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Abstract 

This research studies two advanced nonlinear optimal control techniques, i.e., 

the freezing control and the iteration scheme, and their associated applications, 

such as a single inverted pendulum (IP) on a cart system and a two-wheeled 

robot (TWR) system. These techniques are applied to stabilise the highly 

unstable nonlinear systems in the vertical upright position when facing different 

initial pitch angles. Different linear optimal controllers (linear quadratic regulator 

and linear quadratic Gaussian) and nonlinear optimal controllers are designed 

and applied to the models for concurrent control of all state variables. The 

controlled systems are tested in simulation and the best performing control design 

is eventually implemented on a robot prototype built with an educational kit – the 

LEGO EV3, after practical factors such as motor voltage limitation, gyro sensor 

drift and model uncertainties have been considered, analysed and dealt with. 

Simulations and experiments on the TWR robot prototype demonstrate the 

superiority of the nonlinear freezing optimal control technique, showing larger 

operation ranges of the robot pitch angle and better response performances (i.e., 

shorter rise time, less overshoot and reduced settling time) than the linear optimal 

control methods. In particular, a novel mixing method to create a new nonlinear 

model (Model AB) from two different models on the same physical prototype with 

an increased controllable region of the TWR system is introduced, for the first 

time, for the calculations of optimal feedback gains for the system. Significantly, 

the utilisation of this mixed model, combined with the nonlinear freezing 

controller, achieves true global control of the TWR, even from an initial pitch angle 

of 90° (i.e., the horizontal position), when a motor with a saturated voltage of 48V 

and nominal torque of 298 mNm is adopted in simulation tests. This is wider than 

the angle achievable from the primary model (Model A) and any other single 

feedback control method on TWR reported in the literature. Robustness tests 

when introducing model uncertainties by adding mass and height on the TWR 

also illustrate excellent control performances from the nonlinear optimal control 

in both simulations and hardware implementations. 
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Chapter 1 

Introduction 

1.1 Background  

During the past decade, various existing linear controls have been applied to 

regulate linear and nonlinear systems. Some of the linear control methods are 

well-known, for instance, proportional-integral-derivative (PID) control, Linear 

Quadratic Regulator (LQR) and linear quadratic Gaussian (LQG). These 

techniques use local linearisation around the small neighbourhood of an 

equilibrium of the system, which limits their operational range and therefore their 

applications and performances. By contrast, there are some existing nonlinear 

techniques that illustrate outstanding control outcomes for very nonlinear 

systems, because the system can be controlled globally using its nonlinear 

system models. 

To begin with, Banks and Mhana (1992) first introduced a nonlinear 

freezing control technique by extending the LQR theory to control nonlinear 

systems in the form of 

�̇� = 𝐴(𝑥, 𝑢)𝑥 + 𝐵(𝑥, 𝑢)𝑢 (1.1) 

where 𝒙 is a state variable vector, 𝑨(𝒙) and 𝑩(𝒙) represent the nonlinear system 

matrices which form controllability matrices and 𝒖 is the nonlinear optimal control. 

This method can be generalised to more complicated nonlinear systems, e.g. 

optimal altitude control for a single inverted pendulum on a cart (Harrison, 2003), 
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F-8 crusader (Çimen & Banks, 2004a), and a double inverted pendulum on a cart 

(Xu, Zhang, & Carbone, 2017) etc.  

Furthermore, another nonlinear control method, an iteration scheme, was 

created by Banks and McCaffrey (1998), which introduced linear, time-varying 

(LTV) approximations to the infinite-time horizon nonlinear optimal affine control 

problem. There has been a wide range of applications using this technique, for 

example, super-tankers autopilot design (ÇImen & Banks, 2004b), optimal 

altitude control for spacecraft (Zheng, Banks, & Alleyne, 2005), optimal drug 

therapy control in cancer treatment (Itik, Salamci, & Banks, 2009), velocity 

tracking in a hydraulic press (Du, Xu, Banks, & Wu, 2009) and the dynamics of a 

tunnel diode oscillator (Itik, 2016). 

Of interest here are the characteristics of nonlinear systems and how 

different control techniques can be applied to nonlinear systems for control design 

in software simulation and hardware implementation. Moreover, these techniques 

can be applied to nonlinear systems (for instance, synchrotron light orbit stability) 

within the Synchrotron Light Research Institute (Thailand), which provided the 

scholarship for this PhD research study. 

 

1.2 Aims and Objectives 

The project aims to study advanced nonlinear control techniques, mathematical 

modelling and signal filtering estimation of various sensors, applied to a self-

balancing two-wheeled robot (a classical system based on inverted pendulum 

theory, centred on system stability). In particular, these techniques can be applied 
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to any nonlinear systems directly, without the need to linearise systems locally 

around the equilibrium points. 

 

The objectives of this project and the steps in achieving them are as follows: 

1. Develop nonlinear models of a two-wheeled robot from the principle of the 

single inverted pendulum methods and analyse the non-unique mathematical 

models in the correct pseudo-linear (nonlinear) forms.  

2. Apply classical linear control (e.g., LQR and LQG) and advanced nonlinear 

controls (e.g., freezing control technique and the iteration scheme) theoretically 

to the two-wheeled robot models for optimal control designs and develop 

simulations of the control systems in MATLAB to verify the theoretical results. 

3. Conduct controllability tests on different nonlinear models of the two-wheeled 

robot to create a larger controllable range and new capability. 

4. Implement suitable control techniques to a two-wheeled robot prototype (built 

with Lego Mindstorms EV3), taking into account of physical factors and practical 

conditions. Then, summarise advantages and disadvantages of the advanced 

nonlinear control techniques against the linear control strategies. 

5. Design effective signal filtering estimation (e.g., Kalman filter estimation) to 

support the self-balancing control of the two-wheeled robot. 
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1.3 Publications and Presentations Resulted from This PhD Study 

- Journal paper 

• Kokkrathoke, S., Rawsthorne, A., Zhang, H., and Xu, X., (in press). 

Nonlinear   Optimal Stabilising Control of a Two-wheel Robot. International 

Journal of Modelling, Identification and Control. 

- Conference papers  

• Kokkrathoke, S., & Xu, X. (2021). Implementation of Nonlinear Optimal 

Control of Two-wheel Robot with Extended Kalman Filter. 2021 IEEE 

International Conference on Automatic Control & Intelligent Systems 

(I2CACIS). Shah Alam, Malaysia. (pp.19-25). IEEE. 

• Kokkrathoke, S., & Xu, X. Controllability Study of Two-Wheel Robot for 

Nonlinear Optimal Control and Implementation [Manuscript accepted for 

publication and presentation]. 2021 IEEE Conference on Systems, 

Process & Control (ICSPC2021). Shah Alam, Malaysia. 
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- Presentations 

• Kokkrathoke, S., (2018, December). Supervisors: Xu, X., Halliday, I. and 

Shenfield, A. Nonlinear Freezing Control of Inverted Pendulum. [Poster 

presentation]. Winter Poster Event 2018, Sheffield Hallam University. 

• Kokkrathoke, S., (2019, May). Supervisors: Xu, X., Halliday, I. and 

Shenfield, A. Nonlinear Freezing Control of Inverted Pendulum and Cart 

System. [Poster presentation]. Materials and Engineering Research 

Institute (MERI) Research Symposium 2019, Sheffield Hallam University. 

• Kokkrathoke, S., (2019, December). Supervisors: Xu, X., Halliday, I. and 

Shenfield, A. Nonlinear Control Design and Implementation of Self-

Balancing Lego Robot. [Poster presentation]. BMRC & MERI Winter 

Poster Event 2019, Sheffield Hallam University. 

• Kokkrathoke, S., (2020, December). Supervisors: Xu, X., Halliday, I. and 

Shenfield, A. Nonlinear Optimal Control of Self-Balancing Two-Wheel 

Robot. [Poster presentation]. I2RI Winter Poster Event 2019, Sheffield 

Hallam University. 

• Kokkrathoke, S., (2021, June). Supervisors: Xu, X., Halliday, I. and 

Shenfield, A. Tracking and Balancing Control of the LEGO Two-Wheel 

Robot with Extended Kalman Filter. [Oral presentation]. Materials and 

Engineering Research Institute (MERI) Research Symposium 2021, 

Sheffield Hallam University. 
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1.4 Thesis Structure 

Chapter 1: Introduction 

This chapter presents an overview of the PhD research, of which the aim 

is to study advanced nonlinear control methods in theoretical design, simulation 

and implementation, and compare them against linear ones, by applying all 

methods to the single inverted pendulum and self-balancing two-wheeled robot 

systems. Furthermore, the research outcomes, such as paper publications and 

presentations, are listed in this chapter. 

 

Chapter 2: Literature Reviews 

 This chapter reviews existing research work, relating to inverted pendulum 

systems, such as single and multiple inverted pendulums on a cart, rotary 

inverted pendulums, two-wheeled scooters, and self-balancing two-wheeled 

robots. Furthermore, the results of applying various linear controllers, e.g., PID, 

LQR, LQG, Fuzzy logic and model predictive control (MPC) to inverted pendulum 

systems are investigated. Additionally, prominent research work and 

development in nonlinear controls, e.g., freezing control, iteration scheme, 

sliding-mode control and neural network, applied to inverted pendulum and two-

wheeled robot, are also examined in this chapter. 
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Chapter 3: Hardware and Software Descriptions of  a Self-Balancing Robot 

 This chapter illustrates the history of LEGO robots hardware and software. 

LEGO Mindstorms EV3 is used as a prototype of the self-balancing robot to test 

different control designs, in this research. Moreover, the specification of LEGO 

Mindstorms EV3 is provided. 

 

Chapter 4: Modelling of Inverted Pendulum and Two-Wheeled Robot 

Systems 

 This chapter analyses the single inverted pendulum equations of motion, 

converting them to mathematical models using the Lagrangian method. Likewise, 

the dynamic system of the LEGO Mindstorms EV3 robot is transformed into state-

space representation. Significantly, for the LEGO EV3 model, the control input in 

terms of force is converted to motor voltages for practical considerations.  

 

Chapter 5: Linear Control Designs and Implementations  

 This chapter presents and analyses the capability of two linear control 

techniques. Firstly, a LQR controller is applied to stabilise an inverted pendulum 

on a cart model, a two-wheeled robot model and a robot prototype. Secondly, the 

LQG controller is utilised on the two-wheeled robot model and prototype to 

provide state estimation and deal with a challenging sensor drift issue, from the 

LEGO EV3 robot prototype. 
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Chapter 6: Nonlinear Control Designs and Implementations  

 This chapter introduces three nonlinear control methods: an iteration (or 

LTV approximation) scheme, a freezing optimal control, and the freezing control 

with extended Kalman filter, applied to the inverted pendulum and two-wheeled 

robot. Before simulating these models, controllability tests are performed and 

analysed, which leads to an investigation of the effect of different state-space 

models on controllability; especially, when these models are created from the 

same set of 1st order dynamical ordinary differential equations (ODEs). 

Furthermore, the experimentations on a practical two-wheeled robot are 

examined and discussed, where the results of stabilising the system are obtained 

by linear and nonlinear techniques. 

 

Chapter 7: Conclusion 

 This chapter summarises the comparison of performances between linear 

and nonlinear controls approach on the classical benchmark models, the single 

inverted pendulum, and the self-balancing two-wheeled robot. Furthermore, the 

contributions to existing knowledge are presented in this chapter. 
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Chapter 2 

Literature Review 

2.1 Introduction 

The literature review for this project can be divided into four categories. The first 

section illustrates the various applications based on inverted pendulum control 

theory. Secondly, different types of system modelling used to simulate the self-

balancing robots are introduced. Then, a representative selection of linear control 

techniques for self-balancing robot and others are discussed. Finally, the widely 

used nonlinear control methods and their applications are reviewed. 

2.2 Inverted Pendulum System and Applications 

To begin with, an inverted pendulum is a classical benchmarking tool for studying 

feedback control by mounting the pendulum on a cart, which can move 

horizontally to balance the pendulum in the vertical upright position, as presented 

in Figure 2.1. However, the pendulum is unstable without control, it will fall over; 

therefore, the feedback controller is needed. Furthermore, the advantage of 

studying the inverted pendulum model is that it is convenient to design the system 

modelling in several forms, such as, Newton’s equation, Lagrangian method, 

State-Space Modelling and physical CAD modelling, etc. Moreover, many 

applications are built from the inverted pendulum model, e.g., rotatory inverted 

pendulums, two-wheeled robots, two-wheeled vehicles and self-balancing 
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bicycles. As the inverted pendulum is a nonlinear and unstable system, 

controlling it outside the traditionally linearised range is a challenge. 

The single inverted pendulum on a cart is a basic model to research, as shown 

in Figure 2.2 (left). Additionally, a more complicated model than the single 

inverted pendulum is known as multi-link inverted pendulum (i.e., double link or 

high-link), as presented in Figure 2.2 (right). Both models are stabilised by force 

𝑢 in the horizontal axis to maintain all rods in the vertical upright position, which 

means all pitch angles 𝜃 equal to 0°.  

 

Figure 2.1: The single inverted pendulum on a cart (LEGO Mindstorms EV3) 

  

Figure 2.2: Single (left) and multi-link (right) inverted pendulum 

on cart (Xu, Zhang, & Carbone, 2017). 
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For instance, the simulation of single inverted pendulum on a cart control was 

presented in Alkamachi (2020), Tao et al. (2008) and Banks & Dinesh (2000) and 

Harrison (2003) with different control techniques. Moreover, a double inverted 

pendulum on a cart was modelled and analysed by Xu, Zhang, & Carbone (2017). 

In particular, the physical implementation of the single inverted pendulum on a 

cart was realised using the LEGO EV3 robot introduced by Xu, Zhang, & Carbone 

(2017) with a nonlinear freezing control technique. 

Furthermore, the balancing theory of inverted pendulum has been applied to the 

Furuta pendulum (or known as the rotatory inverted pendulum), as shown in 

Figure 2.3. However, the cart is transformed into a fixed base and is stabilising 

the inverted pendulum by a driven arm in the horizontal axis. 

 

Figure 2.3: Rotary Inverted Pendulum (Quanser, 2020) 

 

The simulation results of the rotatory inverted pendulum can be found in Zabihifar 

et al. (2020). The authors applied the adaptive neural network control to the 

Furuta pendulum CAD model (the performance will be discussed in Section 2.3). 

Moreover, the implementations of rotatory inverted pendulum are presented by 

many researchers, for instance, by Seman et al. (2013), and Aranda-Escolástico 

(2016) (the approaches will be detailed in Section 2.4). 
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Additionally, the inverted pendulum theory has been investigated and analysed 

for two-wheeled robot systems, as shown in Figure 2.4; therefore, the pendulum 

with four-wheeled cart system has been transformed to two-wheeled instead. The 

torque of motors from two wheels is used to balance the pendulum or the robot’s 

body. The angle between the robot’s body and the robot’s balancing point in the 

vertical upright position is called the pitch angle. Likewise, the robot's rotation 

angle in the horizontal axis is known as the yaw angle. For instance, Grasser et 

al. (2002) introduced the prototype of a two-wheeled mobile inverted pendulum 

known as JOE. The two state-space controllers with pole placement were applied 

to stabilise the system. Moreover, Yamamoto (2009) presented the self-balancing 

two-wheeled robot from the LEGO NXT, which the LQR technique was selected 

to balance the system. Yamamoto (2009) presented better performance with 

LQR than in Grasser et al. (2002) with pole placement when implementing on the 

two-wheeled robot for position tracking. The robot pitch angle of LEGO NXT with 

LQR control had slight oscillation between ±6°, using the linear optimal control 

technique, before moving to track the reference; by contrast, the JOE robot 

showed more than doubling of pitch angle swing, between ±14°, for the same 

distance of tracking implementation. Similarly, other researchers studying the 

self-balancing two-wheeled robot also applied the inverted pendulum theory; for 

example, in Ahn & Jung (2014) and da Silva & Sup (2017) with linear control, and 

also Jung & Kim (2008) and Cruz, García, & Bandala (2016) with nonlinear 

control. Analysis and comparisons of the techniques used and the associated 

performances will be given in Sections 2.4 and 2.5. 
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Figure 2.4: Self-balancing two-wheeled robot (LEGO Mindstorms EV3)     

(LEGO, 2021) 

Moreover, the self-balancing two-wheeled robot has been developed to use in 

personal transportation, as shown in Figure 2.5. This is because these vehicles 

are compact, easy to manoeuvre and comfortable for travel on either smooth or 

bumpy surfaces. The system models of two-wheeled vehicles are similar to the 

two-wheeled robot which are also based on the inverted pendulum theory. For 

instance, Tsai et al. (2010) presented a self-balancing two-wheeled scooter and 

applied adaptive neural network control to stabilise the system. Similarly, a 

seated transportation two-wheel vehicle was introduced by Kim & Jung (2016). 

The vehicle was controlled by one PD (Proportional-derivative) control, and two 

PID (proportional-integral-derivative) controls. More details will be given in 

Section 2.4. 

 

Figure 2.5: Segway PT (Personal Transporter) (Segway, 2021)   
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Likewise, the theory of inverted pendulum has been applied to self-balancing 

bicycles. The gyroscopic effect or control moment gyroscope (CMG) method is 

utilised to stabilise bicycles in the upright position, as presented in Figure 2.6, 

using one or more flywheels, depending on the control design. The simulation of 

self-balancing bicycle was introduced by Chu & Chen (2017). The system model 

combined a bicycle with two flywheels and the model predictive control (MPC) 

was selected to stabilise the system. The control design and performance of this 

application will be discussed in Section 2.4.  

 

Figure 2.6: Jyrobike - Auto Balance Bicycle (Kickstarter, 2021)  

 

2.3 System Modelling  

Mathematical models of single and multiple inverted pendulum on a cart were 

considered in Xu, Zhang, & Carbone (2017), and a self-balancing two-wheeled 

robot was investigated in Yamamoto (2009). These models have been used in 

almost all research work in this area. They can be created from system analysis, 

based on the First Principles modelling method, to derive mathematical equations 

with linear or nonlinear characteristics (according to the specific system 

considered). In particular, mathematical equations represent physical 
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phenomena and can be obtained using Newton’s law of motion (as shown in 

Banks & Dinesh (2000) and Grasser et al. (2002)). Additionally, there is another 

method for creating dynamic models: the Euler–Lagrange formulation, based on 

a system’s kinetic and potential energy, see e.g. Harrison (2003), Yamamoto 

(2009) and Xu, Zhang, & Carbone (2017). The benefit of the Euler–Lagrange 

approach is its simplicity in summarising energy terms; therefore, force analysis 

and the associated force directions in the Newton method is not necessary. On 

the other hand, the complicated partial derivative calculation of Lagrange’s 

equation when the system is complex and of high order is a disadvantage. These 

dynamical equations from both techniques can be transformed into a state-space 

form, which is useful for simulation and internal monitoring purposes. The state 

space approach also generally has the advantages of being applicable to 

nonlinear and time-variant, or multiple-input-multiple-output, or multivariable 

systems, over the traditional frequency domain models.  

In other literature, such as Kharola & Patil (2017a), appropriate dynamic 

equations are obtained and then simulated using Simulink block functions instead 

of a state-space model to stabilise one wheeled mobile robot, because the 

Simulink block functions can be applied for the dynamic equations directly. The 

linearisation process is not needed because nonlinear equations can be utilised 

straightforwardly in implementation. In particular, a nonlinear control method was 

used in this research, which is a neural network control system. Therefore, this 

technique is suitable for researchers who require a nonlinear model but do not 

require coding using programming language such as MATLAB script file or C-

programming language etc. However, this technique has not been widely used, 
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as it is an inconvenience to wire Simulink block functions when there are many 

variables in the nonlinear system modelling equations. The block functions are 

complexly wired and therefore this process is not as neat and efficient as the 

alternatives. 

On the other hand, some researchers have not established mathematical 

dynamical equations, rather, they have used physical software model instead; for 

instance, the single inverted pendulum based on track model presented by 

Alkamachi (2020). The author applied SolidWorks CAD design imported to 

Simulink Simscape tool in the MATLAB program. This extension tool was formerly 

known as SimMechanics, which was used to simulate mechanical systems. The 

inverted pendulum model was investigated with the state feedback control to 

balance the system. Moreover, another physical software model, namely MSC 

Nastran was introduced by Ahmad & Siddique (2011). The authors presented a 

fuzzy logic control to stabilise the visual model of the two-wheelchair in Simulink. 

The software modelling is applied to analyse the structure of applications, known 

as Visual Nastran 4D. It has been developed by the MSC software (MacNeal-

Schwendler Corporation) company, which was previously named as Nastran 

(NASA Structural Analysis) software. The MSC company granted the first 

contract in this software to NASA in 1965 (MSCsoftware, 2020). The advantage 

of Visual Nastran 4D programme over the SolidWorks CAD design, presented by 

Alkamachi (2020), is that the Simscape transformation is not needed as 

researchers can import the dynamic model from Visual Nastran 4D to Simulink 

directly. Furthermore, Zabihifar et al. (2020) also presented an adaptive neural 

network to stabilise a rotary inverted pendulum model, using the multibody 
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dynamics software, namely ADAMS, which is a product of MSC software 

company, similar to the one used in Ahmad & Siddique (2011). The ADAMS 

software is similar to Visual Nastran 4D in term of multibody simulation; however, 

there are a few differences between the two software: Visual Nastran 4D is can 

model more structure details, e.g., strength and stiffness. The systems which 

have already created 3D CAD models can gain advantage from this physical 

software model by combining with the dynamic equations directly; in particular, 

the linearisation is not necessary for these system modelling. 

2.4 Linear Control Techniques 

Although almost all systems in reality are nonlinear, linear control techniques are 

often used to regulate both linear and nonlinear systems. This is because linear 

control theory is more mature and much more well understood. Before being able 

to apply linear control techniques to a nonlinear system, linearisation is performed 

to approximate the nonlinear system to a linear one. After the systems are 

modelled using dynamic differential equations, they can be linearised around an 

equilibrium (operating point). Around this operating point, Taylor series are often 

applied to expand the equations with small deviations that gives the required 

linear system approximation (Dutton, Thompson, & Barraclough, 1997). This 

subsection reviews different linear control methods, including PID control, LQR 

control, LQG control, fuzzy control and model predictive control.  
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2.4.1 PID Controller 

Firstly, the well-known classical linear control method is the three-term controller 

or Proportional–Integral–Derivative (PID) controller. It has been used in many 

industrial applications for approximately a century because of its simplicity for 

understanding and implementation. It is also used as a standard or fundamental 

linear control technique to benchmark control performances when compared 

against others. PID control has been used to control many self-balancing two-

wheeled robots, e.g. a service two-wheel robot with two arms (Ahn & Jung, 2014) 

and a two-wheel chair robot (Kim & Jung, 2016).  

Ahn & Jung (2014) presented two PID controllers, controlling the orientation angle 

(yaw angle) and the robot position (displacement), whilst another PD controller is 

used to balance the robot’s pitch angle. The authors applied the three (2 PID + 1 

PD) controllers to stabilise the system separately, but the three variables are 

coupled in the dynamics and therefore affect the control design. In tuning the PID 

gain parameters, when one parameter was changed, the performance of other 

variables was also affected meaning all other PID parameters also need to be re-

tuned. That is one disadvantage of the PID control technique. Moreover, the 

disturbing external force at robot’s body was limited to a small range, within 

approximately ±10N, as linear controllers were applied to stabilise the robot; 

therefore, the pitch angle of balancing robot was restricted, which was presented 

at a narrow-angle range of ±2°.  

Regarding the two-wheel chair robot (Kim & Jung, 2016), the authors applied the 

three linear PID controllers from Ahn & Jung (2014) to the personal vehicle 
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transportation, namely TransBOT. The vehicle presented self-balancing with the 

passenger on board. Nevertheless, the pitch angle was balanced within 

approximately ±5°, which was not too far from the two-wheel robot (Ahn & Jung, 

2014). Noticeably, different weights of the riders would affect the PID gain 

parameters to stabilise the overall system. Therefore, the authors prepared 

various PID gains in the two PID controllers (pitch angle and robot position) to 

take into account of passengers’ weight range. In the next section, the use of 

LQR control technique, where one controller can control multiple variables in the 

generalised coordinates of the system, will be discussed. 

2.4.2 Linear Quadratic Regulator 

Secondly, a more complex linear controller applied to self-balancing two-wheeled 

robots is the linear optimal control. This technique (also known as linear quadratic 

regulator (LQR)) optimises the system to achieve the best possible performance 

using a mathematical algorithm which minimises a quadratic performance index 

(cost function) with feedback controller (Dutton, Thompson, & Barraclough, 

1997).  

For instance, the linear optimal control was applied to a self-balancing two-

wheeled robot, namely NXTway-GS robot (Yamamoto, 2009). The LEGO robot 

was controlled in three generalised coordinates, including the wheel angle, the 

body pitch angle and yaw angle. These coordinates were analysed to create a 

nonlinear system model. Then, linearisation was applied to the model for 

generating feedback gains in the LQR control system. The pitch and yaw angles 

were controlled by the same LQR feedback gain, but the wheel angle was 
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controlled through a separate feedback gain in order to check the robot’s position. 

Furthermore, a tracking system was designed to enhance the control 

performance to include robot displacement. The results of both simulation and 

implementation in Yamamoto (2009) showed the maximum pitch angle of the two-

wheeled robot to be balanced was at approximately ±6°, and the robot position 

tracking design functioned well.  

Another research of linear LQR control related to self-balancing robot was 

conducted by da Silva & Sup (2017). The authors developed an adult walking aid 

with handlebar based on the two-wheeled robot. The LQR control design was 

similar to Yamamoto (2009); however, there were two tracking systems used to 

control the robot’s displacement and robot’s heading angle (acting at the 

handlebar angle in the yaw axis). The authors designed an LQR feedback 

controller for both the pitch angle and the robot displacement, and the yaw angle 

was controlled by a separate LQR feedback controller. The maximum pitch angle 

for stabilisation achieved in da Silva & Sup (2017) was similar to other linear 

controls, at approximately  ±6°. Significantly, the researches of Yamamoto (2009) 

and da Silva & Sup  (2017) were based on the LQR method. They applied an 

LQR feedback controller from multiple outputs; on the other hand, the PID control 

technique presented by Ahn & Jung (2014) and Kim & Jung (2016) was only 

designed to control one variable at a time.  

2.4.3 Linear Quadratic Gaussian 

Furthermore, many researchers have experienced issues such as noise, 

vibration, or signals drift of measurement tools during physical implementations 
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of their control designs. To deal with these issues, a state-space feedback control 

system can be developed to supervise the inaccurate signal outputs by combining 

with a Kalman filter (Kalman & Bucy, 1961). The Kalman filter is used to estimate 

the state variables for the purpose of feedback, utilising measurements made at 

the inputs and outputs, and the plant is required to be observable. 

In Hanselmann & Engelke (1988), the authors illustrated the implementation of a 

hard disk head position, controlled by the linear quadratic Gaussian technique 

(LQG). The method combined the classical LQR control with the Kalman filter; 

therefore, the Kalman technique was applied to estimate the position of magnetic 

disk heads on desired tracks at the high frequency. 

Similarly, Chang & Liu (2007) introduced a vibration absorber control in optical 

disk drive using the LQG method. The active vibration absorber was controlled 

by a state feedback control method, namely LQR, with the assistance from the 

Kalman filter, presenting vibration amplitudes reduction of up to 50% in the 

implementation.  

Moreover, the Kalman filter has been applied to overcome sensor drift issues. 

For instance, gyro drift correction was implemented in a head controlled mouse 

for disabled people who were unable to use a standard computer mouse, as 

presented by Du et al. (2017). The authors applied the Kalman filter with the 

Weighted-frequency Fourier Linear Combiner (WFLC) and the threshold with 

delay (TWD) control. Note, this review is to concentrate on gyro drift issue, which 

is in the MEMS-gyroscope sensor, based on advantages of the Kalman filter; 

therefore, control methods used in the research of Du et al. (2017) are neglected. 
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It was shown that the gyro drift problem in gyroscopic head-borne mouse was 

significantly reduced once the signals were processed by the Kalman filter. For 

example, the implementation of filtering signal in the micro-electromechanical 

system(MEMS)-gyroscope model MLX90609 reduced inaccurate angular 

position measurements. Before the filtering process, the signal was drifting over 

−20° from the reference position at the 80th second; however, when the Kalman 

filter was applied, the sensor drift problem was eliminated during the same period 

of time. The authors suggested that one Kalman filter on its own could only 

reduce the noise and sensor drift, but not eliminate them. However, if the other 

signal processors, such as WFLC and TWD, were combined with the Kalman 

filter, results showed that both the signal noise and drift issues were completely 

removed and therefore the performance was much improved. 

2.4.4 Fuzzy Logic Control 

In this section, Fuzzy Logic Control is considered as a linear control method 

because various studies in the literature applied this technique to linearised 

systems for control. However, it is worth noting that the fuzzy logic control method 

can be applied to nonlinear systems too, due to the flexibility of its rule base. 

In 1985, Takagi & Sugeno developed the fuzzy logic control technique known as 

Takagi–Sugeno (T-S) fuzzy model (Takagi & Sugeno, 1985) and nonlinear 

systems can be transformed into a T–S fuzzy model linearised in each fuzzy 

region on its if-then rules (fuzzy rules). This method has been widely used and 

applied to swinging up the inverted pendulum on the limited rail presented by Tao 

et al. (2008), with two fuzzy hybrid controls. To begin with, the first fuzzy swing-
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up controller (FSUC) with fewer fuzzy rules was applied to make the inverted 

pendulum swing from an upside-down position upwards to reach the upright 

position, by moving the cart in the horizontal axis. Secondly, the Takagi-Sugeno 

(T-S) Fuzzy Model, controlled by the second fuzzy controller with parallel 

distributed pole assignment scheme (FC-PDPS), was used to balance the 

pendulum and cart on the rail at the equilibrium point in a small range, operating 

at approximately ±17°(±0.3 rad). In terms of balancing control in the upright 

position, the FC-PDPS was compared to the LQR control in the simulation test. 

Noticeably, the pendulum swinging up process was conducted with the same 

technique, which was the FSUC. The results showed that the performance using 

the FC-PDPS method was better than LQR as no oscillations in the pitch angle 

appeared around the equilibrium point. In particular, the cart was almost frozen 

in the horizontal axis for stabilising the system when implementing the FC-PDPS 

method; by contrast, the LQR technique presented significant movement of the 

cart between -0.3 m and 0.3 m. 

Similarly, Aranda-Escolástico et al. (2016) presented the practical single and 

double rotary pendulum, stabilised by the Takagi–Sugeno (T-S) fuzzy model 

controller in the equilibrium position as well. This technique was compared to the 

full state feedback control and LQR method. In the case of swinging up the 

pendulum, an energy control method (Åström & Furuta, 2000) was applied. The 

authors introduced the region of attraction at the equilibrium point, which was the 

maximum angle α when the pendulum switched from swinging up control to 

stabilisation control. The implementation showed that the fuzzy model presented 
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significantly the widest angle at +40.2° over the full state feedback control 

(+31.5°) and LQR method (+34.2°).  

2.4.5 Model Predictive Control. 

In Chu & Chen (2017), the authors illustrated the linear control method of model 

predictive control for a self-balancing bicycle model. The gyroscopic effect 

(control moment gyroscope) was utilised for the system to maintain the vehicle in 

the upright vertical position using torque from two flywheels. Subsequently, the 

mathematic model of the system was linearised for the model predictive control 

scheme, which was used to predict horizon behaviour of the model for preparing 

the input parameters balancing the bicycle in the equilibrium point. The simulation 

demonstrated that the roll angle reached the desired angle at 20° and gimbal 

angles of the flywheels were 49.7° to maintain the desired angle.  

Other applications of the model predictive control include, for instance: the 

implementation of a Furuta pendulum or inverted rotary pendulum by Seman et 

al. (2013). The authors introduced the two-step control for swinging-up the 

pendulum. Firstly, the classical energy control was compared with an 

exponentiation operation for swing-up the pendulum. After swinging the 

pendulum up by the two controllers, model predictive control was used to balance 

the pendulum in the vertically upright position. Note, the dynamic equations of the 

system needed to be linearised before be able to apply the predictive model. The 

results of both techniques to swing-up pendulum were similar; however, the 

computational time of the exponentiation control was slightly shorter as pre-

calculation of pendulum energy was not needed. Because of this, the 
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exponentiation control was selected to operate with the MPC by Seman et al. 

(2013) and they presented satisfactory result for stabilising the inverted 

pendulum. 

2.5 Nonlinear Control Techniques 

Nonlinear theories have been demonstrated to generate excellent control results 

for highly nonlinear systems. Linearisation around the equilibrium is not 

necessary when using nonlinear methods, because the system can be controlled 

globally using pseudo-linear (nonlinear) system equation with advanced control 

techniques discussed below. 

2.5.1 Freezing Control Technique 

First of all, the extension of the LQR theory to control nonlinear systems, known 

as the freezing control technique (Banks & Mhana, 1992), showed superior 

control performance over all linear control techniques. Theoretical details of the 

nonlinear freezing technique will be presented in Chapter 6, but here a review of 

previous work using this method is conducted.  

Harrison (2003) applied the nonlinear freezing control on an inverted pendulum 

on a cart model in simulation and demonstrate a number of benefits comparing 

against the LQR method. Most importantly, it was demonstrated that the 

stabilised system from an unconstrained nonlinear control provided a more 

comprehensive operation range than the linear control, at the initial pitch angle 

over 55.2°. The linearly controlled system was unstable over this angle, but the 
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nonlinear method could stabilise the system from an initial pitch angle up to 73.8° 

as well as between 96° and 179°.  

Similarly, Xu, Zhang, & Carbone (2017) presented simulation results of a single 

and a double inverted pendulum on a cart model using the freezing control 

technique. Both models were stabilised from much wider initial pitch angles than 

using any linear control methods. For instance, the single pendulum was 

demonstrated to balance from initial pitch angles  60° ,180° and 240°, and the 

double pendulum was stabilised from initial pitch angles 𝑥3 =  45° and 𝑥5 =  30°  

(where 𝑥3 and 𝑥5 are lower and upper pendulum angle), respectively. 

Furthermore, Xu, Zhang, & Carbone (2017) applied the freezing control technique 

to the prototype of a single inverted pendulum on a cart using a built LEGO 

Mindstorms EV3 robot. The pendulum was well balanced from the initial pitch 

angle 10° and maintained at the upright position. These results demonstrated that 

the nonlinear freezing control technique was able to control the highly nonlinear 

inverted pendulum systems away from the usual, linearised region.  

The freezing control technique  was also referred to as a state-dependent Riccati 

equation (SDRE) control (Çimen & Banks, 2004a), which was applied to various 

other systems. For example, Çimen & Banks (2004a) presented this nonlinear 

method, compared with the LQR control, in flight control system of an F-8 aircraft 

model. The SDRE technique produced better performance than the LQR method 

in terms of stronger stabilisation when subject to different disturbances in the 

angle of attack (the angle between the chord line and flight path), in which the 

SDRE displayed capability of rejecting a wider disturbance angle, of up to 32.08° ; 
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by contrast, the LQR, which was itself an optimal technique, was restricted 

at 29.79° of disturbance rejection.  

Based on the literature review and advantages discussed above, it is decided 

that the nonlinear freezing control would be one of the primary nonlinear control 

methods to be investigated and applied in this PhD research. 

2.5.2 Freezing Control Technique with Extended Kalman Filter 

Recall that in the cases of linear control in Section 2.4.3, the LQG method  

consists of the LQR control and the Kalman filter. Similarly, in nonlinear control, 

the extended Kalman filter (EKF), suitable for nonlinear systems, can be 

combined with the freezing control technique as well. 

This technique has been applied in many applications: for instance, missile 

guidance simulation presented by Çimen & Merttopçuoğlu, (2008). The freezing 

control technique was applied to tracking systems used in military and the benefit 

was the ability to optimise the nonlinear tracking system globally. Furthermore, 

EKF was applied to estimate the state variables so they are available for feedback 

to control the missile trajectory, including the relative position vector, the relative 

velocity vector, and the target acceleration vector. Çimen & Merttopçuoğlu, 

(2008) presented the advantage of the combination of this nonlinear control and 

estimation technique, leading the missile (with a velocity of 500 m/s) to attack the 

target at a very distant position (initially 10 km away) in 20 s, in which the target 

had a speed velocity of 250 m/s.  

Furthermore, the SDRE with EKF was applied to drug regimens in cancer 

treatment (Batmani & Khaloozadeh, 2013). The system model of tumour growth, 
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which was the cause of cancer, included four state variables: the tumour cells 

size, the number of normal cells, the drug concentration and the immune cells. 

The authors decided to only estimate  the number of normal cells by EKF as the 

measurements were corrupted with noise but the size measurement of tumour 

cells where accurate from the medically professional equipment. Significantly, the 

simulation presented  estimations of the number of normal cells with much 

reduced noise; moreover, the combination of the SDRE and EKF techniques 

showed efficiency in calculation the drug regimen, which eliminated the cancer 

cells completely. 

Additionally, Nemra & Aouf (2010) introduced the INS/GPS sensor fusion 

technique for Unmanned Aerial Vehicle (UAV) by using the state-dependent 

Riccati equation (SDRE) with nonlinear filtering. Inside the UAV, the gyroscope 

and accelerator sensors are used to measure the dynamic system. The location 

is then calculated by INS/GPS sensor. In any real-world applications, these 

sensors come with noise. Therefore, an estimation of the state feedback system 

was performed using an extended Kalman filter. In terms of the flight control 

system, the SDRE was utilised in this implementation. The SDRE with extended 

Kalman filter (SDRE-EKF) control was compared with the linear Kalman filter 

control (KF) and a standalone EKF. SDRE-EKF presented the best performance 

on the UAV position estimated with smooth trajectory as well as strong 

nonlinearities. Then, the EKF control came 2nd with decent tracking trajectory, but 

not strong enough nonlinearities which caused undesirable oscillations. The 

linear KF produced the worst performance with a fair estimation trajectory, 

showing very oscillatory signals. 
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2.5.3 Iteration Scheme 

Banks & McCaffrey (1998) introduced another nonlinear control technique, 

named iteration scheme, using linear, time-varying (LTV) approximations, which 

are arbitrarily close to the exact solution. This approximation solves the infinite-

time horizon of pseudo-linear optimal control problem. 

This control theory was applied to the inverted pendulum on a cart, for instance, 

using a sequence of time-varying iterative approximations with the optimal control 

(Banks & Dinesh, 2000). The simulations showed an increase of state sequences 

approximation to stabilise the inverted pendulum with initial pitch angles 20° and 

50°. The results showed that the pitch angle converged rapidly to the reference 

position and the settling time was shorter when implementing with system using 

a higher order of state sequences; in this case, the simulation compared the 3rd 

order sequence with the 1st order one.  

Furthermore, the nonlinear iteration control theory can be extended to complex 

nonlinear systems and there are a wide range of applications. For example, 

Çimen & Banks (2004b) presented the iteration scheme with linear-quadratic 

control for super-tankers autopilot. The model of oil-tank ship was simulated by 

increasing the state sequences of approximation with 1st, 5th and 20th orders to 

track the desired course heading of the ship. The best performance of tracking 

system was illustrated using the highest state sequences (order 20th) with the 

lowest error of heading angle.  

Moreover, Itik, Salamci, & Banks (2009) introduced an optimal drug therapy 

control in cancer treatment using the iteration scheme combined with the LQR 
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optimal control. The order (10th) of state sequences approximation simulated the 

model of tumour growth accurately, where the number of tumour is the cause of 

cancer. This combined control method was shown to lead to reduced tumour cells 

and chemotherapy; moreover, the simulation results suggested that cancer could 

be eliminated by providing an appropriate amount of drug at optimised times. 

Additionally, in Du et al. (2009), the authors presented velocity tracking of a 

hydraulic press model by using a sequence of linear time-varying systems with a 

sliding mode controller, disturbed with reaction force. The simulation showed that 

the error of the velocity tracking was reduced significantly at a higher-order 

sequence (i.e., 5th) rather than the 1st order sequence, which was demonstrated 

to be globally convergent under a certain force. 

Another application is the dynamics control of tunnel diode oscillator. Itik (2016) 

demonstrated the advantage of the iteration scheme technique, approximating 

the mathematical model of an electric current at the 5th, 10th and 20th order 

sequences. The highest sequence (20th) presented a convergence graph closer 

to the reference position than the rest, obtaining a more stabilised system for the 

electric circuits. 

2.5.4 Sliding-Mode Control 

The sliding-mode control method has been known as one of the complicated 

nonlinear control designs. Mun-Soo Park & Dongkyoung (2009) demonstrated 

swinging up and stabilisation of an inverted pendulum system (including inverted 

pendulum on cart and Furuta-pendulum) using a coupled sliding-mode surface, 

which were composed of actuated and unactuated systems. They demonstrated 
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in simulation semi-global asymptotic stabilisation using this control technique 

over the upper half-plane of the inverted pendulum systems, which could balance 

the pendulum at a large initial pitch angle at 88° rather than the classical linear 

controls, such as the simulation result of LQR controller (55.2°) in Harrison (2003). 

In the case of the Furuta pendulum, sliding control was applied and implemented 

to both the swing-up and stabilisation controls of the rotary pendulum. This 

method contrasted other linear controls using hybrid strategy, e.g., Seman et al. 

(2013) and Aranda-Escolástico et al. (2016). Moreover, the results showed 

asymptotic stabilisation of rotary pendulum with impulse disturbances, and also 

demonstrated aggressive swinging-up of the pendulum from an unactuated 

status to the vertically upright position. There has been recent advancement in 

sliding mode control - a new technique introduced by Zhu (2021). The author 

demonstrated that the novel complete model-free sliding mode control 

(CMFSMC) technique could be used to control and observe systems without the 

need of obtaining plant models, which could be applied to control more complex 

robotic systems in the future. 

2.5.5 Neural Network Control 

Neural network control is an intelligence nonlinear control technique which can 

learn to create appropriate parameters to control the system. It can be trained 

and can learn how to optimise output parameters depending on layers, weights, 

etc., to control the nonlinear systems. 

In Cruz, García, & Bandala (2016), the implementation of a self-balancing two-

wheeled robot was demonstrated using artificial neural network (ANN) control 
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with the extended delta-bar-delta algorithm (DBD) and the DBD algorithm was 

applied to increase the speed of convergence in ANNs weight. For instance, in 

terms of the pitch angle, the ANN control structure was designed as four feedback 

error inputs of desired pitch angle (including a recent error and three past errors), 

three neurons hidden layers, and two output layers (left and right motor voltages). 

After the ANN learning was completed, the implementation showed largely 

stabilised result of the robot’s pitch angle with oscillations of approximately ±1.7° 

when the initial pitch angle was set at approximately 5°; moreover, the yaw angle 

was retained at the reference angle. In cases of displacement, the robot deviated 

from the reference position of 0 m and settled at 0.055 m, which was caused by 

oscillation. 

Furthermore, the ANN could also be integrated with another control method, such 

as the model predictive control (MPC). For instance, Kokkrathoke (2018) 

implemented this combination to the self-balancing two-wheeled robot model. 

The author utilised ANN for the plant model which predicted future evolutions of 

the model by optimising a cost function, called Generalized Predictive Control 

(GPC). This mixed control method was compared against a classical PID 

controller with the same impulse disturbance, and the results demonstrated that 

the ANN method presented overshoots of lower amplitudes in the pitch angle 

than the PID controller approximately 2° after facing disturbance. However, both 

techniques could not control the robot displacement - they diverged from the 

reference position. This is because both MPC and the single PID controller could 

only be applied to control single-input single-out (SISO) systems. 
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Nevertheless, many researchers combined the neural network with linear 

controls. Therefore, the system model was linearised and applied to the neural 

network model; for instance, Jung & Kim (2008) introduced the neural network 

with PID controller for stabilising a two-wheel mobile inverted pendulum. The 

control system is similar to research presented by Cruz, García, & Bandala 

(2016); moreover, the PID controller was enhanced in the output of ANN to 

achieve real-time control. The structure of ANN is composed of six inputs (three 

variables of pitch angle and three variables of robot position), six outputs and nine 

hidden layers, which the outputs connect to the 6 feedback gains of 2 PID 

controllers.  Note that the yaw angle control was neglected. The result of this 

technique was compared with the one using classical linear PID controller. When 

using PID control, the practical robot was balancing in the upright position, but 

the displacement diverged from the reference position. After that, the robot was 

disturbed by force, causing the pitch angle to go over 5° and the balancing robot 

toppled over. In terms of the ANN with PID controller implementation, the robot 

pitch angle was disturbed to approximately 8°, but the system stabilised well 

without a crash and maintained the desired position with a slight deviation after 

numerous impacts. 

In another approach similar to the ANN with linear controller, Tsai et al. (2010) 

applied two adaptive controls with the radial basis function neural networks 

(RBFNNs) for balancing a two-wheeled scooter, compared with a state-feedback 

controller. The controllers were divided into the yaw angle control and pitch angle 

monitor. Similar to other linear controls, the mathematical model of system was 

linearised before being combined with the neural network method for control. The 
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simulation presented that both controllers stabilised the system from the initial 

pitch angle up to, approximately 17°. Moreover, the reference position tracking of 

yaw and pitch angles using the two adaptive controls with RBFNNs presented 

faster settling time than the state-feedback controller method. When implemented 

on the two-wheeled scooter, the two adaptive control methods were selected to 

control the practical vehicle and the results matched well to the simulations. 

In conclusion, the first section of this chapter described the inverted 

pendulum on a cart system and its applications, e.g., rotatory inverted pendulum, 

self-balancing two-wheeled robot, two-wheeled personal transportation, and self-

balancing bicycle. In the next section, methods to create mathematical models of 

the inverted pendulum were demonstrated, such as the Newton’s law of motion 

and the Euler–Lagrange formulation (with the advantage force analysis is not 

necessary for obtaining the dynamic equations of the system. In addition, some 

researchers presented CAD modelling instead of the mathematical model. In 

cases of control strategy sections, various linear and nonlinear control methods 

were illustrated. Many linear controllers showed smaller operation ranges than 

nonlinear controllers as linearisation was needed. In particular, the freezing 

control, a nonlinear optimal control technique, demonstrated its capability of 

stabilising an inverted pendulum system with the broadest operation ranges over 

the linear and nonlinear controllers in this review. 
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Chapter 3 

Hardware and Software Descriptions of a Self-Balancing Robot 

3.1 Introduction 

This chapter introduces the specification of the self-balancing two-wheeled robot 

and its programme, of which LEGO EV3 robot is selected as an application, for 

analysis, in this research. The chapter is organised as follows: In section 3.2, the 

evolution of the LEGO robotic and hardware specification are introduced. Then, 

the various software of LEGO EV3 are presented in section 3.3. The use of 

readily available hardware enhances the reproducibility of this work. 

 

3.2 Hardware 

This section provides information on hardware used in this research, including 

LEGO hardware history,  LEGO EV3 specifications and their various sensors and 

an actuator. 

3.2.1 History 

To begin with, the 1st LEGO robotic tools set has been known as Robotics 

Invention System (RIS), based on LEGO building blocks. It can be programmed 

using an intelligent brick inside and was introduced by the LEGO group company 

in 1998 (LEGO, LEGO® Mindstorms, 2020a). The LEGO robotic kit has been 

named as RCX (Robotic Command eXplorers) brick, including a few sensors and 

executing programs by an infrared interface with a computer. For example, 
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LegWay balancing robots were built using the LEGO RCX (Hassenplug, 2003), 

as shown in Figure 3.1. 

 

 

Figure 3.1: LegWay Balancing robots based on LEGO RCX.  

Reprinted from Steve's LegWay by Steve Hassenplug, 2003 

(http://www.teamhassenplug.org/robots/legway). Copyright  2003 by Steve 

Hassenplug. Reprinted with permission. 

 

The 2nd generation of LEGO Mindstorms product known as NXT was 

released in 2006. The interface was also upgraded using USB and Bluetooth 

connection with a computer. This set includes much hardware, e.g. servo motors, 

an intelligent brick, an ultrasonic sensor, a sound sensor, a touch sensor, and a 

light sensor; moreover, in 2009, the LEGO Mindstorms NXT was upgraded to 

version 2.0 by adding a colour sensor and remote control applications (Ford, 

2011). For instance, one interesting application of LEGO Mindstorms NXT is 

presented as an NXTway self-balancing robot (Yamamoto, 2009), as shown in 

Figure 3.2. 
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Figure 3.2: NXTway self-balancing robot by using LEGO Mindstorms NXT 

(Yamamoto, 2009) 

In addition, the 3rd generation of LEGO Mindstorms, namely EV3, was 

launched in 2013, as shown in Figure 3.3. This version is the current robotic kit 

of LEGO Mindstorms. In particular, the PC interface is upgraded to Wi-Fi 

connectivity, which is convenient for the user when implementing with high-speed 

wireless connection. Moreover, various sensors and hardware are introduced as 

follows (LEGO, 2020b): 

- An Intelligent Brick, compatible with 32-bit CPU ARM9 processor, Wi-Fi 

USB port, Micro SD card reader, 4 motor ports and 5 buttons. 

- Other hardware, including 3 servo motors, a gyro sensor, an ultrasonic 

sensor, a colour sensor and 2 touch sensors etc. 
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Figure 3.3: Self-balancing robot using LEGO Mindstorms EV3 

 

In this research, the LEGO Mindstorms EV3 has been selected as the newest 

version of LEGO robotic kit, and also the latest version of EV3 firmware has been 

updated, in 2020. Furthermore, the EV3 robot has been widely used by 

researchers in many educational institutes as it is flexible to reconfigure and 

reprogramme and readily available. 

 

3.2.2 LEGO Mindstorms EV3 Specifications 

In this subsection, the hardware of LEGO Mindstorms EV3 is 

demonstrated, in the context of technical specifications used in this research, as 

follows: 
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EV3 Intelligent Brick with Education Version 

- CPU ARM9 processor 32-bit with Linux operating system 

- Four input ports with 1,000 samples/sec 

- Four output ports for actuators 

- FLASH memory 16 MB (5 MB left for creating or downloading a file) 

- RAM 64 MB 

- 178x128 pixel display 

- USB port supported Wi-Fi dongle 

- SD Card reader port 

- Bluetooth communication  

- Powered by lithium-ion 2200 mAh rechargeable DC battery or 6 AA 

batteries 

Note that the EV3 brick firmware used is the developer edition version 

1.09D, which is an alternative version from the LEGO company for high-level 

developers to connect the Wi-Fi network with MATLAB & Simulink. This is 

because the official firmware version for Home Edition and Education Edition 

(1.09H and 1.09E) does not allow remote Telnet access and is protected by non-

administrative rights, controlling LEGO EV3 on Wi-Fi connection for beginner 

level developers (LEGO, 2020c). 

 

 

 



CHAPTER 3 HARDWARE AND SOFTWARE DESCRIPTIONS OF A SELF-BALANCING ROBOT 

 

40 

 

Rechargeable DC Battery 

The rechargeable DC lithium-ion battery of LEGO Mindstorms EV3 has a 

capacity of 2200 mAh 7.4V on its label from manufacturer, as shown in Figure 

3.4. However, the voltage can sometimes present a higher value, for example, 

when being tested by a multimeter as shown in Figure 3.5. Therefore, the 

maximum voltage supply of LEGO EV3 battery will be examined before being 

used as a parameter for voltage input saturation. Details about control input 

saturation will be explained for both simulation and hardware implementation in 

Chapters 5 and 6.   

 

Figure 3.4: Rechargeable DC lithium-ion battery of LEGO Mindstorms EV3 

 

 

Firstly, the maximum voltage of the power supply can be measured directly by a 

multimeter when the battery is charged fully, as shown in Figure 3.5. 

7.4V/2200 mAh 
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Figure 3.5: Battery voltage measured by the multimeter 

 

It can be seen in Figure 3.5 that the voltage is not 7.4V, the value given by the 

manufacturer; instead, the maximum voltage measured here is approximately 

8.3V. 

Alternatively, the Simulink block program can be used to measure the voltage of 

LEGO EV3 from the battery meter block diagram, as shown in Figure 3.6. 

  

Figure 3.6: Voltage measured using Simulink block diagram 
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As can be seen from Figure 3.6, the voltage value read off the Simulink block 

diagram, at approximately 8.3 V, matches that measured by the multimeter. This 

voltage measurement made using the Simulink block diagram in the control 

system programme during implementation is very useful, as the programme could 

convert the percentage of PWM accurately. Furthermore, it is possible that the 

actual battery voltage may reduce because the power is dropped from 

implementation. Thus, the battery meter has been applied to the balancing control 

system. 

The equation used to convert the input voltage of DC motor to PWM is given by, 

𝑃𝑊𝑀(%) = 𝑉𝑐𝑎𝑙  ×
100

𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦
 , (3.1) 

where 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the voltage from the EV3 rechargeable DC battery, which is read 

by the battery block diagram in Simulink, as shown in Figure 3.6, and 𝑉𝑐𝑎𝑙 is the 

voltage supplied to the EV3 DC motor by the control system optimisation. 
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Sensors and Actuator 

In terms of sensors and actuator description, specifications are provided 

in  Tables 3.1-3.2. 

Table 3.1: Sensors specification 

Sensor Output Unit Accuracy Data Type Maximum 
Sample Rate 

Gyro 
Sensor 

Angular 
velocity 

(-440 to 
440 deg/s) 

deg/s ± 3 deg int32 

 

1 kHz 

Rotary 
Encoders 

Angle deg ± 1 deg int32 1 kHz 

Ultrasonic 
Sensor 

Distance 

(5-255cm) 

cm ±1 cm uint8 

 

100 Hz 

Note: The output and accuracy are given in (LEGO, 2020b); moreover, the data 

type and maximum sample rate are provided in (Mathworks, 2020). 

Table 3.2: Actuator specification 

Actuator Input Unit Input Range 

(%) 

Speed 

 

 

Running 

Torque 

(N.cm) 

Stall 

Torque 

(N.cm) 

Large 

EV3 

Motor 

PWM % -100 to 100 160-170 RPM 

 or 

960-1,020 deg/s 

20  40 

Note: The input range is stated in (Mathworks, 2020) whilst the speed and torque 

are given in (LEGO, 2020b). 
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As shown in Table 3.1, a gyro sensor is used to measure and calculate the robot 

body pitch angle in this research; however, it could generate a sensor drift when 

using only one sensor type for computing the pitch angle. Therefore, a 

combination of accelerometer and gyro sensor is an option to improve the 

accuracy of pitch angle calculation. Alternatively, in the case of only one available 

sensor in LEGO Mindstorm EV3, a state-estimation technique, namely, the 

Kalman filter, can be used to reduce the sensor drift and noise in feedback 

systems. This is because the signal output from the gyroscope is provided to the 

state-observer, which is used to estimate a more accurate signal before 

transferring the data to the controller. Secondly, the wheel angles of a LEGO 

robot are detected by the rotary encoders, which are attached inside the Large 

EV3 Motor. Next, an ultrasonic sensor is used as an non-touching starting button 

by the user. The advantage of this is to avoid touching any physical button, which 

would affect the initial pitch angle before running the programme.  

In the case of the actuator, there are two types in LEGO Mindstorms EV3: 

medium and large motors. In this research, the two large motors with higher 

torques are chosen with description given in Table 3.2. 

 

USB Wi-Fi dongle 

Wi-Fi communication between the LEGO brick and the computer is 

necessary as it provides a long-range networking comparing with Bluetooth, and 

the USB cable is not needed to avoid physical movement restrictions. Therefore, 

an external USB Wi-Fi dongle is required. The Wi-Fi module supported by LEGO 
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is NetGear N150 (WNA1100) Wireless USB Adapter (LEGO, LEGO® 

Mindstorms, 2020a). However, there is an alternative USB Wi-Fi dongle for 

developers, which is Edimax N150 Wi-Fi Nano USB Adapter, shown in Figure 

3.7. Moreover, the Edimax adapter has a smaller size, and less weight than the 

NetGear N150. Hence, the Edimax N150 is chosen as being more appropriate 

for this research.   

    

                              (a)                                                    (b) 

Figure 3.7: (a) Edimax N150 Wi-Fi Nano USB Adapter and (b) NetGear N150 

(WNA1100) Wi-Fi USB Adapter (Netgear, 2020) 

 

3.3 Software    

The computation programmes widely used in LEGO robotics will be presented in 

this section; for instance, RIS, brickOS, NXT-G, LEGO Mindstorms EV3 

Software, leJOS, Python and MATLAB and Simulink. More details of software are 

provided in the following sections: 

3.3.1 Robotics Invention System (RIS) 

The official programme RIS is compatible with LEGO RCX which is the 1st 

graphical programming environment design tool for the LEGO set. It was released 
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in 1998. This LEGO programming is also called RCX code blocks, which 

programmes the LEGO RCX by building blocks functions; next, the Infrared 

transmitter is applied to transfer data between the RCX and computer (LEGO, 

1999). 

3.3.2 BrickOS 

BrickOS is a popular programme for LEGO RCX used in Legway, of which the 

previous name is LegOS, developed by Markus L. Noga (Hassenplug, 2003). 

Although it is an alternative software for LEGO RCX, the software is suitable for 

advanced developers, as it provides a C/C++ programming language 

environment. 

3.3.3 NXT-G 

NXT-G is an official software that comes bundled with the LEGO Mindstorms 

NXT 1.0 and 2.0, which is a graphical programming environment with a design 

similar to the RIS; however, the programming tools of NXT-G are simpler to the 

users than the RIS. Furthermore, the data connection between the NXT 

programme and the LEGO robot is upgraded by using a USB cable and Bluetooth 

connections, which provide a wider range and is more stable than the Infrared 

transmitter. 

3.3.4 LEGO Mindstorms EV3 Software 

Lego Mindstorms EV3 is the latest official graphical programming software of 

the LEGO Mindstorms products, for the EV3 version. The programming interface 

is similar to RIS and NXT-G as it uses the building blocks’ functions to programme 
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the LEGO robot. Furthermore, there are 43 programming blocks containing  more 

function than the NXT-G software (35 blocks). Moreover, the Wi-Fi connection is 

utilised to transfer data between the robot and computer, obtaining a broader 

transferring data range than the previous official LEGO software.   

3.3.5 leJOS 

The java programming language leJOS is used for all LEGO Mindstorms. The 

first leJOS used for the LEGO Mindstorms RCX was divided from TinyVM project 

in 2000. Then, the leJOS was ported to LEGO Mindstorms NXT in 2006, known 

as leJOS NXJ. Finally, the leJOS for the EV3 was released in 2013 (LeJOS, 

2009). 

3.3.6 Python 

This high level and open-source programming language is applied to LEGO 

Mindstorms products, including NXT and EV3. There are official and alternative 

softwares used for LEGO Mindstorms EV3. Firstly, the Debian Linux-based 

operating system, namely, ev3dev, is an alternative software for high-level 

developers (ev3dev, 2020). Next, a collaboration of LEGO and ev3dev (2020) 

released an official software for LEGO Mindstorms and has been known as EV3 

MicroPython (ev3dev, 2020), which is suitable for beginner-to-intermediate level 

developers. In particular, both software need to install a memory card inside the 

LEGO EV3 brick, used for the Python programming language. 
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3.3.7 MATLAB & Simulink 

The well-known programme MATLAB, together with its powerful Simulink 

graphical programming environment, have been used for many types of research. 

The programme also has support packages for the LEGO Mindstorms NXT and 

EV3. There are a number of applications coded in MATLAB and Simulink 

programme on LEGO Mindstorms NXT and EV3, e.g. NXTway (Yamamoto, 

2009), Rotary Inverted Pendulum (Masakatsu, 2015) and Gyroboy (Roslovets, 

2020).  Moreover, the MATLAB programme is a high-level programming 

language to control the LEGO Mindstorms NXT and EV3 via USB, Bluetooth and 

Wi-Fi (only EV3) connection, utilising MATLAB script and function files. 

Furthermore, developers can also design a control system using Simulink block 

diagrams, combining with MATLAB script and function files. The version used is 

MATLAB & Simulink R2019b with an academic license. 

To summarise, in this research, the LEGO EV3 robot is selected for 

implementation, which is widely used in various other research; furthermore, it is 

compatible with MATLAB & Simulink programmes, and there are numerous tools 

for monitoring and controlling real-time systems, provided by MATLAB & 

Simulink, which are very useful and effective for researchers. However, the 

battery voltage and memory capacity of LEGO EV3 have limitations and therefore 

need to be considered carefully during the design and programming stages. 
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Chapter 4 

Modelling of Inverted Pendulum and Two-Wheeled Robot 

Systems 

4.1 Introduction 

In this chapter, mathematical representations of an inverted pendulum on a cart 

and a self-balancing two-wheeled robot are introduced and studied as the 

mathematical model of the TWR is applied to robot prototype, LEGO EV3, in the 

experimentation sections in Chapters 5 and 6. This chapter can be divided into 

three parts. Firstly, the mathematical models are analysed in Section 4.2. Then, 

in Section 4.3, a revised mathematical representation, where the control inputs 

are transferred from forces to the motor voltages is presented. Finally, 

linearisation of the model is demonstrated in Section 4.4. 

 

4.2 Mathematical Model 

4.2.1 Inverted Pendulum on a Cart Model 

 

  

Figure 4.1: An inverted pendulum on a cart (Xu, Zhang, & Carbone, 2017) 
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The self-balancing two-wheeled robot has been developed from the classical 

benchmarking system known as an inverted pendulum on a cart, shown in Figure 

4.1. The control objective is to balance the pendulum in the vertically upright but 

unstable position. 

The mathematical models of an inverted pendulum describe equations of 

motions and are often obtained by analysing forces, using Newton's laws. There 

are also other methods for obtaining the mathematical models of these systems, 

for example, using the Lagrangian approach based on the system's potential 

energy and kinetic energy. Xu, Zhang, and Carbone (2017) presented nonlinear 

models of the inverted pendulum system shown in Figure 4.1, using the 

Lagrangian method. This is because the Lagrangian technique utilises only two 

terms energy and the calculations are simpler than using the Newton’s method, 

which require a number of force component equations. 

In terms of potential energy (𝑉), the amount of energy in the vertical 

displacement of an inverted pendulum is analysed and given by (Xu, Zhang, & 

Carbone, 2017) 

𝑉 = 𝑚2𝑔(𝑟 + 𝑟 𝑐𝑜𝑠 𝜃),  (4.1) 

where 

 𝑚2 is the mass of pendulum (0.1 𝑘𝑔),   

𝑔 is the acceleration due to gravity (9.8 𝑚2/𝑠), 

 and 𝑟 is the length of the pendulum (0.5 𝑚). 
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In the case of kinetic energy (𝑇), the amount of energy along the horizontal axis 

can be written as (Xu, Zhang, & Carbone, 2017) 

            𝑇  =
1

2
𝑚1�̇�1

2 +
1

2
𝑚2 [

𝑑

𝑑𝑡
𝑥1 + 𝑟 𝑠𝑖𝑛 𝜃]

2

+
1

2
𝑚2 [

𝑑

𝑑𝑡
(𝑟 𝑐𝑜𝑠 𝜃)]
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             =
1

2
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1

2
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2 +
1

2
𝑚2(−𝑟 �̇�𝑠𝑖𝑛 𝜃)

2 

=
1
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(𝑚1 +𝑚2)�̇�1

2 +𝑚2𝑟�̇�1�̇� 𝑐𝑜𝑠 𝜃 +
1

2
𝑚2𝑟

2�̇�2, 

 

(4.2) 

where 𝑚1 is the mass of cart (2 𝑘𝑔), 𝑥1 is the cart displacement (𝑚) and 𝜃 is the 

pendulum angle (𝑟𝑎𝑑). 

 The Lagrangian (𝐿) is given by the difference between total kinetic energy 

(𝑇) and the total potential energy (𝑉) as follows: 

   𝐿 =  𝑇 −  𝑉. (4.3) 

Thus, substituting (4.1) and (4.2) into (4.3), the following Lagrangian is obtained 

𝐿 =  
1

2
(𝑚1 +𝑚2)�̇�1

2 +𝑚2𝑟�̇�1�̇� 𝑐𝑜𝑠 𝜃 +
1

2
𝑚2𝑟

2�̇�2  − 𝑚2𝑔(𝑟 + 𝑟 𝑐𝑜𝑠 𝜃) (4.4) 

Lagrange’s equation is 

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�𝑖
−
𝜕𝐿

𝜕𝑥𝑖
= 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝑛, 

(4.5) 

where 𝑥𝑖 is the 𝑖th generalised coordinate, 𝑓𝑖 is the 𝑖th generalised force and 𝑛 is 

the number of the degrees of freedom (DOF). 
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There are two generalised coordinates in the inverted pendulum on a cart system 

presented in Figure 4.1, which are the cart replacement 𝑥1 and the pitch angle 𝜃 

as given by 

𝑓1 =  𝑢, and 𝑓2 =  0. (4.6) 

Then the Lagrange’s equation becomes 

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�1
−
𝜕𝐿

𝜕𝑥1
= 𝑢, 𝑎𝑛𝑑     

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜃
= 0   

(4.7) 

Substituting Eq.(4.4) into (4.7) (Xu, Zhang, & Carbone, 2017) for the single 

inverted pendulum on a cart system, the result is as follows: 

�̈�1 = 
𝑚2𝑟�̇�

2 𝑠𝑖𝑛 𝜃 − 𝑚2𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝑢

𝑚1 +𝑚2 𝑠𝑖𝑛2 𝜃
 

�̈� =  
−𝑚2𝑟�̇�

2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + (𝑚1 +𝑚2)𝑔 𝑠𝑖𝑛 𝜃 − 𝑢 𝑐𝑜𝑠 𝜃

𝑟(𝑚1 +𝑚2 𝑠𝑖𝑛2 𝜃)
, 

 

(4.8) 

 

which can be transferred into standard state-space model equations by defining 

variables 𝑥2 = �̇�1, 𝑥3 = 𝜃 and 𝑥4 = �̇�3. Therefore, a state-space representation of 

the inverted pendulum on a cart is given by 

�̇�1 = 𝑥2 

�̇�2 = 
𝑚2𝑟𝑥4

2 𝑠𝑖𝑛 𝑥3 −𝑚2𝑔 𝑠𝑖𝑛 𝑥3 𝑐𝑜𝑠 𝑥3 + 𝑢

𝑚1 +𝑚2 𝑠𝑖𝑛2 𝑥3
 

�̇�3 = 𝑥4 

�̇�4 = 
−𝑚2𝑟𝑥4

2 𝑠𝑖𝑛 𝑥3 𝑐𝑜𝑠 𝑥3 + (𝑚1 +𝑚2)𝑔 𝑠𝑖𝑛 𝑥3 −  𝑢 𝑐𝑜𝑠 𝑥3
𝑟(𝑚1 +𝑚2 𝑠𝑖𝑛2 𝑥3)

, 

 

 

(4.9) 

 

 

 

which can be rewritten into a non-unique nonlinear state-space matrix form as 



CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS 

 

53 

 

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

 
 
 

0 1 0 0

0 0
−𝑚2𝑔 sin 𝑥3 cos 𝑥3
(𝑚1 +𝑚2 sin

2 𝑥3)𝑥3

𝑚2𝑟𝑥4 sin 𝑥3
𝑚1 +𝑚2 sin

2 𝑥3
0 0 0 1

0 0
(𝑚1 +𝑚2)𝑔 sin𝑥3
𝑟(𝑚1 +𝑚2 sin

2 𝑥3)𝑥3

−𝑚2𝑟𝑥4 sin 𝑥3 cos 𝑥3
𝑟(𝑚1 +𝑚2 sin

2 𝑥3) )

 
 
 
(

𝑥1
𝑥2
𝑥3
𝑥4

)  

                                    

 

+

(

 
 
 

0
1

𝑚1 +𝑚2 sin
2 𝑥3

0
− cos𝑥3

𝑟(𝑚1 +𝑚2 sin
2 𝑥3))

 
 
 
𝑢. 

 

 

 

 

 

 

(4.10) 

 

Additionally, the linear model of an inverted pendulum on a cart can be 

expressed by limiting 𝑥3 and 𝑥4 as ‘small’ quantities in Eq.(4.10) and therefore 

several approximations follows: 

𝑠𝑖𝑛(𝑥3) ≈ 𝑥3, 𝑐𝑜𝑠(𝑥3) ≈ 1,  𝑥4 𝑠𝑖𝑛(𝑥3) ≈ 0   and  𝑠𝑖𝑛 (𝑥3)
2 ≈ 0 (4.11) 

Thus, a linear state-space model of the inverted pendulum on a cart system can 

be represented in the form of 

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

 
 
 

0 1 0 0

0 0
−𝑚2𝑔

𝑚1
0

0 0 0 1

0 0
(𝑚1 +𝑚2)𝑔

𝑟𝑚1
0
)

 
 
 
(

𝑥1
𝑥2
𝑥3
𝑥4

)+

(

 
 
 

0
1

𝑚1
0
−1

𝑟𝑚1)

 
 
 
𝑢.  

                                    

 

 

(4.12) 

 

4.2.2 Self-Balancing Two-Wheeled Robot Model 

As a classical benchmarking model, an inverted pendulum on a cart is widely 

used to test control strategies, the model of which was described in Section 4.2.1. 

In this subsection, the inverted pendulum theory will be extended to the self-

balancing two-wheeled robot, of which the LEGO EV3 robot is selected as a 

prototype, for the analysis and investigation. A LEGO self-balancing two-wheeled 
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robot is shown in Figures 4.2-4.3. Figure 4.2 presents the prototype TWR with 

the three generalised coordinates: the robot pitch angle 𝜓, the robot yaw angle 𝜙 

and the wheel angle 𝜃 (Yamamoto, 2009). More details of the TWR on the X,Y 

and Z coordinates for designing the motion equation can be seen in Figure 4.3. 

    

(a)                                                      (b) 

Figure 4.2: Self-balancing two-wheeled robot (LEGO EV3),                                

(a) side view and (b) top view. 

   

(a)                                                      (b) 

Figure 4.3: Self-balancing two-wheeled robot diagram,                                      

(a) side view and (b) top view (Yamamoto, 2009). 

Note that 𝑙 and 𝑟 mean left and right. For instance, 𝜃𝑙 and 𝜃𝑟 are the left and right 

wheel angles; similarly, 𝑍𝑙 and 𝑍𝑟 are the height of left and right wheel in 𝑍 

coordinate.  
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Physical parameters of the self-balancing two-wheeled robot are given in Table 

4.1. Note that the values of parameters1-11 were measured and calculated from 

the LEGO EV3 for this research and the parameters12-18 are presented in 

Yamamoto (2009). 

Table 4.1: Physical parameters of the self-balancing two-wheeled robot 

No. Parameters Description Value 

1 𝑚 Mass of wheel  0.05 𝑘𝑔 

2 𝑀 Mass of robot body 0.64 𝑘𝑔 

3 𝑅 Wheel radius  0.027 𝑚 

4 𝑊 Robot’s body width  0.105 𝑚 

5 𝐷 Robot’s body depth  0.1 𝑚 

6 𝐻 Robot’s body height  0.21 𝑚 

7 𝐿 = 𝐻/2 Distance between wheel axle 

and centre of robot  

0.105 𝑚 

8 𝑔  Acceleration due to gravity  9.81 𝑚2/𝑠 

9 𝐽𝑤 = 𝑚𝑅
2/2 Inertia moment of wheel  0.0000162 𝑘𝑔𝑚2 

10 𝐽𝜓 = 𝑀𝐿
2/3 Inertia moment of robot pitch  0. 002352 𝑘𝑔𝑚2 

11 𝐽𝜙 = 𝑀(𝑊
2 + 𝐷2)/12 Inertia moment of robot yaw  0.001121𝑘𝑔𝑚2 

12 𝐽𝑚 Inertia moment of DC motor  1 × 10−5 𝑘𝑔𝑚2 

13 𝑅𝑚 Resistance of DC motor  6.69 𝛺 

14 𝐾𝑏 Back EMF constant of DC motor  0.468 𝑉 ∙ 𝑆𝑒𝑐/𝑟𝑎𝑑 

15 𝐾𝑡 Torque constant of DC motor  0.317 𝑁𝑚/𝐴 

16 𝑛 Gear ratio 1 

17 𝑓𝑚 Coefficient of friction between 

robot and DC motor 

0.0022 

18 𝑓𝑤 Coefficient of friction between 

wheel and floor 

0 
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Table 4.1, Yamamoto (2009) provided the physical parameters for the LEGO NXT 

model, which is a different version to the robot (LEGO EV3) used in this research. 

However, Roslovets (2020) verified that these parameters could be utilised for 

the LEGO EV3 as he presented a self-balancing two-wheeled robot from the 

LEGO EV3, namely the Gyroboy, in his Simulink simulation and the 

implementation sections. 

For the two-wheeled robot, the Lagrangian method is also applied to analyse the 

mathematical model based on the system's potential and kinetic energy, as 

indicated in Figure 4.3. Yamamoto (2009) produced the total kinetic energy and 

potential energy equations from the LEGO two-wheeled robot using the 

Lagrangian technique, which can be expressed as 

The kinetic energy (𝑇) 

𝑇1 =
1

2
𝑚(�̇�𝑙

2 + �̇�𝑙
2 + �̇�𝑙

2) +
1

2
𝑚(�̇�𝑟

2 + �̇�𝑟
2 + �̇�𝑟

2) +
1

2
𝑀(�̇�𝑏

2 + �̇�𝑏
2 + �̇�𝑏

2) (4.13) 

𝑇2 =
1

2
𝐽𝑤�̇�𝑙

2 +
1

2
𝐽𝑤�̇�𝑟

2 +
1

2
𝐽𝜓�̇�

2 +
1

2
𝐽𝜙�̇�

2 +
1

2
𝑛2𝐽𝑚(�̇�𝑙 − �̇�)

2 +
1

2
𝑛2𝐽𝑚(�̇�𝑟 − �̇�)

2. (4.14) 

The potential energy (𝑉) 

𝑉 =  𝑚𝑔𝑧𝑙 +𝑚𝑔𝑧𝑟 +𝑀𝑔𝑧𝑏 . (4.15) 

The motion equations are given by 

(𝑥𝑚,  𝑦𝑚,  𝑧𝑚) = (∫ �̇�𝑚 𝑑𝑡,∫ �̇�𝑚 𝑑𝑡, 𝑅 ) , (�̇�𝑚, �̇�𝑚) = (𝑅�̇�𝑐𝑜𝑠 𝜙 , 𝑅�̇� 𝑠𝑖𝑛 𝜙 ) (4.16) 

(𝑥𝑙,  𝑦𝑙 ,  𝑧𝑙) = (𝑥𝑚 −
𝑊

2
𝑠𝑖𝑛 𝜙 ,   𝑦𝑚 +

𝑊

2
𝑐𝑜𝑠 𝜙 ,  𝑧𝑚 ) (4.17) 

(𝑥𝑟 ,  𝑦𝑟 ,  𝑧𝑟) = (𝑥𝑚 +
𝑊

2
𝑠𝑖𝑛𝜙 ,   𝑦𝑚 −

𝑊

2
𝑐𝑜𝑠 𝜙 ,  𝑧𝑚 ) (4.18) 

(𝑥𝑏 ,  𝑦𝑏 ,  𝑧𝑏) = (𝑥𝑚 + 𝐿 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜙 ,   𝑦𝑚 + 𝐿 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜙 ,   𝑧𝑚 + 𝐿𝑐𝑜𝑠 𝜓 ) (4.19) 
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(𝜃, 𝜙) = (
(𝜃𝑙 + 𝜃𝑟)

2
,
𝑅(𝜃𝑟 − 𝜃𝑙)

𝑊
 ). (4.20) 

The kinetic energy (𝑇1) can be rewritten by substituting Eqs.(4.16)-(4.19) into Eq. 

(4.13): 

𝑇1 =
1

2
𝑚 [(𝑅�̇� 𝑐𝑜𝑠 𝜙 −

𝑊

2
�̇� 𝑐𝑜𝑠 𝜙)

2

+ (𝑅�̇� 𝑠𝑖𝑛 𝜙 −
𝑊

2
�̇� 𝑠𝑖𝑛 𝜙)

2

] 

+
1

2
𝑚 [(𝑅�̇� 𝑐𝑜𝑠 𝜙 +

𝑊

2
�̇� 𝑐𝑜𝑠 𝜙)2 + (𝑅�̇� 𝑠𝑖𝑛 𝜙 +

𝑊

2
�̇� 𝑠𝑖𝑛 𝜙)2] 

+
1

2
𝑀 [(𝑅�̇� 𝑐𝑜𝑠 𝜙 − 𝐿 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛𝜙�̇� + 𝐿 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓�̇�)

2

+ (𝑅�̇� 𝑠𝑖𝑛 𝜙 + 𝐿 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠 𝜙�̇� + 𝐿 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓�̇�)
2

+ (−𝐿 𝑠𝑖𝑛𝜓�̇�)
2
] 

=
1

2
𝑚 [2𝑅2�̇�2 +

𝑊2

2
�̇�2]

+
1

2
𝑀[𝑅2�̇�2 + 𝐿2 𝑠𝑖𝑛2𝜓 �̇�2 + 2𝑅𝐿�̇�𝑐𝑜𝑠 𝜓 �̇� + 𝐿�̇�2]. 

 

 

 

 

 

(4.21) 

 

 

Equation (4.20) can be transformed as 

𝜃𝑟 = 𝜃 +
𝑊𝜙

2𝑅
 

(4.22) 

𝜃𝑙 = 𝜃 −
𝑊𝜙

2𝑅
. 

(4.23) 

Rewriting the kinetic energy (𝑇2) by substituting Eqs.(4.22)-(4.23) into Eq.(4.14):   

𝑇2 =
1

2
𝐽𝑤 (�̇� −

𝑊�̇�

2𝑅
)

2

+
1

2
𝐽𝑤 (�̇� +

𝑊�̇�

2𝑅
)

2

+
1

2
𝐽𝜓�̇�

2 +
1

2
𝐽𝜙�̇�

2

+
1

2
𝑛2𝐽𝑚(�̇� −

𝑊�̇�

2𝑅
− �̇�)2 +

1

2
𝑛2𝐽𝑚 (�̇� +

𝑊�̇�

2𝑅
− �̇�)

2

 

=
1

2
𝐽𝑤 (2�̇�

2 −
𝑊2�̇�2

2𝑅2
) +

1

2
𝐽𝜓�̇�

2 +
1

2
𝐽𝜙�̇�

2

+
1

2
𝑛2𝐽𝑚 [2�̇�

2 + 2�̇�2 − 4�̇��̇� +
𝑊2�̇�2

2𝑅2
]. 

 

 

 

 

(4.24) 
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The potential energy (V) can be rewritten by substituting Eqs.(4.16)-(4.19) into 

Eq.(4.15):  

𝑉 =  𝑚𝑔𝑅 +𝑚𝑔𝑅 +𝑀𝑔(𝑅 + 𝐿𝑐𝑜𝑠 𝜓) 

=  2𝑚𝑔𝑅 +𝑀𝑔𝑅 +𝑀𝑔𝐿𝑐𝑜𝑠 𝜓. 

(4.25) 

 

The Lagrangian (𝐿) is now defined as the following: 

𝐿 =  𝑇1 + 𝑇2 − 𝑉. (4.26) 

Therefore, the Lagrange equations are given by 

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜃
= 𝐹𝜃, 

(4.27) 

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜓
= 𝐹𝜓, 

(4.28) 

𝑑

𝑑𝑥

𝜕𝐿

𝜕�̇�
−
𝜕𝐿

𝜕𝜙
= 𝐹𝜙. 

(4.29) 

Evaluating Eqs. (4.27) - (4.29) produces the following (Yamamoto, 2009) 

differential equations, which represent the two-wheel robot system: 

[(2𝑚 +𝑀)𝑅2 + 2𝐽𝑤 + 2𝑛
2𝐽𝑚]�̈� + (𝑀𝐿𝑅𝑐𝑜𝑠𝜓 − 2𝑛

2𝐽𝑚)�̈� 

                                                             −𝑀𝐿𝑅�̇�2 𝑠𝑖𝑛 𝜓 = 𝐹𝜃,  

(4.30) 

(𝑀𝐿𝑅𝑐𝑜𝑠𝜓 − 2𝑛2𝐽𝑚)�̈� + (𝑀𝐿
2 + 𝐽𝜓 + 2𝑛

2𝐽𝑚)�̈� − 𝑀𝑔𝐿 𝑠𝑖𝑛𝜓 

                                                                   −𝑀𝐿2�̇�2 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠𝜓 = 𝐹𝜓, 

(4.31) 

[
1

2
𝑚𝑊2 + 𝐽𝜙 +

𝑊2

2𝑅2
(𝐽𝑤 + 𝑛

2𝐽𝑚) + 𝑀𝐿
2𝑠𝑖𝑛2𝜓] �̈� 

                                                                     +2𝑀𝐿2�̇� �̇�𝑠𝑖𝑛 𝜓𝑐𝑜𝑠𝜓 = 𝐹𝜙. 

(4.32) 
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Then, transferring variables 𝜃, 𝜓, and 𝜙 into standard state-space model variables 

as follows: 

   𝑥1 = 𝜃,   𝑥2 = �̇�,  then �̇�2 = �̈�,   

   𝑥3 = 𝜓,   𝑥4 = �̇�,  then �̇�4 = �̈�,   

   𝑥5 = 𝜙,   𝑥6 = �̇�,  then �̇�6 = �̈�,   

we re-write Eqs.  as (4.30) - (4.32) as 

[(2𝑚 +𝑀)𝑅2 + 2𝐽𝑤 + 2𝑛
2𝐽𝑚]�̇�2 + (𝑀𝐿𝑅𝑐𝑜𝑠(𝑥3) − 2𝑛

2𝐽𝑚)�̇�4 

                                                        −𝑀𝐿𝑅𝑥4
2 𝑠𝑖𝑛(𝑥3) = 𝐹𝜃, 

(4.33) 

 

(𝑀𝐿𝑅𝑐𝑜𝑠(𝑥3) − 2𝑛
2𝐽𝑚)�̇�2 + (𝑀𝐿

2 + 𝐽𝜓 + 2𝑛
2𝐽𝑚)�̇�4 −𝑀𝑔𝐿 𝑠𝑖𝑛(𝑥3) 

                                                              −𝑀𝐿2𝑥6
2 𝑠𝑖𝑛(𝑥3) 𝑐𝑜𝑠(𝑥3) = 𝐹𝜓, 

(4.34) 

 

[
1

2
𝑚𝑊2 + 𝐽𝜙 +

𝑊2

2𝑅2
(𝐽𝑤 + 𝑛

2𝐽𝑚) + 𝑀𝐿
2𝑠𝑖𝑛2(𝑥3)] �̇�6 

                                                             +2𝑀𝐿2𝑥4 𝑥6 𝑠𝑖𝑛(𝑥3) 𝑐𝑜𝑠(𝑥3) = 𝐹𝜙 

(4.35) 

 

This PhD research work focuses on the stabilisation in the robot pitch 

angle 𝜓. Therefore, the robot yaw angle 𝜙 is not considered. Moreover, the 

computation of three generalised coordinates requires a large amount of memory 

capacity when the robot’s CPU is processing with nonlinear freezing optimal 

control; thus, the associated equation for the yaw angle 𝜙 is neglected and no 

yaw control is provided. For more details see in Chapter 6, Section 6.6: 

Experimental Results. 
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Therefore, the nonlinear system equations of the two-wheeled robot model 

with two generalised coordinates (the robot pitch angle 𝜓 and the wheel angle 𝜃) 

are written by extending Eqs.(4.33)-(4.34), which can be used as the state-space 

representation of the system, as the following: 

Firstly, the �̇�1 equation can be defined as 

�̇�1 = 𝑥2 (4.36) 

Next, the �̇�2 equation can be written as 

�̇�2 = 𝑥4 ×
𝑥4𝑠𝑖𝑛(𝑥3)(𝑀

2𝑅𝐿3 + 2𝑀𝑅𝐿𝑛2𝐽𝑚 +𝑀𝑅𝐿𝐽𝜓)

𝑎 + 𝑏(𝑥3)
 

 

+ 
2𝑛2𝐽𝑚𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3) − 𝑀

2𝑅𝐿2𝑐𝑜𝑠(𝑥3)𝑔 𝑠𝑖𝑛(𝑥3)

𝑎 + 𝑏(𝑥3)
 

 

+ 𝐹𝜓 ×
(2𝑛2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3))

𝑎 + 𝑏(𝑥3)
 

 

+ 𝐹𝜃 ×
(𝑀𝐿2 + 2𝑛2𝐽𝑚 + 𝐽𝜓)

𝑎 + 𝑏(𝑥3)
 

(4.37) 

where 𝑎 and 𝑏 are given by 

𝑎 = 2𝐽𝑤𝐽𝜓 + 2𝑚𝑅
2𝑀𝐿2 + 4𝑚𝑅2𝑛2𝐽𝑚 + 2𝑀𝑅

2𝑛2𝐽𝑚 + 2𝑛
2𝐽𝑚𝑀𝐿

2 

      +2𝑚𝑅2𝐽𝜓 +𝑀𝑅
2𝐽𝜓 + 2𝐽𝑤𝑀𝐿

2 + 4𝐽𝑤𝑛
2𝐽𝑚 + 2𝑛

2𝐽𝑚𝐽𝜓, 

(4.38) 

𝑏(𝑥3) = 𝑀
2𝑅2𝐿2 𝑠𝑖𝑛(𝑥3)

2 + 4𝑀𝐿𝑅𝑐𝑜𝑠(𝑥3)𝑛
2𝐽𝑚 (4.39) 

Let 

𝑒23(𝑥3) = 2𝑛
2𝐽𝑚𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3) − 𝑀

2𝑅𝐿2𝑐𝑜𝑠(𝑥3)𝑔 𝑠𝑖𝑛(𝑥3),   

𝑒24(𝑥3, 𝑥4) = 𝑥4𝑠𝑖𝑛(𝑥3)(𝑀
2𝑅𝐿3 + 2𝑀𝑅𝐿𝑛2𝐽𝑚 +𝑀𝑅𝐿𝐽𝜓),  

𝑓21 = 𝑀𝐿
2 + 2𝑛2𝐽𝑚 + 𝐽𝜓 
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and 

𝑓22(𝑥3) = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3),  

which can be used to rewrite Eq.(4.37) as follows: 

�̇�2 =
𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒24(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4 +

𝑓21
(𝑎 + 𝑏(𝑥3))

× 𝐹𝜃 

+
𝑓22(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝐹𝜓 

(4.40) 

Then, define the �̇�3 equation as 

�̇�3 = 𝑥4 (4.41) 

Next, the �̇�4 equation is represented as 

�̇�4 = 𝑥4 ×
𝑥4𝑠𝑖𝑛(𝑥3)(−𝑀

2𝑅2𝐿2𝑐𝑜𝑠(𝑥3) + 2𝑀𝑅𝐿𝑛
2𝐽𝑚)

𝑎 + 𝑏(𝑥3)
 

 

+ 
𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3)(2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2 + 2𝑛2𝐽𝑚)

𝑎 + 𝑏(𝑥3)
 

 

+𝐹𝜃 × 
(2𝑛2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3))

𝑎 + 𝑏(𝑥3)
 

 

+𝐹𝜓 × 
(2𝑛2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2)

𝑎 + 𝑏(𝑥3)
. 

(4.42) 

Also let 

𝑒43(𝑥3) = 𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3)(2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2),   

𝑒44(𝑥3, 𝑥4) = 𝑥4𝑠𝑖𝑛(𝑥3)(−𝑀
2𝑅2𝐿2𝑐𝑜𝑠(𝑥3) + 2𝑀𝑅𝐿𝑛

2𝐽𝑚),  

𝑓41(𝑥3) = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3) 

and 

 

𝑓42 = 2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2  
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which can be rewritten from Eq.(4.42) as follows: 

�̇�4 =
𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒44(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4 +

𝑓41(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝐹𝜃 

+
𝑓42

(𝑎 + 𝑏(𝑥3))
× 𝐹𝜓 

(4.43) 

 

Therefore, the nonlinear state-space model of the self-balancing two-wheeled 

robot controlled by two forces: the pitch angle force 𝐹𝜓 and the wheel angle force 

𝐹𝜃, can be represented as follows: 

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

 
 
 

0 1 0 0

0 0
𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0 0 0 1

0 0
𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3))

 
 
 

(

𝑥1
𝑥2
𝑥3
𝑥4

)  

                                    

 

+

(

 
 
 

0 0
𝑓21

𝑎 + 𝑏(𝑥3)

𝑓22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓42
𝑎 + 𝑏(𝑥3))

 
 
 

(
𝐹𝜃
𝐹𝜓
). 

 

(4.44) 

 

4.3 Converting Control Inputs from Forces to Voltages 

The system dynamics of a self-balancing two-wheeled robot, controlled by forces 

were presented in the previous section. In real-world applications, forces are 

generated from the hardware; for instance, the LEGO EV3 robot is controlled by 

forces, produced from the DC motors. This section, therefore, presents voltage 

conversion of the LEGO EV3 robot from forces, and then applies to the state-
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space model, which is used to balance the two-wheel robot in the subsequent 

chapters.  

 The standard DC motor schematic is presented in Figure 4.4. 

 

Figure 4.4: DC motor schematic (Chiasson, 2005) 

 

Kirchhoff’s voltage law is applied to summarise the electrical circuits in Figure 

4.4, given the equation as follows (Yamamoto, 2009): 

𝐿𝑚
𝑑𝑖𝑙,𝑟
𝑑𝑡

= 𝑣𝑙,𝑟 + 𝐾𝑏(
𝑑𝜓

𝑑𝑡
−
𝑑𝜃𝑙,𝑟
𝑑𝑡
) − 𝑅𝑚𝑖𝑙,𝑟 , 

(4.45) 

where 𝑖𝑙,𝑟 is the DC motor current. 

In DC circuits, the inductance of motor in steady-state operation behaves like a 

short circuit; therefore, it can be approximated as zero, and then Eq. (4.45) can 

be rewritten as: 

𝑖𝑙,𝑟 =
𝑣𝑙,𝑟 + 𝐾𝑏(�̇� − �̇�𝑙,𝑟)

𝑅𝑚
. 

(4.46) 

Yamamoto (2009) demonstrated the generalised forces of the DC motor torque 

and viscous friction as follows: 

(𝐹𝜃, 𝐹𝜓) = (𝐹𝑙 + 𝐹𝑟 ,  𝐹𝜓) (4.47) 

𝐹𝑙 = 𝑛𝐾𝑡𝑖𝑙 + 𝑓𝑚(�̇� − �̇�𝑙) − 𝑓𝑤�̇�𝑙 (4.48) 



CHAPTER 4 MODELLING OF INVERTED PENDULUM AND TWO-WHEELED ROBOT SYSTEMS 

 

64 

 

𝐹𝑟 = 𝑛𝐾𝑡𝑖𝑟 + 𝑓𝑚(�̇� − �̇�𝑟) − 𝑓𝑤�̇�𝑟 (4.49) 

𝐹𝜓 =  𝑛𝐾𝑡𝑖𝑙 − 𝑛𝐾𝑡𝑖𝑟 − 𝑓𝑚(�̇� − �̇�𝑙) − 𝑓𝑚(�̇� − �̇�𝑟) (4.50) 

Therefore, the generalised forces 𝐹𝜃 and 𝐹𝜓 in terms of motor voltage from 

Eq.(4.46) are given by 

𝐹𝜃 = 𝛼(𝑣𝑙 + 𝑣𝑟) − 2(𝛽 + 𝑓𝑤)�̇� + 2𝛽�̇� (4.51) 

𝐹𝜓 = −𝛼(𝑣𝑙 + 𝑣𝑟) + 2𝛽�̇� − 2𝛽�̇� (4.52) 

where 

𝛼 =
𝑛𝐾𝑡
𝑅𝑚

, 𝛽 =
𝑛𝐾𝑡𝐾𝑏
𝑅𝑚

+ 𝑓𝑚. 
(4.53) 

 

Then Eqs.(4.51)-(4.52) can be rewritten in the standard state-space model 

variables, given by 

𝐹𝜃 = 𝛼(𝑣𝑙 + 𝑣𝑟) − 2(𝛽 + 𝑓𝑤)𝑥2 + 2𝛽𝑥4 (4.54) 

𝐹𝜓 = −𝛼(𝑣𝑙 + 𝑣𝑟) + 2𝛽𝑥2 − 2𝛽𝑥4 (4.55) 

 

Now, the state-space representation of the two-wheeled robot would be 

transferred from generalised forces to voltages by substituting Eqs. (4.54)-(4.55) 

to Eq.(4.37) as follows: 

�̇�2 =  𝑥2 × (
2𝛽𝑓22(𝑥3)

𝑎 + 𝑏(𝑥3)
−
2(𝛽 + 𝑓𝑤)𝑓21
𝑎 + 𝑏(𝑥3)

) + 
𝑒23(𝑥3)

𝑎 + 𝑏(𝑥3)
 

 

+ 𝑥4 × (
𝑒24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
+
2𝛽(𝑓21 − 𝑓22(𝑥3))

𝑎 + 𝑏(𝑥3)
) 

 

+ 𝑣𝑙 ×
𝛼(𝑓21 − 𝑓22(𝑥3))

𝑎 + 𝑏(𝑥3)
+ 𝑣𝑟 ×

𝛼(𝑓21 − 𝑓22(𝑥3))

𝑎 + 𝑏(𝑥3)
 

(4.56) 
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Let 

𝑒𝑚22(𝑥3) = 2𝛽𝑓22(𝑥3) − 2(𝛽 + 𝑓𝑤)𝑓21,   

𝑒𝑚24(𝑥3, 𝑥4) = 𝑒24(𝑥3, 𝑥4) + 2𝛽(𝑓21 − 𝑓22(𝑥3)),  

𝑓𝑚21(𝑥3) = 𝛼(𝑓21 − 𝑓22(𝑥3)) 

and 

 

𝑓𝑚22(𝑥3) = 𝛼(𝑓21 − 𝑓22(𝑥3)),  

which can be rewrite Eq.(4.56) as below: 

�̇�2 =
𝑒𝑚22(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑥2 +

𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒𝑚24(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4 

+
𝑓𝑚21

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑙 +

𝑓𝑚22(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑟 

(4.57) 

 

Next, for the �̇�4 equation, substituting Eqs. (4.54)-(4.55) into Eq.(4.42): 

�̇�4 = 𝑥2 × (
2𝛽𝑓42

𝑎 + 𝑏(𝑥3)
−
2(𝛽 + 𝑓𝑤)𝑓41(𝑥3)

𝑎 + 𝑏(𝑥3)
) + 

𝑒43(𝑥3)

𝑎 + 𝑏(𝑥3)
 

 

+𝑥4 × (
𝑒44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
+
2𝛽(𝑓41(𝑥3) − 𝑓42)

𝑎 + 𝑏(𝑥3)
) 

 

+ 𝑣𝑙 ×
𝛼(𝑓41(𝑥3) − 𝑓42)

𝑎 + 𝑏(𝑥3)
+ 𝑣𝑟 ×

𝛼(𝑓41(𝑥3) − 𝑓42)

𝑎 + 𝑏(𝑥3)
 

(4.58) 

 

Also let 

𝑒𝑚42(𝑥3) = 2𝛽𝑓42 − 2(𝛽 + 𝑓𝑤)𝑓41(𝑥3),   

𝑒𝑚44(𝑥3, 𝑥4) = 𝑒44(𝑥3, 𝑥4) + 2𝛽(𝑓41(𝑥3) − 𝑓42),  

𝑓𝑚41(𝑥3) = 𝛼(𝑓41(𝑥3) − 𝑓42) 

and 
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𝑓𝑚42(𝑥3) = 𝛼(𝑓41(𝑥3) − 𝑓42),  

which can simplify Eq.(4.58) as follows: 

�̇�4 =
𝑒𝑚42(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑥2 +

𝑒43(𝑥3) 

(𝑎 + 𝑏(𝑥3))𝑥3
× 𝑥3 +

𝑒𝑚44(𝑥3, 𝑥4)

(𝑎 + 𝑏(𝑥3))
× 𝑥4 

+
𝑓𝑚41(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑙 +

𝑓𝑚42(𝑥3)

(𝑎 + 𝑏(𝑥3))
× 𝑣𝑟 . 

(4.59) 

 

In summary, from the above derivations, the nonlinear state-space model of the 

two-wheeled robot with voltage input control is represented as the following: 

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

 
 
 

0 1 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0 0 0 1

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3) )

 
 
 

(

𝑥1
𝑥2
𝑥3
𝑥4

)

                                    

 

+

(

 
 
 

0 0
𝑓𝑚21(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓𝑚41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3))

 
 
 

(
𝑣𝑙
𝑣𝑟
).   

 

(4.60) 

 

Many dynamical systems require high accuracy to maintain their setpoints, 

by removing steady-state errors. Therefore, we now proceed to a tracking 

system, which can be designed to remove the steady-state error in state variable 

𝑥1 (wheel angle), to ensure the robot is stabilised at the reference position 

(tracking a pre-defined trajectory) by adding an integrator of state variable 𝑥1 as 
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the 5th state-variable of system. Hence, the nonlinear state-space model of the 

two-wheeled robot with tracking system is represented in the form: 

(

 
 

�̇�1
�̇�2
�̇�3
�̇�4
�̇�5)

 
 
=

(

 
 
 
 

0 1 0 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒23(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0

0 0 0 1 0

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒43(𝑥3)

(𝑎 + 𝑏(𝑥3))𝑥3

𝑒𝑚44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0

1 0 0 0 0)

 
 
 
 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 

                                    

 

+

(

 
 
 
 

0 0
𝑓𝑚21(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓𝑚41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0 )

 
 
 
 

(
𝑣𝑙
𝑣𝑟
).  

 

(4.61) 

 

4.4 Linearisation of the Two-Wheeled Robot Model 

A suitable nonlinear state-space model of the two-wheeled robot was deployed 

in the previous section and the dynamic equations were complicated. Thus, it is 

possible to simplify the mathematical model of a nonlinear system by applying 

the well-known method: linearisation. Linearisation is a technique to approximate 

a nonlinear system into a linear form, ( where in the system is operating around 

an equilibrium point) by applying Taylor series expensions and the signals are 

considered as small quantities (Ogata & Yang, 1970). The linearised model is 

suitable for the applications of linear controllers, e.g. PID, LQR and LQG 

controller. 
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In this section, the nonlinear model of the self-balancing two-wheeled 

robot given in Eq.(4.61) is linearised by assuming 𝑥3 and 𝑥4 are small quantities. 

Then, approximations can be taken as follows: 

𝑠𝑖𝑛(𝑥3) ≈ 𝑥3, 𝑐𝑜𝑠(𝑥3) ≈ 1,  𝑥4 𝑠𝑖𝑛(𝑥3) ≈ 0   and  𝑠𝑖𝑛 (𝑥3)
2 ≈ 0 (4.62) 

Some defined parameters of the �̇�2 equations are rewritten accordingly as follows: 

𝑓22𝐿 = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿,  

𝑓𝑚21𝐿 = 𝛼(𝑓21 − 𝑓22𝐿),  

𝑓𝑚22𝐿 = 𝛼(𝑓21 − 𝑓22𝐿).  

𝑒23𝐿(𝑥3) = 𝑥3 × (2𝑛
2𝐽𝑚𝐿𝑀𝑔 −𝑀

2𝑅𝐿2𝑔)  

= 𝑥3 × 𝑒23𝐿 ,  

𝑒24𝐿 = 0,  

𝑒𝑚22𝐿 = 2𝛽𝑓22𝐿 − 2(𝛽 + 𝑓𝑤)𝑓21,  

𝑒𝑚24𝐿 = 2𝛽(𝑓21 − 𝑓22𝐿),  

Let 𝑒23𝐿 = 2𝑛
2𝐽𝑚𝐿𝑀𝑔 −𝑀

2𝑅𝐿2  

Similarly, the revision of parameters of the �̇�4 equation is carried out to obtain 

𝑓41𝐿 = 2𝑛
2𝐽𝑚 −𝑀𝑅𝐿,  

𝑓𝑚41𝐿 = 𝛼(𝑓41𝐿 − 𝑓42),  

𝑓𝑚42𝐿 = 𝛼(𝑓41𝐿 − 𝑓42).  

𝑒43𝐿(𝑥3) = 𝑥3 ×𝑀𝑔𝐿(2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2)    

=  𝑥3 × 𝑒43𝐿 ,   

𝑒44𝐿 = 0,  

𝑒𝑚42𝐿 = 2𝛽𝑓42 − 2(𝛽 + 𝑓𝑤)𝑓41𝐿 ,   

𝑒𝑚44𝐿 = 2𝛽(𝑓41𝐿 − 𝑓42),  

Let 𝑒43𝐿 = 𝑀𝑔𝐿(2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2)   
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Then Eq.(4.39) is rewritten as 

𝑏𝐿 = 4𝑀𝐿𝑅𝑛
2𝐽𝑚, (4.63) 

 

which transforms Eq.(4.57) to the following: 

�̇�2 =
𝑒𝑚22𝐿
(𝑎 + 𝑏𝐿)

× 𝑥2 +
(𝑥3 × 𝑒23𝐿) 

(𝑎 + 𝑏𝐿)𝑥3
× 𝑥3 +

𝑒𝑚24𝐿
(𝑎 + 𝑏𝐿)

× 𝑥4 

+
𝑓𝑚21𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑙 +
𝑓𝑚22𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑟 . 

(4.64) 

 

Also, Equation(4.59) can be rewritten as follows: 

�̇�4 =
𝑒𝑚42𝐿
(𝑎 + 𝑏𝐿)

× 𝑥2 +
(𝑥3 × 𝑒43𝐿)  

(𝑎 + 𝑏𝐿)𝑥3
× 𝑥3 +

𝑒𝑚44𝐿
(𝑎 + 𝑏𝐿)

× 𝑥4 

+
𝑓𝑚41𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑙 +
𝑓𝑚42𝐿
(𝑎 + 𝑏𝐿)

× 𝑣𝑟 

(4.65) 

 

Therefore, the linear state-space model of self-balancing two-wheeled robot is 

represented as the following: 

(

 
 

�̇�1
�̇�2
�̇�3
�̇�4
�̇�5)

 
 
=

(

 
 
 
 

0 1 0 0 0

0
𝑒𝑚22𝐿
𝑎 + 𝑏𝐿

𝑒23𝐿
𝑎 + 𝑏𝐿

𝑒𝑚24𝐿
𝑎 + 𝑏𝐿

0

0 0 0 1 0

0
𝑒𝑚42𝐿
𝑎 + 𝑏𝐿

𝑒43𝐿
𝑎 + 𝑏𝐿

𝑒𝑚44𝐿
𝑎 + 𝑏𝐿

0

1 0 0 0 0)

 
 
 
 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
+

(

 
 
 
 
 

0 0
𝑓
𝑚21𝐿

𝑎 + 𝑏𝐿

𝑓
𝑚22𝐿

𝑎 + 𝑏𝐿
0 0

𝑓
𝑚41𝐿

𝑎 + 𝑏𝐿

𝑓
𝑚42𝐿

𝑎 + 𝑏𝐿
0 0 )

 
 
 
 
 

(
𝑣𝑙
𝑣𝑟
).  

                                    

 

 

(4.66) 
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Chapter 5 

Linear Control Designs and Implementations  

5.1 Introduction 

This chapter illustrates a modern linear control strategy widely used in controlling 

linear systems, known as linear quadratic regulator (LQR) and its widespread 

application extension, named linear quadratic Gaussian (LQG). The chapter is 

organised as follows: the LQR is applied to control an inverted pendulum on a 

cart and a two-wheeled robot will be presented in Section 5.2, and the addition of 

the LQG with the two-wheeled robot system will be shown in Section 5.3. Each 

section presents the control strategy, controllability and observability analysis, 

simulation, and experimental results, respectively.  

5.2 Linear Quadratic Regulator (LQR) 

5.2.1 Linear Quadratic Regulator (LQR) Theory 

LQR is a traditional solution of optimal control formulation. The theory is 

considered in terms of continuous or discrete problem. This research, however, 

will be concentrated on the continuous version. The further extensions applied 

the LQR techniques to inverted pendulum systems can be found in Yamamoto 

(2009), Fang (2014), Prasad, Tyagi, & Gupta (2014),and da Silva & Sup (2017). 
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The cost function of the quadratic is defined by 

𝐽 = ∫ (𝒙𝑻𝑸𝒙 + 𝒖𝑻𝑹𝒖)𝑑𝑡
∞

0

 (5.1) 

where the matrix 𝑸 is positive semi-definite, and the matrix 𝑹 is positive definite 

applied to discipline states and applied to control objective, respectively; 

moreover, 𝒙 is an 𝑛 − state variable vector, 𝒖 is an 𝑚 − control variable vector 

(Harrison, 2003). 

The general linear time invariant system is in the form of 

�̇� = 𝑨𝒙 + 𝑩𝒖, (5.2) 

where 𝑨 and 𝑩 form the pair of controllability matrix. 

The control defined above leads to the linear optimal feedback control given by 

𝒖 = −𝑲𝒙 (5.3) 

𝑲 = 𝑹−1𝑩𝑇𝑷 (5.4) 

where the matrix 𝑲 provides optimal feedback gains to the system and the matrix 

𝑷 is the solution of the algebraic matrix Riccati equation: 

0 = 𝑷𝑨 + 𝑨𝑻𝑷 − 𝑷𝑩𝑹−𝟏𝑷 + 𝑸. (5.5) 

Computationally, Eq. (5.5) can be solved by applying the linear quadratic 

regulator function in MATLAB function as shown in Appendix A.5.1. 

Therefore, the optimal control is implemented by substituting Eqs. (5.3) and (5.4) 

into Eq. (5.2):  

�̇� = 𝑨𝒙 − 𝑩(𝑹−𝟏𝑩𝑻𝑷𝒙)  

                                           = (𝑨 − 𝑩𝑹−𝟏𝑩𝑻𝑷)𝒙, (5.6) 
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which obtains stabilisation of the control system in the linearisation term subject 

to the condition of observability (𝑸𝟎.𝟓, 𝑨) (Xu, Zhang, & Carbone, 2017). 

In terms of the single inverted pendulum on a cart model analysed in 

Chapter 4, the 4th order linearised state-space model from Eq. (4.12), which 

contains the matrices 𝑨 and 𝑩, can be calculated the state feedback gain matrix 

𝑲 shown in Figure 5.1 by selecting the 𝑸 and 𝑹 weight matrices based on a desire 

to minimize wheel angle (𝑥1) and pitch angle (𝑥3) of the robot. 

  

Figure 5.1: Structure of the linear quadratic regulator (LQR) (Burns, 2001) 

 

In the case of the two-wheeled balancing robot, the dynamical model with 

5 state variables from Eq. (4.66) is investigated in this research by combining  it 

with a tracking system, as demonstrated in Figure 5.2. 
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Figure 5.2: Structure of the linear quadratic regulator (LQR) and tracking system 

(Burns, 2001) 

5.2.2 Controllability 

The controllability of a dynamic system can be examined by a controllability test, 

which is applied to the matrices 𝑨 and 𝑩. The model matrices are used to form 

the controllability matrix 𝓒 as shown below (Dutton, Thompson, & Barraclough, 

1997): 

𝓒 =  [𝑩 𝑨𝑩 … 𝑨𝒏−𝟏𝑩] (5.7) 

where 𝒏 represents the number of state variables of the system. 

Therefore, for the 4th order inverted pendulum on a cart system, the controllability 

test matrix is 

𝓒 =  [ 𝑩 𝑨𝑩 𝑨𝟐𝑩 𝑨𝟑𝑩 ]. (5.8) 

The required system model is said to be completely state controllable if the rank 

of 𝓒  is equal to the number of rows in matrix  𝑩  and thus 𝓒  is full rank (Dutton, 
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Thompson, & Barraclough, 1997). Hence, the controllability is directly affected by 

the system's state-space representations.  

The rank of the controllability matrix was determined using MATLAB (see in 

Appendix A.5.2). The result given is Rank (𝓒) = 4, equal to the number of rows in 

matrix 𝑩 ; therefore, the system is said to be completely state controllable. 

Likewise, the controllability test of a two-wheeled robot model with 5-state 

variables is given by 

𝓒 =  [ 𝑩 𝑨𝑩 𝑨𝟐𝑩  𝑨𝟑𝑩 𝑨𝟒𝑩 ]. (5.9) 

Hence, the system is completely controllable when Rank (𝓒) = 5. 

5.2.3 Simulation Results 

In this section, the LQR will be used to control two linearised systems: the 

inverted pendulum model and the two-wheeled robot model. The control objective 

is to balance both the inverted pendulum and the robot in the otherwise unstable 

vertical upright reference position. 

The simulation is conducted using MATLAB script files rather than in Simulink, 

for faster computation. The MATLAB programme demonstrated in Appendix 

A.5.3 for an inverted pendulum system and Appendix A.5.4 for the TWR system, 

which the structure of LQR feedback control in Figure 5.2 was applied. 

5.2.3.1 The Effect of Matrices 𝑸 and 𝑹  

The matrices 𝑸 and 𝑹 are weighting matrices for the states and the control signal, 

respectively. The trial and error method can be applied to select 𝑸 and 𝑹 until the 
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desired transient response is achieved (Van De Vegte, 1990). Likewise, 

Yamamoto (2009) stated the experimental trial and error method, which was used 

to select the suitable matrices 𝑸 and 𝑹 for balancing a TWR. Next, the matrices 

were implemented in the simulation of stabilisation with an initial pitch angle (𝑥3) 

of 15° performed in MATLAB. 

- Inverted Pendulum on a Cart System 

 In the case of the single inverted pendulum model, the stabilising system 

is investigated by varying the state weighting matrix 𝑸 and control weighting 

quantity 𝑅 (Remark: 𝑅 is a scalar quantity in the single inverted pendulum model 

as a scalar control is used). The results are presented in Figures 5.3-5.7. 

 Firstly, it can be seen in Figure 5.3 that an increase of 𝑄11 affects the 𝑥1 

graph significantly by reducing the settling time and also decreasing the cart 

movement for stabilising the pendulum. However, the undershoot of pendulum 

angle 𝑥3 is larger when 𝑄11 is raised.   

 

Figure 5.3: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over 

time, with varying 𝑄11 values 
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Next, there are slight effects when  𝑄22 is raised, as shown in Figure 5.4. 

For instance, the cart takes a longer time, travelling to the original position in the 

𝑥1 graph. 

 

Figure 5.4: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over 

time, with varying 𝑄22 values 

Then, in Figure 5.5, when the 𝑄33 value is set to be 10 times higher, the 

undershoot of pendulum angle 𝑥3 is decreased. Similarly, the overshoot of cart 

displacement 𝑥1  is dropped.  

 

Figure 5.5: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over 

time, with varying 𝑄33 values 
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Moreover, in Figure 5.6, the settling time in the pendulum angle graph 

takes longer to settle to the reference position and the amplitude of  𝑥1 graph is 

larger when the 𝑄44 is raised. 

 

Figure 5.6: Dynamical evolution of state variable 𝑥1-𝑥4 and control signal 𝑢 over 

time, with varying 𝑄44 values 

Additionally, an increase of control weighting R leads to significant 

decrease of the  cart displacement amplitude, as well as reduction of the settling 

time in the 𝑥3 graph. Furthermore, the magnitude of control signal is doubled, as 

shown in Figure 5.7. 

 

Figure 5.7: Dynamical evolution of state variable 𝑥1-𝑥5 and control signal 𝑢 over 

time, with varying 𝑅 values 
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To summarise, when increasing certain parameters in the 𝑸 matrix, the cart 

displacement decreases; by contrast, it obtains a larger pendulum swing angle 

before stabilising the system, such as 𝑄11. However, the advantage of increasing 

𝑄33 is to reduce an undershoot in pendulum angle 𝑥3 and also to improve an 

overshoot in cart displacement 𝑥1 in the same way. Moreover, a smaller amount 

of R demonstrates a decrease in cart displacement amplitude and a decrease of 

the pendulum angle undershoot. Therefore, the 𝑸 = diag {1,1,100,1} and 𝑅 =0.01 

are chosen to simulate the single inverted pendulum model in the implementation 

step next. 

- Two-Wheeled Robot System 

In terms of the two-wheeled robot model, the matrices 𝑸 and 𝑹 will be 

selected to apply to the prototype LEGO EV3 two-wheeled robot. Other physical 

parameters are given in Table 4.1. Therefore, the effect of changing weight 

matrices will be investigated more intensively than the inverted pendulum case. 

The outcomes are given in Figures 5.8-5.15. (Note that the control signal graph 

presents merely one signal from two motors, which have the same values). 

 

Figure 5.8: Dynamical evolution of state variables 𝑥1-𝑥5                                  

and control signal 𝑢 over time, with varying 𝑄11 values 
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Firstly, Figure 5.8 presents the effect of varying 𝑄11 values when the rest 

of matrix 𝑸 (𝑄22 − 𝑄55) are fixed. 𝑄11 corresponds to the first state variable, which 

is the wheel angle (𝑥1). The blue plot represents 𝑄11 = 2 and the red plot 

represents 𝑄11 = 20 . It can be seen that by increasing the value of 𝑄11 (weighting 

on 𝑥1) , the wheel angle 𝑥1  and the integral of wheel angle 𝑥5 display reduced 

magnitude of deviation from the required values; on the other hand, the time 

taken to reach the steady-states is marginally longer. Additionally, the pitch angle 

(𝑥3) is slightly affected, showing increased oscillation when the value of 𝑄11 rises. 

It is obvious that both peak magnitudes of the wheel angular velocity 𝑥2 

(~1500°/𝑠 ) in the simulations shown in Figure 5.8 exceed the hardware 

specification (LEGO EV3 motor) at approximately 1,000°/𝑠. Similarly, the control 

signals from both 𝑄11 peak at around 18 V which are beyond the Lego EV3 motor 

voltage limit at 8.3 V (see in Chapter 3 for details about hardware specification). 

In these simulations, the input motor voltage is not constrained to any range, 

therefore the generated magnitudes of the state variables could also exceed 

physically realistic ranges. The effect of limiting the input motor voltages in 

simulation and in Lego EV3 robot implementation will be discussed in later 

sections. 
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Figure 5.9: Dynamical evolution of state variable 𝑥1-𝑥5 and control signal 𝑢 over 

time, with varying 𝑄22 values 

 

Figure 5.10: Unstable system when the 𝑄22=4.2 

Secondly, increasing 𝑄22 parameter produces some minor effects to the 

state variables 𝑥1 and 𝑥3 in Figure 5.9. However, there is a more significant effect 

to state variable 𝑥5 which could be seen as an increase in the peak amplitude, 

and the undershoot of control signal 𝑢 appears when the 𝑄22 is increased. As 

observed from simulation experiments, when 𝑄22 varies within the range of [1, 4], 

the controlled system’s response is stable. However, when 𝑄22 is outside this 

range, for example, as shown in Figure 5.10, when 𝑄22 = 4.2, the closed-loop 

system appears to be unstable. 
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Figure 5.11: Dynamical evolution of state variable 𝑥1-𝑥5                                  

and control signal 𝑢 over time, with varying 𝑄33 values 

 Moreover, Figure 5.11 presents slight differences on all state variables and 

the control, when 𝑄33 varies as shown.  

 

 

Figure 5.12: Dynamical evolution of state variable 𝑥1-𝑥5                                   

and control signal 𝑢 over time, with varying 𝑄44 values 

Likewise, the changing of 𝑄44 parameter does not influence the state 

variables and control signal, as shown in Figure 5.12. 
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Figure 5.13: Dynamical evolution of state variable 𝑥1-𝑥5                                   

and control signal 𝑢 over time, with varying 𝑄55 values 

 

Figure 5.14: Dynamical evolution of state variable 𝑥1 between 10 - 20 s., with 

varying 𝑄55 values 

Additionally, the 𝑄55 factor relates to the state variable 𝑥5 (the integral of 

wheel angle, used to track horizontal distance of the robot from starting point) is 

changed with results shown in Figure 5.13. The noticeable difference when 

increasing increasing 𝑄55  illustrates that steady-state error and magnitude are 

reduced, which is the main purpose of introducing the state variable 𝑥5 to monitor 

the time spent by robot moving back to the reference position.  Moreover, the 

wheel angle 𝑥1 is influenced by increasing 𝑄55. It can be seen that the robot is 

taken a time faster back to the centre position in state variable 𝑥1 shown in Figure 

5.14.  
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In terms of the effect of modifying matrix 𝑹, by contrast, the results are 

shown in Figure 5.15, when 𝑸 is fixed. 

 

Figure 5.15: Dynamical evolution of state variable 𝑥1-𝑥5                                   

and control signal 𝑢 over time, with varying 𝑹 values 

The primary function of 𝑹 is to supervise the control signal 𝑢. When the value of 

𝑹 is increased ten times from 𝑹 = 𝑰𝟐×𝟐 to 𝑹 = 𝟏𝟎𝑰𝟐×𝟐, the reduction in the 

amplitude of control 𝑢 is observed. Moreover, the oscillation of wheel angular 

velocity 𝑥2 and the pitch angle 𝑥3 are slightly reduced, as shown in Figure 5.15. 

Noticeably, the displacement configuration 𝑥1 in the horizontal axis takes longer 

to reach steady state, as the voltage of the motor (control signal) driving the robot 

is dropped. The increase in matrix 𝑹 achieved some advantages to the system 

with reduced voltage demand. 

Therefore, after conducting trial and error tests on matrices 𝑸 and 𝑹, the 

𝑸 =diag{20,1,1,1,5} and 𝑹 = 10𝑰𝟐×𝟐 were selected to implement in the simulation. 

This parameter set requires low voltage to control system, appropriate to the 

battery of LEGO EV3; moreover, simulation results using these factors  𝑄11 and 
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𝑄55 present satisfying performance for system stabilisation, in terms of requiring 

shorter wheel displacement before reaching the reference position. 

 

5.2.3.2 Simulations of IP and TWR without Input Saturations  

- Inverted Pendulum Simulation Results 

Now, the single inverted pendulum model under unconstrained control input 

condition, represented by Eq. (4.12) is stabilised starting from several different 

initial pendulum angles 𝑥3. The simulation results are presented in Figures 5.16-

5.17. 

 

Figure 5.16: The stabilisation on different initial pendulum angles (𝑥3) 

Figure 5.16 demonstrates the ability of the LQR technique to control and 

stabilise a single inverted pendulum on a cart from three initial pendulum angles: 

15°, 30° and 42.9°. It can be seen from the cart displacement (𝑥1) graph that the 

amplitude rises when initial pendulum angle becomes wider; moreover, the 
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undershoot magnitude in the pendulum angles graph 𝑥3 also becomes larger. 

Furthermore, there are strong oscillations in the other state variable and the 

control graphs when the initial pendulum angle is 42.9° ( because the control 

system reaches the limit for stabilisation). Beyond this angle, the inverted 

pendulum model will crash as the linear optimal controller fails to stabilise it, as 

shown in Figure 5.17. 

 

Figure 5.17: Unstable system responses from initial pendulum angle 𝑥3 = 43°. 

 

- Two-Wheeled Robot Simulation Result 

This subsection demonstrates the simulation of the balancing two-wheeled robot 

model represented by Eq.(4.66)  with different initial pitch angles (𝑥3). The robot 

in Figure 5.18 (a) shows the robot’s reference position before setting the initial 

pitch angle (𝛹 = 𝑥3) to non-zero and Figure 5.18 (b) presents the initial pitch 

angle shifted for simulation. It can be seen that it is not merely the initial pitch 

angle (𝛹) shifted, but the wheel angle (𝜃) is also shifted with the same value 

together in the hardware implementation. Therefore, the wheel angle will be 
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initialised at the same value as the initial pitch angle (𝛹) in the simulation. The 

direction of the wheel and pitch angles are presented in Figure 5.18. When the 

robot moves forward (towards right-hand side in the figure), the direction of wheel 

and pitch angles are positive. 

 

(a)                                           (b) 

Figure 5.18: (a) Robot’s reference position before setting the initial pitch angle 

(𝛹), (b) Wheel angle (𝜃) shifted after the initial pitch angle set. 

 

Figure 5.19: The stabilisation from different initial pitch angles (𝑥3) 
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In Figure 5.19, the blue curve represents the responses of the state 

variables and the control signal when starting from a narrow initial pitch angle at 

15° followed by increases of the initial angle to 30°, 45° and 65.7° shown by red, 

black and pink curves, respectively. The maximum deviation of all state variables 

and the control signal magnitude are raised when the initial pitch angle is 

increased. In particular, note the oscillations on the pitch angle and the pitch 

angular velocity from the initial pitch angle 65.7° as the capability of the LQR 

technique to stabilise this nonlinear system reaches its limit. Furthermore, the 

overshoot of wheel angle reaches approximately 1,200° at the maximum initial 

pitch angle, which means that the TWR diverges from the reference position by 

approximately 0.56 m.  

 

Figure 5.20: The unstable system response at initial pitch angles 𝑥3 = 65.8° 
 

Figure 5.20 exhibits the failure of system control at the initial pitch angle 

65.8°. The magnitudes of other state variables 𝑥1, 𝑥2, 𝑥4, 𝑥5 and control signal are 

at unrealistically high levels (approaching infinity), and the pitch angle oscillated 

continually; moreover, the simulation stopped after only 0.5 seconds as the 

instability caused the simulation to crash. 
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5.2.3.3 Simulations of TWR with Input Saturations  

In the section 5.2.3.2, it can be seen that the control signal needed voltage over 

the limitation of any real-world implementation, for example, when the LEGO EV3 

robot was used. Therefore, before implementing using hardware, simulations 

including input saturations need to be conducted first.  

This section illustrates the hard constraints applied as saturations on the 

control signal using the LEGO EV3 motor range: -8.3 to 8.3 V on each motor with 

the following function: 

𝑢 = {
𝜆, 𝑢 ≥ 𝜆
𝑢, |𝑢| ≤ 𝜆

−𝜆, 𝑢 ≤ −𝜆,
 (5.10) 

where 𝝀 is the control signal saturation limited at 8.3 volts. 

The stabilisation simulations of the two-wheel model with control constraints, 

starting from initial pitch angles 15° and 20° are presented in Figures 5.21-5.23. 

 

Figure 5.21: Stabilisation from the initial pitch angles (𝑥3) at 15°, with and 

without saturation. 
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At the initial pitch angle 15° in Figure 5.21, the magnitudes in the state 

variables 𝑥1, 𝑥3 and 𝑥5 increase, compared with the unconstrained signals; 

however, the derivative in signals 𝑥2 and 𝑥4 , and also the control input 𝑢 present 

noticeable cut-off magnitudes as the input saturation is provided. For instance, 

the state variable 𝑥4 presents an undershoot reaching -250°/s when simulated 

with the unconstrained control input; however, the undershoot is cut-off at 

approximately -140°/s when an input saturation is applied (Note, the maximum 

angular velocity provided by the LEGO gyroscope is ±440°/s as shown in Table 

4.1). 

 

Figure 5.22: Stabilisation of the initial pitch angles (𝑥3) at 20.9°with and without 

saturation. 

Figure 5.22 presents the maximum initial pitch angle of saturation input 

implementation at 20.9°. The increase of the initial angle demonstrates different 

significant outcomes of all constrained signals. Firstly, the magnitude of 𝑥1, 𝑥3 

and 𝑥5 in the constrained graphs are more than doubled. Moreover, the obvious 

oscillations are also present in the pitch angular velocity (𝑥4). Furthermore, the 

wheel velocity and control signal noticeably show cut-off features of constraint at 
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both the maximum and minimum when reaching the saturation limits. After this 

point (when the initial pitch angle goes above 20.9°), unstable behaviour will 

appear, as shown in Figure 5.23. 

 

Figure 5.23: Unstable system with input saturation at the initial pitch angles 21° 

 

5.2.4 Experimental Results 

With the simulation tests of the self-balancing two-wheeled robot model with the 

linear-quadratic regulator are completed, hardware implementation of the 

controlled system using LEGO EV3 robot is conducted. The results from running 

the Simulink program are detailed in Appendix B (Figure B1.1), including the 

robot’s sensors and motors, LQR feedback control and tracking system block 

diagrams. Moreover, the experiment is set up in a closed environment with no 

wind disturbance when implementing the TWR, and the floor is covered by a 

carpet. Therefore, the outcomes were presented in Figures 5.24-5.26 as follows. 
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Figure 5.24: The stabilisation from different initial pitch angles 𝑥3 = 15° and 16° 

implemented on LEGO EV3 robot 

 

Figure 5.25: The stabilisation on different initial pitch angles 𝑥3 at 15° and 16° 

implemented on LEGO EV3 robot over 20 seconds 

 

Figure 5.24 illustrates the result of state variables and control signal on 

two different initial situations. The blue and red graphs present the initial pitch 

angle at  15°and  16°, respectively. The initial pitch angle  16° demonstrate the 

limit of LQR method to balance the system in the upright position in the hardware 
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implementation, which is similar to the simulation at initial pitch angle 20° under 

input saturation. Furthermore, the magnitude of wheel angle and pitch angle at 

the initial pitch angle 16° presented higher overshoot signals than 15° as it needed 

more mobility, when increasing the initial angle for stabilisation. Moreover, the 

state variable 𝑥5 in the two plots present noticeable divergence caused by gyro 

sensor error. More details will be described with the other information in Figure 

5.25. 

In terms of Figure 5.25, the graph shows a longer period of time than 

Figure 5.24 to present the significant sensor error which caused system 

instability. The plots of wheel angle 𝑥1 and wheel angle integral 𝑥5 produce 

upward signal drifts; by contrast, the pitch angle 𝑥3 drifted downwards. This issue 

is caused by the measurement of gyroscope sensor drift, generating pitch angle 

error and affecting the wheel angle and wheel angle integral, which is 

compensating the error. This challenge can be overcome by using a state 

observer or state estimator. Related theory and subsequent implementation will 

be given in the next section. 

 



CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS 

 

93 

 

 

Figure 5.26: The stabilisation implemented by LEGO EV3 robot compared to 

simulation at the initial pitch angles 𝑥3 15° 

Furthermore, the average magnitude of each state variable’ response of 

the Lego EV3 robot is very similar to the simulation result, as in Figure 5.26; for 

instance, the peak magnitudes of the wheel angles in simulation and 

experimentation are approximately  160° and  150°, respectively. Likewise, the 

maximum deviation of pitch angle in the simulation and the experimentation are 

also similar, at approximately −5° and −8°, respectively. Furthermore, the state 

variable trends are also comparable during the two methods. Therefore, this 

hardware experiment can be analysed by the simulation, although there were 

some differences as the hardware implementation has many interfering factors. 
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5.3 Linear Quadratic Gaussian (LQG) 

5.3.1 Linear Quadratic Gaussian (LQG) Strategy 

In Section 5.2, the capability of the LQR was demonstrated. It can be seen in the 

experimentations that a gyro sensor drift was discovered in the pitch angle, which 

also affected the wheel angle displacement, causing the system to be unstable. 

This section will illustrate the strategy that handles the inaccurate sensor 

measurement used for optimal feedback control. This technique is known as 

linear quadratic Gaussian (LQG), which is a combination of an LQR and a Kalman 

filter shown in Figure 5.27. The additional applications of the Kalman filter can be 

found in Kalman (1960), Hanselmann & Engelke (1988), Chang & Liu (2007) and 

Du et al. (2017). 

 

Figure 5.27: LQG Controller and tracking system block diagram (Anderson & 

Moore, 1989) 

The Kalman filter is a mathematical algorithm which achieves minimum 

state estimation errors, utilising output measurements (Burns, 2001). It was 
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developed by Kalman and Bucy (Kalman & Bucy, 1961). The advantage of the 

Kalman filter is the ability to estimate a single state variable instead of full state 

variables interfered with noise. In order to achieve this, the 𝑨 and 𝑪 matrices are 

required to be observable (Brunton & Kutz, 2019). This research will also be 

focused on the continuous system, corresponding to the LQR; hence consider a 

general continuous time-invariant systems given by (Lewis, Xie, & Popa, 2007) 

as follows: 

�̇� = 𝑨𝒙 + 𝑩𝒖 + 𝑮𝒘𝒏, (5.11) 

                                        𝒚 =  𝑪𝒙 + 𝒗𝒏, (5.12) 

where 𝒚 is the vector of measured outputs, 𝑪 is the output matrix, and 𝑮 is an 

identity matrix. The  𝒘𝒏 and 𝒗𝒏 are supposed process noise and measurement 

noise, respectively, as presented in Figure 5.27.  

The Kalman filter supposes that both white noise signals 𝒘𝒏 and 𝒗𝒏 have zero 

mean  (�̅�𝒏 = 0, �̅�𝒏 = 0) and also satisfy covariance functions (𝒘𝒏𝒘𝒏
𝑻̅̅ ̅̅ ̅̅ ̅̅ = 𝑸𝒌,

𝒗𝒏𝒗𝒏
𝑻̅̅ ̅̅ ̅̅ ̅ = 𝑹𝒌 ), which are symbolised as 𝒘𝒏 ~(0, 𝑸𝒌) and 𝒗𝒏 ~(0, 𝑹𝒌); moreover, 

𝑸𝒌, and 𝑹𝒌 are symmetric and positive semi-definite matrices (Lewis, Xie, & 

Popa, 2007). 

The state estimator of dynamic systems is defined as follows (Lewis, Xie, & Popa, 

2007): 

�̇̂� = 𝑨�̂� + 𝑩𝒖 + 𝑲𝒇(𝒚 − 𝑪�̂�), (5.13) 
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which can be rewritten as: 

�̇̂� = (𝑨 − 𝑲𝒇𝑪)�̂� + 𝑩𝒖 + 𝑲𝒇𝒚, (5.14) 

where 𝑲𝒇 is the Kalman filter gain, which is similar to the feedback gain 𝑲 of linear 

quadratic regulator. The schematics of the system with the Kalman filter is shown 

in Figure 5.28. The Kalman filter gain 𝐾𝑓 is given by: 

𝑲𝒇 = 𝑷𝑪𝑻𝑹𝒌
−𝟏 (5.15) 

where 𝑷 is the solution of the algebraic Riccati equation defined as follows 

(Anderson & Moore, 1989): 

𝑨𝑷 + 𝑷𝑨𝑻 −  𝑷𝑪𝑻𝑹𝒌
−𝟏𝑪𝑷 + 𝑸𝒌 = 0 (5.16) 

Equation (5.16) can be solved by applying the linear quadratic regulator in a 

MATLAB function shown in Appendix A.5.5. 

 

Figure 5.28: Schematic of state-space control using Kalman filter and LQR 

(Anderson & Moore, 1989) 
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5.3.2 Observability 

As mentioned above, the system must be observable, in order for a Kalman filter 

design to be possible. In this section, the observability test, which is a test to 

determine whether the state variables of a system can be estimated by using 

measurements made at the outputs, will be conducted. The test combines 

matrices 𝑨 and 𝑪 , and the matrices are used to form the observability matrix 𝓞, 

as shown below: 

𝓞 = [

𝑪
𝑪𝑨
⋮

𝑪𝑨𝒏−𝟏

] 
(5.17) 

 

where 𝒏 represents the number of state variables of the system. 

Therefore, for the 4th order single inverted pendulum on a cart system, the 

observability matrix is 

𝓞 = [

𝑪
𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑

] (5.18) 

The required system model is said to be completely state observable if the rank 

of 𝓞 equal to the number of columns in the matrix  𝑪  and thus 𝓞 is of full rank 

(Dutton, Thompson, & Barraclough, 1997).  

The rank of the observability matrix can be calculated in MATLAB (see Appendix 

A.5.6) and the result shows Rank(𝓞) = 4, which equals the number of columns in 

matrix 𝑪 = 𝑰𝟒×𝟒 ; therefore, the system is said to be completely state observable. 
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That means the state variables are able to be reconstructed from the system 

outputs (𝒚). This test demonstrates that the linear quadratic Gaussian is 

applicable for this system.  

Similarly, the observability matrix of the two-wheel self-balancing robot with 5-

state variables is shown as 

𝓞 =

[
 
 
 
 

𝑪
𝑪𝑨
𝑪𝑨𝟐

𝑪𝑨𝟑

𝑪𝑨𝟒]
 
 
 
 

 (5.19) 

Thus, the system is completely state observable when the Rank(𝓞) = 5. 

 

5.3.3 Simulation Results 

In this section, LQG will be applied to the control problem of the self-balancing 

two-wheeled robot model in MATLAB, compared to the LQR. The control 

objective is to balance the robot in the otherwise unstable vertical upright position; 

moreover, reduction on drift signal error of the gyro sensor will be considered. 

The simulation of the LQG is conducted in MATLAB and the script files are 

included in Appendix A.5.7. (Noticeably, only the state variable 𝑥3 known as the 

pitch angle will be selected to have the Kalman filter estimation technique applied 

on.) 

5.3.3.1 Kalman Filter Testing 

According to the benefits of the Kalman filter explained above, noise filtering and 

signal drift reduction will be implemented to the two-wheeled robot model 
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conducted in MATLAB in this section. There are two noise disturbances 

considered in the LQG control, including the process white noise 𝒘𝒏 ~(𝟎, 𝐐𝒌) 

and the measurement white noise 𝒗𝒏 ~(𝟎, 𝐑𝒌). Therefore, only the measurement 

noise will be implemented with varying 𝑹𝒌 values for eliminating the gyro sensor 

error; by doing this, the process noise will be fixed at 𝑸𝒌 = 𝑰𝟒×𝟒. 

Firstly, the noise filtering in a gyro sensor will be demonstrated by applying 

the different 𝑹𝒌 factors to reduce the random white noise from MATLAB 

programme in the state variable 𝑥3. The outcomes of state estimation �̂�3 is given 

in Figures 5.29-5.30. 

 

Figure 5.29: Simulation results of noise filtering on a gyro sensor. 

 

Figure 5.30: The magnified simulation results of noise filtering on a gyro sensor. 
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In Figure 5.29, the white noise interfered with the state variable 𝑥3 , which is 

shown in green. The state estimations  �̂�3 named as “Xhat” (Circumflex), are 

generated using the values of 𝑹𝒌 parameters of 0.01𝑰𝟒×𝟒 and  𝑰𝟒×𝟒 and plotted in 

red and blue, respectively. The results of noise filtering in the central region are 

magnified and demonstrated in Figure 5.30.  It can be seen that the white noise 

is decreased by Kalman filter described above. Moreover, the noise signals are 

reduced by increasing the 𝑹𝒌 parameters from 𝑹𝒌 = 𝟎. 𝟎𝟏𝑰𝟒×𝟒 to  𝑰𝟒×𝟒 . This 

method has the benefit of stabilising the system interfered with noise. 

Secondly, an essential advantage of the linear quadratic Gaussian in this 

research is that the sensor drift is reduced. Figure 5.31 presents the outcomes of 

state estimation in a gyro sensor drift condition. 

  

Figure 5.31: The simulation of sensor drift reduction. 

 

Generally, the LQG controller can be applied to full state feedback; by contrast, 

the state variable 𝑥3 was the only variable selected to have state estimation 

applied in this simulation. The black dashed curve represents the sensor drift; 
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moreover, the red and blue plots represent the stabilisation of the system when 

the state estimation is activated by two 𝑹𝒌 parameters in Figure 5.31. Noticeably, 

the signal drift introduced by the gyro sensor is divergent from the graph of pitch 

angle (𝑥3); on the other hand, the Kalman filter reduces the signal drift and shows 

signal convergence. The increased 𝑹𝒌 factor reduces the signal drift more 

effectively and also decreases the settled wheel displacement (𝑥1) from the 

reference position. This advantage will be applied to the LEGO EV3 robot in the 

experiment section. 

5.3.3.2 Simulations of TWR without Input Saturations  

This section demonstrates the simulation of balancing two-wheeled robot model 

from different initial pitch angles (𝑥3) between the LQG and the LQR without input 

saturation. The 𝑸 and 𝑹 matrices of LQG controller were selected similar to the 

LQR in Section 5.2.3  by using 𝑸 = diag{20,1,1,1,5} and  𝑹 = 10𝑰𝟐×𝟐 ; moreover, 

the white noise matrices 𝑸𝒌 and 𝑹𝒌  of the Kalman filter method were applied 

when 𝑸𝒌 = 𝑰𝟒×𝟒 and 𝑹𝒌  = 0.2𝑰𝟒×𝟒. The stabilisation of the system without input 

constraints is presented in Figures 5.32-5.35. (Recall that the state variable 𝑥3 

was the only variable applied to state estimation in the LQG controller.) 
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Figure 5.32: The stabilisation between LQR and LQG controller at the initial 

pitch angles (𝑥3) 15° without saturation. 

To begin with, in Figure 5.32, the outcomes of LQR and LQG controllers 

are very similar to each other at the initial narrow pitch angle at  15°. 

 

Figure 5.33: The stabilisation between LQR and LQG controller at the initial 

pitch angles (𝑥3) 30° without saturation. 

Secondly, the two controllers present slightly different magnitudes, when 

the initial pitch angle is modified to a wider angle at  30° in Figure 5.33. 
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Figure 5.34: The stabilisation between LQR and LQG controller at the initial 

pitch angles (𝑥3) 65.7° without saturation. 

 

Moreover, the maximum initial pitch angle (65.7°) of both controllers are 

similar in Figure 5.34. Significantly, state variables 𝑥1−𝑥4 and control signal of the 

LQG are less oscillatory than the LQR control as the estimation method is 

applied. Furthermore, the wheel integral’s magnitude 𝑥5 of LQG control is 

noticeably higher than the LQR, because the wheel angle 𝑥1 of the LQG takes a 

longer time to reduce steady state error than the LQR. Above this initial angle, 

the LQG control results in an unstable system, shown in Figure 5.35, which is 

similar to the LQR method.  
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Figure 5.35: Unstable responses of the LQG control                                           

at the initial pitch angles (𝑥3) 65.8° 

 

5.3.3.3 Simulations of TWR with Input Saturations  

This section illustrates the simulation of the two-wheeled balancing robot model 

with different initial pitch angles (𝑥3) between the LQG and the LQR control with 

input saturation. The stabilisation of the system with input constraints are 

presented in Figures 5.36-5.37.  

 

Figure 5.36: The stabilisation using LQR and LQG controllers at the initial pitch 

angles 𝑥3 = 15° with saturation. 



CHAPTER 5 LINEAR CONTROL DESIGNS AND IMPLEMENTATIONS 

 

105 

 

It can be seen from Figure 5.36, the outcomes are largely similar between 

the two controllers at the narrow initial pitch angle of  15°, with control constraint.  

 

Figure 5.37: The stabilisation using LQR and LQG controllers at the initial pitch 

angles 𝑥3 = 20.9° with saturation. 

 

Figure 5.37 demonstrates that the maximum initial pitch angle of both 

controllers are the same, at 20.9°, for the system to be stabilised with the control 

constraint condition. When the initial pitch angle went beyond  20.9°, the LQG 

control produced an unstable system which is similar to the LQR method shown 

in Figure 5.35. 
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5.3.4 Experimental Results 

This section illustrates the experimental results of the LQG method 

demonstration in Section 5.3.1 using the LEGO Mindstorms EV3 robot with the 

Simulink block diagrams shown in Appendix B (Figure B2.1). The outcomes of 

the LQG control experiments are given in Figures 5.38-5.41.  

  

Figure 5.38: The outcomes of sensor drift reduced at initial pitch angles 𝑥3=15° 

implemented by LEGO EV3 robot 

 

Figure 5.38 demonstrates the main purpose of the LQG control in this 

research. It shows reduction of the sensor drift which originally appeared in the 

implemented system, at initial pitch angle  15°. The blue plot shows that the pitch 

angle generated by the gyro sensor is divergent to approximately  −15° after the 

robot would be balanced in 20 seconds. The Kalman filter estimation successfully 

reduced the drifting error in the state variable 𝑥3 (see the red curve) as it 

generated state estimation �̂�3 for the LQR gain to use for stabilising the system 

instead of using the previous 𝑥3 from the gyro sensor. However, there are slight 
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errors in the hardware implementation, shown in the state variable 𝑥1; the 

average wheel angle is drifted from the centre by approximately 5°due to the 

effect of sensor drift. This error also interferes with the integral of wheel angle 𝑥5 

which caused a divergent signal to appear in the graph.  

 

Figure 5.39: The stabilisation on different initial pitch angles (𝑥3) 15° and 

16°implemented by LEGO EV3 robot 

 

Moreover, the limitation of the LQG controller is also similar to the LQR 

method; for instance, both techniques provided a maximum initial pitch angle for 

stabilisation at  16°. Figure 5.39 presents the state evolutions when an increase 

of the initial angle from 15° to  16° is applied. As can be seen from the figure, the 

system responses starting from a pitch angle 16° display slightly higher 

magnitudes than  15° as the robot needs more time and a longer distance to reach 

the stabilised equilibrium position when the initial angle is increased. Over this 

limit angle, the two-wheeled robot will crash as the overall system becomes 

unstable, as shown in Figure 5.40. It can also be seen that the hardware reaches 
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the maximum capacity; for instance, the control signal shows signal at ±8.3 V 

and the wheel angle velocity presents at approximately −1,000°/𝑠 when 

implemented at initial pitch angle 16.5°. 

 

Figure 5.40: Unstable system starting from the initial pitch angle 16.5° 

 

Figure 5.41: The stabilisation implemented on LEGO EV3 robot compared to 

simulation at the initial pitch angles 𝑥3 = 15° 

Furthermore, Figure 5.41 illustrates that the magnitudes of some state 

variables in Lego EV3 robot implementation are similar to the simulation results, 

for example, the overshoots of state variables 𝑥1, 𝑥2 and 𝑥3, and the undershoots 

of state variables 𝑥1, 𝑥3 and 𝑥4. Moreover, the average trends of both techniques 

are similar, although the state variable 𝑥5 is different between the two methods, 
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as the robot’s vibration in the wheel angle 𝑥1 caused different integrals of wheel 

angle 𝑥5. These results demonstrated the precisions of simulation and theoretical 

study, leading to the accurately matching results from hardware implementation. 

 

5.4 Conclusion 

In this chapter, a linear modern control technique, namely the optimal control or 

LQR was studied and applied to two systems: (1) the single inverted pendulum 

on a cart, and (2) the self-balancing two-wheeled robot system, which was also 

implemented on a Lego EV3 robot. In particular, the LQG technique was also 

utilised in the prototype robot to overcome sensor issues. 

 In the case of the single inverted pendulum and cart system, the LQR 

controller demonstrated a maximum stabilisation angle of the pendulum rod of 

42.9°. This angle will be compared against the nonlinear controller in Chapter 6. 

In terms of the two-wheeled robot simulation, the LQR and LQG 

techniques with unconstrained control input showed similar capability of 

balancing the system from the nearly identical, maximum initial angle, at 

approximately 65.7°. However, the LQG method displayed better stability than the 

LQR control, in terms of slightly smaller oscillation magnitudes and shorter 

settling time. Furthermore, the constrained input testing demonstrated that both 

controllers also provided the same initial angle limitation, at 20.9°. Therefore, the 

estimation provided by the Kalman filter is able to predict the state variables of 

the system as it operates at the same initial pitch angle, although there are some 
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small differences in the state evolutions of the two control schemes from initial 

pitch angle over 60° under the unconstraint condition. This is a property of state 

estimation as there is no perfect estimator (Anderson & Moore, 1989).   

Regarding the Lego EV3 robot implementation, the experiments illustrated 

the capability of the two-wheeled robot maintaining the stabilisation with input 

saturation conditions. The designed controllers achieved the requirements of self-

balancing and the maximum initial angle matched the results obtained from 

simulation. In particular, the linear quadratic Gaussian control provided 

elimination of the sensor drift problem which contributed to the system stability.  

As both systems investigated in this thesis are nonlinear systems, it is 

envisaged that nonlinear control methods would show advantages in controlling 

the two systems to self-balance, over the linear techniques presented in this 

chapter. For instance, the nonlinear iteration technique and the nonlinear freezing 

control technique will be presented, applied and their associated results 

discussed in details in the next chapter.  
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Chapter 6 

Nonlinear Control Designs and Implementations  

6.1 Introduction 

In Chapter 5, linear controls of the inverted pendulum (IP) model and the two-

wheeled robot (TWR) model were demonstrated, including the linear quadratic 

regulator (LQR) and the linear quadratic Gaussian (LQG). This chapter, by 

contrast, presents two nonlinear control methods, namely, the nonlinear freezing 

technique and the nonlinear iteration technique, and their associated applications 

to the IP and TWR systems. The chapter is organised as follows. The nonlinear 

freezing control and iteration scheme theories are presented in Section 6.2 and 

6.3, respectively. In Section 6.4, controllability and observability tests are 

conducted. Then, the simulated control results of the IP models and TWR models 

are demonstrated and analysed in Section 6.5. Furthermore, hardware 

experimentations of the nonlinear freezing control on a LEGO EV3 robot are 

examined in Sections 6.6. Finally, all outcomes are summarised in Section 6.7. 

6.2 Nonlinear Freezing Control Strategy 

In Chapter 5, the general linear systems are represented in the form of Eq. (5.1), 

as shown below 

�̇� = 𝑨𝒙 + 𝑩𝒖, 

and the optimal control is defined by Eq. (5.2): 

�̇� = (𝑨 − 𝑩𝑹−𝟏𝑩𝑻𝑷)𝒙, 
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which generates a fixed optimal control gain vector to control the system. In this 

chapter, an optimal control of the digitised system can be conducted in every time 

step by applying a nonlinear control method known as the freezing technique, 

first introduced in (Banks & Mhana, 1992). The benefits of this method is that local 

linearisation around the operating point is no longer necessary, as the system 

can be controlled globally using nonlinear system equations directly. Additional 

applications can be found in many researches, including the control of: a single 

inverted pendulum on a cart (Harrison, 2003), a F-8 crusader (Çimen & Banks, 

2004a) and a double inverted pendulum on a cart (Xu, Zhang, & Carbone, 2017). 

The freezing control technique introduced by Banks & Mhana (1992) is in the 

form of 

�̇� = 𝑨(𝒙)𝒙 + 𝑩(𝒙)𝒖, (6.1) 

where 𝑨(𝒙) and 𝑩(𝒙)represent the nonlinear system matrices which form 

controllability matrices and 𝒖 is the nonlinear optimal control. 

The cost function of the quadratic infinite-time is defined by: 

𝐽 = ∫ (𝒙𝑻𝑸(𝒙)𝒙 + 𝒖𝑻𝑹(𝒙)𝒖)𝑑𝑡
∞

0

, (6.2) 

where 𝑸(𝒙) and 𝑹(𝒙) denote the positive semi-definite and positive definite, 

respectively. 

Banks and Mhana (1992) presented that the nonlinear optimal feedback control 

from Eqs. (6.1)-(6.2) is given by 

𝒖 = −𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙)𝒙. (6.3)  
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Thus, feedback gain matrix 𝑲(𝒙) of the system is given by 

𝑲(𝒙) = 𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙), (6.4) 

where matrix 𝑷(𝒙) is the solution of the algebraic matrix Riccati equation: 

0 = 𝑷(𝒙)𝑨(𝒙) + 𝑨𝑻(𝒙)𝑷(𝒙) − 𝑷(𝒙)𝑩(𝒙)𝑹−𝟏(𝒙)𝑷(𝒙) + 𝑸(𝒙). (6.5) 

Equation (6.5) can be solved numerically by applying the linear quadratic 

regulator function in MATLAB as shown in Appendix A.5.1. 

Therefore, the optimal control is implemented by substituting Eq. (6.3) into Eq. 

(6.1) and obtaining: 

�̇� = 𝑨(𝒙)𝒙 − 𝑩(𝒙)(𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙)𝒙)  

                             = ( 𝑨(𝒙) − 𝑩(𝒙)𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙) )𝒙. (6.6) 

The equations above demonstrate that computationally the solution 𝑷(𝒙) of the 

algebraic matrix Riccati equation can be obtained at every time step at each point 

on the state trajectory, which is a fixed 𝒙, generating frozen matrices 𝑨(𝒙) and 

𝑩(𝒙). Then the nonlinear dynamical system becomes a pseudo-linear system to 

provide the requirement of feedback gains in every step of dynamic equation for 

stabilising the system globally. The block diagram of the freezing control 

technique for a system combined with a tracker is presented in Figure 6.1. 
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Figure 6.1: Structure of freezing control technique and tracking system. 

 

6.2.1 Freezing Technique - Input Saturation 

In the linear control strategy in Section 5.2.3.3, the hard input constraint was 

presented to restrict the input signal of the system model. In contrast, the 

nonlinear model offers flexibility over the linear system, because linearisation is 

no longer necessary and the dynamic equations can be modified to combine a 

soft constraint at the input signal. Harrison (2003) utilised this idea and presented 

the integration of a state constraint, representing the input saturation for the case 

of a scalar control 𝑣 by redefining as follows: 

𝑣 = 𝜙(𝑥𝑛+1), (6.7)  

and introducing an extra state variable 𝑥𝑛+1, where 

�̇�𝑛+1 = 𝑤, (6.8)  

and 𝑤 is the new control signal. Then substitute Eqs. (6.7) and (6.8) into Eq.(6.1),  
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we obtain 

�̇� = 𝑨(𝑿)𝑿 + 𝑩(𝑿)𝜙(𝑥𝑛+1),  (6.9) 

which can be rewritten by adding the term of 𝑥𝑛+1 and 𝑤 as 

�̇� = 𝑨(𝑿)𝑿 + 𝑩(𝑿)𝜙(𝑥𝑛+1) × (
𝑥𝑛+1

𝑥𝑛+1
) + 0 × 𝑤. 

(6.10) 

Combining Eqs. (6.8) and (6.10), we have 

[
�̇�

�̇�𝑛+1
] = [

𝑨(𝑿)
𝑩(𝑿)∅(𝑥𝑛+1)

𝑥𝑛+1

𝟎𝟏×𝒏 0
] [

𝑿
𝑥𝑛+1

] + [
𝟎𝒏×𝟏

1
]𝑤. 

(6.11)  

Note that Harrison (2003) presented only a scalar control signal. However, this 

research will use multiple controls forming a control vector 𝒖 = [
𝑣𝐿

𝑣𝑅
]; thus, there 

are some factors which are different from the ones presented in (Harrison, 2003). 

For instance, the scalar control signal 𝜙(𝑥𝑛+1) is transformed to a column vector, 

including control signals of the left and the right motors as follows: 

𝝓(𝒙𝒏+𝟏) = [
𝜙𝐿(𝑥𝑛+1)

𝜙𝑅(𝑥𝑛+1)
] 

(6.12)  

In the state-space matrix form, the extra state variable 𝑥𝑛+1 can be rewritten as  

𝑥6. Therefore, the state-space representation of the two-wheeled balancing robot 

with soft constraint, after substituting the nonlinear system Eq. (4.61) into Eq. 

(6.11) can be shown as follows: 
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(

 
 
 

𝑥1̇

𝑥2̇

𝑥3̇

𝑥4̇

𝑥5̇

�̇�6)

 
 
 

=

(

 
 
 
 
 

0 1 0 0 0 0

0
𝑒𝑚22

𝑎 + 𝑏

𝑒𝑚23

(𝑎 + 𝑏)𝑥3

𝑒𝑚24

𝑎 + 𝑏
0

𝑓𝑚21𝜙𝐿(𝑥6) + 𝑓𝑚22𝜙𝑅(𝑥6)

(𝑎 + 𝑏)(𝑥6)
0 0 0 1 0 0

0
𝑒𝑚42

𝑎 + 𝑏

𝑒𝑚43

(𝑎 + 𝑏)𝑥3

𝑒𝑚44

𝑎 + 𝑏
0

𝑓𝑚41𝜙𝐿(𝑥6) + 𝑓𝑚42𝜙𝑅(𝑥6)

(𝑎 + 𝑏)(𝑥6)
1 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 

(

  
 

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6)

  
 

 

                +

(

  
 

0
0
0
0
0
1)

  
 

(𝑤). 

 

 

 

 

(6.13)  

Rewrite Eq. (6.11) in the form of a new nonlinear system as follows: 

�̇�𝒂 = 𝑨𝒂(𝒙𝒂)𝒙𝒂 + 𝑩𝒂(𝒙𝒂)𝑤 . (6.14) 

The cost function now becomes 

𝐽 = ∫ (𝒙𝒂
𝑻𝑸𝒂(𝒙𝒂)𝒙𝒂 + 𝑤𝑇𝑅𝑎(𝒙𝒂)𝑤)𝑑𝑡,

∞

0

 
(6.15) 

where the subscript 𝒂 indicates the constrained system and the weighting matrix 

𝑸𝒂, which is given by 

𝑸𝒂 = [
𝑸 0

0 𝜙2(𝑥𝑛+1)𝑹
], 

(6.16) 

and 𝑅𝑎 is set as a small value (𝑅𝑎 = 0.001) as it provides the results of input 

constraint close to the unconstrainted condition (Harrison, 2003). 

In Chapter 5, the weight matrix 𝑹 is set as 𝑹 = [
10 1
1 10

], in which 𝑅11=10 and 

𝑅22=10. These values can be applied to control the left and right motors 𝒖 = [
𝑣𝐿

𝑣𝑅
].  

However, the value of   𝜙2(𝑥𝑛+1)𝑹   in Eq.(6.16) is required as a scalar.  
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Harrison (2003) presented the value of   𝜙2(𝑥𝑛+1)𝑹   for a single control signal. 

In terms of two control inputs, the 𝜙2(𝑥𝑛+1)𝑹  is considered to compensate for 

two control signals given by 

2 × 𝜙𝐿
2(𝑥𝑛+1)(𝑅11)  or  2 × 𝜙𝑅

2(𝑥𝑛+1)(𝑅22), 

where 𝜙𝐿(𝑥) is equal to 𝜙𝑅(𝑥) as this research focuses on the stabilisation of the 

pitch angle and the yaw angle motion that needs different control signals between 

the two motors is not considered.  

Previously, matrix 𝑸 was set as 𝑸 =diag{20,1,1,1,5}; thus, the weighting matrix 

𝑸𝒂 of the constrained system is presented by substituting matrix 𝑸 and 

2𝜙𝐿,𝑅
2 (𝑥𝑛+1)𝑅11,22 into Eq. (6.16) and we obtain 

    𝑸𝒂 =

[
 
 
 
 
 
20 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0

0 0 0 0 0 20𝜙𝐿,𝑅
2 (𝑥6)]

 
 
 
 
 

. 

 

(6.17) 

Moreover, the saturation conditions (Harrison, 2003) with a smooth function 

𝑠𝑖𝑛(𝑥) were presented as the following: 

𝜙𝐿(𝑥6) = 𝜙𝑅(𝑥6) = {

 𝜆  ,             𝑥6 >  𝜆

𝜆𝑠𝑖𝑛 (
𝜋𝑥6

2𝜆
), |𝑥6| ≥ 𝜆

            −𝜆  ,             𝑥6 < −𝜆    

 

(6.18) 

where 𝜆 is the limitation of control signal as the maximum voltage of the LEGO 

EV3 motor is 8.3V, in the implementation. 
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6.2.2 Freezing Technique and Extended Kalman Filter 

Recall in Chapter 5 that sensor drift occurred in the hardware application. The  

nonlinear freezing control technique on its own cannot solve this issue as it 

extends the LQR theory to stabilise the system and the results of the LQR method 

showed a diverged error signal in Chapter 5.  

In this section, therefore, an extended version of the Kalman filter utilised in 

Chapter 5 will be combined with the freezing technique to overcome the sensor 

drift issue. The linear Kalman filter will be extended for estimating the state 

variable of the nonlinear system known as an extended Kalman filter (EKF) 

(Simon, 2006). There are many applications of this technique, such as missile 

guidance (Çimen & Merttopçuoğlu, 2008), Unmanned Aerial Vehicle (UAV) 

(Nemra & Aouf, 2010) and cancer treatment (Batmani & Khaloozadeh, 2013). 

 

General continuous time-invariant systems (Frank , Xie, & Popa, 2007) are 

given by 

�̇� = 𝒂(𝒙, 𝒖, 𝒕) +  𝑮(𝒕)𝒘𝒏, (6.19) 

                                      𝒚 =  𝒄(𝒙, 𝒕) + 𝒗𝒏, (6.20) 

where 𝒘𝒏 and 𝒗𝒏 are supposed to be process noise and measurement noise, 

respectively, with 𝒘𝒏 ~(0, 𝑸𝒌), 𝒗𝒏 ~(0, 𝑹𝑲), and 𝑮 is matrix of process noise, 

which is defined as  𝑮 = 𝑰𝟓×𝟓 . 
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A state estimator of a nonlinear dynamic system is defined as follows: 

�̇̂� = 𝒂(�̂�, 𝒖, 𝒕) + 𝑲𝒇(𝒚 − 𝒄(�̂�, 𝒕)), (6.21) 

and the Jacobian matrices are 

𝑨(𝒙, 𝒕) =
𝝏𝒂(𝒙, 𝒖, 𝒕)

𝝏𝒙
, 𝑨(�̂�, 𝒕) =

𝝏𝒂(�̂�, 𝒖, 𝒕)

𝝏�̂�
, 

 

𝑪(𝒙, 𝒕) =
𝝏𝒄(𝒙, 𝒕)

𝝏𝒙
, and 𝑪(�̂�, 𝒕) =  

𝝏𝒄(�̂�, 𝒕)

𝝏�̂�
. 

(6.22) 

The Kalman filter gain 𝑲𝒇 is given by 

𝑲𝒇 = 𝑷𝑪𝑻(�̂�, 𝒕)𝑹𝒌
−𝟏 (6.23) 

where 𝑷 is the solution of algebraic Riccati equation as shown below 

𝑨(�̂�, 𝒕)𝑷 + 𝑷𝑨𝑻(𝒙, 𝒕) −  𝑷𝑪𝑻(�̂�, 𝒕)𝑹𝒌
−𝟏𝑪(�̂�, 𝒕)𝑷 + 𝑸𝒌 = 0 (6.24) 

Approximated solutions of Eq. (6.24) can be obtained numerically by applying the 

linear quadratic regulator function in MATLAB, shown in Appendix A.5.5. The 

block diagram of the freezing control technique with an extended Kalman filter 

combined with a tracker is presented in Figure 6.2. 

 

Figure 6.2: Structure of freezing technique with EKF and tracking system. 
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6.3. Iteration Scheme Strategy 

Another nonlinear control method considered in this research is an iteration 

scheme introduced by Banks & McCaffrey (1998). The technique is used to 

approximate the original nonlinear system into a sequence of linear, time-varying 

(LTV) equations. This method can be applied to control various nonlinear 

systems, e.g., an inverted pendulum on a cart (Banks & Dinesh, 2000), super-

tankers autopilot (ÇImen & Banks, 2004b), drug therapy control in cancer 

treatment (Itik, Salamci, & Banks, 2009), velocity tracking of hydraulic press (Du, 

Xu, Banks, & Wu, 2009), and tunnel diode oscillator control (Itik, 2016).  

The approximating sequence of the iteration scheme is introduced next (Tomás-

Rodríguez & Banks, 2010). 

Consider the pseudo-linear system Eq.(6.25) and the finite-time quadratic cost 

function Eq.(6.26): 

�̇� = 𝑨(𝒙)𝒙 + 𝑩(𝒙)𝒖, (6.25) 

 𝐽 =
1

2
𝒙𝑻(𝑡𝑓)𝑭𝒙(𝑡𝑓) +

1

2
∫ (𝒙𝑻(𝑡)𝑸𝒙(𝑡) + 𝒖𝑻(𝑡)𝑹𝒖(𝑡))𝑑𝑡

𝑡𝑓

0

, (6.26) 

where 𝑨(𝒙) and 𝑩(𝒙) form controllability matrices, 𝑡𝑓 represents the final time, 

𝑭 and 𝑸 are positive semi-definite matrices and 𝑹 is a positive definite matrix. 

Then, a sequence of linear, time-varying equation can be written as follows: 

�̇�[𝑖](𝑡) = 𝑨(𝒙[𝑖−1](𝑡))𝒙[𝑖](𝑡) + 𝑩(𝒙[𝑖−1](𝑡))𝒖[𝑖](𝑡),        𝒙[𝑖](𝑡0)= 𝒙0, (6.27) 

and  

𝑱[𝑖] =
1

2
𝒙[𝑖]𝑇(𝑡𝑓)𝑭𝒙[𝑖](𝑡𝑓) +

1

2
∫ (𝒙[𝑖]𝑇(𝑡)𝑸𝒙[𝑖](𝑡) + 𝒖[𝑖]𝑇𝑹(𝑡)𝒖[𝑖](𝑡)) 𝑑𝑡

𝑡𝑓

0

, 
(6.28) 
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where [𝑖] denotes the iteration number. 

Hence, the first approximation can be written as the following: 

�̇�[1](𝑡) = 𝑨(𝒙0)𝒙
[1](𝑡) + 𝑩(𝒙0)𝒖

[1](𝑡),        𝒙[1](𝑡0)= 𝒙0, (6.29) 

Note that  𝒙[𝑖−1](𝑡) is assumed as 𝒙0 at initial sequence 𝑖 = 1. 

Then, evaluating Eqs. (6.27) and (6.28) produce the following optimal control 

equation: 

𝒖[𝑖] = −𝑹−1𝑩𝑇(𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡)𝒙[𝑖](𝑡), (6.30) 

where 𝑷[𝑖](𝑡) is the solution of the Riccati equation below 

�̇�[𝑖](𝑡) = −𝑸 − 𝑷[𝑖](𝑡)𝑨 (𝒙[𝑖−1](𝑡)) − 𝑨𝑇 (𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡)

+ 𝑷[𝑖](𝑡)𝑩(𝒙[𝑖−1](𝑡))𝑹−𝟏𝑩𝑇 (𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡), 

(6.31) 

and 

𝑷[𝑖](𝑡𝑓) = 𝑭. 

 

(6.32) 

 

Hence, the optimal control system is implemented by substituting Eq. (6.30) into 

Eq. (6.27) as the following: 

�̇�[𝑖](𝑡) = 𝑨 (𝒙[𝑖−1](𝑡)) 𝒙[𝑖](𝑡) 

+ 𝑩(𝒙[𝑖−1](𝑡))(−𝑹−1𝑩𝑇 (𝒙[𝑖−1](𝑡))𝑷[𝑖](𝑡)𝒙[𝑖](𝑡)),     𝒙[𝑖](𝑡0)= 𝒙0. 

(6.33) 
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6.4 Controllability and Observability  

In this section, the controllability and observability of the two-wheel robot system 

will be analysed before the design of controllers and the corresponding 

simulations take place. In particular, recall that in Section 6.2.1, matrix 𝑨 was 

modified to embed the input saturation condition into the nonlinear model. 

Therefore, the analysis will include both unconstrained and constrained TWR 

systems for consideration.  

6.4.1 Controllability 

In terms of controllability, the test and the system analysis are similar to the ones 

presented in Chapter 5, by substituting matrices 𝑨 and 𝑩 into Eq. (5.7) to produce 

controllability matrix 𝓒, and then calculating the rank of the controllability test 

matrix. As mentioned previously, mathematical models of linear control system 

were linearised around equilibria. It is well-known that state-space 

representations of nonlinear control systems are not unique. In addition, the 𝑨 

and 𝑩 matrices of a nonlinear system vary for different values of time t and so 

does the controllability matrix; therefore, the ranks of controllability matrices (for 

two systems) can be presented as a 2D plot, shown in Figures 6.3-6.4. 
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- Inverted Pendulum on a Cart System 

 

Figure 6.3: The rank of controllability matrix for the nonlinear inverted pendulum 

and cart system  

 Figure 6.3 presents the rank test result of the 4th order nonlinear inverted 

pendulum model from Eq. (4.10). The contour plot specifies the state variables 

𝑥3 and 𝑥4 in the x and y axes, respectively. The yellow region represents Rank(𝓒) 

= 4, which means the system is fully controllable, appearing in the central region 

of the plot, Other non-yellow regions represent Rank (𝓒) < 4, which indicate that 

the system is uncontrollable (or not fully controllable).  
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- Two-Wheeled Robot System 

 

Figure 6.4: The rank of controllability matrix for the nonlinear two-wheeled robot 

system - without input saturation 

Similarly, the rank test of the 5th order nonlinear two-wheeled robot model 

from Eq. (4.61) is demonstrated in Figure 6.4. The yellow and blue areas 

represent Rank(𝓒) = 5 and Rank(𝓒) = 4, respectively. The system is fully 

controllable when Rank(𝓒) = 5, as shown in the central region of the figure; by 

contrast, the system is only partially controllable in all corner regions as Rank (𝓒) 

= 4. There are some fully controllable regions on left and right sides of the graph, 

near 𝑥3 ≈ ±90°, when the pitch angular velocity 𝑥4 operates between 

−2.3 × 104 °/𝑠  and 2.3 × 104 °/𝑠.  Note here that physically realistic ranges of 𝑥4 

for the LEGO EV3 gyro sensor are  between −440°/𝑠 and 440°/𝑠. 

Note, the nonlinear two-wheeled robot control is applied to a practical robot rather 

than a simulated mathematical model in this research and therefore offers 

flexibility in which model to use for the generation of control gains. The model in 

Eq. (4.61) can be rewritten in several different forms and then the controllability 

test can be applied to investigate each model’s controllability range. Next, two 
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other state-space model representations of the TWR system are defined, with 

names Model B and Model C, whilst the original model given in Eq. (4.61) is 

named as Model A. 

Model B: 

(

 
 

�̇�1

�̇�2

�̇�3

�̇�4

�̇�5)

 
 

=

(

 
 
 
 

0 1 0 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒23(𝑥3) + 𝑒𝑚24(𝑥3, 𝑥4)𝑥4

[𝑎 + 𝑏(𝑥3)]𝑥3
0 0

0 0 0 1 0

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒43(𝑥3) + 𝑒𝑚44(𝑥3, 𝑥4)𝑥4

[𝑎 + 𝑏(𝑥3)]𝑥3
0 0

1 0 0 0 0)

 
 
 
 

 ×

(

 
 

𝑥1
𝑥2

𝑥3

𝑥4

𝑥5)

 
 

      

                                    

 (6.34) 

           +

(

 
 
 

0 0
𝑓𝑚21(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎+𝑏(𝑥3)

0 0
𝑓𝑚41(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎+𝑏(𝑥3)

0 0 )

 
 
 

(
𝑣1

𝑣2
),     

                                  

where the Model B presents the 3rd column by embedding equations in the 3rd 

and 4th columns of Model A. 

Model C: 

(

 
 

�̇�1

�̇�2

�̇�3

�̇�4

�̇�5)

 
 

=

(

 
 
 
 

0 1 0 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)
0

𝑒23(𝑥3) + 𝑒𝑚24(𝑥3, 𝑥4)𝑥4

𝑎 + 𝑏(𝑥3)𝑥4
0

0 0 0 1 0

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)
0

𝑒43(𝑥3) + 𝑒𝑚44(𝑥3, 𝑥4)𝑥4

𝑎 + 𝑏(𝑥3)𝑥4
0

1 0 0 0 0)

 
 
 
 

 ×

(

 
 

𝑥1
𝑥2

𝑥3

𝑥4

𝑥5)

 
 

      

                                    

 (6.35) 

           +

(

 
 
 

0 0
𝑓𝑚21(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎+𝑏(𝑥3)

0 0
𝑓𝑚41(𝑥3)

𝑎+𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎+𝑏(𝑥3)

0 0 )

 
 
 

(
𝑣1

𝑣2
),                                      

 

where the Model C presents the 4th column by embedding equations in the 3rd 

and 4th columns of Model A. 
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Likewise, the graphs of controllability test matrices from Model B and C 

are demonstrated in Figures 6.5 – 6.6. 

 

Figure 6.5 : The rank of controllability matrix for the nonlinear TWR system -

without input saturation (Model B) 

 

Figure 6.6 : The rank of controllability matrix for the nonlinear TWR system - 

without input saturation (Model C) 

It can be seen that Models A, B and C produce very different controllability test 

results. In Figure 6.5, the area which is not fully controllable appears in the middle 
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of the 𝑥3 axis for a large range of 𝑥4. This means Model B is not fully controllable 

at the equilibrium point. Furthermore, Figure 6.6 demonstrates that Model C is 

only partially controllable for the whole region investigated (i.e., 𝑥3 ∈ [−90°, 90°] 

and 𝑥4 ∈ [−1 × 105 °/𝑠 , 1 × 105 °/𝑠]), with Rank (𝓒) < 5. 

 One advantage of Model B from its controllability test result presented in 

Figure 6.5 is that the fully controllable region is larger than Model A’s when the 

state variable 𝑥3 is far away from 𝑥3 = 0°. Therefore, Models A and B can be 

combined to create a mixed model to take advantage of each individual model’s 

controllability range. For example, Model A’s central region, i.e., when −10° ≤

𝑥3 ≤ 10° can be selected to be combined with Model B in other regions to create 

a new model, named Model AB, which generates better controllability outcome, 

as shown in Figure 6.7. 

 

Figure 6.7 : The rank of controllability matrix for the nonlinear TWR system -

without input saturation (Model AB) 

It can be seen from Figure 6.7 that the not fully controllable area in the centre of 

the 𝑥3 axis of Model B disappears, and the fully controllable region of Model A is 

displayed instead. 
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Additionally, the rank tests of nonlinear control system under input 

constrain condition of Model A defined by Eq. (4.61) are presented in Figures 6.8-

6.9. 

  

Figure 6.8: The rank of controllability for freezing technique system – with input 

saturation 

Figure 6.8 demonstrates a controllability cube in the six-dimensional space, with 

three variables 𝑥3, 𝑥4 and 𝑥6 on the axes, because a new variable 𝑥6 has been 

introduced into the constrained system, shown in Eq. (6.13). The yellow and blue 

colours represent Rank(𝓒) = 6 (full rank) and Rank(𝓒) = 5, respectively. 

Further details of Figure 6.8 can be seen by showing cross-sections of the cube 

next. Figure 6.9(a) shows the rank of the controllability matrix affected by state 

variable 𝑥3 and the constraint parameter 𝑥6  when 𝑥4 is fixed at zero; by contrast, 

Figure 6.9(b) presents the rank of controllability, influenced by 𝑥4 and the 

constraint parameter 𝑥6  when 𝑥3 is equal to zero. 
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(a)                                                          (b) 

 

Figure 6.9: Controllability plot for the TWR system (with input saturation),             

(a) cross-section at 𝑥4 = 0°/𝑠. Note, the coordinates (𝑥3, 𝑥6) of the 2 points 

marked by red asterisks are (−90°, −8.4 × 1015) and (−90°, 8.6 × 1015),             

(b) cross-section at 𝑥3 =  0°. Note, the coordinates (𝑥4, 𝑥6) of the 2 points 

marked by red asterisks are (−200°/𝑠, −8.4 × 1015) and (−200 °/𝑠,

8.6 × 1015), 

 

With the input constraint condition included, the system model is of 6th order, as 

shown in Eq.(6.13). The system model would be completely state controllable if 

Rank(𝓒) = 6. Figure 6.9, therefore, demonstrates a fully controllable system for 

any values of state variables 𝑥3 and 𝑥4 if the constraint parameter 𝑥6  is restricted 

approximately between −8.4 × 1015 and 8.6 × 1015 .  

 Furthermore, the rank test results of Models B and AB with the input 

voltage constrained are demonstrated in Figures 6.10-6.13. Note, controllability 

test of Model C will not be implemented as it showed no region to be fully 

controllable in the non-saturated input simulation previously. 
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Figure 6.10: The rank of controllability matrix of TWR for the freezing technique 

– with input saturation (Model B) 

  

Figure 6.11: Controllability plot for the TWR system of Model B (with input 

saturation), (a) cross-section at 𝑥4 =0°/s. (b) cross-section at 𝑥3 =  0°. 

 

Figures 6.10 and 6.11 display the rank test result of Model B in a 3D plot 

and in cross-sectional graphs, respectively. Figure 6.11(b) presents a very large 

region of Rank(𝓒) = 1  (sliced at 𝑥3 =  0°), indicating only one of the six poles of 

the system is controllable, similar to result shown in the unconstrained voltage 

simulation of Model B. 
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Moreover, the combined Model AB with a constrained control voltage, 

illustrates a broader fully controllable area as shown in Figure 6.12. Similar as 

before, cross sections are taken at 𝑥4 = 0°/𝑠 and 𝑥3 =  0°, shown in Figure 6.13 

(a) and (b), respectively. It can be seen from Figure 6.13(a) that the blue Rank(𝓒) 

= 5 (not full rank) region, when  from −10° ≤ 𝑥3 ≤ 10°, from Figure 6.9 (a) is now 

fully controllable. 

 

 

Figure 6.12: The rank of controllability matrix for the TWR system – with input 

saturation (Model AB) 
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Figure 6.13: Controllability plot for the TWR with Model AB (input saturation),   

(a) cross-section at 𝑥4 = 0°/𝑠. Note, the coordinates (𝑥3, 𝑥6) of the 2 points 

marked by red asterisks are (−10°, −8.4 × 1015) and (−10°, 8.6 × 1015),         

(b) cross-section at 𝑥3 =  0°. Note, the coordinates (𝑥4, 𝑥6) of the 2 points 

marked by red asterisks are (−200°/𝑠, −8.4 × 1015) and (−200 °/𝑠,

8.6 × 1015), 

 

6.4.2 Observability 

With regard to observability test, it can be implemented by substituting matrices 

𝑨 and 𝑪 into the Eq. (5.19) to provide the observability matrix 𝓞. Although matrix 

𝑪 is constant, matrix 𝑨 is varied by state variables in the form of the nonlinear 

model. The rank of observability, hence, presented in a three-dimension 

subspace, is given in Figures 6.14-6.17. 
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- Inverted Pendulum on a Cart System 

 

Figure 6.14: The rank of observability matrix for a 4th order nonlinear inverted 

pendulum system 

It can be seen in Figure 6.14 that the fully observable region (Rank (𝓞) = 4, shown 

in yellow) appears in the centre of the 𝑥3 and 𝑥4 axes, and the regions which are 

not fully observable (Rank (𝓞) = 3 or 2) emerges when |𝑥4| > 1.4 × 108 °/𝑠 and 

15° < |𝑥3| < 78°. In the latter regions, the 4th order inverted pendulum system is 

said to be partially state observable.  

- Two-Wheeled Robot System 

 

Figure 6.15: The rank of observability matrix for the 5th order nonlinear TWR 

system - without input saturation 
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Figure 6.15  demonstrates a full rank (Rank (𝓞) = 5) of the observability matrix in 

the central region, similar to the observability test result on the inverted pendulum 

system in Figure 6.14. However, the not fully observable regions appear over the 

absolute values of 𝑥4 at approximately 3 × 105 °/𝑠, which is less than the 𝑥4 value 

(1.4 × 108 °/𝑠) shown in Figure 6.14. This is because the two-wheeled robot 

system is more complex than the inverted pendulum and they have different 

parameters and system dynamics.  

Next, the input constraint is added to the TWR model and the rank of the 

new observability matrix is demonstrated in a three-dimensional subspace in the 

same way as the controllability test earlier, as given in Figures 6.16-6.17. 

 

Figure 6.16: The rank of observability matrix for the 6th order nonlinear TWR 

system – with input saturation 
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(a)                                                           (b) 

Figure 6.17: The rank of observability matrix for the 6th order nonlinear TWR 

system (with input saturation) by cross-section at (a)  𝑥4=0°/s and (b) 𝑥3=0°. 

Note, Figure 6.16 demonstrates a cube, with  𝑥3, 𝑥4 and the constraint parameter 

𝑥6  as axes. The region is nearly entirely covered by Rank (𝓞) = 6 which implies 

complete observability; however, there are some non-full-rank areas when the 

absolute of 𝑥4 goes beyond approximately 5 × 104 °/𝑠, which is lower than the 

case in the unconstrained system (3 × 105 °/𝑠) shown in Figure 6.15. Moreover, 

Figure 6.17 presents two cross-sections of Figure 6.16, when  𝑥4=0°/s and 𝑥3=0°, 

respectively. All areas in Figure 6.17 are yellow, representing Rank (𝓞) = 6 and 

the TWR system being full observable at these cross-sectional areas. This result 

illustrates that an extended Kalman filter is applicable to this system for the 

purpose of state estimations. 
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6.5 Simulation Results 

In this section, the nonlinear freezing control method, the freezing technique with 

EKF, and the nonlinear iteration scheme will be applied to simulate the control 

problems of the inverted pendulum on a cart and the self-balancing two-wheeled 

robot model in the otherwise unstable vertical upright reference positions. 

Moreover, these methods will be compared with the traditional linear control result 

obtained in Chapter 5, such as LQR and the LQG under input unconstraint and 

constraint conditions. 

6.5.1 Simulations of IP and TWR without Input Saturations 

- Inverted Pendulum on a Cart System 

In this subsection, the simulation results of stabilising an inverted 

pendulum on a cart system are demonstrated using two different nonlinear 

controllers, i.e., the freezing control and the iteration scheme, when the initial 

pitch angle 𝑥3 is set from a range of values. The MATLAB programmes of the 

freezing control and iteration scheme are presented in Appendix A.6.7 and 

Appendix A.6.8, respectively. Furthermore, the weighting matrices 𝑸 and 𝑹 are 

selected to be the same as in the LQR control in Chapter 5, for the purpose of 

easy comparison of outcomes between the linear and nonlinear control 

techniques.  

To begin with, the simulation results of nonlinear freezing control are shown in 

Figures 6.18-6.19. In Figure 6.18, the graphs present the stabilisation of an 

inverted pendulum from three initial pitch angles: 60°, 75° and 80.5°. 
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Unsurprisingly, system responses and the control signal starting from the largest 

initial pitch angle 80.5°, generate strongest oscillations with large amplitudes. This 

angle is in fact the maximum initial pitch angle, of which the nonlinear freezing 

control method can stabilise, for the IP system. Beyond this angle, the system 

becomes unstable, producing unbounded output responses, as shown in Figure 

6.19. 

 

Figure 6.18: The stabilisation of an inverted pendulum system by the nonlinear 

freezing technique, from different initial pitch angles 𝑥3 

 

Figure 6.19: Unstable system response of an inverted pendulum system at the 

initial pitch angle 𝑥3=80.6°, using the freezing technique 
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In the case of applying the iteration scheme technique to the inverted 

pendulum system, the simulation results are shown in Figures 6.20-6.22 as 

follows:  

 

Figure 6.20: The stabilisation of an IP system from the initial pitch angle         

𝑥3= 60°, using the nonlinear iteration method, at different iteration steps 

A number of iteration sequences, up to the 40th, of the nonlinear iteration control 

(also called LTV) to balance the inverted pendulum model, are plotted in Figure 

6.20. Note, in this technique, the 1st iteration result, although appear to be 

smoother, is generally not considered. This is because the system matrices A 

and B are fixed using the initial conditions (see in Eq.(6.29)) rather than time 

dependent. The function of the 1st iteration is to generate state evolution results 

to be used in the next sequence. In Figure 6.20, the 𝑥1 graph demonstrates that 

the 5th iteration displays the highest overshoot. The overshoot reduces with 

increasing state sequences, of up to the 15th iteration, and then converges at the 

30th iteration (it can be seen that the 40th iteration presents the same result as the 

30th). Furthermore, oscillations appear in the 𝑥2 − 𝑥4 graphs and the control signal 
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graph in low order iterations, i.e., 5th and 10th ; in contrast, the higher-order 

iterations such as the 30th and 40th present smooth responses. 

 

Figure 6.21: The stabilisation of an inverted pendulum system by the iteration 

scheme (40th) from different initial pitch angles 𝑥3 – converged responses 

Figure 6.21 demonstrates the converged response results when using the 

iteration scheme (the 40th iteration) to balance the inverted pendulum system, 

from three initial pitch angles: 45°, 60° and 61.3°. Comparisons of these graphs 

show that there are more oscillations associated with larger overshoots and 

undershoots when the initial pitch angle is increased, for all state variable 

responses and the control signal. Noticeably, spiky or erratic signals appear in 

the 𝑥2, 𝑥4 and control signal graphs, for the case starting from the initial pitch angle 

61.3°. This is because the system reaches the iteration control limitation (the 40th 

iteration)  at this angle and the system becomes unstable when operating beyond 

61.3°, as presented in Figure 6.22.  
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Figure 6.22: Unstable system responses from the initial pitch angle 𝑥3=61.4°, 

using the iteration scheme (40th) 

This research presents the iteration scheme without state observer; 

therefore, the freezing control without the Kalman filter and LQR controllers are 

selected to compare against the iteration scheme method. The stabilising system 

of an inverted pendulum model at the initial pitch angle of 𝑥3= 42.9° from three 

controllers are illustrated in Figure 6.23.  

 

Figure 6.23: Stabilisation of the IP system using three different controllers, 

starting from an initial pitch angle 𝑥3= 42.9° 

It can be seen that the nonlinear freezing controlled system displays the lowest 

maximum overshoot in the 𝑥1 graph, followed by the iteration scheme (order 40th ) 

and then LQR. Significantly, the freezing technique also obtains the lowest 
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maximum deviations and has the shortest settling times in the 𝑥2 and 𝑥3 graphs. 

On the other hand, LQR, which is a linear controller, demonstrates the highest 

overshoot out of the three controllers. At this initial pitch angle, the LQR method 

generates some spiky responses as the system reaches its stabilisation 

limitation; in contrast, both nonlinear controllers produce much smoother 

response curves.  

To summarise, both nonlinear controllers provide more comprehensive 

operational ranges than the linear method as the feedback gains are continuously 

calculated to reflect the changes of the time-dependent state variables. 

Furthermore, the freezing control demonstrates a higher capability than the 

iteration scheme in terms of shorter cart displacement and broader initial pitch 

angle ranges. Therefore, the freezing control technique has been selected to be 

the nonlinear controller used in the experimental subsection later; moreover, due 

to the memory limitation of the LEGO EV3 at 5 MB, it is extremely challenging to 

design the iteration scheme programming with various variables to be stored in 

the look-up table for being uploaded to the LEGO EV3 memory. In the case of 

the freezing technique, the programming codes have been generated at 

approximately 4.5 MB. Moreover, the approximation memory capacity of the 

iteration scheme at least doubled as there are additional state variables (𝑥1 and 

𝑥2), which are needed to be considered.   

- Two-Wheeled Robot System 

In this subsection, the simulation results of balancing a two-wheeled robot 

model (model A, defined by Eq. (4.61)) with different initial pitch angles 𝑥3, under 
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no input constraint, are presented. Note that the weighting matrices 𝑸 and 𝑹 of 

the two-wheeled robot model are chosen to be the same as in the LQR and LQG 

controls analysed in Chapter 5 for easy comparison. Furthermore, the MATLAB 

programme of the nonlinear freezing control with and without an extended 

Kalman filter is demonstrated in Appendices A.6.9 and A.6.10, and uses the 

structures of feedback control, as shown in Figure 6.1 and Figure 6.2, 

respectively. Thus, the nonlinear freezing control results are presented in Figures 

6.24-6.28.  

 

Figure 6.24: The stabilisation of a TWR system using freezing technique from 

different initial pitch angles 𝑥3 

 
 

Figure 6.25: The stabilisation of a TWR system using freezing technique from 

initial pitch angle 𝑥3= 87.2° 
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Figure 6.24 demonstrates the dynamical evolution of state variables and 

control signal, when applying the nonlinear freezing technique and changing 

initial pitch angle to 𝑥3 = 15°, 30° and 60°, respectively. In the same way as the 

linear quadratic regulator control in Chapter 5 the deviation of all state variables 

and the control signal are increased when the initial pitch angle 𝑥3 rises.  

It can be seen that the pink curve in Figure 6.25, which represents results 

from an initial pitch angle 𝑥3 = 87.2°, presents significant oscillations as the 

freezing technique reaches its maximum capability. Noticeably and importantly, 

the nonlinear freezing technique demonstrates the capability of stabilising the 

system starting from a much higher pitch angle than the LQR and the LQG, by 

approximately 21.5°, as shown in Chapter 5. 

When going above the initial angle 87.2°, the system becomes unstable 

and crashes, as shown in Figure 6.26.    

 

Figure 6.26: Uncontrollable system at the initial pitch angles 𝑥3=87.3°, with the  

freezing technique applied 
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Recall that in Section 6.4.1, the controllability test of nonlinear freezing 

technique was described. The advantage of this method is its ability to display 

the rank of the controllability matrix at every evolution step of state variables 𝑥3 

and 𝑥4 from any initial values. Figures 6.27-6.28 will present the rank of 

controllability matrix, combined with dynamic evolution of state variables 𝑥3 and 

𝑥4 starting from different initial pitch angles, showing the controllable and 

uncontrollable areas. 

  

(a)                                                                (b) 

Figure 6.27: The rank of controllability and dynamical evolution of state 

variables 𝑥3 and 𝑥4 at the initial pitch angles: (a) 𝑥3 =30° and (b)  𝑥3 =87.2°, 

controlled by freezing technique 

 

 Firstly, Figure 6.27 demonstrates the two stable systems with the 

nonlinear freezing control applied, when simulating from initial pitch angles 𝑥3 =

30° and 𝑥3 = 87.2°. The dynamical state evolution trajectory (of 𝑥3 and 𝑥4) is 

shown in red stars, completely embedded in the yellow area representing full 

rank. Therefore, the system is fully controllable when starting from these 𝑥3 

values. Note, the red stars in Figure 6.27 (b) spread widely around the centre of 
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the figure; in contrast, they move in a small area in Figure 6.27 (a). This is 

because of the large oscillations of the state variable 𝑥3 evolution, when starting 

at the initial pitch angle 𝑥3 = 87.2°, as shown in Figure 6.25. 

 

(a)                                                             (b) 

Figure 6.28: The rank of controllability and dynamical evolution of state 

variables 𝑥3 and 𝑥4 at the initial pitch angles: (a) 𝑥3 =87.3° and (b) 𝑥3 =90°, 

controlled by the freezing technique 

 

In contrast to Figure 6.27, in Figure 6.28, some red stars appear in the 

blue regions, which represent rank deficiency, i.e., Rank(𝓒)=4, when simulating 

from initial pitch angles 𝑥3 = 87.3° and 𝑥3 = 90°. The results show that the system 

is now not fully controllable, which matches the simulation results shown in Figure 

6.26 that the system cannot be stabilised using the nonlinear freezing control 

method.  

 Next, the combination of the freezing control technique with an EKF is 

investigated, where the magnitudes of state variables and control signal increase 

when the initial pitch angle is increased, similar to the freezing technique without 

EKF shown in Figure 6.29. Significantly, in Figure 6.30, the cut-off limitation of 
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the initial pitch angle (87.2°) is the same as the freezing technique without EKF. 

This is because that the addition of EKF supports the practical control 

implementation by providing filtered estimations of state variables, but do not 

contribute to the improvement of control capability in simulation. 

 

Figure 6.29: The stabilisation of a TWR system using the freezing technique 

with EKF from different initial pitch angles 𝑥3 

 

Figure 6.30: The stabilisation of a TWR system using the freezing technique 

with EKF from the initial pitch angle 𝑥3=87.2°. 
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Similar as before, increasing the initial pitch angle to 87.3°or over leads to 

an unstable system response, when the freezing control and EKF fail to stabilise 

the TWR, as presented in Figure 6.31. 

 

Figure 6.31: Unstable system from the initial pitch angles 𝑥3=87.3°, using 

freezing technique with EKF 

The above stability results are supported by the controllability test 

outcomes. As can be seen in Figure 6.32, the controllability matrices starting from 

the maximum controllable initial angle 87.2° stay full rank (the yellow region) 

during the evolutionary trajectory of 𝑥3 and 𝑥4 shown by red stars, indicating the 

system is fully controllable. But in Figure 6.33, when the initial pitch angle is set 

to 87.3°, the controllability test result shows some red stars appearing in the blue 

area where there is a rank deficiency. This means the system is not fully 

controllable and matches the unstable response observed in Figure 6.31.   
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Figure 6.32: The rank of controllability matrix and dynamical evolution of state 

variable 𝑥3 and 𝑥4 from the initial pitch angles 𝑥3 =87.2°, using freezing 

technique with EKF 

 

Figure 6.33: The rank of controllability matrix and dynamical evolution of state 

variable 𝑥3 and 𝑥4 from the initial pitch angles 𝑥3 =87.3°, using freezing 

technique with EKF 

 Next, the LQR and LQG controllers analysed in Chapter 5 are compared 

against the nonlinear freezing control technique with and without EKF, as 

demonstrated below. 
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Figure 6.34: Stabilisation of a TWR system by four controllers from the initial 

pitch angles 𝑥3= 15° 

 

Figure 6.35: Stabilisation of a TWR system by four controllers from the initial 

pitch angles 𝑥3= 30° 

In Figures 6.34-6.37, the blue and red dashed curves represent control outcomes 

from the linear controllers, i.e., the LQR and LQG, respectively; the black and 

pink solid curves represent the responses from the nonlinear control methods, 

which are the freezing technique and freezing technique combined with EKF, 

respectively. It can be seen that the outcomes of four controlled systems are 

almost the same when starting from narrow initial pitch angles 15° and 30°. 
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 When the initial pitch angle is increased to 60°, however, noticeable 

differences in the systems’ responses between linear and nonlinear controls are 

present, as shown in Figure 6.36. 

 

Figure 6.36: Stabilisation of a TWR system by four controllers from the initial 

pitch angle 𝑥3= 60° 

Firstly, the nonlinear controls display slightly higher deviations than linear 

methods in the wheel angle 𝑥1 graph, causing the magnitudes of wheel angle 

integral 𝑥5 also higher than the linear methods. However, the nonlinear methods 

demonstrate lower deviations in pitch angle 𝑥3 than both linear methods by 

approximately 10° (see the magnified graph for 𝑥3 response), which is an 

important improvement. In addition, there are some sharp changes in the linear 

controlled systems’ responses, for state variable 𝑥2, 𝑥4 and control signal 𝑢, 

whereas the nonlinear control techniques present much smoother response, in 

comparison.  

 In Chapter 5, the maximum initial pitch angles which could be stabilised 

by applying the LQR and LQG methods were 65.7°. Hence, the performance of 
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linear controls at this initial pitch angle is selected to compare with the nonlinear 

methods (at the same angle), with results shown in Figures 6.37 and 6.38. 

 

Figure 6.37: Stabilisation of a TWR system by four controllers from the initial 

pitch angles 𝑥3= 65.7° 

   

Figure 6.38: Magnified dynamical evolution of 𝑥3 from the initial pitch angle     

𝑥3= 65.7° using four controllers. 

Dramatic oscillations occur from the applications of both linear control 

techniques, on all state variables 𝑥1 − 𝑥4 and the control signal 𝑢 in Figure 6.37; 
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on the other hand, the nonlinear control techniques demonstrate more stable 

results, displaying smooth curves on all signals. Note, in the magnified response 

graph of 𝑥3, shown in Figure 6.38, large oscillations generated from the linear 

controls can be seen more clearly and are compared against the control 

outcomes from the nonlinear techniques. The lowest deviation value reached 

using the linear methods (approximately at −74°) is lower than using the nonlinear 

controls by approximately 18°. It can also be seen from this figure, the two 

nonlinear controls present similar results when stabilising the TWR system from 

the initial pitch angle 𝑥3= 65.7°. 

Figures 6.37 and 6.38 have also demonstrated that linear and nonlinear 

controls without input constraints generate quite different control responses, 

when the initial pitch angle is over 60°. This is because the feedback gains of the 

linear control are fixed for the linearised model (around the equilibrium point); in 

contrast, the nonlinear controller gains are always optimised globally and are 

therefore varying. 

So far, the primary model (or Model A) has been used for the investigation 

of stabilisation control. Next, the other models, i.e., Model B and Model AB 

defined in Section 6.4.1 will be studied in the stabilisation simulations with 

different control techniques. 
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Figure 6.39: Stabilisation of a TWR system by freezing controllers, using 

Models B and AB at the initial pitch angle 𝑥3= 90° 

Significantly, Figure 6.39 shows that using Model B and Model AB, the freezing 

technique with and without EKF can stabilise the TWR system from an initial pitch 

angel of 90°, wider than both freezing techniques could achieve using the primary 

model (87.2°) and larger than any other techniques reported to be capable of 

achieving in the literature. Although the maximum deviations on all signals are 

much larger than the results shown when starting from 87.2° and the very large 

control voltage needed makes it impractical for physical realisations, this still 

demonstrates the outstanding control range that the nonlinear freezing control 

technique can achieve in theory and its superiority over other linear and nonlinear 

control methods. The control results on Model AB, in particular, have shown 

smooth response curves and illustrate the benefits of combining two models 

together.    
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(a)                                                          (b) 

Figure 6.40: The rank of controllability matrix and dynamical evolution of 𝑥3 and 

𝑥4 from the initial pitch angles 𝑥3 =90°, using freezing technique alone and with 

EKF for: (a) Model B and (b) Model AB 

Furthermore, Figure 6.40 (a) illustrates the cause of sharp signals observed in 

the Model B response graphs in Figure 6.39, mapping to the rank test (in Figure 

6.40 (a)) result when the 𝑥3 and 𝑥4 evolution trajectory goes across to the 

uncontrollable region near 𝑥3 = 0°. In contrast, the dynamical evolution of 𝑥3 and 

𝑥4 of Model AB shown in Figure 6.40 (b) lie in the completely controllable region, 

therefore its response curves in Figure 6.39 are smoother than the ones from 

Model B. 

In these results, some generated magnitudes of the state variables as well 

the control signals are at unrealistically high levels as the simulation was 

conducted without taking into account of physical limits. The effect of limiting 

inputs based on hardware capacity in the simulation will be discussed in the next 

sections. 
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6.5.2 Simulations of TWR with Input Saturations 

This subsection demonstrates the simulation of the two-wheeled balancing robot 

model with different initial pitch angles (𝑥3) between the linear and nonlinear 

controls with input saturation. In the cases of the LQR and LQG linear controls, 

the hard constraint was applied, as shown in Eq.(5.10); in contrast, the soft 

constraint defined in Eq.(6.13) will be used with the nonlinear freezing technique 

with and without EKF. The limitations of motor voltages are the same, at 8.3 V.  

 

(a) 

   

(b) 

Figure 6.41: Stabilisation of a TWR system by four controllers from the initial 

pitch angle 𝑥3=  14.1° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and 

(b) 𝑥6 with logarithmic scale against time. 
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 Firstly, a narrow initial pitch angle 𝑥3 at 14.1° is selected for the results 

shown in Figure 6.41, as the freezing technique with EKF provides the lowest 

initial angle for stabilising the TWR system amongst the four controllers under the 

input saturation condition. Note that both linear controls are applied with the hard 

constraint. It can be seen that slight oscillations appear in the graphs of state 

variables 𝑥2, 𝑥3, 𝑥4 and control signal 𝑢  in Figure 6.41(a). Moreover, the 

maximum deviation of all state variables in Figure 6.41(a) are almost the same 

because of the small initial pitch angle. Note, some state variables from the four 

controlled systems are restricted at the cut-off limits; for instance, the magnitudes 

of the control signal 𝑢  reach the limitation at 8.3V and the wheel angle velocity 

graphs show the maximum magnitude at approximately 800°/𝑠. 

Figure 6.41(b), furthermore, presents the new state variable 𝑥6 generated by 

nonlinear control with input constraint defined in Eq.(6.13). The maximum 

magnitude of the control signal with the freezing technique with EKF (4.2 × 105) 

is significantly higher than the without EKF (8.1 × 104). Significantly, in Figure 

6.41(b), both plots show peak values lower than the limitations required of a 

controllable system (approximately 8.6 × 1015), as presented in Figure 6.9 in 

Section 6.4.1. Moreover, it can be seen in Figure 6.42, that red stars representing 

the system's dynamical evolution path remain in the controllable area, when 

starting at this initial angle. 
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(a)                                                           (b) 

Figure 6.42: The rank of controllability matrix and dynamical evolution of state 

variables 𝑥3 and 𝑥4 from the initial pitch angle 𝑥3 =14.1°, using (a) freezing 

technique and (b) freezing technique with EKF. 

 

When the initial pitch angle goes over 14.1°, the TWR system with control 

constraint cannot be stabilised by the freezing technique with EKF and the system 

becomes unstable and then crashes, as shown in Figure 6.43.    
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(a) 

 

(b) 

Figure 6.43: Unstable system using freezing technique and EKF from initial 

pitch angle 𝑥3= 14.2° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and (b) 

𝑥6 with logarithmic scale against time. 

  

It can be seen from Figure 6.43(b) that the maximum value of 𝑥6 is now 

approximately 1.6 × 1019, higher than the limit of a controllable system 

(approximately 0.8 × 1016).  
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Figure 6.44: The rank of controllability matrix and dynamical evolution of state 

variables 𝑥3 and 𝑥4 from the initial pitch angle 𝑥3 =14.2°, using freezing 

technique and EKF 

This is illustrated in Figure 6.44, where the dynamical evolutions of state variables 

𝑥3 , 𝑥4 and 𝑥6 display that whilst they start in the fully controllable area (yellow 

plate) between 𝑥6 =  −0.8 × 1016 and 0.8 × 1016 in the magnified figure, the red 

stars then enters the not fully controllable area (up to approximately 1.6 × 1019). 

This causes failure to the controlled system.  

When the initial pitch angle 𝑥3 is risen to 16.8°, the standard freezing 

technique with saturation reaches its control limit. At this angle, three of the four 

controllers are still functioning well in stabilising the system model but the freezing 

technique with EKF can no longer operate, as shown in Figure 6.45. 



CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS 

 

160 

  

 

(a) 

  

(b) 

Figure 6.45: Stabilisation results from three controllers at the initial pitch angles 

𝑥3= 16.8° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and (b) 𝑥6 with 

logarithmic scale against time. 

 

At this initial pitch angle, the maximum deviations of linear controls and nonlinear 

freezing control are almost of the same values, as shown in Figure 6.45(a). 

Moreover, the linear methods demonstrate smoother curve signals than the 

freezing technique; for example, sharp curves appear at the undershoot in the 

state variable 𝑥2, 𝑥3 and control signal 𝑢  when using the nonlinear method. 

Furthermore, in Figure 6.45 (b), the new state variable 𝑥6 when using the freezing 

technique presents a magnitude of approximately 2.3 × 1018 , which is beyond 
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the fully controllable requirement (at approximately 0.8 × 1016), but the system is 

still stabilisable. This is because, in some cases, it is still possible to partially 

control the system when it presents rank deficiency as long as the unstable 

modes are controllable (Dutton, Thompson, & Barraclough, 1997), as shown by 

the red stars outside the fully controllable area in Figure 6.46. The red stars 

appear around Rank(𝓒) = 3 (green), which is not of full rank; however, it is still 

stabilisable.  Note the fully controllable area has Rank(𝓒) = 6. 

          

Figure 6.46: The rank of controllability matrix and dynamical evolution of state 

variables 𝑥3 and 𝑥4 at the initial pitch angle 𝑥3 =16.8°, using freezing technique 

 

When the initial pitch angle is over 16.8°, the system controlled by the 

nonlinear freezing technique with soft constraint is unstable, as shown in Figure 

6.47. The highest value of the state variable 𝑥6 is approximately 1.4 × 1019 in 

Figure 6.47(b), which is over the range of a controllable system. This is shown by 

the controllability rank graph in Figure 6.48, where the red stars occur outside the 

fully controllable area. 
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(a) 

  

(b) 

Figure 6.47: Unstable system response using freezing technique at the initial 

pitch angle  𝑥3= 16.9° with input saturation: (a) 𝑥1 − 𝑥5 and u against time and 

(b) 𝑥6 with logarithmic scale against time. 

     

Figure 6.48: The rank of controllability matrix and dynamical evolution of state 

variables 𝑥3 and 𝑥4 at the initial pitch angle 𝑥3 =16.9°, using freezing technique 
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Next, Models B and AB are simulated using the freezing control with EKF 

with constrained voltage input, compared against Model A.  Note: the freezing 

control with EKF is selected for simulation in this subsection instead of the stand-

alone freezing technique, because the Kalman filter is advantageous in reducing 

the gyro sensor drift issue in the practical experiments later. 

Simulation results of the alternative models are given in Figures 6.49-6.54. 

 

(a) 

 

(b) 

Figure 6.49: Stabilisation of the TWR system using freezing controllers with 

EKF from on Models A, B and AB at the initial pitch angles 𝑥3 =14.1°: (a) 𝑥1 −

𝑥5 and u against time and (b) 𝑥6 with logarithmic scale against time. 
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Model B reaches the same limitation of maximum initial angle for stabilisation as 

Model A, at 14.1°, but  it can be seen from Figure 6.49 that there are severe 

oscillations in several response graphs. This is because of the not fully 

controllable area near 𝑥3 = 0° of Model B, causing vibrations in the system 

response. In terms of Model AB, the oscillations are much less frequent than 

Model B and are generally smoother than the results obtained for Model A. 

Furthermore, the controllability rank test results of Models B and AB are 

demonstrated in Figure 6.50. It is evident that red stars lie mostly in the yellow 

regions of both graphs. The pink lines in the Model B controllability graph 

corresponds to controllability deficiency, which explains the high frequency 

oscillations in graphs shown in Figure 6.49. 

 

Figure 6.50: The rank of controllability matrix and dynamical evolution of state 

variables 𝑥3 and 𝑥4 from (a) Model B and (b) Model AB, at initial pitch angle 

𝑥3 =14.1°, using freezing technique and EKF  

 

Beyond this initial pitch angle (14.1°), Model B cannot be stabilised using freezing 

and EKF method and crashes, as shown in Figure 6.51.  
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(a) 

 

(b) 

Figure 6.51: Uncontrollable system responses generated using freezing 

controllers with EKF for Model B at the initial pitch angle 𝑥3 =14.2°: (a) 𝑥1 − 𝑥5 

and u against time and (b) 𝑥6 with logarithmic scale against time. 

Furthermore, the rank of the controllability matrix of Model B from 𝑥3 =14.2° is 

demonstrated in Figure 6.52. It can be seen that red stars appear outside the 

yellow area (fully controllable region) and reaches 𝑥6 values of approximately 

−1.7 × 1019, causing the system to be not fully controllable.  
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Figure 6.52: The rank of controllability matrix and dynamical evolution of state 

variables 𝑥3 and 𝑥4 of Model B from initial pitch angle 𝑥3 =14.2°, using freezing 

technique and EKF (Right figure: Magnified) 

 

Simulation has shown that the maximum initial pitch angle which can be stabilised 

from Model AB is slightly increased to 14.3° , which is the broadest angle 

comparing against Models A and B with control results presented in Figure 6.53. 

At this maximum initial pitch angle, high-frequency oscillations appear before the 

signals settle down. Moreover, controllability results show red stars travelling 

inside fully controllable region shown in Figure 6.54, which matches the stable 

responses observed in Figure 6.53.  
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(a) 

 

(b) 

Figure 6.53: Stabilisation of Model AB using freezing controller with EKF at 

initial pitch angle 𝑥3 =14.3°: (a) 𝑥1 − 𝑥5 and u against time and (b) 𝑥6 with 

logarithmic scale against time. 

  

Figure 6.54: The rank of controllability matrix and dynamical evolution of state 

variables 𝑥3 and 𝑥4 of Model AB from initial pitch angles 𝑥3 =14.3°, using 

freezing technique and EKF (Right figure: Magnified) 
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As soft constraints of the control input were presented above, an example 

of hard input constraint is investigated next and system responses are shown in 

Figure 6.55, where the control outcomes from 𝑥3= 20.9° on Model A are identical 

using the four different controllers, namely, LQR, LQG, standalone freezing and 

freezing & EKF combined. Moreover, the maximum initial pitch angle of the 

nonlinear controls with hard constraint is also the same as the linear methods at 

20.9°. 

 

Figure 6.55: Stabilisation of the TWR system (Model A) by four controllers with 

hard constraint at initial pitch angle 𝑥3=20.9°. 
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Figure 6.56: Stabilisation of the TWR system using four controllers on Models B 

and AB with hard constraint at the initial pitch angle 𝑥3= 20.8° 

 

Next, it can be seen from Figure 6.56 that control outcomes using the standalone 

freezing technique and freezing combined with EKF on Models B and AB, from 

𝑥3= 20.8° are also identical (when hard control constraints are applied), shown 

by the overlapping curves on the six graphs. However, they present a maximum 

initial pitch angle of 𝑥3= 20.8°, which is slightly smaller than Model A. 

So far, the simulations demonstrated balancing of the two-wheel robot at 

a maximum power supply of 8.3V, which is the limitation from a LEGO EV3 robot; 

however, in Chapter 3, motor specification of the maximum voltage of the LEGO 

EV3 motor from supplier is 12V. Therefore, Table 6.1 illustrates brief simulation 

results of stabilising a TWR model with the maximum initial pitch angles if the 

voltage supply reaches 12V maximum, compared to 8.3V. 
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Table 6.1 : The maximum initial pitch angle stabilisable from different controllers 

with input constraints 8.3V and 12V. 

Controllers Input constraint  

8.3V 

Input constraint  

12V 

Hard constraint, Model A 

LQR  20.9° 29.1° 

LQG 20.9° 29.1° 

Freezing technique 20.9° 29.2° 

Freezing with EKF 20.9° 29.2° 

Soft constraint, Model A 

Freezing technique 16.8° 22.8° 

Freezing with EKF 14.1° 19.3° 

Hard constraint, Alternative models 

Freezing with EKF 

(Model B) 

20.8° 29.1° 

Freezing with EKF 

(Model AB) 

20.8° 29.1° 

Soft constraint, Alternative models 

Freezing with EKF 

(Model B) 

14.1° 19.5° 

Freezing with EKF 

(Model AB) 

14.3° 19.7° 

 

In Table 6.1, when the input constraint is increased to 12V, as shown in the 3rd  

column,  all controllers present significantly higher stabilisation ranges of the 

TWR, than previously at 8V. Note, the maximum pitch angles of all controls with 

hard constraint at 12V nearly reach 30°, rising by over 8°. When combined with 

soft constraint, the maximum pitch angles of nonlinear methods on different 

model forms have all increased by 5° −  6°. It is evident that soft and hard 

constraints lead to different maximum initial pitch angles. In Section 6.6, the 
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experimental result using LEGO hardware will be compared against simulation 

outcomes of soft and hard constraints, for further demonstration and analysis. 

Next, DC motors with voltages higher than a standard LEGO EV3 motor 

is investigated and their specifications are presented in Table 6.2.  

Table 6.2: Motor specifications from Maxon company, series EC 32 flat 15W 

(Maxongroup, EC 32 flat 15W, 2020) 

 Motor series EC 32 flat 15W 

 

1.Nominal voltage (V) 12 24 48 

2.No load speed (rpm) 4,610 4,530 4,780 

3.Nominal torque (mNm) 25 25.5 24.7 

4.Nominal current (A) 1 0.5 0.257 

5.Terminal resistance (Ω) 3.51 13.8 53.1 

6.Torque constant (mNm/A) 24.1 49 92.8 

7.Rotor inertia (gcm2) 35 

8. Weight (g) 57 

9. Diameter (mm) 32 

 

Three motors from the Maxon series EC 32 flat, shown in Table 6.2, are 

selected to for simulation, combining with the LEGO EV3 robot model 

parameters. Here, it is assumed that the power supply can vary within the 

maximum motor voltage range, and the mass is similar to the current robot power 

supply. The simulation outcomes of stabilising the TWR Model A, using these 

motors, are summarised in Table 6.3. 
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Table 6.3: The maximum initial pitch angle stabilisable from different controllers, 

with varying motor voltages. 

Controllers Motor 12V 15W 

(Nominal torque 

25 mNm) 

Motor 24V 15W 

(Nominal torque 

25.5 mNm) 

Motor 48V 15W 

(Nominal torque 

24.7 mNm) 

Hard constraint 

LQR  28.4° 29.8° 29.6° 

LQG 28.4° 29.8° 29.6° 

Freezing 

technique 

28.7° 29.9° 29.6° 

Freezing with 

EKF 

28.7° 29.9° 29.6° 

Soft constraint 

Freezing 

technique 

22.9° 22.1° 20.7 

Freezing with 

EKF 

20.0° 19.6° 18.9° 

Note, from Table 6.3, there are only small differences amongst the maximum 

initial pitch angles which can be stabilised by each control method, when the 

motor voltage is increased from 12V to 48V. For instance, the maximum initial 

angle achieved from using the LQR controller with motor voltages 12V, 24V and 

48V (all with similar nominal torques at ~25 mNm) are 28.4°, 29.8° and 29.6°, 

respectively. Moreover, the outcomes obtained from using the 12V Maxon motor 

shown in Table 6.3 are almost the same as the one from the 12V LEGO EV3 

motor, shown in Table 6.1. This is also because the nominal torques are similar 

between the two motors, at approximately 25 mNm and 20 mNm, respectively.  

The results above prompted the following investigation, using another motor with 

a significantly higher nominal torque than the previous two motor series EC 32 

flat and the LEGO EV3 motor, i.e., Maxon series EC 60 flat, with its specification 
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given in Table 6.4. Note, the weight and diameter parameters of Maxon series 

EC 60 flat are also higher than the previous two motors. 

Table 6.4: The motor specifications of the series EC 60 flat 100W motor from 

Maxon company (Maxongroup, 2020) 

 Motor series EC 60 flat, 100W 

 

1.Nominal voltage (V) 48 

2.No load speed (rpm) 4,020 

3.Nominal torque (mNm) 298 

4.Nominal current (A) 2.61 

5.Terminal resistance (Ω) 1.11 

6.Torque constant (mNm/A) 113 

7.Rotor inertia (𝑔𝑐𝑚2) 835 

8. Weight (g) 355 

9. Diameter (mm) 60 

The results of stabilising system Model A with the motor series EC 60 flat are 

demonstrated in Table 6.5.  

Table 6.5: The maximum initial pitch angle stabilisable from different controllers, 

with the 48V series EC 60 flat motor. 

Controllers Motor series EC 60 flat, 100W 48V 

(Nominal torque 298 mNm) 

Hard constraint 

LQR 56.3° 

LQG 56.3° 

Freezing technique 90° 

Freezing with EKF 90° 

Soft constraint 

Freezing technique 88.0° 

Freezing with EKF 86.2° 
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It can be seen that the maximum initial pitch angle achieved for stabilisation using 

all controllers increase significantly, as shown in Table 6.5, compared against the 

results from 48V series EC 32 motor shown in Table 6.3, because the motor 

nominal torque is now significantly higher. For instance, the maximum stabilisable 

pitch angles achieved using the standalone freezing technique (88°) and freezing 

technique with EKF (86.2°) with soft constraint shown in Table 6.5 rise by 

approximately 67°. Moreover, these angles using the two linear methods also go 

up by approximately 27° when using the new motor.  

Noticeably, the maximum initial pitch angles which can be stabilised by both 

nonlinear control techniques with hard constrained inputs are much higher than 

what the linear methods could achieve, by approximately 33.7°. Furthermore, the 

freezing technique with and without EKF, using soft constrained inputs, provide 

larger initial pitch angles over the linear controllers, by approximately 31.7° and 

29.9°, respectively.  

This simulation outcome matches the theoretical analysis given in Section 6,3, 

that the nonlinear freezing control provides wider operation range than linear 

controls. Furthermore, the simulation without input saturation, described in 

Section 6.5.1, also presented that maximum initial pitch angles obtained from the 

nonlinear methods were higher than linear controls, similar to the test results with 

a higher power motor, shown in Table 6.5. These parameters of the new motor 

in Table 6.5 can be used to predict the simulation results; however, the practical 

experimentation needs to considerate the weight of new power supply or gear 

systems and the total mass of the robot system also requires to be updated. 



CHAPTER 6 NONLINEAR CONTROL DESIGNS AND IMPLEMENTATIONS 

 

175 

  

6.5.3 Simulation Results on Model Uncertainty 

In this subsection, robustness tests of the control designs for the self-balancing 

TWR models are performed in simulation. This is done by adding extra mass and 

increasing height of the TWR, to determine the impact of model uncertainties on 

system performances. The results are shown and analysed when comparing 

nonlinear freezing controls on Models A, B and AB against the LQG controller. 

Note that all controllers are subject to the same input saturation as described in 

section 6.5.2. 

Normally, the mass of the robot’s body and the total height of LEGO EV3 are 

0.64kg and 0.21m, respectively, as shown in Chapter4: Table 4.1. However, in 

the next simulation, 10% mass and height increases are applied to represent 

modelling uncertainty, making the new (actual) mass and height to be 0.7 kg and 

0.23m, respectively. 

To begin with, Figure 6.57 displays the responses of three TWR models 

controlled by the nonlinear freezing technique and EKF from an initial pitch angle 

𝑥3 = 12.5°, which is the maximum stabilisable angle for Models A and B, taking 

into account of model uncertainties. It can be seen that Model B generates most 

oscillations in its response graphs; in contrast, the smoothest curve signals are 

generated when controlling Model AB. Moreover, when mass and height of the 

TWR are increased to represent model uncertainty but are not reflected in the 

models, the maximum initial pitch angles which can be stabilised by freezing and 

EKF, on Models A and B, have decreased by 1.6°. Models A and B become 
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unstable, when the initial pitch angle is beyond𝑥3 = 12.5°, as demonstrated in 

Figure 6.58..  

 

Figure 6.57: Stabilisation of TWR Models A, B and AB (with model 

uncertainties) by freezing controller with EKF from initial pitch angle 𝑥3 =12.5°.  

 

Figure 6.58: Unstable response of TWR Models A and B (with model 

uncertainties), by freezing control with EKF from initial pitch angle 𝑥3 =12.6°.  
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Additionally, Model AB can achieve slightly larger initial pitch angle (13°) 

for stabilisation than Models A and B (12.6°). Figure 6.59 shows the stabilised 

system response from an initial pitch angle 𝑥3 = 13°, which represents a 

decrease from 14.3° achieved previously when weight and height parameters 

were correctly modelled. When increasing the initial pitch angle to 13.1°, Model 

AB displays unstable responses, as shown in Figure 6.60. 

 

Figure 6.59: Stabilisation of TWR Model AB (with model uncertainties) by 

freezing controller with EKF from the initial pitch angle 𝑥3 =13°.  

 

Figure 6.60: Unstable response of TWR Model AB (with model uncertainties), 

by freezing controller with EKF at initial pitch angle 𝑥3 =13.1°. 
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In terms of linear control, the LQG with hard constrained input is applied 

to stabilise the system in Figure 6.61, presenting the maximum initial angle 𝑥3 =

19.7° lower than before adding weight and height approximately 1.2°. Beyond this 

angle, the system is uncontrollable, as demonstrated in Figure 6.62. Significantly, 

the maximum initial pitch angle by the LQG is wider than the nonlinear controllers. 

This is because they apply the input constraint method to control the systems, 

which is different from the nonlinear controllers. 

 

Figure 6.61: Stabilisation of LQG controller at the initial pitch angle 𝑥3 = 19.7° 

 

Figure 6.62: Uncontrollable system of LQG controller at the initial pitch angle 

𝑥3 = 19.8° 
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6.6 Experimental Results 

In this section, the standard freezing control and freezing technique with extended 

Kalman filter (EKF) will be applied to the LEGO Mindstorms EV3 robot, using the 

Simulink block diagrams shown in Appendix B (Figures B3.1 and B3.3).  

As described in Section 6.3, the feedback gains of nonlinear controllers 

were generated by solving algebraic Riccati equation at every time step. 

Unfortunately, the algebraic Riccati MATLAB function does not support code 

generation in Simulink programme; in this case, the algebraic Riccati function 

cannot run on the LEGO EV3 robot directly. Therefore, lookup tables of the 

algebraic Riccati equation have been used to store the feedback gains 𝑲 and 

𝑲𝒇 for standard freezing technique and freezing technique with EKF, calculated 

in MATLAB. Because of the limitation of LEGO EV3’s memory, the lookup tables 

were designed by restricting the state variable 𝑥3 to be between −20°and 20° , 

and state variable 𝑥4 to be between  −130°/𝑠 and 130°/𝑠, covering the operation 

ranges achievable using the hardware specifications; moreover, the 

measurement precisions for the pitch angle 𝑥3 and the pitch angular velocity 𝑥4 

were at nearest 1° and 5°/𝑠, respectively (see details in Appendix B, Table B3.1).  

 

6.6.1 Implementations from Varied Initial Pitch Angles 

The results of hardware implementation by applying the freezing 

techniques with varied initial pitch angles are demonstrated in Figures 6.63-6.68. 
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(a) 

 

(b) 

Figure 6.63: The stabilising freezing control implemented on LEGO EV3 robot 

compared to simulation, at initial pitch angles (𝑥3): (a) 8° and (b) 16.8°  

 

In Figure 6.63, first of all,  the outcomes of balancing TWR system using 

the standard freezing technique with input constraint in simulation (red plot) and 

hardware implementation (blue plot) are presented, from the initial pitch angles 

𝑥3 = 8° and 16.8° (previous simulation results show the maximum stabilisation 

angle is at 16.8°). It can be seen that hardware signals of state variables 𝑥1, 𝑥3 
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and 𝑥5 in Figure 6.63 (a) and (b) diverge from the centre, due to the issues of 

gyro sensor drifts. In particular, both pitch angles 𝑥3 drift away significantly (by 

approximately −8°) after 10 seconds of simulations. This error also affects state 

variables 𝑥1 and 𝑥5 as they are continually compensating for the sensor drift 

problem. For example, state variables 𝑥1 in both Figure 6.63 (a) and (b) deviate 

from the reference positions by approximately 60° and also in both figures, 

𝑥5 diverge from the reference angle by approximately 600° after the robot is 

stabilised in 10 seconds. 

 

Figure 6.64: The stabilisation from different initial pitch angles (𝑥3) 16.6° and 

18°, implemented on LEGO EV3 robot using freezing technique 

 

When the initial pitch angle is increased to 18° in Figure 6.64, the sensor 

drift problem is still apparent. Furthermore, the maximum deviations from the two 

sets of responses are similar; for instance, both maximum overshoots of wheel 

angles 𝑥1 are at approximately 250°, and both lowest drifts of the pitch angles 𝑥3 

are about −12°. Slightly more oscillations occur in the 𝑥3 response when starting 
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from 18°, with an approximate 6° increase in maximum overshoot when compared 

against the 𝑥3 response when starting from 16.6°. In addition, there are a few 

more undershoots in the 𝑥1 plot for the initial pitch angle =18° case. These 

additional overshoots and undershoots occur because the LEGO EV3 robots 

requires longer distance and more time to balance itself when the initial angle 

increases.  

Over this limitation angle, the hardware crashes because it resulted in an 

unstable system, as shown in Figure 6.65. Significantly, the freezing technique 

illustrates slightly more extensive operation range (18°) than the LQR method (by 

approximately 2°) when performed on the Lego two-wheel robot with input 

constraint. This is because the feedback gain of nonlinear freezing control is 

varied by state variables, in contrast to the linear method where the gain is 

constant.   

 

Figure 6.65: Unstable responses from the initial pitch angle18.5°, implemented 

on LEGO EV3 robot using freezing technique 
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In terms of combining freezing technique with EKF, Figure 6.66 compares 

the outcomes of simulation and LEGO EV3 robot when implementing at the initial 

pitch angles 8° and 14°, which is close to the maximum initial angle in simulation 

(14.1°).  

 

 

(a) 

 

(b) 

Figure 6.66: Stabilising control of the LEGO EV3 robot compared to simulation 

at the initial pitch angles: (a) 𝑥3 =8° and (b) 𝑥3 =14°,using freezing technique 

with EKF 
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It can be seen from Figure 6.66 (a) and (b) that both hardware signals (blue 

curves) in the state variable 𝑥3 graphs converge to the reference position in the 

same way as the simulation signals (red curves), because gyro sensor drifts are 

reduced by the application of the extended Kalman filter. In contrast, there are 

slight errors shown in both wheel integrals 𝑥5 of the LEGO EV3 robot, which do 

not converge to the reference position. This is due to the averaged signals of 

wheel angles 𝑥1 not being centred, caused by hardware vibrations. For instance, 

both initial pitch angles show that signals diverge from the centre by 

approximately −20°. Note, the maximum overshoots of state variables 𝑥1 and 𝑥5 

in hardware implementation show almost the same results as in simulation.  

 In the case of increasing initial pitch angle, the maximum initial angle 

achievable by the freezing technique with EKF is 18°, as shown in Figure 6.67, 

which is similar to the standalone freezing technique (without EKF). Similarly, 

simulation results in Section 6.5.2 show that the freezing technique with EKF 

stabilised system equally well as the standalone freezing technique, under 

constraint conditions. Noticeably, the gyro sensor drift is now much reduced. 

Moreover, the maximum deviations of the two sets of responses shown in Figure 

6.67 have slight differences when the initial pitch angle is increased from 14° to 

18°. For instance, the maximum magnitude of the wheel angle 𝑥1 grows by 

approximately 70° and the undershoot of 𝑥3 expands by approximately 2°,when 

initial pitch angle increases. 
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Figure 6.67: The stabilisation from different initial pitch angles (𝑥3) 14° and  18°, 

implemented on LEGO EV3 robot using freezing technique with EKF (sensor 

drift reduced) 

At over the initial angle of 18°, the LEGO EV3 controlled by the freezing 

technique with EKF results in an unstable system and crashes and the responses 

are given in Figure 6.68.    

 

Figure 6.68: Unstable responses from the initial pitch angle 18.5°, implemented 

on LEGO EV3 robot using freezing technique with EKF 
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6.6.2 Alternative Models’ Implementations 

In this subsection, nonlinear feedback control of alternative models, including 

Models B and AB, are tested on a practical robot with varied initial pitch angles, 

compared against the primary model (Model A). Note that, in the case of 

nonlinear control, only freezing control combined with EKF is selected for 

implementation (to resolve the sensor drift issue), of which the simulation tests 

have been completed in section 6.5.2  

Firstly, the freezing control and EKF gains obtained from using Model B, 

are implemented on the LEGO EV3 robot. The result in Figure 6.69 shows that 

the system is unstable, although the initial pitch angle is set as 0° or at the 

balancing point. This unstable system response matches the controllability test 

outcome, which demonstrated that the area near 𝑥3 = 0° is not fully controllable 

when Model B is used to represent the TWR system. 

 

Figure 6.69: Unstable response from the initial pitch angle 𝑥3= 0°, implemented 

on LEGO EV3 robot using freezing technique with EKF on Model B 

 Additionally, Figure 6.70 illustrates the maximum initial pitch angle 

achievable for Model AB, 𝑥3 = 20°, slightly larger than the one from Model A (18°) 
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and also wider than what the linear controllers could achieve, i.e., LQR (16°) and 

LQG (16°). Once goes over the initial angle of 20°, the TWR represented by Model 

AB becomes unstable and crashes, as shown in Figure 6.71. 

 

Figure 6.70: The stabilisation from initial pitch angle 𝑥3 = 20°, implemented on 

LEGO EV3 robot using freezing technique with EKF on Model AB 

 

Figure 6.71: Unstable response from initial pitch angle 𝑥3 =  20.5°, implemented 

on LEGO EV3 robot using freezing technique with EKF on Model AB 

 

It can be seen that the balancing system using Model AB gains benefit 

from combining the models, utilising the strengths of Models A and B in different 

regions: i.e., the feedback gains of Model B are used to control wide pitch angles 
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and the feedback gains of Model A are used to balance the system at around the 

equilibrium (upright position). This is the reason that a mixed nonlinear model can 

provide more comprehensive operation range than otherwise. 

 

6.6.3 Model Uncertainty Implementations 

The robustness tests of implementing control designs on the LEGO TWR with 

model uncertainties (by increasing 10% of mass and height) are demonstrated in 

this subsection. Three balancing systems are investigated through a series of 

tests,  including the applications of the LQG controller, and the freezing controller 

with EKF using feedback gains calculated using Models A and AB. Note that 

Model B is not considered in the robustness test as the feedback gains of the 

model could not stabilise the robot at equilibrium, as presented in Figure 6.69. 

 To begin with, the maximum initial pitch angle of balancing robot system 

using LQG controller under the specified model uncertainties, is 15°, and the 

responses are shown in Figure 6.72. This angle is lower than an accurately 

modelled system (without extra weight and height) using the LQG controller by 

approximately 2°. Moreover, the system becomes unstable when the initial pitch 

angle is increased over 15°, as shown in Figure 6.73. 
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Figure 6.72: The stabilisation from initial pitch angle 𝑥3 = 15°, implemented on 

LEGO EV3 robot using LQG controller with added mass and height 

 

Figure 6.73: Unstable response from initial pitch angle 𝑥3 = 15.5°, implemented 

on LEGO EV3 robot using LQG controller with added mass and height 

Furthermore, the practical control of the LEGO robot with added mass and 

height, utilising feedback gains calculated from Model A, is presented in Figure 

6.74. As the mass and height are both increased by 10%, the maximum initial 

pitch angle stabalisable is dropped from  18° to 16°. When goes over the initial 

pitch angle 16°, the LEGO EV3 robot crashes as the system becomes unstable, 

shown in Figure 6.75. However, this initial angle is slightly larger than when the 
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robot was control using LQG controller (shown in Figure 6.72), by approximately 

1°.  

 

Figure 6.74: The stabilisation from initial pitch angle 𝑥3 = 16° implemented on 

LEGO EV3 robot using freezing control and EKF on Model A, with added mass 

and height 

 

Figure 6.75: Unstable responses from initial pitch angle 𝑥3 = 17°, implemented 

on LEGO EV3 robot using freezing control and EKF on Model A with added 

mass and height 

Finally, the extra mass and height are added to a TWR controlled by 

freezing control and EKF with feedback gains obtained using Model AB. The 

stabilising system responses are demonstrated in Figure 6.76 with the maximum 
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initial pitch angle reaching 18°, representing a decrease of roughly 2°, from the 

unloaded condition. Significantly, this initial angle of 18° is the widest when 

comparing against outcomes obtained from other controllers, under the same 

model uncertainty condition. The maximum initial pitch angle achieved here is 

larger than using the freezing control and EKF with Model B by approximately 2°, 

and wider than the LQG controller by approximately 3°.  

 

Figure 6.76: The stabilisation from initial pitch angle 𝑥3 = 18°, implemented on 

LEGO EV3 robot using freezing control and EKF on Model AB, with added 

mass and height 

 

Figure 6.77: Unstable responses from initial pitch angle 𝑥3 = 19°, implemented 

on LEGO EV3 robot using freezing control and EKF on Model AB, with added 

mass and height 
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The maximum initial pitch angle of a TWR which can be stabilised by 

different controllers are summarised in Table 6.6.  

Table 6.6: The maximum initial pitch angles achieved using different controllers, 

in simulations and in practical implementations. 

 Input 

unconstrained 

simulation 

Hard input 

constrained 

at 8.3V, 

simulation 

Soft input 

constrained 

at 8.3V,  

simulation 

LEGO EV3 

robot 

implementation 

LQR 

 

65.7° 20.9° Incapable 16° 

LQG 

 

65.7° 20.9° Incapable 16° 

Freezing 

(Model A)  

87.2° 20.9° 16.8° 18° 

Freezing with EKF 

(Model A) 

87.2° 20.9° 14°. 1 18° 

Alternative models 

Freezing  

(Model B) 

90° 20.8°   

Freezing with EKF 

(Model B) 

90° 20.8° 14.1° Not fully 

controllable 

Freezing  

(Model AB) 

90° 20.8°   

Freezing with EKF 

(Model AB) 

90° 20.8° 14.3° 20° 

Model uncertainty test: Adding 10% extra mass and height  

LQG 

 

 19.7° Incapable 15° 

Freezing with EKF  

(Model A) 

  12.5° 16° 

Freezing with EKF 

(Model B) 

  12.5° Not fully 

controllable 

Freezing with EKF 

(Model AB) 

  13° 18° 

It is evident from the summary table, Table 6.6, that nonlinear controllers 

provide larger stabilisation ranges and are more robust (when subject to model 

uncertainties) than linear controllers, in both simulation and practical 
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experimentations. Furthermore, nonlinear controls also present opportunities of 

combining multiple state-space models so their strengths in different controllable 

regions can be utilised. The combined model, Model AB, controlled by the 

nonlinear freezing method and EKF therefore demonstrated the widest 

operational range, as shown in this research. 

 

6.7 Conclusion 

 In this chapter, the stabilisation problem of an inverted pendulum on a cart 

system was studied first, through controller designs (LQR, nonlinear freezing 

control and nonlinear iteration (also called LTV) scheme) and simulation 

verifications. The results demonstrated that both nonlinear control methods were 

capable of providing stabilising control on broader ranges of the pendulum rod 

angle than the optimal linear control method could. The largest angle stabilisable 

was obtained by the nonlinear freezing controller at 80.5°, followed by the LTV 

method at 61.3° and the smallest angle achievable amongst the three powerful 

techniques was given by the LQR controller, at 49.2°. This is because both the 

nonlinear freezing technique and the iteration scheme calculate and refresh 

feedback gains based on the time-varying state variables at the current time (at 

every new time step, in digital implementation). In contrast, the feedback gains of 

linear control are calculated based on the linearised model and fixed, assuming 

the system would operate around a small neighbourhood of the equilibrium. As 

illustrated by the simulation results in this chapter, the advanced nonlinear 

freezing control demonstrated higher capability of stabilise the inverted pendulum 

system than the LTV method. On top of that, practical considerations revealed 
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that the memory of LEGO EV3 was too limited to store large data sets needed 

for the LTV controller. Therefore, the nonlinear freezing method is selected as the 

control technique for the stabilisation of a two-wheeled robot, in simulation and 

practical implementation on a LEGO EV3 prototype in the later sections. 

 In the case of TWR simulation, both the standalone nonlinear freezing 

technique and the nonlinear freezing + EKF showed very similar results for all 

initial pitch angles tested under an unconstrained input condition. Moreover, the 

maximum initial pitch angles achievable from these two controllers were also 

nearly identical, at ~87.2°. In particular, both nonlinear freezing controls 

demonstrated significantly wider operation ranges to balance the TWR system 

than the LQR (by approximately 21.5°) with the same parameter settings 

otherwise. Noticeably, a 2nd advantage of the nonlinear freezing method was 

shown in this chapter, that one could analyse controllabilities of different state-

space models of the system and combine appropriate models to enlarge the 

overall controllability range. It was demonstrated that a mixed model, namely 

Model AB, controlled by the freezing + EKF method, could reach an initial pitch 

angle up to 90°, wider than the angle achievable from the primary model (Model 

A) and any other methods reported in the literature. 

In terms of the TWR control simulation under input saturation, both 

freezing techniques presented similar results as the implementation; on the other 

hand, the limitation of initial pitch angles were slightly different, where the 

standalone freezing method demonstrated slightly higher initial pitch angle, by 

approximately 3°. Note, the maximum initial pitch angles of nonlinear standalone 
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freezing technique and freezing technique with EKF were identical to the LQR 

and LQG methods (20.9°), when a hard constraint of 8.3V control input by the 

LEGO EV3 power supply was applied. Moreover, the combination model (Model 

AB) was also investigated in simulations, and it presented slightly wider operation 

range over the primary model (Model A) and Model B using nonlinear freezing 

controllers with EKF, but less than the LQG method using hard input constraint 

by approximately 7°. Furthermore, the inclusion of other motors with high powers 

were studied in simulations. The results demonstrated both freezing techniques 

operating at extensive initial pitch angles (over 86°) under soft constrained input 

condition, which were much wider than the linear methods (by ~30°), when the 

maximum motor voltage was increased to 48V and the motor torque was 

increased to nearly 15 times higher (298 mNm)  than LEGO EV3’s motor (20 

mNm). Significantly, the initial pitch angles using both nonlinear freezing 

techniques (with and without EKF) reached to 90°, when using the hard 

constrained input.  

Additionally, robustness tests were conducted in simulation and on the 

LEGO robot. The TWR models with input saturation were simulated under model 

uncertainties by adding 10% mass and height to the robot in simulation. It was 

demonstrated that both the freezing control and EKF (applied to three models)  

and LQG, were capable of stabilising the system in the upright position, even 

though the initial pitch angles were reduced by approximately 1°.  

With regard to hardware implementation, the LEGO EV3 robot was tested 

to show it could be stabilised from different initial pitch angles with suitable control 
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designs. Both freezing techniques (without and with EKF) demonstrated excellent 

control of the LEGO EV3 robot, satisfying the self-balancing requirement. In 

particular, the nonlinear controls with the feedback gains obtained from using the 

primary model presented slightly better capability than the linear methods, where 

the maximum initial pitch angles achieved are larger than the linear controllers 

(16°) by approximately 2°. When the mixed model (Model AB) is utilised, this 

difference of using the nonlinear freezing technique with EKF over LQG is 

increased to 4°. In the case of adding model uncertainties, the practical robot 

remains stabilised using the linear optimal and nonlinear optimal controllers; 

however, the maximum initial pitch angles from both methods dropped by 

approximately 1° − 2°. Importantly, clear advantage of using the nonlinear 

freezing method for the mixed model was shown when the maximum stabilisable 

angle was 2° and 3° larger than using the LQG method and using freezing on the 

primary model, respectively. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

The aim of the research presented in this thesis is to study, analyse and apply 

nonlinear optimal control techniques to stabilise two highly unstable systems, 

namely, the inverted pendulum on a cart and the two wheeled robot. This has 

been achieved through mathematical modelling, controller design, signal filtering 

estimation, simulation and practical implementation.  

 7.1.1 Mathematical Models 

The inverted pendulum on a cart system is a classical benchmarking tool 

for testing capabilities and effectiveness of different control methods and shares 

similar dynamical structures with the two-wheeled robot. Therefore, the inverted 

pendulum model was investigated in this research first. The initial model in 

nonlinear differential equation form was obtained using the Lagrangian approach 

based on the system's potential energy and kinetic energy. Then, a nonlinear 

state-space matrix form of the inverted pendulum on a cart system was presented 

and the system matrix A heavily depended on the state vector, in particular, the 

pendulum angle and the angular velocity. This nonlinear state-space model was 

approximated as a linear one, assuming the pendulum angle was within a small 

neighbourhood of the equilibrium, i.e., near the upright position. Note that state-

space representations are generally non-unique for any system which affect the 

controllability of the system. Therefore, different forms of the state-space matrices 
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of the inverted pendulum system were derived and the associated controllability 

analyses were performed.   

Likewise, a nonlinear model consisting of a set of differential equations of 

the TWR were created using the Lagrangian method which led to nonlinear and 

(subsequently approximated) linear state-space models. A key difference 

between the controls for the IP system and the TWR was the physical control 

variables designed: for the IP system, this was a force on the cart in the horizontal 

axis, whilst for the TWR, they were motor voltages. Therefore, forces were 

converted to voltages in the system equations for the TWR. Additionally, a 

tracking design was combined with the TWR equations to form a higher order 

system, supporting the robot to track a pre-defined wheel displacement 

reference.  

7.1.2 Linear Control Implementations 

Controllability tests were utilised to analyse whether a linear state-space 

controller such as LQR would be appropriate for the control of the linearised IP 

and TWR systems first. The rank tests of the controllability matrices of both 

models demonstrated that the linearised systems were completely controllable. 

Furthermore, observability tests were also conducted on these linear models 

which examined whether the state variables could be estimated or observed 

using measurements made at the outputs. The results illustrated that both 

systems were completely state observable and therefore suitable for Kalman filter 

designs and implementations. 
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Next, simulations of an inverted pendulum on a cart controlled by LQR, starting 

from a range of initial pendulum angles, were performed. It was found that the 

maximum initial pitch angle of an IP system which the LQR method could stabilise 

without input saturation was 42.9°. In the case of a TWR model, the balancing 

system by LQR and LQG controllers demonstrated a similarly limited initial pitch 

angle of 65.7°, without input saturation. Moreover, when a hard input constraint 

of 8.3V was applied in simulation, the TWR model reached a maximum initial 

pitch angle at 20.3°, for both linear control methods (LQR and LQG). 

Furthermore, a practical TWR prototype, built with LEGO Mindstorms EV3 kit, 

was used to verify simulation outcomes from both linear controllers. The 

implementations showed that the robot could be stabilised and maintained in the 

upright vertical position, from a maximum initial pitch angle of 16°, when using 

both linear control techniques. In particular, a gyro sensor drift issue experienced 

in the LQR control system was significantly reduced by the Kalman filter 

embedded in the LQG controller. 

 7.1.3 Nonlinear Control Implementations 

Similar design procedures as the linear controls took place for the 

nonlinear controls. First, controllability and observability tests were conducted for 

nonlinear models of the IP system and TWR system. However, different to the 

linear cases, the controllability and observability matrices depended on the state 

variables of the nonlinear systems and therefore the rank test results vary. These 

were explored pictorially as 2D or 3D plots, showing fully controllable regions and 

others which are not fully controllable. This information was helpful in predicting 
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suitability of the nonlinear system to be stabilised by nonlinear state-space 

controllers. 

Two advanced nonlinear control methods, namely the nonlinear optimal 

freezing technique and the nonlinear iteration scheme, were designed and 

applied to control the IP model without input saturation, in simulations. The results 

demonstrated that both nonlinear controllers achieved larger initial pendulum 

angle ranges than LQR and LQG. This is because the nonlinear methods 

calculated state-variable dependent feedback gains and applied them to the 

systems at appropriate points; on the other hand, the feedback gains of linear 

controls were fixed for the linearised model which assumed the operation of IP 

around a restricted area around the balancing position. Moreover, the stabilising 

system by nonlinear freezing control method presented a wider initial pitch angle 

than the nonlinear iteration scheme by approximately 20°, therefore, the freezing 

control was selected as the best performing controller for the study on the 

practical TWR next. 

In the case of TWR models, excellent simulation results were obtained 

when balancing the system using both a standalone nonlinear freezing controller 

and a freezing control with EKF (with no input saturation), illustrating maximum 

initial pitch angles of the TWR’s body, both at 87.2°. These were  larger than both 

linear methods by approximately 21.5°. These results were supported by the 

controllability test, showing dynamic evolution paths of the state variables 

(starting from 87.2°) stayed within the fully controllable area.  When the initial 

angles were over 87.2°, in contrast, the state variables travelled outside of the 

fully controllable regions. Next, input saturations were introduced to the TWR 



CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

 

201 

 

control in simulation to take into account of physical limitations on motor voltages. 

Several voltage saturations between 8.3V to 48V were experimented, and 

simulation results demonstrated that the stand-alone freezing technique and 

freezing with EKF when operating with a motor at 48V voltage and 298 mNm 

nominal torque, achieved maximum stabilised initial pitch angles, at 88° and 86°, 

respectively. These pitch angles were larger than any other single closed-loop 

control technique could achieve, as reported in the literature, and were much 

wider than the ones obtained by linear optimal controllers shown in this thesis, by 

approximately 30°- 32°. 

Additionally, the advantage of performing controllability tests was that different 

state-space models of the TWR system could be combined to create better 

controllability outcomes. For example, simulation results showed that the new 

mixed model, Model AB, of the TWR system, demonstrated the largest initial pitch 

angle, when compared against the primary model and Model B. 

 Experimentations using the TWR prototype constructed from LEGO EV3 

demonstrated satisfying results for balancing the system in the upright position, 

using nonlinear freezing controls with and without EKF. Significantly, the largest 

initial pitch angle stabilisable was achieved as 20°, using the freezing control and 

EKF gains calculated from the mixed model AB, which was wider than the 

nonlinear freezing control from the primary model (Model A) by approximately 2°, 

and larger than the linear optimal methods by 4°. Furthermore, robustness tests 

(with introduced model uncertainties) were conducted on the LEGO robot with 

nonlinear freezing and EKF applied. The implementation illustrated that all 

controllers still stabilised the robot in the upright position when undergoing mass 
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and height increments and the nonlinear controllers still operated at larger initial 

pitch angles than the linear methods. All the above simulation and implementation 

outcomes demonstrated that the nonlinear optimal freezing control was a 

powerful technique, in achieving global control with excellent performance. 

7.2 Recommendation for Future Work 

In this thesis, research work focused on the applications of two advanced 

nonlinear control techniques on the stabilisations of the inverted pendulum and 

the two-wheeled robot systems in simulation and practical implementation. In 

future work, a practical robot prototype should be upgraded to one with a higher 

motor voltage and nominal toque, as well as being more flexible. For instance, 

the robot built from an Arduino microcontroller or NI myRIO Embedded Device 

may be a better choice, as it can apply 3rd party hardware to make the system 

more stable. In the experiments conducted during this research, a LEGO 

Mindstorms EV3 was selected to build the TWR prototype because of the 

availability of this resource; however, it was complicated to integrate other 

sensors or actuators into the LEGO EV3 controller. For example, there was 

merely a gyro sensor that could be used to calculate the pitch angle which caused 

the sensor drift problem. An accelerometer could not be added to the LEGO robot 

for calculating the pitch angle by the sensor fusion technique.  

With regard to the actuator performance, the voltage range of motor should be 

increased in future work. It could be seen in the simulation of nonlinear systems 

in section 6.5.2 that a high voltage motor provided a wider operational range to 

stabilise the system. 
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Additionally, the flash memory storage of a LEGO EV3 controller had been limited 

to 5 MB for downloading a file, which was a small capacity for storing data; for 

instance, the look-up table of nonlinear freezing control technique needed to 

manage the limited data range to store inside the LEGO robot’s memory. 

Therefore, the replacement robot should have more memory to increase the 

amount of control gain data stored and would therefore lead to better control 

outcomes.  

For control strategy development, the simulation of nonlinear control, namely the 

iteration scheme based on the LQR controller, demonstrated a smaller operating 

range than the freezing technique; however, the iteration scheme can be 

combined with various other control techniques to provide feedback gains, which 

are likely to achieve a more comprehensive operation range or more stable 

system. For instance, the combination of a sliding mode controller and the 

iteration scheme was used to control velocity tracking of a hydraulic press model 

(Du et al.,2009); furthermore, the mixing of iteration scheme and pole placement 

technique was applied to control F-8 aircraft (Tomas-Rodriguez & Banks, 2013) 

When the practical robot is upgraded in the future, the operational range of the 

stabilising system is expected to be more extensive, as the simulation resulted 

had so far indicated. Therefore, implementations on the upgraded robot will 

demonstrate the advantages of the nonlinear control systems against the linear 

methods more obviously, such as when the TWR robot is subject to external force 

disturbances or travelling on uneven surfaces, etc. 
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Appendix A 

MATLAB Codes 

 

Chapter 5: Linear Control Strategies 

Appendix A.5.1: Linear quadratic regulator function in MATLAB 

The algebraic matrix Riccati equation: 

𝟎 = 𝑷𝑨 + 𝑨′𝑷 − 𝑷𝑩𝑹−𝟏𝑷 + 𝑸. (5.5) 

Equation (5.5) can be solved by applying the linear quadratic regulator function 

in MATLAB function commanded by: 

[𝑲, 𝑷, 𝑬] = 𝒍𝒒𝒓(𝑨, 𝑩, 𝑸, 𝑹)  

where the 𝑬 is eigenvalue vector, the matrix 𝑲 is optimal feedback gain and the 

matrix 𝑷 is the positive definite solution of the algebraic matrix Riccati equation. 

 

 Appendix A.5.2: Rank of the controllability matrix command 

To implement the rank of the controllability matrix, substitute 𝑨 and 𝑩 matrices by 

into Eq. (5.8):  

𝓒 =  [ 𝑩 𝑨𝑩 𝑨𝟐𝑩 𝑨𝟑𝑩], (5.8) 

and then apply MATLAB command,  

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝓒) or 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝑐𝑡𝑟𝑏(𝑨, 𝑩)). 
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The result given is Rank(𝓒) = 4, equal to the number of rows in matrix 𝑩; 

therefore, the system is said to be completely state controllable. Similarly, the 

rank test of Eq.(5.9) can use the same MATLAB command.  

 

Appendix A.5.3: MATLAB codes of an inverted pendulum on a cart system 

using LQR controller 

Script file: LQR_single_pendulum_4s.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%   Linear control (LQR) of an inverted pendulum on a cart system 

%    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clear all; 

close all; 

  

m1=2; %Mass of the cart (kg) 

m2=0.1; %mass of the pendulum (kg) 

r=0.5; %the rod length (m) 

g=9.8; %acceleration due to gravity (mˆ2/s) 

  

  

x1(1)=0; %set initial cart displacement to be 0 (m) 

x2(1)=0; %set initial cart velocity to be 0 (m/s) 

x3(1)=40*pi/180; %set initial pendulum angle to be pi (rad) 

x4(1)=0; %set initial pendulum angular velocity to be 0 (rad/s) 

  

u(1)=0; % Control input 

  

Ts = 0.001;   % step size   

Duration=10;  % 10 sec 

t=Duration*(1/Ts); 

Time = 0:Ts:t*Ts;  % the range of x-axis 

  

%set Q and R matrices 

Q=[1, 0, 0,  0;  

   0, 1, 0,  0;  

   0, 0, 100, 0;   

   0, 0, 0, 10]; 

R=0.01; 

  

  

for i=1:t 

x=[x1(i); x2(i); x3(i); x4(i)]; 

%define and update the x vector 

  

  

%%% Nonlinear model from Xu's book chapter  %%% 

x_3=x(3); x_4=x(4); 

  

AN=[0, 1, 0, 0; 
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0, 0,-m2*g*sin(x_3)*cos(x_3)/((m1+m2*(sin(x_3))^2)*x_3),... 

m2*r*x_4*sin(x_3)/(m1+m2*(sin(x_3)^2)); 

0, 0, 0, 1; 

0, 0,(m1+m2)*g*sin(x_3)/(r*(m1+m2*(sin(x_3))^2)*x_3),... 

-m2*r*x_4*sin(x_3)*cos(x_3)/(r*(m1+m2*(sin(x_3))^2))]; 

  

BN=[0; 1/(m1+m2*(sin(x_3))^2); 0 ; -cos(x_3)/(r*(m1+m2*(sin(x_3))^2))]; 

  

  

%%% Linear model from Xu's book chapter %%% 

AL=[0, 1, 0, 0; 

0, 0,-m2*g/m1, 0; 

0, 0, 0, 1; 

0, 0,(m1+m2)*g/(r*m1), 0]; 

  

BL=[0; 1/m1; 0 ; -1/(r*m1)]; 

  

  

[~,P,~]=lqr(AL,BL,Q,R); 

%use the MATLAB ‘lqr’ function to solve Riccati equation and 

%work out P 

  

u_out=(-inv(R)*BL'*P)*x; 

  

fx=(AN-BN*(1/R)*BN'*P)*x; 

%calculate the function output ‘fx’ based on values of A, B, P 

%and x. 

 x = x + Ts * fx;   % Euler method 

  

     %%% Limit the pitch angle between -90 to 90 deg. 

    if x(3) > 90*pi/180 

        x(3) =90*pi/180; 

    end     

     if x(3) < -90*pi/180 

        x(3) =-90*pi/180; 

     end    

  

  

x1(i+1)=x(1); 

x2(i+1)=x(2); 

x3(i+1)=x(3); 

x4(i+1)=x(4); 

%Reset the x1, x2, x3 & x4 variables to new values and get ready 

%for the next iteration. 

  

u(i+1) = u_out; 

      %%% print out %%%% 

    Cal_percent = i*100/(t); 

    if mod(Cal_percent , 10) == 0 

        fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

  

  

  

end 

  

  

figure('Name','LQR Control'); 

Fn = 12; % font size 

  

subplot(2,3,1); 

p1=plot(Time,x1); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Cart displacement x1 

(m)','FontSize', Fn); 

set(gca,'FontSize',Fn); 
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subplot(2,3,4); 

p2=plot(Time,x2); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Cart velocity x2 

(m/s)','FontSize', Fn); 

set(gca,'FontSize',Fn); 

  

subplot(2,3,2); 

p3=plot(Time,x3*180/pi); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Pendulum angle x3 

(deg)','FontSize', Fn); 

set(gca,'FontSize',Fn); 

  

subplot(2,3,5); 

p4=plot(Time,x4*180/pi); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Pendulum angular velocity x4 

(deg/s)','FontSize', Fn); 

set(gca,'FontSize',Fn); 

  

subplot(2,3,3); 

p5=plot(Time,u); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Control signal-u (N)','FontSize', 

Fn); 

set(gca,'FontSize',Fn); 

  

Size=1.1;  

p1.LineWidth = Size;  

p2.LineWidth = Size;  

p3.LineWidth = Size;  

p4.LineWidth = Size;  

p5.LineWidth = Size;  

 

 

Appendix A.5.4:MATLAB codes of a TWR system using LQR controller 

Script file: Gyroboy_5s_LQR_10_2021.m 

%%%% Linear Control (LQR) for LEGO EV3 Robot 
  

%%%%%%  Functions programme needed %%% 

%  

% evalrhs_gyroboy5s_LQR();      % Generating K1-K4, fx and Kf 

% 

%      Inside two functions 

% 

%           Gyroboy_Nonlinear_Model_5s();  

%           Gyroboy_Nonlinear_Model_4s();  

%           Maxon Motor parameters etc. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  

clear all; 

close all; 
  

%%% Set initial x1-x5 

%%% Always set x1=x3 
  

x1(1)=14.1*pi/180;      %set Theta - Average of wheel angles (deg) 

x2(1)=0;                %set Theta_DOT (deg/s) 

x3(1)=14.1*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO 

x4(1)=0*pi/180;         %set Psi_DOT (deg/s) 

x5(1)=0;                %set Theta integral 
  

 %%% Set Model No.1 for linear control method %%%% 
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  Model=1;  
   
  

u_in1(1)=0;  % Left  Motor Voltage 

u_in2(1)=0;  % Right Motor Voltage 

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4) 
  
  

x1_err = 0;      % x1 error for tracking sys 

x1_ref = 0;      % x1 reference  

x1_err_int(1)=0; % x1 error integral 
  

alphaa=1;   % Motor Variable  

betaa=0;    % Motor Variable  
  

Ts=0.0001; %time step length   
  

Duration=10;       % time sec 

t=Duration*(1/Ts); % time step in programming 

Time = 0:Ts:t*Ts;   % Create real time step for plotting 
  

for i=1:t 

  u      =[u_in1(i); u_in2(i)]; 

  x_5s    =[x1(i); x2(i); x3(i); x4(i); x5(i)];   % whole system 

  x_4s    =[x1(i); x2(i); x3(i); x4(i)];          % x1-x4 state feedback 
  
   

  %%%%%% Programming Diagram %%%%%   
     
%                                                                                

%                     u_x1  +     u                              y=x1-x4            y=x1 

%  X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+ 

%          ^-                ^ -                                               |          |    

%          |                 | u_feedback                                      |          |  

%          |                 |                                                 |              

%          x1                |                                                 | 

%                            +--------------------<--K14-- ---------------- ---+ 

%                                                                  x1-x4 

%                                      

% %%%%%%%%%%%%%%%    

      

    %%% x1 error for tracking sys 

    x1_err(i+1) = x1_ref - x1(i); 
     

      %%%%% X1 error Integral  %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 
     

     %%% x1 error integral   

    x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-x1_err(i))*Ts ;  % 

[h1 x L]+[ 0.5 x(h2-h1) x L ] + old 
      

    %%% Cal. K5 for x5 only (integral x1) 
   

    %K_5 aleady has been calculated as gain fixed.  

    %They are same value at [-0.5,-0.5] So,use this value for reducing calculation 

     K_5=[-0.5000; -0.5000];   
      

    %%% u=kx,  Motor Voltage of integral x1  

    u_x1 = K_5 * x1_err_int(i+1); 
     

    %%% The final voltages used to control robot motors 

    u = u_x1 - u_feedback; 
  
     

  %%% Hard Saturation  %%% 

%    %%% Uncomment this part for using motor voltage hard saturation  

%     Vmax = 8.3;  

%     %Vmax = 36;  

%     %Vmax = 48;  

%             if u(1) > Vmax 

%                u(1) = Vmax; 

%                u(2) = Vmax; 

%             end   

%              if u(1) < -Vmax 

%                u(1) = -Vmax; 

%                u(2) = -Vmax; 

%              end  

    %%%%%%% 
     



APPENDIX A 

 

215 

 

    u_in1(i+1)=u(1);    % update u1 

    u_in2(i+1)=u(2);    % update u2 
      
    
     

    %%% calculate the new 'x' vector using a 4th order   

    %%% Euler integration method 

    %%% fx = Ax + Bu; 

    [fx,K_14] = evalrhs_gyroboy5s_LQR(x_4s,u, Model); %[fx,K_14,alpha,beta] 

    x_4s = x_4s + Ts * fx; % Euler 
    
     

      %%% Limit the robot pitch angle between -90 to 90 deg. 

    if x_4s(3) > 90*pi/180 

        x_4s(3) =90*pi/180; 

    end    
     

     if x_4s(3) < -90*pi/180 

        x_4s(3) =-90*pi/180; 

     end     
     

     %%% Update x1-x4 

    x1(i+1)=x_4s(1); 

    x2(i+1)=x_4s(2);  

    x3(i+1)=x_4s(3); 

    x4(i+1)=x_4s(4);    
  
  

      %%% Generate real x1 integral (x5) 

      %%%%% X5 = Integral of X1 %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 
     

      x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts; 
    
     

      %%% x1-x4 motor voltage feedback %%%% 

      u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];             
    
  

    %%% Command print for waiting %%%  

    Cal_percent = i*100/t; 
     

    if mod(Cal_percent , 10) == 0 

       %fprintf('Calculating  %f percent ...\n',Cal_percent) 

       fprintf('Calculating  %3.2f percent,  ',Cal_percent)      

       fprintf('x3= %3.2f deg,  ',x3(i+1)*180/pi) 

       fprintf('x4= %3.2f deg/s,  ',x4(i+1)*180/pi) 

       fprintf('t= %3.2f sec...\n',Ts*i) 

    end   
     

    %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready for the 

next iteration. 

end 
  
  

%%%%%%%%%%%   

figure('Name','LQR Controller of a TWR system'); 

Fn = 14; % font size 
  

subplot(2,3,1); 

p1=plot(Time,x1*180/pi,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angles-x1 (deg.)','FontSize', Fn); 

set(gca,'FontSize', Fn); 
  

subplot(2,3,4); 

p2=plot(Time,x2*180/pi,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angular velocity-x2 

(deg./s.)','FontSize', Fn); 

set(gca,'FontSize', Fn); 
  

subplot(2,3,2); 

p3=plot(Time,x3*180/pi,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch of body-x3 (deg.)','FontSize', Fn); 

set(gca,'FontSize', Fn); 
  

 subplot(2,3,5); 

 p4=plot(Time,x4*180/pi,'b'); grid; 
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 xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch angular velocity-x4 

(deg./s.)','FontSize', Fn); 

 set(gca,'FontSize', Fn); 
  

 subplot(2,3,3);  

 p5=plot(Time,x5*180/pi,'b'); grid; 

 xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel integral-x5 (deg.)','FontSize', Fn); 

 set(gca,'FontSize', Fn); 
  

subplot(2,3,6);  

p6=plot(Time,u_in1,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Control signal-u (volt)','FontSize', Fn); 

set(gca,'FontSize', Fn); 
  

LW=1.2;   

p1(1).LineWidth = LW;  

p2(1).LineWidth = LW;  

p3(1).LineWidth = LW;  

p4(1).LineWidth =LW;  

p5(1).LineWidth = LW;  

p6(1).LineWidth =LW;  
  
  
------------------------------------------------------------------------------------------------- 

Function file: evalrhs_gyroboy5s_LQR.m 

function [fx,K_14] = evalrhs_gyroboy5s_LQR( x ,u, Model) 
  

    %%%%%%  Functions programme needed %%% 

    % Gyroboy_Nonlinear_Model_4s();  % Generating fx, x1-x4 without x5 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  

    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 
  
  

  %%% K14 parameters already have been calculated as the linear control gain is fixed  

  %%% K14 = k1,k2,k3 and k4   
  

  %%% Select one K by uncomment the coding 
   

   %%%%% Fix K LEGO EV3 %%% 

   K_14=[-1.3908   -1.4487  -59.8476   -7.1681     ; 

         -1.3908   -1.4487  -59.8476   -7.1681    ]; 
  
          

%    %Maxon DC motor EC flat 60   48V 100w  2020 *** 

%      K_14= [ -1.2606   -0.7236  -34.5003   -4.2534 

%             -1.2606   -0.7236  -34.5003   -4.2534]; 
  
  

    %%% 4-states Model parameters 

    %%% Real model parameters  

    [A4,B4,~,alpha,beta]=Gyroboy_Nonlinear_Model_4s(x,Model); %[A4,B4,Vmax,alpha,beta] 

    % When disturbancing weigth and heigh, these parameters are changed 
  
  

    x14=[x1;x2;x3;x4];   

    %%% Calculate fx for 4-state system 

    %%% fx = Ax + Bu 

    %%% Use u from controller voltage input 

    fx = A4*x14 + B4*u; 
  
  

    %calculate the function output 'fx' based on values of A, B, P and x. 

end 
  
 

------------------------------------------------------------- 

Function file: Gyroboy_Nonlinear_Model_4s.m 
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function [A4,B4,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_4s(x,Model) 

  

%%% LEGO EV3 parameters 4-states 

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]  old 0.024 new 0.050 

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

  

M = 0.64;                      % body weight [kg]  ,default,   

h = 0.210;                      % body height [m]   ,default,  

  

  

% %%%%% Adding new weight here %%%%% 

% M = 0.64+0.06;                  % body weight [kg]  add 10% 

 

% %%%%% Adding new height here %%%%% 

% h = 0.21+0.02;        % body height add 10% 

  

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

  

%%% EV3 Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

  

  

Vmax=8.3; % Default Vmax for LEGO EV3 

  

M2=M; % Use this when want to change new motor or mass 

  

%%% Uncomment below when want to use new motor  %%% 

%[M,Jm,Rm,Kb,Kt]=MaxonDCmotor_Ec60flat_100W_48V(M2);  Vmax = 48;  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor  

  

  

  

%%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

     

    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 

    %x5=x(5); % 

     

     if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 
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     end     

     if x4 == 0 

       x4=1.0e-20;  % avoid Inf's and NaN's 

    end     

     

     

 %%% Nonlinear model %%%% 

  

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3); 

    e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(x3); 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x2dot equation 

     

    e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(x3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 

     

     

    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

    %define these extra function to reduce the coding complexity of A and B 

    %matrices with the motor added in    

     

  

    %define A and B using a nonlinear state-space gyro robot model, 

    %including the motor part 

  

    if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

    end     

    if x4 == 0 

       x4=1.0e-20;  % avoid Inf's and NaN's 

    end     

     

     

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed 

  % 4.Model C 
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   %  Model = 3;  % Select mode  

   

  %%%-------- Model A ----------    

if Model == 1 

          %%% Primary Model A %%%% 

     A4 =[0      1             0              0        ; 

         0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)   ; 

         0      0             0              1        ; 

         0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)   ]; 

      

    

end 

  

  

%%%-------- Model B ---------- 

if Model == 2 

          %%%% Model B %%%% 

     A4 =[0      1             0                    0        ; 

         0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0        ; 

         0      0              0                    1        ; 

         0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0        ];  

end 

  %%%-------- Model AB10 ---------- 

  if Model == 3 

  

            %%% Mix A&B %%%%%   

       

             if x3 <= (10*pi/180) && x3 >= (-10*pi/180)     

             %%%% Primary Model A %%%% 

                A4 =[0      1             0              0         ; 

                    0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)   ; 

                     0      0             0              1        ; 

                     0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)   ]; 

       

             else  

                %%%% Model B %%%% 

                A4 =[0      1             0                    0         ; 

                       0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0        ; 

                      0      0              0                    1        ; 

                     0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0       ] ; 

             end 

   

  end 

       

   

   

  %%%-------- Model C ---------- 

if Model == 4 

       %%%% Model C %%%% 

     A4 =[0      1             0              0                        ; 

         0  em22/(a+b)        0        (em23+em24*x4)/((a+b)*x4)    ; 

         0      0             0              1                        ; 

         0  em42/(a+b)       0          (em43+em44*x4)/((a+b)*x4)  ]; 

         

  

end    

  

    % Models Matrix B 

     

    B4 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b)]; 
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  end 

 

--------------------------------------------- 

 

 

Function file: MaxonDCmotor_Ec60flat_100W_48V.m 

 

 

function [M,Jm,Rm,Kb,Kt] = MaxonDCmotor_Ec60flat_100W_48V(Mi) 
  

%Maxon DC motor Ec 60 flat 100W  v.2020 
  

M = Mi+0.55;                     % New Robot body weight [kg] with new motor 

%M = 0.64+0.55;                  % New Robot body weight [kg] with new motor 

                                % maxon 0.355 kg/ea,   two LEGO motors 0.160 

kg  

                                %(0.355x2)-0.160=0.55) 
  

Jm = 8.35e-5;                   % DC motor inertia moment [kgm^2] 

Rm = 1.1;                       % DC motor resistance [Om] 

Kb = 0.113;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.113;                     % DC motor torque constant [Nm/A] 
  

end 
  

 

 

 

Appendix A.5.5: Apply linear quadratic regulator function in MATLAB for 

the LQG gain 

The algebraic Riccati equation (Brunton & Kutz, 2019): 

𝐴𝑃 + 𝑃𝐴𝑇 −  𝑃𝐶𝑇𝑅−1𝐶𝑃 + 𝑄 = 0 (5.16) 

Equation (5.16) can be solved by applying the linear quadratic regulator in 

MATLAB function commanded by: 

[𝐾, 𝑃, 𝐸] = 𝑙𝑞𝑟(𝐴, 𝐶𝑇 , 𝑄, 𝑅).  
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Appendix A.5.6: Rank of the observability matrix command 

The rank of the observability matrix is applied by substituting 𝑨 and 𝑪 matrices 

into Eq.(5.18),  

𝓞 = [

𝑪
𝑪𝑨

𝑪𝑨𝟐

𝑪𝑨𝟑

] 

(5.18) 

then apply MATLAB command: 

𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝓞 ) or 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑎𝑛𝑘(𝑜𝑏𝑠𝑣(𝑨, 𝑪)). 

The result given is Rank(𝓞) = 4, equal to the number of columns in matrix 𝑪 ; 

therefore, the system is said to be completely state observable. Likewise, the 

rank test of Eq.(19) can use the same MATLAB command. 

 

Appendix A.5.7:MATLAB codes of an inverted pendulum on a cart system 

using LQG controller 

Script file: Gyroboy_5s_LQG_10_2021.m 

%%%% Linear Control with EKF (LQG) for LEGO EV3 Robot 

  

%%%%%%  Functions programme needed %%% 

%  

% evalrhs_gyroboy5s_LQG();  % Generating K1-K4, fx and Kf 

% 

%      Inside two functions 

% 

%           Gyroboy_Nonlinear_Model_4s();  

%           Maxon Motor parameters etc. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

clear all; 

close all; 
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%%% Set initial x1-x5 

%%% Always set x1=x3 

  

x1(1)=10*pi/180;      %set Theta - Average of wheel angles (deg) 

x2(1)=0;                %set Theta_DOT (deg/s) 

x3(1)=10*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO 

x4(1)=0*pi/180;         %set Psi_DOT (deg/s) 

x5(1)=0;                %set Theta integral 

  

 %%% Set Model No.1 for linear control method %%%% 

  Model=1;  

  

u_in1(1)=0;  % Left  Motor Voltage 

u_in2(1)=0;  % Right Motor Voltage 

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4) 

  

%%% Set initial Xhat 

Xhat1(1) = x1(1); 

Xhat2(1) = 0; 

Xhat3(1) = x3(1); 

Xhat4(1) = 0; 

  

%%% Set initial Xhat integral 

dXhat1(1) = 0; 

dXhat2(1) = 0; 

dXhat3(1) = 0; 

dXhat4(1) = 0; 

  

%%% Disturbance variables 

x1_disturbance(1) = 0; 

x2_disturbance(1) = 0; 

x3_disturbance(1) = 0; 

x4_disturbance(1) = 0; 

  

  

x1_err = 0;      % x1 error for tracking sys 

x1_ref = 0;      % x1 reference  

x1_err_int(1)=0; % x1 error integral 

  

Ts=0.0001; %time step length  

  

alphaa=1;  % Motor Variable  

betaa=0;   % Motor Variable  

  

Duration=10;       % time sec 

t=Duration*(1/Ts); % time step in programming 

Time = 0:Ts:t*Ts;          % Create real time step for plotting 

  

for i=1:t 

     

  u      =[u_in1(i); u_in2(i)]; 

  x_5s    =[x1(i); x2(i); x3(i); x4(i); x5(i)];   % whole system 

  x_4s    =[x1(i); x2(i); x3(i); x4(i)];          % x1-x4 state feedback 

  Xhat =[Xhat1(i); Xhat2(i); Xhat3(i); Xhat4(i)]; % Xhat1-4 (exclude x5) 

  dXhat=[dXhat1(i); dXhat2(i); dXhat3(i); dXhat4(i)]; %Xhat integral 
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 %%%%%% Programming Diagram %%%%%   

     

%                                                                                

%                     u_x1  +     u                              y=x1-x4            y=x1 

%  X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C----

--+ 

%          ^-                ^ -            |                              ^   |          

|    

%          |                 | u_feedback   +------B------>|         Add   |   |          

|  

%          |                 |                             |       Distubance  |           

%          x1                |       Xhat            dXhat |                   | 

%                            +-<--K14-- o<--Integal <----- o <-- Kf-------- ---+ 

%                                       |                  ^       x1-x4 

%                                       |                  | 

%                                       +---- A -(Kf)C ->--+ 

         

% %%%%%%%%%%%%%%%            

      

    %%% x1 error for tracking sys 

    x1_err(i+1) = x1_ref - x1(i); 

     

      %%%%% X1 error Integral  %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

   

      %%% x1 error integral   

    x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ;  % [h1 x L]+[ 0.5 x(h2-h1) x L ] + old 

      

     %%% cal. K5 for x5 only (integral x1) 

     K_5=[-0.5000; -0.5000]; 

      

     %%% u=kx,  Motor Voltage of integral x1 

     u_x1 = K_5 * x1_err_int(i+1); 

     

    %%% The final voltages used to control robot motors 

    u = u_x1 - u_feedback; 

     

   %%% Hard Saturation  %%% 

   %%% Uncomment this part for using motor voltage hard saturation  

%     Vmax = 8.3;  

%     %Vmax = 36;  

%     %Vmax = 48;  

%             if u(1) > Vmax 

%                u(1) = Vmax; 

%                u(2) = Vmax; 

%             end   

%              if u(1) < -Vmax 

%                u(1) = -Vmax; 

%                u(2) = -Vmax; 

%              end  

    %%%%%%% 

     

    u_in1(i+1)=u(1);   % update u1 

    u_in2(i+1)=u(2);   % update u2 

     

    

     

    %%% calculate the new 'x' vector using a 4th order   

    %%% Euler integration method 

    %%% fx = Ax + Bu; 

    [fx,u,A,B,C,Kf,K_14] = evalrhs_gyroboy5s_LQG(x_4s,u,Model); 

    x_4s = x_4s + Ts * fx; % Euler 

     %%% Kf is the gain of Kalman filter 
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    %%% Limit the robot pitch angle between -90 to 90 deg. 

    if x_4s(3) > 90*pi/180 

        x_4s(3) =90*pi/180; 

    end    

     

     if x_4s(3) < -90*pi/180 

        x_4s(3) =-90*pi/180; 

     end     

     

     %%% Update x1-x4 

    x1(i+1)=x_4s(1); 

    x2(i+1)=x_4s(2);  

    x3(i+1)=x_4s(3); 

    x4(i+1)=x_4s(4);    

  

  

       %%% Generate real x1 integral (x5) 

       %%%%% X5 = Integral of X1 %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

      x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts; 

     

   

  %%%% Select mode for testing %%%% 

  % 0.No disturbance   

  % 1.Sensor X3 drift  

  % 2.Noise disturbance in X3    

      

     Mode = 0;  % Select mode 0 

   

if Mode == 0 

    %%%%% No disturbance in X 

     x1_disturbance(i+1)=x_4s(1); 

     x2_disturbance(i+1)=x_4s(2);  

     x3_disturbance(i+1)=x_4s(3)+ 0;   

     x4_disturbance(i+1)=x_4s(4);   

    Kf_X = Kf*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];   %%% Update:   Kf_X 

     

end 

       

  

   

if Mode == 1 

  

     %%%%%% Test signal disturbance, drift only X3  %%%%% 

    x1_disturbance(i+1)=x_4s(1); 

    x2_disturbance(i+1)=x_4s(2);  

    x3_disturbance(i+1)=x_4s(3)+ (i/(100*400))*pi/180;  

    % x3_disturbance(i+1)=x_4s(3)+ (i/(100*40))*pi/180;  

    x4_disturbance(i+1)=x_4s(4);  

    Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)];  %%% Update:   

Kf_X 

    

end 

  

if Mode == 2 

    %%%%%%% Test noise disturbance, only X3  %%%%%% 

  

   %%%ramdom noise fixed 

   %%%ramdom noise %Ts=0.004 10sec. 

   r=[0,0,0,0,0,2.42860700227814,0,0,0,0,3.98660366872073,0,0,0,0,-

3.99063370811201,0,0,0,0,-1.97150702498759,0,0,0,0,-3.74576261992009,0,0,0,0,-
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0.00306732125453291,0,0,0,0,2.61619387183277,0,0,0,0,1.66560733620697,0,0,0,0,

…………..  (cannot paste too many data at here) 

.13838561080327,0,0,0,0,3.98947101136213]; 

    

      x1_disturbance(i+1)=x_4s(1); 

      x2_disturbance(i+1)=x_4s(2);  

      x3_disturbance(i+1)=x_4s(3)+ r(i+1)*pi/180;    

      x4_disturbance(i+1)=x_4s(4);   

     Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)];  %%% Update:   

Kf_X 

       

end 

  

     

    %%% Kalman filter variable 

    %%% See more in coding diagram 

    A_KfC_Xhat =  (A-Kf*C)*Xhat; 

    dXhat = B*u + Kf_X + A_KfC_Xhat; 

     

    %%% Update 

    dXhat1(i+1)=dXhat(1); 

    dXhat2(i+1)=dXhat(2);      

    dXhat3(i+1)=dXhat(3); 

    dXhat4(i+1)=dXhat(4);   

     

      %%%%% dXhat Integral (Xhat) %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

    Xhat1(i+1) = Xhat1(i) + dXhat1(i)*Ts + 0.5* (dXhat1(i+1)-dXhat1(i))* Ts;    

    Xhat2(i+1) = Xhat2(i) + dXhat2(i)*Ts + 0.5* (dXhat2(i+1)-dXhat2(i))* Ts; 

    Xhat3(i+1) = Xhat3(i) + dXhat3(i)*Ts + 0.5* (dXhat3(i+1)-dXhat3(i))* Ts; 

    Xhat4(i+1) = Xhat4(i) + dXhat4(i)*Ts + 0.5* (dXhat4(i+1)-dXhat4(i))* Ts; 

     

    %%% Limit the robot pitch angle Xhat between -90 to 90 deg. 

    if  Xhat3(i+1) > 90*pi/180 

         Xhat3(i+1)=90*pi/180; 

    end    

     

     if  Xhat3(i+1) < -90*pi/180 

         Xhat3(i+1)=-90*pi/180; 

    end    

     

     

    %%% Select control feedback : Xhat3 for x3 %%%% 

    

   %u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)]; %%% X LQR only  

   %u_feedback = K_14*[Xhat1(i+1); Xhat2(i+1); Xhat3(i+1); Xhat4(i+1)]; %Xhat 

   

   u_feedback = K_14*[x_4s(1); x_4s(2); Xhat3(i+1); x_4s(4)];   %X mix only X3 

   

    

    

      %%% Command print for waiting %%%  

    Cal_percent = i*100/t; 

     

    if mod(Cal_percent , 10) == 0 

      % fprintf('Calculating  %f percent ...\n',Cal_percent) 

         fprintf('Calculating  %3.2f percent,  ',Cal_percent)      

       fprintf('x3= %3.2f deg,  ',x3(i+1)*180/pi) 

       fprintf('x4= %3.2f deg/s,  ',x4(i+1)*180/pi) 

       fprintf('t= %3.2f sec...\n',Ts*i) 

    end   

     

end 
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%%% Move all Xhat to x3 for plotting 

x3=Xhat3; 

  

  

%%%%%%%%%%%   

figure('Name','LQG Controller of a TWR system'); 

Fn = 14; % font size 

  

subplot(2,3,1); 

p1=plot(Time,x1*180/pi,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angles-x1 

(deg.)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,4); 

p2=plot(Time,x2*180/pi,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel angular velocity-x2 

(deg./s.)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,2); 

p3=plot(Time,x3*180/pi,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch of body-x3 

(deg.)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

 subplot(2,3,5); 

 p4=plot(Time,x4*180/pi,'b'); grid; 

 xlabel('Time (sec)','FontSize', Fn); ylabel('Pitch angular velocity-x4 

(deg./s.)','FontSize', Fn); 

 set(gca,'FontSize', Fn); 

  

 subplot(2,3,3);  

 p5=plot(Time,x5*180/pi,'b'); grid; 

 xlabel('Time (sec)','FontSize', Fn); ylabel('Wheel integral-x5 

(deg.)','FontSize', Fn); 

 set(gca,'FontSize', Fn); 

  

subplot(2,3,6);  

p6=plot(Time,u_in1,'b'); grid; 

xlabel('Time (sec)','FontSize', Fn); ylabel('Control signal-u 

(volt)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

LW=1.2;   

p1(1).LineWidth = LW;  

p2(1).LineWidth = LW;  

p3(1).LineWidth = LW;  

p4(1).LineWidth =LW;  

p5(1).LineWidth = LW;  

p6(1).LineWidth =LW;  

 

--------------------------------------------- 

Function file: evalrhs_gyroboy5s_LQG 

function [fx,u,A4,B4,C4,Kf,K_14] = evalrhs_gyroboy5s_LQG( x ,u,Model) 

    

    %%%%%%  Functions programme needed %%% 

    % Gyroboy_Nonlinear_Model_4s();  % Generating fx, x1-x4 without x5 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 

  

  

  %%% K14 parameters already have been calculated as the linear control gain 

is fixed  

  %%% K14 = k1,k2,k3 and k4   

  

  %%% Select one K by uncomment the coding 

   

   %%%%% Fix K LEGO EV3 %%% 

   K_14=[-1.3908   -1.4487  -59.8476   -7.1681     ; 

         -1.3908   -1.4487  -59.8476   -7.1681    ]; 

  

          

%    %Maxon DC motor EC flat 60   48V 100w  2020 *** 

%      K_14= [ -1.2606   -0.7236  -34.5003   -4.2534 

%             -1.2606   -0.7236  -34.5003   -4.2534]; 

  

  

    %%% 4-states Model parameters 

    %%% Real model parameters  

    [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x, Model); 

%[A4,B4,Vmax,alpha,beta] 

    % When disturbancing weigth and heigh, these parameters are changed 

  

  

    

    x14=[x1;x2;x3;x4];   

    %%% Calculate fx for 4-state system 

    %%% fx = Ax + Bu 

    %%% Use u from controller voltage input 

    fx = A4*x14 + B4*u; 

  

  

  %%% Matrix C  

  C4=eye(4); 

    

  

   %%% Kalman filter noise parameters  

   Noise_V= 0.2*eye(4); %0.2   % increse to smooth cure % Rk of Kalman filter 

   Noise_W= 1*eye(4);                                   % Qk of Kalman filter 

    

  

  %%% Calculation gain Kf of Kalman filter 

  %[~,Pk,~]=lqr(AL4,C4',Noise_W,Noise_V); 

    

  %%% Reducing time by calcuting fixed Pk 

  %%% Select robot motors by uncomment 

   

  %%%% Fix Pk for EV3 Motor%%% 

 Pk=[0.4375    0.0114    0.0795    0.0464; 

    0.0114    0.0116    0.1403    0.0451; 

    0.0795    0.1403    4.1167    0.6856; 

    0.0464    0.0451    0.6856    0.2096]; 

  

     

     %Maxon DC motor EC flat 60   48V 100w  2020 

%  Pk=[0.4396    0.0196    0.0463    0.0650 

%     0.0196    0.0209    0.1031    0.0607 

%     0.0463    0.1031    4.7106    0.6864 

%     0.0650    0.0607    0.6864    0.2747]; 
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   Kf= Pk*C4'*inv(Noise_V); 

    

    %calculate the function output 'fx' based on values of A, B, P and x. 

end 

  

 

 

Chapter 6: Nonlinear Control Strategies 

Appendix A.6.1: MATLAB codes of rank of controllability test matrix for an 

inverted pendulum on a cart model 

Script file: Controllability_IP_4s_x3x4.m 

clear all 

close all 

  

xx1=0;  %set initial cart displacement to be 0 (m) 

xx2=0;  %set initial cart velocity to be 0 (m/s) 

xx3=0; %set initial pendulum angle to be 0 (rad) 

xx4=0; %set initial pendulum angular velocity to be 0 (rad/s) 

  

  

m1=2; %Mass of the cart (kg) 

m2=0.1; %mass of the pendulum (kg) 

r=0.5; %the rod length (m) 

g=9.8; %acceleration due to gravity (mˆ2/s) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%% 

  

%%% Variable 'for loop' %%%% 

  

%%%% X3   

Minimun_Angle_X3= -90;  

Step_Angle_X3= 0.2;    

Maximum_Angle_X3= 90; 

  

%%%% X4 

  

Minimun_Angular_Velo_X4= -0.3e8;   

Step_Angular_Velo_X4= 0.2e6;    

Maximum_Angular_Velo_X4= 0.3e8; 

  

%%% Calculation size of X4  

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4: 

Maximum_Angular_Velo_X4; 

 [m_size,n_size]= size(Size_x4); 

  

%%%%% Plot 2D graph %%%%%%%% 

  

ii=2;  % row of array   x3 

jj=2;  % column of array x4 

  

%%% match x3 and x4 %%% 

  

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 : 

Maximum_Angular_Velo_X4*pi/180 
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  for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 : 

Maximum_Angle_X3*pi/180 

    

     if xx3 == 0 

        xx3=1.0e-100;  % avoid Inf's and NaN's 

     end     

       if xx4 == 0 

        xx4=1.0e-100;  % avoid Inf's and NaN's 

     end     

       

  

%%% Nonlinear model from Xu's chapter book %%%% 

  

A4=[0, 1, 0, 0; 

0, 0,-m2*g*sin(xx3)*cos(xx3)/((m1+m2*(sin(xx3))^2)*xx3),... 

m2*r*xx4*sin(xx3)/(m1+m2*(sin(xx3)^2)); 

0, 0, 0, 1; 

0, 0,(m1+m2)*g*sin(xx3)/(r*(m1+m2*(sin(xx3))^2)*xx3),... 

-m2*r*xx4*sin(xx3)*cos(xx3)/(r*(m1+m2*(sin(xx3))^2))]; 

  

B4=[0; 1/(m1+m2*(sin(xx3))^2); 0 ; -cos(xx3)/(r*(m1+m2*(sin(xx3))^2))]; 

  

  

Rank_x3x4(ii,jj)= rank(ctrb(A4,B4)); 

  

  

Rank_x3x4(ii,1)= xx3*180/pi;  % Insert 1st column by x3 

Rank_x3x4(1,jj)= xx4*180/pi;  % Insert 1st row by x4 

  

  

 ii=ii+1; %x3 

  end 

  ii=2; 

  jj=jj+1; %x4 

  

   

  %%% print for waiting %%%  

    Cal_percent = int16(jj*100/(n_size-1)); 

     

  

    if mod(Cal_percent , 10) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

     

  

  end 

  

  

 %%%% Remove 1st row & 1st column from table for plotting %%%   

  Rank_x3x4_data = Rank_x3x4;  

  Rank_x3x4_data(1,:)=[];  % Remove title row 1 ( x4 name) 

  Rank_x3x4_data(:,1)=[];  % Remove title column 1 ( x3  name) 

  Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis 

   

   

   

 %%%%% plot %%%%% 

 figure(); % x3 x4 

 Fn = 14; % font size 

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 : 

Maximum_Angular_Velo_X4; 

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3; 

  

[x_mesh,y_mesh] = meshgrid(xx3,xx4);  % This generates the actual grid of x 

and y values. 
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[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data); 

set(c,'Linecolor','none') 

  

xlabel('x3 (deg.)');ylabel('x4 (deg./s)'); 

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);  

set(gca,'FontSize', Fn); 

title(sprintf('Rank of Controllability Test Matrix')); 

  

colorbar 

 c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

%c =colorbar; 

c.Label.String = 'Rank'; 

grid on; 

 

 

 

Appendix A.6.2: MATLAB codes of rank of controllability test matrix for 

TWR models 

Script file: Controllability_TWR_5s_x3x4.m 

 

clear all 

close all 

  

xx1=0;  %set initial wheel angle to be 0 (m) 

xx2=0;  %set initial wheel angular velocity to be 0 (m/s) 

xx3=0; %set initial pitch angle to be 0 (rad) 

xx4=0; %set initial pitch angular velocity to be 0 (rad/s) 

  

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]   

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                      % body weight [kg]  

  

  

%%% EV3 Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

  

h = 0.210;                      % body height [m] 

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor  

  

  

    %%% Helping variables 
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alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%% 

  

%%% Variable 'for loop' %%%% 

  

%%%% X3   

Minimun_Angle_X3= -90;   

Step_Angle_X3= 0.2;    

Maximum_Angle_X3= 90; 

%%%% X4 

Minimun_Angular_Velo_X4= -1e5;  

Step_Angular_Velo_X4= 0.2e3;   

Maximum_Angular_Velo_X4= 1e5; 

  

  

%%% Calculation size of X4  

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4: 

Maximum_Angular_Velo_X4; 

 [m_size,n_size]= size(Size_x4); 

  

%%%%% Plot 2D graph %%%%%%%% 

  

ii=2;  % row of array   x3 

jj=2;  % column of array x4 

  

  

%%% match x3 and x4 %%% 

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 : 

Maximum_Angular_Velo_X4*pi/180 

  for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 : 

Maximum_Angle_X3*pi/180 

     

     if xx3 == 0 

        xx3=1.0e-100;  % avoid Inf's and NaN's 

     end     

       if xx4 == 0 

        xx4=1.0e-100;  % avoid Inf's and NaN's 

     end     

       

  

 %%% Dr Xu Xu Model %%% 

  

    

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3); 

    e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(xx3); 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x2dot equation 

     

    e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(xx3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 
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    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

  

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

  

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

  

     

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model A&B mixed 

  % 4.Model C 

      

     Model = 1;  % Select mode  

   

  %%%-------- Model A ----------    

if Model == 1 

          %%%% Primary Model A %%%% 

      A5 =[0      1             0              0       0  ; 

          0  em22/(a+b)  em23/((a+b)*xx3)  em24/(a+b)  0 ; 

          0      0             0              1       0 ; 

          0  em42/(a+b)  em43/((a+b)*xx3)  em44/(a+b)  0 ; 

          1      0            0               0       0 ]; 

end 

  

  

%%%-------- Model B ---------- 

if Model == 2 

          %%%% Model B %%%% 

    A5 =[0      1             0                    0       0  ; 

         0  em22/(a+b)  (em23+em24*xx4)/((a+b)*xx3)   0       0 ; 

         0      0              0                    1       0 ; 

         0  em42/(a+b)  (em43+em44*xx4)/((a+b)*xx3)   0       0 ; 

         1      0            0                      0       0 ]; 

     

end 

  

  

  

  

  %%%-------- Model A&B ---------- 

if Model == 3 

  

  %%% Mix A&B %%%%%   

      

   if xx3 <= (10*pi/180) && xx3 >= (-10*pi/180)     

    %%%% Primary Model A %%%% 

     A5 =[0      1             0              0       0  ; 

         0  em22/(a+b)  em23/((a+b)*xx3)  em24/(a+b)  0 ; 

         0      0             0              1       0 ; 
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         0  em42/(a+b)  em43/((a+b)*xx3)  em44/(a+b)  0 ; 

         1      0            0               0       0 ]; 

      

      

  else    

   

      

      %%%% Model B %%%% 

     A5 =[0      1             0                    0       0  ; 

         0  em22/(a+b)  (em23+em24*xx4)/((a+b)*xx3)   0       0 ; 

         0      0              0                    1       0 ; 

         0  em42/(a+b)  (em43+em44*xx4)/((a+b)*xx3)   0       0 ; 

         1      0            0                      0       0 ]; 

  end 

     

end 

       

  

 %%%-------- Model C ---------- 

if Model == 4 

          %%%% Model C %%%% 

     A5 =[0      1             0              0                      0  ; 

         0  em22/(a+b)        0        (em23+em24*xx4)/((a+b)*xx4)   0 ; 

         0      0             0              1                       0 ; 

         0  em42/(a+b)       0          (em43+em44*xx4)/((a+b)*xx4) 0 ; 

         1      0            0               0                      0 ]; 

  

end 

    

     B5 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b); 

          0             0]; 

  

  

Rank_x3x4(ii,jj)= rank(ctrb(A5,B5)); 

  

Rank_x3x4(ii,1)= xx3*180/pi;  % Insert 1st column by x3 

Rank_x3x4(1,jj)= xx4*180/pi;  % Insert 1st row by x4 

  

  

 ii=ii+1; %x3 

  

  end 

  ii=2; 

  

  jj=jj+1; %x4 

  

  

  %%% print for waiting %%%  

    Cal_percent = int16(jj*100/(n_size-1)); 

     

     

    if mod(Cal_percent , 10) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

     

  end 

  

  

 %%%% Remove 1st row & 1st column from table for plotting %%%   

  Rank_x3x4_data = Rank_x3x4;  

  Rank_x3x4_data(1,:)=[];  % Remove title row 1 ( x4 name) 

  Rank_x3x4_data(:,1)=[];  % Remove title column 1 ( x3  name) 
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  Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis 

   

  

 %%%%% plot max %%%%% 

 figure(); % x3 x4 

 Fn = 14; % font size 

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 : 

Maximum_Angular_Velo_X4; 

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3; 

  

[x_mesh,y_mesh] = meshgrid(xx3,xx4);  % This generates the actual grid of x 

and y values. 

[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data); 

%c.LineWidth = 1; 

set(c,'Linecolor','none') 

  

xlabel('x3 (deg.)');ylabel('x4 (deg./s)'); 

xlim([-90 90]);  

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);  

set(gca,'FontSize', Fn); 

title(sprintf('Rank of Controllability Test Matrix')); 

  

colorbar 

 c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

grid on; 

  

 

 

Appendix A.6.3: MATLAB codes of rank of controllability test matrix for 

TWR models with saturation input 

Script file: Controllability_TWR_5s_x3x4_saturation.m 

 

 

clear all 

close all 

  

  

xx1=0;  %set initial wheel angle to be 0 (m) 

xx2=0;  %set initial wheel angular velocity to be 0 (m/s) 

xx3=0; %set initial pitch angle to be 0 (rad) 

xx4=0; %set initial pitch angular velocity to be 0 (rad/s)  

xx6=0; %set initial artificial control to be 0 

  

  

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]   

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                      % body weight [kg] 
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h = 0.210;                      % body height [m] 

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

%%% Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor         

     

  

    %%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%% 

  

%%% Variable 'for loop' %%%% 

  

%%% X3   

Minimun_Angle_X3= -90;   

Step_Angle_X3= 2;    

Maximum_Angle_X3= 90; 

  

%%% X4 

Minimun_Angular_Velo_X4= -200;   

Step_Angular_Velo_X4= 4;     

Maximum_Angular_Velo_X4= 200; 

  

  

%%%%% X6  

Minimun_x6= -1e16;    

Step_x6= 2e14;   

Maximum_x6= 1e16; 

  

% Minimun_x6= -2e19;    

% Step_x6= 4e17; 

% Maximum_x6= 2e19; 

  

  

 %%% Calculation size of Xnp1  

 Size_x6 = Minimun_x6 : Step_x6: Maximum_x6; 

 [m_x6,n_x6]= size(Size_x6); 

  

  

%%%%% Plot 3D graph %%%%%%%% 

  

ii=2;   % row of array    x3 

jj=2;   % column of array x4 

kk=1;   % page Xn+1 

  

  

%%% convert deg to rad 

%%% match x3,x4 and x6 %%% 

 for xx6 = Minimun_x6 : Step_x6: Maximum_x6 

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 : 

Maximum_Angle_X3*pi/180 
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 for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 : 

Maximum_Angular_Velo_X4*pi/180 

    

     if xx3 == 0 

        xx3=1.0e-20;  % avoid Inf's and NaN's 

     end    

     if xx4 == 0 

        xx4=1.0e-20;  % avoid Inf's and NaN's 

     end    

     if xx6 == 0 

        xx6=1.0e-20;  % avoid Inf's and NaN's 

     end    

      

       

 %%% Dr Xu Xu model %%% 

  

    

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3); 

    e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(xx3); 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x2dot equation 

     

    e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(xx3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 

     

     

    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

  

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

  

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

  

     

     

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed 

  % 4.Model C  
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    Model = 1;  % Select mode  

   

  %%%-------- Model A ----------    

if Model == 1 

          %%%% Primary Model A %%%% 

      A5 =[0      1             0              0       0  ; 

          0  em22/(a+b)  em23/((a+b)*xx3)  em24/(a+b)  0 ; 

          0      0             0              1       0 ; 

          0  em42/(a+b)  em43/((a+b)*xx3)  em44/(a+b)  0 ; 

          1      0            0               0       0 ]; 

end 

  

  

%%%-------- Model B ---------- 

if Model == 2 

          %%%% Model B %%%% 

     A5 =[0      1             0                     0       0  ; 

         0  em22/(a+b)  (em23+em24*xx4)/((a+b)*xx3)   0       0 ; 

         0      0              0                      1       0 ; 

         0  em42/(a+b)  (em43+em44*xx4)/((a+b)*xx3)   0       0 ; 

         1      0            0                       0       0 ]; 

     

end 

  

  

  %%%-------- Model AB7 ---------- 

if Model == 3 

  

  %%% Mix A&B %%%%%   

      

   if xx3 <= (10*pi/180) && xx3 >= (-10*pi/180)     

    %%%% Primary Model A %%%% 

     A5 =[0      1             0              0       0  ; 

         0  em22/(a+b)  em23/((a+b)*xx3)  em24/(a+b)  0 ; 

         0      0             0              1       0 ; 

         0  em42/(a+b)  em43/((a+b)*xx3)  em44/(a+b)  0 ; 

         1      0            0               0       0 ]; 

      

      

  else    

   

      

      %%%% Model B %%%% 

     A5 =[0      1             0                     0       0  ; 

         0  em22/(a+b)  (em23+em24*xx4)/((a+b)*xx3)   0       0 ; 

         0      0              0                      1       0 ; 

         0  em42/(a+b)  (em43+em44*xx4)/((a+b)*xx3)   0       0 ; 

         1      0            0                       0       0 ]; 

  end 

     

end 

     

  %%%-------- Model C ---------- 

if Model == 4 

       %%%% Model C %%%% 

     A5 =[0      1             0              0                      0  ; 

         0  em22/(a+b)        0        (em23+em24*xx4)/((a+b)*xx4)   0 ; 

         0      0             0              1                       0 ; 

         0  em42/(a+b)       0          (em43+em44*xx4)/((a+b)*xx4) 0 ; 

         1      0            0               0                      0 ]; 

  

end    

     

         

     B5 =[    0           0; 
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        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b); 

          0             0]; 

  

     

     %%%%-------------- 

   

      Vmax = 8.3;  % Set maximum saturation voltage 

   

  

     if     (xx6 )  > Vmax  % Lego Motor Maximum Voltage 8.3 V 

         Phi_L = Vmax; 

         Phi_R = Vmax; 

     elseif  (xx6) < -Vmax % Lego Motor Minimum Voltage -8.3 V 

         Phi_L = -Vmax; 

         Phi_R = -Vmax; 

     else  

        

          

         Phi_L = Vmax*sin((pi*xx6)/(2*Vmax)); 

         Phi_R = Vmax*sin((pi*xx6)/(2*Vmax)); 

     end     

      

     Phi = [Phi_L ; 

            Phi_R ]; 

       

  

Aa= [       A5            (B5*Phi)/xx6  ; 

       zeros(1,5)            0             ]; 

    

Ba= [  zeros(5,1)  ;  

          1        ];  

   

  

Rank_x3x4x6(ii,jj,kk)= rank(ctrb(Aa,Ba)); 

  

  

%%% create table 

Rank_x3x4x6(ii,1,kk)= xx4*180/pi;  % Insert 1st column by x3 

Rank_x3x4x6(1,jj,kk)= xx3*180/pi;  % Insert 1st row    by x4 

  

      

    if xx4 >-0.01 && xx4 <0.01 

        kk=kk+1; 

    Rank_x3x6(jj,kk) = rank(ctrb(Aa,Ba)); 

    Rank_x3x6(jj,1) = xx3*180/pi;  % Insert 1st row by  x3 

    Rank_x3x6(1,kk) = xx6; % Insert 1st column by xpn1 

        kk=kk-1; 

    end 

     

    if single(xx3)==single(1.0e-20) 

         kk=kk+1; 

    Rank_x4x6(ii,kk) = rank(ctrb(Aa,Ba)); 

    Rank_x4x6(ii,1) = xx4*180/pi;  % Insert 1st row by x4 

    Rank_x4x6(1,kk) = xx6; % Insert 1st column by xpn1 

         kk=kk-1; 

    end 

  

     

     if single(xx6)==single(1.0e-20) 

    Rank_x3x4(ii,jj) = rank(ctrb(Aa,Ba)); 

    Rank_x3x4(ii,1) = xx4*180/pi;  % Insert 1st row by x4 

    Rank_x3x4(1,jj) = xx3*180/pi; % Insert 1st column by xpn1 

    end   
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 ii=ii+1; %x3 

  end 

  ii=2; 

  jj=jj+1; %x4 

 end 

  

  

     

     if xx6 == 1.0e-20 

        xx6=0;  % move zero back to table 

     end     

       

  

    Range_x6(1,kk)=xx6; % store x_np1 

      

  jj=2; 

  kk=kk+1; %x_np1 

   

    %%% print for writing  %%%  

    Cal_percent = int16(kk*100/(n_x6+1)); 

     

    if mod(Cal_percent , 10) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

     

   

end 

  

  

  

  %%%% Remove 1st row & 1st column from table for plotting %%%   

  Rank_x3x4x6_data = Rank_x3x4x6; 

  Rank_x3x4x6_data(1,:,:)=[];  % Remove title row 1 ( x4 name) 

  Rank_x3x4x6_data(:,1,:)=[];  % Remove title column 1 ( x3  name) 

   

  Rank_x3x6_data = Rank_x3x6; 

  Rank_x3x6_data(1,:)=[];  % Remove title row 1 ( xnp1 name) 

  Rank_x3x6_data(:,1)=[];  % Remove title column 1  

   

  Rank_x4x6_data = Rank_x4x6; 

  Rank_x4x6_data(1,:)=[];  % Remove title row 1 ( xnp1 name) 

  Rank_x4x6_data(:,1)=[];  % Remove title column 1  

    

  Rank_x3x4_data = Rank_x3x4; 

  Rank_x3x4_data(1,:)=[];  % Remove title row 1 ( xnp1 name) 

  Rank_x3x4_data(:,1)=[];  % Remove title column 1  

   

  

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3; 

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 : 

Maximum_Angular_Velo_X4; 

 xx6 = Minimun_x6 : Step_x6: Maximum_x6; 

  

  

%%%% Plot 2D at x3=0 %%%% 

 figure();  

 Fn = 12; % font size 

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6);  % This generates the actual 

grid of x and y values. 

  

xslice = [0];    

yslice = []; 

zslice = []; 
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slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice) 

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular 

velocity(deg./s.)');zlabel('x6'); 

xlim([-90 90]);  

title(sprintf('Rank of Controllability')); 

  

  

colorbar 

c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

  

%%%% view %%%% 

view(90,0) % y-view 

%%%%%% 

set(gca,'FontSize', Fn); 

  

  

%%Plot 2D at x4=0%%%% 

 figure(); 

 Fn = 12; % font size 

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6);  % This generates the actual 

grid of x and y values. 

  

xslice = [];    

yslice = [0]; 

zslice = []; 

  

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice) 

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular 

velocity(deg./s.)');zlabel('x6'); 

xlim([-90 90]);  

title(sprintf('Rank of Controllability')); 

  

colorbar 

c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

  

%%%% view %%%% 

    view(0,0)  % x-view 

%%%%%% 

set(gca,'FontSize', Fn); 

  

  

  

  

%%Plot Cubic %%%% 

 figure();  

 Fn = 12; % font size 

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6);  % This generates the actual 

grid of x and y values. 

  

xslice = [xx3];    

yslice = [xx4]; 

zslice = [xx6]; 

  

%%%% or select plane for plotting %%%% 

%xslice = [Maximum_Angle_X3];   

%yslice = [Maximum_Angular_Velo_X4]; 

%zslice = [Minimun_x6,0]; 

  

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice) 

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular 

velocity(deg./s.)');zlabel('x6'); 
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%ylim([-90 90]);  

%zlim([-1e16 1e16]);  

xlim([-90 90]);  

title(sprintf('Rank of Controllability')); 

  

colorbar 

c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

set(gca,'FontSize', Fn); 

  

 

 

Appendix A.6.4: MATLAB codes of rank of observability test matrix for an 

inverted pendulum model 

Script file: Observability_IP_4s_x3x4.m 

clear all 

close all 

  

xx1=0;  %set initial cart displacement to be 0 (m) 

xx2=0;  %set initial cart velocity to be 0 (m/s) 

xx3=0; %set initial pendulum angle to be 0 (rad) 

xx4=0; %set initial pendulum angular velocity to be 0 (rad/s) 

  

m1=2; %Mass of the cart (kg) 

m2=0.1; %mass of the pendulum (kg) 

r=0.5; %the rod length (m) 

g=9.8; %acceleration due to gravity (mˆ2/s) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%% 

  

%%% Variable 'for loop' %%%% 

  

%%%% X3   

Minimun_Angle_X3= -90;  %ok 

Step_Angle_X3= 0.2;    

Maximum_Angle_X3= 90; 

  

%%% X4 

Minimun_Angular_Velo_X4= -3e8; 

Step_Angular_Velo_X4= 1e6;    

Maximum_Angular_Velo_X4= 3e8; 

  

  

%%% Calculation size of X4  

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4: 

Maximum_Angular_Velo_X4; 

 [m_size,n_size]= size(Size_x4); 

  

%%%%% Plot 2D graph %%%%%%%% 

  

ii=2;  % row of array   x3 

jj=2;  % column of array x4 
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%%% match x3 and x4 %%% 

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 : 

Maximum_Angular_Velo_X4*pi/180 

  for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 : 

Maximum_Angle_X3*pi/180 

    

    

     if xx3 == 0 

        xx3=1.0e-100;  % avoid Inf's and NaN's 

     end     

       if xx4 == 0 

        xx4=1.0e-100;  % avoid Inf's and NaN's 

     end     

       

  

%%% Nonlinear model 

A4=[0, 1, 0, 0; 

0, 0,-m2*g*sin(xx3)*cos(xx3)/((m1+m2*(sin(xx3))^2)*xx3),... 

m2*r*xx4*sin(xx3)/(m1+m2*(sin(xx3)^2)); 

0, 0, 0, 1; 

0, 0,(m1+m2)*g*sin(xx3)/(r*(m1+m2*(sin(xx3))^2)*xx3),... 

-m2*r*xx4*sin(xx3)*cos(xx3)/(r*(m1+m2*(sin(xx3))^2))]; 

  

B4=[0; 1/(m1+m2*(sin(xx3))^2); 0 ; -cos(xx3)/(r*(m1+m2*(sin(xx3))^2))]; 

  

  

     C4 = [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; 

  

Rank_x3x4(ii,jj)= rank(obsv(A4,C4)); 

  

Rank_x3x4(ii,1)= xx3*180/pi;  % Insert 1st column by x3 

Rank_x3x4(1,jj)= xx4*180/pi;  % Insert 1st row by x4 

  

      

 ii=ii+1; %x3 

  end 

  ii=2; 

  jj=jj+1; %x4 

   

  

  %%% print for waiting %%%  

    Cal_percent = int16(jj*100/(n_size-1)); 

     

     

    if mod(Cal_percent , 10) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

     

   

  end 

  

 %%%% Remove 1st row & 1st column from table for plotting %%%   

  Rank_x3x4_data = Rank_x3x4;  

  Rank_x3x4_data(1,:)=[];  % Remove title row 1 ( x4 name) 

  Rank_x3x4_data(:,1)=[];  % Remove title column 1 ( x3  name) 

  Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis 

   

   

 %%%%% plot max %%%%% 

 figure(); % x3 x4 

 Fn = 14; % font size 

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 : 

Maximum_Angular_Velo_X4; 

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3; 
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[x_mesh,y_mesh] = meshgrid(xx3,xx4);  % This generates the actual grid of x 

and y values. 

[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data); 

set(c,'Linecolor','none') 

  

xlabel('x3 (deg.)');ylabel('x4 (deg./s)'); 

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);  

set(gca,'FontSize', Fn); 

title(sprintf('Rank of Observability Test Matrix')); 

  

colorbar 

 c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

%c =colorbar; 

c.Label.String = 'Rank'; 

grid on; 

  

 

Appendix A.6.5: MATLAB codes of rank of controllability test matrix for a 

TWR model 

Script file: Observability_TWR_5s_x3x4.m 

clear all 

close all 

  

xx1=0;  %set initial wheel angle to be 0 (m) 

xx2=0;  %set initial wheel angular velocity to be 0 (m/s) 

xx3=0; %set initial pitch angle to be 0 (rad) 

xx4=0; %set initial pitch angular velocity to be 0 (rad/s) 

  

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]   

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                      % body weight [kg]  

  

  

%%% EV3 Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

  

h = 0.210;                      % body height [m] 

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor  
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    %%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%% 

  

%%% Variable 'for loop' %%%% 

  

%%%% X3   

Minimun_Angle_X3= -90;   

Step_Angle_X3= 0.2;    

Maximum_Angle_X3= 90; 

%%%% X4 

Minimun_Angular_Velo_X4= -1e6;   

Step_Angular_Velo_X4= 0.2e4;    

Maximum_Angular_Velo_X4= 1e6; 

  

  

%%% Calculation size of X4  

 Size_x4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4: 

Maximum_Angular_Velo_X4; 

 [m_size,n_size]= size(Size_x4); 

  

%%%%% Plot 2D graph %%%%%%%% 

  

ii=2;  % row of array   x3 

jj=2;  % column of array x4 

  

%%% match x3 and x4 %%% 

for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 : 

Maximum_Angular_Velo_X4*pi/180 

  for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 : 

Maximum_Angle_X3*pi/180 

   

     if xx3 == 0 

        xx3=1.0e-100;  % avoid Inf's and NaN's 

     end     

       if xx4 == 0 

        xx4=1.0e-100;  % avoid Inf's and NaN's 

     end     

       

  

 %%% Dr Xu Xu Model %%% 

  

    

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3); 

    e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(xx3); 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x2dot equation 

     

    e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(xx3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 
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    %matrices for the x4dot equation 

     

    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

  

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

  

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

  

  

          %%%% Nonlinear model %%%% 

      A5 =[0      1             0              0       0  ; 

          0  em22/(a+b)  em23/((a+b)*xx3)  em24/(a+b)  0 ; 

          0      0             0              1       0 ; 

          0  em42/(a+b)  em43/((a+b)*xx3)  em44/(a+b)  0 ; 

          1      0            0               0       0 ]; 

  

    

     B5 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b); 

          0             0]; 

        

     C5 = [1 0 0 0 0; 0 1 0 0 0;0 0 1 0 0;0 0 0 1 0; 0 0 0 0 1]; 

                

  

Rank_x3x4(ii,jj)= rank(obsv(A5,C5)); 

   

Rank_x3x4(ii,1)= xx3*180/pi;  % Insert 1st column by x3 

Rank_x3x4(1,jj)= xx4*180/pi;  % Insert 1st row by x4 

  

  

 ii=ii+1; %x3 

  

  end 

  ii=2; 

  

  jj=jj+1; %x4 

  

  

  %%% print for waiting %%%  

    Cal_percent = int16(jj*100/(n_size-1)); 

     

     

    if mod(Cal_percent , 10) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

     

end 

  

 %%%% Remove 1st row & 1st column from table for plotting %%%   
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  Rank_x3x4_data = Rank_x3x4;  

  Rank_x3x4_data(1,:)=[];  % Remove title row 1 ( x4 name) 

  Rank_x3x4_data(:,1)=[];  % Remove title column 1 ( x3  name) 

  Rank_x3x4_data = Rank_x3x4_data'; % Transpose matrix x3=x-axixs, x4=y-axis 

   

   

 %%%%% plot max %%%%% 

 figure(); % x3 x4 

 Fn = 14; % font size 

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 : 

Maximum_Angular_Velo_X4; 

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3; 

  

[x_mesh,y_mesh] = meshgrid(xx3,xx4);  % This generates the actual grid of x 

and y values. 

[Mc,c]=contourf(x_mesh,y_mesh,Rank_x3x4_data); 

set(c,'Linecolor','none') 

  

xlabel('x3 (deg.)');ylabel('x4 (deg./s)'); 

xlim([-90 90]);  

ylim([Minimun_Angular_Velo_X4 Maximum_Angular_Velo_X4]);  

set(gca,'FontSize', Fn); 

title(sprintf('Rank of Observability Test Matrix')); 

  

colorbar 

 c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

grid on; 

 

 

Appendix A.6.6: MATLAB codes of rank of observability test matrix for a 

TWR model 

Script file: Observability_TWR_5s_x3x4_saturation.m 

clear all 

close all 

  

xx1=0;  %set initial wheel angle to be 0 (m) 

xx2=0;  %set initial wheel angular velocity to be 0 (m/s) 

xx3=0; %set initial pitch angle to be 0 (rad) 

xx4=0; %set initial pitch angular velocity to be 0 (rad/s) 

  

xx6=0; %set initial artificial control to be 0 

  

  

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]   

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                      % body weight [kg] 
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h = 0.210;                      % body height [m] 

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

  

%%% Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor         

     

  

    %%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% start controllability test %%%%%%%%%%%%%%%%%%%% 

  

%%% Variable 'for loop' %%%% 

  

%%% X3   

Minimun_Angle_X3= -90;   

Step_Angle_X3= 2;    

Maximum_Angle_X3= 90; 

  

%%% X4 

Minimun_Angular_Velo_X4= -1e5;   

Step_Angular_Velo_X4= 2e3;     

Maximum_Angular_Velo_X4= 1e5; 

  

%%%%% X6   

Minimun_x6= -1e20;    

Step_x6= 2e18;   

Maximum_x6= 1e20; 

  

 %%% Calculation size of Xnp1  

 Size_x6 = Minimun_x6 : Step_x6: Maximum_x6; 

 [m_x6,n_x6]= size(Size_x6); 

  

%%%%% Plot 3D graph %%%%%%%% 

  

ii=2;   % row of array    x3 

jj=2;   % column of array x4 

kk=1;   % page Xn+1 

  

  

%%% convert deg to rad 

%%% match x3 and x4 %%% 

 for xx6 = Minimun_x6 : Step_x6: Maximum_x6 

 for xx3 = Minimun_Angle_X3*pi/180 : Step_Angle_X3*pi/180 : 

Maximum_Angle_X3*pi/180 

 for xx4 = Minimun_Angular_Velo_X4*pi/180 : Step_Angular_Velo_X4*pi/180 : 

Maximum_Angular_Velo_X4*pi/180 

        

     if xx3 == 0 

        xx3=1.0e-20;  % avoid Inf's and NaN's 

     end    

     if xx4 == 0 
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        xx4=1.0e-20;  % avoid Inf's and NaN's 

     end    

     if xx6 == 0 

        xx6=1.0e-20;  % avoid Inf's and NaN's 

     end    

        

       

 %%% Dr Xu Xu model %%% 

  

    

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(xx3)^2+4*M*R*L*cos(xx3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(xx3)-M^2*R*L^2*cos(xx3)*g*sin(xx3); 

    e24=xx4*sin(xx3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(xx3); 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x2dot equation 

     

    e43=M*g*L*sin(xx3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=xx4*sin(xx3)*(-M^2*R^2*L^2*cos(xx3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(xx3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 

    

    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

  

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

  

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

   

          %%%% Nonlinear Model %%%% 

      A5 =[0      1             0              0       0  ; 

          0  em22/(a+b)  em23/((a+b)*xx3)  em24/(a+b)  0 ; 

          0      0             0              1       0 ; 

          0  em42/(a+b)  em43/((a+b)*xx3)  em44/(a+b)  0 ; 

          1      0            0               0       0 ]; 

  

         

     B5 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b); 

          0             0]; 

  

     %%%%-------------- 
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      Vmax = 8.3;  % Set maximum saturation voltage 

  

     if     (xx6 )  > Vmax  % Lego Motor Maximum Voltage 8.3 V 

         Phi_L = Vmax; 

         Phi_R = Vmax; 

     elseif  (xx6) < -Vmax % Lego Motor Minimum Voltage -8.3 V 

         Phi_L = -Vmax; 

         Phi_R = -Vmax; 

     else  

        

          

         Phi_L = Vmax*sin((pi*xx6)/(2*Vmax)); 

         Phi_R = Vmax*sin((pi*xx6)/(2*Vmax)); 

     end     

      

     Phi = [Phi_L ; 

            Phi_R ]; 

      

  

Aa= [       A5            (B5*Phi)/xx6  ; 

       zeros(1,5)            0             ]; 

    

Ba= [  zeros(5,1)  ;  

          1        ];  

   

Ca= eye(6);    

  

Rank_x3x4x6(ii,jj,kk)= rank(obsv(Aa,Ca)); 

  

%%% create table 

Rank_x3x4x6(ii,1,kk)= xx4*180/pi;  % Insert 1st column by x3 

Rank_x3x4x6(1,jj,kk)= xx3*180/pi;  % Insert 1st row    by x4 

  

      

    if xx4 >-0.01 && xx4 <0.01 

        kk=kk+1; 

    Rank_x3x6(jj,kk) = rank(obsv(Aa,Ca)); 

    Rank_x3x6(jj,1) = xx3*180/pi;  % Insert 1st row by  x3 

    Rank_x3x6(1,kk) = xx6; % Insert 1st column by xpn1 

        kk=kk-1; 

    end 

     

    if single(xx3)==single(1.0e-20) 

         kk=kk+1; 

    Rank_x4x6(ii,kk) = rank(obsv(Aa,Ca)); 

    Rank_x4x6(ii,1) = xx4*180/pi;  % Insert 1st row by x4 

    Rank_x4x6(1,kk) = xx6; % Insert 1st column by xpn1 

         kk=kk-1; 

    end 

  

     

     if single(xx6)==single(1.0e-20) 

    Rank_x3x4(ii,jj) = rank(obsv(Aa,Ca)); 

    Rank_x3x4(ii,1) = xx4*180/pi;  % Insert 1st row by x4 

    Rank_x3x4(1,jj) = xx3*180/pi; % Insert 1st column by xpn1 

    end 

  

  

 ii=ii+1; %x3 

  end 

  ii=2; 

  jj=jj+1; %x4 

 end 
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     if xx6 == 1.0e-20 

        xx6=0;  % move zero back 

     end     

      

    Range_x6(1,kk)=xx6; % store x_np1 

      

  jj=2; 

  kk=kk+1; %x_np1 

   

    %%% print for writing  %%%  

    Cal_percent = int16(kk*100/(n_x6+1)); 

     

    if mod(Cal_percent , 10) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

     

end 

  

  

  %%%% Remove 1st row & 1st column from table for plotting %%%   

  Rank_x3x4x6_data = Rank_x3x4x6; 

  Rank_x3x4x6_data(1,:,:)=[];  % Remove title row 1 ( x4 name) 

  Rank_x3x4x6_data(:,1,:)=[];  % Remove title column 1 ( x3  name) 

   

  Rank_x3x6_data = Rank_x3x6; 

  Rank_x3x6_data(1,:)=[];  % Remove title row 1 ( xnp1 name) 

  Rank_x3x6_data(:,1)=[];  % Remove title column 1  

   

  Rank_x4x6_data = Rank_x4x6; 

  Rank_x4x6_data(1,:)=[];  % Remove title row 1 ( xnp1 name) 

  Rank_x4x6_data(:,1)=[];  % Remove title column 1  

    

  Rank_x3x4_data = Rank_x3x4; 

  Rank_x3x4_data(1,:)=[];  % Remove title row 1 ( xnp1 name) 

  Rank_x3x4_data(:,1)=[];  % Remove title column 1  

  

  

 xx3 = Minimun_Angle_X3 : Step_Angle_X3 : Maximum_Angle_X3; 

 xx4 = Minimun_Angular_Velo_X4 : Step_Angular_Velo_X4 : 

Maximum_Angular_Velo_X4; 

 xx6 = Minimun_x6 : Step_x6: Maximum_x6; 

  

  

%%Plot 2D at x3=0 %%%% 

 figure();  

 Fn = 12; % font size 

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6);  % This generates the actual 

grid of x and y values. 

  

xslice = [0];    

yslice = []; 

zslice = []; 

  

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice) 

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular 

velocity(deg./s.)');zlabel('x6'); 

xlim([-90 90]);  

title(sprintf('Rank of Observability Test Matrix')); 

  

colorbar 

c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

  

%%%% view %%%% 
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view(90,0) % y-view 

%%%%%% 

set(gca,'FontSize', Fn); 

  

  

  

%%Plot 2D at x4=0 %%%% 

 figure(); %x4=0 

 Fn = 12; % font size 

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6);  % This generates the actual 

grid of x and y values. 

  

  

xslice = [];    

yslice = [0]; 

zslice = []; 

  

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice) 

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular 

velocity(deg./s.)');zlabel('x6'); 

xlim([-90 90]);  

title(sprintf('Rank of Observability Test Matrix')); 

  

colorbar 

c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

  

%%%% view %%%% 

    view(0,0)  % x-view 

%%%%%% 

set(gca,'FontSize', Fn); 

  

  

  

%%Plot Cubic %%%% 

 figure(); %  

 Fn = 12; % font size 

[x_mesh,y_mesh,z_mesh] = meshgrid(xx3,xx4,xx6);  % This generates the actual 

grid of x and y values. 

  

xslice = [xx3];    

yslice = [xx4]; 

zslice = [xx6]; 

  

slice(x_mesh,y_mesh,z_mesh,Rank_x3x4x6_data,xslice,yslice,zslice) 

xlabel('x3-Pitch angle(deg.)');ylabel('x4-Pitch angular 

velocity(deg./s.)');zlabel('x6'); 

%ylim([-90 90]);  

%zlim([-1e16 1e16]);  

xlim([-90 90]);  

title(sprintf('Rank of Observability Test Matrix')); 

  

colorbar 

c = colorbar('Ticks',[1,2,3,4,5,6],... 

         'TickLabels',{'1','2','3','4','5','6'}); 

c.Label.String = 'Rank'; 

set(gca,'FontSize', Fn); 
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Appendix A.6.7: MATLAB codes of an inverted pendulum on a cart system 

using nonlinear freezing control 

Script file: Freezing_single_pendulum_4s.m       

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%  Nonlinear Freezing control of an inverted pendulum on a cart system 

 

%    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clear all; 

close all; 

  

m1=2; %Mass of the cart (kg) 

m2=0.1; %mass of the pendulum (kg) 

r=0.5; %the rod length (m) 

g=9.8; %acceleration due to gravity (mˆ2/s) 

  

x1(1)=0; %set initial cart displacement to be 0 (m) 

x2(1)=0; %set initial cart velocity to be 0 (m/s) 

x3(1)=30*pi/180; %set initial pendulum angle to be pi (rad) 

x4(1)=0; %set initial pendulum angular velocity to be 0 (rad/s) 

  

u_out(1)=0; % Control signal 

  

Ts = 0.0001;  % step siz 

Duration=10;  % 10 sec 

t=Duration*(1/Ts); 

Time = 0:Ts:t*Ts;  % the range of x-axis 

 

%set Q and R matrices  

Q=[1, 0, 0,  0;  

   0, 1, 0,  0;  

   0, 0, 100, 0;   

   0, 0, 0, 1]; 

R=0.01; 

  

  

for i=1:t 

x=[x1(i); x2(i); x3(i); x4(i)]; 

%define and update the x vector 

  

%%% Nonlinear model from Xu' book chapter %%%% 

x_3=x(3); x_4=x(4); 

  

A=[0, 1, 0, 0; 

0, 0,-m2*g*sin(x_3)*cos(x_3)/((m1+m2*(sin(x_3))^2)*x_3),... 

m2*r*x_4*sin(x_3)/(m1+m2*(sin(x_3)^2)); 

0, 0, 0, 1; 

0, 0,(m1+m2)*g*sin(x_3)/(r*(m1+m2*(sin(x_3))^2)*x_3),... 

-m2*r*x_4*sin(x_3)*cos(x_3)/(r*(m1+m2*(sin(x_3))^2))]; 

  

B=[0; 1/(m1+m2*(sin(x_3))^2); 0 ; -cos(x_3)/(r*(m1+m2*(sin(x_3))^2))]; 

  

  

%set Q and R matrices 

  

[~,P,~]=lqr(A,B,Q,R); 

%use the MATLAB ‘lqr’ function to solve Riccati equation and 
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%work out P 

  

u_out=(-inv(R)*B'*P)*x; 

  

fx=(A-B*(1/R)*B'*P)*x; 

%calculate the function output ‘fx’ based on values of A, B, P 

%and x. 

 x = x + Ts * fx;   % Euler 

  

    %%% Limit the pitch angle between -90 to 90 deg. 

    if x(3) > 90*pi/180 

        x(3) =90*pi/180; 

    end     

     if x(3) < -90*pi/180 

        x(3) =-90*pi/180; 

     end    

  

  

  

x1(i+1)=x(1); 

x2(i+1)=x(2); 

x3(i+1)=x(3); 

x4(i+1)=x(4); 

%Reset the x1, x2, x3 & x4 variables to new values and get ready 

%for the next iteration. 

  

u(i+1) = u_out; 

      %%% print %%% 

    Cal_percent = i*100/(t); 

    if mod(Cal_percent , 10) == 0 

        fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

  

  

  

end 

  

  

figure('Name','Freezing Control'); 

Fn = 14; % font size 

  

subplot(2,3,1); 

p1=plot(Time,x1); grid; 

xlabel('Time (sec)'); ylabel('Cart displacement x1 (m)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,4); 

p2=plot(Time,x2); grid; 

xlabel('Time (sec)'); ylabel('Cart velocity x2 (m/s)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,2); 

p3=plot(Time,x3*180/pi); grid; 

xlabel('Time (sec)'); ylabel('Pendulum angle x3 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,5); 

p4=plot(Time,x4*180/pi); grid; 

xlabel('Time (sec)'); ylabel('Pendulum angular velocity x4 (deg/s)'); 

set(gca,'FontSize', Fn); 

  

  

subplot(2,3,3); 

p5=plot(Time,u); grid; 

xlabel('Time (sec)'); ylabel('Control signal-u (N)'); 



APPENDIX A 

 

254 

 

set(gca,'FontSize', Fn); 

  

  

  

  

Size=1.2; 

p1.LineWidth = Size;  

p2.LineWidth = Size;  

p3.LineWidth = Size;  

p4.LineWidth = Size;  

p5.LineWidth = Size;  

  

 

Appendix A.6.8: MATLAB codes of an inverted pendulum on a cart system 

using iteration scheme 

Script file: Iteration_single_pendulum_4s.m       

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%  Nonlinear iteration scheme of an inverted pendulum on a cart system 

%    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clear all 

close all 

  

  

m1=2; %Mass of the cart (kg) 

m2=0.1; %mass of the pendulum (kg) 

r=0.5; %the rod lenghth (m) 

g=9.8; %acceleration due to gravity (m^2/s) 

  

x1(1)=0; %set initial cart displacement to be 0 

x2(1)=0; %set initial cart velocity to be 0 

x3(1)=60*pi/180; %set initial pendulum angle to be pi/3 

x4(1)=0; %set initial pendulum angular velocity to be 0 

x_initial=[x1(1); x2(1); x3(1); x4(1)]; %define  the x vector  

  

  

Ts = 0.00005;  % step size   

Duration=10;   % 10sec 

t=Duration*(1/Ts); 

Time = 0:Ts:t*Ts;  % the range of x-axis 

  

data = zeros(size(Time));  % allocate the result x-axis 

n = numel(data);  % the number of x-axis values 

  

  

u(1)=0; 

  

  

%set Q and R matrices 

Q=[1, 0, 0, 0;  

    0, 1, 0, 0;  

    0, 0, 100, 0; 

    0, 0, 0, 1]; 

R=0.01; 
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F=eye(4);   % F = diag{1,1,1,1} 

P_final=F;  % Final time penelty matrix 

          

Iteration = 40; 

for k=1:Iteration  %%%%%%%%%%%% iteration for loop %%%%%%%%%%%% 

  

    x = x_initial;  % set x=x0 at the initial step 

    P = P_final; 

      

    for i=1:t %%%% Time step %%% 

  

           %%%%%%%% evalrhs function start %%%%%%%% 

            

           %%%% At initial step K=1  

           if k==1     

             x3_in = x_initial(3); 

             x4_in = x_initial(4); 

             

             %%% Nonlinear Model from Xu's book chapter %%%  

              A=[0, 1, 0, 0; 

                   0, 0,-

m2*g*sin(x3_in)*cos(x3_in)/((m1+m2*(sin(x3_in))^2)*x3_in),... 

                   m2*r*x4_in*sin(x3_in)/(m1+m2*(sin(x3_in)^2)); 

                   0, 0, 0, 1; 

                   0, 

0,(m1+m2)*g*sin(x3_in)/(r*(m1+m2*(sin(x3_in))^2)*x3_in),... 

                   -

m2*r*x4_in*sin(x3_in)*cos(x3_in)/(r*(m1+m2*(sin(x3_in))^2))]; 

  

             B=[0; 1/(m1+m2*(sin(x3_in))^2); 0 ; -

cos(x3_in)/(r*(m1+m2*(sin(x3_in))^2))]; 

  

           end 

  

            %%%% When K > 1 %%%        

            if k > 1             

             x3_pre = x3_table(i,k-1); 

             x4_pre = x4_table(i,k-1); 

              

             %%% Nonlinear Model from Xu's book chapter %%%  

             A=[0, 1, 0, 0; 

                   0, 0,-

m2*g*sin(x3_pre)*cos(x3_pre)/((m1+m2*(sin(x3_pre))^2)*x3_pre),... 

                   m2*r*x4_pre*sin(x3_pre)/(m1+m2*(sin(x3_pre)^2)); 

                   0, 0, 0, 1; 

                   0, 

0,(m1+m2)*g*sin(x3_pre)/(r*(m1+m2*(sin(x3_pre))^2)*x3_pre),... 

                   -

m2*r*x4_pre*sin(x3_pre)*cos(x3_pre)/(r*(m1+m2*(sin(x3_pre))^2))]; 

  

             B=[0; 1/(m1+m2*(sin(x3_pre))^2); 0 ; -

cos(x3_pre)/(r*(m1+m2*(sin(x3_pre))^2))]; 

    

            end 

  

       

         %%%% Backward Euler's method %%% 

          P = P-(- Q - P*A - A.'*P + P*B*inv(R)*B.'*P) *Ts;       

           

           u_new = -inv(R)*B'*P*x; 

           

           fx = (A-B*inv(R)*B'*P)*x;  
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           x = x + Ts * fx; % Euler's method 

         

            

     %%% Limit the pitch angle between -90 to 90 deg. 

    if x(3) > 90*pi/180 

        x(3) =90*pi/180; 

    end     

     if x(3) < -90*pi/180 

        x(3) =-90*pi/180; 

     end    

  

         

        x1(i+1) = x(1); %%% Feedback to system 

        x2(i+1) = x(2); 

        x3(i+1) = x(3);  

        x4(i+1) = x(4); 

         

             

    u(i+1) = u_new;      %%% plot data only 

  

    end  

  

    x1_table(:,k)=x1;  %%% collect data, creating table 

    x2_table(:,k)=x2; 

    x3_table(:,k)=x3;   

    x4_table(:,k)=x4; 

  

    u_table(:,k)=u; 

  

    %%% print %%% 

    Cal_percent = k*100/(Iteration); 

    if mod(Cal_percent , 10) == 0 

        fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

  

end 

  

     

x3_table=x3_table*180/pi; 

x4_table=x4_table*180/pi; 

  

  

figure('Name','Iteration scheme'); 

Fn = 14; % font size 

subplot(2,3,1); 

  

p1(1)=plot(Time,x1_table(:,1),'k--'); hold on 

p1(2)=plot(Time,x1_table(:,5),'m'); hold on 

p1(3)=plot(Time,x1_table(:,10),'color','#F39C12'); hold on 

p1(4)=plot(Time,x1_table(:,15),'g:'); hold on 

p1(5)=plot(Time,x1_table(:,30),'b'); hold on 

p1(6)=plot(Time,x1_table(:,40),'r--'); hold on 

xlabel('Time (sec)'); ylabel('Cart displacement x1 (m)');grid; 

set(gca,'FontSize', Fn);  

  

subplot(2,3,4); 

p2(1)=plot(Time,x1_table(:,1),'k--'); hold on 

p2(2)=plot(Time,x2_table(:,5),'m'); hold on 

p2(3)=plot(Time,x2_table(:,10),'color','#F39C12'); hold on 

p2(4)=plot(Time,x2_table(:,15),'g:'); hold on 

p2(5)=plot(Time,x2_table(:,30),'b'); hold on 

p2(6)=plot(Time,x2_table(:,40),'r--'); hold on 

xlabel('Time (sec)'); ylabel('Cart velocity x2 (m/s)');grid; 

set(gca,'FontSize', Fn); 
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subplot(2,3,2); 

%plot(Time,x1); grid; 

p3(1)=plot(Time,x3_table(:,1),'k--'); hold on 

p3(2)=plot(Time,x3_table(:,5),'m'); hold on 

p3(3)=plot(Time,x3_table(:,10),'color','#F39C12'); hold on 

p3(4)=plot(Time,x3_table(:,15),'g:'); hold on 

p3(5)=plot(Time,x3_table(:,30),'b'); hold on 

p3(6)=plot(Time,x3_table(:,40),'r--'); hold on 

xlabel('Time (sec)'); ylabel('Pendulum angle x3 (deg)');grid; 

set(gca,'FontSize', Fn); 

  

subplot(2,3,5); 

p4(1)=plot(Time,x4_table(:,1),'k--'); hold on 

p4(2)=plot(Time,x4_table(:,5),'m'); hold on 

p4(3)=plot(Time,x4_table(:,10),'color','#F39C12'); hold on 

p4(4)=plot(Time,x4_table(:,15),'g:'); hold on 

p4(5)=plot(Time,x4_table(:,30),'b'); hold on 

p4(6)=plot(Time,x4_table(:,40),'r--'); hold on 

xlabel('Time (sec)'); ylabel('Pendulum angular velocity x4 (deg/s)');grid; 

set(gca,'FontSize', Fn); 

  

subplot(2,3,3); 

p5(1)=plot(Time,u_table(:,1),'k--'); hold on 

p5(2)=plot(Time,u_table(:,5),'m'); hold on 

p5(3)=plot(Time,u_table(:,10),'color','#F39C12'); hold on 

p5(4)=plot(Time,u_table(:,15),'g:'); hold on 

p5(5)=plot(Time,u_table(:,30),'b'); hold on 

p5(6)=plot(Time,u_table(:,40),'r--'); hold on 

xlabel('Time (sec)'); ylabel('Control signal-u (N)');grid; 

set(gca,'FontSize', Fn); 

  

legend('i=1','i=5','i=10','i=15','i=30','i=40','FontSize', 12)  

  

  

LW1=1; LW2=1.2; LW3=1.2; LW4=2.5; LW5=1.2;  LW6=2; 

  

p1(1).LineWidth = LW1; p1(2).LineWidth = LW2; p1(3).LineWidth = LW3; 

p1(4).LineWidth = LW4; p1(5).LineWidth = LW5; p1(6).LineWidth = LW6;  

p2(1).LineWidth = LW1; p2(2).LineWidth = LW2; p2(3).LineWidth = LW3; 

p2(4).LineWidth = LW4; p2(5).LineWidth = LW5; p2(6).LineWidth = LW6; 

p3(1).LineWidth = LW1; p3(2).LineWidth = LW2; p3(3).LineWidth = LW3; 

p3(4).LineWidth = LW4; p3(5).LineWidth = LW5; p3(6).LineWidth = LW6; 

p4(1).LineWidth = LW1; p4(2).LineWidth = LW2; p4(3).LineWidth = LW3; 

p4(4).LineWidth = LW4; p4(5).LineWidth = LW5; p4(6).LineWidth = LW6; 

p5(1).LineWidth = LW1; p5(2).LineWidth = LW2; p5(3).LineWidth = LW3; 

p5(4).LineWidth = LW4; p5(5).LineWidth = LW5; p5(6).LineWidth = LW6; 

  

 

Appendix A.6.9: MATLAB codes of TWR systems using freezing control 

technique 

Script file: Gyroboy_5s_Freezing_10_2021.m 

%%%% Nonlinear Freezing Control for LEGO EV3 Robot 

  

  

%%%%%%  Functions programme needed %%% 

% evalrhs_Freezing_K5();         % Generating K5 only 
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% evalrhs_gyroboy5s_Freezing();  % Generating K1-K4 and fx 

% 

%      Inside two functions 

% 

%           Gyroboy_Nonlinear_Model_5s();  

%           Gyroboy_Nonlinear_Model_4s();  

%           Maxon Motor parameters etc. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

clear all; 

close all; 

  

%%% Set initial x1-x5 

%%% Always set x1=x3 

  

x1(1)=20*pi/180;      %set Theta - Average of wheel angles (deg) 

x2(1)=0;                %set Theta_DOT (deg/s) 

x3(1)=20*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO 

x4(1)=0*pi/180;         %set Psi_DOT (deg/s) 

x5(1)=0;                %set Theta integral 

  

  %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed 

   

  Model=1;  

  

u = [0;0];   % Control of Motors 

u_in1(1)=0;  % Left  Motor Voltage 

u_in2(1)=0;  % Right Motor Voltage 

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4) 

  

x1_err = 0;      % x1 error for tracking sys 

x1_ref = 0;      % x1 reference  

x1_err_int(1)=0; % x1 error integral 

  

Ts=0.0001; %time step length  

   

Duration=10;       % time sec 

t=Duration*(1/Ts); % time step  

Time = 0:Ts:t*Ts;   % Create real time step for plotting 

  

for i=1:t 

  u      =[u_in1(i); u_in2(i)]; 

  x_5s    =[x1(i); x2(i); x3(i); x4(i); x5(i)];  % whole system 

  x_4s    =[x1(i); x2(i); x3(i); x4(i)];         % x1-x4 state feedback 

  

   

  %%%%%% Programming Diagram %%%%%   

     

%                                                                                

%                     u_x1  +     u                              y=x1-x4            y=x1 

%  X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+ 

%          ^-                ^ -                                               |          |    

%          |                 | u_feedback                                      |          |  

%          |                 |                                                 |              

%          x1                |                                                 | 

%                            +--------------------<--K14-- ---------------- ---+ 

%                                                                  x1-x4 

%                                      

% %%%%%%%%%%%%%%%                                      

         

      

    %%% x1 error for tracking sys 

    x1_err(i+1) = x1_ref - x1(i);  
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      %%%%% X1 error Integral  %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

    

    %%% x1 error integral   

    x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ;  % [h1 x L]+[ 0.5 x(h2-h1) x L ] + old 

      

    %%% cal. K5 for x5 only (integral x1) 

    K_5 = evalrhs_Freezing_K5(x_5s,Model);   % K_5=[-0.5000; -0.5000]; 

     

    

    %%% u=kx,  Motor Voltage of integral x1 

    u_x1 = K_5 * x1_err_int(i+1);  

     

    %%% The final voltages used to control robot motors 

    u = u_x1 - u_feedback;  

     

  

   %%% Hard Saturation  %%% 

   %%% Uncomment this part for using motor voltage hard saturation  

%     Vmax = 8.3;  

%     %Vmax = 36;  

%     %Vmax = 48;  

%             if u(1) > Vmax 

%                u(1) = Vmax; 

%                u(2) = Vmax; 

%             end   

%              if u(1) < -Vmax 

%                u(1) = -Vmax; 

%                u(2) = -Vmax; 

%              end  

%     %%%%%% 

     

     

    u_in1(i+1)=u(1);   % update u1 

    u_in2(i+1)=u(2);   % update u2 

     

    

    %%% calculate the new 'x' vector using a 4th order   

    %%% Euler integration method 

    %%% fx = Ax + Bu; 

    [fx,K_14,~,~] = evalrhs_gyroboy5s_Freezing(x_4s,u,Model); 

    x_4s = x_4s + Ts * fx;   % Euler 

     

    %%% K14 = K1,K2,K3 and K4 

   

  

    %%% Limit the robot pitch angle between -90 to 90 deg. 

    if x_4s(3) > 90*pi/180 

        x_4s(3) =90*pi/180; 

    end     

     if x_4s(3) < -90*pi/180 

        x_4s(3) =-90*pi/180; 

     end     

     

    %%% Update x1-x4 

    x1(i+1)=x_4s(1); 

    x2(i+1)=x_4s(2);  

    x3(i+1)=x_4s(3); 

    x4(i+1)=x_4s(4);    

  

  

    x3_deg(i+1)=x_4s(3)*180/pi; 

    x4_deg(i+1)=x_4s(4)*180/pi;  
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      %%% Generate real x1 integral (x5) 

      %%%%% X5 = Integral of X1 %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

      x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts; 

    

     

   %%% x1-x4 motor voltage feedback %%%% 

   u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];              

   

    

    %%% Command print for waiting %%%  

    Cal_percent = i*100/t; 

     

     if i== 1 

       fprintf('Start at x3= %3.2f deg, x4= %1.1e 

deg/s...\n',x3(1)*180/pi,x4(1)*180/pi) 

     end   

    

     if mod(Cal_percent , 2) == 0     

       %fprintf('Calculating  %f percent ...\n',Cal_percent) 

       fprintf('Cal.  %3.2f percent,  ',Cal_percent)      

       fprintf('x3= %3.2f deg,  ',x3(i+1)*180/pi) 

       fprintf('x4= %3.2f deg/s,  ',x4(i+1)*180/pi) 

       fprintf('t= %3.2f sec...\n',Ts*i) 

     end   

     

end 

  

% Use below line instead above when ploting the failing system 

(uncontrollable) 

% Time = 0:Ts:(i-1)*Ts;   

 u=u_in1;  % Store as u 

 

 

%%%%%% Save variables for plotting future %%% 

%%% 'x1','x2','x3','x4','x5','u','Time'  %%% 

  

%save('Sim_Output_workspace_nonlinear1','x1','x2','x3','x4','x5','u','Time'); 

  

%%%% Fig. [2x3] %%% 

figure('Name','Freezing control'); 

Fn = 14; % font size 

  

subplot(2,3,1); 

p1=plot(Time,x1*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,4); 

p2=plot(Time,x2*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,2); 

p3=plot(Time,x3*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,5); 

p4=plot(Time,x4*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)'); 

set(gca,'FontSize', Fn); 
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 subplot(2,3,3);  

 p5=plot(Time,x5*180/pi,'r'); grid; 

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)'); 

 set(gca,'FontSize', Fn); 

  

subplot(2,3,6);  %5states 

p6=plot(Time,u,'r'); grid; 

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

%LineWidth 

LW=1.2;  

p1(1).LineWidth = LW;  

p2(1).LineWidth = LW;  

p3(1).LineWidth = LW;  

p4(1).LineWidth =LW;  

p5(1).LineWidth = LW;  

p6(1).LineWidth =LW;  

  

  

 ----------------------- 

 

 

 

Function file: evalrhs_Freezing_K5.m 

function K_5 = evalrhs_Freezing_K5(x,model) 

  

    %%% 5-states Model parameters  

    [A5,B5,Q,R2,~,~,~]=Gyroboy_Nonlinear_Model_5s(x,model); 

     

  

    [K_LQR,~,~]=lqr(A5,B5,Q,R2);   % K nonlinear 

    %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P 

    

    K_5    = K_LQR;   

    K_5(: , 1:4)=[];    % integral gain x5 

    % delete column 1-4th 

    

    %calculate the function output 'fx' based on values of A, B, P and x. 

end 

------------------------ 

 

 

Function file: Gyroboy_Nonlinear_Model_5s.m 

 

  function [A5,B5,Q,R2,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,Model) 

  

%%% LEGO EV3 parameters 5-states 

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]  old 0.024 new 0.050 

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                      % body weight [kg]    

h = 0.210;                      % body height [m] 
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L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

%%% EV3 Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

  

Vmax=8.3;  % Default Vmax for LEGO EV3 

  

M2=M;      % Use this when want to change new motor or mass 

  

%%% Uncomment below when want to use new motor  %%% 

  

%[M,Jm,Rm,Kb,Kt]=MaxonDCmotor_Ec60flat_100W_48V(M2);  Vmax = 48; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor  

  

%%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

     

    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 

    %x5=x(5); % 

     

     if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

     end     

     if x4 == 0 

       x4=1.0e-20;  % avoid Inf's and NaN's 

    end     

     

     

 %%% Nonlinear model %%%% 

  

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3); 

    e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(x3); 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x2dot equation 

     

    e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(x3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 
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    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

    %define these extra function to reduce the coding complexity of A and B 

    %matrices with the motor added in    

  

    %define A and B using a nonlinear state-space gyro robot model, 

    %including the motor part 

  

    if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

    end     

    if x4 == 0 

       x4=1.0e-20;  % avoid Inf's and NaN's 

    end     

     

  

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed 

  % 4.Model C  

      

    % Model = 3;  % Select mode  

   

  %%%-------- Model A ----------    

if Model == 1 

          %%%% Primary Model A %%%% 

      A5 =[0      1             0              0       0  ; 

          0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)  0 ; 

          0      0             0              1       0 ; 

          0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)  0 ; 

          1      0            0               0       0 ]; 

end 

  

  

%%%-------- Model B ---------- 

if Model == 2 

          %%%% Model B %%%% 

     A5 =[0      1             0                    0       0  ; 

         0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0       0 ; 

         0      0              0                    1       0 ; 

         0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0       0 ; 

         1      0            0                      0       0 ]; 

     

end 

  

  

  %%%-------- Model AB5 ---------- 

if Model == 3 
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  %%% Mix A&B %%%%%   

      

   if x3 <= (10*pi/180) && x3 >= (-10*pi/180)     

    %%%% Primary Model A %%%% 

     A5 =[0      1             0              0       0  ; 

         0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)  0 ; 

         0      0             0              1       0 ; 

         0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)  0 ; 

         1      0            0               0       0 ]; 

      

  else    

      

      %%%% Model B %%%% 

     A5 =[0      1             0                    0       0  ; 

         0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0       0 ; 

         0      0              0                    1       0 ; 

         0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0       0 ; 

         1      0            0                      0       0 ]; 

  end 

     

end 

       

  

%%%-------- Model C ---------- 

if Model == 4 

       %%%% Model C %%%% 

     A5 =[0      1             0              0                   0     ; 

         0  em22/(a+b)        0        (em23+em24*x4)/((a+b)*x4)   0 ; 

         0      0             0              1                     0   ; 

         0  em42/(a+b)       0          (em43+em44*x4)/((a+b)*x4)  0  ; 

         1      0            0                      0              0 ]; 

  

end    

  

          

    % Models Matrix B 

  

     B5 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b); 

          0             0]; 

    

  

     Q=[20, 0, 0, 0, 0;  

          0, 1, 0, 0, 0;  

          0, 0, 1, 0, 0;  

          0, 0, 0, 1, 0; 

          0, 0, 0, 0, 5]; 

     

    R2=  10*[1, 0;  

             0, 1]; 

  %  set Q and R matrices 

     

  end 

 

Note that function file “Gyroboy_Nonlinear_Model_4s.m” is the same 

programme used in linear control simulation. 
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Appendix A.6.10: MATLAB codes of TWR systems using freezing control 

technique with EKF 

Script file: Gyroboy_5s_Freezing_EKF_10_2021.m 

%%%% Nonlinear Freezing Control with EKF for LEGO EV3 Robot 

  

%%%%%%  Functions programme needed %%% 

% evalrhs_Freezing_K5();             % Generating K5 only 

% evalrhs_gyroboy5s_Freezing_EKF();  % Generating K1-K4, fx and Kf 

% 

%      Inside two functions 

% 

%           Gyroboy_Nonlinear_Model_5s();  

%           Gyroboy_Nonlinear_Model_4s();  

%           Maxon Motor parameters etc. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

clear all; 

close all; 

  

%%% Set initial x1-x5 

%%% Always set x1=x3 

  

x1(1)=10*pi/180;      %set Theta - Average of wheel angles (deg) 

x2(1)=0;                %set Theta_DOT (deg/s) 

x3(1)=10*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO 

x4(1)=0*pi/180;         %set Psi_DOT (deg/s) 

x5(1)=0;                %set Theta integral 

   

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed 

   

  Model=1;  

  

u_in1(1)=0;  % Left  Motor Voltage 

u_in2(1)=0;  % Right Motor Voltage 

u_feedback =[0;0]; % u_feedback = Kx = (K_LQR) x (X1-X4) 

  

%%% Set initial Xhat 

Xhat1(1) = x1(1); 

Xhat2(1) = 0; 

Xhat3(1) = x3(1); 

Xhat4(1) = 0; 

  

%%% Set initial Xhat integral 

dXhat1(1) = 0; 

dXhat2(1) = 0; 

dXhat3(1) = 0; 

dXhat4(1) = 0; 

  

%%% Disturbance variables 

x1_disturbance(1) = 0; 

x2_disturbance(1) = 0; 

x3_disturbance(1) = 0; 

x4_disturbance(1) = 0; 

  

x1_err = 0;      % x1 error for tracking sys 



APPENDIX A 

 

266 

 

x1_ref = 0;      % x1 reference  

x1_err_int(1)=0; % x1 error integral 

  

Ts=0.0001; %time step length  

  

Duration=10;       % time sec 

t=Duration*(1/Ts); % time step in programming 

Time = 0:Ts:t*Ts;  % Create real time step for plotting 

  

for i=1:t 

     

  u      =[u_in1(i); u_in2(i)]; 

  x_5s    =[x1(i); x2(i); x3(i); x4(i); x5(i)];   % whole system 

  x_4s    =[x1(i); x2(i); x3(i); x4(i)];          % x1-x4 state feedback 

  Xhat =[Xhat1(i); Xhat2(i); Xhat3(i); Xhat4(i)]; % Xhat1-4 (exclude x5) 

  dXhat=[dXhat1(i); dXhat2(i); dXhat3(i); dXhat4(i)]; %Xhat integral 

   

 

 

            

  

 %%%%%% Programming Diagram %%%%%   
     

%                                                                                

%                     u_x1  +     u                              y=x1-x4            y=x1 

%  X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+ 

%          ^-                ^ -            |                              ^   |          |    

%          |                 | u_feedback   +------B------>|         Add   |   |          |  

%          |                 |                             |       Distubance  |           

%          x1                |       Xhat            dXhat |                   | 

%                            +-<--K14-- o<--Integal <----- o <-- Kf-------- ---+ 

%                                       |                  ^       x1-x4 

%                                       |                  | 

%                                       +---- A -(Kf)C ->--+ 

         

% %%%%%%%%%%%%%%%                                      

         

  

  

     %%% x1 error for tracking sys 

    x1_err(i+1) = x1_ref - x1(i); 

     

      %%%%% X1 error Integral  %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

    

   %%% x1 error integral   

   x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ;  % [h1 x L]+[ 0.5 x(h2-h1) x L ] + old 

      

    %%% cal. K5 for x5 only (integral x1) 

    K_5 = evalrhs_Freezing_K5(x_5s, Model);  % K_5=[-0.5000; -0.5000]; 

     

    %%% u=kx,  Motor Voltage of integral x1 

    u_x1 = K_5 * x1_err_int(i+1); 

     

    %%% The final voltages used to control robot motors 

    u = u_x1 - u_feedback; 

     

    %%% Hard Saturation  %%% 

   %%% Uncomment this part for using motor voltage hard saturation  

%     Vmax = 8.3;  

%    % Vmax = 36;  

%     %Vmax = 48;  

%             if u(1) > Vmax 

%                u(1) = Vmax; 

%                u(2) = Vmax; 

%             end   

%              if u(1) < -Vmax 
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%                u(1) = -Vmax; 

%                u(2) = -Vmax; 

%              end  

%     %%%%%% 

%      

    u_in1(i+1)=u(1);   % update u1 

    u_in2(i+1)=u(2);   % update u2 

     

  

    %%% calculate the new 'x' vector using a 4th order   

    %%% Euler integration method 

    %%% fx = Ax + Bu; 

    [fx,u,A,B,C,Kf,K_14] = evalrhs_gyroboy5s_Freezing_EKF(x_4s,u, Model); 

    x_4s = x_4s + Ts * fx; % Euler 

    %%% Kf is the gain of Kalman filter 

     

  

    %%% Limit the robot pitch angle between -90 to 90 deg. 

    if x_4s(3) > 90*pi/180 

        x_4s(3) =90*pi/180; 

    end    

     

     if x_4s(3) < -90*pi/180 

        x_4s(3) =-90*pi/180; 

     end     

     

   %%% Update x1-x4 

    x1(i+1)=x_4s(1); 

    x2(i+1)=x_4s(2);  

    x3(i+1)=x_4s(3); 

    x4(i+1)=x_4s(4);    

  

  

       %%% Generate real x1 integral (x5) 

       %%%%% X5 = Integral of X1 %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

      x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts; 

     

   

  

  %%%% Select mode for testing disturbance on state-estimation %%%% 

  % 0.No disturbance   

  % 1.Noise disturbance in X3 

  % 2.Sensor X3 drift  

      

     Mode = 0;  % Select mode 0 

   

if Mode == 0 

    %%%%% No disturbance in X 

     x1_disturbance(i+1)=x_4s(1); 

     x2_disturbance(i+1)=x_4s(2);  

     x3_disturbance(i+1)=x_4s(3)+ 0;   

     x4_disturbance(i+1)=x_4s(4);   

    Kf_X = Kf*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];  %%% Update:   Kf_X 

end 

       

   

   

   

if Mode == 1 

  

     %%%%%% Test signal disturbance, drift only X3  %%%%% 

    x1_disturbance(i+1)=x_4s(1); 
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    x2_disturbance(i+1)=x_4s(2);  

    x3_disturbance(i+1)=x_4s(3)+ (i/(100*400))*pi/180;  

    x4_disturbance(i+1)=x_4s(4);  

    Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)]; %%% Update:   

Kf_X 

end 

  

  

  

if Mode == 2 

     

   %%%%%%% Test noise disturbance, only X3  %%%%%% 

   if  mod(i , 2) == 0   % disturbance frequency 

        

    min = -5; %min Random 

    max = 5; %max Random 

    r = (max-min).*rand(1) + min; % Random 

   else 

     r=0;   

   end 

    

      x1_disturbance(i+1)=x_4s(1); 

      x2_disturbance(i+1)=x_4s(2);  

      %x3_disturbance(i+1)=x_4s(3)+ r(i+1)*pi/180;   

      x3_disturbance(i+1)=x_4s(3)+ r*pi/180;   

      x4_disturbance(i+1)=x_4s(4);   

     Kf_X = Kf*[x_4s(1); x_4s(2); x3_disturbance(i+1) ; x_4s(4)]; %%% Update:   

L*X 

end 

  

  

    %%% Kalman filter variable 

    %%% See more in coding diagram 

    A_KfC_Xhat =  (A-Kf*C)*Xhat; 

    dXhat = B*u + Kf_X + A_KfC_Xhat; 

     

    %%% Update 

    dXhat1(i+1)=dXhat(1); 

    dXhat2(i+1)=dXhat(2);      

    dXhat3(i+1)=dXhat(3); 

    dXhat4(i+1)=dXhat(4);   

     

      %%%%% dXhat Integral (Xhat) %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

    Xhat1(i+1) = Xhat1(i) + dXhat1(i)*Ts + 0.5* (dXhat1(i+1)-dXhat1(i))* Ts; 

    Xhat2(i+1) = Xhat2(i) + dXhat2(i)*Ts + 0.5* (dXhat2(i+1)-dXhat2(i))* Ts; 

    Xhat3(i+1) = Xhat3(i) + dXhat3(i)*Ts + 0.5* (dXhat3(i+1)-dXhat3(i))* Ts; 

    Xhat4(i+1) = Xhat4(i) + dXhat4(i)*Ts + 0.5* (dXhat4(i+1)-dXhat4(i))* Ts; 

     

    

    %%% Limit the robot pitch angle Xhat between -90 to 90 deg. 

    if  Xhat3(i+1) > 90*pi/180 

         Xhat3(i+1)=90*pi/180; 

    end    

     

     if  Xhat3(i+1) < -90*pi/180 

         Xhat3(i+1)=-90*pi/180; 

    end    

     

     

   %%% Select control feedback : Xhat3 for x3%%%% 

    

   %u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];             %Xsys 
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   %u_feedback = K_14*[Xhat1(i+1); Xhat2(i+1); Xhat3(i+1); Xhat4(i+1)]; %Xhat 

  

   u_feedback = K_14*[x_4s(1); x_4s(2); Xhat3(i+1); x_4s(4)];           

%Select only X3 

   

    

  

     %%% Command print for waiting %%%  

    Cal_percent = i*100/t; 

     

     if i== 1 

       fprintf('Start at x3= %3.2f deg, x4= %3.1f 

deg...\n',x3(1)*180/pi,x4(1)*180/pi) 

     end   

     

  

    if mod(Cal_percent , 2) == 0 

       %fprintf('Calculating  %f percent ...\n',Cal_percent) 

       fprintf('Cal.  %3.2f percent,  ',Cal_percent) 

       %fprintf('x3= %3.2f deg,  ',Xhat3(i+1)*180/pi) 

       fprintf('x3= %3.2f deg,  ',x3(i+1)*180/pi) 

       fprintf('x4= %3.2f deg/s,  ',x4(i+1)*180/pi) 

       fprintf('t= %3.2f sec...\n',Ts*i) 

    end   

     

    %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready 

for the next iteration. 

end 

  

% use below line instead above when ploting the failing system 

(uncontrollable) 

% Time = 0:Ts:(i-1)*Ts;     

 u=u_in1;  % Store as u 

 

%%% Move all Xhat to x3 for plotting 

x3=Xhat3; 

  

  

%%%%%% Save variables for plotting future %%% 

%%% 'x1','x2','x3','x4','x5','u','Time'  %%% 

  

  

%%%% Fig. [2x3] %%% 

figure('Name','Freezing control and EKF'); 

Fn = 14; % font size 

  

subplot(2,3,1); 

p1=plot(Time,x1*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,4); 

p2=plot(Time,x2*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,2); 

p3=plot(Time,x3*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,5); 

p4=plot(Time,x4*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)'); 

set(gca,'FontSize', Fn); 
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 subplot(2,3,3);  

 p5=plot(Time,x5*180/pi,'r'); grid; 

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)'); 

 set(gca,'FontSize', Fn); 

  

subplot(2,3,6);  %5states 

p6=plot(Time,u,'r'); grid; 

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

%LineWidth 

LW=1.2;  

p1(1).LineWidth = LW;  

p2(1).LineWidth = LW;  

p3(1).LineWidth = LW;  

p4(1).LineWidth =LW;  

p5(1).LineWidth = LW;  

p6(1).LineWidth =LW;  

  

  

-------------------------------------------- 

Function  file: evalrhs_gyroboy5s_Freezing_EKF.m 

function [fx,u,A4,B4,C4,Kf,K_14] = evalrhs_gyroboy5s_Freezing_EKF( x ,u, 

Model) 

  

    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 

     

    %%% 5-states Model parameters  

    [A5,B5,Q,R2,~,~,~]=Gyroboy_Nonlinear_Model_5s(x, Model); 

     %[A5,B5,Q,R2,Vmax,alpha,beta] 

    % When disturbancing weigth and heigh, these parameters are not changed 

  

     

     [K_LQR,~,~]=lqr(A5,B5,Q,R2);  % K Nonlinear 

    %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P 

     

  

    K_14 = K_LQR;   

    K_14( : , 5)=[];   % feedback gain x1-x4   

    % delete column 5th, not need k5 for x5 

     

     

    %%% 4-states Model parameters 

    %%% Real model parameters  

    [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x, Model); 

    %[A4,B4,Vmax,alpha,beta] 

    % When disturbancing weigth and heigh, these parameters are changed 

  

  

    

    x14=[x1;x2;x3;x4];   

    %%% Calculate fx for 4-state system 

    %%% fx = Ax + Bu 

    %%% Use u from controller voltage input 

    fx = A4*x14 + B4*u; 
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   %%% Matrix C  

   C4=eye(4); 

    

   %%% Kalman filter noise parameters  

   Noise_V= 0.2*eye(4); %0.2   % increase to smooth cure % R of Kalman filter 

   Noise_W= 1*eye(4);                                   % Q of Kalman filter 

    

   %%% Calculation gain Kf of Kalman filter 

   [~,Pk,~]=lqr(A4,C4',Noise_W,Noise_V); 

   Kf= Pk*C4'*inv(Noise_V); 

    

  

    %calculate the function output 'fx' based on values of A, B, P and x. 

end 

 

Appendix A.6.11: MATLAB codes of TWR systems using freezing control 

technique with soft constrained input 

Script file: Gyroboy_5s_Freezing_SoftConsV_10_2021.m 

%%%% Nonlinear Freezing Control with soft constrained voltage 

%%% for LEGO EV3 Robot 

  

%%%%%%  Functions programme needed %%% 

% evalrhs_Freezing_K5_SoftCons();         % Generating K5 only 

% evalrhs_gyroboy5s_Freezing_SoftCons();  % Generating K1-K4 and fx 

% 

%      Inside two functions 

% 

%           Gyroboy_Nonlinear_Model_5s();  

%           Gyroboy_Nonlinear_Model_4s();  

%           Maxon Motor parameters etc. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

clear all; 

close all; 

  

%%% Set initial x1-x5 

%%% Always set x1=x3 

  

x1(1)=10*pi/180;      %set Theta - Average of wheel angles (deg) 

x2(1)=0;                %set Theta_DOT (deg/s) 

x3(1)=10*pi/180; %set Psi - Pitch angle of body (deg) - CONTROL to ZERO 

x4(1)=0*pi/180;         %set Psi_DOT (deg/s) 

x5(1)=0;                %set Theta integral 

x_np1(1)=0; %X-Saturation  %X6 %Aftiicial voltage 

   

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed 

  

model=1; 

  

u_real_all(1)=0;   % real voltage 

  

%%% initial artificial voltage feedbck 
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u_new = 0;         

u_feedback_new = 0; 

  

  

x1_err = 0;      % x1 error for tracking sys 

x1_ref = 0;      % x1 reference  

x1_err_int(1)=0; % x1 error integral 

  

Ts=0.0001; %time step length  

  

Duration=10;       % time sec 

t=Duration*(1/Ts); % time step in programming 

Time = 0:Ts:t*Ts;   % Create real time step for plotting 

  

for i=1:t 

   

  x_6s    =[x1(i); x2(i); x3(i); x4(i); x5(i); x_np1(i)];   % whole system + 

Xnp1 

  x_5s    =[x1(i); x2(i); x3(i); x4(i); x_np1(i)];          % x1-x5 state 

feedback 

  

  

  %%%%%% Programming Diagram %%%%%   
     

%                                                                                

%                     u_x1  +     u_new                             y=x1-x4,xnp1         y=x1 

%  X1ref->-o-->-Int--K5-->-->o--------------+-------| Plant |-->---------------+---C------+ 

%          ^-                ^ -                                               |          |    

%          |                 | u_feedback_new                                  |          |  

%          |                 |                                                 |              

%          x1                |                                                 | 

%                            +--------------------<--K14,Knp1-- ----------- ---+ 

%                                                                  x1-x4,xnp1  

%                                      

% %%%%%%%%%%%%%%%                                      

          

      

    %%% x1 error for tracking sys 

    x1_err(i+1) = x1_ref - x1(i); 

     

      %%%%% X1 error Integral  %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

    

     %%% x1 error integral    

    x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ;  % [h1 x L]+[ 0.5 x(h2-h1) x L ] + old 

      

     %%% cal. K5 for x5 only (integral x1) 

    K_5 = evalrhs_Freezing_K5_SoftCons(x_6s,i,model); 

     

    %%% u=kx,  Motor Voltage of integral x1 

    u_x1_new = K_5 * x1_err_int(i+1); 

     

    %%% The final voltages used to control robot motors 

    u_new(i) = u_x1_new - u_feedback_new; 

     

    

    %%%%%%%% 

     

    %%% calculate the new 'x' vector using a 4th order   

    %%% Euler integration method 

    %%% fx = Ax + Bu; 

     [fx,u_real,K14_n_xnp1,alphaa,betaa] = 

evalrhs_gyroboy5s_Freezing_SoftCons(x_5s,u_new(i),i,model); 

    x_5s = x_5s + Ts * fx; % Euler 

      

     %%% K14 = K1,K2,K3 and K4   plus K_xnp1 
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    %%% Limit the robot pitch angle between -90 to 90 deg.  

    if x_5s(3) > 90*pi/180 

        x_5s(3) =90*pi/180; 

    end    

     

     if x_5s(3) < -90*pi/180 

        x_5s(3) =-90*pi/180; 

     end     

     

     %%% Update x1-x4 

    x1(i+1)=x_5s(1); 

    x2(i+1)=x_5s(2);  

    x3(i+1)=x_5s(3); 

    x4(i+1)=x_5s(4);    

    x_np1(i+1)=x_5s(5);   

  

    

    u_real_all(i+1)=u_real;   % Update u 

     

   

       %%%%% X5 = Integral of X1 %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

      x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts; 

     

   

   %%% x1-x5 motor voltage feedback %%%% 

   u_feedback_new = K14_n_xnp1*[x_5s(1); x_5s(2); x_5s(3); x_5s(4); x_5s(5)];   

   

    

      %%% Command print for waiting %%%  

         

    if i== 1 

       fprintf('Start at x3= %3.2f deg...\n',x3(1)*180/pi) 

     end   

         

         

    Cal_percent = i*100/t; 

     

    if mod(Cal_percent , 2) == 0 

       fprintf('Calculating  %3.2f percent,  ',Cal_percent) 

       fprintf('x3= %3.2f deg,  ',x3(i+1)*180/pi) 

       fprintf('x4= %3.2f deg/s,  ',x4(i+1)*180/pi) 

       fprintf('x6= %3.2f ,  ',x_np1(i+1)*180/pi) 

       fprintf('t= %3.2f sec...\n',Ts*i) 

    end   

     

      

    %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready 

for the next iteration. 

end 

  

% Use below line instead above when ploting the failing system 

(uncontrollable) 

% Time = 0:Ts:(i-1)*Ts;     

u = u_real_all;           % ploting real voltage 

  

%%%%%% Save variables for plotting future %%% 

%%% 'x1','x2','x3','x4','x5','u','Time'  %%% 

  

%save('Sim_Output_workspace_nonlinear1_Vsat','x1','x2','x3','x4','x5','u','x_n

p1','Time'); 
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figure('Name','Unew'); 

Fn = 14; % font size 

p_Unew=plot(Time,x_np1,'r'); grid; 

xlabel('time (s)','FontSize', Fn); ylabel('x6', 'FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

% Robert (2020). symlog (https://www.github.com/raaperrotta/symlog),  

% GitHub. Retrieved June 15, 2020. 

symlog('y')    

  

LW=1.2;  

p_Unew(1).LineWidth = LW;  

  

  

  

%%%% Fig. [2x3] %%% 

figure('Name','Freezing control with soft constrained input'); 

Fn = 14; % font size 

  

subplot(2,3,1); 

p1=plot(Time,x1*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,4); 

p2=plot(Time,x2*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,2); 

p3=plot(Time,x3*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,5); 

p4=plot(Time,x4*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)'); 

set(gca,'FontSize', Fn); 

  

 subplot(2,3,3);  

 p5=plot(Time,x5*180/pi,'r'); grid; 

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)'); 

 set(gca,'FontSize', Fn); 

  

subplot(2,3,6);  %5states 

p6=plot(Time,u,'r'); grid; 

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

%LineWidth 

LW=1.2;  

p1(1).LineWidth = LW;  

p2(1).LineWidth = LW;  

p3(1).LineWidth = LW;  

p4(1).LineWidth =LW;  

p5(1).LineWidth = LW;  

p6(1).LineWidth =LW;  

  

  

 

------------------------ 

Function file: evalrhs_Freezing_K5_SoftCons.m 
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function K_5 = evalrhs_Freezing_K5_SoftCons(x,i,model) 

  

    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 

    x5=x(5); %Wheel integral 

    x_np1=x(6); % Artificial control signal 

     

  

     if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

     end     

    if x_np1 == 0 

       x_np1=1.0e-20;  % avoid Inf's and NaN's 

    end     

  

   %%% 5-states Model parameters  

    [A5,B5,Q5,R2,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,model); 

    

    

   RR=10; 

  %  set R matrices 

     

      

   %%% Set soft saturation voltage  

  

     if     (x_np1 )  > Vmax  % Lego Motor Maximum Voltage 8.3 V 

         Phi_L = Vmax; 

         Phi_R = Vmax; 

     elseif  (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V 

         Phi_L = -Vmax; 

         Phi_R = -Vmax; 

     else  

  

           Phi_L = x_np1; 

           Phi_R = x_np1; 

     end     

      

     Phi = [Phi_L ; 

            Phi_R ]; 

   

    %%%  Soft saturation voltage matrices 

Aa= [       A5            (B5*Phi)/x_np1  ; 

       zeros(1,5)            0       ]; 

    

Ba= [  zeros(5,1)  ;  

          1        ];  

  

Qa= [      Q5        zeros(5,1)     ; 

      zeros(1,5)    2*((Phi_L)^2)*RR ]; 

   

Ra=  0.001;  

     

  

     [K_LQR,~,~]=lqr(Aa,Ba,Qa,Ra);  % K Nonlinear 

    %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P 

     

  

    K_56 = K_LQR;   

    K_56( : , 1:4)=[];   % feedback gain  (delete column 1-4th) 

     

    K_5 = K_56;       % Select K5 only 

    K_5(: , 2)=[];    % integral gain (delete column 2th means column 6th ) 
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    %calculate the function output 'fx' based on values of A, B, P and x. 

end 

  

 

--------------------------------------------- 

Function file: evalrhs_gyroboy5s_Freezing_SoftCons.m 

function [fx,u_real,K14_n_xnp1,alpha,beta] = 

evalrhs_gyroboy5s_Freezing_SoftCons( x ,u_new,i,model) 

  

     %%%%%%  Functions programme needed %%% 

    % Gyroboy_Nonlinear_Model_5s();  % Generating K1-K4  

    % Gyroboy_Nonlinear_Model_4s();  % Generating fx, x1-x4 without x5 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 

    x_np1=x(5); %x_np1 %x6 

    

     

     if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

    end     

     if x_np1 == 0 

       x_np1=1.0e-20;  % avoid Inf's and NaN's 

     end     

     

      

   %%% 5-states Model parameters  

    [A5,B5,Q5,~,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,model); 

    %[A5,B5,Q,R2,Vmax,alpha,beta] 

     

    

 RR=10; 

  %  set Q and R matrices 

     

      

   

 %%% Set soft saturation voltage  

    

     if     (x_np1 )  > Vmax  % Lego Motor Maximum Voltage 8.3 V 

         Phi_L = Vmax; 

         Phi_R = Vmax; 

     elseif  (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V 

         Phi_L = -Vmax; 

         Phi_R = -Vmax; 

     else  

         Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax)); 

         Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax)); 

%           

%            Phi_L = x_np1; 

%            Phi_R = x_np1; 

     end     

      

     Phi = [Phi_L ; 

            Phi_R ]; 

         

  

    %%% Send data real voltage for ploting 
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     u_real=   Phi(1); 

         

  

    %%%  Soft saturation voltage matrices 

         

Aa= [       A5            (B5*Phi)/x_np1  ; 

       zeros(1,5)            0       ]; 

    

Ba= [  zeros(5,1)  ;  

          1        ];  

       

Ca= eye(6);      

  

Qa= [      Q5        zeros(5,1)     ; 

      zeros(1,5)    2*((Phi_L)^2)*RR ]; 

   

Ra=  0.001;  

  

     [K_LQR,~,~]=lqr(Aa,Ba,Qa,Ra);  % K Nonlinear 

  

     

    %%%% Need only K1-4 and X_np1, integral of x1 (x5) in not need 

    %%%% K_LQR = 2x6 matrics 

     

    K14_n_xnp1 = K_LQR;   

    K14_n_xnp1( : , 5)=[];   % feedback gain  (delete column 5th) 

     

      

   %%% Real parameters , used to disturbance weigth and height 

    [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x,model); 

   %[A4,B4,Vmax,alpha,beta] 

     

     

     %%% Set soft saturation voltage for new matrix A  

      

     if     (x_np1 )  > Vmax  % Lego Motor Maximum Voltage 8.3 V 

         Phi_L = Vmax; 

         Phi_R = Vmax; 

     elseif  (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V 

         Phi_L = -Vmax; 

         Phi_R = -Vmax; 

     else  

         Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax)); 

         Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax)); 

  

     end     

      

     Phi = [Phi_L ; 

            Phi_R ]; 

   

   

Ab= [       A4            (B4*Phi)/x_np1  ; 

       zeros(1,4)            0       ]; 

    

Bb= [  zeros(4,1)  ;  

          1        ];  

  

  

    x14_n_xnp1=[x1;x2;x3;x4;x_np1]; 

    %%% Calculate fx for 4-state+Xnp1 system 

    %%% fx = Ax + Bu 

    %%% Use u from controller voltage input 

    fx = Ab*x14_n_xnp1 + Bb*u_new;      
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    %calculate the function output 'fx' based on values of A, B, P and x. 

end 

  

----------------------- 

 

 

The function file “symlog.m”  is  provided by Mathworks from this website 

(Mathworks, 2020), 

https://uk.mathworks.com/matlabcentral/fileexchange/57902-

symlog?s_tid=mwa_osa_a 

 

 

 Appendix A.6.12: MATLAB codes of TWR systems using freezing control 

technique and EKF with soft constrained input 

Script file: Gyroboy_5s_FreezingAndEKF_SoftConsV_10_2021.m 

%%%% Nonlinear Freezing Control and EKF with soft constrained voltage 

%%% for LEGO EV3 Robot 

  

%%%%%%  Functions programme needed %%% 

% evalrhs_Freezing_K5_SoftCons();               % Generating K5 only 

% evalrhs_gyroboy5s_FreezingAndEKF_SoftCons();  % Generating K1-K4 and fx 

% 

%      Inside two functions 

% 

%           Gyroboy_Nonlinear_Model_5s();  

%           Gyroboy_Nonlinear_Model_4s();  

%           Maxon Motor parameters etc. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

clear all; 

close all; 

  

  

x1(1)=10*pi/180; %set Theta - Average of wheel angles (rad)  %11 deg. 

x2(1)=0; %set Theta_DOT (rad/s) 

x3(1)=10*pi/180; %set Psi - Pitch angle of body (rad) - CONTROL to ZERO 

x4(1)=0; %set Psi_DOT 

x5(1)=0; %theta_int  

x_np1(1)=0; %X-Saturation 

   

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed 

  

model=1; 

  

u_real_all(1)=0;   % real voltage 
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%%% initial artificial voltage feedbck 

u_new = 0;         

u_feedback_new = 0; 

  

  

Xhat1(1) = x1(1); 

Xhat2(1) = 0; 

Xhat3(1) = x3(1); 

Xhat4(1) = 0; 

Xhat_Xnp1(1) = 0; 

  

dXhat1(1) = 0; 

dXhat2(1) = 0; 

dXhat3(1) = 0; 

dXhat4(1) = 0; 

dXhat_Xnp1(1) = 0; 

  

x1_disturbance(1) = x1(1); 

x2_disturbance(1) = 0; 

x3_disturbance(1) = x3(1); 

x4_disturbance(1) = 0; 

Xnp1_disturbance(1) = 0; 

  

x1_err = 0; 

x1_ref = 0; 

x1_err_int(1)=0; 

  

Ts=0.0001; %time step length  

  

Duration=10;       % time sec 

t=Duration*(1/Ts); % time step in programming 

Time = 0:Ts:t*Ts;   % Create real time step for plotting 

  

for i=1:t 

   

  x_6s    =[x1(i); x2(i); x3(i); x4(i); x5(i); x_np1(i)];  % for cal K5 

  x_5s    =[x1(i); x2(i); x3(i); x4(i); x_np1(i)];          % for cal K1-

K4,Xnp1 

  Xhat =[Xhat1(i); Xhat2(i); Xhat3(i); Xhat4(i);Xhat_Xnp1(i)]; 

  dXhat=[dXhat1(i); dXhat2(i); dXhat3(i); dXhat4(i); dXhat_Xnp1(i)]; 

   

    

   

  %%%%%% Diagram %%%%%   
     

%                                                                                

%                           +     u                              y=x1-x4,x_np1            y=x1 

%  X1ref->-o-->-Int--K5-->-->o------------------+-------| Plant |-->-----------o---+---C------+ 

%          ^-                ^ -                |                              ^   |          |    

%          |                 | u_feedback       +------B------>|         Add   |   |          |  

%          |                 |                                 |       Distubance  |           

%          x1                |       Xhat                dXhat |                   | 

%                            +-<--K14,np1-- o<--Integal <----- o <-- L -------- ---+ 

%                                           |                  ^       x1-x4,x_np1  

%                                           |                  | 

%                                           +------- A-LC -->--+ 

         

      

     

    x1_err(i+1) = x1_ref - x1(i); 

     

      %%%%% X1 error Integral  %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

    

    x1_err_int(i+1) = x1_err_int(i) + x1_err(i)*Ts + 0.5*(x1_err(i+1)-

x1_err(i))*Ts ;  % [h1 x L]+[ 0.5 x(h2-h1) x L ] + old 

      

    K_5 = evalrhs_Freezing_K5_SoftCons(x_6s,i,model); 
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    u_x1_new = K_5 * x1_err_int(i+1); 

     

    % r = 0; 

    % u = r - u_feedback; 

    u_new = u_x1_new - u_feedback_new; 

     

  

  %%% calculate the new 'x' vector using a 4th order   

    %%% Euler integration method 

    %%% fx = Ax + Bu; 

    [fx,u_real,A,B,C,L,K14_n_xnp1] = 

evalrhs_gyroboy5s_FreezingAndEKF_SoftCons(x_5s,u_new,model);                     

    x_5s = x_5s + Ts * fx; % Euler 

     

%%% Limit the robot pitch angle between -90 to 90 deg.  

    if x_5s(3) > 90*pi/180 

        x_5s(3) =90*pi/180; 

    end    

     

     if x_5s(3) < -90*pi/180 

        x_5s(3) =-90*pi/180; 

     end     

     

     %%% Update x1-x4 

    x1(i+1)=x_5s(1); 

    x2(i+1)=x_5s(2);  

    x3(i+1)=x_5s(3); 

    x4(i+1)=x_5s(4);    

    x_np1(i+1)=x_5s(5);   

  

    u_real_all(i+1)=u_real;  % Update u 

     

   

       %%%%% X5 = Integral of X1 %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

      x5(i+1) = x5(i) + x1(i)*Ts + 0.5* (x1(i+1)-x1(i))* Ts; 

     

  

  %%%% Select mode for testing %%%% 

  % 0.No disturbance   

  % 1.Noise disturbance in X3 

  % 2.Sensor X3 drift  

      

     Mode = 0; 

   

if Mode == 0 

    %%%%% No disturbance in X 

     x1_disturbance(i+1)=x_5s(1); 

     x2_disturbance(i+1)=x_5s(2);  

     x3_disturbance(i+1)=x_5s(3)+ 0;   

     x4_disturbance(i+1)=x_5s(4);   

     Xnp1_disturbance(i+1)=x_5s(4);  

    LX = L*[x_5s(1); x_5s(2); x_5s(3); x_5s(4); x_5s(5)];  % No disturbance 

end 

       

   

  

if Mode == 1 

  

%     %%%%%% Test signal disturbance, drift only X3  %%%%% 

    x1_disturbance(i+1)=x_5s(1); 

    x2_disturbance(i+1)=x_5s(2);  

    x3_disturbance(i+1)=x_5s(3)+ (i/(100*400))*pi/180;  
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    x4_disturbance(i+1)=x_5s(4);  

    Xnp1_disturbance(i+1)=x_5s(5);  

    LX = L*[x_5s(1); x_5s(2); x3_disturbance(i+1) ; x_5s(4); x_5s(5)]; 

end 

  

  

if Mode == 2 

%    %%%%%%% Test noise disturbance, only X3  %%%%%% 

   if  mod(i , 2) == 0   % frequency 

        

    min = -5; %min Random 

    max = 5; %max Random 

    r = (max-min).*rand(1) + min; % Random 

   else 

     r=0;   

   end 

    

      x1_disturbance(i+1)=x_5s(1); 

      x2_disturbance(i+1)=x_5s(2);  

      %x3_disturbance(i+1)=x_4s(3)+ r(i+1)*pi/180;  %%% ramdom noise variable 

      x3_disturbance(i+1)=x_5s(3)+ r*pi/180;   

      x4_disturbance(i+1)=x_5s(4);   

      Xnp1_disturbance(i+1)=x_5s(5);   

     LX = L*[x_5s(1); x_5s(2); x3_disturbance(i+1) ; x_5s(4) ; x_5s(5)]; 

end 

  

     

   %%% Kalman filter variable 

    %%% See more in coding diagram 

    A_LC =  (A-L*C)*Xhat; 

    dXhat = B*u_new + LX + A_LC; 

      

    %%% Update 

    dXhat1(i+1)=dXhat(1); 

    dXhat2(i+1)=dXhat(2);      

    dXhat3(i+1)=dXhat(3); 

    dXhat4(i+1)=dXhat(4);   

    dXhat_Xnp1(i+1)=dXhat(5);   

     

      %%%%% dXhat Integral (Xhat) %%%%% 

      %  Sum_Area = Previous_area +  New_area 

      %  Sum(i+1) = Sum(i)        +  (Square(i) + triangle(i)) 

     

    Xhat1(i+1) = Xhat1(i) + dXhat1(i)*Ts + 0.5* (dXhat1(i+1)-dXhat1(i))* Ts; 

     

    Xhat2(i+1) = Xhat2(i) + dXhat2(i)*Ts + 0.5* (dXhat2(i+1)-dXhat2(i))* Ts; 

    Xhat3(i+1) = Xhat3(i) + dXhat3(i)*Ts + 0.5* (dXhat3(i+1)-dXhat3(i))* Ts; 

    Xhat4(i+1) = Xhat4(i) + dXhat4(i)*Ts + 0.5* (dXhat4(i+1)-dXhat4(i))* Ts; 

    Xhat_Xnp1(i+1) = Xhat_Xnp1(i) + dXhat_Xnp1(i)*Ts + 0.5* (dXhat_Xnp1(i+1)-

dXhat_Xnp1(i))* Ts; 

    

    %%% Limit the robot pitch angle Xhat between -90 to 90 deg. 

    if  Xhat3(i+1) > 90*pi/180 

         Xhat3(i+1)=90*pi/180; 

    end    

     

     if  Xhat3(i+1) < -90*pi/180 

         Xhat3(i+1)=-90*pi/180; 

    end    

     

     

   %%% Select x feedback %%%% 

    

   %u_feedback = K_14*[x_4s(1); x_4s(2); x_4s(3); x_4s(4)];             %Xsys 

   %u_feedback = K_14*[Xhat1(i+1); Xhat2(i+1); Xhat3(i+1); Xhat4(i+1)]; %Xhat 
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   u_feedback_new = K14_n_xnp1*[x_5s(1); x_5s(2); Xhat3(i+1); x_5s(4); 

x_5s(5)];   %X mix only X3 

   

    

        %%% print %%%  

         

    if i== 1 

       fprintf('Start at x3= %3.2f deg...\n',Xhat3(1)*180/pi) 

     end   

         

         

    Cal_percent = i*100/t; 

     

    if mod(Cal_percent , 2) == 0 

       fprintf('Cal.  %3.2f per,  ',Cal_percent) 

       fprintf('x3= %3.2f deg,  ',Xhat3(i+1)*180/pi) 

       fprintf('x4= %3.2f deg/s,  ',x4(i+1)*180/pi) 

       fprintf('t= %3.2f sec...\n',Ts*i) 

    end   

     

      

    %Reset the x1, x2, x3, x4, x5 & x6 variables to new values and get ready 

for the next iteration. 

end 

  

% Use below line instead above when ploting the failing system 

(uncontrollable) 

%Time = 0:Ts:(i-1)*Ts;    

u = u_real_all; 

  

x3=Xhat3; 

%save('Sim_Output_workspace_nonlinear1_Vsat','x1','x2','x3','x4','x5','u','x_n

p1','Time'); 

  

  

figure('Name','Unew'); 

Fn = 14; % font size 

p_Unew=plot(Time,x_np1,'m'); grid; 

xlabel('time (s)','FontSize', Fn); ylabel('x6', 'FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

% Robert (2020). symlog (https://www.github.com/raaperrotta/symlog),  

% GitHub. Retrieved June 15, 2020. 

symlog('y')    

  

LW=1.5; 

p_Unew(1).LineWidth = LW;  

  

  

%%%% Fig. [2x3] %%% 

figure('Name','Freezing control and EKF with soft constrained input'); 

Fn = 14; % font size 

  

subplot(2,3,1); 

p1=plot(Time,x1*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta - Wheel angles x1 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,4); 

p2=plot(Time,x2*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Theta dot x2 (deg/s)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,2); 
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p3=plot(Time,x3*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi - Pitch of body x3 (deg)'); 

set(gca,'FontSize', Fn); 

  

subplot(2,3,5); 

p4=plot(Time,x4*180/pi,'r'); grid; 

xlabel('Time (sec)'); ylabel('Psi dot x4 (deg/s)'); 

set(gca,'FontSize', Fn); 

  

 subplot(2,3,3);  

 p5=plot(Time,x5*180/pi,'r'); grid; 

 xlabel('Time (sec)'); ylabel('Control signal-u (volt)'); 

 set(gca,'FontSize', Fn); 

  

subplot(2,3,6);  %5states 

p6=plot(Time,u,'r'); grid; 

xlabel('time (s)','FontSize', Fn); ylabel('u (volts)','FontSize', Fn); 

set(gca,'FontSize', Fn); 

  

%LineWidth 

LW=1.2;  

p1(1).LineWidth = LW;  

p2(1).LineWidth = LW;  

p3(1).LineWidth = LW;  

p4(1).LineWidth =LW;  

p5(1).LineWidth = LW;  

p6(1).LineWidth =LW;  

  

  

  

------------------------ 

 

Function file: evalrhs_gyroboy5s_FreezingAndEKF_SoftCons.m 

 

 
function [fx,u_real,Ab,Bb,Cb,Lk,K14_n_xnp1] = 

evalrhs_gyroboy5s_FreezingAndEKF_SoftCons( x ,u_new,model) 

  

    x1=x(1); %Theta - Average of wheel angles 

    x2=x(2); %ThetaDOT 

    x3=x(3); %Psi - Pitch of body CONTROL to ZERO 

    x4=x(4); %PsiDOT 

    x_np1=x(5); %x_np1 %x6 

     

     

     if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

    end     

     if x_np1 == 0 

       x_np1=1.0e-20;  % avoid Inf's and NaN's 

     end     

     

    %%% 5-states Model parameters  

    [A5,B5,Q5,~,Vmax,alpha,beta]=Gyroboy_Nonlinear_Model_5s(x,model); 

    %[A5,B5,Q,R2,Vmax,alpha,beta] 

      

  

 RR=10; 

  %  set Q and R matrices 

     

      

     if     (x_np1 )  > Vmax  % Lego Motor Maximum Voltage 8.3 V 

         Phi_L = Vmax; 

         Phi_R = Vmax; 

     elseif  (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V 



APPENDIX A 

 

284 

 

         Phi_L = -Vmax; 

         Phi_R = -Vmax; 

     else  

         Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax)); 

         Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax)); 

          

     end     

      

     Phi = [Phi_L ; 

            Phi_R ]; 

   

     u_real=   Phi(1); 

         

         

Aa= [       A5            (B5*Phi)/x_np1  ; 

       zeros(1,5)            0       ]; 

    

Ba= [  zeros(5,1)  ;  

          1        ];  

       

Ca= eye(6);      

  

Qa= [      Q5        zeros(5,1)     ; 

      zeros(1,5)    2*((Phi_L)^2)*RR ]; 

   

Ra=  0.001;  

  

  

     [K_LQR,~,~]=lqr(Aa,Ba,Qa,Ra);  % K Nonlinear 

    %use the MATLAB 'lqr' function to solve Riccati equation and work out K,P 

   

    %%%% Need only K1-4 and X_np1 

    %%%% K_LQR = 2x6 matrics 

     

    K14_n_xnp1 = K_LQR;   

    K14_n_xnp1( : , 5)=[];   % feedback gain  (delete column 5th) 

     

  

 %%% Real parameters , used to disturbance weigth and height 

    [A4,B4,~,~,~]=Gyroboy_Nonlinear_Model_4s(x,model); 

   %[A4,B4,Vmax,alpha,beta] 

  

  

     if     (x_np1 )  > Vmax  % Lego Motor Maximum Voltage 8.3 V 

         Phi_L = Vmax; 

         Phi_R = Vmax; 

     elseif  (x_np1) < -Vmax % Lego Motor Minimum Voltage -8.3 V 

         Phi_L = -Vmax; 

         Phi_R = -Vmax; 

     else  

         Phi_L = Vmax*sin((pi*x_np1)/(2*Vmax)); 

         Phi_R = Vmax*sin((pi*x_np1)/(2*Vmax)); 

         

     end     

      

     Phi = [Phi_L ; 

            Phi_R ]; 

   

   

Ab= [       A4            (B4*Phi)/x_np1  ; 

       zeros(1,4)            0       ]; 

    

Bb= [  zeros(4,1)  ;  

          1        ];  
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    x14_n_xnp1=[x1;x2;x3;x4;x_np1]; 

  

    fx = Ab*x14_n_xnp1 + Bb*u_new;     %% ??????? 

  

  

  Cb=eye(5);   % add new control signal % x5 = Xnp1 

    

   Noise_V= 0.2*eye(5); %0.2   % increse to smooth cure % R of Kalman filter 

   Noise_W= 1*eye(5);                                 % Q of Kalman filter 

    

   [~,Pk,~]=lqr(Ab,Cb',Noise_W,Noise_V); 

   Lk= Pk*Cb'*inv(Noise_V); 

    

   BU = Bb*u_new;       

  

     

    %calculate the function output 'fx' based on values of A, B, P and x. 

end 

 

Appendix A.6.13: The initial programme of Simulink for implementing 

LEGO EV3 robot  

This programme provides the main parameters of LEGO EV3 robot before 

running Simulink, such as Sample Time (Ts) and fixed gain K5. 

Script file: parameters.m 

clear all 

  

%%% Parameters  Gyroboy EV3 %%% 

  

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]  old 0.024 new 0.050 

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                      % body weight [kg]  old 0.80  new 0.64   (EV3 

motor 0.160 kg/2ea) 

h = 0.210;                      % body height [m] 

  

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

  

%%%%% EV3 Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor  

  

%%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

     

  

Ts = 0.004;     % Simulink Sample Time 

Direction = 1;   % Motor direction,  1 =+x  ,-1 = -x 

  

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=4*M*R*L*(1)*n^2*Jm; 

     

    e23=2*n^2*Jm*M*g*L-M^2*R*L^2*(1)*g; 

    e24=0; 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*(1); 

%define these extra function to reduce the coding complexity of A and B 

    %matrices for the x2dot equation 

     

    e43=M*g*L*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=0; 

     

    f41=2*n^2*Jm-M*R*L*(1); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

     

%define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 

  

    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42);  

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices with the motor added in    

     

  

    %define A and B using a nonlinear state-space gyro robot model, 

    %including the motor part 

     

  

       

     

          %%%% 5-state Model %%%% 

      A5 =[0      1             0              0       0  ; 

          0  em22/(a+b)  em23/((a+b))  em24/(a+b)      0 ; 
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          0      0             0              1       0 ; 

          0  em42/(a+b)  em43/((a+b))  em44/(a+b)      0 ; 

          1      0            0               0       0 ]; 

        

   

     

    B5 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b); 

             0           0]; 

          

        

      

    B2 =[        0 ; 

          fm22/(a+b); 

                   0; 

          fm42/(a+b); 

                   0]; 

     

          

    C = eye(5); 

    D = zeros(5, 2); 

     

    %------ 4-state models for the Kalman filter  

     

    A4 =[0      1             0              0        ; 

         0  em22/(a+b)  em23/((a+b))  em24/(a+b)   ; 

         0      0             0              1        ; 

         0  em42/(a+b)  em43/((a+b))  em44/(a+b)   ]; 

         

     B4 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b)];     

     

     C4 = eye(4); 

     D4 = zeros(4, 2); 

      

     

     %%% Q and R matrices 

     Q=[20, 0, 0, 0, 0;  

        0, 1, 0, 0, 0;  

        0, 0, 1, 0, 0;  

        0, 0, 0, 1, 0; 

        0, 0, 0, 0, 5];  

  

    R2 = 10*[1,0;  

             0,1];       

  

     

  

   %%%% Riccati Eq solving gains K 

     

    [K_LQR,~,~]=lqr(A5,B5,Q,R2); 

    %%% K=[2x5] 

     

    %%% Create K1-K4 

    K_LQR_1to4 = K_LQR;   

    K_LQR_1to4( : , 5)=[]   % feedback gain  (delete column 5th) 

     

    %%% Create K5 

    K_LQR_5    = K_LQR;   

    K_LQR_5(: , 1:4)=[]    % integral gain (delete column 1-4th) 
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Noise_W = 1*eye(4);    % Qk of Kalman filter 

Noise_V = 0.2*eye(4);  % Rk of Kalman filter 

  

  

C44= eye(4); 

  

%%%% Riccati Eq solving gains P 

[~,Pk,~]=lqr(A4,C44',Noise_W,Noise_V) 

  

Lk= Pk*C44'*inv(Noise_V)  % L Kalman feedback 

  

% Lk= [  0        0         0         0; 

%        0        0          0         0; 

%     0.3831    0.4703   16.6273    2.2738; 

%       0         0         0        0]; 

  

A_LC = A4-(Lk*C44);   % A-LC Kalman feedback 

  

  

   

    
 

Appendix A.6.14: A lookup table of freezing control gains K1-K4 

As described in section 6.6, the LEGO EV3 controller cannot calculate the Riccati 

equation; thus, the lookup table is created by the following: 

(Note that the gain K5 is not varied; therefore, the gain K5 is set as fixed gain in 

Simulink because of the limation of LEGO EV3 robot’s memory storage )  

 

Script file: Gyroboy_Create_Freezing_LookupTable2D_5s.m  

%%%%% The matrix gains K1-K4 of freezing technique 

%%%%% Note that the K5 is not changed 

%%%%% Thus, we use store data only K1-K4 into Lookup Table 

%%%%% K5 is used as fixed gain in Simulink 

  

clear all 

  

xx3(1)=0;  % psi 

xx4(1)=0;  % psi dot  

  

%%% x3 %%% Use is range 

Minimun_Angle_x3= -20;  % Deg. min.  -20   

Step_Angle_x3= 1;    

Maximum_Angle_x3= 20;   % Deg. max.   20 

               

%%% x4 %%% 

% Deg/s,  440 Deg/s max for gyroscope sensor, but it showed 200 deg/s (Max) 

when testing. 

Minimun_Angle_x4= -130;  

Step_Angle_x4= 5;     

Maximum_Angle_x4= 130; 

                     

i=1;                
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j=1; 

shift_i=0; 

  

m_array =((Maximum_Angle_x3-Minimun_Angle_x3)/Step_Angle_x3)+1 ; % calculate m 

size of cell 

n_array =((Maximum_Angle_x4-Minimun_Angle_x4)/Step_Angle_x4)+1 ; % calculate n 

size of cell 

  

m_array=int16(m_array); 

n_array=int16(n_array); 

  

DataRange= (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 : 

(Maximum_Angle_x4)*pi/180; 

[ms,ns]=size(DataRange); 

  

%%% match x3 and x4 

for x4 = (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 : 

(Maximum_Angle_x4)*pi/180 

   for x3 = (Minimun_Angle_x3)*pi/180 : (Step_Angle_x3)*pi/180 : 

(Maximum_Angle_x3)*pi/180 

    

  

if x3 == 0     % avoid error : Inf's or NaN's. 

x3 = 1.0e-20;  

end     

if x4 == 0     % avoid error : Inf's or NaN's. 

x4 = 1.0e-20;  

end     

  

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]  old 0.024 new 0.050 

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                   % body weight [kg]  old 0.80  new 0.64  

h = 0.210;                      % body height [m] 

  

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

  

%%% Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;       

  

  

%%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

     

    

    %initialise x1-x6 using the input 'x' vector 
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a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3); 

    e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(x3); 

  

     

    e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(x3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 

    

     

    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

    %define these extra function to reduce the coding complexity of A and B 

    %matrices with the motor added in    

     

    %define A and B using a nonlinear state-space gyro robot model, 

    %including the motor part 

  

    if x3 == 0 

       x3=1.0e-1000000;  % avoid Inf's and NaN's 

    end    

    if x4 == 0 

       x4=1.0e-1000000;  % avoid Inf's and NaN's 

    end   

   

     

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed    

  

    

  Model = 1;  % Select mode  

   

  %%%-------- Model A ----------    

if Model == 1 

          %%%% Primary Model A %%%% 

      A5 =[0      1             0              0       0  ; 

          0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)  0 ; 

          0      0             0              1       0 ; 
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          0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)  0 ; 

          1      0            0               0       0 ]; 

end 

  

  

%%%-------- Model B ---------- 

if Model == 2 

          %%%% Model B %%%% 

     A5 =[0      1             0                    0       0  ; 

         0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0       0 ; 

         0      0              0                    1       0 ; 

         0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0       0 ; 

         1      0            0                      0       0 ]; 

     

end 

  

        

%%%-------- Model AB10 ---------- 

 if Model == 3 

  

  %%% Mix A&B %%%%%   

      

   if x3 <= (10.5*pi/180) && x3 >= (-10.5*pi/180)     

    %%%% Primary Model A %%%% 

     A5 =[0      1             0              0       0  ; 

         0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)  0 ; 

         0      0             0              1       0 ; 

         0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)  0 ; 

         1      0            0               0       0 ]; 

  

      

   else   

      

      %%%% Model B %%%% 

     A5 =[0      1             0                    0       0  ; 

         0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0       0 ; 

         0      0              0                    1       0 ; 

         0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0       0 ; 

         1      0            0                      0       0 ]; 

   end 

     

    

    

end 

      

           

    % Models Matrix B 

  

     B5 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b); 

          0             0]; 

  

  

    Q=[20, 0, 0, 0  0;  

        0, 1, 0, 0  0;  

        0, 0, 1, 0  0;  

        0, 0, 0, 1  0;  

        0, 0, 0, 0  5]; 

     

     R2=10*[1, 0;  

            0, 1]; 

     

    %set Q and R matrices 
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   %%% Riccati EQ %%% 

   K = lqr(A5, B5, Q, R2); 

   %%% K= [2x5]; 

     

  

if x3 == 1.0e-20 % get zero back      

x3 = 0;  

end     

  

xx3(i)= x3*180/pi; % convert angle rad. to deg. 

xx3 = double(xx3); 

  

%%% Create 1st column by x3 deg [4x1] 

%%% K1-K4 table 

K_Riccati_2D_4s(i+1+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column   

K_Riccati_2D_4s(i+2+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column  

K_Riccati_2D_4s(i+3+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column  

K_Riccati_2D_4s(i+4+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column  

  

%%% Create 1st column by x3 deg  

%%% K5 table 

K_Riccati_2D_theta_int(i+1,1)= xx3(i);         % Insert x3 deg at 1st column  

  

%%% K= [2x5]; 

%%% Select k1,k2,k3,k4,k5 

%%% one motor [1x5] two motors is [2x5] 

Kp1 = K(1);   

Kp2 = K(3); 

Kp3 = K(5); 

Kp4 = K(7); 

Kp5 = K(9); 

  

  

%%%% Put gains K1-K4 in lookup table %%% K=[4x1] 

%%% start at 2nd column  

K_Riccati_2D_4s( i+1+(3*shift_i) ,j+1)= Kp1;   

K_Riccati_2D_4s( i+2+(3*shift_i) ,j+1)= Kp2; 

K_Riccati_2D_4s( i+3+(3*shift_i) ,j+1)= Kp3; 

K_Riccati_2D_4s( i+4+(3*shift_i) ,j+1)= Kp4; 

  

%%%% Put gains K1-K4 in lookup table  

K_Riccati_2D_theta_int( i+1 ,j+1)= Kp5;   

%%% Proof that K5 is fixed at -0.5, thus use the fix gain in Simulink instead 

  

i=i+1;  %x3 

shift_i=shift_i+1; 

   end 

    

  xx4(j)= x4*180/pi; 

  xx4 = double(xx4); 

  

  %%% Insert x4 deg/s at 1st row  in K1-K4 Table 

  K_Riccati_2D_4s(1,j+1)= xx4(j);  

   

  %%% Insert x4 deg/s at 1st row in K5 Table 

  K_Riccati_2D_theta_int(1,j+1)= xx4(j);  % Insert x3 deg at 1st column  

  

    i=1; 

    shift_i=0;  

  j=j+1; %x4 

   

      %%% print %%%  

    Cal_percent = (j-1)*100/(ns-1); 
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    if mod(Cal_percent , 5) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

   

end 

  

save('local_Freezing_2D_K_workspace','K_Riccati_2D_4s','K_Riccati_2D_theta_int

'); 

  

  

 

Appendix A.6.15: A lookup table of extended Kalman filter gains 

Note that the gain P of the Ricatti solution is used to estimate the 𝑥3 in this 

research. Moreover, the 3rd row of gain  P is effected to approximate the 𝑥3 

directly. Thus, we decide to use merely the 3rd row to estimate the pitch angle as 

the restriction of the robot’s memory. 

 

  

Script file: Gyroboy_Create_EKF_LookupTable2D_4s.m  

%%%%% The matrix P solution of extended Kalman filter %%%% 

%%%%% Need P not K %%% 

%%%% Use only the 3rd row of P[4x4] for estimating x3 

  

clear all 

  

%x1 % theta 

%x2 % theta_dot 

%x3 % psi 

%x4 % psi_dot 

  

xx3(1)=0;  % psi 

xx4(1)=0;  % psi dot  

  

 %%% Weight matrices Qk, Rk of Kalman filter 

 Noise_W = 1*eye(4);   

 Noise_V = 0.2*eye(4);   

  

%%% x3 %%% 

Minimun_Angle_x3= -20;  % Deg. min.  -20 

Step_Angle_x3= 1;     

Maximum_Angle_x3= 20;   % Deg. max.   20 

%%% x4 %%%                  

% Deg/s,  440 Deg/s max for gyroscope sensor, but it showed 200 deg/s (Max) 

when testing. 

Minimun_Angle_x4= -130;  

Step_Angle_x4= 5;    

Maximum_Angle_x4= 130; 

   

                                        

i=1;                
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j=1; 

shift_i=0; 

  

m_array =((Maximum_Angle_x3-Minimun_Angle_x3)/Step_Angle_x3)+1 ; % calculate m 

size of cell 

n_array =((Maximum_Angle_x4-Minimun_Angle_x4)/Step_Angle_x4)+1 ; % calculate n 

size of cell 

  

m_array=int16(m_array); 

n_array=int16(n_array); 

  

DataRange= (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 : 

(Maximum_Angle_x4)*pi/180; 

[ms,ns]=size(DataRange); 

  

%%% Match x3 and x4 

  

for x4 = (Minimun_Angle_x4)*pi/180 : (Step_Angle_x4)*pi/180 : 

(Maximum_Angle_x4)*pi/180 

   for x3 = (Minimun_Angle_x3)*pi/180 : (Step_Angle_x3)*pi/180 : 

(Maximum_Angle_x3)*pi/180 

    

  

if x3 == 0     % avoid error : Inf's or NaN's. 

x3 = 1.0e-20;  

end     

  

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]  old 0.024 new 0.050 

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                   % body weight [kg]  old 0.80  new 0.64  

h = 0.210;                      % body height [m] 

  

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

Jphi = M * (W^2 + D^2) / 12;    % body yaw inertia moment [kgm^2] 

  

  

%%% Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;       

  

  

%%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm; 

     

   

    %initialise x1-x6 using the input 'x' vector 
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a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3); 

    e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(x3); 

  

    e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(x3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices for the x4dot equation 

     

  

    %defined constants from motor literature 

    alpha= n*Kt/Rm; 

    beta = (n*Kt*Kb/Rm) + fm; 

     

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 

     

    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

     

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

    %define these extra function to reduce the coding complexity of A and B 

    %matrices with the motor added in    

     

    %define A and B using a nonlinear state-space gyro robot model, 

    %including the motor part 

  

    if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

    end     

     

     

 %%%% Select Matrix A model for testing %%%% 

  % 1.Model A (primary) 

  % 2.Model B  

  % 3.Model AB10 mixed  

   

     Model = 1;  % Select mode  

   

  %%%-------- Model A ----------    

if Model == 1 

          %%% Primary Model A %%%% 

     A4 =[0      1             0              0        ; 

         0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)   ; 

         0      0             0              1        ; 

         0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)   ]; 

      

    

end 
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%%%-------- Model B ---------- 

if Model == 2 

          %%%% Model B %%%% 

     A4 =[0      1             0                    0        ; 

         0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0        ; 

         0      0              0                    1        ; 

         0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0        ];  

end 

  

  

  %%%-------- Model AB10 ---------- 

if Model == 3 

  

  %%% Mix A&B %%%%%   

       

   if x3 < (10.5*pi/180) && x3 > (-10.5*pi/180)     

    %%%% Primary Model A %%%% 

     A4 =[0      1             0              0         ; 

         0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)   ; 

         0      0             0              1        ; 

         0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)   ]; 

  

  else    

  

      %%%% Model B %%%% 

     A4 =[0      1             0                    0         ; 

         0  em22/(a+b)  (em23+em24*x4)/((a+b)*x3)   0        ; 

         0      0              0                    1        ; 

         0  em42/(a+b)  (em43+em44*x4)/((a+b)*x3)   0       ] ; 

  end 

end 

       

    % Models Matrix B 

     

    B4 =[    0           0; 

        fm21/(a+b)  fm22/(a+b); 

            0           0; 

        fm41/(a+b)  fm42/(a+b)]; 

  

    C= eye(4); 

    

     

   %%% Riccati Eq for Kalman filter %% 

   %%% Need P not K 

   [~,P,~] = lqr(A4, C', Noise_W, Noise_V); 

   %%% P = [4x4]  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

%%%       P_out= [  p11 p12 p13 p14  ; 

%%%                 0   0   0   0    ; 

%%%                 p31 p32 p33 p34  ; 

%%%                 0   0   0   0   ]; 

%%% 

%%% We need only 3rd row to estimate x3   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

if x3 == 1.0e-20 % get zero back      

x3 = 0;  

end     

  

xx3(i)= x3*180/pi; % convert angle rad. to deg. 

xx3 = double(xx3); 

  

%%% Create P31-P34 table setting 1st coulum as x3 

P_Riccati_2D_4s_P3(i+1+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column   
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P_Riccati_2D_4s_P3(i+2+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column  

P_Riccati_2D_4s_P3(i+3+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column  

P_Riccati_2D_4s_P3(i+4+(3*shift_i),1)= xx3(i);  % Insert x3 deg at 1st column  

  

%%% Rearrange %%% 

P31 = P(3,1);   

P32 = P(3,2); 

P33 = P(3,3); 

P34 = P(3,4); 

  

P_Riccati_2D_4s_P3( i+1+(3*shift_i) ,j+1)= P31;  % start at 2nd column  

P_Riccati_2D_4s_P3( i+2+(3*shift_i) ,j+1)= P32; 

P_Riccati_2D_4s_P3( i+3+(3*shift_i) ,j+1)= P33; 

P_Riccati_2D_4s_P3( i+4+(3*shift_i) ,j+1)= P34; 

  

  

i=i+1;  %x3 

shift_i=shift_i+1; 

   end 

    

  xx4(j)= x4*180/pi; 

  xx4 = double(xx4); 

  

  P_Riccati_2D_4s_P3(1,j+1)= xx4(j);  % Insert x4 deg at 1st row  

  

  

    i=1; 

    shift_i=0;  

  j=j+1; %x4 

   

       %%% print   

    Cal_percent = (j-1)*100/(ns-1); 

     

    if mod(Cal_percent , 5) == 0 

       fprintf('Calculating  %f percent ...\n',Cal_percent) 

    end 

   

end 

  

save('local_LQG_2D_P_workspace','P_Riccati_2D_4s_P3'); 
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Appendix B 

Simulink Block Diagrams 

 

5.2.4 Experimental Results 

-LQR Control   ( Filename: Gyroboy_LQR_10_2021.slx ) 

 

Figure B1.1: The 5-states control of linear quadratic regulator (LQR) in Simulink, 

adapted from (Roslovets, 2020) 

 

Figure B1.2: Theta (𝑥1) reference block diagrams 

 

Figure B1.3: Tracking system block diagrams 
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Figure B1.4: Waiting for setup block diagrams 

 

Figure B1.5: EV3 release button 

 

Figure B1.6: LEGO EV3 block diagrams 

 

Figure B1.7:  EV3 hardware block diagrams 
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Figure B1.8:  Gyro sensor block diagrams 

 

Figure B1.9:  Remove Low High Signal During Setup block diagrams 

 

Figure B1.10:  Data rearranged block diagrams 

 



APPENDIX B 

 

301 

 

 

Figure B1.11: LQR Controller block diagrams 

 

Figure B1.12: Data2theta 

 

Figure B1.13: V2PWM block diagrams 

 

Figure B1.14: Reset Integral Time block diagrams 
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5.3.4 Experimental Results 

- LQG Control ( Filename: Gyroboy_LQG_10_2021.slx ) 

 

Figure B2.1: The linear quadratic Gaussian (LQG) control block diagrams in Simulink. 

Noticeably, merely pitch angle will be filtered. 

 

As the LQG controller is extended from the LQR, some block diagrams are 

similar. Therefore, the different block diagrams are presented as follows: 

 

Figure B2.2:  LQR controller block diagrams 
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Figure B2.3: Select signal block diagrams 

 

Figure B2.4: Kalman filter block diagrams 

 

Figure B2.5: Kalman filter2 block diagrams 
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6.6 Experimental Results 

-Freezing Technique ( Filename: Gyroboy_Freezing_10_2021.slx) 

 

Figure B3.1: The nonlinear freezing control in Simulink. 

Note that other block diagrams of freezing technique are similar to the LQR 

controller. Therefore, the NLQR controller block diagram in freezing control 

system, which includes lookup table function inside, is slightly different to the LQR 

programme, as shown in Figure B3.2. 

 

Figure B3.2: NLQR controller block diagrams. 

 

 

 



APPENDIX B 

 

305 

 

The programming code of lookup table inside Freezing Lookup Table block 

diagram in Figure B3.2, as given by 

 

function U_out    = Freezing_fucntion(x_in) 

  

  

    U_out=zeros(2,1); 

   

    

      %%% Lookup table matrix 165x54 %%% 

          % K1-K4 Lookup table 
 

       K_Riccati_2D_4s=zeros(165,54); %x3=1deg x4=5deg/s   

       K_Riccati_2D_4s=[0   -130    -125    -120    -115    -110    -105 … 

-20 -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39 … 

-20 -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45 … 

-20 -61.36  -61.38  -61.40  -61.42  -61.43  -61.45  -61.47  -61.49  -61.51 … 

-20 -7.47   -7.47   -7.47   -7.47   -7.47   -7.47   -7.47   -7.47   -7.47 … 

-19 -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39 … 

-19 -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45 … 

-19 -61.19  -61.20  -61.22  -61.24  -61.26  -61.27  -61.29  -61.31  -61.32 … 

-19 -7.44   -7.44   -7.44   -7.44   -7.44   -7.44   -7.44   -7.44   -7.44 … 

… 

 

    % For example, lookup table between x3 = -20 to 20 deg and x4 = -130 to 130 deg/s.     

    % Cannot present all table here 

 

    x3=x_in(3);     % psi 

    x4=x_in(4);     % psi dot 

  

   

  

[size_m,size_n]=size(K_Riccati_2D_4s); 

  

  

%%% find array information %%% 

DegMaxN1 = K_Riccati_2D_4s(1,size_n); 

DegMaxN2 = K_Riccati_2D_4s(1,size_n-1); 

DegStepN = DegMaxN1-DegMaxN2; %x4 

DegStepN = double(DegStepN); 

  

  

DegMaxM1 = K_Riccati_2D_4s(size_m,1); 

DegMaxM2 = K_Riccati_2D_4s(size_m-4,1); 

DegStepM = DegMaxM1-DegMaxM2; %x3 

DegStepM = double(DegStepM); 

  

  

  

x_3 = x3*180/pi; % change to degree 

x_3 = double(x_3); 

x_4 = x4*180/pi; % change to degree 

x_4 = double(x_4);  

x3_i=0; 

x4_j=0; 

  

     %%%------- x_3 --------- 

      

      if single(K_Riccati_2D_4s(size_m,1)) < x_3     %% Over 

          

           x3_i = size_m-3;   

            

                              

      elseif single(K_Riccati_2D_4s(2,1)) > x_3 %% Under 

          

           x3_i = 2;  
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      else                                   

  

         i=2; 

         while(~((single(x_3) >= (single(K_Riccati_2D_4s(i,1))-DegStepM/2)) && 

(single(x_3) < (single(K_Riccati_2D_4s(i,1))+DegStepM/2)) )) 

              

        i=i+1; 

         

        end 

        x3_i = i; 

         

         

      end 

     

    %%%------- x_4 --------- 

     

     if single(K_Riccati_2D_4s(1,size_n)) < x_4     %% Over 

          

           x4_j = size_n;   

      elseif single(K_Riccati_2D_4s(1,2)) > x_4 %% Under 

          

           x4_j = 2;  

      else                                   %% range 

           

         j=2; 

          while(~((single(x_4) >= (single(K_Riccati_2D_4s(1,j))-DegStepN/2)) && 

(single(x_4) < (single(K_Riccati_2D_4s(1,j))+DegStepN/2)) )) 

        

         j=j+1; 

          

         end 

   

        x4_j = j; 

    

     end 

   

  

   

         K_out_p1 =  K_Riccati_2D_4s(x3_i,x4_j); 

         K_out_p2 =  K_Riccati_2D_4s(x3_i+1,x4_j); 

         K_out_p3 =  K_Riccati_2D_4s(x3_i+2,x4_j); 

         K_out_p4 =  K_Riccati_2D_4s(x3_i+3,x4_j); 

        % K_out_p5 =  K_Riccati_2D(x3_i+4,x4_j);   % Not use 

          

         K_out2x4 = [K_out_p1,K_out_p2,K_out_p3,K_out_p4;   

                     K_out_p1,K_out_p2,K_out_p3,K_out_p4]; 

         

                     %%% created [2x4] for two motors 

 

  

  U_out = K_out2x4*x_in; 

  

end 
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A partial lookup table of LQR feedback gains (Model A) demonstrated in Table 

B3.1. 

Table B3.1: A partial lookup table of LQR feedback gains for the TWR Model A 

 

 

 

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130 

-20 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 

-20 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 

-20 -61.36 -61.38 -61.4 … -61.8 -61.82 -61.83 -61.85 -61.87 … -62.28 -62.29 -62.31 

-20 -7.47 -7.47 -7.47 … -7.48 -7.48 -7.48 -7.48 -7.48 … -7.49 -7.49 -7.49 

-19 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 

-19 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 

-19 -61.19 -61.2 -61.22 … -61.6 -61.62 -61.63 -61.65 -61.67 … -62.05 -62.07 -62.09 

-19 -7.44 -7.44 -7.44 … -7.45 -7.45 -7.45 -7.45 -7.45 … -7.46 -7.46 -7.46 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

0 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 

0 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 

0 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85 

0 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

19 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 

19 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 

19 -62.09 -62.07 -62.05 … -61.67 -61.65 -61.63 -61.62 -61.6 … -61.22 -61.2 -61.19 

19 -7.46 -7.46 -7.46 … -7.45 -7.45 -7.45 -7.45 -7.45 … -7.44 -7.44 -7.44 

20 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 

20 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 

20 -62.31 -62.29 -62.28 … -61.87 -61.85 -61.83 -61.82 -61.8 … -61.4 -61.38 -61.36 

20 -7.49 -7.49 -7.49 … -7.48 -7.48 -7.48 -7.48 -7.48 … -7.47 -7.47 -7.47 
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Moreover, the feedback gain variables in the Freezing Lookup Table in the block 

diagram in Simulink can be changed for other systems, i.e., a lookup table of 

Model B in Table B3.2. 

Table B3.2: A partial lookup table of LQR feedback gains for the TWR Model B 

 
x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130 

-20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

-20 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 

-20 -54.37 -54.48 -54.59 … -57.31 -57.44 -57.58 -57.72 -57.86 … -61.17 -61.34 -61.50 

-20 -7.39 -7.39 -7.39 … -7.42 -7.42 -7.42 -7.42 -7.42 … -7.43 -7.43 -7.43 

-19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

-19 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 

-19 -54.00 -54.11 -54.23 … -57.09 -57.23 -57.38 -57.52 -57.67 … -61.15 -61.32 -61.49 

-19 -7.36 -7.36 -7.36 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.40 -7.40 -7.40 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

0 0 0 0 … 0 0 0 0 0 … 0 0 0 

0 0 0 0 … 0 0 0 0 0 … 0 0 0 

0 0 0 0 … 0 0 0 0 0 … 0 0 0 

0 0 0 0 … 0 0 0 0 0 … 0 0 0 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

19 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.42 -1.42 -1.42 

19 -61.49 -61.32 -61.15 … -57.67 -57.52 -57.38 -57.23 -57.09 … -54.23 -54.11 -54.00 

19 -7.40 -7.40 -7.40 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.36 -7.36 -7.36 

20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

20 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … 0.14 0.14 0.14 

20 -61.50 -61.34 -61.17 … -57.86 -57.72 -57.58 -57.44 -57.31 … 4.12 4.12 4.12 

20 -7.43 -7.43 -7.43 … -7.42 -7.42 -7.42 -7.42 -7.42 … 0.70 0.70 0.70 
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Note that the feedback gains at 𝑥3 = 0° are set manually as zero because this 

angle is uncontrollable for Model B, which MATLAB cannot obtain the feedback 

gains. Additionally, a partial lookup table of LQR feedback gains (Model AB) is 

presented in Table B3.3. 

Table B3.3: A partial lookup table of LQR feedback gains for the TWR Model AB 

 
x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130 

-20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

-20 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 

-20 -54.37 -54.48 -54.59 … -57.31 -57.44 -57.58 -57.72 -57.86 … -61.17 -61.34 -61.50 

-20 -7.39 -7.39 -7.39 … -7.42 -7.42 -7.42 -7.42 -7.42 … -7.43 -7.43 -7.43 

-19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

-19 -1.42 -1.42 -1.42 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 

-19 -54.00 -54.11 -54.23 … -57.09 -57.23 -57.38 -57.52 -57.67 … -61.15 -61.32 -61.49 

-19 -7.36 -7.36 -7.36 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.40 -7.40 -7.40 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

0 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 -1.39 -1.39 … -1.39 -1.39 -1.39 

0 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 -1.45 -1.45 … -1.45 -1.45 -1.45 

0 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85 -59.85 -59.85 … -59.85 -59.85 -59.85 

0 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17 -7.17 -7.17 … -7.17 -7.17 -7.17 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

19 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

19 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.42 -1.42 -1.42 

19 -61.49 -61.32 -61.15 … -57.67 -57.52 -57.38 -57.23 -57.09 … -54.23 -54.11 -54.00 

19 -7.40 -7.40 -7.40 … -7.39 -7.39 -7.39 -7.39 -7.39 … -7.36 -7.36 -7.36 

20 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 -1.38 -1.38 … -1.38 -1.38 -1.38 

20 -1.43 -1.43 -1.43 … -1.43 -1.43 -1.43 -1.43 -1.43 … -1.42 -1.42 -1.42 

20 -61.50 -61.34 -61.17 … -57.86 -57.72 -57.58 -57.44 -57.31 … -54.59 -54.48 -54.37 

20 -7.43 -7.43 -7.43 … -7.42 -7.42 -7.42 -7.42 -7.42 … -7.39 -7.39 -7.39 
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The gains K have been stored in matrix 4x1, including feedback gains K1-K4, 

which are varied by state variables 𝑥3 and 𝑥4, as shown in Table B3.4. Note, a 

gain K5 of state variable 𝑥5 has been excluded as it has not changed by any 𝑥3 

and 𝑥4. Moreover, the memory of LEGO EV3 is limited for data storage. 

Therefore, the gain K5 has not been used in the lookup table, but it has been 

used as a fixed gain in Simulink. 

 

Table B3.4: Gains K1-K4 in the lookup table. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

-Freezing Technique with EKF  

( Filename: Gyroboy_FreezEKF_10_2021.slx) 

 

Figure B3.3: The nonlinear freezing control with EKF in Simulink. 

x3\x4 -130 

-20 K1 

-20 K2 

-20 K3 

-20 K4 
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Note that other block diagrams of freezing technique with EKF are similar to the 

LQG controller. Therefore, the different block diagrams are presented as follows: 

 

Figure B3.4: LEGO EV3 block diagrams. 

 

Figure B3.5: Nonlinear Lookup table block diagrams. 

The programming code of lookup table inside Lookup Table block diagram in 

Figure B3.5, as given by 

function [K_out,L_out,A4,B4]   = 

Riccati_fucntion_for_LQR_and_Kalman(x_in,Noise_V) 

  

    K_out=zeros(2,4); 

  

   L_out = zeros(4,4); 

   A4 = zeros(4,4); 

   B4 = zeros(4,2); 

     

    %Noise_W = 1;   %%% 5*** 

    %Noise_V = 0.3; %%% 1*** 

    C4 = eye(4); 

  

       % K1-K4 Lookup table 

      %Q11=20 scale  x3=1deg x4=5deg/s    20 deg 

       K_Riccati_2D_4s=zeros(165,54); 

K_Riccati_2D_4s=[0   -130    -125    -120    -115    -110    -105    -100    -95 -90… 

-20 -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39 … 

-20 -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45 …   

-20 -61.36  -61.38  -61.40  -61.42  -61.43  -61.45  -61.47  -61.49  -61.51  -61.52 … 

-20 -7.47   -7.47   -7.47   -7.47   -7.47   -7.47   -7.47   -7.47   -7.47   -7.47 … 

-19 -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39   -1.39 … 

-19 -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45   -1.45 … 
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-19 -61.19  -61.20  -61.22  -61.24  -61.26  -61.27  -61.29  -61.31  -61.32  -61.34 … 

-19 -7.44   -7.44   -7.44   -7.44   -7.44   -7.44   -7.44   -7.44   -7.44   -7.44 … 

…  
 

    % For example, lookup table between x3 = -20 to 20 deg and x4 = -130 to 130 deg/s.     

    % Cannot present all table here 

    % P solution of Kalman filter 

    % P31-P34 Lookup table 

   % Q11=20 

      P_Riccati_2D_4s_P3=zeros(165,54);   % W=1 % V=0.2 

P_Riccati_2D_4s_P3=[0 -130    -125    -120    -115    -110    -105    -100    -95 -90 … 

-20 0.08    0.08    0.08    0.08    0.08    0.08    0.08    0.08    0.08    0.08 … 

-20 0.14    0.14    0.14    0.14    0.14    0.14    0.14    0.14    0.14    0.14 … 

-20 4.12    4.12    4.12    4.12    4.11    4.11    4.11    4.11    4.11    4.11 … 

-20 0.70    0.70    0.70    0.70    0.70    0.70    0.70    0.70    0.70    0.70 … 

-19 0.08    0.08    0.08    0.08    0.08    0.08    0.08    0.08    0.08    0.08 … 

-19 0.14    0.14    0.14    0.14    0.14    0.14    0.14    0.14    0.14    0.14 … 

-19 4.12    4.12    4.12    4.12    4.12    4.11    4.11    4.11    4.11    4.11 … 

-19 0.70    0.70    0.70    0.70    0.70    0.70    0.70    0.70    0.70    0.70 … 

… 
 

   % For example, lookup table between x3 = -20 to 20 deg and x4 = -130 to 130 deg/s.     

    % Cannot present all table here 

 

    %x1=x_in(1);     % theta 

    %x2=x_in(2);     % theta dot 

    x3=x_in(3);     % psi 

    x4=x_in(4);     % psi dot 

  %  x5=x_in(5);     % theta int 

   

   

  

[size_m,size_n]=size(K_Riccati_2D_4s); 

  

  

%%% find array information %%% 

DegMaxN1 = K_Riccati_2D_4s(1,size_n); 

DegMaxN2 = K_Riccati_2D_4s(1,size_n-1); 

DegStepN = DegMaxN1-DegMaxN2; %x4 

DegStepN = double(DegStepN); 

  

  

DegMaxM1 = K_Riccati_2D_4s(size_m,1); 

DegMaxM2 = K_Riccati_2D_4s(size_m-4,1); 

DegStepM = DegMaxM1-DegMaxM2; %x3 

DegStepM = double(DegStepM); 

  

  

  

%x3=-80*pi/180;x4=-60*pi/180; 

  

x_3 = x3*180/pi; % change to degree 

x_3 = double(x_3); 

x_4 = x4*180/pi; % change to degree 

x_4 = double(x_4);  

x3_i=0; 

x4_j=0; 

  

     %%%------- x_3 --------- 

      

      if single(K_Riccati_2D_4s(size_m,1)) < x_3     %% Over 

          

           x3_i = size_m-3;   

           %%% Go to wide data 

                     

            

      elseif single(K_Riccati_2D_4s(2,1)) > x_3 %% Under 
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           x3_i = 2;  

           %%% Go to wide data 

            

            

      else                                   %% range 

  

         i=2; 

         while(~((single(x_3) >= (single(K_Riccati_2D_4s(i,1))-DegStepM/2)) && 

(single(x_3) < (single(K_Riccati_2D_4s(i,1))+DegStepM/2)) )) 

              

        i=i+1; 

         

        end 

        x3_i = i; 

         

         

      end 

     

    %%%------- x_4 --------- 

     

     if single(K_Riccati_2D_4s(1,size_n)) < x_4     %% Over 

          

           x4_j = size_n;   

      elseif single(K_Riccati_2D_4s(1,2)) > x_4 %% Under 

          

           x4_j = 2;  

      else                                   %% range 

           

         j=2; 

          while(~((single(x_4) >= (single(K_Riccati_2D_4s(1,j))-DegStepN/2)) 

&& (single(x_4) < (single(K_Riccati_2D_4s(1,j))+DegStepN/2)) )) 

        

         j=j+1; 

          

         end 

   

        x4_j = j; 

    

     end 

   

  

         K_out_p1 =  K_Riccati_2D_4s(x3_i,x4_j); 

         K_out_p2 =  K_Riccati_2D_4s(x3_i+1,x4_j); 

         K_out_p3 =  K_Riccati_2D_4s(x3_i+2,x4_j); 

         K_out_p4 =  K_Riccati_2D_4s(x3_i+3,x4_j); 

        % K_out_p5 =  K_Riccati_2D(x3_i+4,x4_j); 

          

         K_out2x4 = [K_out_p1,K_out_p2,K_out_p3,K_out_p4;  %%% created [2x4] 

for two motors 

                     K_out_p1,K_out_p2,K_out_p3,K_out_p4]; 

         

  

      

%%%%% Use same table index with K %%%% 

  

         p31 =  P_Riccati_2D_4s_P3(x3_i,x4_j); 

         p32 =  P_Riccati_2D_4s_P3(x3_i+1,x4_j); 

         p33 =  P_Riccati_2D_4s_P3(x3_i+2,x4_j); 

         p34 =  P_Riccati_2D_4s_P3(x3_i+3,x4_j); 

  

  

 

   P_out= [  0   0   0   0  ; 

             0   0   0   0  ; 

            p31 p32 p33 p34  ; 
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             0   0   0   0   ]; 

   

%%% Physical constants 

g = 9.81;                       % gravity acceleration [m/sec^2] 

%%% Physical parameters 

m = 0.050;                      % wheel weight [kg]  old 0.024 new 0.050 

R = 0.027;                      % wheel radius [m] 

Jw = m * R^2 / 2;               % wheel inertia moment [kgm^2] 

W = 0.105;                      % body width [m] 

D = 0.1;                        % body depth [m] 

  

M = 0.64;                   % body weight [kg]  old 0.80  new 0.64  

h = 0.210;                      % body height [m] 

  

L = h / 2;                      % distance of the center of mass from the 

wheel axle [m] 10.5 

  

Jpsi = M * L^2 / 3;             % body pitch inertia moment [kgm^2] 

  

%%% Motors parameters 

Jm = 1e-5;                      % DC motor inertia moment [kgm^2] 

Rm = 6.69;                      % DC motor resistance [Om] 

Kb = 0.468;                     % DC motor back EMF constant [Vsec/rad] 

Kt = 0.317;                     % DC motor torque constant [Nm/A] 

n = 1;                          % Gear ratio 

fm = 0.0022;                    % friction coefficient between body & DC motor 

fw = 0;                         % friction coefficient between wheel & floor  

  

%%% Helping variables 

alpha = n * Kt / Rm; 

beta = n * Kt * Kb / Rm + fm;         

          

          

  

%%%% AB  

  

    %initialise x1-x6 using the input 'x' vector 

    if x3 == 0 

       x3=1.0e-20;  % avoid Inf's and NaN's 

    end     

     

     

    

a=2*Jw*Jpsi+2*m*R^2*M*L^2+4*m*R^2*n^2*Jm+2*M*R^2*n^2*Jm+2*n^2*Jm*M*L^2+2*m*R^2

*Jpsi+M*R^2*Jpsi+2*Jw*M*L^2+4*Jw*n^2*Jm+2*n^2*Jm*Jpsi; 

    b=M^2*R^2*L^2*sin(x3)^2+4*M*R*L*cos(x3)*n^2*Jm; 

    e23=2*n^2*Jm*M*g*L*sin(x3)-M^2*R*L^2*cos(x3)*g*sin(x3); 

    e24=x4*sin(x3)*(M^2*R*L^3 +2*M*R*L*n^2*Jm +M*R*L*Jpsi); 

  

    f21=M*L^2+2*n^2*Jm+Jpsi; 

    f22=2*n^2*Jm-M*R*L*cos(x3); 

     

     

    e43=M*g*L*sin(x3)*(2*Jw+2*m*R^2+M*R^2+2*n^2*Jm); 

    e44=x4*sin(x3)*(-M^2*R^2*L^2*cos(x3)+2*M*R*L*n^2*Jm); 

  

    f41=2*n^2*Jm-M*R*L*cos(x3); 

    f42=2*n^2*Jm+2*Jw+2*m*R^2+M*R^2; 

  

  

    em22=2*beta*(f22-f21)-2*fw*f21; 

    em23=e23; 

    em24=e24+2*beta*(f21-f22); 
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    em42=2*beta*(f42-f41)-2*fw*f41; 

    em43=e43; 

    em44=e44+2*beta*(f41-f42); 

   

    

    fm21=alpha*(f21-f22); 

    fm22=fm21; 

    fm41=alpha*(f41-f42); 

    fm42=fm41; 

  

  

    A4 =[0      1             0              0        ; 

        0  em22/(a+b)  em23/((a+b)*x3)  em24/(a+b)   ; 

        0      0             0              1        ; 

        0  em42/(a+b)  em43/((a+b)*x3)  em44/(a+b)   ]; 

     

         B4 =[    0           0; 

            fm21/(a+b)  fm22/(a+b); 

            0           0; 

            fm41/(a+b)  fm42/(a+b)]; 

  

%%%% AB %%%% 

          

 L_out = P_out*C4'*inv(Noise_V); 

   

  K_out= K_out2x4; 

end 

  

 

It can be seen that the lookup table of the EKF gains has been added to the 

function. 
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A partial lookup table of EKF feedback gains (Model A) shows in Table B3.5. 

Table B3.5: A partial lookup table of Kalman feedback gains for the TWR model A 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130 

-20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

-20 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13 

-20 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.06 4.06 4.06 

-20 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68 

-19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

-19 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13 

-19 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.07 4.07 4.07 

-19 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

0 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

0 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14 

0 4.12 4.12 4.12 … 4.12 4.12 4.12 4.12 4.12 … 4.12 4.12 4.12 

0 0.69 0.69 0.69 … 0.69 0.69 0.69 0.69 0.69 … 0.69 0.69 0.69 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

19 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14 

19 4.07 4.07 4.07 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12 

19 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70 

20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

20 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14 

20 4.06 4.06 4.06 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12 

20 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70 
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Moreover, a partial lookup table of EKF feedback gains (Model B) shows in Table 

B3.6. 

Table B3.6: A partial lookup table of Kalman feedback gains for the TWR model B 

 

 

 

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130 

-20 0.03 0.03 0.03 … -0.01 -0.01 -0.01 -0.02 -0.02 … -0.05 -0.05 -0.05 

-20 0.14 0.14 0.14 … 0.13 0.13 0.13 0.13 0.13 … 0.11 0.11 0.11 

-20 4.18 4.14 4.11 … 4.01 4.04 4.07 4.11 4.15 … 5.47 5.55 5.62 

-20 0.65 0.65 0.65 … 0.66 0.66 0.66 0.66 0.66 … 0.65 0.65 0.65 

-19 0.04 0.03 0.03 … -0.01 -0.01 -0.01 -0.02 -0.02 … -0.05 -0.05 -0.06 

-19 0.14 0.14 0.14 … 0.13 0.13 0.13 0.13 0.13 … 0.11 0.11 0.11 

-19 4.23 4.19 4.15 … 4.01 4.04 4.08 4.11 4.15 … 5.58 5.66 5.74 

-19 0.03 0.03 0.03 … -0.01 -0.01 -0.01 -0.02 -0.02 … -0.05 -0.05 -0.05 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

0 -0.18 -0.18 -0.18 … -0.18 -0.18 -0.02 0.18 0.18 … 0.18 0.18 0.18 

0 -0.44 -0.44 -0.44 … -0.44 -0.44 0.13 0.44 0.44 … 0.44 0.44 0.44 

0 1 

× 1011 

9.9 

× 1010 

9.7 

× 1010 
… 

2.8 

× 1010 

2 

× 1010 

4.12 1.8 

× 1010 

2.5
× 1010 

… 

8.9 

× 1010 

9.1
× 1010 

9.2
× 1010 

0 0.30 0.30 0.30 … 0.30 0.30 0.66 0.10 0.10 … 0.10 0.10 0.10 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

19 -0.06 -0.05 -0.05 … -0.02 -0.02 -0.01 -0.01 -0.01 … 0.03 0.03 0.04 

19 0.11 0.11 0.11 … 0.13 0.13 0.13 0.13 0.13 … 0.14 0.14 0.14 

19 5.74 5.66 5.58 … 4.15 4.11 4.08 4.04 4.01 … 4.15 4.19 4.23 

19 0.65 0.65 0.65 … 0.66 0.66 0.66 0.66 0.66 … 0.65 0.65 0.64 

20 -0.05 -0.05 -0.05 … -0.02 -0.02 -0.01 -0.01 -0.01 … 0.03 0.03 0.03 

20 0.11 0.11 0.11 … 0.13 0.13 0.13 0.13 0.13 … 0.14 0.14 0.14 

20 5.62 5.55 5.47 … 4.15 4.11 4.07 4.04 4.01 … 4.11 4.14 4.18 

20 0.65 0.65 0.65 … 0.66 0.66 0.66 0.66 0.66 … 0.70 0.70 0.70 
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Furthermore, a partial lookup table of EKF feedback gains (Model AB) is given in 

Table B3.7. 

Table B3.7: A partial lookup table of Kalman feedback gains for the TWR Model AB 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3\x4 -130 -125 -120 … -10 -5 0 5 10 … 120 125 130 

-20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

-20 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13 

-20 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.06 4.06 4.06 

-20 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68 

-19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

-19 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.13 0.13 0.13 

-19 4.12 4.12 4.12 … 4.09 4.09 4.09 4.09 4.09 … 4.07 4.07 4.07 

-19 0.70 0.70 0.70 … 0.69 0.69 0.69 0.69 0.69 … 0.68 0.68 0.68 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

0 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

0 0.14 0.14 0.14 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14 

0 4.12 4.12 4.12 … 4.12 4.12 4.12 4.12 4.12 … 4.12 4.12 4.12 

0 0.69 0.69 0.69 … 0.69 0.69 0.69 0.69 0.69 … 0.69 0.69 0.69 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

19 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

19 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14 

19 4.07 4.07 4.07 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12 

19 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70 

20 0.08 0.08 0.08 … 0.08 0.08 0.08 0.08 0.08 … 0.08 0.08 0.08 

20 0.13 0.13 0.13 … 0.14 0.14 0.14 0.14 0.14 … 0.14 0.14 0.14 

20 4.06 4.06 4.06 … 4.09 4.09 4.09 4.09 4.09 … 4.12 4.12 4.12 

20 0.68 0.68 0.68 … 0.69 0.69 0.69 0.69 0.69 … 0.70 0.70 0.70 
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The Simulink function in freezing control with EKF includes two lookup tables. 

The first table is for the gains of the normal freezing controller, which was 

presented previously, and the second is for the extended Kalman filter. The gains 

have been stored as matrix 4x1. Moreover, only the 3rd row of matrix P solution 

is achieved by solving the Riccati equation, which gives the feedback gain of state 

variable 𝑥3, as shown in Table B3.8. 

Table B3.8: Gains P31-34 in the lookup table 

 
 
 
 
 
 
 
 
 
 

 

Figure B3.6: LQR Controller block diagrams 

x3\x4 -130 

-20 P31 

-20 P32 

-20 P33 

-20 P34 
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Figure B3.7: Extended Kalman filter block diagrams 

 

Figure B3.8: Kalman filter2 block diagrams 

 

Figure B3.9: A_LCxXhat block diagrams 
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