyond 20.9°, the LQG

control produced an unstable system which is similar to the LQR method shown

in Figure 5.35.

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

106

5.3.4 Experimental Results

This section illustrates the experimental results of the LQG method

demonstration in Section 5.3.1 using the LEGO Mindstorms EV3 robot with the

Simulink block diagrams shown in Appendix B (Figure B2.1). The outcomes of

the LQG control experiments are given in Figures 5.38-5.41.

Figure 5.38: The outcomes of sensor drift reduced at initial pitch angles 𝑥3=15°

implemented by LEGO EV3 robot

Figure 5.38 demonstrates the main purpose of the LQG control in this

research. It shows reduction of the sensor drift which originally appeared in the

implemented system, at initial pitch angle 15°. The blue plot shows that the pitch

angle generated by the gyro sensor is divergent to approximately −15° after the

robot would be balanced in 20 seconds. The Kalman filter estimation successfully

reduced the drifting error in the state variable 𝑥3 (see the red curve) as it

generated state estimation �̂�3 for the LQR gain to use for stabilising the system

instead of using the previous 𝑥3 from the gyro sensor. However, there are slight

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

107

errors in the hardware implementation, shown in the state variable 𝑥1; the

average wheel angle is drifted from the centre by approximately 5°due to the

effect of sensor drift. This error also interferes with the integral of wheel angle 𝑥5

which caused a divergent signal to appear in the graph.

Figure 5.39: The stabilisation on different initial pitch angles (𝑥3) 15° and

16°implemented by LEGO EV3 robot

Moreover, the limitation of the LQG controller is also similar to the LQR

method; for instance, both techniques provided a maximum initial pitch angle for

stabilisation at 16°. Figure 5.39 presents the state evolutions when an increase

of the initial angle from 15° to 16° is applied. As can be seen from the figure, the

system responses starting from a pitch angle 16° display slightly higher

magnitudes than 15° as the robot needs more time and a longer distance to reach

the stabilised equilibrium position when the initial angle is increased. Over this

limit angle, the two-wheeled robot will crash as the overall system becomes

unstable, as shown in Figure 5.40. It can also be seen that the hardware reaches

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

108

the maximum capacity; for instance, the control signal shows signal at ±8.3 V

and the wheel angle velocity presents at approximately −1,000°/𝑠 when

implemented at initial pitch angle 16.5°.

Figure 5.40: Unstable system starting from the initial pitch angle 16.5°

Figure 5.41: The stabilisation implemented on LEGO EV3 robot compared to

simulation at the initial pitch angles 𝑥3 = 15°

Furthermore, Figure 5.41 illustrates that the magnitudes of some state

variables in Lego EV3 robot implementation are similar to the simulation results,

for example, the overshoots of state variables 𝑥1, 𝑥2 and 𝑥3, and the undershoots

of state variables 𝑥1, 𝑥3 and 𝑥4. Moreover, the average trends of both techniques

are similar, although the state variable 𝑥5 is different between the two methods,

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

109

as the robot’s vibration in the wheel angle 𝑥1 caused different integrals of wheel

angle 𝑥5. These results demonstrated the precisions of simulation and theoretical

study, leading to the accurately matching results from hardware implementation.

5.4 Conclusion

In this chapter, a linear modern control technique, namely the optimal control or

LQR was studied and applied to two systems: (1) the single inverted pendulum

on a cart, and (2) the self-balancing two-wheeled robot system, which was also

implemented on a Lego EV3 robot. In particular, the LQG technique was also

utilised in the prototype robot to overcome sensor issues.

 In the case of the single inverted pendulum and cart system, the LQR

controller demonstrated a maximum stabilisation angle of the pendulum rod of

42.9°. This angle will be compared against the nonlinear controller in Chapter 6.

In terms of the two-wheeled robot simulation, the LQR and LQG

techniques with unconstrained control input showed similar capability of

balancing the system from the nearly identical, maximum initial angle, at

approximately 65.7°. However, the LQG method displayed better stability than the

LQR control, in terms of slightly smaller oscillation magnitudes and shorter

settling time. Furthermore, the constrained input testing demonstrated that both

controllers also provided the same initial angle limitation, at 20.9°. Therefore, the

estimation provided by the Kalman filter is able to predict the state variables of

the system as it operates at the same initial pitch angle, although there are some

CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

110

small differences in the state evolutions of the two control schemes from initial

pitch angle over 60° under the unconstraint condition. This is a property of state

estimation as there is no perfect estimator (Anderson & Moore, 1989).

Regarding the Lego EV3 robot implementation, the experiments illustrated

the capability of the two-wheeled robot maintaining the stabilisation with input

saturation conditions. The designed controllers achieved the requirements of self-

balancing and the maximum initial angle matched the results obtained from

simulation. In particular, the linear quadratic Gaussian control provided

elimination of the sensor drift problem which contributed to the system stability.

As both systems investigated in this thesis are nonlinear systems, it is

envisaged that nonlinear control methods would show advantages in controlling

the two systems to self-balance, over the linear techniques presented in this

chapter. For instance, the nonlinear iteration technique and the nonlinear freezing

control technique will be presented, applied and their associated results

discussed in details in the next chapter.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

111

Chapter 6

Nonlinear Control Designs and Implementations

6.1 Introduction

In Chapter 5, linear controls of the inverted pendulum (IP) model and the two-

wheeled robot (TWR) model were demonstrated, including the linear quadratic

regulator (LQR) and the linear quadratic Gaussian (LQG). This chapter, by

contrast, presents two nonlinear control methods, namely, the nonlinear freezing

technique and the nonlinear iteration technique, and their associated applications

to the IP and TWR systems. The chapter is organised as follows. The nonlinear

freezing control and iteration scheme theories are presented in Section 6.2 and

6.3, respectively. In Section 6.4, controllability and observability tests are

conducted. Then, the simulated control results of the IP models and TWR models

are demonstrated and analysed in Section 6.5. Furthermore, hardware

experimentations of the nonlinear freezing control on a LEGO EV3 robot are

examined in Sections 6.6. Finally, all outcomes are summarised in Section 6.7.

6.2 Nonlinear Freezing Control Strategy

In Chapter 5, the general linear systems are represented in the form of Eq. (5.1),

as shown below

�̇� = 𝑨𝒙 + 𝑩𝒖,

and the optimal control is defined by Eq. (5.2):

�̇� = (𝑨 − 𝑩𝑹−𝟏𝑩𝑻𝑷)𝒙,

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

112

which generates a fixed optimal control gain vector to control the system. In this

chapter, an optimal control of the digitised system can be conducted in every time

step by applying a nonlinear control method known as the freezing technique,

first introduced in (Banks & Mhana, 1992). The benefits of this method is that local

linearisation around the operating point is no longer necessary, as the system

can be controlled globally using nonlinear system equations directly. Additional

applications can be found in many researches, including the control of: a single

inverted pendulum on a cart (Harrison, 2003), a F-8 crusader (Çimen & Banks,

2004a) and a double inverted pendulum on a cart (Xu, Zhang, & Carbone, 2017).

The freezing control technique introduced by Banks & Mhana (1992) is in the

form of

�̇� = 𝑨(𝒙)𝒙 + 𝑩(𝒙)𝒖, (6.1)

where 𝑨(𝒙) and 𝑩(𝒙)represent the nonlinear system matrices which form

controllability matrices and 𝒖 is the nonlinear optimal control.

The cost function of the quadratic infinite-time is defined by:

𝐽 = ∫ (𝒙𝑻𝑸(𝒙)𝒙 + 𝒖𝑻𝑹(𝒙)𝒖)𝑑𝑡
∞

0

, (6.2)

where 𝑸(𝒙) and 𝑹(𝒙) denote the positive semi-definite and positive definite,

respectively.

Banks and Mhana (1992) presented that the nonlinear optimal feedback control

from Eqs. (6.1)-(6.2) is given by

𝒖 = −𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙)𝒙. (6.3)

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

113

Thus, feedback gain matrix 𝑲(𝒙) of the system is given by

𝑲(𝒙) = 𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙), (6.4)

where matrix 𝑷(𝒙) is the solution of the algebraic matrix Riccati equation:

0 = 𝑷(𝒙)𝑨(𝒙) + 𝑨𝑻(𝒙)𝑷(𝒙) − 𝑷(𝒙)𝑩(𝒙)𝑹−𝟏(𝒙)𝑷(𝒙) + 𝑸(𝒙). (6.5)

Equation (6.5) can be solved numerically by applying the linear quadratic

regulator function in MATLAB as shown in Appendix A.5.1.

Therefore, the optimal control is implemented by substituting Eq. (6.3) into Eq.

(6.1) and obtaining:

�̇� = 𝑨(𝒙)𝒙 − 𝑩(𝒙)(𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙)𝒙)

 = (𝑨(𝒙) − 𝑩(𝒙)𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙))𝒙. (6.6)

The equations above demonstrate that computationally the solution 𝑷(𝒙) of the

algebraic matrix Riccati equation can be obtained at every time step at each point

on the state trajectory, which is a fixed 𝒙, generating frozen matrices 𝑨(𝒙) and

𝑩(𝒙). Then the nonlinear dynamical system becomes a pseudo-linear system to

provide the requirement of feedback gains in every step of dynamic equation for

stabilising the system globally. The block diagram of the freezing control

technique for a system combined with a tracker is presented in Figure 6.1.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

114

Figure 6.1: Structure of freezing control technique and tracking system.

6.2.1 Freezing Technique - Input Saturation

In the linear control strategy in Section 5.2.3.3, the hard input constraint was

presented to restrict the input signal of the system model. In contrast, the

nonlinear model offers flexibility over the linear system, because linearisation is

no longer necessary and the dynamic equations can be modified to combine a

soft constraint at the input signal. Harrison (2003) utilised this idea and presented

the integration of a state constraint, representing the input saturation for the case

of a scalar control 𝑣 by redefining as follows:

𝑣 = 𝜙(𝑥𝑛+1), (6.7)

and introducing an extra state variable 𝑥𝑛+1, where

�̇�𝑛+1 = 𝑤, (6.8)

and 𝑤 is the new control signal. Then substitute Eqs. (6.7) and (6.8) into Eq.(6.1),

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

115

we obtain

�̇� = 𝑨(𝑿)𝑿 + 𝑩(𝑿)𝜙(𝑥𝑛+1), (6.9)

which can be rewritten by adding the term of 𝑥𝑛+1 and 𝑤 as

�̇� = 𝑨(𝑿)𝑿 + 𝑩(𝑿)𝜙(𝑥𝑛+1) × (
𝑥𝑛+1

𝑥𝑛+1
) + 0 × 𝑤.

(6.10)

Combining Eqs. (6.8) and (6.10), we have

[
�̇�

�̇�𝑛+1
] = [

𝑨(𝑿)
𝑩(𝑿)∅(𝑥𝑛+1)

𝑥𝑛+1

𝟎𝟏×𝒏 0
] [

𝑿
𝑥𝑛+1

] + [
𝟎𝒏×𝟏

1
]𝑤.

(6.11)

Note that Harrison (2003) presented only a scalar control signal. However, this

research will use multiple controls forming a control vector 𝒖 = [
𝑣𝐿

𝑣𝑅
]; thus, there

are some factors which are different from the ones presented in (Harrison, 2003).

For instance, the scalar control signal 𝜙(𝑥𝑛+1) is transformed to a column vector,

including control signals of the left and the right motors as follows:

𝝓(𝒙𝒏+𝟏) = [
𝜙𝐿(𝑥𝑛+1)

𝜙𝑅(𝑥𝑛+1)
]

(6.12)

In the state-space matrix form, the extra state variable 𝑥𝑛+1 can be rewritten as

𝑥6. Therefore, the state-space representation of the two-wheeled balancing robot

with soft constraint, after substituting the nonlinear system Eq. (4.61) into Eq.

(6.11) can be shown as follows:

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

116

(

𝑥1̇

𝑥2̇

𝑥3̇

𝑥4̇

𝑥5̇

�̇�6)

=

(

0 1 0 0 0 0

0
𝑒𝑚22

𝑎 + 𝑏

𝑒𝑚23

(𝑎 + 𝑏)𝑥3

𝑒𝑚24

𝑎 + 𝑏
0

𝑓𝑚21𝜙𝐿(𝑥6) + 𝑓𝑚22𝜙𝑅(𝑥6)

(𝑎 + 𝑏)(𝑥6)
0 0 0 1 0 0

0
𝑒𝑚42

𝑎 + 𝑏

𝑒𝑚43

(𝑎 + 𝑏)𝑥3

𝑒𝑚44

𝑎 + 𝑏
0

𝑓𝑚41𝜙𝐿(𝑥6) + 𝑓𝑚42𝜙𝑅(𝑥6)

(𝑎 + 𝑏)(𝑥6)
1 0 0 0 0 0
0 0 0 0 0 0)

(

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6)

 +

(

0
0
0
0
0
1)

(𝑤).

(6.13)

Rewrite Eq. (6.11) in the form of a new nonlinear system as follows:

�̇�𝒂 = 𝑨𝒂(𝒙𝒂)𝒙𝒂 + 𝑩𝒂(𝒙𝒂)𝑤 . (6.14)

The cost function now becomes

𝐽 = ∫ (𝒙𝒂
𝑻𝑸𝒂(𝒙𝒂)𝒙𝒂 + 𝑤𝑇𝑅𝑎(𝒙𝒂)𝑤)𝑑𝑡,

∞

0

(6.15)

where the subscript 𝒂 indicates the constrained system and the weighting matrix

𝑸𝒂, which is given by

𝑸𝒂 = [
𝑸 0

0 𝜙2(𝑥𝑛+1)𝑹
],

(6.16)

and 𝑅𝑎 is set as a small value (𝑅𝑎 = 0.001) as it provides the results of input

constraint close to the unconstrainted condition (Harrison, 2003).

In Chapter 5, the weight matrix 𝑹 is set as 𝑹 = [
10 1
1 10

], in which 𝑅11=10 and

𝑅22=10. These values can be applied to control the left and right motors 𝒖 = [
𝑣𝐿

𝑣𝑅
].

However, the value of 𝜙2(𝑥𝑛+1)𝑹 in Eq.(6.16) is required as a scalar.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

117

Harrison (2003) presented the value of 𝜙2(𝑥𝑛+1)𝑹 for a single control signal.

In terms of two control inputs, the 𝜙2(𝑥𝑛+1)𝑹 is considered to compensate for

two control signals given by

2 × 𝜙𝐿
2(𝑥𝑛+1)(𝑅11) or 2 × 𝜙𝑅

2(𝑥𝑛+1)(𝑅22),

where 𝜙𝐿(𝑥) is equal to 𝜙𝑅(𝑥) as this research focuses on the stabilisation of the

pitch angle and the yaw angle motion that needs different control signals between

the two motors is not considered.

Previously, matrix 𝑸 was set as 𝑸 =diag{20,1,1,1,5}; thus, the weighting matrix

𝑸𝒂 of the constrained system is presented by substituting matrix 𝑸 and

2𝜙𝐿,𝑅
2 (𝑥𝑛+1)𝑅11,22 into Eq. (6.16) and we obtain

 𝑸𝒂 =

[

20 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0

0 0 0 0 0 20𝜙𝐿,𝑅
2 (𝑥6)]

.

(6.17)

Moreover, the saturation conditions (Harrison, 2003) with a smooth function

𝑠𝑖𝑛(𝑥) were presented as the following:

𝜙𝐿(𝑥6) = 𝜙𝑅(𝑥6) = {

 𝜆 , 𝑥6 > 𝜆

𝜆𝑠𝑖𝑛 (
𝜋𝑥6

2𝜆
), |𝑥6| ≥ 𝜆

 −𝜆 , 𝑥6 < −𝜆

(6.18)

where 𝜆 is the limitation of control signal as the maximum voltage of the LEGO

EV3 motor is 8.3V, in the implementation.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

118

6.2.2 Freezing Technique and Extended Kalman Filter

Recall in Chapter 5 that sensor drift occurred in the hardware application. The

nonlinear freezing control technique on its own cannot solve this issue as it

extends the LQR theory to stabilise the system and the results of the LQR method

showed a diverged error signal in Chapter 5.

In this section, therefore, an extended version of the Kalman filter utilised in

Chapter 5 will be combined with the freezing technique to overcome the sensor

drift issue. The linear Kalman filter will be extended for estimating the state

variable of the nonlinear system known as an extended Kalman filter (EKF)

(Simon, 2006). There are many applications of this technique, such as missile

guidance (Çimen & Merttopçuoğlu, 2008), Unmanned Aerial Vehicle (UAV)

(Nemra & Aouf, 2010) and cancer treatment (Batmani & Khaloozadeh, 2013).

General continuous time-invariant systems (Frank , Xie, & Popa, 2007) are

given by

�̇� = 𝒂(𝒙, 𝒖, 𝒕) + 𝑮(𝒕)𝒘𝒏, (6.19)

 𝒚 = 𝒄(𝒙, 𝒕) + 𝒗𝒏, (6.20)

where 𝒘𝒏 and 𝒗𝒏 are supposed to be process noise and measurement noise,

respectively, with 𝒘𝒏 ~(0, 𝑸𝒌), 𝒗𝒏 ~(0, 𝑹𝑲), and 𝑮 is matrix of process noise,

which is defined as 𝑮 = 𝑰𝟓×𝟓 .

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

119

A state estimator of a nonlinear dynamic system is defined as follows:

�̇̂� = 𝒂(�̂�, 𝒖, 𝒕) + 𝑲𝒇(𝒚 − 𝒄(�̂�, 𝒕)), (6.21)

and the Jacobian matrices are

𝑨(𝒙, 𝒕) =
𝝏𝒂(𝒙, 𝒖, 𝒕)

𝝏𝒙
, 𝑨(�̂�, 𝒕) =

𝝏𝒂(�̂�, 𝒖, 𝒕)

𝝏�̂�
,

𝑪(𝒙, 𝒕) =
𝝏𝒄(𝒙, 𝒕)

𝝏𝒙
, and 𝑪(�̂�, 𝒕) =

𝝏𝒄(�̂�, 𝒕)

𝝏�̂�
.

(6.22)

The Kalman filter gain 𝑲𝒇 is given by

𝑲𝒇 = 𝑷𝑪𝑻(�̂�, 𝒕)𝑹𝒌
−𝟏 (6.23)

where 𝑷 is the solution of algebraic Riccati equation as shown below

𝑨(�̂�, 𝒕)𝑷 + 𝑷𝑨𝑻(𝒙, 𝒕) − 𝑷𝑪𝑻(�̂�, 𝒕)𝑹𝒌
−𝟏𝑪(�̂�, 𝒕)𝑷 + 𝑸𝒌 = 0 (6.24)

Approximated solutions of Eq. (6.24) can be obtained numerically by applying the

linear quadratic regulator function in MATLAB, shown in Appendix A.5.5. The

block diagram of the freezing control technique with an extended Kalman filter

combined with a tracker is presented in Figure 6.2.

Figure 6.2: Structure of freezing technique with EKF and tracking system.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

120

6.3. Iteration Scheme Strategy

Another nonlinear control method considered in this research is an iteration

scheme introduced by Banks & McCaffrey (1998). The technique is used to

approximate the original nonlinear system into a sequence of linear, time-varying

(LTV) equations. This method can be applied to control various nonlinear

systems, e.g., an inverted pendulum on a cart (Banks & Dinesh, 2000), super-

tankers autopilot (ÇImen & Banks, 2004b), drug therapy control in cancer

treatment (Itik, Salamci, & Banks, 2009), velocity tracking of hydraulic press (Du,

Xu, Banks, & Wu, 2009), and tunnel diode oscillator control (Itik, 2016).

The approximating sequence of the iteration scheme is introduced next (Tomás-

Rodríguez & Banks, 2010).

Consider the pseudo-linear system Eq.(6.25) and the finite-time quadratic cost

function Eq.(6.26):

�̇� = 𝑨(𝒙)𝒙 + 𝑩(𝒙)𝒖, (6.25)

 𝐽 =
1

2
𝒙𝑻(𝑡𝑓)𝑭𝒙(𝑡𝑓) +

1

2
∫ (𝒙𝑻(𝑡)𝑸𝒙(𝑡) + 𝒖𝑻(𝑡)𝑹𝒖(𝑡))𝑑𝑡

𝑡𝑓

0

, (6.26)

where 𝑨(𝒙) and 𝑩(𝒙) form controllability matrices, 𝑡𝑓 represents the final time,

𝑭 and 𝑸 are positive semi-definite matrices and 𝑹 is a positive definite matrix.

Then, a sequence of linear, time-varying equation can be written as follows:

�̇�[𝑖](𝑡) = 𝑨(𝒙[𝑖−1](𝑡))𝒙[𝑖](𝑡) + 𝑩(𝒙[𝑖−1](𝑡))𝒖[𝑖](𝑡), 𝒙[𝑖](𝑡0)= 𝒙0, (6.27)

and

𝑱[𝑖] =
1

2
𝒙[𝑖]𝑇(𝑡𝑓)𝑭𝒙[𝑖](𝑡𝑓) +

1

2
∫ (𝒙[𝑖]𝑇(𝑡)𝑸𝒙[𝑖](𝑡) + 𝒖[𝑖]𝑇𝑹(𝑡)𝒖[𝑖](𝑡)) 𝑑𝑡

𝑡𝑓

0

,
(6.28)

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

121

where [𝑖] denotes the iteration number.

Hence, the first approximation can be written as the following:

�̇�[1](𝑡) = 𝑨(𝒙0)𝒙
[1](𝑡) + 𝑩(𝒙0)𝒖

[1](𝑡), 𝒙[1](𝑡0)= 𝒙0, (6.29)

Note that 𝒙[𝑖−1](𝑡) is assumed as 𝒙0 at initial sequence 𝑖 = 1.

Then, evaluating Eqs. (6.27) and (6.28) produce the following optimal control

equation:

𝒖[𝑖] = −𝑹−1𝑩𝑇(𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡)𝒙[𝑖](𝑡), (6.30)

where 𝑷[𝑖](𝑡) is the solution of the Riccati equation below

�̇�[𝑖](𝑡) = −𝑸 − 𝑷[𝑖](𝑡)𝑨 (𝒙[𝑖−1](𝑡)) − 𝑨𝑇 (𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡)

+ 𝑷[𝑖](𝑡)𝑩(𝒙[𝑖−1](𝑡))𝑹−𝟏𝑩𝑇 (𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡),

(6.31)

and

𝑷[𝑖](𝑡𝑓) = 𝑭.

(6.32)

Hence, the optimal control system is implemented by substituting Eq. (6.30) into

Eq. (6.27) as the following:

�̇�[𝑖](𝑡) = 𝑨 (𝒙[𝑖−1](𝑡)) 𝒙[𝑖](𝑡)

+ 𝑩(𝒙[𝑖−1](𝑡))(−𝑹−1𝑩𝑇 (𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡)𝒙[𝑖](𝑡)), 𝒙[𝑖](𝑡0)= 𝒙0.

(6.33)

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

122

6.4 Controllability and Observability

In this section, the controllability and observability of the two-wheel robot system

will be analysed before the design of controllers and the corresponding

simulations take place. In particular, recall that in Section 6.2.1, matrix 𝑨 was

modified to embed the input saturation condition into the nonlinear model.

Therefore, the analysis will include both unconstrained and constrained TWR

systems for consideration.

6.4.1 Controllability

In terms of controllability, the test and the system analysis are similar to the ones

presented in Chapter 5, by substituting matrices 𝑨 and 𝑩 into Eq. (5.7) to produce

controllability matrix 𝓒, and then calculating the rank of the controllability test

matrix. As mentioned previously, mathematical models of linear control system

were linearised around equilibria. It is well-known that state-space

representations of nonlinear control systems are not unique. In addition, the 𝑨

and 𝑩 matrices of a nonlinear system vary for different values of time t and so

does the controllability matrix; therefore, the ranks of controllability matrices (for

two systems) can be presented as a 2D plot, shown in Figures 6.3-6.4.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

123

- Inverted Pendulum on a Cart System

Figure 6.3: The rank of controllability matrix for the nonlinear inverted pendulum

and cart system

 Figure 6.3 presents the rank test result of the 4th order nonlinear inverted

pendulum model from Eq. (4.10). The contour plot specifies the state variables

𝑥3 and 𝑥4 in the x and y axes, respectively. The yellow region represents Rank(𝓒)

= 4, which means the system is fully controllable, appearing in the central region

of the plot, Other non-yellow regions represent Rank (𝓒) < 4, which indicate that

the system is uncontrollable (or not fully controllable).

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

124

- Two-Wheeled Robot System

Figure 6.4: The rank of controllability matrix for the nonlinear two-wheeled robot

system - without input saturation

Similarly, the rank test of the 5th order nonlinear two-wheeled robot model

from Eq. (4.61) is demonstrated in Figure 6.4. The yellow and blue areas

represent Rank(𝓒) = 5 and Rank(𝓒) = 4, respectively. The system is fully

controllable when Rank(𝓒) = 5, as shown in the central region of the figure; by

contrast, the system is only partially controllable in all corner regions as Rank (𝓒)

= 4. There are some fully controllable regions on left and right sides of the graph,

near 𝑥3 ≈ ±90°, when the pitch angular velocity 𝑥4 operates between

−2.3 × 104 °/𝑠 and 2.3 × 104 °/𝑠. Note here that physically realistic ranges of 𝑥4

for the LEGO EV3 gyro sensor are between −440°/𝑠 and 440°/𝑠.

Note, the nonlinear two-wheeled robot control is applied to a practical robot rather

than a simulated mathematical model in this research and therefore offers

flexibility in which model to use for the generation of control gains. The model in

Eq. (4.61) can be rewritten in several different forms and then the controllability

test can be applied to investigate each model’s controllability range. Next, two

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

125

other state-space model representations of the TWR system are defined, with

names Model B and Model C, whilst the original model given in Eq. (4.61) is

named as Model A.

Model B:

(

�̇�1

�̇�2

�̇�3

�̇�4

�̇�5)

=

(

0 1 0 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒23(𝑥3) + 𝑒𝑚24(𝑥3, 𝑥4)𝑥4

[𝑎 + 𝑏(𝑥3)]𝑥3
0 0

0 0 0 1 0

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒43(𝑥3) + 𝑒𝑚44(𝑥3, 𝑥4)𝑥4

[𝑎 + 𝑏(𝑥3)]𝑥3
0 0

1 0 0 0 0)

 ×

(

𝑥1
𝑥2

𝑥3

𝑥4

𝑥5)

 (6.34)

 +

(

0 0
𝑓𝑚21(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎+𝑏(𝑥3)

0 0
𝑓𝑚41(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎+𝑏(𝑥3)

0 0)

(
𝑣1

𝑣2
),

where the Model B presents the 3rd column by embedding equations in the 3rd

and 4th columns of Model A.

Model C:

(

�̇�1

�̇�2

�̇�3

�̇�4

�̇�5)

=

(

0 1 0 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)
0

𝑒23(𝑥3) + 𝑒𝑚24(𝑥3, 𝑥4)𝑥4

𝑎 + 𝑏(𝑥3)𝑥4
0

0 0 0 1 0

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)
0

𝑒43(𝑥3) + 𝑒𝑚44(𝑥3, 𝑥4)𝑥4

𝑎 + 𝑏(𝑥3)𝑥4
0

1 0 0 0 0)

 ×

(

𝑥1
𝑥2

𝑥3

𝑥4

𝑥5)

 (6.35)

 +

(

0 0
𝑓𝑚21(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎+𝑏(𝑥3)

0 0
𝑓𝑚41(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎+𝑏(𝑥3)

0 0)

(
𝑣1

𝑣2
),

where the Model C presents the 4th column by embedding equations in the 3rd

and 4th columns of Model A.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

126

Likewise, the graphs of controllability test matrices from Model B and C

are demonstrated in Figures 6.5 – 6.6.

Figure 6.5 : The rank of controllability matrix for the nonlinear TWR system -

without input saturation (Model B)

Figure 6.6 : The rank of controllability matrix for the nonlinear TWR system -

without input saturation (Model C)

It can be seen that Models A, B and C produce very different controllability test

results. In Figure 6.5, the area which is not fully controllable appears in the middle

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

127

of the 𝑥3 axis for a large range of 𝑥4. This means Model B is not fully controllable

at the equilibrium point. Furthermore, Figure 6.6 demonstrates that Model C is

only partially controllable for the whole region investigated (i.e., 𝑥3 ∈ [−90°, 90°]

and 𝑥4 ∈ [−1 × 105 °/𝑠 , 1 × 105 °/𝑠]), with Rank (𝓒) < 5.

 One advantage of Model B from its controllability test result presented in

Figure 6.5 is that the fully controllable region is larger than Model A’s when the

state variable 𝑥3 is far away from 𝑥3 = 0°. Therefore, Models A and B can be

combined to create a mixed model to take advantage of each individual model’s

controllability range. For example, Model A’s central region, i.e., when −10° ≤

𝑥3 ≤ 10° can be selected to be combined with Model B in other regions to create

a new model, named Model AB, which generates better controllability outcome,

as shown in Figure 6.7.

Figure 6.7 : The rank of controllability matrix for the nonlinear TWR system -

without input saturation (Model AB)

It can be seen from Figure 6.7 that the not fully controllable area in the centre of

the 𝑥3 axis of Model B disappears, and the fully controllable region of Model A is

displayed instead.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

128

Additionally, the rank tests of nonlinear control system under input

constrain condition of Model A defined by Eq. (4.61) are presented in Figures 6.8-

6.9.

Figure 6.8: The rank of controllability for freezing technique system – with input

saturation

Figure 6.8 demonstrates a controllability cube in the six-dimensional space, with

three variables 𝑥3, 𝑥4 and 𝑥6 on the axes, because a new variable 𝑥6 has been

introduced into the constrained system, shown in Eq. (6.13). The yellow and blue

colours represent Rank(𝓒) = 6 (full rank) and Rank(𝓒) = 5, respectively.

Further details of Figure 6.8 can be seen by showing cross-sections of the cube

next. Figure 6.9(a) shows the rank of the controllability matrix affected by state

variable 𝑥3 and the constraint parameter 𝑥6 when 𝑥4 is fixed at zero; by contrast,

Figure 6.9(b) presents the rank of controllability, influenced by 𝑥4 and the

constraint parameter 𝑥6 when 𝑥3 is equal to zero.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

129

(a) (b)

Figure 6.9: Controllability plot for the TWR system (with input saturation),

(a) cross-section at 𝑥4 = 0°/𝑠. Note, the coordinates (𝑥3, 𝑥6) of the 2 points

marked by red asterisks are (−90°, −8.4 × 1015) and (−90°, 8.6 × 1015),

(b) cross-section at 𝑥3 = 0°. Note, the coordinates (𝑥4, 𝑥6) of the 2 points

marked by red asterisks are (−200°/𝑠, −8.4 × 1015) and (−200 °/𝑠,

8.6 × 1015),

With the input constraint condition included, the system model is of 6th order, as

shown in Eq.(6.13). The system model would be completely state controllable if

Rank(𝓒) = 6. Figure 6.9, therefore, demonstrates a fully controllable system for

any values of state variables 𝑥3 and 𝑥4 if the constraint parameter 𝑥6 is restricted

approximately between −8.4 × 1015 and 8.6 × 1015 .

 Furthermore, the rank test results of Models B and AB with the input

voltage constrained are demonstrated in Figures 6.10-6.13. Note, controllability

test of Model C will not be implemented as it showed no region to be fully

controllable in the non-saturated input simulation previously.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

130

Figure 6.10: The rank of controllability matrix of TWR for the freezing technique

– with input saturation (Model B)

Figure 6.11: Controllability plot for the TWR system of Model B (with input

saturation), (a) cross-section at 𝑥4 =0°/s. (b) cross-section at 𝑥3 = 0°.

Figures 6.10 and 6.11 display the rank test result of Model B in a 3D plot

and in cross-sectional graphs, respectively. Figure 6.11(b) presents a very large

region of Rank(𝓒) = 1 (sliced at 𝑥3 = 0°), indicating only one of the six poles of

the system is controllable, similar to result shown in the unconstrained voltage

simulation of Model B.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

131

Moreover, the combined Model AB with a constrained control voltage,

illustrates a broader fully controllable area as shown in Figure 6.12. Similar as

before, cross sections are taken at 𝑥4 = 0°/𝑠 and 𝑥3 = 0°, shown in Figure 6.13

(a) and (b), respectively. It can be seen from Figure 6.13(a) that the blue Rank(𝓒)

= 5 (not full rank) region, when from −10° ≤ 𝑥3 ≤ 10°, from Figure 6.9 (a) is now

fully controllable.

Figure 6.12: The rank of controllability matrix for the TWR system – with input

saturation (Model AB)

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

132

Figure 6.13: Controllability plot for the TWR with Model AB (input saturation),

(a) cross-section at 𝑥4 = 0°/𝑠. Note, the coordinates (𝑥3, 𝑥6) of the 2 points

marked by red asterisks are (−10°, −8.4 × 1015) and (−10°, 8.6 × 1015),

(b) cross-section at 𝑥3 = 0°. Note, the coordinates (𝑥4, 𝑥6) of the 2 points

marked by red asterisks are (−200°/𝑠, −8.4 × 1015) and (−200 °/𝑠,

8.6 × 1015),

6.4.2 Observability

With regard to observability test, it can be implemented by substituting matrices

𝑨 and 𝑪 into the Eq. (5.19) to provide the observability matrix 𝓞. Although matrix

𝑪 is constant, matrix 𝑨 is varied by state variables in the form of the nonlinear

model. The rank of observability, hence, presented in a three-dimension

subspace, is given in Figures 6.14-6.17.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

133

- Inverted Pendulum on a Cart System

Figure 6.14: The rank of observability matrix for a 4th order nonlinear inverted

pendulum system

It can be seen in Figure 6.14 that the fully observable region (Rank (𝓞) = 4, shown

in yellow) appears in the centre of the 𝑥3 and 𝑥4 axes, and the regions which are

not fully observable (Rank (𝓞) = 3 or 2) emerges when |𝑥4| > 1.4 × 108 °/𝑠 and

15° < |𝑥3| < 78°. In the latter regions, the 4th order inverted pendulum system is

said to be partially state observable.

- Two-Wheeled Robot System

Figure 6.15: The rank of observability matrix for the 5th order nonlinear TWR

system - without input saturation

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

134

Figure 6.15 demonstrates a full rank (Rank (𝓞) = 5) of the observability matrix in

the central region, similar to the observability test result on the inverted pendulum

system in Figure 6.14. However, the not fully observable regions appear over the

absolute values of 𝑥4 at approximately 3 × 105 °/𝑠, which is less than the 𝑥4 value

(1.4 × 108 °/𝑠) shown in Figure 6.14. This is because the two-wheeled robot

system is more complex than the inverted pendulum and they have different

parameters and system dynamics.

Next, the input constraint is added to the TWR model and the rank of the

new observability matrix is demonstrated in a three-dimensional subspace in the

same way as the controllability test earlier, as given in Figures 6.16-6.17.

Figure 6.16: The rank of observability matrix for the 6th order nonlinear TWR

system – with input saturation

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

135

(a) (b)

Figure 6.17: The rank of observability matrix for the 6th order nonlinear TWR

system (with input saturation) by cross-section at (a) 𝑥4=0°/s and (b) 𝑥3=0°.

Note, Figure 6.16 demonstrates a cube, with 𝑥3, 𝑥4 and the constraint parameter

𝑥6 as axes. The region is nearly entirely covered by Rank (𝓞) = 6 which implies

complete observability; however, there are some non-full-rank areas when the

absolute of 𝑥4 goes beyond approximately 5 × 104 °/𝑠, which is lower than the

case in the unconstrained system (3 × 105 °/𝑠) shown in Figure 6.15. Moreover,

Figure 6.17 presents two cross-sections of Figure 6.16, when 𝑥4=0°/s and 𝑥3=0°,

respectively. All areas in Figure 6.17 are yellow, representing Rank (𝓞) = 6 and

the TWR system being full observable at these cross-sectional areas. This result

illustrates that an extended Kalman filter is applicable to this system for the

purpose of state estimations.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

136

6.5 Simulation Results

In this section, the nonlinear freezing control method, the freezing technique with

EKF, and the nonlinear iteration scheme will be applied to simulate the control

problems of the inverted pendulum on a cart and the self-balancing two-wheeled

robot model in the otherwise unstable vertical upright reference positions.

Moreover, these methods will be compared with the traditional linear control result

obtained in Chapter 5, such as LQR and the LQG under input unconstraint and

constraint conditions.

6.5.1 Simulations of IP and TWR without Input Saturations

- Inverted Pendulum on a Cart System

In this subsection, the simulation results of stabilising an inverted

pendulum on a cart system are demonstrated using two different nonlinear

controllers, i.e., the freezing control and the iteration scheme, when the initial

pitch angle 𝑥3 is set from a range of values. The MATLAB programmes of the

freezing control and iteration scheme are presented in Appendix A.6.7 and

Appendix A.6.8, respectively. Furthermore, the weighting matrices 𝑸 and 𝑹 are

selected to be the same as in the LQR control in Chapter 5, for the purpose of

easy comparison of outcomes between the linear and nonlinear control

techniques.

To begin with, the simulation results of nonlinear freezing control are shown in

Figures 6.18-6.19. In Figure 6.18, the graphs present the stabilisation of an

inverted pendulum from three initial pitch angles: 60°, 75° and 80.5°.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

137

Unsurprisingly, system responses and the control signal starting from the largest

initial pitch angle 80.5°, generate strongest oscillations with large amplitudes. This

angle is in fact the maximum initial pitch angle, of which the nonlinear freezing

control method can stabilise, for the IP system. Beyond this angle, the system

becomes unstable, producing unbounded output responses, as shown in Figure

6.19.

Figure 6.18: The stabilisation of an inverted pendulum system by the nonlinear

freezing technique, from different initial pitch angles 𝑥3

Figure 6.19: Unstable system response of an inverted pendulum system at the

initial pitch angle 𝑥3=80.6°, using the freezing technique

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

138

In the case of applying the iteration scheme technique to the inverted

pendulum system, the simulation results are shown in Figures 6.20-6.22 as

follows:

Figure 6.20: The stabilisation of an IP system from the initial pitch angle

𝑥3= 60°, using the nonlinear iteration method, at different iteration steps

A number of iteration sequences, up to the 40th, of the nonlinear iteration control

(also called LTV) to balance the inverted pendulum model, are plotted in Figure

6.20. Note, in this technique, the 1st iteration result, although appear to be

smoother, is generally not considered. This is because the system matrices A

and B are fixed using the initial conditions (see in Eq.(6.29)) rather than time

dependent. The function of the 1st iteration is to generate state evolution results

to be used in the next sequence. In Figure 6.20, the 𝑥1 graph demonstrates that

the 5th iteration displays the highest overshoot. The overshoot reduces with

increasing state sequences, of up to the 15th iteration, and then converges at the

30th iteration (it can be seen that the 40th iteration presents the same result as the

30th). Furthermore, oscillations appear in the 𝑥2 − 𝑥4 graphs and the control signal

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

139

graph in low order iterations, i.e., 5th and 10th ; in contrast, the higher-order

iterations such as the 30th and 40th present smooth responses.

Figure 6.21: The stabilisation of an inverted pendulum system by the iteration

scheme (40th) from different initial pitch angles 𝑥3 – converged responses

Figure 6.21 demonstrates the converged response results when using the

iteration scheme (the 40th iteration) to balance the inverted pendulum system,

from three initial pitch angles: 45°, 60° and 61.3°. Comparisons of these graphs

show that there are more oscillations associated with larger overshoots and

undershoots when the initial pitch angle is increased, for all state variable

responses and the control signal. Noticeably, spiky or erratic signals appear in

the 𝑥2, 𝑥4 and control signal graphs, for the case starting from the initial pitch angle

61.3°. This is because the system reaches the iteration control limitation (the 40th

iteration) at this angle and the system becomes unstable when operating beyond

61.3°, as presented in Figure 6.22.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

140

Figure 6.22: Unstable system responses from the initial pitch angle 𝑥3=61.4°,

using the iteration scheme (40th)

This research presents the iteration scheme without state observer;

therefore, the freezing control without the Kalman filter and LQR controllers are

selected to compare against the iteration scheme method. The stabilising system

of an inverted pendulum model at the initial pitch angle of 𝑥3= 42.9° from three

controllers are illustrated in Figure 6.23.

Figure 6.23: Stabilisation of the IP system using three different controllers,

starting from an initial pitch angle 𝑥3= 42.9°

It can be seen that the nonlinear freezing controlled system displays the lowest

maximum overshoot in the 𝑥1 graph, followed by the iteration scheme (order 40th)

and then LQR. Significantly, the freezing technique also obtains the lowest

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

141

maximum deviations and has the shortest settling times in the 𝑥2 and 𝑥3 graphs.

On the other hand, LQR, which is a linear controller, demonstrates the highest

overshoot out of the three controllers. At this initial pitch angle, the LQR method

generates some spiky responses as the system reaches its stabilisation

limitation; in contrast, both nonlinear controllers produce much smoother

response curves.

To summarise, both nonlinear controllers provide more comprehensive

operational ranges than the linear method as the feedback gains are continuously

calculated to reflect the changes of the time-dependent state variables.

Furthermore, the freezing control demonstrates a higher capability than the

iteration scheme in terms of shorter cart displacement and broader initial pitch

angle ranges. Therefore, the freezing control technique has been selected to be

the nonlinear controller used in the experimental subsection later; moreover, due

to the memory limitation of the LEGO EV3 at 5 MB, it is extremely challenging to

design the iteration scheme programming with various variables to be stored in

the look-up table for being uploaded to the LEGO EV3 memory. In the case of

the freezing technique, the programming codes have been generated at

approximately 4.5 MB. Moreover, the approximation memory capacity of the

iteration scheme at least doubled as there are additional state variables (𝑥1 and

𝑥2), which are needed to be considered.

- Two-Wheeled Robot System

In this subsection, the simulation results of balancing a two-wheeled robot

model (model A, defined by Eq. (4.61)) with different initial pitch angles 𝑥3, under

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

142

no input constraint, are presented. Note that the weighting matrices 𝑸 and 𝑹 of

the two-wheeled robot model are chosen to be the same as in the LQR and LQG

controls analysed in Chapter 5 for easy comparison. Furthermore, the MATLAB

programme of the nonlinear freezing control with and without an extended

Kalman filter is demonstrated in Appendices A.6.9 and A.6.10, and uses the

structures of feedback control, as shown in Figure 6.1 and Figure 6.2,

respectively. Thus, the nonlinear freezing control results are presented in Figures

6.24-6.28.

Figure 6.24: The stabilisation of a TWR system using freezing technique from

different initial pitch angles 𝑥3

Figure 6.25: The stabilisation of a TWR system using freezing technique from

initial pitch angle 𝑥3= 87.2°

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

143

Figure 6.24 demonstrates the dynamical evolution of state variables and

control signal, when applying the nonlinear freezing technique and changing

initial pitch angle to 𝑥3 = 15°, 30° and 60°, respectively. In the same way as the

linear quadratic regulator control in Chapter 5 the deviation of all state variables

and the control signal are increased when the initial pitch angle 𝑥3 rises.

It can be seen that the pink curve in Figure 6.25, which represents results

from an initial pitch angle 𝑥3 = 87.2°, presents significant oscillations as the

freezing technique reaches its maximum capability. Noticeably and importantly,

the nonlinear freezing technique demonstrates the capability of stabilising the

system starting from a much higher pitch angle than the LQR and the LQG, by

approximately 21.5°, as shown in Chapter 5.

When going above the initial angle 87.2°, the system becomes unstable

and crashes, as shown in Figure 6.26.

Figure 6.26: Uncontrollable system at the initial pitch angles 𝑥3=87.3°, with the

freezing technique applied

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

144

Recall that in Section 6.4.1, the controllability test of nonlinear freezing

technique was described. The advantage of this method is its ability to display

the rank of the controllability matrix at every evolution step of state variables 𝑥3

and 𝑥4 from any initial values. Figures 6.27-6.28 will present the rank of

controllability matrix, combined with dynamic evolution of state variables 𝑥3 and

𝑥4 starting from different initial pitch angles, showing the controllable and

uncontrollable areas.

(a) (b)

Figure 6.27: The rank of controllability and dynamical evolution of state

variables 𝑥3 and 𝑥4 at the initial pitch angles: (a) 𝑥3 =30° and (b) 𝑥3 =87.2°,

controlled by freezing technique

 Firstly, Figure 6.27 demonstrates the two stable systems with the

nonlinear freezing control applied, when simulating from initial pitch angles 𝑥3 =

30° and 𝑥3 = 87.2°. The dynamical state evolution trajectory (of 𝑥3 and 𝑥4) is

shown in red stars, completely embedded in the yellow area representing full

rank. Therefore, the system is fully controllable when starting from these 𝑥3

values. Note, the red stars in Figure 6.27 (b) spread widely around the centre of

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

145

the figure; in contrast, they move in a small area in Figure 6.27 (a). This is

because of the large oscillations of the state variable 𝑥3 evolution, when starting

at the initial pitch angle 𝑥3 = 87.2°, as shown in Figure 6.25.

(a) (b)

Figure 6.28: The rank of controllability and dynamical evolution of state

variables 𝑥3 and 𝑥4 at the initial pitch angles: (a) 𝑥3 =87.3° and (b) 𝑥3 =90°,

controlled by the freezing technique

In contrast to Figure 6.27, in Figure 6.28, some red stars appear in the

blue regions, which represent rank deficiency, i.e., Rank(𝓒)=4, when simulating

from initial pitch angles 𝑥3 = 87.3° and 𝑥3 = 90°. The results show that the system

is now not fully controllable, which matches the simulation results shown in Figure

6.26 that the system cannot be stabilised using the nonlinear freezing control

method.

 Next, the combination of the freezing control technique with an EKF is

investigated, where the magnitudes of state variables and control signal increase

when the initial pitch angle is increased, similar to the freezing technique without

EKF shown in Figure 6.29. Significantly, in Figure 6.30, the cut-off limitation of

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

146

the initial pitch angle (87.2°) is the same as the freezing technique without EKF.

This is because that the addition of EKF supports the practical control

implementation by providing filtered estimations of state variables, but do not

contribute to the improvement of control capability in simulation.

Figure 6.29: The stabilisation of a TWR system using the freezing technique

with EKF from different initial pitch angles 𝑥3

Figure 6.30: The stabilisation of a TWR system using the freezing technique

with EKF from the initial pitch angle 𝑥3=87.2°.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

147

Similar as before, increasing the initial pitch angle to 87.3°or over leads to

an unstable system response, when the freezing control and EKF fail to stabilise

the TWR, as presented in Figure 6.31.

Figure 6.31: Unstable system from the initial pitch angles 𝑥3=87.3°, using

freezing technique with EKF

The above stability results are supported by the controllability test

outcomes. As can be seen in Figure 6.32, the controllability matrices starting from

the maximum controllable initial angle 87.2° stay full rank (the yellow region)

during the evolutionary trajectory of 𝑥3 and 𝑥4 shown by red stars, indicating the

system is fully controllable. But in Figure 6.33, when the initial pitch angle is set

to 87.3°, the controllability test result shows some red stars appearing in the blue

area where there is a rank deficiency. This means the system is not fully

controllable and matches the unstable response observed in Figure 6.31.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

148

Figure 6.32: The rank of controllability matrix and dynamical evolution of state

variable 𝑥3 and 𝑥4 from the initial pitch angles 𝑥3 =87.2°, using freezing

technique with EKF

Figure 6.33: The rank of controllability matrix and dynamical evolution of state

variable 𝑥3 and 𝑥4 from the initial pitch angles 𝑥3 =87.3°, using freezing

technique with EKF

 Next, the LQR and LQG controllers analysed in Chapter 5 are compared

against the nonlinear freezing control technique with and without EKF, as

demonstrated below.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

149

Figure 6.34: Stabilisation of a TWR system by four controllers from the initial

pitch angles 𝑥3= 15°

Figure 6.35: Stabilisation of a TWR system by four controllers from the initial

pitch angles 𝑥3= 30°

In Figures 6.34-6.37, the blue and red dashed curves represent control outcomes

from the linear controllers, i.e., the LQR and LQG, respectively; the black and

pink solid curves represent the responses from the nonlinear control methods,

which are the freezing technique and freezing technique combined with EKF,

respectively. It can be seen that the outcomes of four controlled systems are

almost the same when starting from narrow initial pitch angles 15° and 30°.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

150

 When the initial pitch angle is increased to 60°, however, noticeable

differences in the systems’ responses between linear and nonlinear controls are

present, as shown in Figure 6.36.

Figure 6.36: Stabilisation of a TWR system by four controllers from the initial

pitch angle 𝑥3= 60°

Firstly, the nonlinear controls display slightly higher deviations than linear

methods in the wheel angle 𝑥1 graph, causing the magnitudes of wheel angle

integral 𝑥5 also higher than the linear methods. However, the nonlinear methods

demonstrate lower deviations in pitch angle 𝑥3 than both linear methods by

approximately 10° (see the magnified graph for 𝑥3 response), which is an

important improvement. In addition, there are some sharp changes in the linear

controlled systems’ responses, for state variable 𝑥2, 𝑥4 and control signal 𝑢,

whereas the nonlinear control techniques present much smoother response, in

comparison.

 In Chapter 5, the maximum initial pitch angles which could be stabilised

by applying the LQR and LQG methods were 65.7°. Hence, the performance of

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

151

linear controls at this initial pitch angle is selected to compare with the nonlinear

methods (at the same angle), with results shown in Figures 6.37 and 6.38.

Figure 6.37: Stabilisation of a TWR system by four controllers from the initial

pitch angles 𝑥3= 65.7°

Figure 6.38: Magnified dynamical evolution of 𝑥3 from the initial pitch angle

𝑥3= 65.7° using four controllers.

Dramatic oscillations occur from the applications of both linear control

techniques, on all state variables 𝑥1 − 𝑥4 and the control signal 𝑢 in Figure 6.37;

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

152

on the other hand, the nonlinear control techniques demonstrate more stable

results, displaying smooth curves on all signals. Note, in the magnified response

graph of 𝑥3, shown in Figure 6.38, large oscillations generated from the linear

controls can be seen more clearly and are compared against the control

outcomes from the nonlinear techniques. The lowest deviation value reached

using the linear methods (approximately at −74°) is lower than using the nonlinear

controls by approximately 18°. It can also be seen from this figure, the two

nonlinear controls present similar results when stabilising the TWR system from

the initial pitch angle 𝑥3= 65.7°.

Figures 6.37 and 6.38 have also demonstrated that linear and nonlinear

controls without input constraints generate quite different control responses,

when the initial pitch angle is over 60°. This is because the feedback gains of the

linear control are fixed for the linearised model (around the equilibrium point); in

contrast, the nonlinear controller gains are always optimised globally and are

therefore varying.

So far, the primary model (or Model A) has been used for the investigation

of stabilisation control. Next, the other models, i.e., Model B and Model AB

defined in Section 6.4.1 will be studied in the stabilisation simulations with

different control techniques.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

153

Figure 6.39: Stabilisation of a TWR system by freezing controllers, using

Models B and AB at the initial pitch angle 𝑥3= 90°

Significantly, Figure 6.39 shows that using Model B and Model AB, the freezing

technique with and without EKF can stabilise the TWR system from an initial pitch

angel of 90°, wider than both freezing techniques could achieve using the primary

model (87.2°) and larger than any other techniques reported to be capable of

achieving in the literature. Although the maximum deviations on all signals are

much larger than the results shown when starting from 87.2° and the very large

control voltage needed makes it impractical for physical realisations, this still

demonstrates the outstanding control range that the nonlinear freezing control

technique can achieve in theory and its superiority over other linear and nonlinear

control methods. The control results on Model AB, in particular, have shown

smooth response curves and illustrate the benefits of combining two models

together.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

154

(a) (b)

Figure 6.40: The rank of controllability matrix and dynamical evolution of 𝑥3 and

𝑥4 from the initial pitch angles 𝑥3 =90°, using freezing technique alone and with

EKF for: (a) Model B and (b) Model AB

Furthermore, Figure 6.40 (a) illustrates the cause of sharp signals observed in

the Model B response graphs in Figure 6.39, mapping to the rank test (in Figure

6.40 (a)) result when the 𝑥3 and 𝑥4 evolution trajectory goes across to the

uncontrollable region near 𝑥3 = 0°. In contrast, the dynamical evolution of 𝑥3 and

𝑥4 of Model AB shown in Figure 6.40 (b) lie in the completely controllable region,

therefore its response curves in Figure 6.39 are smoother than the ones from

Model B.

In these results, some generated magnitudes of the state variables as well

the control signals are at unrealistically high levels as the simulation was

conducted without taking into account of physical limits. The effect of limiting

inputs based on hardware capacity in the simulation will be discussed in the next

sections.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

155

6.5.2 Simulations of TWR with Input Saturations

This subsection demonstrates the simulation of the two-wheeled balancing robot

model with different initial pitch angles (𝑥3) between the linear and nonlinear

controls with input saturation. In the cases of the LQR and LQG linear controls,

the hard constraint was applied, as shown in Eq.(5.10); in contrast, the soft

constraint defined in Eq.(6.13) will be used with the nonlinear freezing technique

with and without EKF. The limitations of motor voltages are the same, at 8.3 V.

(a)

(b)

Figure 6.41: Stabilisation of a TWR system by four controllers from the initial

pitch angle 𝑥3= 14.1° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and

(b) 𝑥6 with logarithmic scale against time.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

156

 Firstly, a narrow initial pitch angle 𝑥3 at 14.1° is selected for the results

shown in Figure 6.41, as the freezing technique with EKF provides the lowest

initial angle for stabilising the TWR system amongst the four controllers under the

input saturation condition. Note that both linear controls are applied with the hard

constraint. It can be seen that slight oscillations appear in the graphs of state

variables 𝑥2, 𝑥3, 𝑥4 and control signal 𝑢 in Figure 6.41(a). Moreover, the

maximum deviation of all state variables in Figure 6.41(a) are almost the same

because of the small initial pitch angle. Note, some state variables from the four

controlled systems are restricted at the cut-off limits; for instance, the magnitudes

of the control signal 𝑢 reach the limitation at 8.3V and the wheel angle velocity

graphs show the maximum magnitude at approximately 800°/𝑠.

Figure 6.41(b), furthermore, presents the new state variable 𝑥6 generated by

nonlinear control with input constraint defined in Eq.(6.13). The maximum

magnitude of the control signal with the freezing technique with EKF (4.2 × 105)

is significantly higher than the without EKF (8.1 × 104). Significantly, in Figure

6.41(b), both plots show peak values lower than the limitations required of a

controllable system (approximately 8.6 × 1015), as presented in Figure 6.9 in

Section 6.4.1. Moreover, it can be seen in Figure 6.42, that red stars representing

the system's dynamical evolution path remain in the controllable area, when

starting at this initial angle.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

157

(a) (b)

Figure 6.42: The rank of controllability matrix and dynamical evolution of state

variables 𝑥3 and 𝑥4 from the initial pitch angle 𝑥3 =14.1°, using (a) freezing

technique and (b) freezing technique with EKF.

When the initial pitch angle goes over 14.1°, the TWR system with control

constraint cannot be stabilised by the freezing technique with EKF and the system

becomes unstable and then crashes, as shown in Figure 6.43.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

158

(a)

(b)

Figure 6.43: Unstable system using freezing technique and EKF from initial

pitch angle 𝑥3= 14.2° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and (b)

𝑥6 with logarithmic scale against time.

It can be seen from Figure 6.43(b) that the maximum value of 𝑥6 is now

approximately 1.6 × 1019, higher than the limit of a controllable system

(approximately 0.8 × 1016).

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

159

Figure 6.44: The rank of controllability matrix and dynamical evolution of state

variables 𝑥3 and 𝑥4 from the initial pitch angle 𝑥3 =14.2°, using freezing

technique and EKF

This is illustrated in Figure 6.44, where the dynamical evolutions of state variables

𝑥3 , 𝑥4 and 𝑥6 display that whilst they start in the fully controllable area (yellow

plate) between 𝑥6 = −0.8 × 1016 and 0.8 × 1016 in the magnified figure, the red

stars then enters the not fully controllable area (up to approximately 1.6 × 1019).

This causes failure to the controlled system.

When the initial pitch angle 𝑥3 is risen to 16.8°, the standard freezing

technique with saturation reaches its control limit. At this angle, three of the four

controllers are still functioning well in stabilising the system model but the freezing

technique with EKF can no longer operate, as shown in Figure 6.45.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

160

(a)

(b)

Figure 6.45: Stabilisation results from three controllers at the initial pitch angles

𝑥3= 16.8° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and (b) 𝑥6 with

logarithmic scale against time.

At this initial pitch angle, the maximum deviations of linear controls and nonlinear

freezing control are almost of the same values, as shown in Figure 6.45(a).

Moreover, the linear methods demonstrate smoother curve signals than the

freezing technique; for example, sharp curves appear at the undershoot in the

state variable 𝑥2, 𝑥3 and control signal 𝑢 when using the nonlinear method.

Furthermore, in Figure 6.45 (b), the new state variable 𝑥6 when using the freezing

technique presents a magnitude of approximately 2.3 × 1018 , which is beyond

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

161

the fully controllable requirement (at approximately 0.8 × 1016), but the system is

still stabilisable. This is because, in some cases, it is still possible to partially

control the system when it presents rank deficiency as long as the unstable

modes are controllable (Dutton, Thompson, & Barraclough, 1997), as shown by

the red stars outside the fully controllable area in Figure 6.46. The red stars

appear around Rank(𝓒) = 3 (green), which is not of full rank; however, it is still

stabilisable. Note the fully controllable area has Rank(𝓒) = 6.

Figure 6.46: The rank of controllability matrix and dynamical evolution of state

variables 𝑥3 and 𝑥4 at the initial pitch angle 𝑥3 =16.8°, using freezing technique

When the initial pitch angle is over 16.8°, the system controlled by the

nonlinear freezing technique with soft constraint is unstable, as shown in Figure

6.47. The highest value of the state variable 𝑥6 is approximately 1.4 × 1019 in

Figure 6.47(b), which is over the range of a controllable system. This is shown by

the controllability rank graph in Figure 6.48, where the red stars occur outside the

fully controllable area.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

162

(a)

(b)

Figure 6.47: Unstable system response using freezing technique at the initial

pitch angle 𝑥3= 16.9° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and

(b) 𝑥6 with logarithmic scale against time.

Figure 6.48: The rank of controllability matrix and dynamical evolution of state

variables 𝑥3 and 𝑥4 at the initial pitch angle 𝑥3 =16.9°, using freezing technique

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

163

Next, Models B and AB are simulated using the freezing control with EKF

with constrained voltage input, compared against Model A. Note: the freezing

control with EKF is selected for simulation in this subsection instead of the stand-

alone freezing technique, because the Kalman filter is advantageous in reducing

the gyro sensor drift issue in the practical experiments later.

Simulation results of the alternative models are given in Figures 6.49-6.54.

(a)

(b)

Figure 6.49: Stabilisation of the TWR system using freezing controllers with

EKF from on Models A, B and AB at the initial pitch angles 𝑥3 =14.1°: (a) 𝑥1 −

𝑥5 and u against time and (b) 𝑥6 with logarithmic scale against time.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

164

Model B reaches the same limitation of maximum initial angle for stabilisation as

Model A, at 14.1°, but it can be seen from Figure 6.49 that there are severe

oscillations in several response graphs. This is because of the not fully

controllable area near 𝑥3 = 0° of Model B, causing vibrations in the system

response. In terms of Model AB, the oscillations are much less frequent than

Model B and are generally smoother than the results obtained for Model A.

Furthermore, the controllability rank test results of Models B and AB are

demonstrated in Figure 6.50. It is evident that red stars lie mostly in the yellow

regions of both graphs. The pink lines in the Model B controllability graph

corresponds to controllability deficiency, which explains the high frequency

oscillations in graphs shown in Figure 6.49.

Figure 6.50: The rank of controllability matrix and dynamical evolution of state

variables 𝑥3 and 𝑥4 from (a) Model B and (b) Model AB, at initial pitch angle

𝑥3 =14.1°, using freezing technique and EKF

Beyond this initial pitch angle (14.1°), Model B cannot be stabilised using freezing

and EKF method and crashes, as shown in Figure 6.51.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

165

(a)

(b)

Figure 6.51: Uncontrollable system responses generated using freezing

controllers with EKF for Model B at the initial pitch angle 𝑥3 =14.2°: (a) 𝑥1 − 𝑥5

and u against time and (b) 𝑥6 with logarithmic scale against time.

Furthermore, the rank of the controllability matrix of Model B from 𝑥3 =14.2° is

demonstrated in Figure 6.52. It can be seen that red stars appear outside the

yellow area (fully controllable region) and reaches 𝑥6 values of approximately

−1.7 × 1019, causing the system to be not fully controllable.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

166

Figure 6.52: The rank of controllability matrix and dynamical evolution of state

variables 𝑥3 and 𝑥4 of Model B from initial pitch angle 𝑥3 =14.2°, using freezing

technique and EKF (Right figure: Magnified)

Simulation has shown that the maximum initial pitch angle which can be stabilised

from Model AB is slightly increased to 14.3° , which is the broadest angle

comparing against Models A and B with control results presented in Figure 6.53.

At this maximum initial pitch angle, high-frequency oscillations appear before the

signals settle down. Moreover, controllability results show red stars travelling

inside fully controllable region shown in Figure 6.54, which matches the stable

responses observed in Figure 6.53.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

167

(a)

(b)

Figure 6.53: Stabilisation of Model AB using freezing controller with EKF at

initial pitch angle 𝑥3 =14.3°: (a) 𝑥1 − 𝑥5 and u against time and (b) 𝑥6 with

logarithmic scale against time.

Figure 6.54: The rank of controllability matrix and dynamical evolution of state

variables 𝑥3 and 𝑥4 of Model AB from initial pitch angles 𝑥3 =14.3°, using

freezing technique and EKF (Right figure: Magnified)

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

168

As soft constraints of the control input were presented above, an example

of hard input constraint is investigated next and system responses are shown in

Figure 6.55, where the control outcomes from 𝑥3= 20.9° on Model A are identical

using the four different controllers, namely, LQR, LQG, standalone freezing and

freezing & EKF combined. Moreover, the maximum initial pitch angle of the

nonlinear controls with hard constraint is also the same as the linear methods at

20.9°.

Figure 6.55: Stabilisation of the TWR system (Model A) by four controllers with

hard constraint at initial pitch angle 𝑥3=20.9°.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

169

Figure 6.56: Stabilisation of the TWR system using four controllers on Models B

and AB with hard constraint at the initial pitch angle 𝑥3= 20.8°

Next, it can be seen from Figure 6.56 that control outcomes using the standalone

freezing technique and freezing combined with EKF on Models B and AB, from

𝑥3= 20.8° are also identical (when hard control constraints are applied), shown

by the overlapping curves on the six graphs. However, they present a maximum

initial pitch angle of 𝑥3= 20.8°, which is slightly smaller than Model A.

So far, the simulations demonstrated balancing of the two-wheel robot at

a maximum power supply of 8.3V, which is the limitation from a LEGO EV3 robot;

however, in Chapter 3, motor specification of the maximum voltage of the LEGO

EV3 motor from supplier is 12V. Therefore, Table 6.1 illustrates brief simulation

results of stabilising a TWR model with the maximum initial pitch angles if the

voltage supply reaches 12V maximum, compared to 8.3V.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

170

Table 6.1 : The maximum initial pitch angle stabilisable from different controllers

with input constraints 8.3V and 12V.

Controllers Input constraint

8.3V

Input constraint

12V

Hard constraint, Model A

LQR 20.9° 29.1°

LQG 20.9° 29.1°

Freezing technique 20.9° 29.2°

Freezing with EKF 20.9° 29.2°

Soft constraint, Model A

Freezing technique 16.8° 22.8°

Freezing with EKF 14.1° 19.3°

Hard constraint, Alternative models

Freezing with EKF

(Model B)

20.8° 29.1°

Freezing with EKF

(Model AB)

20.8° 29.1°

Soft constraint, Alternative models

Freezing with EKF

(Model B)

14.1° 19.5°

Freezing with EKF

(Model AB)

14.3° 19.7°

In Table 6.1, when the input constraint is increased to 12V, as shown in the 3rd

column, all controllers present significantly higher stabilisation ranges of the

TWR, than previously at 8V. Note, the maximum pitch angles of all controls with

hard constraint at 12V nearly reach 30°, rising by over 8°. When combined with

soft constraint, the maximum pitch angles of nonlinear methods on different

model forms have all increased by 5° − 6°. It is evident that soft and hard

constraints lead to different maximum initial pitch angles. In Section 6.6, the

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

171

experimental result using LEGO hardware will be compared against simulation

outcomes of soft and hard constraints, for further demonstration and analysis.

Next, DC motors with voltages higher than a standard LEGO EV3 motor

is investigated and their specifications are presented in Table 6.2.

Table 6.2: Motor specifications from Maxon company, series EC 32 flat 15W

(Maxongroup, EC 32 flat 15W, 2020)

 Motor series EC 32 flat 15W

1.Nominal voltage (V) 12 24 48

2.No load speed (rpm) 4,610 4,530 4,780

3.Nominal torque (mNm) 25 25.5 24.7

4.Nominal current (A) 1 0.5 0.257

5.Terminal resistance (Ω) 3.51 13.8 53.1

6.Torque constant (mNm/A) 24.1 49 92.8

7.Rotor inertia (gcm2) 35

8. Weight (g) 57

9. Diameter (mm) 32

Three motors from the Maxon series EC 32 flat, shown in Table 6.2, are

selected to for simulation, combining with the LEGO EV3 robot model

parameters. Here, it is assumed that the power supply can vary within the

maximum motor voltage range, and the mass is similar to the current robot power

supply. The simulation outcomes of stabilising the TWR Model A, using these

motors, are summarised in Table 6.3.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

172

Table 6.3: The maximum initial pitch angle stabilisable from different controllers,

with varying motor voltages.

Controllers Motor 12V 15W

(Nominal torque

25 mNm)

Motor 24V 15W

(Nominal torque

25.5 mNm)

Motor 48V 15W

(Nominal torque

24.7 mNm)

Hard constraint

LQR 28.4° 29.8° 29.6°

LQG 28.4° 29.8° 29.6°

Freezing

technique

28.7° 29.9° 29.6°

Freezing with

EKF

28.7° 29.9° 29.6°

Soft constraint

Freezing

technique

22.9° 22.1° 20.7

Freezing with

EKF

20.0° 19.6° 18.9°

Note, from Table 6.3, there are only small differences amongst the maximum

initial pitch angles which can be stabilised by each control method, when the

motor voltage is increased from 12V to 48V. For instance, the maximum initial

angle achieved from using the LQR controller with motor voltages 12V, 24V and

48V (all with similar nominal torques at ~25 mNm) are 28.4°, 29.8° and 29.6°,

respectively. Moreover, the outcomes obtained from using the 12V Maxon motor

shown in Table 6.3 are almost the same as the one from the 12V LEGO EV3

motor, shown in Table 6.1. This is also because the nominal torques are similar

between the two motors, at approximately 25 mNm and 20 mNm, respectively.

The results above prompted the following investigation, using another motor with

a significantly higher nominal torque than the previous two motor series EC 32

flat and the LEGO EV3 motor, i.e., Maxon series EC 60 flat, with its specification

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

173

given in Table 6.4. Note, the weight and diameter parameters of Maxon series

EC 60 flat are also higher than the previous two motors.

Table 6.4: The motor specifications of the series EC 60 flat 100W motor from

Maxon company (Maxongroup, 2020)

 Motor series EC 60 flat, 100W

1.Nominal voltage (V) 48

2.No load speed (rpm) 4,020

3.Nominal torque (mNm) 298

4.Nominal current (A) 2.61

5.Terminal resistance (Ω) 1.11

6.Torque constant (mNm/A) 113

7.Rotor inertia (𝑔𝑐𝑚2) 835

8. Weight (g) 355

9. Diameter (mm) 60

The results of stabilising system Model A with the motor series EC 60 flat are

demonstrated in Table 6.5.

Table 6.5: The maximum initial pitch angle stabilisable from different controllers,

with the 48V series EC 60 flat motor.

Controllers Motor series EC 60 flat, 100W 48V

(Nominal torque 298 mNm)

Hard constraint

LQR 56.3°

LQG 56.3°

Freezing technique 90°

Freezing with EKF 90°

Soft constraint

Freezing technique 88.0°

Freezing with EKF 86.2°

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

174

It can be seen that the maximum initial pitch angle achieved for stabilisation using

all controllers increase significantly, as shown in Table 6.5, compared against the

results from 48V series EC 32 motor shown in Table 6.3, because the motor

nominal torque is now significantly higher. For instance, the maximum stabilisable

pitch angles achieved using the standalone freezing technique (88°) and freezing

technique with EKF (86.2°) with soft constraint shown in Table 6.5 rise by

approximately 67°. Moreover, these angles using the two linear methods also go

up by approximately 27° when using the new motor.

Noticeably, the maximum initial pitch angles which can be stabilised by both

nonlinear control techniques with hard constrained inputs are much higher than

what the linear methods could achieve, by approximately 33.7°. Furthermore, the

freezing technique with and without EKF, using soft constrained inputs, provide

larger initial pitch angles over the linear controllers, by approximately 31.7° and

29.9°, respectively.

This simulation outcome matches the theoretical analysis given in Section 6,3,

that the nonlinear freezing control provides wider operation range than linear

controls. Furthermore, the simulation without input saturation, described in

Section 6.5.1, also presented that maximum initial pitch angles obtained from the

nonlinear methods were higher than linear controls, similar to the test results with

a higher power motor, shown in Table 6.5. These parameters of the new motor

in Table 6.5 can be used to predict the simulation results; however, the practical

experimentation needs to considerate the weight of new power supply or gear

systems and the total mass of the robot system also requires to be updated.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

175

6.5.3 Simulation Results on Model Uncertainty

In this subsection, robustness tests of the control designs for the self-balancing

TWR models are performed in simulation. This is done by adding extra mass and

increasing height of the TWR, to determine the impact of model uncertainties on

system performances. The results are shown and analysed when comparing

nonlinear freezing controls on Models A, B and AB against the LQG controller.

Note that all controllers are subject to the same input saturation as described in

section 6.5.2.

Normally, the mass of the robot’s body and the total height of LEGO EV3 are

0.64kg and 0.21m, respectively, as shown in Chapter4: Table 4.1. However, in

the next simulation, 10% mass and height increases are applied to represent

modelling uncertainty, making the new (actual) mass and height to be 0.7 kg and

0.23m, respectively.

To begin with, Figure 6.57 displays the responses of three TWR models

controlled by the nonlinear freezing technique and EKF from an initial pitch angle

𝑥3 = 12.5°, which is the maximum stabilisable angle for Models A and B, taking

into account of model uncertainties. It can be seen that Model B generates most

oscillations in its response graphs; in contrast, the smoothest curve signals are

generated when controlling Model AB. Moreover, when mass and height of the

TWR are increased to represent model uncertainty but are not reflected in the

models, the maximum initial pitch angles which can be stabilised by freezing and

EKF, on Models A and B, have decreased by 1.6°. Models A and B become

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

176

unstable, when the initial pitch angle is beyond𝑥3 = 12.5°, as demonstrated in

Figure 6.58..

Figure 6.57: Stabilisation of TWR Models A, B and AB (with model

uncertainties) by freezing controller with EKF from initial pitch angle 𝑥3 =12.5°.

Figure 6.58: Unstable response of TWR Models A and B (with model

uncertainties), by freezing control with EKF from initial pitch angle 𝑥3 =12.6°.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

177

Additionally, Model AB can achieve slightly larger initial pitch angle (13°)

for stabilisation than Models A and B (12.6°). Figure 6.59 shows the stabilised

system response from an initial pitch angle 𝑥3 = 13°, which represents a

decrease from 14.3° achieved previously when weight and height parameters

were correctly modelled. When increasing the initial pitch angle to 13.1°, Model

AB displays unstable responses, as shown in Figure 6.60.

Figure 6.59: Stabilisation of TWR Model AB (with model uncertainties) by

freezing controller with EKF from the initial pitch angle 𝑥3 =13°.

Figure 6.60: Unstable response of TWR Model AB (with model uncertainties),

by freezing controller with EKF at initial pitch angle 𝑥3 =13.1°.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

178

In terms of linear control, the LQG with hard constrained input is applied

to stabilise the system in Figure 6.61, presenting the maximum initial angle 𝑥3 =

19.7° lower than before adding weight and height approximately 1.2°. Beyond this

angle, the system is uncontrollable, as demonstrated in Figure 6.62. Significantly,

the maximum initial pitch angle by the LQG is wider than the nonlinear controllers.

This is because they apply the input constraint method to control the systems,

which is different from the nonlinear controllers.

Figure 6.61: Stabilisation of LQG controller at the initial pitch angle 𝑥3 = 19.7°

Figure 6.62: Uncontrollable system of LQG controller at the initial pitch angle

𝑥3 = 19.8°

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

179

6.6 Experimental Results

In this section, the standard freezing control and freezing technique with extended

Kalman filter (EKF) will be applied to the LEGO Mindstorms EV3 robot, using the

Simulink block diagrams shown in Appendix B (Figures B3.1 and B3.3).

As described in Section 6.3, the feedback gains of nonlinear controllers

were generated by solving algebraic Riccati equation at every time step.

Unfortunately, the algebraic Riccati MATLAB function does not support code

generation in Simulink programme; in this case, the algebraic Riccati function

cannot run on the LEGO EV3 robot directly. Therefore, lookup tables of the

algebraic Riccati equation have been used to store the feedback gains 𝑲 and

𝑲𝒇 for standard freezing technique and freezing technique with EKF, calculated

in MATLAB. Because of the limitation of LEGO EV3’s memory, the lookup tables

were designed by restricting the state variable 𝑥3 to be between −20°and 20° ,

and state variable 𝑥4 to be between −130°/𝑠 and 130°/𝑠, covering the operation

ranges achievable using the hardware specifications; moreover, the

measurement precisions for the pitch angle 𝑥3 and the pitch angular velocity 𝑥4

were at nearest 1° and 5°/𝑠, respectively (see details in Appendix B, Table B3.1).

6.6.1 Implementations from Varied Initial Pitch Angles

The results of hardware implementation by applying the freezing

techniques with varied initial pitch angles are demonstrated in Figures 6.63-6.68.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

180

(a)

(b)

Figure 6.63: The stabilising freezing control implemented on LEGO EV3 robot

compared to simulation, at initial pitch angles (𝑥3): (a) 8° and (b) 16.8°

In Figure 6.63, first of all, the outcomes of balancing TWR system using

the standard freezing technique with input constraint in simulation (red plot) and

hardware implementation (blue plot) are presented, from the initial pitch angles

𝑥3 = 8° and 16.8° (previous simulation results show the maximum stabilisation

angle is at 16.8°). It can be seen that hardware signals of state variables 𝑥1, 𝑥3

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

181

and 𝑥5 in Figure 6.63 (a) and (b) diverge from the centre, due to the issues of

gyro sensor drifts. In particular, both pitch angles 𝑥3 drift away significantly (by

approximately −8°) after 10 seconds of simulations. This error also affects state

variables 𝑥1 and 𝑥5 as they are continually compensating for the sensor drift

problem. For example, state variables 𝑥1 in both Figure 6.63 (a) and (b) deviate

from the reference positions by approximately 60° and also in both figures,

𝑥5 diverge from the reference angle by approximately 600° after the robot is

stabilised in 10 seconds.

Figure 6.64: The stabilisation from different initial pitch angles (𝑥3) 16.6° and

18°, implemented on LEGO EV3 robot using freezing technique

When the initial pitch angle is increased to 18° in Figure 6.64, the sensor

drift problem is still apparent. Furthermore, the maximum deviations from the two

sets of responses are similar; for instance, both maximum overshoots of wheel

angles 𝑥1 are at approximately 250°, and both lowest drifts of the pitch angles 𝑥3

are about −12°. Slightly more oscillations occur in the 𝑥3 response when starting

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

182

from 18°, with an approximate 6° increase in maximum overshoot when compared

against the 𝑥3 response when starting from 16.6°. In addition, there are a few

more undershoots in the 𝑥1 plot for the initial pitch angle =18° case. These

additional overshoots and undershoots occur because the LEGO EV3 robots

requires longer distance and more time to balance itself when the initial angle

increases.

Over this limitation angle, the hardware crashes because it resulted in an

unstable system, as shown in Figure 6.65. Significantly, the freezing technique

illustrates slightly more extensive operation range (18°) than the LQR method (by

approximately 2°) when performed on the Lego two-wheel robot with input

constraint. This is because the feedback gain of nonlinear freezing control is

varied by state variables, in contrast to the linear method where the gain is

constant.

Figure 6.65: Unstable responses from the initial pitch angle18.5°, implemented

on LEGO EV3 robot using freezing technique

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

183

In terms of combining freezing technique with EKF, Figure 6.66 compares

the outcomes of simulation and LEGO EV3 robot when implementing at the initial

pitch angles 8° and 14°, which is close to the maximum initial angle in simulation

(14.1°).

(a)

(b)

Figure 6.66: Stabilising control of the LEGO EV3 robot compared to simulation

at the initial pitch angles: (a) 𝑥3 =8° and (b) 𝑥3 =14°,using freezing technique

with EKF

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

184

It can be seen from Figure 6.66 (a) and (b) that both hardware signals (blue

curves) in the state variable 𝑥3 graphs converge to the reference position in the

same way as the simulation signals (red curves), because gyro sensor drifts are

reduced by the application of the extended Kalman filter. In contrast, there are

slight errors shown in both wheel integrals 𝑥5 of the LEGO EV3 robot, which do

not converge to the reference position. This is due to the averaged signals of

wheel angles 𝑥1 not being centred, caused by hardware vibrations. For instance,

both initial pitch angles show that signals diverge from the centre by

approximately −20°. Note, the maximum overshoots of state variables 𝑥1 and 𝑥5

in hardware implementation show almost the same results as in simulation.

 In the case of increasing initial pitch angle, the maximum initial angle

achievable by the freezing technique with EKF is 18°, as shown in Figure 6.67,

which is similar to the standalone freezing technique (without EKF). Similarly,

simulation results in Section 6.5.2 show that the freezing technique with EKF

stabilised system equally well as the standalone freezing technique, under

constraint conditions. Noticeably, the gyro sensor drift is now much reduced.

Moreover, the maximum deviations of the two sets of responses shown in Figure

6.67 have slight differences when the initial pitch angle is increased from 14° to

18°. For instance, the maximum magnitude of the wheel angle 𝑥1 grows by

approximately 70° and the undershoot of 𝑥3 expands by approximately 2°,when

initial pitch angle increases.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

185

Figure 6.67: The stabilisation from different initial pitch angles (𝑥3) 14° and 18°,

implemented on LEGO EV3 robot using freezing technique with EKF (sensor

drift reduced)

At over the initial angle of 18°, the LEGO EV3 controlled by the freezing

technique with EKF results in an unstable system and crashes and the responses

are given in Figure 6.68.

Figure 6.68: Unstable responses from the initial pitch angle 18.5°, implemented

on LEGO EV3 robot using freezing technique with EKF

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

186

6.6.2 Alternative Models’ Implementations

In this subsection, nonlinear feedback control of alternative models, including

Models B and AB, are tested on a practical robot with varied initial pitch angles,

compared against the primary model (Model A). Note that, in the case of

nonlinear control, only freezing control combined with EKF is selected for

implementation (to resolve the sensor drift issue), of which the simulation tests

have been completed in section 6.5.2

Firstly, the freezing control and EKF gains obtained from using Model B,

are implemented on the LEGO EV3 robot. The result in Figure 6.69 shows that

the system is unstable, although the initial pitch angle is set as 0° or at the

balancing point. This unstable system response matches the controllability test

outcome, which demonstrated that the area near 𝑥3 = 0° is not fully controllable

when Model B is used to represent the TWR system.

Figure 6.69: Unstable response from the initial pitch angle 𝑥3= 0°, implemented

on LEGO EV3 robot using freezing technique with EKF on Model B

 Additionally, Figure 6.70 illustrates the maximum initial pitch angle

achievable for Model AB, 𝑥3 = 20°, slightly larger than the one from Model A (18°)

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

187

and also wider than what the linear controllers could achieve, i.e., LQR (16°) and

LQG (16°). Once goes over the initial angle of 20°, the TWR represented by Model

AB becomes unstable and crashes, as shown in Figure 6.71.

Figure 6.70: The stabilisation from initial pitch angle 𝑥3 = 20°, implemented on

LEGO EV3 robot using freezing technique with EKF on Model AB

Figure 6.71: Unstable response from initial pitch angle 𝑥3 = 20.5°, implemented

on LEGO EV3 robot using freezing technique with EKF on Model AB

It can be seen that the balancing system using Model AB gains benefit

from combining the models, utilising the strengths of Models A and B in different

regions: i.e., the feedback gains of Model B are used to control wide pitch angles

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

188

and the feedback gains of Model A are used to balance the system at around the

equilibrium (upright position). This is the reason that a mixed nonlinear model can

provide more comprehensive operation range than otherwise.

6.6.3 Model Uncertainty Implementations

The robustness tests of implementing control designs on the LEGO TWR with

model uncertainties (by increasing 10% of mass and height) are demonstrated in

this subsection. Three balancing systems are investigated through a series of

tests, including the applications of the LQG controller, and the freezing controller

with EKF using feedback gains calculated using Models A and AB. Note that

Model B is not considered in the robustness test as the feedback gains of the

model could not stabilise the robot at equilibrium, as presented in Figure 6.69.

 To begin with, the maximum initial pitch angle of balancing robot system

using LQG controller under the specified model uncertainties, is 15°, and the

responses are shown in Figure 6.72. This angle is lower than an accurately

modelled system (without extra weight and height) using the LQG controller by

approximately 2°. Moreover, the system becomes unstable when the initial pitch

angle is increased over 15°, as shown in Figure 6.73.

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

189

Figure 6.72: The stabilisation from initial pitch angle 𝑥3 = 15°, implemented on

LEGO EV3 robot using LQG controller with added mass and height

Figure 6.73: Unstable response from initial pitch angle 𝑥3 = 15.5°, implemented

on LEGO EV3 robot using LQG controller with added mass and height

Furthermore, the practical control of the LEGO robot with added mass and

height, utilising feedback gains calculated from Model A, is presented in Figure

6.74. As the mass and height are both increased by 10%, the maximum initial

pitch angle stabalisable is dropped from 18° to 16°. When goes over the initial

pitch angle 16°, the LEGO EV3 robot crashes as the system becomes unstable,

shown in Figure 6.75. However, this initial angle is slightly larger than when the

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

190

robot was control using LQG controller (shown in Figure 6.72), by approximately

1°.

Figure 6.74: The stabilisation from initial pitch angle 𝑥3 = 16° implemented on

LEGO EV3 robot using freezing control and EKF on Model A, with added mass

and height

Figure 6.75: Unstable responses from initial pitch angle 𝑥3 = 17°, implemented

on LEGO EV3 robot using freezing control and EKF on Model A with added

mass and height

Finally, the extra mass and height are added to a TWR controlled by

freezing control and EKF with feedback gains obtained using Model AB. The

stabilising system responses are demonstrated in Figure 6.76 with the maximum

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

191

initial pitch angle reaching 18°, representing a decrease of roughly 2°, from the

unloaded condition. Significantly, this initial angle of 18° is the widest when

comparing against outcomes obtained from other controllers, under the same

model uncertainty condition. The maximum initial pitch angle achieved here is

larger than using the freezing control and EKF with Model B by approximately 2°,

and wider than the LQG controller by approximately 3°.

Figure 6.76: The stabilisation from initial pitch angle 𝑥3 = 18°, implemented on

LEGO EV3 robot using freezing control and EKF on Model AB, with added

mass and height

Figure 6.77: Unstable responses from initial pitch angle 𝑥3 = 19°, implemented

on LEGO EV3 robot using freezing control and EKF on Model AB, with added

mass and height

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

192

The maximum initial pitch angle of a TWR which can be stabilised by

different controllers are summarised in Table 6.6.

Table 6.6: The maximum initial pitch angles achieved using different controllers,

in simulations and in practical implementations.

 Input

unconstrained

simulation

Hard input

constrained

at 8.3V,

simulation

Soft input

constrained

at 8.3V,

simulation

LEGO EV3

robot

implementation

LQR

65.7° 20.9° Incapable 16°

LQG

65.7° 20.9° Incapable 16°

Freezing

(Model A)

87.2° 20.9° 16.8° 18°

Freezing with EKF

(Model A)

87.2° 20.9° 14°. 1 18°

Alternative models

Freezing

(Model B)

90° 20.8°

Freezing with EKF

(Model B)

90° 20.8° 14.1° Not fully

controllable

Freezing

(Model AB)

90° 20.8°

Freezing with EKF

(Model AB)

90° 20.8° 14.3° 20°

Model uncertainty test: Adding 10% extra mass and height

LQG

 19.7° Incapable 15°

Freezing with EKF

(Model A)

 12.5° 16°

Freezing with EKF

(Model B)

 12.5° Not fully

controllable

Freezing with EKF

(Model AB)

 13° 18°

It is evident from the summary table, Table 6.6, that nonlinear controllers

provide larger stabilisation ranges and are more robust (when subject to model

uncertainties) than linear controllers, in both simulation and practical

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

193

experimentations. Furthermore, nonlinear controls also present opportunities of

combining multiple state-space models so their strengths in different controllable

regions can be utilised. The combined model, Model AB, controlled by the

nonlinear freezing method and EKF therefore demonstrated the widest

operational range, as shown in this research.

6.7 Conclusion

 In this chapter, the stabilisation problem of an inverted pendulum on a cart

system was studied first, through controller designs (LQR, nonlinear freezing

control and nonlinear iteration (also called LTV) scheme) and simulation

verifications. The results demonstrated that both nonlinear control methods were

capable of providing stabilising control on broader ranges of the pendulum rod

angle than the optimal linear control method could. The largest angle stabilisable

was obtained by the nonlinear freezing controller at 80.5°, followed by the LTV

method at 61.3° and the smallest angle achievable amongst the three powerful

techniques was given by the LQR controller, at 49.2°. This is because both the

nonlinear freezing technique and the iteration scheme calculate and refresh

feedback gains based on the time-varying state variables at the current time (at

every new time step, in digital implementation). In contrast, the feedback gains of

linear control are calculated based on the linearised model and fixed, assuming

the system would operate around a small neighbourhood of the equilibrium. As

illustrated by the simulation results in this chapter, the advanced nonlinear

freezing control demonstrated higher capability of stabilise the inverted pendulum

system than the LTV method. On top of that, practical considerations revealed

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

194

that the memory of LEGO EV3 was too limited to store large data sets needed

for the LTV controller. Therefore, the nonlinear freezing method is selected as the

control technique for the stabilisation of a two-wheeled robot, in simulation and

practical implementation on a LEGO EV3 prototype in the later sections.

 In the case of TWR simulation, both the standalone nonlinear freezing

technique and the nonlinear freezing + EKF showed very similar results for all

initial pitch angles tested under an unconstrained input condition. Moreover, the

maximum initial pitch angles achievable from these two controllers were also

nearly identical, at ~87.2°. In particular, both nonlinear freezing controls

demonstrated significantly wider operation ranges to balance the TWR system

than the LQR (by approximately 21.5°) with the same parameter settings

otherwise. Noticeably, a 2nd advantage of the nonlinear freezing method was

shown in this chapter, that one could analyse controllabilities of different state-

space models of the system and combine appropriate models to enlarge the

overall controllability range. It was demonstrated that a mixed model, namely

Model AB, controlled by the freezing + EKF method, could reach an initial pitch

angle up to 90°, wider than the angle achievable from the primary model (Model

A) and any other methods reported in the literature.

In terms of the TWR control simulation under input saturation, both

freezing techniques presented similar results as the implementation; on the other

hand, the limitation of initial pitch angles were slightly different, where the

standalone freezing method demonstrated slightly higher initial pitch angle, by

approximately 3°. Note, the maximum initial pitch angles of nonlinear standalone

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

195

freezing technique and freezing technique with EKF were identical to the LQR

and LQG methods (20.9°), when a hard constraint of 8.3V control input by the

LEGO EV3 power supply was applied. Moreover, the combination model (Model

AB) was also investigated in simulations, and it presented slightly wider operation

range over the primary model (Model A) and Model B using nonlinear freezing

controllers with EKF, but less than the LQG method using hard input constraint

by approximately 7°. Furthermore, the inclusion of other motors with high powers

were studied in simulations. The results demonstrated both freezing techniques

operating at extensive initial pitch angles (over 86°) under soft constrained input

condition, which were much wider than the linear methods (by ~30°), when the

maximum motor voltage was increased to 48V and the motor torque was

increased to nearly 15 times higher (298 mNm) than LEGO EV3’s motor (20

mNm). Significantly, the initial pitch angles using both nonlinear freezing

techniques (with and without EKF) reached to 90°, when using the hard

constrained input.

Additionally, robustness tests were conducted in simulation and on the

LEGO robot. The TWR models with input saturation were simulated under model

uncertainties by adding 10% mass and height to the robot in simulation. It was

demonstrated that both the freezing control and EKF (applied to three models)

and LQG, were capable of stabilising the system in the upright position, even

though the initial pitch angles were reduced by approximately 1°.

With regard to hardware implementation, the LEGO EV3 robot was tested

to show it could be stabilised from different initial pitch angles with suitable control

CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS

196

designs. Both freezing techniques (without and with EKF) demonstrated excellent

control of the LEGO EV3 robot, satisfying the self-balancing requirement. In

particular, the nonlinear controls with the feedback gains obtained from using the

primary model presented slightly better capability than the linear methods, where

the maximum initial pitch angles achieved are larger than the linear controllers

(16°) by approximately 2°. When the mixed model (Model AB) is utilised, this

difference of using the nonlinear freezing technique with EKF over LQG is

increased to 4°. In the case of adding model uncertainties, the practical robot

remains stabilised using the linear optimal and nonlinear optimal controllers;

however, the maximum initial pitch angles from both methods dropped by

approximately 1° − 2°. Importantly, clear advantage of using the nonlinear

freezing method for the mixed model was shown when the maximum stabilisable

angle was 2° and 3° larger than using the LQG method and using freezing on the

primary model, respectively.

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

197

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The aim of the research presented in this thesis is to study, analyse and apply

nonlinear optimal control techniques to stabilise two highly unstable systems,

namely, the inverted pendulum on a cart and the two wheeled robot. This has

been achieved through mathematical modelling, controller design, signal filtering

estimation, simulation and practical implementation.

 7.1.1 Mathematical Models

The inverted pendulum on a cart system is a classical benchmarking tool

for testing capabilities and effectiveness of different control methods and shares

similar dynamical structures with the two-wheeled robot. Therefore, the inverted

pendulum model was investigated in this research first. The initial model in

nonlinear differential equation form was obtained using the Lagrangian approach

based on the system's potential energy and kinetic energy. Then, a nonlinear

state-space matrix form of the inverted pendulum on a cart system was presented

and the system matrix A heavily depended on the state vector, in particular, the

pendulum angle and the angular velocity. This nonlinear state-space model was

approximated as a linear one, assuming the pendulum angle was within a small

neighbourhood of the equilibrium, i.e., near the upright position. Note that state-

space representations are generally non-unique for any system which affect the

controllability of the system. Therefore, different forms of the state-space matrices

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

198

of the inverted pendulum system were derived and the associated controllability

analyses were performed.

Likewise, a nonlinear model consisting of a set of differential equations of

the TWR were created using the Lagrangian method which led to nonlinear and

(subsequently approximated) linear state-space models. A key difference

between the controls for the IP system and the TWR was the physical control

variables designed: for the IP system, this was a force on the cart in the horizontal

axis, whilst for the TWR, they were motor voltages. Therefore, forces were

converted to voltages in the system equations for the TWR. Additionally, a

tracking design was combined with the TWR equations to form a higher order

system, supporting the robot to track a pre-defined wheel displacement

reference.

7.1.2 Linear Control Implementations

Controllability tests were utilised to analyse whether a linear state-space

controller such as LQR would be appropriate for the control of the linearised IP

and TWR systems first. The rank tests of the controllability matrices of both

models demonstrated that the linearised systems were completely controllable.

Furthermore, observability tests were also conducted on these linear models

which examined whether the state variables could be estimated or observed

using measurements made at the outputs. The results illustrated that both

systems were completely state observable and therefore suitable for Kalman filter

designs and implementations.

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

199

Next, simulations of an inverted pendulum on a cart controlled by LQR, starting

from a range of initial pendulum angles, were performed. It was found that the

maximum initial pitch angle of an IP system which the LQR method could stabilise

without input saturation was 42.9°. In the case of a TWR model, the balancing

system by LQR and LQG controllers demonstrated a similarly limited initial pitch

angle of 65.7°, without input saturation. Moreover, when a hard input constraint

of 8.3V was applied in simulation, the TWR model reached a maximum initial

pitch angle at 20.3°, for both linear control methods (LQR and LQG).

Furthermore, a practical TWR prototype, built with LEGO Mindstorms EV3 kit,

was used to verify simulation outcomes from both linear controllers. The

implementations showed that the robot could be stabilised and maintained in the

upright vertical position, from a maximum initial pitch angle of 16°, when using

both linear control techniques. In particular, a gyro sensor drift issue experienced

in the LQR control system was significantly reduced by the Kalman filter

embedded in the LQG controller.

 7.1.3 Nonlinear Control Implementations

Similar design procedures as the linear controls took place for the

nonlinear controls. First, controllability and observability tests were conducted for

nonlinear models of the IP system and TWR system. However, different to the

linear cases, the controllability and observability matrices depended on the state

variables of the nonlinear systems and therefore the rank test results vary. These

were explored pictorially as 2D or 3D plots, showing fully controllable regions and

others which are not fully controllable. This information was helpful in predicting

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

200

suitability of the nonlinear system to be stabilised by nonlinear state-space

controllers.

Two advanced nonlinear control methods, namely the nonlinear optimal

freezing technique and the nonlinear iteration scheme, were designed and

applied to control the IP model without input saturation, in simulations. The results

demonstrated that both nonlinear controllers achieved larger initial pendulum

angle ranges than LQR and LQG. This is because the nonlinear methods

calculated state-variable dependent feedback gains and applied them to the

systems at appropriate points; on the other hand, the feedback gains of linear

controls were fixed for the linearised model which assumed the operation of IP

around a restricted area around the balancing position. Moreover, the stabilising

system by nonlinear freezing control method presented a wider initial pitch angle

than the nonlinear iteration scheme by approximately 20°, therefore, the freezing

control was selected as the best performing controller for the study on the

practical TWR next.

In the case of TWR models, excellent simulation results were obtained

when balancing the system using both a standalone nonlinear freezing controller

and a freezing control with EKF (with no input saturation), illustrating maximum

initial pitch angles of the TWR’s body, both at 87.2°. These were larger than both

linear methods by approximately 21.5°. These results were supported by the

controllability test, showing dynamic evolution paths of the state variables

(starting from 87.2°) stayed within the fully controllable area. When the initial

angles were over 87.2°, in contrast, the state variables travelled outside of the

fully controllable regions. Next, input saturations were introduced to the TWR

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

201

control in simulation to take into account of physical limitations on motor voltages.

Several voltage saturations between 8.3V to 48V were experimented, and

simulation results demonstrated that the stand-alone freezing technique and

freezing with EKF when operating with a motor at 48V voltage and 298 mNm

nominal torque, achieved maximum stabilised initial pitch angles, at 88° and 86°,

respectively. These pitch angles were larger than any other single closed-loop

control technique could achieve, as reported in the literature, and were much

wider than the ones obtained by linear optimal controllers shown in this thesis, by

approximately 30°- 32°.

Additionally, the advantage of performing controllability tests was that different

state-space models of the TWR system could be combined to create better

controllability outcomes. For example, simulation results showed that the new

mixed model, Model AB, of the TWR system, demonstrated the largest initial pitch

angle, when compared against the primary model and Model B.

 Experimentations using the TWR prototype constructed from LEGO EV3

demonstrated satisfying results for balancing the system in the upright position,

using nonlinear freezing controls with and without EKF. Significantly, the largest

initial pitch angle stabilisable was achieved as 20°, using the freezing control and

EKF gains calculated from the mixed model AB, which was wider than the

nonlinear freezing control from the primary model (Model A) by approximately 2°,

and larger than the linear optimal methods by 4°. Furthermore, robustness tests

(with introduced model uncertainties) were conducted on the LEGO robot with

nonlinear freezing and EKF applied. The implementation illustrated that all

controllers still stabilised the robot in the upright position when undergoing mass

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

202

and height increments and the nonlinear controllers still operated at larger initial

pitch angles than the linear methods. All the above simulation and implementation

outcomes demonstrated that the nonlinear optimal freezing control was a

powerful technique, in achieving global control with excellent performance.

7.2 Recommendation for Future Work

In this thesis, research work focused on the applications of two advanced

nonlinear control techniques on the stabilisations of the inverted pendulum and

the two-wheeled robot systems in simulation and practical implementation. In

future work, a practical robot prototype should be upgraded to one with a higher

motor voltage and nominal toque, as well as being more flexible. For instance,

the robot built from an Arduino microcontroller or NI myRIO Embedded Device

may be a better choice, as it can apply 3rd party hardware to make the system

more stable. In the experiments conducted during this research, a LEGO

Mindstorms EV3 was selected to build the TWR prototype because of the

availability of this resource; however, it was complicated to integrate other

sensors or actuators into the LEGO EV3 controller. For example, there was

merely a gyro sensor that could be used to calculate the pitch angle which caused

the sensor drift problem. An accelerometer could not be added to the LEGO robot

for calculating the pitch angle by the sensor fusion technique.

With regard to the actuator performance, the voltage range of motor should be

increased in future work. It could be seen in the simulation of nonlinear systems

in section 6.5.2 that a high voltage motor provided a wider operational range to

stabilise the system.

CHAPTER 7 CONCLUSIONS AND FUTURE WORK

203

Additionally, the flash memory storage of a LEGO EV3 controller had been limited

to 5 MB for downloading a file, which was a small capacity for storing data; for

instance, the look-up table of nonlinear freezing control technique needed to

manage the limited data range to store inside the LEGO robot’s memory.

Therefore, the replacement robot should have more memory to increase the

amount of control gain data stored and would therefore lead to better control

outcomes.

For control strategy development, the simulation of nonlinear control, namely the

iteration scheme based on the LQR controller, demonstrated a smaller operating

range than the freezing technique; however, the iteration scheme can be

combined with various other control techniques to provide feedback gains, which

are likely to achieve a more comprehensive operation range or more stable

system. For instance, the combination of a sliding mode controller and the

iteration scheme was used to control velocity tracking of a hydraulic press model

(Du et al.,2009); furthermore, the mixing of iteration scheme and pole placement

technique was applied to control F-8 aircraft (Tomas-Rodriguez & Banks, 2013)

When the practical robot is upgraded in the future, the operational range of the

stabilising system is expected to be more extensive, as the simulation resulted

had so far indicated. Therefore, implementations on the upgraded robot will

demonstrate the advantages of the nonlinear control systems against the linear

methods more obviously, such as when the TWR robot is subject to external force

disturbances or travelling on uneven surfaces, etc.

REFERENCES

204

References

Ahmad, S., & Siddique, N. (2011). A Modular Fuzzy Control Approach for Two-Wheeled

Wheelchair. Journal of Intelligent & Robotic Systems, 64(3), 401–426.

Ahn, J., & Jung, S. (2014). Development of a two-wheel mobile manipulator: balancing

and interaction control. Robotica, 32(7), 1135–1152.

Alkamachi, A. (2020). Integrated SolidWorks and Simscape platform for the design and

control of an inverted pendulum system. Journal of Electrical Engineering, 71(2),

122–126.

Anderson, B., & Moore, J. (1989). Optial control : linear quadratic methods. New Jersey:

Prentice Hall.

Aranda-Escolástico, G., Guinaldo, M., Santos, M., & Dormido, S. (2016). Control of a

Chain Pendulum: A fuzzy logic approach. International Journal of Computational

Intelligence Systems, 9(2), 281–295.

Åström, F., & Furuta, K. (2000). Swinging up a pendulum by energy control. Automatica

(Oxford), 36(2), 287–295.

Banks, S. P., & Dinesh, K. (2000). Approximate Optimal Control and Stability of

Nonlinear Finite- and Infinite-Dimensional Systems. Annals of Operations

Research, 98(1), 19–44.

Banks, S. P., & McCaffrey, D. (1998). Lie algebras, structure of nonlinear systems and

chaotic motion. International Journal of Bifurcation and Chaos, 8 (7),, 1437–1462.

Banks, S., & Mhana, K. (1992). Optimal control and stabilization for nonlinear system.

IMA Journal of Mathematical Control and Information, 179-196.

Batmani, Y., & Khaloozadeh, H. (2013). Optimal chemotherapy in cancer treatment: state

dependent Riccati equation control and extended Kalman filter. Optimal Control

Applications and Methods, 562–577.

Brunton, S., & Kutz, J. (2019). Data-Driven Science and Engineering: Machine Learning,

Dynamical Systems, and Control. Cambridge: Cambridge University Press.

Burns, R. (2001). Advanced Control Engineering. Oxford: Butterworth-Heinemann.

Chang, C., & Liu, T. (2007). LQG Controller for Active Vibration Absorber in Optical Disk

Drive. IEEE Transactions on Magnetics, 43(2), 799–801.

Chiasson, J. (2005). Modeling and High Performance Control of Electric Machines. New

York: Wiley-IEEE Press.

REFERENCES

205

Chu, T., & Chen, C. (2017). Design and Implementation of Model Predictive Control for

a Gyroscopic Inverted Pendulum. Applied Sciences, 7(12), 1272.

Çimen, T., & Banks, S. P. (2004a). Global optimal feedback control for general nonlinear

systems with nonquadratic performance criteria. Systems & Control Letters, 327-

346.

ÇImen, T., & Banks, S. P. (2004b). Nonlinear optimal tracking control with application to

super-tankers for autopilot design. Automatica, 40(11), 1845-1863.

Çimen, T., & Merttopçuoğlu, A. (2008). Asymptotically Optimal Nonlinear Filtering:

Theory and Examples with Application to Target State Estimation. IFAC

Proceedings, 8611–8617.

Cruz, D., García, S., & Bandala, M. (2016). ANN-Based Control of a Wheeled Inverted

Pendulum System Using an Extended DBD Learning Algorithm. International

Journal of Advanced Robotic Systems, 13(3), 99.

da Silva, A., & Sup, F. (2017). A Robotic Walker Based on a Two-Wheeled Inverted

Pendulum. Journal of Intelligent and Robotic Systems, 86(1), 17–34.

Du, C., Xu, X., Banks, S., & Wu, A. (2009). Control of nonlinear functional differential

equations. Nonlinear Analysis, 71(12), e1850–e1857.

Du, J., Gerdtman, C., Gharehbaghi, A., & Lindén, M. (2017). A signal processing

algorithm for improving the performance of a gyroscopic head-borne computer

mouse. Biomedical Signal Processing and Control, 35, 30-37.

Dutton, K., Thompson, S., & Barraclough, W. (1997). The art of control engineering.

Addison-Wesley.

Ev3dev. (2020). Retrieved from ev3dev: https://www.ev3dev.org/

Fang, J. (2014). The LQR controller design of two-wheeled self-balancing robot based

on the particle swarm optimization algorithm. Mathematical Problems in

Engineering, 2014, 1-6.

Ford, J. (2011). Lego Mindstormstm NXT 2.0 for Teens. Boston: Course Technology.

Grasser, F., D'Arrigo, A., Colombi, S., & Rufer, A. (2002). JOE: a mobile, inverted

pendulum. IEEE Transactions on Industrial Electronics, 49(1), 107–114.

Hanselmann, H., & Engelke, A. (1988). LQG-control of a highly resonant disk drive head

positioning actuator. IEEE Transactions on Industrial Electronics, 35(1), 100–

104.

Harrison, R. F. (2003). Asymptotically optimal stabilising quadratic control of an inverted

pendulum. IEE Proceedings - Control Theory and Applications.

Hassenplug, S. (2003). Steve's LegWay. Retrieved from Teamhassenplug:

http://www.teamhassenplug.org/robots/legway/

REFERENCES

206

Itik, M. (2016). Optimal control of nonlinear systems with input constraints using linear

time varying approximations. Nonlinear Analysis: Modelling and Control, 21(3),

400–412.

Itik, M., Salamci, M. U., & Banks, S. P. (2009). Optimal control of drug therapy in cancer

treatment. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1473-

e1486.

Jung, S., & Kim, S. S. (2008). Control Experiment of a Wheel-Driven Mobile Inverted

Pendulum Using Neural Network. IEEE Transactions on Control Systems

Technology, 16(2), 297–303.

Kalman, R. (1960). A New Approach to Linear Filtering and Prediction Problems. ASME

Journal of Basic Engineering, 82, 35-45.

Kalman, R., & Bucy, R. (1961). New Results in Linear Filtering and Prediction Theory.

ASME Journal of Basic Engineering, 95-108.

Kharola, A., & Patil, P. (2017a). Dynamic stabilization of one wheel mobile robot

(OWMR): a soft-computing approach. Journal of Industrial and Production

Engineering, 34(6), 477–485.

Kickstarter. (2021). Jyrobike - Auto Balance Bicycle. Retrieved from Kickstarter:

https://www.kickstarter.com/projects/529668138/jyrobike-auto-balance-bicycle

Kim, H., & Jung, S. (2016). Control of a two-wheel robotic vehicle for personal

transportation. Robotica, 34(5), 1186-1208.

Kokkrathoke, S. (2018). Design of Self-Balancing Two-Wheeled Robot Using Neural

Networks Based Model Predictive Control [Unpublished master’s degree

dissertation]. United Kingdom: Sheffield Hallam University.

Kralev, S., Slavov , T., & Petkov, P. (2016). Design and experimental evaluation of robust

controllers for a two-wheeled robot. International Journal of Control, 89(11),

2201–2226.

Lee, C., Dao, N., Jang, S., Kim, D., Kim, Y., & Cho, S. (2016). Gyro Drift Correction for

An Indirect Kalman Filter Based Sensor Fusion Driver. Sensors, 16(6), 864.

LEGO. (1999). Robotic Invention System 1.5. Retrieved from LEGO:

www.lego.com/cdn/product-assets/product.bi.core.pdf/4129418.pdf

LEGO. (2020a). LEGO® Mindstorms. Retrieved from Lego: https://www.lego.com/en-

gb/themes/mindstorms/about

LEGO. (2020b). LEGO. Retrieved from MINDSTORMS: https://www.lego.com/en-

gb/themes/mindstorms

REFERENCES

207

LEGO. (2020c). LEGO® MINDSTORMS® Education EV3 Developer Kits. Retrieved

from Education.Lego: https://education.lego.com/en-gb/support/mindstorms-

ev3/developer-kits

LEGO. (2021). LEGO MINDSTORMS Education EV3. Retrieved from

education.lego.com: https://education.lego.com/en-us/product-

resources/mindstorms-ev3/downloads/building-instructions

LeJOS. (2009). Retrieved from LeJOS: http://www.lejos.org/index.php

Lewis, F., Xie, L., & Popa, D. (2007). Optimal and Robust Estimation With an Introduction

to Stochastic Control. Florida: CRC Press.

Mahmoud, M., & Nasir, M. (2017). Robust Control Design of Wheeled Inverted Pendulum

Assistant Robot. IEEE/CAA Journal of Automatica Sinica, 4(4), 628–638.

Manousiouthakis, V., & Chmielewski, D. (2002). On constrained infinite-time nonlinear

optimal control. Chemical Engineering Science, 105–114.

Masakatsu, M. (2015). Development of rotary inverted pendulum using LEGO

MINDSTORMS. Measurement and Control, 192–195.

Mathworks. (2020). Mathworks. Retrieved from https://uk.mathworks.com/

Maxongroup. (2020, April). EC 32 flat 15W. Retrieved from Maxongroup:

https://www.maxongroup.co.uk/medias/sys_master/root/8841185394718/EN-

282.pdf

Maxongroup. (2020, April). EC 60 flat 100W. Retrieved from Maxongroup:

https://www.maxongroup.co.uk/medias/sys_master/root/8841185656862/EN-

294.pdf

MSCsoftware. (2020). About: MSC Software Simulating Reality, Delivering Certainty.

Retrieved from MSCsoftware: https://www.mscsoftware.com/About-MSC-

Software

Nemra, A., & Aouf, N. (2010). Robust INS/GPS Sensor Fusion for UAV Localization

Using SDRE Nonlinear Filtering. IEEE Sensors Journal, 789–798.

Netgear. (2020). WNA1100 - N150 Wireless USB Adapter. Retrieved from Netgear:

https://www.netgear.com/support/product/WNA1100.aspx

Ogata, K., & Yang, Y. (1970). Modern control engineering. Boston: Pearson.

Park, M., & Chwa, D. (2009). Swing-Up and Stabilization Control of Inverted-Pendulum

Systems via Coupled Sliding-Mode Control Method. IEEE Transactions on

Industrial Electronics (1982), 56(9), 3541–3555.

Park, S., & Yi, S. (2020). Active Balancing Control for Unmanned Bicycle Using

Scissored-pair Control Moment Gyroscope. International Journal of Control.

Automation, and Systems, 18(1), 217–224.

REFERENCES

208

Prasad, L., Tyagi, B., & Gupta, H. (2014). Optimal Control of Nonlinear Inverted

Pendulum System Using PID Controller and LQR: Performance Analysis Without

and With Disturbance Input. International Journal of Automation and Computing,

11(6), 661-670.

Quanser. (2020). ROTARY INVERTED PENDULUM. Retrieved from Quanser:

https://www.quanser.com/products/rotary-inverted-pendulum/

Roslovets, P. (2020). Gyroboy - self-balancing two-wheel robot based on Lego EV3.

Retrieved from Mathworks:

https://www.mathworks.com/matlabcentral/fileexchange/60322-gyroboy-self-

balancing-two-wheel-robot-based-on-lego-ev3

Segway. (2021). Retrieved from Segway: https://uk-en.segway.com/products/segway-

i2-se

Seman, P., Rohal’-Ilkiv, B., Juh´as, M., & Salaj. (2013). Swinging up the Furuta

Pendulum and its Stabilization Via Model Predictive Control. Journal of Electrical

Engineering, 64(3), 152–158.

Simon, D. (2006). Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches.

New Jersey: John Wiey & Sons.

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to

modeling and control. IEEE Transactions on Systems, Man, and Cybernetics,

SMC-15(1), , 116–132.

Tanaka, N. (2020). Posture stability control of a small inverted pendulum robot in

trajectory tracking using a control moment gyro. Advanced Robotics, 34(9), 610–

620.

Tao, C., Taur, J., Hsieh, T. W., & Tsai, C. (2008). Design of a Fuzzy Controller With

Fuzzy Swing-Up and Parallel Distributed Pole Assignment Schemes for an

Inverted Pendulum and Cart System. IEEE Transactions on Control Systems

Technology, 16(6), 1277.

Tomás-Rodríguez, M., & Banks, S. (2010). Linear, time-varying approximations to

nonlinear dynamical systems: with applications in control and optimization.

Berlin: Springer Science & Business Media.

Tomas-Rodriguez, M., & Banks, S. (2013). An iterative approach to eigenvalue

assignment for nonlinear systems. International Journal of Control, 86(5), 883–

892.

REFERENCES

209

Tsai, C., Huang, H., & Lin, S. (2010). Adaptive Neural Network Control of a Self-

Balancing Two-Wheeled Scooter. IEEE Transactions on Industrial Electronics,

57(4), 1420–1428.

Van De Vegte, J. (1990). In Feedback control systems (p. 358). Prentice-Hall.

Xu, X., Zhang, H., & Carbone, G. (2017). Chapter10: Case studies on nonlinear control

theory of the inverted pendulum. In Inverted pendulum: from theory to new

innovations in control and robotics (pp. 225-262). IET.

Yamamoto, Y. (2009, August). NXTway-GS (Self-Balancing Two-Wheeled Robot)

Controller Design). Retrieved from Mathworks:

https://uk.mathworks.com/matlabcentral/mlc-

downloads/downloads/submissions/19147/versions/6/download/zip

Zabihifar, S., Yushchenko, A., & Navvabi, H. (2020). Robust control based on adaptive

neural network for Rotary inverted pendulum with oscillation compensation.

Neural Computing & Applications, 32, 14667–14679.

Zheng, J., Banks, S. P., & Alleyne, H. (2005). Optimal attitude control for three-axis

stabilized flexible spacecraft. Acta astronautica, 56(5), 519-528.

Zhu, Q. (2021). Complete model-free sliding mode control (CMFSMC). Scientific

Reports, 11(1).

APPENDIX A

210

Appendix A

MATLAB Codes

Chapter 5: Linear Control Strategies

Appendix A.5.1: Linear quadratic regulator function in MATLAB

The algebraic matrix Riccati equation:

𝟎 = 𝑷𝑨 + 𝑨′𝑷 − 𝑷𝑩𝑹−𝟏𝑷 + 𝑸. (5.5)

Equation (5.5) can be solved by applying the linear quadratic regulator function

in MATLAB function commanded by:

[𝑲, 𝑷, 𝑬] = 𝒍𝒒𝒓(𝑨, 𝑩, 𝑸, 𝑹)

where the 𝑬 is eigenvalue vector, the matrix 𝑲 is optimal feedback gain and the

matrix 𝑷 is the positive definite solution of the algebraic matrix Riccati equation.

 Appendix A.5.2: Rank of the controllability matrix command

To implement the rank of the controllability matrix, substitute 𝑨 and 𝑩 matrices by

into Eq. (5.8):

𝓒 = [𝑩 𝑨𝑩 𝑨𝟐𝑩 𝑨𝟑𝑩], (5.8)

and then apply MATLAB command,

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝓒) or 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝑐𝑡𝑟𝑏(𝑨, 𝑩)).

APPENDIX A

211

The result given is Rank(𝓒) = 4, equal to the number of rows in matrix 𝑩;

therefore, the system is said to be completely state controllable. Similarly, the

rank test of Eq.(5.9) can use the same MATLAB command.

Appendix A.5.3: MATLAB codes of an inverted pendulum on a cart system

using LQR controller

Script file: LQR_single_pendulum_4s.m

%%

%

% Linear control (LQR) of an inverted pendulum on a cart system

%

%%

clear all;

close all;

m1=2; %Mass of the cart (kg)

m2=0.1; %mass of the pendulum (kg)

r=0.5; %the rod length (m)

g=9.8; %acceleration due to gravity (mˆ2/s)

x1(1)=0; %set initial cart displacement to be 0 (m)

x2(1)=0; %set initial cart velocity to be 0 (m/s)

x3(1)=40*pi/180; %set initial pendulum angle to be pi (rad)

x4(1)=0; %set initial pendulum angular velocity to be 0 (rad/s)

u(1)=0; % Control input

Ts = 0.001; % step size

Duration=10; % 10 sec

t=Duration*(1/Ts);

Time = 0:Ts:t*Ts; % the range of x-axis

%set Q and R matrices

Q=[1, 0, 0, 0;

 0, 1, 0, 0;

 0, 0, 100, 0;

 0, 0, 0, 10];

R=0.01;

for i=1:t

x=[x1(i); x2(i); x3(i); x4(i)];

%define and update the x vector

%%% Nonlinear model from Xu's book chapter %%%

x_3=x(3); x_4=x(4);

AN=[0, 1, 0, 0;

APPENDIX A

212

0, 0,-m2*g*sin(x_3)*cos(x_3)/((m1+m2*(sin(x_3))^2)*x_3),...

m2*r*x_4*sin(x_3)/(m1+m2*(sin(x_3)^2));

0, 0, 0, 1;

0, 0,(m1+m2)*g*sin(x_3)/(r*(m1+m2*(sin(x_3))^2)*x_3),...

-m2*r*x_4*sin(x_3)*cos(x_3)/(r*(m1+m2*(sin(x_3))^2))];

BN=[0; 1/(m1+m2*(sin(x_3))^2); 0 ; -cos(x_3)/(r*(m1+m2*(sin(x_3))^2))];

%%% Linear model from Xu's book chapter %%%

AL=[0, 1, 0, 0;

0, 0,-m2*g/m1, 0;

0, 0, 0, 1;

0, 0,(m1+m2)*g/(r*m1), 0];

BL=[0; 1/m1; 0 ; -1/(r*m1)];

[~,P,~]=lqr(AL,BL,Q,R);

%use the MATLAB ‘lqr’ function to solve Riccati equation and

%work out P

u_out=(-inv(R)*BL'*P)*x;

fx=(AN-BN*(1/R)*BN'*P)*x;

%calculate the function output ‘fx’ based on values of A, B, P

%and x.

 x = x + Ts * fx; % Euler method

 %%% Limit the pitch angle between -90 to 90 deg.

 if x(3) > 90*pi/180

 x(3) =90*pi/180;

 end

 if x(3) < -90*pi/180

 x(3) =-90*pi/180;

 end

x1(i+1)=x(1);

x2(i+1)=x(2);

x3(i+1)=x(3);

x4(i+1)=x(4);

%Reset the x1, x2, x3 & x4 variables to new values and get ready

%for the next iteration.

u(i+1) = u_out;

 %%% print out %%%%

 Cal_percent = i*100/(t);

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

figure('Name','LQR Control');

Fn = 12; % font size

subplot(2,3,1);

p1=plot(Time,x1); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Cart displacement x1

(m)','FontSize', Fn);

set(gca,'FontSize',Fn);

APPENDIX A

213

subplot(2,3,4);

p2=plot(Time,x2); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Cart velocity x2

(m/s)','FontSize', Fn);

set(gca,'FontSize',Fn);

subplot(2,3,2);

p3=plot(Time,x3*180/pi); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Pendulum angle x3

(deg)','FontSize', Fn);

set(gca,'FontSize',Fn);

subplot(2,3,5);

p4=plot(Time,x4*180/pi); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Pendulum angular velocity x4

(deg/s)','FontSize', Fn);

set(gca,'FontSize',Fn);

subplot(2,3,3);

p5=plot(Time,u); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Control signal-u (N)','FontSize',

Fn);

set(gca,'FontSize',Fn);

Size=1.1;

p1.LineWidth = Size;

p2.LineWidth = Size;

p3.LineWidth = Size;

p4.LineWidth = Size;

p5.LineWidth = Size;

Appendix A.5.4:MATLAB codes of a TWR system using LQR controller

Script file: Gyroboy_5s_LQR_10_2021.m

%%%% Linear Control (LQR) for LEGO EV3 Robot

%%%%%% Functions programme needed %%%

%

% evalrhs_gyroboy5s_LQR(); % Generating K1-K4, fx and Kf

%

% Inside two functions

%

% Gyroboy_Nonlinear_Model_5s();

% Gyroboy_Nonlinear_Model_4s();

% Maxon Motor parameters etc.

%%

clear all;

close all;

%%% Set initial x1-x5

%%% Always set x1=x3

x1(1)=14.1*pi/180; %set Theta - Average of wheel angles (deg)

x2(1)=0; %set Theta_DOT (deg/s)

x3(1)=14.1*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO

x4(1)=0*pi/180; %set Psi_DOT (deg/s)

x5(1)=0; %set Theta integral

 %%% Set Model No.1 for linear control method %%%%

APPENDIX A

214

 Model=1;

u_in1(1)=0; % Left Motor Voltage

u_in2(1)=0; % Right Motor Voltage

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4)

x1_err = 0; % x1 error for tracking sys

x1_ref = 0; % x1 reference

x1_err_int(1)=0; % x1 error integral

alphaa=1; % Motor Variable

betaa=0; % Motor Variable

Ts=0.0001; %time step length

Duration=10; % time sec

t=Duration*(1/Ts); % time step in programming

Time = 0:Ts:t*Ts; % Create real time step for plotting

for i=1:t

 u =[u_in1(i); u_in2(i)];

 x_5s =[x1(i); x2(i); x3(i); x4(i); x5(i)]; % whole system

 x_4s =[x1(i); x2(i); x3(i); x4(i)]; % x1-x4 state feedback

 %%%%%% Programming Diagram %%%%%

%

% u_x1 + u y=x1-x4 y=x1

% X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+

% ^- ^ - | |

% | | u_feedback | |

% | | |

% x1 | |

% +--------------------<--K14-- ---------------- ---+

% x1-x4

%

% %%%%%%%%%%%%%%%

 %%% x1 error for tracking sys

 x1_err(i+1) = x1_ref - x1(i);

 %%%%% X1 error Integral %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 %%% x1 error integral

 x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-x1_err(i))*Ts ; %

[h1 x L]+[0.5 x(h2-h1) x L] + old

 %%% Cal. K5 for x5 only (integral x1)

 %K_5 aleady has been calculated as gain fixed.

 %They are same value at [-0.5,-0.5] So,use this value for reducing calculation

 K_5=[-0.5000; -0.5000];

 %%% u=kx, Motor Voltage of integral x1

 u_x1 = K_5 * x1_err_int(i+1);

 %%% The final voltages used to control robot motors

 u = u_x1 - u_feedback;

 %%% Hard Saturation %%%

% %%% Uncomment this part for using motor voltage hard saturation

% Vmax = 8.3;

% %Vmax = 36;

% %Vmax = 48;

% if u(1) > Vmax

% u(1) = Vmax;

% u(2) = Vmax;

% end

% if u(1) < -Vmax

% u(1) = -Vmax;

% u(2) = -Vmax;

% end

 %%%%%%%

APPENDIX A

215

 u_in1(i+1)=u(1); % update u1

 u_in2(i+1)=u(2); % update u2

 %%% calculate the new 'x' vector using a 4th order

 %%% Euler integration method

 %%% fx = Ax + Bu;

 [fx,K_14] = evalrhs_gyroboy5s_LQR(x_4s,u, Model); %[fx,K_14,alpha,beta]

 x_4s = x_4s + Ts * fx; % Euler

 %%% Limit the robot pitch angle between -90 to 90 deg.

 if x_4s(3) > 90*pi/180

 x_4s(3) =90*pi/180;

 end

 if x_4s(3) < -90*pi/180

 x_4s(3) =-90*pi/180;

 end

 %%% Update x1-x4

 x1(i+1)=x_4s(1);

 x2(i+1)=x_4s(2);

 x3(i+1)=x_4s(3);

 x4(i+1)=x_4s(4);

 %%% Generate real x1 integral (x5)

 %%%%% X5 = Integral of X1 %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts;

 %%% x1-x4 motor voltage feedback %%%%

 u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];

 %%% Command print for waiting %%%

 Cal_percent = i*100/t;

 if mod(Cal_percent , 10) == 0

 %fprintf('Calculating %f percent ...\n',Cal_percent)

 fprintf('Calculating %3.2f percent, ',Cal_percent)

 fprintf('x3= %3.2f deg, ',x3(i+1)*180/pi)

 fprintf('x4= %3.2f deg/s, ',x4(i+1)*180/pi)

 fprintf('t= %3.2f sec...\n',Ts*i)

 end

 %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready for the

next iteration.

end

%%%%%%%%%%%

figure('Name','LQR Controller of a TWR system');

Fn = 14; % font size

subplot(2,3,1);

p1=plot(Time,x1*180/pi,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angles-x1 (deg.)','FontSize', Fn);

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2=plot(Time,x2*180/pi,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angular velocity-x2

(deg./s.)','FontSize', Fn);

set(gca,'FontSize', Fn);

subplot(2,3,2);

p3=plot(Time,x3*180/pi,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch of body-x3 (deg.)','FontSize', Fn);

set(gca,'FontSize', Fn);

 subplot(2,3,5);

 p4=plot(Time,x4*180/pi,'b'); grid;

APPENDIX A

216

 xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch angular velocity-x4

(deg./s.)','FontSize', Fn);

 set(gca,'FontSize', Fn);

 subplot(2,3,3);

 p5=plot(Time,x5*180/pi,'b'); grid;

 xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel integral-x5 (deg.)','FontSize', Fn);

 set(gca,'FontSize', Fn);

subplot(2,3,6);

p6=plot(Time,u_in1,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Control signal-u (volt)','FontSize', Fn);

set(gca,'FontSize', Fn);

LW=1.2;

p1(1).LineWidth = LW;

p2(1).LineWidth = LW;

p3(1).LineWidth = LW;

p4(1).LineWidth =LW;

p5(1).LineWidth = LW;

p6(1).LineWidth =LW;

Function file: evalrhs_gyroboy5s_LQR.m

function [fx,K_14] = evalrhs_gyroboy5s_LQR(x ,u, Model)

 %%%%%% Functions programme needed %%%

 % Gyroboy_Nonlinear_Model_4s(); % Generating fx, x1-x4 without x5

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 %%% K14 parameters already have been calculated as the linear control gain is fixed

 %%% K14 = k1,k2,k3 and k4

 %%% Select one K by uncomment the coding

 %%%%% Fix K LEGO EV3 %%%

 K_14=[-1.3908 -1.4487 -59.8476 -7.1681 ;

 -1.3908 -1.4487 -59.8476 -7.1681];

% %Maxon DC motor EC flat 60 48V 100w 2020 ***

% K_14= [-1.2606 -0.7236 -34.5003 -4.2534

% -1.2606 -0.7236 -34.5003 -4.2534];

 %%% 4-states Model parameters

 %%% Real model parameters

 [A4,B4,~,alpha,beta]=Gyroboy_Nonlinear_Model_4s(x,Model); %[A4,B4,Vmax,alpha,beta]

 % When disturbancing weigth and heigh, these parameters are changed

 x14=[x1;x2;x3;x4];

 %%% Calculate fx for 4-state system

 %%% fx = Ax + Bu

 %%% Use u from controller voltage input

 fx = A4*x14 + B4*u;

 %calculate the function output 'fx' based on values of A, B, P and x.

end

Function file: Gyroboy_Nonlinear_Model_4s.m

APPENDIX A

217

function [A4,B4,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_4s(x,Model)

%%% LEGO EV3 parameters 4-states

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg] old 0.024 new 0.050

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg] ,default,

h = 0.210; % body height [m] ,default,

% %%%%% Adding new weight here %%%%%

% M = 0.64+0.06; % body weight [kg] add 10%

% %%%%% Adding new height here %%%%%

% h = 0.21+0.02; % body height add 10%

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

%%% EV3 Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

Vmax=8.3; % Default Vmax for LEGO EV3

M2=M; % Use this when want to change new motor or mass

%%% Uncomment below when want to use new motor %%%

%[M,Jm,Rm,Kb,Kt]=MaxonDCmotor_Ec60flat_100W_48V(M2); Vmax = 48;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

%%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 %x5=x(5); %

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

APPENDIX A

218

 end

 if x4 == 0

 x4=1.0e-20; % avoid Inf's and NaN's

 end

 %%% Nonlinear model %%%%

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3);

 e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(x3);

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x2dot equation

 e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(x3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %define these extra function to reduce the coding complexity of A and B

 %matrices with the motor added in

 %define A and B using a nonlinear state-space gyro robot model,

 %including the motor part

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

 if x4 == 0

 x4=1.0e-20; % avoid Inf's and NaN's

 end

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

 % 4.Model C

APPENDIX A

219

 % Model = 3; % Select mode

 %%%-------- Model A ----------

if Model == 1

 %%% Primary Model A %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) ;

 0 0 0 1 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b)];

end

%%%-------- Model B ----------

if Model == 2

 %%%% Model B %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 ;

 0 0 0 1 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0];

end

 %%%-------- Model AB10 ----------

 if Model == 3

 %%% Mix A&B %%%%%

 if x3 <= (10*pi/180) && x3 >= (-10*pi/180)

 %%%% Primary Model A %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) ;

 0 0 0 1 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b)];

 else

 %%%% Model B %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 ;

 0 0 0 1 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0] ;

 end

 end

 %%%-------- Model C ----------

if Model == 4

 %%%% Model C %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) 0 (em23+em24*x4)/((a+b)*x4) ;

 0 0 0 1 ;

 0 em42/(a+b) 0 (em43+em44*x4)/((a+b)*x4)];

end

 % Models Matrix B

 B4 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b)];

APPENDIX A

220

 end

Function file: MaxonDCmotor_Ec60flat_100W_48V.m

function [M,Jm,Rm,Kb,Kt] = MaxonDCmotor_Ec60flat_100W_48V(Mi)

%Maxon DC motor Ec 60 flat 100W v.2020

M = Mi+0.55; % New Robot body weight [kg] with new motor

%M = 0.64+0.55; % New Robot body weight [kg] with new motor

 % maxon 0.355 kg/ea, two LEGO motors 0.160

kg

 %(0.355x2)-0.160=0.55)

Jm = 8.35e-5; % DC motor inertia moment [kgm^2]

Rm = 1.1; % DC motor resistance [Om]

Kb = 0.113; % DC motor back EMF constant [Vsec/rad]

Kt = 0.113; % DC motor torque constant [Nm/A]

end

Appendix A.5.5: Apply linear quadratic regulator function in MATLAB for

the LQG gain

The algebraic Riccati equation (Brunton & Kutz, 2019):

𝐴𝑃 + 𝑃𝐴𝑇 − 𝑃𝐶𝑇𝑅−1𝐶𝑃 + 𝑄 = 0 (5.16)

Equation (5.16) can be solved by applying the linear quadratic regulator in

MATLAB function commanded by:

[𝐾, 𝑃, 𝐸] = 𝑙𝑞𝑟(𝐴, 𝐶𝑇 , 𝑄, 𝑅).

APPENDIX A

221

Appendix A.5.6: Rank of the observability matrix command

The rank of the observability matrix is applied by substituting 𝑨 and 𝑪 matrices

into Eq.(5.18),

𝓞 = [

𝑪
𝑪𝑨

𝑪𝑨𝟐

𝑪𝑨𝟑

]

(5.18)

then apply MATLAB command:

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝓞) or 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝑜𝑏𝑠𝑣(𝑨, 𝑪)).

The result given is Rank(𝓞) = 4, equal to the number of columns in matrix 𝑪 ;

therefore, the system is said to be completely state observable. Likewise, the

rank test of Eq.(19) can use the same MATLAB command.

Appendix A.5.7:MATLAB codes of an inverted pendulum on a cart system

using LQG controller

Script file: Gyroboy_5s_LQG_10_2021.m

%%%% Linear Control with EKF (LQG) for LEGO EV3 Robot

%%%%%% Functions programme needed %%%

%

% evalrhs_gyroboy5s_LQG(); % Generating K1-K4, fx and Kf

%

% Inside two functions

%

% Gyroboy_Nonlinear_Model_4s();

% Maxon Motor parameters etc.

%%

clear all;

close all;

APPENDIX A

222

%%% Set initial x1-x5

%%% Always set x1=x3

x1(1)=10*pi/180; %set Theta - Average of wheel angles (deg)

x2(1)=0; %set Theta_DOT (deg/s)

x3(1)=10*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO

x4(1)=0*pi/180; %set Psi_DOT (deg/s)

x5(1)=0; %set Theta integral

 %%% Set Model No.1 for linear control method %%%%

 Model=1;

u_in1(1)=0; % Left Motor Voltage

u_in2(1)=0; % Right Motor Voltage

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4)

%%% Set initial Xhat

Xhat1(1) = x1(1);

Xhat2(1) = 0;

Xhat3(1) = x3(1);

Xhat4(1) = 0;

%%% Set initial Xhat integral

dXhat1(1) = 0;

dXhat2(1) = 0;

dXhat3(1) = 0;

dXhat4(1) = 0;

%%% Disturbance variables

x1_disturbance(1) = 0;

x2_disturbance(1) = 0;

x3_disturbance(1) = 0;

x4_disturbance(1) = 0;

x1_err = 0; % x1 error for tracking sys

x1_ref = 0; % x1 reference

x1_err_int(1)=0; % x1 error integral

Ts=0.0001; %time step length

alphaa=1; % Motor Variable

betaa=0; % Motor Variable

Duration=10; % time sec

t=Duration*(1/Ts); % time step in programming

Time = 0:Ts:t*Ts; % Create real time step for plotting

for i=1:t

 u =[u_in1(i); u_in2(i)];

 x_5s =[x1(i); x2(i); x3(i); x4(i); x5(i)]; % whole system

 x_4s =[x1(i); x2(i); x3(i); x4(i)]; % x1-x4 state feedback

 Xhat =[Xhat1(i); Xhat2(i); Xhat3(i); Xhat4(i)]; % Xhat1-4 (exclude x5)

 dXhat=[dXhat1(i); dXhat2(i); dXhat3(i); dXhat4(i)]; %Xhat integral

APPENDIX A

223

 %%%%%% Programming Diagram %%%%%

%

% u_x1 + u y=x1-x4 y=x1

% X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C----

--+

% ^- ^ - | ^ |

|

% | | u_feedback +------B------>| Add | |

|

% | | | Distubance |

% x1 | Xhat dXhat | |

% +-<--K14-- o<--Integal <----- o <-- Kf-------- ---+

% | ^ x1-x4

% | |

% +---- A -(Kf)C ->--+

% %%%%%%%%%%%%%%%

 %%% x1 error for tracking sys

 x1_err(i+1) = x1_ref - x1(i);

 %%%%% X1 error Integral %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 %%% x1 error integral

 x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ; % [h1 x L]+[0.5 x(h2-h1) x L] + old

 %%% cal. K5 for x5 only (integral x1)

 K_5=[-0.5000; -0.5000];

 %%% u=kx, Motor Voltage of integral x1

 u_x1 = K_5 * x1_err_int(i+1);

 %%% The final voltages used to control robot motors

 u = u_x1 - u_feedback;

 %%% Hard Saturation %%%

 %%% Uncomment this part for using motor voltage hard saturation

% Vmax = 8.3;

% %Vmax = 36;

% %Vmax = 48;

% if u(1) > Vmax

% u(1) = Vmax;

% u(2) = Vmax;

% end

% if u(1) < -Vmax

% u(1) = -Vmax;

% u(2) = -Vmax;

% end

 %%%%%%%

 u_in1(i+1)=u(1); % update u1

 u_in2(i+1)=u(2); % update u2

 %%% calculate the new 'x' vector using a 4th order

 %%% Euler integration method

 %%% fx = Ax + Bu;

 [fx,u,A,B,C,Kf,K_14] = evalrhs_gyroboy5s_LQG(x_4s,u,Model);

 x_4s = x_4s + Ts * fx; % Euler

 %%% Kf is the gain of Kalman filter

APPENDIX A

224

 %%% Limit the robot pitch angle between -90 to 90 deg.

 if x_4s(3) > 90*pi/180

 x_4s(3) =90*pi/180;

 end

 if x_4s(3) < -90*pi/180

 x_4s(3) =-90*pi/180;

 end

 %%% Update x1-x4

 x1(i+1)=x_4s(1);

 x2(i+1)=x_4s(2);

 x3(i+1)=x_4s(3);

 x4(i+1)=x_4s(4);

 %%% Generate real x1 integral (x5)

 %%%%% X5 = Integral of X1 %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts;

 %%%% Select mode for testing %%%%

 % 0.No disturbance

 % 1.Sensor X3 drift

 % 2.Noise disturbance in X3

 Mode = 0; % Select mode 0

if Mode == 0

 %%%%% No disturbance in X

 x1_disturbance(i+1)=x_4s(1);

 x2_disturbance(i+1)=x_4s(2);

 x3_disturbance(i+1)=x_4s(3)+ 0;

 x4_disturbance(i+1)=x_4s(4);

 Kf_X = Kf*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)]; %%% Update: Kf_X

end

if Mode == 1

 %%%%%% Test signal disturbance, drift only X3 %%%%%

 x1_disturbance(i+1)=x_4s(1);

 x2_disturbance(i+1)=x_4s(2);

 x3_disturbance(i+1)=x_4s(3)+ (i/(100*400))*pi/180;

 % x3_disturbance(i+1)=x_4s(3)+ (i/(100*40))*pi/180;

 x4_disturbance(i+1)=x_4s(4);

 Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)]; %%% Update:

Kf_X

end

if Mode == 2

 %%%%%%% Test noise disturbance, only X3 %%%%%%

 %%%ramdom noise fixed

 %%%ramdom noise %Ts=0.004 10sec.

 r=[0,0,0,0,0,2.42860700227814,0,0,0,0,3.98660366872073,0,0,0,0,-

3.99063370811201,0,0,0,0,-1.97150702498759,0,0,0,0,-3.74576261992009,0,0,0,0,-

APPENDIX A

225

0.00306732125453291,0,0,0,0,2.61619387183277,0,0,0,0,1.66560733620697,0,0,0,0,

………….. (cannot paste too many data at here)

.13838561080327,0,0,0,0,3.98947101136213];

 x1_disturbance(i+1)=x_4s(1);

 x2_disturbance(i+1)=x_4s(2);

 x3_disturbance(i+1)=x_4s(3)+ r(i+1)*pi/180;

 x4_disturbance(i+1)=x_4s(4);

 Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)]; %%% Update:

Kf_X

end

 %%% Kalman filter variable

 %%% See more in coding diagram

 A_KfC_Xhat = (A-Kf*C)*Xhat;

 dXhat = B*u + Kf_X + A_KfC_Xhat;

 %%% Update

 dXhat1(i+1)=dXhat(1);

 dXhat2(i+1)=dXhat(2);

 dXhat3(i+1)=dXhat(3);

 dXhat4(i+1)=dXhat(4);

 %%%%% dXhat Integral (Xhat) %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 Xhat1(i+1) = Xhat1(i) + dXhat1(i)*Ts + 0.5* (dXhat1(i+1)-dXhat1(i))* Ts;

 Xhat2(i+1) = Xhat2(i) + dXhat2(i)*Ts + 0.5* (dXhat2(i+1)-dXhat2(i))* Ts;

 Xhat3(i+1) = Xhat3(i) + dXhat3(i)*Ts + 0.5* (dXhat3(i+1)-dXhat3(i))* Ts;

 Xhat4(i+1) = Xhat4(i) + dXhat4(i)*Ts + 0.5* (dXhat4(i+1)-dXhat4(i))* Ts;

 %%% Limit the robot pitch angle Xhat between -90 to 90 deg.

 if Xhat3(i+1) > 90*pi/180

 Xhat3(i+1)=90*pi/180;

 end

 if Xhat3(i+1) < -90*pi/180

 Xhat3(i+1)=-90*pi/180;

 end

 %%% Select control feedback : Xhat3 for x3 %%%%

 %u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)]; %%% X LQR only

 %u_feedback = K_14*[Xhat1(i+1); Xhat2(i+1); Xhat3(i+1); Xhat4(i+1)]; %Xhat

 u_feedback = K_14*[x_4s(1); x_4s(2); Xhat3(i+1); x_4s(4)]; %X mix only X3

 %%% Command print for waiting %%%

 Cal_percent = i*100/t;

 if mod(Cal_percent , 10) == 0

 % fprintf('Calculating %f percent ...\n',Cal_percent)

 fprintf('Calculating %3.2f percent, ',Cal_percent)

 fprintf('x3= %3.2f deg, ',x3(i+1)*180/pi)

 fprintf('x4= %3.2f deg/s, ',x4(i+1)*180/pi)

 fprintf('t= %3.2f sec...\n',Ts*i)

 end

end

APPENDIX A

226

%%% Move all Xhat to x3 for plotting

x3=Xhat3;

%%%%%%%%%%%

figure('Name','LQG Controller of a TWR system');

Fn = 14; % font size

subplot(2,3,1);

p1=plot(Time,x1*180/pi,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angles-x1

(deg.)','FontSize', Fn);

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2=plot(Time,x2*180/pi,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angular velocity-x2

(deg./s.)','FontSize', Fn);

set(gca,'FontSize', Fn);

subplot(2,3,2);

p3=plot(Time,x3*180/pi,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch of body-x3

(deg.)','FontSize', Fn);

set(gca,'FontSize', Fn);

 subplot(2,3,5);

 p4=plot(Time,x4*180/pi,'b'); grid;

 xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch angular velocity-x4

(deg./s.)','FontSize', Fn);

 set(gca,'FontSize', Fn);

 subplot(2,3,3);

 p5=plot(Time,x5*180/pi,'b'); grid;

 xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel integral-x5

(deg.)','FontSize', Fn);

 set(gca,'FontSize', Fn);

subplot(2,3,6);

p6=plot(Time,u_in1,'b'); grid;

xlabel('Time (sec)','FontSize', Fn); ylabel('Control signal-u

(volt)','FontSize', Fn);

set(gca,'FontSize', Fn);

LW=1.2;

p1(1).LineWidth = LW;

p2(1).LineWidth = LW;

p3(1).LineWidth = LW;

p4(1).LineWidth =LW;

p5(1).LineWidth = LW;

p6(1).LineWidth =LW;

Function file: evalrhs_gyroboy5s_LQG

function [fx,u,A4,B4,C4,Kf,K_14] = evalrhs_gyroboy5s_LQG(x ,u,Model)

 %%%%%% Functions programme needed %%%

 % Gyroboy_Nonlinear_Model_4s(); % Generating fx, x1-x4 without x5

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

APPENDIX A

227

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 %%% K14 parameters already have been calculated as the linear control gain

is fixed

 %%% K14 = k1,k2,k3 and k4

 %%% Select one K by uncomment the coding

 %%%%% Fix K LEGO EV3 %%%

 K_14=[-1.3908 -1.4487 -59.8476 -7.1681 ;

 -1.3908 -1.4487 -59.8476 -7.1681];

% %Maxon DC motor EC flat 60 48V 100w 2020 ***

% K_14= [-1.2606 -0.7236 -34.5003 -4.2534

% -1.2606 -0.7236 -34.5003 -4.2534];

 %%% 4-states Model parameters

 %%% Real model parameters

 [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x, Model);

%[A4,B4,Vmax,alpha,beta]

 % When disturbancing weigth and heigh, these parameters are changed

 x14=[x1;x2;x3;x4];

 %%% Calculate fx for 4-state system

 %%% fx = Ax + Bu

 %%% Use u from controller voltage input

 fx = A4*x14 + B4*u;

 %%% Matrix C

 C4=eye(4);

 %%% Kalman filter noise parameters

 Noise_V= 0.2*eye(4); %0.2 % increse to smooth cure % Rk of Kalman filter

 Noise_W= 1*eye(4); % Qk of Kalman filter

 %%% Calculation gain Kf of Kalman filter

 %[~,Pk,~]=lqr(AL4,C4',Noise_W,Noise_V);

 %%% Reducing time by calcuting fixed Pk

 %%% Select robot motors by uncomment

 %%%% Fix Pk for EV3 Motor%%%

 Pk=[0.4375 0.0114 0.0795 0.0464;

 0.0114 0.0116 0.1403 0.0451;

 0.0795 0.1403 4.1167 0.6856;

 0.0464 0.0451 0.6856 0.2096];

 %Maxon DC motor EC flat 60 48V 100w 2020

% Pk=[0.4396 0.0196 0.0463 0.0650

% 0.0196 0.0209 0.1031 0.0607

% 0.0463 0.1031 4.7106 0.6864

% 0.0650 0.0607 0.6864 0.2747];

APPENDIX A

228

 Kf= Pk*C4'*inv(Noise_V);

 %calculate the function output 'fx' based on values of A, B, P and x.

end

Chapter 6: Nonlinear Control Strategies

Appendix A.6.1: MATLAB codes of rank of controllability test matrix for an

inverted pendulum on a cart model

Script file: Controllability_IP_4s_x3x4.m

clear all

close all

xx1=0; %set initial cart displacement to be 0 (m)

xx2=0; %set initial cart velocity to be 0 (m/s)

xx3=0; %set initial pendulum angle to be 0 (rad)

xx4=0; %set initial pendulum angular velocity to be 0 (rad/s)

m1=2; %Mass of the cart (kg)

m2=0.1; %mass of the pendulum (kg)

r=0.5; %the rod length (m)

g=9.8; %acceleration due to gravity (mˆ2/s)

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%%

%%% Variable 'for loop' %%%%

%%%% X3

Minimun_Angle_X3= -90;

Step_Angle_X3= 0.2;

Maximum_Angle_X3= 90;

%%%% X4

Minimun_Angular_Velo_X4= -0.3e8;

Step_Angular_Velo_X4= 0.2e6;

Maximum_Angular_Velo_X4= 0.3e8;

%%% Calculation size of X4

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4:

Maximum_Angular_Velo_X4;

 [m_size,n_size]= size(Size_x4);

%%%%% Plot 2D graph %%%%%%%%

ii=2; % row of array x3

jj=2; % column of array x4

%%% match x3 and x4 %%%

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 :

Maximum_Angular_Velo_X4*pi/180

APPENDIX A

229

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 :

Maximum_Angle_X3*pi/180

 if xx3 == 0

 xx3=1.0e-100; % avoid Inf's and NaN's

 end

 if xx4 == 0

 xx4=1.0e-100; % avoid Inf's and NaN's

 end

%%% Nonlinear model from Xu's chapter book %%%%

A4=[0, 1, 0, 0;

0, 0,-m2*g*sin(xx3)*cos(xx3)/((m1+m2*(sin(xx3))^2)*xx3),...

m2*r*xx4*sin(xx3)/(m1+m2*(sin(xx3)^2));

0, 0, 0, 1;

0, 0,(m1+m2)*g*sin(xx3)/(r*(m1+m2*(sin(xx3))^2)*xx3),...

-m2*r*xx4*sin(xx3)*cos(xx3)/(r*(m1+m2*(sin(xx3))^2))];

B4=[0; 1/(m1+m2*(sin(xx3))^2); 0 ; -cos(xx3)/(r*(m1+m2*(sin(xx3))^2))];

Rank_x3x4(ii,jj)= rank(ctrb(A4,B4));

Rank_x3x4(ii,1)= xx3*180/pi; % Insert 1st column by x3

Rank_x3x4(1,jj)= xx4*180/pi; % Insert 1st row by x4

 ii=ii+1; %x3

 end

 ii=2;

 jj=jj+1; %x4

 %%% print for waiting %%%

 Cal_percent = int16(jj*100/(n_size-1));

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

 end

 %%%% Remove 1st row & 1st column from table for plotting %%%

 Rank_x3x4_data = Rank_x3x4;

 Rank_x3x4_data(1,:)=[]; % Remove title row 1 (x4 name)

 Rank_x3x4_data(:,1)=[]; % Remove title column 1 (x3 name)

 Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis

 %%%%% plot %%%%%

 figure(); % x3 x4

 Fn = 14; % font size

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 :

Maximum_Angular_Velo_X4;

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3;

[x_mesh,y_mesh] = meshgrid(xx3,xx4); % This generates the actual grid of x

and y values.

APPENDIX A

230

[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data);

set(c,'Linecolor','none')

xlabel('x3 (deg.)');ylabel('x4 (deg./s)');

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);

set(gca,'FontSize', Fn);

title(sprintf('Rank of Controllability Test Matrix'));

colorbar

 c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

%c =colorbar;

c.Label.String = 'Rank';

grid on;

Appendix A.6.2: MATLAB codes of rank of controllability test matrix for

TWR models

Script file: Controllability_TWR_5s_x3x4.m

clear all

close all

xx1=0; %set initial wheel angle to be 0 (m)

xx2=0; %set initial wheel angular velocity to be 0 (m/s)

xx3=0; %set initial pitch angle to be 0 (rad)

xx4=0; %set initial pitch angular velocity to be 0 (rad/s)

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg]

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg]

%%% EV3 Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

 %%% Helping variables

APPENDIX A

231

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%%

%%% Variable 'for loop' %%%%

%%%% X3

Minimun_Angle_X3= -90;

Step_Angle_X3= 0.2;

Maximum_Angle_X3= 90;

%%%% X4

Minimun_Angular_Velo_X4= -1e5;

Step_Angular_Velo_X4= 0.2e3;

Maximum_Angular_Velo_X4= 1e5;

%%% Calculation size of X4

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4:

Maximum_Angular_Velo_X4;

 [m_size,n_size]= size(Size_x4);

%%%%% Plot 2D graph %%%%%%%%

ii=2; % row of array x3

jj=2; % column of array x4

%%% match x3 and x4 %%%

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 :

Maximum_Angular_Velo_X4*pi/180

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 :

Maximum_Angle_X3*pi/180

 if xx3 == 0

 xx3=1.0e-100; % avoid Inf's and NaN's

 end

 if xx4 == 0

 xx4=1.0e-100; % avoid Inf's and NaN's

 end

 %%% Dr Xu Xu Model %%%

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3);

 e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(xx3);

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x2dot equation

 e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(xx3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

APPENDIX A

232

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model A&B mixed

 % 4.Model C

 Model = 1; % Select mode

 %%%-------- Model A ----------

if Model == 1

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*xx3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*xx3) em44/(a+b) 0 ;

 1 0 0 0 0];

end

%%%-------- Model B ----------

if Model == 2

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*xx4)/((a+b)*xx3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*xx4)/((a+b)*xx3) 0 0 ;

 1 0 0 0 0];

end

 %%%-------- Model A&B ----------

if Model == 3

 %%% Mix A&B %%%%%

 if xx3 <= (10*pi/180) && xx3 >= (-10*pi/180)

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*xx3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

APPENDIX A

233

 0 em42/(a+b) em43/((a+b)*xx3) em44/(a+b) 0 ;

 1 0 0 0 0];

 else

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*xx4)/((a+b)*xx3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*xx4)/((a+b)*xx3) 0 0 ;

 1 0 0 0 0];

 end

end

 %%%-------- Model C ----------

if Model == 4

 %%%% Model C %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) 0 (em23+em24*xx4)/((a+b)*xx4) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) 0 (em43+em44*xx4)/((a+b)*xx4) 0 ;

 1 0 0 0 0];

end

 B5 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b);

 0 0];

Rank_x3x4(ii,jj)= rank(ctrb(A5,B5));

Rank_x3x4(ii,1)= xx3*180/pi; % Insert 1st column by x3

Rank_x3x4(1,jj)= xx4*180/pi; % Insert 1st row by x4

 ii=ii+1; %x3

 end

 ii=2;

 jj=jj+1; %x4

 %%% print for waiting %%%

 Cal_percent = int16(jj*100/(n_size-1));

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

 end

 %%%% Remove 1st row & 1st column from table for plotting %%%

 Rank_x3x4_data = Rank_x3x4;

 Rank_x3x4_data(1,:)=[]; % Remove title row 1 (x4 name)

 Rank_x3x4_data(:,1)=[]; % Remove title column 1 (x3 name)

APPENDIX A

234

 Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis

 %%%%% plot max %%%%%

 figure(); % x3 x4

 Fn = 14; % font size

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 :

Maximum_Angular_Velo_X4;

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3;

[x_mesh,y_mesh] = meshgrid(xx3,xx4); % This generates the actual grid of x

and y values.

[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data);

%c.LineWidth = 1;

set(c,'Linecolor','none')

xlabel('x3 (deg.)');ylabel('x4 (deg./s)');

xlim([-90 90]);

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);

set(gca,'FontSize', Fn);

title(sprintf('Rank of Controllability Test Matrix'));

colorbar

 c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

grid on;

Appendix A.6.3: MATLAB codes of rank of controllability test matrix for

TWR models with saturation input

Script file: Controllability_TWR_5s_x3x4_saturation.m

clear all

close all

xx1=0; %set initial wheel angle to be 0 (m)

xx2=0; %set initial wheel angular velocity to be 0 (m/s)

xx3=0; %set initial pitch angle to be 0 (rad)

xx4=0; %set initial pitch angular velocity to be 0 (rad/s)

xx6=0; %set initial artificial control to be 0

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg]

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg]

APPENDIX A

235

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

%%% Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

 %%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%%

%%% Variable 'for loop' %%%%

%%% X3

Minimun_Angle_X3= -90;

Step_Angle_X3= 2;

Maximum_Angle_X3= 90;

%%% X4

Minimun_Angular_Velo_X4= -200;

Step_Angular_Velo_X4= 4;

Maximum_Angular_Velo_X4= 200;

%%%%% X6

Minimun_x6= -1e16;

Step_x6= 2e14;

Maximum_x6= 1e16;

% Minimun_x6= -2e19;

% Step_x6= 4e17;

% Maximum_x6= 2e19;

 %%% Calculation size of Xnp1

 Size_x6 = Minimun_x6 : Step_x6: Maximum_x6;

 [m_x6,n_x6]= size(Size_x6);

%%%%% Plot 3D graph %%%%%%%%

ii=2; % row of array x3

jj=2; % column of array x4

kk=1; % page Xn+1

%%% convert deg to rad

%%% match x3,x4 and x6 %%%

 for xx6 = Minimun_x6 : Step_x6: Maximum_x6

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 :

Maximum_Angle_X3*pi/180

APPENDIX A

236

 for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 :

Maximum_Angular_Velo_X4*pi/180

 if xx3 == 0

 xx3=1.0e-20; % avoid Inf's and NaN's

 end

 if xx4 == 0

 xx4=1.0e-20; % avoid Inf's and NaN's

 end

 if xx6 == 0

 xx6=1.0e-20; % avoid Inf's and NaN's

 end

 %%% Dr Xu Xu model %%%

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3);

 e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(xx3);

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x2dot equation

 e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(xx3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

 % 4.Model C

APPENDIX A

237

 Model = 1; % Select mode

 %%%-------- Model A ----------

if Model == 1

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*xx3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*xx3) em44/(a+b) 0 ;

 1 0 0 0 0];

end

%%%-------- Model B ----------

if Model == 2

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*xx4)/((a+b)*xx3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*xx4)/((a+b)*xx3) 0 0 ;

 1 0 0 0 0];

end

 %%%-------- Model AB7 ----------

if Model == 3

 %%% Mix A&B %%%%%

 if xx3 <= (10*pi/180) && xx3 >= (-10*pi/180)

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*xx3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*xx3) em44/(a+b) 0 ;

 1 0 0 0 0];

 else

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*xx4)/((a+b)*xx3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*xx4)/((a+b)*xx3) 0 0 ;

 1 0 0 0 0];

 end

end

 %%%-------- Model C ----------

if Model == 4

 %%%% Model C %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) 0 (em23+em24*xx4)/((a+b)*xx4) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) 0 (em43+em44*xx4)/((a+b)*xx4) 0 ;

 1 0 0 0 0];

end

 B5 =[0 0;

APPENDIX A

238

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b);

 0 0];

 %%%%--------------

 Vmax = 8.3; % Set maximum saturation voltage

 if (xx6) > Vmax % Lego Motor Maximum Voltage 8.3 V

 Phi_L = Vmax;

 Phi_R = Vmax;

 elseif (xx6) < -Vmax % Lego Motor Minimum Voltage -8.3 V

 Phi_L = -Vmax;

 Phi_R = -Vmax;

 else

 Phi_L = Vmax*sin((pi*xx6)/(2*Vmax));

 Phi_R = Vmax*sin((pi*xx6)/(2*Vmax));

 end

 Phi = [Phi_L ;

 Phi_R];

Aa= [A5 (B5*Phi)/xx6 ;

 zeros(1,5) 0];

Ba= [zeros(5,1) ;

 1];

Rank_x3x4x6(ii,jj,kk)= rank(ctrb(Aa,Ba));

%%% create table

Rank_x3x4x6(ii,1,kk)= xx4*180/pi; % Insert 1st column by x3

Rank_x3x4x6(1,jj,kk)= xx3*180/pi; % Insert 1st row by x4

 if xx4 >-0.01 && xx4 <0.01

 kk=kk+1;

 Rank_x3x6(jj,kk) = rank(ctrb(Aa,Ba));

 Rank_x3x6(jj,1) = xx3*180/pi; % Insert 1st row by x3

 Rank_x3x6(1,kk) = xx6; % Insert 1st column by xpn1

 kk=kk-1;

 end

 if single(xx3)==single(1.0e-20)

 kk=kk+1;

 Rank_x4x6(ii,kk) = rank(ctrb(Aa,Ba));

 Rank_x4x6(ii,1) = xx4*180/pi; % Insert 1st row by x4

 Rank_x4x6(1,kk) = xx6; % Insert 1st column by xpn1

 kk=kk-1;

 end

 if single(xx6)==single(1.0e-20)

 Rank_x3x4(ii,jj) = rank(ctrb(Aa,Ba));

 Rank_x3x4(ii,1) = xx4*180/pi; % Insert 1st row by x4

 Rank_x3x4(1,jj) = xx3*180/pi; % Insert 1st column by xpn1

 end

APPENDIX A

239

 ii=ii+1; %x3

 end

 ii=2;

 jj=jj+1; %x4

 end

 if xx6 == 1.0e-20

 xx6=0; % move zero back to table

 end

 Range_x6(1,kk)=xx6; % store x_np1

 jj=2;

 kk=kk+1; %x_np1

 %%% print for writing %%%

 Cal_percent = int16(kk*100/(n_x6+1));

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

 %%%% Remove 1st row & 1st column from table for plotting %%%

 Rank_x3x4x6_data = Rank_x3x4x6;

 Rank_x3x4x6_data(1,:,:)=[]; % Remove title row 1 (x4 name)

 Rank_x3x4x6_data(:,1,:)=[]; % Remove title column 1 (x3 name)

 Rank_x3x6_data = Rank_x3x6;

 Rank_x3x6_data(1,:)=[]; % Remove title row 1 (xnp1 name)

 Rank_x3x6_data(:,1)=[]; % Remove title column 1

 Rank_x4x6_data = Rank_x4x6;

 Rank_x4x6_data(1,:)=[]; % Remove title row 1 (xnp1 name)

 Rank_x4x6_data(:,1)=[]; % Remove title column 1

 Rank_x3x4_data = Rank_x3x4;

 Rank_x3x4_data(1,:)=[]; % Remove title row 1 (xnp1 name)

 Rank_x3x4_data(:,1)=[]; % Remove title column 1

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3;

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 :

Maximum_Angular_Velo_X4;

 xx6 = Minimun_x6 : Step_x6: Maximum_x6;

%%%% Plot 2D at x3=0 %%%%

 figure();

 Fn = 12; % font size

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6); % This generates the actual

grid of x and y values.

xslice = [0];

yslice = [];

zslice = [];

APPENDIX A

240

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice)

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular

velocity(deg./s.)');zlabel('x6');

xlim([-90 90]);

title(sprintf('Rank of Controllability'));

colorbar

c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

%%%% view %%%%

view(90,0) % y-view

%%%%%%

set(gca,'FontSize', Fn);

%%Plot 2D at x4=0%%%%

 figure();

 Fn = 12; % font size

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6); % This generates the actual

grid of x and y values.

xslice = [];

yslice = [0];

zslice = [];

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice)

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular

velocity(deg./s.)');zlabel('x6');

xlim([-90 90]);

title(sprintf('Rank of Controllability'));

colorbar

c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

%%%% view %%%%

 view(0,0) % x-view

%%%%%%

set(gca,'FontSize', Fn);

%%Plot Cubic %%%%

 figure();

 Fn = 12; % font size

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6); % This generates the actual

grid of x and y values.

xslice = [xx3];

yslice = [xx4];

zslice = [xx6];

%%%% or select plane for plotting %%%%

%xslice = [Maximum_Angle_X3];

%yslice = [Maximum_Angular_Velo_X4];

%zslice = [Minimun_x6,0];

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice)

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular

velocity(deg./s.)');zlabel('x6');

APPENDIX A

241

%ylim([-90 90]);

%zlim([-1e16 1e16]);

xlim([-90 90]);

title(sprintf('Rank of Controllability'));

colorbar

c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

set(gca,'FontSize', Fn);

Appendix A.6.4: MATLAB codes of rank of observability test matrix for an

inverted pendulum model

Script file: Observability_IP_4s_x3x4.m

clear all

close all

xx1=0; %set initial cart displacement to be 0 (m)

xx2=0; %set initial cart velocity to be 0 (m/s)

xx3=0; %set initial pendulum angle to be 0 (rad)

xx4=0; %set initial pendulum angular velocity to be 0 (rad/s)

m1=2; %Mass of the cart (kg)

m2=0.1; %mass of the pendulum (kg)

r=0.5; %the rod length (m)

g=9.8; %acceleration due to gravity (mˆ2/s)

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%%

%%% Variable 'for loop' %%%%

%%%% X3

Minimun_Angle_X3= -90; %ok

Step_Angle_X3= 0.2;

Maximum_Angle_X3= 90;

%%% X4

Minimun_Angular_Velo_X4= -3e8;

Step_Angular_Velo_X4= 1e6;

Maximum_Angular_Velo_X4= 3e8;

%%% Calculation size of X4

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4:

Maximum_Angular_Velo_X4;

 [m_size,n_size]= size(Size_x4);

%%%%% Plot 2D graph %%%%%%%%

ii=2; % row of array x3

jj=2; % column of array x4

APPENDIX A

242

%%% match x3 and x4 %%%

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 :

Maximum_Angular_Velo_X4*pi/180

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 :

Maximum_Angle_X3*pi/180

 if xx3 == 0

 xx3=1.0e-100; % avoid Inf's and NaN's

 end

 if xx4 == 0

 xx4=1.0e-100; % avoid Inf's and NaN's

 end

%%% Nonlinear model

A4=[0, 1, 0, 0;

0, 0,-m2*g*sin(xx3)*cos(xx3)/((m1+m2*(sin(xx3))^2)*xx3),...

m2*r*xx4*sin(xx3)/(m1+m2*(sin(xx3)^2));

0, 0, 0, 1;

0, 0,(m1+m2)*g*sin(xx3)/(r*(m1+m2*(sin(xx3))^2)*xx3),...

-m2*r*xx4*sin(xx3)*cos(xx3)/(r*(m1+m2*(sin(xx3))^2))];

B4=[0; 1/(m1+m2*(sin(xx3))^2); 0 ; -cos(xx3)/(r*(m1+m2*(sin(xx3))^2))];

 C4 = [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];

Rank_x3x4(ii,jj)= rank(obsv(A4,C4));

Rank_x3x4(ii,1)= xx3*180/pi; % Insert 1st column by x3

Rank_x3x4(1,jj)= xx4*180/pi; % Insert 1st row by x4

 ii=ii+1; %x3

 end

 ii=2;

 jj=jj+1; %x4

 %%% print for waiting %%%

 Cal_percent = int16(jj*100/(n_size-1));

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

 end

 %%%% Remove 1st row & 1st column from table for plotting %%%

 Rank_x3x4_data = Rank_x3x4;

 Rank_x3x4_data(1,:)=[]; % Remove title row 1 (x4 name)

 Rank_x3x4_data(:,1)=[]; % Remove title column 1 (x3 name)

 Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis

 %%%%% plot max %%%%%

 figure(); % x3 x4

 Fn = 14; % font size

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 :

Maximum_Angular_Velo_X4;

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3;

APPENDIX A

243

[x_mesh,y_mesh] = meshgrid(xx3,xx4); % This generates the actual grid of x

and y values.

[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data);

set(c,'Linecolor','none')

xlabel('x3 (deg.)');ylabel('x4 (deg./s)');

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);

set(gca,'FontSize', Fn);

title(sprintf('Rank of Observability Test Matrix'));

colorbar

 c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

%c =colorbar;

c.Label.String = 'Rank';

grid on;

Appendix A.6.5: MATLAB codes of rank of controllability test matrix for a

TWR model

Script file: Observability_TWR_5s_x3x4.m

clear all

close all

xx1=0; %set initial wheel angle to be 0 (m)

xx2=0; %set initial wheel angular velocity to be 0 (m/s)

xx3=0; %set initial pitch angle to be 0 (rad)

xx4=0; %set initial pitch angular velocity to be 0 (rad/s)

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg]

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg]

%%% EV3 Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

APPENDIX A

244

 %%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%%

%%% Variable 'for loop' %%%%

%%%% X3

Minimun_Angle_X3= -90;

Step_Angle_X3= 0.2;

Maximum_Angle_X3= 90;

%%%% X4

Minimun_Angular_Velo_X4= -1e6;

Step_Angular_Velo_X4= 0.2e4;

Maximum_Angular_Velo_X4= 1e6;

%%% Calculation size of X4

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4:

Maximum_Angular_Velo_X4;

 [m_size,n_size]= size(Size_x4);

%%%%% Plot 2D graph %%%%%%%%

ii=2; % row of array x3

jj=2; % column of array x4

%%% match x3 and x4 %%%

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 :

Maximum_Angular_Velo_X4*pi/180

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 :

Maximum_Angle_X3*pi/180

 if xx3 == 0

 xx3=1.0e-100; % avoid Inf's and NaN's

 end

 if xx4 == 0

 xx4=1.0e-100; % avoid Inf's and NaN's

 end

 %%% Dr Xu Xu Model %%%

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3);

 e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(xx3);

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x2dot equation

 e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(xx3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

APPENDIX A

245

 %matrices for the x4dot equation

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %%%% Nonlinear model %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*xx3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*xx3) em44/(a+b) 0 ;

 1 0 0 0 0];

 B5 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b);

 0 0];

 C5 = [1 0 0 0 0; 0 1 0 0 0;0 0 1 0 0;0 0 0 1 0; 0 0 0 0 1];

Rank_x3x4(ii,jj)= rank(obsv(A5,C5));

Rank_x3x4(ii,1)= xx3*180/pi; % Insert 1st column by x3

Rank_x3x4(1,jj)= xx4*180/pi; % Insert 1st row by x4

 ii=ii+1; %x3

 end

 ii=2;

 jj=jj+1; %x4

 %%% print for waiting %%%

 Cal_percent = int16(jj*100/(n_size-1));

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

 %%%% Remove 1st row & 1st column from table for plotting %%%

APPENDIX A

246

 Rank_x3x4_data = Rank_x3x4;

 Rank_x3x4_data(1,:)=[]; % Remove title row 1 (x4 name)

 Rank_x3x4_data(:,1)=[]; % Remove title column 1 (x3 name)

 Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis

 %%%%% plot max %%%%%

 figure(); % x3 x4

 Fn = 14; % font size

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 :

Maximum_Angular_Velo_X4;

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3;

[x_mesh,y_mesh] = meshgrid(xx3,xx4); % This generates the actual grid of x

and y values.

[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data);

set(c,'Linecolor','none')

xlabel('x3 (deg.)');ylabel('x4 (deg./s)');

xlim([-90 90]);

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);

set(gca,'FontSize', Fn);

title(sprintf('Rank of Observability Test Matrix'));

colorbar

 c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

grid on;

Appendix A.6.6: MATLAB codes of rank of observability test matrix for a

TWR model

Script file: Observability_TWR_5s_x3x4_saturation.m

clear all

close all

xx1=0; %set initial wheel angle to be 0 (m)

xx2=0; %set initial wheel angular velocity to be 0 (m/s)

xx3=0; %set initial pitch angle to be 0 (rad)

xx4=0; %set initial pitch angular velocity to be 0 (rad/s)

xx6=0; %set initial artificial control to be 0

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg]

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg]

APPENDIX A

247

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

%%% Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

 %%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%%

%%% Variable 'for loop' %%%%

%%% X3

Minimun_Angle_X3= -90;

Step_Angle_X3= 2;

Maximum_Angle_X3= 90;

%%% X4

Minimun_Angular_Velo_X4= -1e5;

Step_Angular_Velo_X4= 2e3;

Maximum_Angular_Velo_X4= 1e5;

%%%%% X6

Minimun_x6= -1e20;

Step_x6= 2e18;

Maximum_x6= 1e20;

 %%% Calculation size of Xnp1

 Size_x6 = Minimun_x6 : Step_x6: Maximum_x6;

 [m_x6,n_x6]= size(Size_x6);

%%%%% Plot 3D graph %%%%%%%%

ii=2; % row of array x3

jj=2; % column of array x4

kk=1; % page Xn+1

%%% convert deg to rad

%%% match x3 and x4 %%%

 for xx6 = Minimun_x6 : Step_x6: Maximum_x6

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 :

Maximum_Angle_X3*pi/180

 for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 :

Maximum_Angular_Velo_X4*pi/180

 if xx3 == 0

 xx3=1.0e-20; % avoid Inf's and NaN's

 end

 if xx4 == 0

APPENDIX A

248

 xx4=1.0e-20; % avoid Inf's and NaN's

 end

 if xx6 == 0

 xx6=1.0e-20; % avoid Inf's and NaN's

 end

 %%% Dr Xu Xu model %%%

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3);

 e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(xx3);

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x2dot equation

 e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(xx3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %%%% Nonlinear Model %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*xx3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*xx3) em44/(a+b) 0 ;

 1 0 0 0 0];

 B5 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b);

 0 0];

 %%%%--------------

APPENDIX A

249

 Vmax = 8.3; % Set maximum saturation voltage

 if (xx6) > Vmax % Lego Motor Maximum Voltage 8.3 V

 Phi_L = Vmax;

 Phi_R = Vmax;

 elseif (xx6) < -Vmax % Lego Motor Minimum Voltage -8.3 V

 Phi_L = -Vmax;

 Phi_R = -Vmax;

 else

 Phi_L = Vmax*sin((pi*xx6)/(2*Vmax));

 Phi_R = Vmax*sin((pi*xx6)/(2*Vmax));

 end

 Phi = [Phi_L ;

 Phi_R];

Aa= [A5 (B5*Phi)/xx6 ;

 zeros(1,5) 0];

Ba= [zeros(5,1) ;

 1];

Ca= eye(6);

Rank_x3x4x6(ii,jj,kk)= rank(obsv(Aa,Ca));

%%% create table

Rank_x3x4x6(ii,1,kk)= xx4*180/pi; % Insert 1st column by x3

Rank_x3x4x6(1,jj,kk)= xx3*180/pi; % Insert 1st row by x4

 if xx4 >-0.01 && xx4 <0.01

 kk=kk+1;

 Rank_x3x6(jj,kk) = rank(obsv(Aa,Ca));

 Rank_x3x6(jj,1) = xx3*180/pi; % Insert 1st row by x3

 Rank_x3x6(1,kk) = xx6; % Insert 1st column by xpn1

 kk=kk-1;

 end

 if single(xx3)==single(1.0e-20)

 kk=kk+1;

 Rank_x4x6(ii,kk) = rank(obsv(Aa,Ca));

 Rank_x4x6(ii,1) = xx4*180/pi; % Insert 1st row by x4

 Rank_x4x6(1,kk) = xx6; % Insert 1st column by xpn1

 kk=kk-1;

 end

 if single(xx6)==single(1.0e-20)

 Rank_x3x4(ii,jj) = rank(obsv(Aa,Ca));

 Rank_x3x4(ii,1) = xx4*180/pi; % Insert 1st row by x4

 Rank_x3x4(1,jj) = xx3*180/pi; % Insert 1st column by xpn1

 end

 ii=ii+1; %x3

 end

 ii=2;

 jj=jj+1; %x4

 end

APPENDIX A

250

 if xx6 == 1.0e-20

 xx6=0; % move zero back

 end

 Range_x6(1,kk)=xx6; % store x_np1

 jj=2;

 kk=kk+1; %x_np1

 %%% print for writing %%%

 Cal_percent = int16(kk*100/(n_x6+1));

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

 %%%% Remove 1st row & 1st column from table for plotting %%%

 Rank_x3x4x6_data = Rank_x3x4x6;

 Rank_x3x4x6_data(1,:,:)=[]; % Remove title row 1 (x4 name)

 Rank_x3x4x6_data(:,1,:)=[]; % Remove title column 1 (x3 name)

 Rank_x3x6_data = Rank_x3x6;

 Rank_x3x6_data(1,:)=[]; % Remove title row 1 (xnp1 name)

 Rank_x3x6_data(:,1)=[]; % Remove title column 1

 Rank_x4x6_data = Rank_x4x6;

 Rank_x4x6_data(1,:)=[]; % Remove title row 1 (xnp1 name)

 Rank_x4x6_data(:,1)=[]; % Remove title column 1

 Rank_x3x4_data = Rank_x3x4;

 Rank_x3x4_data(1,:)=[]; % Remove title row 1 (xnp1 name)

 Rank_x3x4_data(:,1)=[]; % Remove title column 1

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3;

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 :

Maximum_Angular_Velo_X4;

 xx6 = Minimun_x6 : Step_x6: Maximum_x6;

%%Plot 2D at x3=0 %%%%

 figure();

 Fn = 12; % font size

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6); % This generates the actual

grid of x and y values.

xslice = [0];

yslice = [];

zslice = [];

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice)

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular

velocity(deg./s.)');zlabel('x6');

xlim([-90 90]);

title(sprintf('Rank of Observability Test Matrix'));

colorbar

c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

%%%% view %%%%

APPENDIX A

251

view(90,0) % y-view

%%%%%%

set(gca,'FontSize', Fn);

%%Plot 2D at x4=0 %%%%

 figure(); %x4=0

 Fn = 12; % font size

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6); % This generates the actual

grid of x and y values.

xslice = [];

yslice = [0];

zslice = [];

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice)

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular

velocity(deg./s.)');zlabel('x6');

xlim([-90 90]);

title(sprintf('Rank of Observability Test Matrix'));

colorbar

c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

%%%% view %%%%

 view(0,0) % x-view

%%%%%%

set(gca,'FontSize', Fn);

%%Plot Cubic %%%%

 figure(); %

 Fn = 12; % font size

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6); % This generates the actual

grid of x and y values.

xslice = [xx3];

yslice = [xx4];

zslice = [xx6];

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice)

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular

velocity(deg./s.)');zlabel('x6');

%ylim([-90 90]);

%zlim([-1e16 1e16]);

xlim([-90 90]);

title(sprintf('Rank of Observability Test Matrix'));

colorbar

c = colorbar('Ticks',[1,2,3,4,5,6],...

 'TickLabels',{'1','2','3','4','5','6'});

c.Label.String = 'Rank';

set(gca,'FontSize', Fn);

APPENDIX A

252

Appendix A.6.7: MATLAB codes of an inverted pendulum on a cart system

using nonlinear freezing control

Script file: Freezing_single_pendulum_4s.m

%%

%

% Nonlinear Freezing control of an inverted pendulum on a cart system

%

%%

clear all;

close all;

m1=2; %Mass of the cart (kg)

m2=0.1; %mass of the pendulum (kg)

r=0.5; %the rod length (m)

g=9.8; %acceleration due to gravity (mˆ2/s)

x1(1)=0; %set initial cart displacement to be 0 (m)

x2(1)=0; %set initial cart velocity to be 0 (m/s)

x3(1)=30*pi/180; %set initial pendulum angle to be pi (rad)

x4(1)=0; %set initial pendulum angular velocity to be 0 (rad/s)

u_out(1)=0; % Control signal

Ts = 0.0001; % step siz

Duration=10; % 10 sec

t=Duration*(1/Ts);

Time = 0:Ts:t*Ts; % the range of x-axis

%set Q and R matrices

Q=[1, 0, 0, 0;

 0, 1, 0, 0;

 0, 0, 100, 0;

 0, 0, 0, 1];

R=0.01;

for i=1:t

x=[x1(i); x2(i); x3(i); x4(i)];

%define and update the x vector

%%% Nonlinear model from Xu' book chapter %%%%

x_3=x(3); x_4=x(4);

A=[0, 1, 0, 0;

0, 0,-m2*g*sin(x_3)*cos(x_3)/((m1+m2*(sin(x_3))^2)*x_3),...

m2*r*x_4*sin(x_3)/(m1+m2*(sin(x_3)^2));

0, 0, 0, 1;

0, 0,(m1+m2)*g*sin(x_3)/(r*(m1+m2*(sin(x_3))^2)*x_3),...

-m2*r*x_4*sin(x_3)*cos(x_3)/(r*(m1+m2*(sin(x_3))^2))];

B=[0; 1/(m1+m2*(sin(x_3))^2); 0 ; -cos(x_3)/(r*(m1+m2*(sin(x_3))^2))];

%set Q and R matrices

[~,P,~]=lqr(A,B,Q,R);

%use the MATLAB ‘lqr’ function to solve Riccati equation and

APPENDIX A

253

%work out P

u_out=(-inv(R)*B'*P)*x;

fx=(A-B*(1/R)*B'*P)*x;

%calculate the function output ‘fx’ based on values of A, B, P

%and x.

 x = x + Ts * fx; % Euler

 %%% Limit the pitch angle between -90 to 90 deg.

 if x(3) > 90*pi/180

 x(3) =90*pi/180;

 end

 if x(3) < -90*pi/180

 x(3) =-90*pi/180;

 end

x1(i+1)=x(1);

x2(i+1)=x(2);

x3(i+1)=x(3);

x4(i+1)=x(4);

%Reset the x1, x2, x3 & x4 variables to new values and get ready

%for the next iteration.

u(i+1) = u_out;

 %%% print %%%

 Cal_percent = i*100/(t);

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

figure('Name','Freezing Control');

Fn = 14; % font size

subplot(2,3,1);

p1=plot(Time,x1); grid;

xlabel('Time (sec)'); ylabel('Cart displacement x1 (m)');

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2=plot(Time,x2); grid;

xlabel('Time (sec)'); ylabel('Cart velocity x2 (m/s)');

set(gca,'FontSize', Fn);

subplot(2,3,2);

p3=plot(Time,x3*180/pi); grid;

xlabel('Time (sec)'); ylabel('Pendulum angle x3 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,5);

p4=plot(Time,x4*180/pi); grid;

xlabel('Time (sec)'); ylabel('Pendulum angular velocity x4 (deg/s)');

set(gca,'FontSize', Fn);

subplot(2,3,3);

p5=plot(Time,u); grid;

xlabel('Time (sec)'); ylabel('Control signal-u (N)');

APPENDIX A

254

set(gca,'FontSize', Fn);

Size=1.2;

p1.LineWidth = Size;

p2.LineWidth = Size;

p3.LineWidth = Size;

p4.LineWidth = Size;

p5.LineWidth = Size;

Appendix A.6.8: MATLAB codes of an inverted pendulum on a cart system

using iteration scheme

Script file: Iteration_single_pendulum_4s.m

%%

%

% Nonlinear iteration scheme of an inverted pendulum on a cart system

%

%%

clear all

close all

m1=2; %Mass of the cart (kg)

m2=0.1; %mass of the pendulum (kg)

r=0.5; %the rod lenghth (m)

g=9.8; %acceleration due to gravity (m^2/s)

x1(1)=0; %set initial cart displacement to be 0

x2(1)=0; %set initial cart velocity to be 0

x3(1)=60*pi/180; %set initial pendulum angle to be pi/3

x4(1)=0; %set initial pendulum angular velocity to be 0

x_initial=[x1(1); x2(1); x3(1); x4(1)]; %define the x vector

Ts = 0.00005; % step size

Duration=10; % 10sec

t=Duration*(1/Ts);

Time = 0:Ts:t*Ts; % the range of x-axis

data = zeros(size(Time)); % allocate the result x-axis

n = numel(data); % the number of x-axis values

u(1)=0;

%set Q and R matrices

Q=[1, 0, 0, 0;

 0, 1, 0, 0;

 0, 0, 100, 0;

 0, 0, 0, 1];

R=0.01;

APPENDIX A

255

F=eye(4); % F = diag{1,1,1,1}

P_final=F; % Final time penelty matrix

Iteration = 40;

for k=1:Iteration %%%%%%%%%%%% iteration for loop %%%%%%%%%%%%

 x = x_initial; % set x=x0 at the initial step

 P = P_final;

 for i=1:t %%%% Time step %%%

 %%%%%%%% evalrhs function start %%%%%%%%

 %%%% At initial step K=1

 if k==1

 x3_in = x_initial(3);

 x4_in = x_initial(4);

 %%% Nonlinear Model from Xu's book chapter %%%

 A=[0, 1, 0, 0;

 0, 0,-

m2*g*sin(x3_in)*cos(x3_in)/((m1+m2*(sin(x3_in))^2)*x3_in),...

 m2*r*x4_in*sin(x3_in)/(m1+m2*(sin(x3_in)^2));

 0, 0, 0, 1;

 0,

0,(m1+m2)*g*sin(x3_in)/(r*(m1+m2*(sin(x3_in))^2)*x3_in),...

 -

m2*r*x4_in*sin(x3_in)*cos(x3_in)/(r*(m1+m2*(sin(x3_in))^2))];

 B=[0; 1/(m1+m2*(sin(x3_in))^2); 0 ; -

cos(x3_in)/(r*(m1+m2*(sin(x3_in))^2))];

 end

 %%%% When K > 1 %%%

 if k > 1

 x3_pre = x3_table(i,k-1);

 x4_pre = x4_table(i,k-1);

 %%% Nonlinear Model from Xu's book chapter %%%

 A=[0, 1, 0, 0;

 0, 0,-

m2*g*sin(x3_pre)*cos(x3_pre)/((m1+m2*(sin(x3_pre))^2)*x3_pre),...

 m2*r*x4_pre*sin(x3_pre)/(m1+m2*(sin(x3_pre)^2));

 0, 0, 0, 1;

 0,

0,(m1+m2)*g*sin(x3_pre)/(r*(m1+m2*(sin(x3_pre))^2)*x3_pre),...

 -

m2*r*x4_pre*sin(x3_pre)*cos(x3_pre)/(r*(m1+m2*(sin(x3_pre))^2))];

 B=[0; 1/(m1+m2*(sin(x3_pre))^2); 0 ; -

cos(x3_pre)/(r*(m1+m2*(sin(x3_pre))^2))];

 end

 %%%% Backward Euler's method %%%

 P = P-(- Q - P*A - A.'*P + P*B*inv(R)*B.'*P) *Ts;

 u_new = -inv(R)*B'*P*x;

 fx = (A-B*inv(R)*B'*P)*x;

APPENDIX A

256

 x = x + Ts * fx; % Euler's method

 %%% Limit the pitch angle between -90 to 90 deg.

 if x(3) > 90*pi/180

 x(3) =90*pi/180;

 end

 if x(3) < -90*pi/180

 x(3) =-90*pi/180;

 end

 x1(i+1) = x(1); %%% Feedback to system

 x2(i+1) = x(2);

 x3(i+1) = x(3);

 x4(i+1) = x(4);

 u(i+1) = u_new; %%% plot data only

 end

 x1_table(:,k)=x1; %%% collect data, creating table

 x2_table(:,k)=x2;

 x3_table(:,k)=x3;

 x4_table(:,k)=x4;

 u_table(:,k)=u;

 %%% print %%%

 Cal_percent = k*100/(Iteration);

 if mod(Cal_percent , 10) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

x3_table=x3_table*180/pi;

x4_table=x4_table*180/pi;

figure('Name','Iteration scheme');

Fn = 14; % font size

subplot(2,3,1);

p1(1)=plot(Time,x1_table(:,1),'k--'); hold on

p1(2)=plot(Time,x1_table(:,5),'m'); hold on

p1(3)=plot(Time,x1_table(:,10),'color','#F39C12'); hold on

p1(4)=plot(Time,x1_table(:,15),'g:'); hold on

p1(5)=plot(Time,x1_table(:,30),'b'); hold on

p1(6)=plot(Time,x1_table(:,40),'r--'); hold on

xlabel('Time (sec)'); ylabel('Cart displacement x1 (m)');grid;

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2(1)=plot(Time,x1_table(:,1),'k--'); hold on

p2(2)=plot(Time,x2_table(:,5),'m'); hold on

p2(3)=plot(Time,x2_table(:,10),'color','#F39C12'); hold on

p2(4)=plot(Time,x2_table(:,15),'g:'); hold on

p2(5)=plot(Time,x2_table(:,30),'b'); hold on

p2(6)=plot(Time,x2_table(:,40),'r--'); hold on

xlabel('Time (sec)'); ylabel('Cart velocity x2 (m/s)');grid;

set(gca,'FontSize', Fn);

APPENDIX A

257

subplot(2,3,2);

%plot(Time,x1); grid;

p3(1)=plot(Time,x3_table(:,1),'k--'); hold on

p3(2)=plot(Time,x3_table(:,5),'m'); hold on

p3(3)=plot(Time,x3_table(:,10),'color','#F39C12'); hold on

p3(4)=plot(Time,x3_table(:,15),'g:'); hold on

p3(5)=plot(Time,x3_table(:,30),'b'); hold on

p3(6)=plot(Time,x3_table(:,40),'r--'); hold on

xlabel('Time (sec)'); ylabel('Pendulum angle x3 (deg)');grid;

set(gca,'FontSize', Fn);

subplot(2,3,5);

p4(1)=plot(Time,x4_table(:,1),'k--'); hold on

p4(2)=plot(Time,x4_table(:,5),'m'); hold on

p4(3)=plot(Time,x4_table(:,10),'color','#F39C12'); hold on

p4(4)=plot(Time,x4_table(:,15),'g:'); hold on

p4(5)=plot(Time,x4_table(:,30),'b'); hold on

p4(6)=plot(Time,x4_table(:,40),'r--'); hold on

xlabel('Time (sec)'); ylabel('Pendulum angular velocity x4 (deg/s)');grid;

set(gca,'FontSize', Fn);

subplot(2,3,3);

p5(1)=plot(Time,u_table(:,1),'k--'); hold on

p5(2)=plot(Time,u_table(:,5),'m'); hold on

p5(3)=plot(Time,u_table(:,10),'color','#F39C12'); hold on

p5(4)=plot(Time,u_table(:,15),'g:'); hold on

p5(5)=plot(Time,u_table(:,30),'b'); hold on

p5(6)=plot(Time,u_table(:,40),'r--'); hold on

xlabel('Time (sec)'); ylabel('Control signal-u (N)');grid;

set(gca,'FontSize', Fn);

legend('i=1','i=5','i=10','i=15','i=30','i=40','FontSize', 12)

LW1=1; LW2=1.2; LW3=1.2; LW4=2.5; LW5=1.2; LW6=2;

p1(1).LineWidth = LW1; p1(2).LineWidth = LW2; p1(3).LineWidth = LW3;

p1(4).LineWidth = LW4; p1(5).LineWidth = LW5; p1(6).LineWidth = LW6;

p2(1).LineWidth = LW1; p2(2).LineWidth = LW2; p2(3).LineWidth = LW3;

p2(4).LineWidth = LW4; p2(5).LineWidth = LW5; p2(6).LineWidth = LW6;

p3(1).LineWidth = LW1; p3(2).LineWidth = LW2; p3(3).LineWidth = LW3;

p3(4).LineWidth = LW4; p3(5).LineWidth = LW5; p3(6).LineWidth = LW6;

p4(1).LineWidth = LW1; p4(2).LineWidth = LW2; p4(3).LineWidth = LW3;

p4(4).LineWidth = LW4; p4(5).LineWidth = LW5; p4(6).LineWidth = LW6;

p5(1).LineWidth = LW1; p5(2).LineWidth = LW2; p5(3).LineWidth = LW3;

p5(4).LineWidth = LW4; p5(5).LineWidth = LW5; p5(6).LineWidth = LW6;

Appendix A.6.9: MATLAB codes of TWR systems using freezing control

technique

Script file: Gyroboy_5s_Freezing_10_2021.m

%%%% Nonlinear Freezing Control for LEGO EV3 Robot

%%%%%% Functions programme needed %%%

% evalrhs_Freezing_K5(); % Generating K5 only

APPENDIX A

258

% evalrhs_gyroboy5s_Freezing(); % Generating K1-K4 and fx

%

% Inside two functions

%

% Gyroboy_Nonlinear_Model_5s();

% Gyroboy_Nonlinear_Model_4s();

% Maxon Motor parameters etc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

%%% Set initial x1-x5

%%% Always set x1=x3

x1(1)=20*pi/180; %set Theta - Average of wheel angles (deg)

x2(1)=0; %set Theta_DOT (deg/s)

x3(1)=20*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO

x4(1)=0*pi/180; %set Psi_DOT (deg/s)

x5(1)=0; %set Theta integral

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

 Model=1;

u = [0;0]; % Control of Motors

u_in1(1)=0; % Left Motor Voltage

u_in2(1)=0; % Right Motor Voltage

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4)

x1_err = 0; % x1 error for tracking sys

x1_ref = 0; % x1 reference

x1_err_int(1)=0; % x1 error integral

Ts=0.0001; %time step length

Duration=10; % time sec

t=Duration*(1/Ts); % time step

Time = 0:Ts:t*Ts; % Create real time step for plotting

for i=1:t

 u =[u_in1(i); u_in2(i)];

 x_5s =[x1(i); x2(i); x3(i); x4(i); x5(i)]; % whole system

 x_4s =[x1(i); x2(i); x3(i); x4(i)]; % x1-x4 state feedback

 %%%%%% Programming Diagram %%%%%

%

% u_x1 + u y=x1-x4 y=x1

% X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+

% ^- ^ - | |

% | | u_feedback | |

% | | |

% x1 | |

% +--------------------<--K14-- ---------------- ---+

% x1-x4

%

% %%%%%%%%%%%%%%%

 %%% x1 error for tracking sys

 x1_err(i+1) = x1_ref - x1(i);

APPENDIX A

259

 %%%%% X1 error Integral %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 %%% x1 error integral

 x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ; % [h1 x L]+[0.5 x(h2-h1) x L] + old

 %%% cal. K5 for x5 only (integral x1)

 K_5 = evalrhs_Freezing_K5(x_5s,Model); % K_5=[-0.5000; -0.5000];

 %%% u=kx, Motor Voltage of integral x1

 u_x1 = K_5 * x1_err_int(i+1);

 %%% The final voltages used to control robot motors

 u = u_x1 - u_feedback;

 %%% Hard Saturation %%%

 %%% Uncomment this part for using motor voltage hard saturation

% Vmax = 8.3;

% %Vmax = 36;

% %Vmax = 48;

% if u(1) > Vmax

% u(1) = Vmax;

% u(2) = Vmax;

% end

% if u(1) < -Vmax

% u(1) = -Vmax;

% u(2) = -Vmax;

% end

% %%%%%%

 u_in1(i+1)=u(1); % update u1

 u_in2(i+1)=u(2); % update u2

 %%% calculate the new 'x' vector using a 4th order

 %%% Euler integration method

 %%% fx = Ax + Bu;

 [fx,K_14,~,~] = evalrhs_gyroboy5s_Freezing(x_4s,u,Model);

 x_4s = x_4s + Ts * fx; % Euler

 %%% K14 = K1,K2,K3 and K4

 %%% Limit the robot pitch angle between -90 to 90 deg.

 if x_4s(3) > 90*pi/180

 x_4s(3) =90*pi/180;

 end

 if x_4s(3) < -90*pi/180

 x_4s(3) =-90*pi/180;

 end

 %%% Update x1-x4

 x1(i+1)=x_4s(1);

 x2(i+1)=x_4s(2);

 x3(i+1)=x_4s(3);

 x4(i+1)=x_4s(4);

 x3_deg(i+1)=x_4s(3)*180/pi;

 x4_deg(i+1)=x_4s(4)*180/pi;

APPENDIX A

260

 %%% Generate real x1 integral (x5)

 %%%%% X5 = Integral of X1 %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts;

 %%% x1-x4 motor voltage feedback %%%%

 u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];

 %%% Command print for waiting %%%

 Cal_percent = i*100/t;

 if i== 1

 fprintf('Start at x3= %3.2f deg, x4= %1.1e

deg/s...\n',x3(1)*180/pi,x4(1)*180/pi)

 end

 if mod(Cal_percent , 2) == 0

 %fprintf('Calculating %f percent ...\n',Cal_percent)

 fprintf('Cal. %3.2f percent, ',Cal_percent)

 fprintf('x3= %3.2f deg, ',x3(i+1)*180/pi)

 fprintf('x4= %3.2f deg/s, ',x4(i+1)*180/pi)

 fprintf('t= %3.2f sec...\n',Ts*i)

 end

end

% Use below line instead above when ploting the failing system

(uncontrollable)

% Time = 0:Ts:(i-1)*Ts;

 u=u_in1; % Store as u

%%%%%% Save variables for plotting future %%%

%%% 'x1','x2','x3','x4','x5','u','Time' %%%

%save('Sim_Output_workspace_nonlinear1','x1','x2','x3','x4','x5','u','Time');

%%%% Fig. [2x3] %%%

figure('Name','Freezing control');

Fn = 14; % font size

subplot(2,3,1);

p1=plot(Time,x1*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2=plot(Time,x2*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)');

set(gca,'FontSize', Fn);

subplot(2,3,2);

p3=plot(Time,x3*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,5);

p4=plot(Time,x4*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)');

set(gca,'FontSize', Fn);

APPENDIX A

261

 subplot(2,3,3);

 p5=plot(Time,x5*180/pi,'r'); grid;

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)');

 set(gca,'FontSize', Fn);

subplot(2,3,6); %5states

p6=plot(Time,u,'r'); grid;

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn);

set(gca,'FontSize', Fn);

%LineWidth

LW=1.2;

p1(1).LineWidth = LW;

p2(1).LineWidth = LW;

p3(1).LineWidth = LW;

p4(1).LineWidth =LW;

p5(1).LineWidth = LW;

p6(1).LineWidth =LW;

Function file: evalrhs_Freezing_K5.m

function K_5 = evalrhs_Freezing_K5(x,model)

 %%% 5-states Model parameters

 [A5,B5,Q,R2,~,~,~]=Gyroboy_Nonlinear_Model_5s(x,model);

 [K_LQR,~,~]=lqr(A5,B5,Q,R2); % K nonlinear

 %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P

 K_5 = K_LQR;

 K_5(: , 1:4)=[]; % integral gain x5

 % delete column 1-4th

 %calculate the function output 'fx' based on values of A, B, P and x.

end

Function file: Gyroboy_Nonlinear_Model_5s.m

 function [A5,B5,Q,R2,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,Model)

%%% LEGO EV3 parameters 5-states

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg] old 0.024 new 0.050

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg]

h = 0.210; % body height [m]

APPENDIX A

262

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

%%% EV3 Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

Vmax=8.3; % Default Vmax for LEGO EV3

M2=M; % Use this when want to change new motor or mass

%%% Uncomment below when want to use new motor %%%

%[M,Jm,Rm,Kb,Kt]=MaxonDCmotor_Ec60flat_100W_48V(M2); Vmax = 48;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

%%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 %x5=x(5); %

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

 if x4 == 0

 x4=1.0e-20; % avoid Inf's and NaN's

 end

 %%% Nonlinear model %%%%

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3);

 e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(x3);

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x2dot equation

 e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(x3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

APPENDIX A

263

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %define these extra function to reduce the coding complexity of A and B

 %matrices with the motor added in

 %define A and B using a nonlinear state-space gyro robot model,

 %including the motor part

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

 if x4 == 0

 x4=1.0e-20; % avoid Inf's and NaN's

 end

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

 % 4.Model C

 % Model = 3; % Select mode

 %%%-------- Model A ----------

if Model == 1

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b) 0 ;

 1 0 0 0 0];

end

%%%-------- Model B ----------

if Model == 2

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0 0 ;

 1 0 0 0 0];

end

 %%%-------- Model AB5 ----------

if Model == 3

APPENDIX A

264

 %%% Mix A&B %%%%%

 if x3 <= (10*pi/180) && x3 >= (-10*pi/180)

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b) 0 ;

 1 0 0 0 0];

 else

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0 0 ;

 1 0 0 0 0];

 end

end

%%%-------- Model C ----------

if Model == 4

 %%%% Model C %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) 0 (em23+em24*x4)/((a+b)*x4) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) 0 (em43+em44*x4)/((a+b)*x4) 0 ;

 1 0 0 0 0];

end

 % Models Matrix B

 B5 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b);

 0 0];

 Q=[20, 0, 0, 0, 0;

 0, 1, 0, 0, 0;

 0, 0, 1, 0, 0;

 0, 0, 0, 1, 0;

 0, 0, 0, 0, 5];

 R2= 10*[1, 0;

 0, 1];

 % set Q and R matrices

 end

Note that function file “Gyroboy_Nonlinear_Model_4s.m” is the same

programme used in linear control simulation.

APPENDIX A

265

Appendix A.6.10: MATLAB codes of TWR systems using freezing control

technique with EKF

Script file: Gyroboy_5s_Freezing_EKF_10_2021.m

%%%% Nonlinear Freezing Control with EKF for LEGO EV3 Robot

%%%%%% Functions programme needed %%%

% evalrhs_Freezing_K5(); % Generating K5 only

% evalrhs_gyroboy5s_Freezing_EKF(); % Generating K1-K4, fx and Kf

%

% Inside two functions

%

% Gyroboy_Nonlinear_Model_5s();

% Gyroboy_Nonlinear_Model_4s();

% Maxon Motor parameters etc.

%%

clear all;

close all;

%%% Set initial x1-x5

%%% Always set x1=x3

x1(1)=10*pi/180; %set Theta - Average of wheel angles (deg)

x2(1)=0; %set Theta_DOT (deg/s)

x3(1)=10*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO

x4(1)=0*pi/180; %set Psi_DOT (deg/s)

x5(1)=0; %set Theta integral

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

 Model=1;

u_in1(1)=0; % Left Motor Voltage

u_in2(1)=0; % Right Motor Voltage

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4)

%%% Set initial Xhat

Xhat1(1) = x1(1);

Xhat2(1) = 0;

Xhat3(1) = x3(1);

Xhat4(1) = 0;

%%% Set initial Xhat integral

dXhat1(1) = 0;

dXhat2(1) = 0;

dXhat3(1) = 0;

dXhat4(1) = 0;

%%% Disturbance variables

x1_disturbance(1) = 0;

x2_disturbance(1) = 0;

x3_disturbance(1) = 0;

x4_disturbance(1) = 0;

x1_err = 0; % x1 error for tracking sys

APPENDIX A

266

x1_ref = 0; % x1 reference

x1_err_int(1)=0; % x1 error integral

Ts=0.0001; %time step length

Duration=10; % time sec

t=Duration*(1/Ts); % time step in programming

Time = 0:Ts:t*Ts; % Create real time step for plotting

for i=1:t

 u =[u_in1(i); u_in2(i)];

 x_5s =[x1(i); x2(i); x3(i); x4(i); x5(i)]; % whole system

 x_4s =[x1(i); x2(i); x3(i); x4(i)]; % x1-x4 state feedback

 Xhat =[Xhat1(i); Xhat2(i); Xhat3(i); Xhat4(i)]; % Xhat1-4 (exclude x5)

 dXhat=[dXhat1(i); dXhat2(i); dXhat3(i); dXhat4(i)]; %Xhat integral

 %%%%%% Programming Diagram %%%%%

%

% u_x1 + u y=x1-x4 y=x1

% X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+

% ^- ^ - | ^ | |

% | | u_feedback +------B------>| Add | | |

% | | | Distubance |

% x1 | Xhat dXhat | |

% +-<--K14-- o<--Integal <----- o <-- Kf-------- ---+

% | ^ x1-x4

% | |

% +---- A -(Kf)C ->--+

% %%%%%%%%%%%%%%%

 %%% x1 error for tracking sys

 x1_err(i+1) = x1_ref - x1(i);

 %%%%% X1 error Integral %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 %%% x1 error integral

 x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ; % [h1 x L]+[0.5 x(h2-h1) x L] + old

 %%% cal. K5 for x5 only (integral x1)

 K_5 = evalrhs_Freezing_K5(x_5s, Model); % K_5=[-0.5000; -0.5000];

 %%% u=kx, Motor Voltage of integral x1

 u_x1 = K_5 * x1_err_int(i+1);

 %%% The final voltages used to control robot motors

 u = u_x1 - u_feedback;

 %%% Hard Saturation %%%

 %%% Uncomment this part for using motor voltage hard saturation

% Vmax = 8.3;

% % Vmax = 36;

% %Vmax = 48;

% if u(1) > Vmax

% u(1) = Vmax;

% u(2) = Vmax;

% end

% if u(1) < -Vmax

APPENDIX A

267

% u(1) = -Vmax;

% u(2) = -Vmax;

% end

% %%%%%%

%

 u_in1(i+1)=u(1); % update u1

 u_in2(i+1)=u(2); % update u2

 %%% calculate the new 'x' vector using a 4th order

 %%% Euler integration method

 %%% fx = Ax + Bu;

 [fx,u,A,B,C,Kf,K_14] = evalrhs_gyroboy5s_Freezing_EKF(x_4s,u, Model);

 x_4s = x_4s + Ts * fx; % Euler

 %%% Kf is the gain of Kalman filter

 %%% Limit the robot pitch angle between -90 to 90 deg.

 if x_4s(3) > 90*pi/180

 x_4s(3) =90*pi/180;

 end

 if x_4s(3) < -90*pi/180

 x_4s(3) =-90*pi/180;

 end

 %%% Update x1-x4

 x1(i+1)=x_4s(1);

 x2(i+1)=x_4s(2);

 x3(i+1)=x_4s(3);

 x4(i+1)=x_4s(4);

 %%% Generate real x1 integral (x5)

 %%%%% X5 = Integral of X1 %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts;

 %%%% Select mode for testing disturbance on state-estimation %%%%

 % 0.No disturbance

 % 1.Noise disturbance in X3

 % 2.Sensor X3 drift

 Mode = 0; % Select mode 0

if Mode == 0

 %%%%% No disturbance in X

 x1_disturbance(i+1)=x_4s(1);

 x2_disturbance(i+1)=x_4s(2);

 x3_disturbance(i+1)=x_4s(3)+ 0;

 x4_disturbance(i+1)=x_4s(4);

 Kf_X = Kf*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)]; %%% Update: Kf_X

end

if Mode == 1

 %%%%%% Test signal disturbance, drift only X3 %%%%%

 x1_disturbance(i+1)=x_4s(1);

APPENDIX A

268

 x2_disturbance(i+1)=x_4s(2);

 x3_disturbance(i+1)=x_4s(3)+ (i/(100*400))*pi/180;

 x4_disturbance(i+1)=x_4s(4);

 Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)]; %%% Update:

Kf_X

end

if Mode == 2

 %%%%%%% Test noise disturbance, only X3 %%%%%%

 if mod(i , 2) == 0 % disturbance frequency

 min = -5; %min Random

 max = 5; %max Random

 r = (max-min).*rand(1) + min; % Random

 else

 r=0;

 end

 x1_disturbance(i+1)=x_4s(1);

 x2_disturbance(i+1)=x_4s(2);

 %x3_disturbance(i+1)=x_4s(3)+ r(i+1)*pi/180;

 x3_disturbance(i+1)=x_4s(3)+ r*pi/180;

 x4_disturbance(i+1)=x_4s(4);

 Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)]; %%% Update:

L*X

end

 %%% Kalman filter variable

 %%% See more in coding diagram

 A_KfC_Xhat = (A-Kf*C)*Xhat;

 dXhat = B*u + Kf_X + A_KfC_Xhat;

 %%% Update

 dXhat1(i+1)=dXhat(1);

 dXhat2(i+1)=dXhat(2);

 dXhat3(i+1)=dXhat(3);

 dXhat4(i+1)=dXhat(4);

 %%%%% dXhat Integral (Xhat) %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 Xhat1(i+1) = Xhat1(i) + dXhat1(i)*Ts + 0.5* (dXhat1(i+1)-dXhat1(i))* Ts;

 Xhat2(i+1) = Xhat2(i) + dXhat2(i)*Ts + 0.5* (dXhat2(i+1)-dXhat2(i))* Ts;

 Xhat3(i+1) = Xhat3(i) + dXhat3(i)*Ts + 0.5* (dXhat3(i+1)-dXhat3(i))* Ts;

 Xhat4(i+1) = Xhat4(i) + dXhat4(i)*Ts + 0.5* (dXhat4(i+1)-dXhat4(i))* Ts;

 %%% Limit the robot pitch angle Xhat between -90 to 90 deg.

 if Xhat3(i+1) > 90*pi/180

 Xhat3(i+1)=90*pi/180;

 end

 if Xhat3(i+1) < -90*pi/180

 Xhat3(i+1)=-90*pi/180;

 end

 %%% Select control feedback : Xhat3 for x3%%%%

 %u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)]; %Xsys

APPENDIX A

269

 %u_feedback = K_14*[Xhat1(i+1); Xhat2(i+1); Xhat3(i+1); Xhat4(i+1)]; %Xhat

 u_feedback = K_14*[x_4s(1); x_4s(2); Xhat3(i+1); x_4s(4)];

%Select only X3

 %%% Command print for waiting %%%

 Cal_percent = i*100/t;

 if i== 1

 fprintf('Start at x3= %3.2f deg, x4= %3.1f

deg...\n',x3(1)*180/pi,x4(1)*180/pi)

 end

 if mod(Cal_percent , 2) == 0

 %fprintf('Calculating %f percent ...\n',Cal_percent)

 fprintf('Cal. %3.2f percent, ',Cal_percent)

 %fprintf('x3= %3.2f deg, ',Xhat3(i+1)*180/pi)

 fprintf('x3= %3.2f deg, ',x3(i+1)*180/pi)

 fprintf('x4= %3.2f deg/s, ',x4(i+1)*180/pi)

 fprintf('t= %3.2f sec...\n',Ts*i)

 end

 %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready

for the next iteration.

end

% use below line instead above when ploting the failing system

(uncontrollable)

% Time = 0:Ts:(i-1)*Ts;

 u=u_in1; % Store as u

%%% Move all Xhat to x3 for plotting

x3=Xhat3;

%%%%%% Save variables for plotting future %%%

%%% 'x1','x2','x3','x4','x5','u','Time' %%%

%%%% Fig. [2x3] %%%

figure('Name','Freezing control and EKF');

Fn = 14; % font size

subplot(2,3,1);

p1=plot(Time,x1*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2=plot(Time,x2*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)');

set(gca,'FontSize', Fn);

subplot(2,3,2);

p3=plot(Time,x3*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,5);

p4=plot(Time,x4*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)');

set(gca,'FontSize', Fn);

APPENDIX A

270

 subplot(2,3,3);

 p5=plot(Time,x5*180/pi,'r'); grid;

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)');

 set(gca,'FontSize', Fn);

subplot(2,3,6); %5states

p6=plot(Time,u,'r'); grid;

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn);

set(gca,'FontSize', Fn);

%LineWidth

LW=1.2;

p1(1).LineWidth = LW;

p2(1).LineWidth = LW;

p3(1).LineWidth = LW;

p4(1).LineWidth =LW;

p5(1).LineWidth = LW;

p6(1).LineWidth =LW;

--

Function file: evalrhs_gyroboy5s_Freezing_EKF.m

function [fx,u,A4,B4,C4,Kf,K_14] = evalrhs_gyroboy5s_Freezing_EKF(x ,u,

Model)

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 %%% 5-states Model parameters

 [A5,B5,Q,R2,~,~,~]=Gyroboy_Nonlinear_Model_5s(x, Model);

 %[A5,B5,Q,R2,Vmax,alpha,beta]

 % When disturbancing weigth and heigh, these parameters are not changed

 [K_LQR,~,~]=lqr(A5,B5,Q,R2); % K Nonlinear

 %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P

 K_14 = K_LQR;

 K_14(: , 5)=[]; % feedback gain x1-x4

 % delete column 5th, not need k5 for x5

 %%% 4-states Model parameters

 %%% Real model parameters

 [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x, Model);

 %[A4,B4,Vmax,alpha,beta]

 % When disturbancing weigth and heigh, these parameters are changed

 x14=[x1;x2;x3;x4];

 %%% Calculate fx for 4-state system

 %%% fx = Ax + Bu

 %%% Use u from controller voltage input

 fx = A4*x14 + B4*u;

APPENDIX A

271

 %%% Matrix C

 C4=eye(4);

 %%% Kalman filter noise parameters

 Noise_V= 0.2*eye(4); %0.2 % increase to smooth cure % R of Kalman filter

 Noise_W= 1*eye(4); % Q of Kalman filter

 %%% Calculation gain Kf of Kalman filter

 [~,Pk,~]=lqr(A4,C4',Noise_W,Noise_V);

 Kf= Pk*C4'*inv(Noise_V);

 %calculate the function output 'fx' based on values of A, B, P and x.

end

Appendix A.6.11: MATLAB codes of TWR systems using freezing control

technique with soft constrained input

Script file: Gyroboy_5s_Freezing_SoftConsV_10_2021.m

%%%% Nonlinear Freezing Control with soft constrained voltage

%%% for LEGO EV3 Robot

%%%%%% Functions programme needed %%%

% evalrhs_Freezing_K5_SoftCons(); % Generating K5 only

% evalrhs_gyroboy5s_Freezing_SoftCons(); % Generating K1-K4 and fx

%

% Inside two functions

%

% Gyroboy_Nonlinear_Model_5s();

% Gyroboy_Nonlinear_Model_4s();

% Maxon Motor parameters etc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

%%% Set initial x1-x5

%%% Always set x1=x3

x1(1)=10*pi/180; %set Theta - Average of wheel angles (deg)

x2(1)=0; %set Theta_DOT (deg/s)

x3(1)=10*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO

x4(1)=0*pi/180; %set Psi_DOT (deg/s)

x5(1)=0; %set Theta integral

x_np1(1)=0; %X-Saturation %X6 %Aftiicial voltage

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

model=1;

u_real_all(1)=0; % real voltage

%%% initial artificial voltage feedbck

APPENDIX A

272

u_new = 0;

u_feedback_new = 0;

x1_err = 0; % x1 error for tracking sys

x1_ref = 0; % x1 reference

x1_err_int(1)=0; % x1 error integral

Ts=0.0001; %time step length

Duration=10; % time sec

t=Duration*(1/Ts); % time step in programming

Time = 0:Ts:t*Ts; % Create real time step for plotting

for i=1:t

 x_6s =[x1(i); x2(i); x3(i); x4(i); x5(i); x_np1(i)]; % whole system +

Xnp1

 x_5s =[x1(i); x2(i); x3(i); x4(i); x_np1(i)]; % x1-x5 state

feedback

 %%%%%% Programming Diagram %%%%%

%

% u_x1 + u_new y=x1-x4,xnp1 y=x1

% X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+

% ^- ^ - | |

% | | u_feedback_new | |

% | | |

% x1 | |

% +--------------------<--K14,Knp1-- ----------- ---+

% x1-x4,xnp1

%

% %%%%%%%%%%%%%%%

 %%% x1 error for tracking sys

 x1_err(i+1) = x1_ref - x1(i);

 %%%%% X1 error Integral %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 %%% x1 error integral

 x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ; % [h1 x L]+[0.5 x(h2-h1) x L] + old

 %%% cal. K5 for x5 only (integral x1)

 K_5 = evalrhs_Freezing_K5_SoftCons(x_6s,i,model);

 %%% u=kx, Motor Voltage of integral x1

 u_x1_new = K_5 * x1_err_int(i+1);

 %%% The final voltages used to control robot motors

 u_new(i) = u_x1_new - u_feedback_new;

 %%%%%%%%

 %%% calculate the new 'x' vector using a 4th order

 %%% Euler integration method

 %%% fx = Ax + Bu;

 [fx,u_real,K14_n_xnp1,alphaa,betaa] =

evalrhs_gyroboy5s_Freezing_SoftCons(x_5s,u_new(i),i,model);

 x_5s = x_5s + Ts * fx; % Euler

 %%% K14 = K1,K2,K3 and K4 plus K_xnp1

APPENDIX A

273

 %%% Limit the robot pitch angle between -90 to 90 deg.

 if x_5s(3) > 90*pi/180

 x_5s(3) =90*pi/180;

 end

 if x_5s(3) < -90*pi/180

 x_5s(3) =-90*pi/180;

 end

 %%% Update x1-x4

 x1(i+1)=x_5s(1);

 x2(i+1)=x_5s(2);

 x3(i+1)=x_5s(3);

 x4(i+1)=x_5s(4);

 x_np1(i+1)=x_5s(5);

 u_real_all(i+1)=u_real; % Update u

 %%%%% X5 = Integral of X1 %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts;

 %%% x1-x5 motor voltage feedback %%%%

 u_feedback_new = K14_n_xnp1*[x_5s(1); x_5s(2); x_5s(3); x_5s(4); x_5s(5)];

 %%% Command print for waiting %%%

 if i== 1

 fprintf('Start at x3= %3.2f deg...\n',x3(1)*180/pi)

 end

 Cal_percent = i*100/t;

 if mod(Cal_percent , 2) == 0

 fprintf('Calculating %3.2f percent, ',Cal_percent)

 fprintf('x3= %3.2f deg, ',x3(i+1)*180/pi)

 fprintf('x4= %3.2f deg/s, ',x4(i+1)*180/pi)

 fprintf('x6= %3.2f , ',x_np1(i+1)*180/pi)

 fprintf('t= %3.2f sec...\n',Ts*i)

 end

 %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready

for the next iteration.

end

% Use below line instead above when ploting the failing system

(uncontrollable)

% Time = 0:Ts:(i-1)*Ts;

u = u_real_all; % ploting real voltage

%%%%%% Save variables for plotting future %%%

%%% 'x1','x2','x3','x4','x5','u','Time' %%%

%save('Sim_Output_workspace_nonlinear1_Vsat','x1','x2','x3','x4','x5','u','x_n

p1','Time');

APPENDIX A

274

figure('Name','Unew');

Fn = 14; % font size

p_Unew=plot(Time,x_np1,'r'); grid;

xlabel('time (s)','FontSize', Fn); ylabel('x6', 'FontSize', Fn);

set(gca,'FontSize', Fn);

% Robert (2020). symlog (https://www.github.com/raaperrotta/symlog),

% GitHub. Retrieved June 15, 2020.

symlog('y')

LW=1.2;

p_Unew(1).LineWidth = LW;

%%%% Fig. [2x3] %%%

figure('Name','Freezing control with soft constrained input');

Fn = 14; % font size

subplot(2,3,1);

p1=plot(Time,x1*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2=plot(Time,x2*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)');

set(gca,'FontSize', Fn);

subplot(2,3,2);

p3=plot(Time,x3*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,5);

p4=plot(Time,x4*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)');

set(gca,'FontSize', Fn);

 subplot(2,3,3);

 p5=plot(Time,x5*180/pi,'r'); grid;

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)');

 set(gca,'FontSize', Fn);

subplot(2,3,6); %5states

p6=plot(Time,u,'r'); grid;

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn);

set(gca,'FontSize', Fn);

%LineWidth

LW=1.2;

p1(1).LineWidth = LW;

p2(1).LineWidth = LW;

p3(1).LineWidth = LW;

p4(1).LineWidth =LW;

p5(1).LineWidth = LW;

p6(1).LineWidth =LW;

Function file: evalrhs_Freezing_K5_SoftCons.m

APPENDIX A

275

function K_5 = evalrhs_Freezing_K5_SoftCons(x,i,model)

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 x5=x(5); %Wheel integral

 x_np1=x(6); % Artificial control signal

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

 if x_np1 == 0

 x_np1=1.0e-20; % avoid Inf's and NaN's

 end

 %%% 5-states Model parameters

 [A5,B5,Q5,R2,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,model);

 RR=10;

 % set R matrices

 %%% Set soft saturation voltage

 if (x_np1) > Vmax % Lego Motor Maximum Voltage 8.3 V

 Phi_L = Vmax;

 Phi_R = Vmax;

 elseif (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V

 Phi_L = -Vmax;

 Phi_R = -Vmax;

 else

 Phi_L = x_np1;

 Phi_R = x_np1;

 end

 Phi = [Phi_L ;

 Phi_R];

 %%% Soft saturation voltage matrices

Aa= [A5 (B5*Phi)/x_np1 ;

 zeros(1,5) 0];

Ba= [zeros(5,1) ;

 1];

Qa= [Q5 zeros(5,1) ;

 zeros(1,5) 2*((Phi_L)^2)*RR];

Ra= 0.001;

 [K_LQR,~,~]=lqr(Aa,Ba,Qa,Ra); % K Nonlinear

 %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P

 K_56 = K_LQR;

 K_56(: , 1:4)=[]; % feedback gain (delete column 1-4th)

 K_5 = K_56; % Select K5 only

 K_5(: , 2)=[]; % integral gain (delete column 2th means column 6th)

APPENDIX A

276

 %calculate the function output 'fx' based on values of A, B, P and x.

end

Function file: evalrhs_gyroboy5s_Freezing_SoftCons.m

function [fx,u_real,K14_n_xnp1,alpha,beta] =

evalrhs_gyroboy5s_Freezing_SoftCons(x ,u_new,i,model)

 %%%%%% Functions programme needed %%%

 % Gyroboy_Nonlinear_Model_5s(); % Generating K1-K4

 % Gyroboy_Nonlinear_Model_4s(); % Generating fx, x1-x4 without x5

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 x_np1=x(5); %x_np1 %x6

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

 if x_np1 == 0

 x_np1=1.0e-20; % avoid Inf's and NaN's

 end

 %%% 5-states Model parameters

 [A5,B5,Q5,~,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,model);

 %[A5,B5,Q,R2,Vmax,alpha,beta]

 RR=10;

 % set Q and R matrices

 %%% Set soft saturation voltage

 if (x_np1) > Vmax % Lego Motor Maximum Voltage 8.3 V

 Phi_L = Vmax;

 Phi_R = Vmax;

 elseif (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V

 Phi_L = -Vmax;

 Phi_R = -Vmax;

 else

 Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax));

 Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax));

%

% Phi_L = x_np1;

% Phi_R = x_np1;

 end

 Phi = [Phi_L ;

 Phi_R];

 %%% Send data real voltage for ploting

APPENDIX A

277

 u_real= Phi(1);

 %%% Soft saturation voltage matrices

Aa= [A5 (B5*Phi)/x_np1 ;

 zeros(1,5) 0];

Ba= [zeros(5,1) ;

 1];

Ca= eye(6);

Qa= [Q5 zeros(5,1) ;

 zeros(1,5) 2*((Phi_L)^2)*RR];

Ra= 0.001;

 [K_LQR,~,~]=lqr(Aa,Ba,Qa,Ra); % K Nonlinear

 %%%% Need only K1-4 and X_np1, integral of x1 (x5) in not need

 %%%% K_LQR = 2x6 matrics

 K14_n_xnp1 = K_LQR;

 K14_n_xnp1(: , 5)=[]; % feedback gain (delete column 5th)

 %%% Real parameters , used to disturbance weigth and height

 [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x,model);

 %[A4,B4,Vmax,alpha,beta]

 %%% Set soft saturation voltage for new matrix A

 if (x_np1) > Vmax % Lego Motor Maximum Voltage 8.3 V

 Phi_L = Vmax;

 Phi_R = Vmax;

 elseif (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V

 Phi_L = -Vmax;

 Phi_R = -Vmax;

 else

 Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax));

 Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax));

 end

 Phi = [Phi_L ;

 Phi_R];

Ab= [A4 (B4*Phi)/x_np1 ;

 zeros(1,4) 0];

Bb= [zeros(4,1) ;

 1];

 x14_n_xnp1=[x1;x2;x3;x4;x_np1];

 %%% Calculate fx for 4-state+Xnp1 system

 %%% fx = Ax + Bu

 %%% Use u from controller voltage input

 fx = Ab*x14_n_xnp1 + Bb*u_new;

APPENDIX A

278

 %calculate the function output 'fx' based on values of A, B, P and x.

end

The function file “symlog.m” is provided by Mathworks from this website

(Mathworks, 2020),

https://uk.mathworks.com/matlabcentral/fileexchange/57902-

symlog?s_tid=mwa_osa_a

 Appendix A.6.12: MATLAB codes of TWR systems using freezing control

technique and EKF with soft constrained input

Script file: Gyroboy_5s_FreezingAndEKF_SoftConsV_10_2021.m

%%%% Nonlinear Freezing Control and EKF with soft constrained voltage

%%% for LEGO EV3 Robot

%%%%%% Functions programme needed %%%

% evalrhs_Freezing_K5_SoftCons(); % Generating K5 only

% evalrhs_gyroboy5s_FreezingAndEKF_SoftCons(); % Generating K1-K4 and fx

%

% Inside two functions

%

% Gyroboy_Nonlinear_Model_5s();

% Gyroboy_Nonlinear_Model_4s();

% Maxon Motor parameters etc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

x1(1)=10*pi/180; %set Theta - Average of wheel angles (rad) %11 deg.

x2(1)=0; %set Theta_DOT (rad/s)

x3(1)=10*pi/180; %set Psi - Pitch angle of body (rad) - CONTROL to ZERO

x4(1)=0; %set Psi_DOT

x5(1)=0; %theta_int

x_np1(1)=0; %X-Saturation

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

model=1;

u_real_all(1)=0; % real voltage

APPENDIX A

279

%%% initial artificial voltage feedbck

u_new = 0;

u_feedback_new = 0;

Xhat1(1) = x1(1);

Xhat2(1) = 0;

Xhat3(1) = x3(1);

Xhat4(1) = 0;

Xhat_Xnp1(1) = 0;

dXhat1(1) = 0;

dXhat2(1) = 0;

dXhat3(1) = 0;

dXhat4(1) = 0;

dXhat_Xnp1(1) = 0;

x1_disturbance(1) = x1(1);

x2_disturbance(1) = 0;

x3_disturbance(1) = x3(1);

x4_disturbance(1) = 0;

Xnp1_disturbance(1) = 0;

x1_err = 0;

x1_ref = 0;

x1_err_int(1)=0;

Ts=0.0001; %time step length

Duration=10; % time sec

t=Duration*(1/Ts); % time step in programming

Time = 0:Ts:t*Ts; % Create real time step for plotting

for i=1:t

 x_6s =[x1(i); x2(i); x3(i); x4(i); x5(i); x_np1(i)]; % for cal K5

 x_5s =[x1(i); x2(i); x3(i); x4(i); x_np1(i)]; % for cal K1-

K4,Xnp1

 Xhat =[Xhat1(i); Xhat2(i); Xhat3(i); Xhat4(i);Xhat_Xnp1(i)];

 dXhat=[dXhat1(i); dXhat2(i); dXhat3(i); dXhat4(i); dXhat_Xnp1(i)];

 %%%%%% Diagram %%%%%

%

% + u y=x1-x4,x_np1 y=x1

% X1ref->-o-->-Int--K5-->-->o------------------+-------| Plant |-->-----------o---+---C------+

% ^- ^ - | ^ | |

% | | u_feedback +------B------>| Add | | |

% | | | Distubance |

% x1 | Xhat dXhat | |

% +-<--K14,np1-- o<--Integal <----- o <-- L -------- ---+

% | ^ x1-x4,x_np1

% | |

% +------- A-LC -->--+

 x1_err(i+1) = x1_ref - x1(i);

 %%%%% X1 error Integral %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ; % [h1 x L]+[0.5 x(h2-h1) x L] + old

 K_5 = evalrhs_Freezing_K5_SoftCons(x_6s,i,model);

APPENDIX A

280

 u_x1_new = K_5 * x1_err_int(i+1);

 % r = 0;

 % u = r - u_feedback;

 u_new = u_x1_new - u_feedback_new;

 %%% calculate the new 'x' vector using a 4th order

 %%% Euler integration method

 %%% fx = Ax + Bu;

 [fx,u_real,A,B,C,L,K14_n_xnp1] =

evalrhs_gyroboy5s_FreezingAndEKF_SoftCons(x_5s,u_new,model);

 x_5s = x_5s + Ts * fx; % Euler

%%% Limit the robot pitch angle between -90 to 90 deg.

 if x_5s(3) > 90*pi/180

 x_5s(3) =90*pi/180;

 end

 if x_5s(3) < -90*pi/180

 x_5s(3) =-90*pi/180;

 end

 %%% Update x1-x4

 x1(i+1)=x_5s(1);

 x2(i+1)=x_5s(2);

 x3(i+1)=x_5s(3);

 x4(i+1)=x_5s(4);

 x_np1(i+1)=x_5s(5);

 u_real_all(i+1)=u_real; % Update u

 %%%%% X5 = Integral of X1 %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts;

 %%%% Select mode for testing %%%%

 % 0.No disturbance

 % 1.Noise disturbance in X3

 % 2.Sensor X3 drift

 Mode = 0;

if Mode == 0

 %%%%% No disturbance in X

 x1_disturbance(i+1)=x_5s(1);

 x2_disturbance(i+1)=x_5s(2);

 x3_disturbance(i+1)=x_5s(3)+ 0;

 x4_disturbance(i+1)=x_5s(4);

 Xnp1_disturbance(i+1)=x_5s(4);

 LX = L*[x_5s(1); x_5s(2); x_5s(3); x_5s(4); x_5s(5)]; % No disturbance

end

if Mode == 1

% %%%%%% Test signal disturbance, drift only X3 %%%%%

 x1_disturbance(i+1)=x_5s(1);

 x2_disturbance(i+1)=x_5s(2);

 x3_disturbance(i+1)=x_5s(3)+ (i/(100*400))*pi/180;

APPENDIX A

281

 x4_disturbance(i+1)=x_5s(4);

 Xnp1_disturbance(i+1)=x_5s(5);

 LX = L*[x_5s(1); x_5s(2); x3_disturbance(i+1) ; x_5s(4); x_5s(5)];

end

if Mode == 2

% %%%%%%% Test noise disturbance, only X3 %%%%%%

 if mod(i , 2) == 0 % frequency

 min = -5; %min Random

 max = 5; %max Random

 r = (max-min).*rand(1) + min; % Random

 else

 r=0;

 end

 x1_disturbance(i+1)=x_5s(1);

 x2_disturbance(i+1)=x_5s(2);

 %x3_disturbance(i+1)=x_4s(3)+ r(i+1)*pi/180; %%% ramdom noise variable

 x3_disturbance(i+1)=x_5s(3)+ r*pi/180;

 x4_disturbance(i+1)=x_5s(4);

 Xnp1_disturbance(i+1)=x_5s(5);

 LX = L*[x_5s(1); x_5s(2); x3_disturbance(i+1) ; x_5s(4) ; x_5s(5)];

end

 %%% Kalman filter variable

 %%% See more in coding diagram

 A_LC = (A-L*C)*Xhat;

 dXhat = B*u_new + LX + A_LC;

 %%% Update

 dXhat1(i+1)=dXhat(1);

 dXhat2(i+1)=dXhat(2);

 dXhat3(i+1)=dXhat(3);

 dXhat4(i+1)=dXhat(4);

 dXhat_Xnp1(i+1)=dXhat(5);

 %%%%% dXhat Integral (Xhat) %%%%%

 % Sum_Area = Previous_area + New_area

 % Sum(i+1) = Sum(i) + (Square(i) + triangle(i))

 Xhat1(i+1) = Xhat1(i) + dXhat1(i)*Ts + 0.5* (dXhat1(i+1)-dXhat1(i))* Ts;

 Xhat2(i+1) = Xhat2(i) + dXhat2(i)*Ts + 0.5* (dXhat2(i+1)-dXhat2(i))* Ts;

 Xhat3(i+1) = Xhat3(i) + dXhat3(i)*Ts + 0.5* (dXhat3(i+1)-dXhat3(i))* Ts;

 Xhat4(i+1) = Xhat4(i) + dXhat4(i)*Ts + 0.5* (dXhat4(i+1)-dXhat4(i))* Ts;

 Xhat_Xnp1(i+1) = Xhat_Xnp1(i) + dXhat_Xnp1(i)*Ts + 0.5* (dXhat_Xnp1(i+1)-

dXhat_Xnp1(i))* Ts;

 %%% Limit the robot pitch angle Xhat between -90 to 90 deg.

 if Xhat3(i+1) > 90*pi/180

 Xhat3(i+1)=90*pi/180;

 end

 if Xhat3(i+1) < -90*pi/180

 Xhat3(i+1)=-90*pi/180;

 end

 %%% Select x feedback %%%%

 %u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)]; %Xsys

 %u_feedback = K_14*[Xhat1(i+1); Xhat2(i+1); Xhat3(i+1); Xhat4(i+1)]; %Xhat

APPENDIX A

282

 u_feedback_new = K14_n_xnp1*[x_5s(1); x_5s(2); Xhat3(i+1); x_5s(4);

x_5s(5)]; %X mix only X3

 %%% print %%%

 if i== 1

 fprintf('Start at x3= %3.2f deg...\n',Xhat3(1)*180/pi)

 end

 Cal_percent = i*100/t;

 if mod(Cal_percent , 2) == 0

 fprintf('Cal. %3.2f per, ',Cal_percent)

 fprintf('x3= %3.2f deg, ',Xhat3(i+1)*180/pi)

 fprintf('x4= %3.2f deg/s, ',x4(i+1)*180/pi)

 fprintf('t= %3.2f sec...\n',Ts*i)

 end

 %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready

for the next iteration.

end

% Use below line instead above when ploting the failing system

(uncontrollable)

%Time = 0:Ts:(i-1)*Ts;

u = u_real_all;

x3=Xhat3;

%save('Sim_Output_workspace_nonlinear1_Vsat','x1','x2','x3','x4','x5','u','x_n

p1','Time');

figure('Name','Unew');

Fn = 14; % font size

p_Unew=plot(Time,x_np1,'m'); grid;

xlabel('time (s)','FontSize', Fn); ylabel('x6', 'FontSize', Fn);

set(gca,'FontSize', Fn);

% Robert (2020). symlog (https://www.github.com/raaperrotta/symlog),

% GitHub. Retrieved June 15, 2020.

symlog('y')

LW=1.5;

p_Unew(1).LineWidth = LW;

%%%% Fig. [2x3] %%%

figure('Name','Freezing control and EKF with soft constrained input');

Fn = 14; % font size

subplot(2,3,1);

p1=plot(Time,x1*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,4);

p2=plot(Time,x2*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)');

set(gca,'FontSize', Fn);

subplot(2,3,2);

APPENDIX A

283

p3=plot(Time,x3*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)');

set(gca,'FontSize', Fn);

subplot(2,3,5);

p4=plot(Time,x4*180/pi,'r'); grid;

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)');

set(gca,'FontSize', Fn);

 subplot(2,3,3);

 p5=plot(Time,x5*180/pi,'r'); grid;

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)');

 set(gca,'FontSize', Fn);

subplot(2,3,6); %5states

p6=plot(Time,u,'r'); grid;

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn);

set(gca,'FontSize', Fn);

%LineWidth

LW=1.2;

p1(1).LineWidth = LW;

p2(1).LineWidth = LW;

p3(1).LineWidth = LW;

p4(1).LineWidth =LW;

p5(1).LineWidth = LW;

p6(1).LineWidth =LW;

Function file: evalrhs_gyroboy5s_FreezingAndEKF_SoftCons.m

function [fx,u_real,Ab,Bb,Cb,Lk,K14_n_xnp1] =

evalrhs_gyroboy5s_FreezingAndEKF_SoftCons(x ,u_new,model)

 x1=x(1); %Theta - Average of wheel angles

 x2=x(2); %ThetaDOT

 x3=x(3); %Psi - Pitch of body CONTROL to ZERO

 x4=x(4); %PsiDOT

 x_np1=x(5); %x_np1 %x6

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

 if x_np1 == 0

 x_np1=1.0e-20; % avoid Inf's and NaN's

 end

 %%% 5-states Model parameters

 [A5,B5,Q5,~,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,model);

 %[A5,B5,Q,R2,Vmax,alpha,beta]

 RR=10;

 % set Q and R matrices

 if (x_np1) > Vmax % Lego Motor Maximum Voltage 8.3 V

 Phi_L = Vmax;

 Phi_R = Vmax;

 elseif (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V

APPENDIX A

284

 Phi_L = -Vmax;

 Phi_R = -Vmax;

 else

 Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax));

 Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax));

 end

 Phi = [Phi_L ;

 Phi_R];

 u_real= Phi(1);

Aa= [A5 (B5*Phi)/x_np1 ;

 zeros(1,5) 0];

Ba= [zeros(5,1) ;

 1];

Ca= eye(6);

Qa= [Q5 zeros(5,1) ;

 zeros(1,5) 2*((Phi_L)^2)*RR];

Ra= 0.001;

 [K_LQR,~,~]=lqr(Aa,Ba,Qa,Ra); % K Nonlinear

 %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P

 %%%% Need only K1-4 and X_np1

 %%%% K_LQR = 2x6 matrics

 K14_n_xnp1 = K_LQR;

 K14_n_xnp1(: , 5)=[]; % feedback gain (delete column 5th)

 %%% Real parameters , used to disturbance weigth and height

 [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x,model);

 %[A4,B4,Vmax,alpha,beta]

 if (x_np1) > Vmax % Lego Motor Maximum Voltage 8.3 V

 Phi_L = Vmax;

 Phi_R = Vmax;

 elseif (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V

 Phi_L = -Vmax;

 Phi_R = -Vmax;

 else

 Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax));

 Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax));

 end

 Phi = [Phi_L ;

 Phi_R];

Ab= [A4 (B4*Phi)/x_np1 ;

 zeros(1,4) 0];

Bb= [zeros(4,1) ;

 1];

APPENDIX A

285

 x14_n_xnp1=[x1;x2;x3;x4;x_np1];

 fx = Ab*x14_n_xnp1 + Bb*u_new; %% ???????

 Cb=eye(5); % add new control signal % x5 = Xnp1

 Noise_V= 0.2*eye(5); %0.2 % increse to smooth cure % R of Kalman filter

 Noise_W= 1*eye(5); % Q of Kalman filter

 [~,Pk,~]=lqr(Ab,Cb',Noise_W,Noise_V);

 Lk= Pk*Cb'*inv(Noise_V);

 BU = Bb*u_new;

 %calculate the function output 'fx' based on values of A, B, P and x.

end

Appendix A.6.13: The initial programme of Simulink for implementing

LEGO EV3 robot

This programme provides the main parameters of LEGO EV3 robot before

running Simulink, such as Sample Time (Ts) and fixed gain K5.

Script file: parameters.m

clear all

%%% Parameters Gyroboy EV3 %%%

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg] old 0.024 new 0.050

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg] old 0.80 new 0.64 (EV3

motor 0.160 kg/2ea)

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

%%%%% EV3 Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

APPENDIX A

286

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

%%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

Ts = 0.004; % Simulink Sample Time

Direction = 1; % Motor direction, 1 =+x ,-1 = -x

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=4*M*R*L*(1)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L-M^2*R*L^2*(1)*g;

 e24=0;

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*(1);

%define these extra function to reduce the coding complexity of A and B

 %matrices for the x2dot equation

 e43=M*g*L*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=0;

 f41=2*n^2*Jm-M*R*L*(1);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

%define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %define these extra function to reduce the coding complexity of A and B

 %matrices with the motor added in

 %define A and B using a nonlinear state-space gyro robot model,

 %including the motor part

 %%%% 5-state Model %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)) em24/(a+b) 0 ;

APPENDIX A

287

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)) em44/(a+b) 0 ;

 1 0 0 0 0];

 B5 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b);

 0 0];

 B2 =[0 ;

 fm22/(a+b);

 0;

 fm42/(a+b);

 0];

 C = eye(5);

 D = zeros(5, 2);

 %------ 4-state models for the Kalman filter

 A4 =[0 1 0 0 ;

 0 em22/(a+b) em23/((a+b)) em24/(a+b) ;

 0 0 0 1 ;

 0 em42/(a+b) em43/((a+b)) em44/(a+b)];

 B4 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b)];

 C4 = eye(4);

 D4 = zeros(4, 2);

 %%% Q and R matrices

 Q=[20, 0, 0, 0, 0;

 0, 1, 0, 0, 0;

 0, 0, 1, 0, 0;

 0, 0, 0, 1, 0;

 0, 0, 0, 0, 5];

 R2 = 10*[1,0;

 0,1];

 %%%% Riccati Eq solving gains K

 [K_LQR,~,~]=lqr(A5,B5,Q,R2);

 %%% K=[2x5]

 %%% Create K1-K4

 K_LQR_1to4 = K_LQR;

 K_LQR_1to4(: , 5)=[] % feedback gain (delete column 5th)

 %%% Create K5

 K_LQR_5 = K_LQR;

 K_LQR_5(: , 1:4)=[] % integral gain (delete column 1-4th)

APPENDIX A

288

Noise_W = 1*eye(4); % Qk of Kalman filter

Noise_V = 0.2*eye(4); % Rk of Kalman filter

C44= eye(4);

%%%% Riccati Eq solving gains P

[~,Pk,~]=lqr(A4,C44',Noise_W,Noise_V)

Lk= Pk*C44'*inv(Noise_V) % L Kalman feedback

% Lk= [0 0 0 0;

% 0 0 0 0;

% 0.3831 0.4703 16.6273 2.2738;

% 0 0 0 0];

A_LC = A4-(Lk*C44); % A-LC Kalman feedback

Appendix A.6.14: A lookup table of freezing control gains K1-K4

As described in section 6.6, the LEGO EV3 controller cannot calculate the Riccati

equation; thus, the lookup table is created by the following:

(Note that the gain K5 is not varied; therefore, the gain K5 is set as fixed gain in

Simulink because of the limation of LEGO EV3 robot’s memory storage)

Script file: Gyroboy_Create_Freezing_LookupTable2D_5s.m

%%%%% The matrix gains K1-K4 of freezing technique

%%%%% Note that the K5 is not changed

%%%%% Thus, we use store data only K1-K4 into Lookup Table

%%%%% K5 is used as fixed gain in Simulink

clear all

xx3(1)=0; % psi

xx4(1)=0; % psi dot

%%% x3 %%% Use is range

Minimun_Angle_x3= -20; % Deg. min. -20

Step_Angle_x3= 1;

Maximum_Angle_x3= 20; % Deg. max. 20

%%% x4 %%%

% Deg/s, 440 Deg/s max for gyroscope sensor, but it showed 200 deg/s (Max)

when testing.

Minimun_Angle_x4= -130;

Step_Angle_x4= 5;

Maximum_Angle_x4= 130;

i=1;

APPENDIX A

289

j=1;

shift_i=0;

m_array =((Maximum_Angle_x3-Minimun_Angle_x3)/Step_Angle_x3)+1 ; % calculate m

size of cell

n_array =((Maximum_Angle_x4-Minimun_Angle_x4)/Step_Angle_x4)+1 ; % calculate n

size of cell

m_array=int16(m_array);

n_array=int16(n_array);

DataRange= (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 :

(Maximum_Angle_x4)*pi/180;

[ms,ns]=size(DataRange);

%%% match x3 and x4

for x4 = (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 :

(Maximum_Angle_x4)*pi/180

 for x3 = (Minimun_Angle_x3)*pi/180 : (Step_Angle_x3)*pi/180 :

(Maximum_Angle_x3)*pi/180

if x3 == 0 % avoid error : Inf's or NaN's.

x3 = 1.0e-20;

end

if x4 == 0 % avoid error : Inf's or NaN's.

x4 = 1.0e-20;

end

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg] old 0.024 new 0.050

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg] old 0.80 new 0.64

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

%%% Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0;

%%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

 %initialise x1-x6 using the input 'x' vector

APPENDIX A

290

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3);

 e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(x3);

 e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(x3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %define these extra function to reduce the coding complexity of A and B

 %matrices with the motor added in

 %define A and B using a nonlinear state-space gyro robot model,

 %including the motor part

 if x3 == 0

 x3=1.0e-1000000; % avoid Inf's and NaN's

 end

 if x4 == 0

 x4=1.0e-1000000; % avoid Inf's and NaN's

 end

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

 Model = 1; % Select mode

 %%%-------- Model A ----------

if Model == 1

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

APPENDIX A

291

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b) 0 ;

 1 0 0 0 0];

end

%%%-------- Model B ----------

if Model == 2

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0 0 ;

 1 0 0 0 0];

end

%%%-------- Model AB10 ----------

 if Model == 3

 %%% Mix A&B %%%%%

 if x3 <= (10.5*pi/180) && x3 >= (-10.5*pi/180)

 %%%% Primary Model A %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b) 0 ;

 1 0 0 0 0];

 else

 %%%% Model B %%%%

 A5 =[0 1 0 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 0 ;

 0 0 0 1 0 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0 0 ;

 1 0 0 0 0];

 end

end

 % Models Matrix B

 B5 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b);

 0 0];

 Q=[20, 0, 0, 0 0;

 0, 1, 0, 0 0;

 0, 0, 1, 0 0;

 0, 0, 0, 1 0;

 0, 0, 0, 0 5];

 R2=10*[1, 0;

 0, 1];

 %set Q and R matrices

APPENDIX A

292

 %%% Riccati EQ %%%

 K = lqr(A5, B5, Q, R2);

 %%% K= [2x5];

if x3 == 1.0e-20 % get zero back

x3 = 0;

end

xx3(i)= x3*180/pi; % convert angle rad. to deg.

xx3 = double(xx3);

%%% Create 1st column by x3 deg [4x1]

%%% K1-K4 table

K_Riccati_2D_4s(i+1+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

K_Riccati_2D_4s(i+2+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

K_Riccati_2D_4s(i+3+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

K_Riccati_2D_4s(i+4+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

%%% Create 1st column by x3 deg

%%% K5 table

K_Riccati_2D_theta_int(i+1,1)= xx3(i); % Insert x3 deg at 1st column

%%% K= [2x5];

%%% Select k1,k2,k3,k4,k5

%%% one motor [1x5] two motors is [2x5]

Kp1 = K(1);

Kp2 = K(3);

Kp3 = K(5);

Kp4 = K(7);

Kp5 = K(9);

%%%% Put gains K1-K4 in lookup table %%% K=[4x1]

%%% start at 2nd column

K_Riccati_2D_4s(i+1+(3*shift_i) ,j+1)= Kp1;

K_Riccati_2D_4s(i+2+(3*shift_i) ,j+1)= Kp2;

K_Riccati_2D_4s(i+3+(3*shift_i) ,j+1)= Kp3;

K_Riccati_2D_4s(i+4+(3*shift_i) ,j+1)= Kp4;

%%%% Put gains K1-K4 in lookup table

K_Riccati_2D_theta_int(i+1 ,j+1)= Kp5;

%%% Proof that K5 is fixed at -0.5, thus use the fix gain in Simulink instead

i=i+1; %x3

shift_i=shift_i+1;

 end

 xx4(j)= x4*180/pi;

 xx4 = double(xx4);

 %%% Insert x4 deg/s at 1st row in K1-K4 Table

 K_Riccati_2D_4s(1,j+1)= xx4(j);

 %%% Insert x4 deg/s at 1st row in K5 Table

 K_Riccati_2D_theta_int(1,j+1)= xx4(j); % Insert x3 deg at 1st column

 i=1;

 shift_i=0;

 j=j+1; %x4

 %%% print %%%

 Cal_percent = (j-1)*100/(ns-1);

APPENDIX A

293

 if mod(Cal_percent , 5) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

save('local_Freezing_2D_K_workspace','K_Riccati_2D_4s','K_Riccati_2D_theta_int

');

Appendix A.6.15: A lookup table of extended Kalman filter gains

Note that the gain P of the Ricatti solution is used to estimate the 𝑥3 in this

research. Moreover, the 3rd row of gain P is effected to approximate the 𝑥3

directly. Thus, we decide to use merely the 3rd row to estimate the pitch angle as

the restriction of the robot’s memory.

Script file: Gyroboy_Create_EKF_LookupTable2D_4s.m

%%%%% The matrix P solution of extended Kalman filter %%%%

%%%%% Need P not K %%%

%%%% Use only the 3rd row of P[4x4] for estimating x3

clear all

%x1 % theta

%x2 % theta_dot

%x3 % psi

%x4 % psi_dot

xx3(1)=0; % psi

xx4(1)=0; % psi dot

 %%% Weight matrices Qk, Rk of Kalman filter

 Noise_W = 1*eye(4);

 Noise_V = 0.2*eye(4);

%%% x3 %%%

Minimun_Angle_x3= -20; % Deg. min. -20

Step_Angle_x3= 1;

Maximum_Angle_x3= 20; % Deg. max. 20

%%% x4 %%%

% Deg/s, 440 Deg/s max for gyroscope sensor, but it showed 200 deg/s (Max)

when testing.

Minimun_Angle_x4= -130;

Step_Angle_x4= 5;

Maximum_Angle_x4= 130;

i=1;

APPENDIX A

294

j=1;

shift_i=0;

m_array =((Maximum_Angle_x3-Minimun_Angle_x3)/Step_Angle_x3)+1 ; % calculate m

size of cell

n_array =((Maximum_Angle_x4-Minimun_Angle_x4)/Step_Angle_x4)+1 ; % calculate n

size of cell

m_array=int16(m_array);

n_array=int16(n_array);

DataRange= (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 :

(Maximum_Angle_x4)*pi/180;

[ms,ns]=size(DataRange);

%%% Match x3 and x4

for x4 = (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 :

(Maximum_Angle_x4)*pi/180

 for x3 = (Minimun_Angle_x3)*pi/180 : (Step_Angle_x3)*pi/180 :

(Maximum_Angle_x3)*pi/180

if x3 == 0 % avoid error : Inf's or NaN's.

x3 = 1.0e-20;

end

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg] old 0.024 new 0.050

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg] old 0.80 new 0.64

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

Jphi = M * (W^2 + D^2) / 12; % body yaw inertia moment [kgm^2]

%%% Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0;

%%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

 %initialise x1-x6 using the input 'x' vector

APPENDIX A

295

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3);

 e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(x3);

 e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(x3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 %define these extra function to reduce the coding complexity of A and B

 %matrices for the x4dot equation

 %defined constants from motor literature

 alpha= n*Kt/Rm;

 beta = (n*Kt*Kb/Rm) + fm;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 %define these extra function to reduce the coding complexity of A and B

 %matrices with the motor added in

 %define A and B using a nonlinear state-space gyro robot model,

 %including the motor part

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

 %%%% Select Matrix A model for testing %%%%

 % 1.Model A (primary)

 % 2.Model B

 % 3.Model AB10 mixed

 Model = 1; % Select mode

 %%%-------- Model A ----------

if Model == 1

 %%% Primary Model A %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) ;

 0 0 0 1 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b)];

end

APPENDIX A

296

%%%-------- Model B ----------

if Model == 2

 %%%% Model B %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 ;

 0 0 0 1 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0];

end

 %%%-------- Model AB10 ----------

if Model == 3

 %%% Mix A&B %%%%%

 if x3 < (10.5*pi/180) && x3 > (-10.5*pi/180)

 %%%% Primary Model A %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) ;

 0 0 0 1 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b)];

 else

 %%%% Model B %%%%

 A4 =[0 1 0 0 ;

 0 em22/(a+b) (em23+em24*x4)/((a+b)*x3) 0 ;

 0 0 0 1 ;

 0 em42/(a+b) (em43+em44*x4)/((a+b)*x3) 0] ;

 end

end

 % Models Matrix B

 B4 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b)];

 C= eye(4);

 %%% Riccati Eq for Kalman filter %%

 %%% Need P not K

 [~,P,~] = lqr(A4, C', Noise_W, Noise_V);

 %%% P = [4x4]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% P_out= [p11 p12 p13 p14 ;

%%% 0 0 0 0 ;

%%% p31 p32 p33 p34 ;

%%% 0 0 0 0];

%%%

%%% We need only 3rd row to estimate x3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if x3 == 1.0e-20 % get zero back

x3 = 0;

end

xx3(i)= x3*180/pi; % convert angle rad. to deg.

xx3 = double(xx3);

%%% Create P31-P34 table setting 1st coulum as x3

P_Riccati_2D_4s_P3(i+1+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

APPENDIX A

297

P_Riccati_2D_4s_P3(i+2+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

P_Riccati_2D_4s_P3(i+3+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

P_Riccati_2D_4s_P3(i+4+(3*shift_i),1)= xx3(i); % Insert x3 deg at 1st column

%%% Rearrange %%%

P31 = P(3,1);

P32 = P(3,2);

P33 = P(3,3);

P34 = P(3,4);

P_Riccati_2D_4s_P3(i+1+(3*shift_i) ,j+1)= P31; % start at 2nd column

P_Riccati_2D_4s_P3(i+2+(3*shift_i) ,j+1)= P32;

P_Riccati_2D_4s_P3(i+3+(3*shift_i) ,j+1)= P33;

P_Riccati_2D_4s_P3(i+4+(3*shift_i) ,j+1)= P34;

i=i+1; %x3

shift_i=shift_i+1;

 end

 xx4(j)= x4*180/pi;

 xx4 = double(xx4);

 P_Riccati_2D_4s_P3(1,j+1)= xx4(j); % Insert x4 deg at 1st row

 i=1;

 shift_i=0;

 j=j+1; %x4

 %%% print

 Cal_percent = (j-1)*100/(ns-1);

 if mod(Cal_percent , 5) == 0

 fprintf('Calculating %f percent ...\n',Cal_percent)

 end

end

save('local_LQG_2D_P_workspace','P_Riccati_2D_4s_P3');

APPENDIX B

298

Appendix B

Simulink Block Diagrams

5.2.4 Experimental Results

-LQR Control (Filename: Gyroboy_LQR_10_2021.slx)

Figure B1.1: The 5-states control of linear quadratic regulator (LQR) in Simulink,

adapted from (Roslovets, 2020)

Figure B1.2: Theta (𝑥1) reference block diagrams

Figure B1.3: Tracking system block diagrams

APPENDIX B

299

Figure B1.4: Waiting for setup block diagrams

Figure B1.5: EV3 release button

Figure B1.6: LEGO EV3 block diagrams

Figure B1.7: EV3 hardware block diagrams

APPENDIX B

300

Figure B1.8: Gyro sensor block diagrams

Figure B1.9: Remove Low High Signal During Setup block diagrams

Figure B1.10: Data rearranged block diagrams

APPENDIX B

301

Figure B1.11: LQR Controller block diagrams

Figure B1.12: Data2theta

Figure B1.13: V2PWM block diagrams

Figure B1.14: Reset Integral Time block diagrams

APPENDIX B

302

5.3.4 Experimental Results

- LQG Control (Filename: Gyroboy_LQG_10_2021.slx)

Figure B2.1: The linear quadratic Gaussian (LQG) control block diagrams in Simulink.

Noticeably, merely pitch angle will be filtered.

As the LQG controller is extended from the LQR, some block diagrams are

similar. Therefore, the different block diagrams are presented as follows:

Figure B2.2: LQR controller block diagrams

APPENDIX B

303

Figure B2.3: Select signal block diagrams

Figure B2.4: Kalman filter block diagrams

Figure B2.5: Kalman filter2 block diagrams

APPENDIX B

304

6.6 Experimental Results

-Freezing Technique (Filename: Gyroboy_Freezing_10_2021.slx)

Figure B3.1: The nonlinear freezing control in Simulink.

Note that other block diagrams of freezing technique are similar to the LQR

controller. Therefore, the NLQR controller block diagram in freezing control

system, which includes lookup table function inside, is slightly different to the LQR

programme, as shown in Figure B3.2.

Figure B3.2: NLQR controller block diagrams.

APPENDIX B

305

The programming code of lookup table inside Freezing Lookup Table block

diagram in Figure B3.2, as given by

function U_out = Freezing_fucntion(x_in)

 U_out=zeros(2,1);

 %%% Lookup table matrix 165x54 %%%

 % K1-K4 Lookup table

 K_Riccati_2D_4s=zeros(165,54); %x3=1deg x4=5deg/s

 K_Riccati_2D_4s=[0 -130 -125 -120 -115 -110 -105 …

-20 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 …

-20 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 …

-20 -61.36 -61.38 -61.40 -61.42 -61.43 -61.45 -61.47 -61.49 -61.51 …

-20 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 …

-19 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 …

-19 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 …

-19 -61.19 -61.20 -61.22 -61.24 -61.26 -61.27 -61.29 -61.31 -61.32 …

-19 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 …

…

 % For example, lookup table between x3 = -20 to 20 deg and x4 = -130 to 130 deg/s.

 % Cannot present all table here

 x3=x_in(3); % psi

 x4=x_in(4); % psi dot

[size_m,size_n]=size(K_Riccati_2D_4s);

%%% find array information %%%

DegMaxN1 = K_Riccati_2D_4s(1,size_n);

DegMaxN2 = K_Riccati_2D_4s(1,size_n-1);

DegStepN = DegMaxN1-DegMaxN2; %x4

DegStepN = double(DegStepN);

DegMaxM1 = K_Riccati_2D_4s(size_m,1);

DegMaxM2 = K_Riccati_2D_4s(size_m-4,1);

DegStepM = DegMaxM1-DegMaxM2; %x3

DegStepM = double(DegStepM);

x_3 = x3*180/pi; % change to degree

x_3 = double(x_3);

x_4 = x4*180/pi; % change to degree

x_4 = double(x_4);

x3_i=0;

x4_j=0;

 %%%------- x_3 ---------

 if single(K_Riccati_2D_4s(size_m,1)) < x_3 %% Over

 x3_i = size_m-3;

 elseif single(K_Riccati_2D_4s(2,1)) > x_3 %% Under

 x3_i = 2;

APPENDIX B

306

 else

 i=2;

 while(~((single(x_3) >= (single(K_Riccati_2D_4s(i,1))-DegStepM/2)) &&

(single(x_3) < (single(K_Riccati_2D_4s(i,1))+DegStepM/2))))

 i=i+1;

 end

 x3_i = i;

 end

 %%%------- x_4 ---------

 if single(K_Riccati_2D_4s(1,size_n)) < x_4 %% Over

 x4_j = size_n;

 elseif single(K_Riccati_2D_4s(1,2)) > x_4 %% Under

 x4_j = 2;

 else %% range

 j=2;

 while(~((single(x_4) >= (single(K_Riccati_2D_4s(1,j))-DegStepN/2)) &&

(single(x_4) < (single(K_Riccati_2D_4s(1,j))+DegStepN/2))))

 j=j+1;

 end

 x4_j = j;

 end

 K_out_p1 = K_Riccati_2D_4s(x3_i,x4_j);

 K_out_p2 = K_Riccati_2D_4s(x3_i+1,x4_j);

 K_out_p3 = K_Riccati_2D_4s(x3_i+2,x4_j);

 K_out_p4 = K_Riccati_2D_4s(x3_i+3,x4_j);

 % K_out_p5 = K_Riccati_2D(x3_i+4,x4_j); % Not use

 K_out2x4 = [K_out_p1,K_out_p2,K_out_p3,K_out_p4;

 K_out_p1,K_out_p2,K_out_p3,K_out_p4];

 %%% created [2x4] for two motors

 U_out = K_out2x4*x_in;

end

APPENDIX B

307

A partial lookup table of LQR feedback gains (Model A) demonstrated in Table

B3.1.

Table B3.1: A partial lookup table of LQR feedback gains for the TWR Model A

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130

-20 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39

-20 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45

-20 -61.36 -61.38 -61.4 … -61.8 -61.82 -61.83 -61.85 -61.87 … -62.28 -62.29 -62.31

-20 -7.47 -7.47 -7.47 … -7.48 -7.48 -7.48 -7.48 -7.48 … -7.49 -7.49 -7.49

-19 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39

-19 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45

-19 -61.19 -61.2 -61.22 … -61.6 -61.62 -61.63 -61.65 -61.67 … -62.05 -62.07 -62.09

-19 -7.44 -7.44 -7.44 … -7.45 -7.45 -7.45 -7.45 -7.45 … -7.46 -7.46 -7.46

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39

0 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45

0 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85

0 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

19 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39

19 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45

19 -62.09 -62.07 -62.05 … -61.67 -61.65 -61.63 -61.62 -61.6 … -61.22 -61.2 -61.19

19 -7.46 -7.46 -7.46 … -7.45 -7.45 -7.45 -7.45 -7.45 … -7.44 -7.44 -7.44

20 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39

20 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45

20 -62.31 -62.29 -62.28 … -61.87 -61.85 -61.83 -61.82 -61.8 … -61.4 -61.38 -61.36

20 -7.49 -7.49 -7.49 … -7.48 -7.48 -7.48 -7.48 -7.48 … -7.47 -7.47 -7.47

APPENDIX B

308

Moreover, the feedback gain variables in the Freezing Lookup Table in the block

diagram in Simulink can be changed for other systems, i.e., a lookup table of

Model B in Table B3.2.

Table B3.2: A partial lookup table of LQR feedback gains for the TWR Model B

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130

-20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

-20 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43

-20 -54.37 -54.48 -54.59 … -57.31 -57.44 -57.58 -57.72 -57.86 … -61.17 -61.34 -61.50

-20 -7.39 -7.39 -7.39 … -7.42 -7.42 -7.42 -7.42 -7.42 … -7.43 -7.43 -7.43

-19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

-19 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43

-19 -54.00 -54.11 -54.23 … -57.09 -57.23 -57.38 -57.52 -57.67 … -61.15 -61.32 -61.49

-19 -7.36 -7.36 -7.36 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.40 -7.40 -7.40

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 … 0 0 0 0 0 … 0 0 0

0 0 0 0 … 0 0 0 0 0 … 0 0 0

0 0 0 0 … 0 0 0 0 0 … 0 0 0

0 0 0 0 … 0 0 0 0 0 … 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

19 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.42 -1.42 -1.42

19 -61.49 -61.32 -61.15 … -57.67 -57.52 -57.38 -57.23 -57.09 … -54.23 -54.11 -54.00

19 -7.40 -7.40 -7.40 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.36 -7.36 -7.36

20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

20 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … 0.14 0.14 0.14

20 -61.50 -61.34 -61.17 … -57.86 -57.72 -57.58 -57.44 -57.31 … 4.12 4.12 4.12

20 -7.43 -7.43 -7.43 … -7.42 -7.42 -7.42 -7.42 -7.42 … 0.70 0.70 0.70

APPENDIX B

309

Note that the feedback gains at 𝑥3 = 0° are set manually as zero because this

angle is uncontrollable for Model B, which MATLAB cannot obtain the feedback

gains. Additionally, a partial lookup table of LQR feedback gains (Model AB) is

presented in Table B3.3.

Table B3.3: A partial lookup table of LQR feedback gains for the TWR Model AB

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130

-20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

-20 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43

-20 -54.37 -54.48 -54.59 … -57.31 -57.44 -57.58 -57.72 -57.86 … -61.17 -61.34 -61.50

-20 -7.39 -7.39 -7.39 … -7.42 -7.42 -7.42 -7.42 -7.42 … -7.43 -7.43 -7.43

-19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

-19 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43

-19 -54.00 -54.11 -54.23 … -57.09 -57.23 -57.38 -57.52 -57.67 … -61.15 -61.32 -61.49

-19 -7.36 -7.36 -7.36 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.40 -7.40 -7.40

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39

0 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45

0 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85

0 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

19 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.42 -1.42 -1.42

19 -61.49 -61.32 -61.15 … -57.67 -57.52 -57.38 -57.23 -57.09 … -54.23 -54.11 -54.00

19 -7.40 -7.40 -7.40 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.36 -7.36 -7.36

20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38

20 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.42 -1.42 -1.42

20 -61.50 -61.34 -61.17 … -57.86 -57.72 -57.58 -57.44 -57.31 … -54.59 -54.48 -54.37

20 -7.43 -7.43 -7.43 … -7.42 -7.42 -7.42 -7.42 -7.42 … -7.39 -7.39 -7.39

APPENDIX B

310

The gains K have been stored in matrix 4x1, including feedback gains K1-K4,

which are varied by state variables 𝑥3 and 𝑥4, as shown in Table B3.4. Note, a

gain K5 of state variable 𝑥5 has been excluded as it has not changed by any 𝑥3

and 𝑥4. Moreover, the memory of LEGO EV3 is limited for data storage.

Therefore, the gain K5 has not been used in the lookup table, but it has been

used as a fixed gain in Simulink.

Table B3.4: Gains K1-K4 in the lookup table.

-Freezing Technique with EKF

(Filename: Gyroboy_FreezEKF_10_2021.slx)

Figure B3.3: The nonlinear freezing control with EKF in Simulink.

x3\x4 -130

-20 K1

-20 K2

-20 K3

-20 K4

APPENDIX B

311

Note that other block diagrams of freezing technique with EKF are similar to the

LQG controller. Therefore, the different block diagrams are presented as follows:

Figure B3.4: LEGO EV3 block diagrams.

Figure B3.5: Nonlinear Lookup table block diagrams.

The programming code of lookup table inside Lookup Table block diagram in

Figure B3.5, as given by

function [K_out,L_out,A4,B4] =

Riccati_fucntion_for_LQR_and_Kalman(x_in,Noise_V)

 K_out=zeros(2,4);

 L_out = zeros(4,4);

 A4 = zeros(4,4);

 B4 = zeros(4,2);

 %Noise_W = 1; %%% 5***

 %Noise_V = 0.3; %%% 1***

 C4 = eye(4);

 % K1-K4 Lookup table

 %Q11=20 scale x3=1deg x4=5deg/s 20 deg

 K_Riccati_2D_4s=zeros(165,54);

K_Riccati_2D_4s=[0 -130 -125 -120 -115 -110 -105 -100 -95 -90…

-20 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 …

-20 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 …

-20 -61.36 -61.38 -61.40 -61.42 -61.43 -61.45 -61.47 -61.49 -61.51 -61.52 …

-20 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 -7.47 …

-19 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 -1.39 …

-19 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 -1.45 …

APPENDIX B

312

-19 -61.19 -61.20 -61.22 -61.24 -61.26 -61.27 -61.29 -61.31 -61.32 -61.34 …

-19 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 -7.44 …

…

 % For example, lookup table between x3 = -20 to 20 deg and x4 = -130 to 130 deg/s.

 % Cannot present all table here

 % P solution of Kalman filter

 % P31-P34 Lookup table

 % Q11=20

 P_Riccati_2D_4s_P3=zeros(165,54); % W=1 % V=0.2

P_Riccati_2D_4s_P3=[0 -130 -125 -120 -115 -110 -105 -100 -95 -90 …

-20 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 …

-20 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 …

-20 4.12 4.12 4.12 4.12 4.11 4.11 4.11 4.11 4.11 4.11 …

-20 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 …

-19 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 …

-19 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 …

-19 4.12 4.12 4.12 4.12 4.12 4.11 4.11 4.11 4.11 4.11 …

-19 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 …

…

 % For example, lookup table between x3 = -20 to 20 deg and x4 = -130 to 130 deg/s.

 % Cannot present all table here

 %x1=x_in(1); % theta

 %x2=x_in(2); % theta dot

 x3=x_in(3); % psi

 x4=x_in(4); % psi dot

 % x5=x_in(5); % theta int

[size_m,size_n]=size(K_Riccati_2D_4s);

%%% find array information %%%

DegMaxN1 = K_Riccati_2D_4s(1,size_n);

DegMaxN2 = K_Riccati_2D_4s(1,size_n-1);

DegStepN = DegMaxN1-DegMaxN2; %x4

DegStepN = double(DegStepN);

DegMaxM1 = K_Riccati_2D_4s(size_m,1);

DegMaxM2 = K_Riccati_2D_4s(size_m-4,1);

DegStepM = DegMaxM1-DegMaxM2; %x3

DegStepM = double(DegStepM);

%x3=-80*pi/180;x4=-60*pi/180;

x_3 = x3*180/pi; % change to degree

x_3 = double(x_3);

x_4 = x4*180/pi; % change to degree

x_4 = double(x_4);

x3_i=0;

x4_j=0;

 %%%------- x_3 ---------

 if single(K_Riccati_2D_4s(size_m,1)) < x_3 %% Over

 x3_i = size_m-3;

 %%% Go to wide data

 elseif single(K_Riccati_2D_4s(2,1)) > x_3 %% Under

APPENDIX B

313

 x3_i = 2;

 %%% Go to wide data

 else %% range

 i=2;

 while(~((single(x_3) >= (single(K_Riccati_2D_4s(i,1))-DegStepM/2)) &&

(single(x_3) < (single(K_Riccati_2D_4s(i,1))+DegStepM/2))))

 i=i+1;

 end

 x3_i = i;

 end

 %%%------- x_4 ---------

 if single(K_Riccati_2D_4s(1,size_n)) < x_4 %% Over

 x4_j = size_n;

 elseif single(K_Riccati_2D_4s(1,2)) > x_4 %% Under

 x4_j = 2;

 else %% range

 j=2;

 while(~((single(x_4) >= (single(K_Riccati_2D_4s(1,j))-DegStepN/2))

&& (single(x_4) < (single(K_Riccati_2D_4s(1,j))+DegStepN/2))))

 j=j+1;

 end

 x4_j = j;

 end

 K_out_p1 = K_Riccati_2D_4s(x3_i,x4_j);

 K_out_p2 = K_Riccati_2D_4s(x3_i+1,x4_j);

 K_out_p3 = K_Riccati_2D_4s(x3_i+2,x4_j);

 K_out_p4 = K_Riccati_2D_4s(x3_i+3,x4_j);

 % K_out_p5 = K_Riccati_2D(x3_i+4,x4_j);

 K_out2x4 = [K_out_p1,K_out_p2,K_out_p3,K_out_p4; %%% created [2x4]

for two motors

 K_out_p1,K_out_p2,K_out_p3,K_out_p4];

%%%%% Use same table index with K %%%%

 p31 = P_Riccati_2D_4s_P3(x3_i,x4_j);

 p32 = P_Riccati_2D_4s_P3(x3_i+1,x4_j);

 p33 = P_Riccati_2D_4s_P3(x3_i+2,x4_j);

 p34 = P_Riccati_2D_4s_P3(x3_i+3,x4_j);

 P_out= [0 0 0 0 ;

 0 0 0 0 ;

 p31 p32 p33 p34 ;

APPENDIX B

314

 0 0 0 0];

%%% Physical constants

g = 9.81; % gravity acceleration [m/sec^2]

%%% Physical parameters

m = 0.050; % wheel weight [kg] old 0.024 new 0.050

R = 0.027; % wheel radius [m]

Jw = m * R^2 / 2; % wheel inertia moment [kgm^2]

W = 0.105; % body width [m]

D = 0.1; % body depth [m]

M = 0.64; % body weight [kg] old 0.80 new 0.64

h = 0.210; % body height [m]

L = h / 2; % distance of the center of mass from the

wheel axle [m] 10.5

Jpsi = M * L^2 / 3; % body pitch inertia moment [kgm^2]

%%% Motors parameters

Jm = 1e-5; % DC motor inertia moment [kgm^2]

Rm = 6.69; % DC motor resistance [Om]

Kb = 0.468; % DC motor back EMF constant [Vsec/rad]

Kt = 0.317; % DC motor torque constant [Nm/A]

n = 1; % Gear ratio

fm = 0.0022; % friction coefficient between body & DC motor

fw = 0; % friction coefficient between wheel & floor

%%% Helping variables

alpha = n * Kt / Rm;

beta = n * Kt * Kb / Rm + fm;

%%%% AB

 %initialise x1-x6 using the input 'x' vector

 if x3 == 0

 x3=1.0e-20; % avoid Inf's and NaN's

 end

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi;

 b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm;

 e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3);

 e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi);

 f21=M*L^2+2*n^2*Jm+Jpsi;

 f22=2*n^2*Jm-M*R*L*cos(x3);

 e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm);

 e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm);

 f41=2*n^2*Jm-M*R*L*cos(x3);

 f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2;

 em22=2*beta*(f22-f21)-2*fw*f21;

 em23=e23;

 em24=e24+2*beta*(f21-f22);

APPENDIX B

315

 em42=2*beta*(f42-f41)-2*fw*f41;

 em43=e43;

 em44=e44+2*beta*(f41-f42);

 fm21=alpha*(f21-f22);

 fm22=fm21;

 fm41=alpha*(f41-f42);

 fm42=fm41;

 A4 =[0 1 0 0 ;

 0 em22/(a+b) em23/((a+b)*x3) em24/(a+b) ;

 0 0 0 1 ;

 0 em42/(a+b) em43/((a+b)*x3) em44/(a+b)];

 B4 =[0 0;

 fm21/(a+b) fm22/(a+b);

 0 0;

 fm41/(a+b) fm42/(a+b)];

%%%% AB %%%%

 L_out = P_out*C4'*inv(Noise_V);

 K_out= K_out2x4;

end

It can be seen that the lookup table of the EKF gains has been added to the

function.

APPENDIX B

316

A partial lookup table of EKF feedback gains (Model A) shows in Table B3.5.

Table B3.5: A partial lookup table of Kalman feedback gains for the TWR model A

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130

-20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

-20 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13

-20 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.06 4.06 4.06

-20 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68

-19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

-19 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13

-19 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.07 4.07 4.07

-19 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

0 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14

0 4.12 4.12 4.12 … 4.12 4.12 4.12 4.12 4.12 … 4.12 4.12 4.12

0 0.69 0.69 0.69 … 0.69 0.69 0.69 0.69 0.69 … 0.69 0.69 0.69

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

19 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14

19 4.07 4.07 4.07 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12

19 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70

20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

20 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14

20 4.06 4.06 4.06 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12

20 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70

APPENDIX B

317

Moreover, a partial lookup table of EKF feedback gains (Model B) shows in Table

B3.6.

Table B3.6: A partial lookup table of Kalman feedback gains for the TWR model B

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130

-20 0.03 0.03 0.03 … -0.01 -0.01 -0.01 -0.02 -0.02 … -0.05 -0.05 -0.05

-20 0.14 0.14 0.14 … 0.13 0.13 0.13 0.13 0.13 … 0.11 0.11 0.11

-20 4.18 4.14 4.11 … 4.01 4.04 4.07 4.11 4.15 … 5.47 5.55 5.62

-20 0.65 0.65 0.65 … 0.66 0.66 0.66 0.66 0.66 … 0.65 0.65 0.65

-19 0.04 0.03 0.03 … -0.01 -0.01 -0.01 -0.02 -0.02 … -0.05 -0.05 -0.06

-19 0.14 0.14 0.14 … 0.13 0.13 0.13 0.13 0.13 … 0.11 0.11 0.11

-19 4.23 4.19 4.15 … 4.01 4.04 4.08 4.11 4.15 … 5.58 5.66 5.74

-19 0.03 0.03 0.03 … -0.01 -0.01 -0.01 -0.02 -0.02 … -0.05 -0.05 -0.05

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 -0.18 -0.18 -0.18 … -0.18 -0.18 -0.02 0.18 0.18 … 0.18 0.18 0.18

0 -0.44 -0.44 -0.44 … -0.44 -0.44 0.13 0.44 0.44 … 0.44 0.44 0.44

0 1

× 1011

9.9

× 1010

9.7

× 1010
…

2.8

× 1010

2

× 1010

4.12 1.8

× 1010

2.5
× 1010

…

8.9

× 1010

9.1
× 1010

9.2
× 1010

0 0.30 0.30 0.30 … 0.30 0.30 0.66 0.10 0.10 … 0.10 0.10 0.10

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

19 -0.06 -0.05 -0.05 … -0.02 -0.02 -0.01 -0.01 -0.01 … 0.03 0.03 0.04

19 0.11 0.11 0.11 … 0.13 0.13 0.13 0.13 0.13 … 0.14 0.14 0.14

19 5.74 5.66 5.58 … 4.15 4.11 4.08 4.04 4.01 … 4.15 4.19 4.23

19 0.65 0.65 0.65 … 0.66 0.66 0.66 0.66 0.66 … 0.65 0.65 0.64

20 -0.05 -0.05 -0.05 … -0.02 -0.02 -0.01 -0.01 -0.01 … 0.03 0.03 0.03

20 0.11 0.11 0.11 … 0.13 0.13 0.13 0.13 0.13 … 0.14 0.14 0.14

20 5.62 5.55 5.47 … 4.15 4.11 4.07 4.04 4.01 … 4.11 4.14 4.18

20 0.65 0.65 0.65 … 0.66 0.66 0.66 0.66 0.66 … 0.70 0.70 0.70

APPENDIX B

318

Furthermore, a partial lookup table of EKF feedback gains (Model AB) is given in

Table B3.7.

Table B3.7: A partial lookup table of Kalman feedback gains for the TWR Model AB

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130

-20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

-20 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13

-20 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.06 4.06 4.06

-20 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68

-19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

-19 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13

-19 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.07 4.07 4.07

-19 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

0 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14

0 4.12 4.12 4.12 … 4.12 4.12 4.12 4.12 4.12 … 4.12 4.12 4.12

0 0.69 0.69 0.69 … 0.69 0.69 0.69 0.69 0.69 … 0.69 0.69 0.69

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

19 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14

19 4.07 4.07 4.07 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12

19 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70

20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08

20 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14

20 4.06 4.06 4.06 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12

20 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70

APPENDIX B

319

The Simulink function in freezing control with EKF includes two lookup tables.

The first table is for the gains of the normal freezing controller, which was

presented previously, and the second is for the extended Kalman filter. The gains

have been stored as matrix 4x1. Moreover, only the 3rd row of matrix P solution

is achieved by solving the Riccati equation, which gives the feedback gain of state

variable 𝑥3, as shown in Table B3.8.

Table B3.8: Gains P31-34 in the lookup table

Figure B3.6: LQR Controller block diagrams

x3\x4 -130

-20 P31

-20 P32

-20 P33

-20 P34

APPENDIX B

320

Figure B3.7: Extended Kalman filter block diagrams

Figure B3.8: Kalman filter2 block diagrams

Figure B3.9: A_LCxXhat block diagrams

	00 Cover
	0_1 Abstract
	Abstract

	0_2 Declaration
	Declaration

	0_3 Acknowledgement
	Acknowledgement

	0_4 Table of content
	Table of Contents

	0_5 List of Tables
	List of Tables

	0_6 List of Figures
	List of Figures

	0_7 Nomenclature
	Nomenclature

	0_8 Abbreviations
	Abbreviations

	Chapter1 Introduction
	Chapter 1
	Introduction

	Chapter2 Literature Review
	Chapter 2
	Literature Review

	Chapter3 Hardware and Software Descriptions of a Self-Balancing Robot
	Chapter 3
	Hardware and Software Descriptions of a Self-Balancing Robot

	Chapter4 Modelling of Inverted Pendulum and Two-Wheeled Robot Systems
	Chapter 4
	Modelling of Inverted Pendulum and Two-Wheeled Robot Systems

	Chapter5 Linear Control Designs and Implementations
	Chapter 5
	Linear Control Designs and Implementations

	Chapter6 Nonlinear Control Designs and Implementations
	Chapter 6
	Nonlinear Control Designs and Implementations

	Chapter7 Conclusion and Future Work
	Chapter 7
	Conclusions and Future Work

	References
	References

	Appendix A MATLAB Codes
	Appendix A

	Appendix B Simulink Block Diagrams
	Appendix B

