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A blunt obstacle in the path of a rapid granular avalanche generates a bow shock (a jump
in the avalanche thickness and velocity), a region of static grains upstream of the obstacle,
and a grain-free region downstream. Here, it is shown that this interaction is qualitatively
altered if the incline on which the avalanche is flowing is changed from smooth to rough.
On a rough incline, the friction between the grains and the incline depends on the flow
thickness and speed, which allows both rapid (supercritical) and slow (subcritical) steady
uniform avalanches. For supercritical experimental flows, the material is diverted around
a blunt obstacle by the formation of a bow shock and a static dead zone upstream of
the obstacle. Downslope, a grain-free vacuum region forms, but, in contrast to flows on
smooth beds, static levees form at the boundary between the vacuum region and the flow.
In slower, subcritical, flows the flow is diverted smoothly around the dead zone and the
obstacle without forming a bow shock. After the avalanche stops, signatures of the dead
zone, levees and (in subcritical flows) a deeper region upslope of the obstacle are frozen
into the deposit. To capture this behaviour, numerical simulations are performed with a
depth-averaged avalanche model that includes frictional hysteresis and depth-averaged
viscous terms, which are needed to accurately model the flowing and deposited regions.
These results may be directly relevant to geophysical mass flows and snow avalanches,
which flow over rough terrain and may impact barriers or other infrastructure.
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1. Introduction

When a granular avalanche impacts a blunt obstacle, material is diverted around the
obstruction resulting in changes to the speed and direction of the flow. For rapid flows
on smooth beds, this includes the formation of a bow shock upstream of a static region
of grains that is deposited at the front face of the obstacle (Gray, Tai & Noelle 2003).
Downslope of the obstacle, the diverted material expands into the space behind the
obstacle forming a grain-free region. The speed and thickness of an avalanche play a key
role in determining its dynamics and deposits. Shocks and bores can occur whenever the
speed of the avalanche exceeds the local propagation speed of the surface gravity waves
for that material (Savage 1979; Brennen, Sieck & Paslaski 1983; Savage 1984; Gray et al.
2003; Gray & Cui 2007; Pudasaini et al. 2007; Cui & Gray 2013; Faug et al. 2015; Mejean,
Faug & Einav 2017). Such flows where the speed of the avalanche exceeds the wave speed
are called supercritical flows, and correspondingly where the avalanche speed is less than
the wave speed the flow is subcritical. The Froude number is defined as the ratio of the
depth-averaged flow speed to the speed of propagation of gravity waves

Fr = |ū|√
gh cos ζ

, (1.1)

where ū is the depth-averaged flow velocity, h the flow thickness on a slope inclined to an
angle ζ and g is the acceleration due to gravity. The Froude number, therefore, determines
whether the flow is supercritical (Fr > 1), critical (Fr = 1) or subcritical (Fr < 1). This
is analogous to the Mach number in gas dynamics, which is defined as the ratio of the
speed of a compressible flow of air to the relevant wave propagation speed, i.e. the speed
of sound (Johnson 2020).

Gray et al. (2003) conducted experiments of supercritical granular flows impacting a
pyramidal obstacle fixed to a smooth bed. They found that the shape of the obstacle plays
a key role and analysed two cases where the flow impacted directly onto a vertex, or onto
the face of a triangular pyramid. For a pointed obstacle, oblique shocks form, whereas for
a blunt obstacle, a bow shock forms upstream of a region of static deposited grains (termed
a dead zone) that also contributes to the flow diversion. These ideas have been expanded
upon with studies looking into the properties of the shock and how it changes depending
on the angle of the impacted face (Hákonardóttir & Hogg 2005; Gray & Cui 2007) and the
obstacle shape (Vreman et al. 2007; Cui & Gray 2013). The diversion of material results
in an increase to the flow speed and thickness around the obstacle and on the lee side a
grain-free region is formed as the material expands. This protected grain-free region is
referred to as a granular vacuum, by analogy to the similar feature in gas dynamics (Gray
et al. 2003; Hogg, Gray & Cui 2005; Gray & Cui 2007; Cui & Gray 2013). Through these
studies we have gained a good understanding of supercritical granular flows on smooth
beds.

Initial studies for obstacle interaction on a rough bed were conducted by Faug, Naaim
& Naaim-Bouvet (2004) who looked into the effect of slope angle and fence height on
the retention of material from a flow impacting a fence on a roughened slope. Rough beds
allow steady uniform flows to develop for a wide range of flow depths and slope inclination
angles. This is not the case for smooth beds without sidewalls, where the gravitational
and frictional source terms in the depth-averaged downslope momentum balance imply
a net accelerative or decelerative background motion. In particular, rough beds allow
subcritical, as well as supercritical, granular flow around a blunt obstacle to be studied.
For supercritical flow on a rough bed, a bow shock and potentially a static dead zone form
upstream of the obstacle, as shown in figure 1(a). This is similar to what one would expect
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Granular flow around an obstacle on a rough inclined plane

on a smooth bed, although the shape and size of the dead zone differ. On the lee side of the
obstacle, instead of the fastest flow being located at the edge of the vacuum region (as is
the case on a smooth bed), levees of static material form around the vacuum region. This
is a new feature for flows impacting obstacles and is the opposite behaviour to that on the
smooth bed.

For a subcritical inflow on a rough bed (figure 1b) there is no bow shock, but there is an
upstream region that decelerates the flow and allows it to smoothly deflect around the static
dead zone and the obstacle. The static deposits of material, both in the levees bounding
the vacuum region and in the upstream dead zone, are larger than their supercritical
counterparts. In both supercritical and subcritical flows, the levees provide an important
buffer zone between the flow and vacuum region. The vacuum boundary is therefore very
stable to perturbations in the main flow, and is able to extend far downstream, as shown
in figure 2(a). Unlike a smooth bed, where all the grains (except those in the dead zone)
flow off the inclined plane when the inflow ceases (Gray et al. 2003), on a rough bed a
static deposit of grains forms in the region that was occupied by flowing grains, as shown
in figure 2(a,b). This is related to the rough-bed friction law (Pouliquen 1999; Pouliquen
& Forterre 2002; Edwards et al. 2017, 2019), which is much more complicated than the
simple Coulomb friction used in many depth-averaged numerical simulations on smooth
beds (Savage & Hutter 1989; Gray et al. 2003; Cui & Gray 2013). As well as a thin coating
of grains, the subcritical flow leaves behind a flat-topped pile adjacent to the obstacle and
a central ridge of material that extends far upstream (figure 2a).

There is no universal constitutive law for granular flows that captures the complete
behaviour observed in experiments and geophysical flows. Due to this there are a variety
of approaches to modelling avalanches. Flow-obstacle interaction has been studied using
discrete particle method simulations and compared with experiments undertaken on
smooth beds (see, e.g. Teufelsbauer et al. 2009, 2011). This approach has also been used
to examine the impact pressure on the obstacle itself for both rigid and flexible bodies
(Teufelsbauer et al. 2011; Zhan et al. 2019). Discrete methods have the disadvantage that
scaling up numerical experiments becomes very computationally expensive, and, as such,
to consider the global effect of an avalanche impacting an obstacle, continuum methods
are required. Recent advances in our understanding of the constitutive behaviour of dry
granular flows with the so called μ(I)-rheology (where μ is the friction and I is the
inertial number) (GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006; Barker et al. 2015;
Barker & Gray 2017; Schaeffer et al. 2019; Rauter, Barker & Fellin 2020) make continuum
simulations of avalanches possible (Lagrée, Staron & Popinet 2011; Baker, Barker & Gray
2016a; Barker et al. 2021). However, these laws do not contain the non-local effects
(Kamrin & Koval 2012; Kamrin & Henann 2015) that are necessary to model the more
complex flow behaviour on rough beds, such as the formation of static levees during the
flow (figure 1) and the coating of the inclined plane with a layer of grains at the end of the
experiment (figure 2).

Avalanches typically have a shallow aspect ratio (i.e. the flow depth is much less than its
length and width), which allows them to be successfully modelled using a depth-averaged
approach (Grigorian, Eglit & Iakimov 1967; Eglit 1983; Savage & Hutter 1989; Gray,
Wieland & Hutter 1999; Gray & Edwards 2014). Typically the system of equations
resembles those of the shallow water or St Venant equations of fluid mechanics, with
additional depth-averaged source terms to represent the effect of gravity driving the grains
down the slope, basal topography gradients and frictional resistance to motion. These
equations remove one spatial dimension from the problem and have the advantage that they
scale up easily from laboratory experiments to full-scale geophysical flows (Kokelaar et al.
2017). The constitutive behaviour is usually encapsulated in the frictional source term.
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(a)

(b)

Static dead zone

Static levee

Bow shock

Grain-free vacuum

Static dead zone

Static levee

Decelerating upstream region

Grain-free vacuum

Figure 1. Panel (a) shows an upstream supercritical flow (Fr ≈ 2.35, ζ = 35◦) of d = 300–400 µm soft
masonry sand impacting a rectangular obstacle of dimension 3 × 8 × 3 cm on a rough bed made from
750–1000 µm turquoise glass ballotini. The shutter speed is 1/8 s and the photographs are contrast enhanced.
This procedure highlights the difference between static and moving regions of grains through motion blur. For
supercritical upstream flow, a bow shock can be observed upstream of a static dead zone, while on the lee side
of the obstacle a grain-free vacuum region opens up that is bounded by static levees. On the downstream face of
the obstacle the magnetic fixings are visible, but they do not influence the flow as they are entirely contained in
the vacuum region. Panel (b) shows an upstream subcritical flow (Fr ≈ 0.77, ζ = 32◦). In this case a bow shock
does not form, but there is an upstream region that decelerates the flow and smoothly deflects the oncoming
grains around the static dead zone and the obstacle. On the lee side the levees are wider and thicker than
in the supercritical case. The sand, basal surface and obstacle dimensions are the same in this and subsequent
experiments. Movies showing the time-dependent evolution are available in the online supplementary material.
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Granular flow around an obstacle on a rough inclined plane

(a)

(b)

Grain-free vacuum

Flat-topped pile

Upstream ridge

Figure 2. Panels (a,b) show photographs of the final deposits of an upstream subcritical flow (Fr ≈ 0.77,
ζ = 32◦) once the flow has subsided. The flat-topped pile above the obstacle is shown in panel (a) and the
raised levees in the obstacle wake in panel (b). The orientation of the photographs is such that in panel (a) the
upstream face of the obstacle is shown, whereas in panel (b) the view is changed to show the rear downstream
face.

Savage & Hutter (1989) assumed a constant Coulomb friction μ on a slope inclined at an
angle ζ to the horizontal. As a result, the flow is accelerative if μ < tan ζ , decelerative if
μ > tan ζ and non-accelerative when μ = tan ζ . This is a reasonably good approximation
for short smooth beds (Cui & Gray 2013; Viroulet et al. 2017), but over longer distances
the avalanche does not tend to a terminal velocity, which is unrealistic. As a result,
velocity-dependant basal-drag laws have been introduced in snow-avalanche models, such
as the RAMMS model, which is widely used for hazard zoning in Switzerland (Salm 1993;
Bouchet et al. 2004; Naaim et al. 2004; Christen, Kowalski & Bartelt 2010; Bartelt et al.
2015).

More complicated frictional models are required for dry granular flows on rough beds,
where the static material is metastable for thicknesses in the range h ∈ [hstop(ζ ), hstart(ζ )]
(Daerr & Douady 1999). This hysteretic behaviour implies that at the same inclination
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angle ζ and thickness h, there can be coexisting regions of static and flowing material.
In particular, when a steady uniform flow is brought to a rest (by ceasing the inflow) it
leaves a deposit of thickness h = hstop(ζ ) on a slope of angle ζ . The slope angle can then
be increased until ζstart(h) before the grains are remobilised, where ζstart(h) is the inverse
function of hstart(ζ ). Pouliquen & Forterre (2002) showed that this behaviour could be
captured by making the friction μ a non-monotonic function of the Froude number and
flow thickness. This law, which was originally developed for spherical glass ballotini, has
been extended to model the hysteresis of angular grains, such as carborundum and sand
(Edwards et al. 2017, 2019).

A rich variety of flow features, such as roll waves (Forterre & Pouliquen 2003; Gray &
Edwards 2014; Razis et al. 2014; Viroulet et al. 2018), erosion-deposition waves (Edwards
& Gray 2015), retrogressive failures (Daerr & Douady 1999; Russell et al. 2019), as well
as levees, troughs and elevated channels (Edwards et al. 2017; Rocha, Johnson & Gray
2019; Viroulet et al. 2019; Edwards et al. 2021) can be quantitatively modelled with
these rough-bed friction laws. Many of these problems require the additional inclusion of
depth-averaged in-plane viscous terms in the avalanche equations (Gray & Edwards 2014;
Baker et al. 2016a; Kanellopoulos 2021). These second-order gradient terms represent a
singular perturbation to the equations and are necessary to predict (i) the cut-off frequency
of roll waves (Forterre 2006; Gray & Edwards 2014), (ii) the downslope velocity profile
across channels (Baker et al. 2016a), (iii) the height and width of self-channelised flows
(Rocha et al. 2019) and (iv) segregation induced flow fingers (Woodhouse et al. 2012;
Baker, Johnson & Gray 2016b). In this paper it is shown that the qualitative features of
granular flow around obstacles on a rough bed, such as shock and levee formation, as well
as the static pile and vacuum shape, can be quantitatively predicted using the same model.

The interaction of large-scale dense avalanches, such as debris flows, pyroclastic flows
and snow avalanches, with obstacles in their path can lead to major changes in the
speed and direction of the avalanche. Due to the hazardous nature of such avalanches,
many attempts have been made to divert or control the flow to protect people and
infrastructure using defences such as dams and barriers, or in some cases using natural
features such as maintained forests, on common avalanche paths (see, e.g. Cui, Gray
& Jóhannesson 2007; Olschewski et al. 2012; Luong, Baker & Einav 2020). Historical
examples of avalanche defences date back as far as the 17th century when a church
in the sub-parish of Frauenkirch near Davos, after being destroyed by an avalanche
in 1602, was rebuilt with a spaltkeil (i.e. a wedge-shaped structure used to divert the
avalanche around the building) (Gray et al. 2003). Further examples include a 4-m-high
and 80-m-long avalanche-deflection wall which was built in Leukerbad around the same
period (Pudasaini & Hutter 2007). Through time, mitigation strategies have become more
varied. This can be observed on the Walmendinger Horn in the Kleinwalsertal/Mittelberg
where arrays of avalanche protection barriers have been made using dry stone walls,
gabions and earthworks that date from various points in the early 20th century (Drexel
& Macher 2018). A more modern example of this tradition are the protective measures
above Siglufjörður in northern Iceland which include multiple collection dams directly
above the town and a series of barriers on the steeper slopes above (Arnalds et al. 2001),
or at the Taconnaz site in Chamonix, France where series of breaking dams are used to
slow the avalanche (Naaim, Faug & Naaim-Bouvet 2003). The features observed in such
real-world flows are strikingly similar to those in dense dry granular avalanches indicating
a strong correlation between the two (Sovilla et al. 2008; Köhler, McElwaine & Sovilla
2018), where large-scale experiments on snow avalanches impacting obstacles have been
conducted with features showing many similarities to small-scale granular avalanches.
This connection has influenced the development and study of avalanche protection design
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Granular flow around an obstacle on a rough inclined plane

Figure 3. Photograph of a snow avalanche defence built against the Cabane Arpitettaz near Zinal, Switzerland.
The geometry of boulders built up against the structure resembles a maximal pile (§ 7), which is a stable shape
that effectively diverts incoming snow away from the building.

(see, e.g. Naaim et al. 2003; Cui et al. 2007; Barbolini et al. 2009). A recent example is that
of the Cabane Arpitettaz, shown in figure 3, where boulders have been placed upstream of
the cabin to divert oncoming avalanches around it. The shape of the protective structure is
similar to the maximal static dead zone that would naturally form against a rigid obstacle,
as will be shown in § 7. Overall this indicates that there is a long history of developing
effective mitigation measures for avalanche hazards. This study extends our understanding
of the avalanche-obstacle interaction to situations where the terrain has significantly more
complicated frictional dependence than in previous studies.

2. Governing equations

Consider a slope inclined at an angle ζ to the horizontal and let Oxyz be a Cartesian
coordinate system with the x-axis orientated in the downslope direction, the y-axis in the
cross-slope direction and the z-axis pointing in the upward normal direction to the slope,
as shown in figure 4. The obstacle lies within this domain and is included in calculations
through the applied boundary conditions, discussed further in § 4. In these coordinates
the depth-averaged mass and momentum conservation laws for the avalanche thickness
h(x, y, t) and the depth-averaged velocity ū(x, y, t) = (ū(x, y, t), v̄(x, y, t)) are

∂h
∂t

+ ∇ · (hū) = 0, (2.1)

∂

∂t
(hū) + ∇ · (hū ⊗ ū) + ∇

(
1
2

gh2 cos ζ

)
= ghS + ∇ · (νh3/2D̄), (2.2)

where ·, ⊗ and ∇ = (∂/∂x, ∂/∂y) are the two-dimensional dot product, dyadic product
and gradient operators, respectively. The shape factor has been implicitly assumed to be
equal to unity, in keeping with many depth-averaged avalanche models (see, e.g. Hutter
et al. 1993; Pouliquen & Forterre 2002). The mass equation (2.1) is derived under the
approximation that the avalanche is incompressible. While this is not true of very rapid
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z

x

y
h

Static dead zone

Blunt obstacle

Vacuum region

Static levee

Magnetic fixings

g

ζ

Rough bed

Figure 4. Experimental sketch of a granular flow (yellow) impacting a blunt obstacle (grey) on an inclined
plane with a (turquoise) rough bed. The chute is inclined at an angle ζ to the horizontal and the flow is released
from an upstream hopper. The flow is steady and uniform prior to impacting the obstacle, which is attached
to the chute with neodymium magnets through the depth of the chute. The dashed line shows the approximate
position of the bow shock for a supercritical inflow, while the solid lines on the chute show the approximate
particle paths of individual grains as they flow around the obstacle.

granular flows, the typical inertial numbers in the experiments presented here are small
enough that the change in volume fraction φ(I) (Pouliquen et al. 2006) between static and
flowing regions is relatively small, ∼5 %.

The source term S includes contributions from gravity and the effective friction

S = sin ζ i − μ cos ζ e, (2.3)

where μ is the friction coefficient and i is a unit vector in the downslope direction. The
frictional force is oriented along the direction e, which is defined as

e =

⎧⎪⎪⎨
⎪⎪⎩

ū
|ū| , |ū| > 0,

tan ζ i − ∇h
| tan ζ i − ∇h| , |ū| = 0.

(2.4)

It follows that when |ū| = (ū2 + v̄2)1/2 is non-zero, the frictional force opposes the
direction of motion, and when the material is stationary, it opposes the resultant force
due to gravity and the depth-averaged pressure gradient. The final term on the right-hand
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Granular flow around an obstacle on a rough inclined plane

side of (2.2) is the depth-averaged viscous term, where D̄ = (∇ū + (∇ū)T)/2 is the
depth-averaged strain-rate tensor and the coefficient ν determines the depth-averaged
kinematic viscosity νh1/2/2 (Gray & Edwards 2014; Baker et al. 2016a).

2.1. The effective friction law
The non-monotonic friction law describes the hysteretic behaviour of the grains and
consists of dynamic, intermediate and static regimes (Edwards et al. 2019),

μ(h, Fr) =

⎧⎪⎨
⎪⎩

μD, Fr ≥ β∗,
μI, 0 < Fr < β∗,
μS, Fr = 0,

(2.5)

which are defined by the functions

μD = μ1 + μ2 − μ1

1 + hβ/(L (Fr + Γ ))
, (2.6)

μI =
(

Fr
β∗

)κ (
μ1 + μ2 − μ1

1 + hβ/(L (β∗ + Γ ))
− μ3 − μ2 − μ1

1 + h/L

)

+ μ3 + μ2 − μ1

1 + h/L
, (2.7)

μS = min
(

| tan ζ i − ∇h|, μ3 + μ2 − μ1

1 + h/L

)
. (2.8)

Following Russell et al. (2019) and Edwards et al. (2019), the frictional transition in
the intermediate regime is assumed to be linear, i.e. κ = 1 in (2.7). Measurements are
made to determine the material parameters for d = 300–400 µm masonry sand using the
methodology described by Pouliquen & Forterre (2002) and Edwards et al. (2019). The
parameters β, β∗ and Γ are determined by fits to the empirical flow law

Fr = β
h

hstop
− Γ, (2.9)

as shown in figure 5(a), while the friction angles μ1 = tan ζ1, μ2 = tan ζ2, μ3 = tan ζ3,
and the frictional-length scale L are found by experimental fits to the curves

hstop(ζ ) = L

(
tan ζ2 − tan ζ1

tan ζ − tan ζ1
− 1

)
, hstart(ζ ) = L

(
tan ζ2 − tan ζ1

tan ζ − tan ζ3
− 1

)
,

(2.10a,b)

as shown in figure 5(b). The minimum dynamic friction is assumed to occur at a constant
Froude number Fr = β∗, which by (2.9) implies that the corresponding transition thickness
h∗ = (β∗ + Γ )hstop/β is a multiple of hstop(ζ ), as shown in figure 5(b). The experimental
parameters for the friction law are summarised in table 1. While the quantitative results
in this paper are specific to this friction law for masonry sand, qualitatively similar results
are observed experimentally and predicted theoretically when glass spheres of diameter
125–160 µm are used, with quite different friction parameters ζ1 = 21.27◦, ζ2 = 33.89◦,
ζ3 = 25.3◦, β = 0.143, β∗ = 0.19, Γ = 0 and L = 0.2351 mm.
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Fr
β∗

Exp. hstop
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Figure 5. Panel (a) shows the experimental measurements of the Froude number Fr as a function of h/hstop. A
linear best fit to this data determines the gradient β and the intercept Γ . The lowest Froude number for which
a steady uniform flow exists determines β∗ (horizontal yellow line). Panel (b) shows the experimental data
for the deposit layer thickness hstop(ζ ) and the corresponding activation thickness hstart(ζ ). The best-fit curves
(black and blue lines) to the functional forms (2.10) determine the parameters ζ1, ζ2, ζ3 and L . The transition
between the intermediate and dynamic friction regimes occurs at h∗, which is shown in yellow.

ζ1 = 28.95◦, ζ2 = 44.09◦, ζ3 = 31.81◦, β = 1.07, β∗ = 0.06,

d = 300–400 µm, L = 0.35 mm, κ = 1, Γ = 2.01.

Table 1. Experimentally determined friction law parameters for masonry sand of grain size d.

2.2. The parameter ν in the depth-averaged kinematic viscosity
The parameter ν in the depth-averaged kinematic viscosity was derived from the
μ(I)-rheology (GDR-MiDi 2004; Jop et al. 2006) by Gray & Edwards (2014), assuming
the flow was in the dynamic frictional regime. It is assumed to apply to all the frictional
regimes in the simulations presented here. The value of ν is a function of the slope angle
and parameters that are already known from the rough-bed friction law,

ν = 2
9

L
√

g
β

sin ζ√
cos ζ

(
tan ζ2 − tan ζ

tan ζ − tan ζ1

)
, (2.11)

and it is well defined provided ζ ∈ [ζ1, ζ2]. The viscous terms are a singular perturbation
to the theory, only becoming significant in rapid shear zones and shocks, which become
smooth transitions rather than sharp jumps (see, e.g. Baker et al. 2016a; Rocha et al. 2019).
The viscous terms fundamentally change the system’s structure from hyperbolic (Savage
& Hutter 1989; Gray et al. 2003; Hákonardóttir & Hogg 2005; Hogg et al. 2005; Cui et al.
2007; Johnson & Gray 2011; Cui & Gray 2013; Viroulet et al. 2017; Edwards et al. 2021)
to hyperbolic-parabolic. The inclusion of the viscous terms is vital to properly model the
formation of levees (Rocha et al. 2019). However, the system is still convection dominated,
so understanding the hyperbolic problem is still useful. In one spatial dimension, the
method of characteristics implies that the characteristics λ = ū ± (gh cos ζ )1/2. Assuming
the downslope velocity is positive, and substituting for ū from the definition of the Froude
number (1.1) implies that λ = (gh cos ζ )1/2(Fr ± 1). It follows that both characteristics
will point downslope for supercritical flows with Fr > 1, while for subcritical flows
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Granular flow around an obstacle on a rough inclined plane

(with Fr < 1), one characteristic propagates upslope and the other downslope. Normal
shocks require information from two upstream characteristics and one downstream one, to
determine the jump in thickness and velocity, as well as the speed to the shock. As a result,
steady shocks are only observed for supercritical flows.

3. Small-scale experimental flows around a blunt obstacle

The experiments are carried out on an inclined plane which is 1.65 m long and 0.58 m
wide. It is roughened with a monolayer of 750–1000 µm turquoise spherical glass beads
that are stuck to the surface using double-sided tape. The flows of 300–400 µm soft
masonry sand are fed onto the slope from a hopper with an adjustable gate, which
allows the flux to be controlled by a combination of the gate height and slope angle.
Flow thicknesses are measured using a laser profilometer (Micro-Epsilon scanCONTROL
2700 - 100) and depth-averaged velocities of steady uniform flows are determined by
measuring the speed of a steadily propagating flow front. A 3 × 8 × 3 cm metal obstacle
is fixed to the base using strong neodymium magnets that are placed on either side of
the chute. The obstacle is located 0.7 m downslope from the hopper, and the results are
insensitive to this position. Sequences of experimental photographs of the avalanches are
captured using an overhead camera positioned perpendicular to the chute. Long exposure
times and contrast enhancement are used to highlight the flowing and static regions.

3.1. Supercritical experiment on a rough inclined plane
The sequence of experimental photographs in figure 6 illustrates the behaviour of a typical
supercritical flow for a gate height of 7 mm and a slope angle of 35◦. The first image
(at t = 0 s) shows the sand propagating downslope towards the obstacle from the hopper
(figure 6a). A supercritical steady uniform flow with Fr ≈ 2.35 is rapidly established on
the chute prior to impact with the obstacle. This contrasts with experiments on smooth
beds, where the avalanche is usually accelerating, or decelerating, and the upstream Froude
numbers are typically in the range Fr = 3–5 (Gray et al. 2003; Hákonardóttir & Hogg
2005; Gray & Cui 2007; Pudasaini et al. 2007; Cui & Gray 2013). As the avalanche hits the
obstacle (figure 6b–d) a static dead zone forms on the front face and propagates upslope
together with a detached bow shock which deflects the oncoming material around the
dead zone and the obstacle. The bow shock and the static dead zone are close to their
steady-state positions by t = 2.27 s. The height and velocity of the flow change rapidly
at the bow shock, which is approximately parabolic in shape and lies some distance
upstream of the triangular static deposit. The change in height can be seen as a shadow
in the photographs in figure 6, and the change in direction is indicated by the streak lines
created by the long exposure. A close-up view of the upstream supercritical flow structure,
with schematic annotations, is shown in figure 7(a). Figure 8(a) shows thickness contours
taken from a laser scan of the upstream region for supercritical flow with the same inflow
parameters. The surface of the flow during steady state was constructed from successive
cross-slope laser thickness profiles taken at half-centimetre intervals in the x-direction.
The parabolic shape of the bow shock is shown as a jump in thickness.

The bow shock may also be viewed as a detached oblique shock (Gray & Cui 2007),
since the static region acts like an obstacle itself. Here, however, the flow can interact with
the dead zone, which may change its shape by eroding or depositing material. The static
material supported by the obstacle is due to the multi-valued static friction balancing the
pressure and the gravitational body forces. While the approximately triangular outline of
the dead zone (when viewed from above) is consistent across repeated experiments, its

933 A25-11

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

he
ff

ie
ld

 H
al

la
m

 U
ni

ve
rs

ity
, o

n 
24

 F
eb

 2
02

2 
at

 1
4:

31
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
74

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1074


C. Tregaskis, C.G. Johnson, X. Cui and J.M.N.T. Gray

0.5

0.6

0.7

0.8
x (m)

0.9

1.0

1.1

0.5

0.6

0.7

0.8
x (m)

y (m) y (m) y (m) y (m)

0.9

1.0

1.1

(a) (b) (c) (d )

(e) ( f ) (g) (h)

–0.1 0.10 –0.1 0.10 –0.1 0.10 –0.1 0.10

Figure 6. Sequence of overhead photographs for a gate height of 7 mm on a slope angle of 35◦, which
generates a supercritical steady uniform flow with Fr ≈ 2.35. The downslope direction is from top to the bottom
of each image. Panels (a–h) correspond to t = 0, 0.91, 2.27, 7.74, 8.65, 10.93, 14.57 and 20.49 s, respectively.
The exposure time is 0.3 s and the photographs are contrast enhanced in order to highlight the moving and
static areas of grains via motion blur. Panel (d) shows the flow in steady state, prior to the inflow being stopped
and the formation of a static deposit (e–h). Movies showing the evolution, both with and without contrast
enhancement, are available in the online supplementary material.
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Granular flow around an obstacle on a rough inclined plane

(a) (b)

Figure 7. Annotated photographs showing the (a) supercritical and (b) subcritical steady-state flow structure
upstream of the obstacle. Streamlines are shown in blue and arrows indicate the flow direction and relative
velocity magnitude. The static dead zone is shaded bright yellow. In panel (a) the bow shock is shown as a
parabolic red line. Upstream of it the flow is steady and uniform. As grains cross the shock, the flow rapidly
changes in thickness and velocity, and is deflected outwards to flow around the static dead zone and the obstacle.
In the subcritical flow shown in panel (b) a shock does not form and instead the changes are more gradual. The
flow has four domains that are broadly arranged in a St Andrew’s cross-like structure (red lines) that is centred
at the apex of the dead zone. The dead zone lies in the lower quadrant of the cross. In the upper quadrant the
oncoming steady uniform flow increases slightly in thickness and is decelerated (indicated by the decreasing
length of the arrows). As the grains cross the red lines into the remaining two quadrants, the flow is rotated
and accelerated outwards around the dead zone and the obstacle. Note that in both cases the dead zone is not
perfectly triangular, but slightly scalloped.

thickness is not. Deposited granular material can collapse off the pile due to the material
surface exceeding the angle of repose. In addition, small fluctuations in the flow can
lead to the avalanche rolling over the static region and depositing further material onto
the existing pile surface. In this case the pile remains fairly flat topped from its initial
formation and does not reach the maximal size that can be supported on the inclined plane.
Although not uniquely defined, the flat-topped nature of the pile structure can be observed
in the experimental thickness contours in figure 8(a,c). Once the steady state has been
established (figure 6d) the static region no longer changes shape or size. As the close-up
in figure 7(a) shows, the steady-state dead zone is not perfectly triangular in shape, but
slightly scalloped.

Figure 6(b,c) show that on the lee side of the obstacle the oncoming flow wraps around
and forms a grain-free granular vacuum that reaches steady state by t = 7.74 s (figure 6d).
The granular vacuum is bounded by static levees (Edwards et al. 2017; Rocha et al. 2019),
which are a new feature of the flow. This contrasts strongly with smooth beds, where
the highest velocities are attained on the vacuum boundary, as the oncoming flow expands
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Figure 8. Photographs with overlaid experimental thickness contours showing the (a) supercritical (Fr = 2.35,
ζ = 35◦) and (b) subcritical (Fr = 0.77, ζ = 32◦) steady-state flow structure upstream of the obstacle. Panels
(c) and (d) show the final deposits from the supercritical and subcritical inflows, respectively. Experimental
thickness contours are calculated from a laser data scan, where successive cross-slope profiles at half-centimetre
intervals in the x-direction are used to construct the surface of the flow. In panel (a) the bow shock is shown
alongside the flat-topped pile structure, which lengthens and rounds in the final deposit shown in (c). In panel
(b) the contours show a raised region upstream of the dead-zone apex in the shape of an hourglass indicating
the ‘St Andrew’s cross’ structure, described in figure 7. Panel (d) shows the final subcritical deposit, with a
central ridge that extends far upstream.
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Granular flow around an obstacle on a rough inclined plane

laterally into the space behind the obstacle. Here, as material is deflected by the bow shock
and the dead zone, it forms two jets of diverted material on either side of the obstacle that
are raised in height. As these pass the rear face, the flow expands to fill the space just like
on smooth beds. However, when the thickness of the flow falls below hstop it has a strong
propensity to deposit, unless it is driven downslope by gradients of thickness or velocity.
At the levee-flow boundary, both the velocity and the viscous shear stress are zero at steady
state (Rocha et al. 2019). The levees start from the rear face of the obstacle and continue for
the entire length of the grain-free region. They curve slightly inwards towards the centre
of the plane before intersecting again further down the slope forming a cusp. Downstream
of this point the combined levees continue to exist until far downstream, when erosion
eventually eradicates them and the avalanche tends back to a steady uniform flow. Note,
that sufficiently far away in the y-direction, the obstacle does not influence the avalanche
at all, and it remains at steady uniform flow down the entire chute.

After t = 7.74 s the material supply ceases, and the flow thins and decelerates. This
runout period is shown in figure 6(e–h). As the material runs out, the dead zone and levees
relax and reach the final static deposit on the plane. For steeper slope angles, the collapsed
material from the dead zone and the levees forms small erosion-deposition waves which
propagate off the inclined plane in discrete wave pulses (Edwards & Gray 2015; Edwards
et al. 2017; Rocha et al. 2019; Viroulet et al. 2019; Edwards et al. 2021). By t = 20.49 s the
flow comes to a rest and forms a final deposit. This consists of a thin layer of material close
to hstop over most of the plane (figure 6h), but with remnants of the dead zone forming a
static pile upstream of the obstacle and raised levees remaining in situ on either side of the
grain-free granular vacuum on the lee side. Laser thickness contours of a final deposit are
shown in figure 8(c). Comparison between figures 8(a) and 8(c) shows the shortening and
rounding of the dead-zone structure as it relaxes to the final deposit.

3.2. Subcritical experiment on a rough inclined plane
As opposed to smooth beds, where subcritical flows only occur briefly as the avalanche
decelerates in the runout zone, rough beds allow the study of sustained subcritical flows.
Figure 9 shows a sequence of experimental images for a 7 mm gate height on a 32◦ slope.
A steady uniform flow with Fr ≈ 0.77 rapidly establishes itself and propagates downslope
as shown in figure 9(a). As the material hits the front face of the obstacle, grains are
deposited and an interface between the flowing and static material propagates upslope. A
flat-topped triangular static dead zone is formed (figure 9b–d), which is slightly longer
than before, but no bow shock is formed. Instead, a region of upstream influence develops,
which can be more clearly seen in figures 1(b) and 8(b) and in the supplementary movies
(available at https://doi.org/10.1017/jfm.2021.1074). At steady state the flow develops four
regions that form a St Andrew’s cross structure that is centred at the apex of the dead zone,
as shown schematically in figure 7(b) and as a raised region in the experimental thickness
contours. The static dead zone is located in the lower quadrant, while in the upper quadrant
the oncoming material from the hopper is slowed down and increases slightly in height. In
the two domains on either side, the flow deflects to flow parallel to the dead zone, and then
accelerates around the obstacle. The regions of acceleration and deceleration are localised
just upstream of the obstacle and do not extend back to the hopper, as shown in the online
supplementary movie. The St Andrew’s cross structure is a novel feature of the flow that
has not been reported before.

On the lee side of the obstacle, the flow expansion and the formation of a grain-free
vacuum region bounded by static levees are very much like the supercritical case. Here,
however, the levees are considerably wider and thicker. This is partly because hstop and
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Figure 9. Sequence of overhead photographs for a gate height of 7 mm on a slope angle of 32◦, which
generates a subcritical steady uniform flow with Fr ≈ 0.77. The downslope direction is from top to the bottom
of each image. Panels (a–h) span the times t = 0, 0.91, 1.83, 4.56, 8.2, 10.94, 14.58 and 23.69 s, respectively.
Panel (e) is in steady state, prior to the flow waning ( f,g) and forming a static deposit (h). Movies showing the
evolution, both with and without contrast enhancement, are available in the online supplementary material.

hstart are larger on the lower inclination slope, and partly because the flow is slower and
thicker than the supercritical case, so the levees need to be more substantial to prevent
lateral spreading. The overall shape of the vacuum region is similar to the supercritical
case, although the cusp is slightly further downstream. Figure 9( f –h) show the runoff of
material and the formation of a final static deposit after the inflow ceases. At this slope
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Granular flow around an obstacle on a rough inclined plane

angle, discrete erosion-deposition waves do not form and instead a deposition front simply
propagates downstream. This is analogous to the travelling deposition wave described by
Edwards et al. (2019). As the region of upstream influence relaxes, it largely drains away,
leaving only a ridge that extends beyond the static pile left by the dead zone (see figures
1b, 2 and 8d). The levees also relax slightly and lose some material as the deposition wave
propagates through the system. Over the remaining parts of the chute that were occupied
by flowing material, the hstop layer is slightly thicker than the supercritical case, because
of the reduced slope angle.

4. Numerical method

To investigate the system further, the depth-averaged equations (2.1)–(2.2) are solved with
a high-resolution semi-discrete non-oscillatory central scheme for convection–diffusion
equations (Kurganov & Tadmor 2000). In particular, this scheme can handle the
non-standard viscous dissipation terms in the theory, and has been extensively tested
against exact solutions and experiments (Edwards & Gray 2015; Baker et al. 2016b;
Edwards et al. 2017; Rocha et al. 2019). A well-balanced discretisation is used for the basal
friction source terms (2.4) and (2.8) so that, in regions of static grains that are below yield,
the friction exactly balances the other forces and thereby keeps the material stationary.

The numerical domain (Lx, Ly) = (2, 0.6) m is discretised into a rectangular grid with
(nx, ny) = (1200, 360) grid points, respectively. The initial conditions specify a small
stationary precursor layer, of thickness 0.1 mm, over the domain, which ensures stability
of the simulations by counteracting numerical errors caused by the degeneracy in the
equations when the thickness approaches zero. Two constraints determine the numerical
time step. For stable integration of the hyperbolic equations, a maximum time step given
by a CFL (Courant–Friedrichs–Lewy) condition is used, with a CFL number of 0.25
(LeVeque 2002). Accurate integration of the source terms in static regions requires a
time step no greater than 1 × 10−4 s. The smaller of these two values is chosen to be the
numerical time step. This maximal step size is required to minimise the creep observed
for both the pile above the obstacle and the levees. For the first part of the simulation, a
steady uniform flow of a specified Froude number is prescribed at the inflow boundary at
x = 0. Periodic boundary conditions are applied on the sides of the domain at y = −0.3
and y = 0.3 and outflow conditions are specified at x = 2.0 m. A no-penetration boundary
condition ū · n = 0 (where n is the normal vector to the obstacle boundary) is applied
along the boundaries of the 3 × 8 cm obstacle, which is specified within the domain. Ghost
cells at the obstacle boundary are used to facilitate this by applying matching conditions
for the thickness at the boundary and specifying the required fluxes. This simulates an
infinitely tall impermeable obstacle within the numerical domain. To mimic the drainage
regime in the experiments, the height and downslope flux parameters at the inflow are
reduced exponentially over 0.5 s after t = 45 s. The exponential reduction is a simple
representation of the waning flux as the last material leaves the hopper. The sustained
flux up to t = 45 s allows the flow to establish a steady state prior to transitioning to the
drainage regime. The resulting stopping wave propagates downstream over the domain,
after which all material is static. The final deposits can then be analysed and compared
with the experimental counterparts.

5. Numerical simulations of the supercritical flow and deposit

The numerical method allows the thickness h, as well as the velocity components ū and
v̄, to be computed for a Froude number Fr = 2.35 flow impacting the obstacle on a
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35◦ slope. This corresponds to the same conditions as those in the supercritical experiment
in § 3.1. The time-dependent behaviour of each of the fields is shown in figures 10–12.
Streamlines calculated from the instantaneous velocity components, ū and v̄, are overlaid
on the downslope velocity plots and give an indication of the direction of the flow of
material. In addition, there is a movie available online, which shows the simultaneous
time-dependent evolution of all the fields, together with the Froude number Fr.

The sequence of plots in figures 10–12 exhibit similar features to the experiments. The
first panel in each plot (figures 10–12a) shows a steadily propagating front approaching the
obstacle. Figures 10–12(b–d) show the transient formation of the bow shock, dead zone,
vacuum region and static levees. Material impacts the front face of the obstacle and comes
to rest to form a dead zone, while a curved bow shock forms upstream. This structure
then propagates upslope until it reaches steady state. The thicker slower moving deflected
material after the shock accelerates and forms a jet as it flows around either side of the
dead zone and the obstacle. The dead zone is wedge shaped and has a flat top, which
is qualitatively similar to the experiments in both the method of formation and the final
shape. The agreement in the time scales for the formation of the features is good, and the
simulation reaches a steady state in a similar length of time. Likewise, the observation that
the shock is detached from the obstacle and the dead zone is similar to the experimental
case.

As the grains spread out into the space on the lee side of the obstacle, the depth-averaged
pressure causes the flow to expand laterally and form a grain-free granular vacuum. The
friction law (2.5) implies that material which has a thickness below hstart can come to rest,
and static levees, therefore, form adjacent to the grain-free vacuum region. Similar to the
experiments, the levees curve inwards before intersecting far downstream. Once the levees
have combined, the intersection point retreats upstream, shrinking the vacuum region until
a steady state is reached. The levees persist downstream of the grain-free region and are
only slowly eroded with increasing downstream distance. By t = 7.7 s the flow is close to
steady state (figures 10–12d). Small fluctuations do, however, imply that there can be some
residual lateral motion in the dead zone. These small fluctuations trigger the formation of
subtle waves further downstream, which can be clearly seen in the cross-slope velocity
field in the online supplementary movie. These are likely to develop into roll waves on a
long enough chute (Forterre & Pouliquen 2003; Gray & Edwards 2014; Edwards & Gray
2015; Viroulet et al. 2018). Unlike flows on smooth beds, the online movie indicates that
the Froude number is close to its steady uniform value over the entire domain, except
immediately downstream of the shock, in the dead zone and in the levees.

The final sequence of figures 10–12( f –g) show the drainage as the inflow stops at
t = 45 s. The material is brought to rest via a stopping wave that propagates downstream
and leaves a deposit that has a thickness close to hstop (Edwards et al. 2019). As the
depth-averaged pressure diminishes, the dead zone and the levees relax and reduce in size.
The material that is activated in this process creates finite pulses of flowing material next to
the levees. These are similar to a finite release of material onto an erodible bed, which due
to the high slope angle breaks into discrete erosion-deposition waves (see Edwards et al.
2017). This is captured in figures 10–12(g), and is particularly nicely visualised in contours
of v̄ at t = 50–60 s in the online supplementary movie. Note that, as the material comes to
rest, the shape of the pile formed by the collapsing dead zone changes, allowing material to
be deposited further upstream. This in turn results in a longer pile shape. Figures 10–12(h)
show the final deposit where the whole domain is considered to be static. Here the levees
bounding the vacuum region are raised and the static pile upstream of the obstacle is
reduced in size and becomes more rounded. This corresponds to the experimental case
where the pile shape relaxes and elongates.
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Granular flow around an obstacle on a rough inclined plane
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Figure 10. Numerical simulations of the avalanche thickness h on a 35◦ slope and with Fr = 2.35. The relative
times t = 0, 0.9, 2.3 and 7.7 s in panels (a–d) match the experiment in figure 6. The drainage sequence is
triggered at 45 s. In panels (e–h) the times match features from the experiments at t = 44.7, 44.9, 50.3 and
58.3 s, respectively. The 3 × 8 cm obstacle is highlighted in grey and is located in the same position as in the
experiment. Grain-free regions, where the thickness of the flow is below a grain diameter, are shown in purple.
A movie showing the time-dependent evolution is available in the supplementary material online.
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Figure 11. Numerical simulations of the depth-averaged downslope velocity ū on a 35◦ slope and with Fr =
2.35. The times are the same as in figure 10. Streamlines, calculated from the instantaneous velocity fields,
are overlaid in black. Purple is used to highlight grain-free regions and the obstacle is shown in grey. A movie
showing the time-dependent evolution is available in the supplementary material online.
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Granular flow around an obstacle on a rough inclined plane
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Figure 12. Numerical simulations of the depth-averaged cross-slope velocity v̄ on a 35◦ slope and with Fr =
2.35. The times are the same as in figure 10. The speckled colouring is observed within the deposit regions,
due to a small residual creep in the numerical method and the small threshold for the contour scale. Purple is
used to highlight grain-free regions and the obstacle is shown in grey. A movie showing the time-dependent
evolution is available in the supplementary material online.
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Figure 13 shows a three-dimensional reconstruction of the steady state and final deposit,
as well as cross-slope thickness profiles, from both the simulation and the corresponding
experiment, at fixed intervals downslope to show the shapes of the features in more detail.
The experimental cross-slope laser profiles shown are downsampled in order to remove
noise and highlight the shape of the features. An animation of the three-dimensional
reconstruction is available in the online supplementary material. In particular, this
shows that no waves are able to propagate upslope past the bow shock. At steady state
(figure 13c,e,g,i), the bow shock has a diffuse profile and the static dead zone has a distinct
wedge shape with a flat top. On the lee side, the levees are most pronounced close to the
obstacle and diminish in height with increasing downstream distance. The profiles of the
final deposit in figure 13(d, f,h,j) show that there is a significant decrease in the pile and
levee heights, and there is evidence of mass shedding during the propagation of the discrete
erosion-deposition waves (Viroulet et al. 2019; Edwards et al. 2021). The final shape of the
collapsed pile is much more rounded than that in the experiment, which maintains the flat
top. Figure 14 shows a direct comparison between the thickness contours and the shape of
the experimental features on the xy-plane, for both the steady state and the final deposit.
The main difference between the steady-state simulation and experimental cases is the
standoff distance of the shock, which is under-predicted by the simulation. In terms of the
qualitative features, the prediction is good for both the dead-zone shape and size at steady
state as well as its collapsed form in the final deposit. The computed vacuum region and
the static levees are in excellent quantitative agreement with the experiments.

6. Numerical simulations of the subcritical flow and deposit

Figures 15–17 show a subcritical flow with Fr = 0.77 impacting the obstacle on a ζ = 32◦
slope, which are the same conditions as in the experiments in § 3.2. In figures 15–17(a)
the pre-impact front is steadily propagating and laterally uniform as in the experimental
case. The steady-state dead zone and the vacuum region then form in figures 15–17(b–e).
As in the supercritical case, the material comes to rest on the front face of the obstacle and
a deposition front propagates upslope until an upstream wedge-shaped flat-topped static
dead zone is formed. Its size and time scale for formation are in good agreement with
the experiments in figure 9, and it extends slightly further upstream than the supercritical
case. For subcritical flows, there is no bow shock to slow and deflect the flow. Instead,
the flow decelerates upstream of the pile. This is consistent with the St Andrew’s cross
structure observed in experiments and shown in the annotated close-up photographs in
figure 7(b). The region of upstream influence is most easily seen in the cross-slope velocity
plots in figure 17(b–e) and the associated movie (available online). A deflection wave
propagates outwards and upslope, and attains a maximum steady-state upstream position
x ≈ 0.4 m. This lies significantly higher upslope than the apparent changes in thickness
and downslope velocity. Nevertheless, this wave can also be seen propagating upslope
in the movie of the three-dimensional reconstructed thickness (see figure 18). This wave
diminishes in height with increasing upstream distance, so there is no influence on the
hopper outflow, and, hence, the results are independent of the obstacle location, provided
it is far enough away from the hopper.

Sufficiently far away from the obstacle in the y-direction the flow remains steady
and uniform. As a result, the material that was deflected to the sides, upstream of the
obstacle, flows past it with a slightly increased thickness and velocity. Once past the
obstacle, the material expands into the free space and forms a granular vacuum that is
bounded by a static levee, in the same way as in the supercritical case, but the levee
is much more substantial in height and width. The levees curve inwards and intersect
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Figure 13. Three-dimensional surface reconstruction for (a) a steady-state supercritical flow with Fr = 2.35
on a 35◦ slope at t = 45 s and (b) the deposit at t = 60 s. Lighting effects are added to highlight the shape of
the features. The cross-slope profiles above the obstacle (c)–( f ) are brightness graded in green and correspond
to the lines in panels (a) and (b), respectively. Panels (e) and ( f ) show experimental laser thickness profiles at
the same upslope intervals (and corresponding colours), under the same inflow and slope angle conditions. The
results are downsampled to remove noise. The red graded profiles in panels (g) and (h) are the corresponding
cross-sections below the obstacle, and likewise panels (i) and (j) show the corresponding laser thickness
profiles. The figures show the rounding of the flat-topped pile upstream of the obstacle and the raised levees in
the deposit. A movie showing the time-dependent evolution is available in the supplementary material online.
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Figure 14. Comparison of the computed thickness contours with the flow features in the experimental
photographs for supercritical flow with Fr = 2.35 on a 35◦ slope. Panel (a) shows the steady state at t = 7.74 s
and (b) shows the final deposit. The purple line indicates the edge of the vacuum region in the simulation,
where the interior is less than a grain diameter.

downstream resulting in a shape, which is in good agreement with the experiment. Figures
15–17(e) show the steady-state solution close to the obstacle, although the front continues
to propagate downslope as shown in the movie online. This time, no roll waves are
triggered, although in principle they could develop. The subsequent figures 15–17 show
the drainage of the material leading to the final deposit. A deposition wave (Edwards
et al. 2019) propagates down the chute leaving a final deposit that is close to hstop(32◦)
over much of the chute. Unlike in the experiments, the flat-topped static dead zone is
not perfectly preserved in the final deposit, but is progressively eroded from the sides,
shrinking it in size, as shown in figure 18(d, f ). As the thicker region of upstream influence
also relaxes, it leaves a ridge upstream of the collapsed dead zone, just like the experiment
in figures 2 and 8. The grains that are released from the region of upstream influence
and the dead zone form two strips of flowing material on either side of the obstacle that
pinch off from the main part of the draining flow at t = 49 s, and form secondary mass
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Granular flow around an obstacle on a rough inclined plane
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Figure 15. Numerical simulations of the flow thickness h on a 32◦ slope and with Fr = 0.77. Panels (a–e)
match their experimental counterparts in figure 9 at the relative times t = 0, 0.9, 1.8, 4.6 and 8.2 s. The drainage
sequence is triggered 45 s after the simulation is initiated. In panels ( f –h) the times are chosen to match features
from the experiments at t = 46.9, 47.7 and 50.5 s, respectively. Purple is used to highlight grain-free regions
and the obstacle is shown in grey. Contour lines are overlaid using a darker colourmap to highlight the shapes of
the features. A movie showing the time-dependent evolution is available in the supplementary material online.
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Figure 16. Numerical simulations of the depth-averaged downslope velocity ū on a 32◦ slope and with Fr =
0.77. The times are the same as in figure 15. Streamlines, calculated from the instantaneous velocity fields,
are overlaid in black. Purple is used to highlight grain-free regions and the obstacle is shown in grey. A movie
showing the time-dependent evolution is available in the supplementary material online.
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Granular flow around an obstacle on a rough inclined plane
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Figure 17. Numerical simulations of the depth-averaged cross-slope velocity v̄ on a 32◦ slope and with Fr =
0.77. The times are the same as in figure 15. The speckled colouring is observed within the deposit regions,
due to a small residual creep in the numerical method and the small threshold for the colour scale. Purple is
used to highlight grain-free regions and the obstacle is shown in grey. A movie showing the time-dependent
evolution is available in the supplementary material online.
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Figure 18. Three-dimensional surface reconstruction for (a) a steady-state subcritical flow with Fr = 0.77
on a 32◦ slope at t = 45 s and (b) the deposit at t = 60 s. Lighting effects are added to highlight the shape
of the features. The cross-slope profiles above the obstacle (c) and (d) are brightness graded in green and
correspond to the lines in panels (a) and (b), respectively. Panels (e) and ( f ) show experimental laser thickness
profiles at the same upslope intervals (and corresponding colours), under the same inflow and slope angle
conditions. The results are downsampled to remove noise. The red graded profiles in panels (g) and (h) are the
corresponding cross-sections below the obstacle, and likewise panels (i) and (j) show the corresponding laser
thickness profiles. The figures show the rounding of the flat-topped pile upstream of the obstacle and the raised
levees in the deposit. A movie showing the time-dependent evolution is available in the supplementary material
online.
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Figure 19. Comparison of the computed thickness contours with the flow features in the experimental
photographs for subcritical flow with Fr = 0.77 on a 32◦ slope. Panel (a) shows the steady state at t = 8.2 s and
(b) shows the final deposit. The purple line indicates the edge of the vacuum region in the simulation, where
the interior is less than a grain diameter.

shedding waves (Viroulet et al. 2019; Edwards et al. 2021) that deposit adjacent to the
levees, which themselves are well preserved in the deposit. The deposition sequence is
particularly well captured in the three-dimensional thickness reconstruction movie in the
online supplementary material. Figure 19 shows a direct overlay of the thickness contours
onto the experimental photographs for the subcritical flow in steady state and for its final
deposit. The length of the computed steady-state dead zone is greater than that in the
experiment, however, the length of the final static pile is in good agreement. The shape
and size of the levees are also generally in good agreement with one another, although the
cusp where the two levees meet is slightly further downstream in the experiments.

7. The shape of the static dead zone

The dead-zone length is defined as the distance from the tip of the static dead zone to the
front face of the obstacle measured along the downstream coordinate x. Figure 20(a) shows
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Figure 20. The numerical (a) dead-zone length, (c) stagnation-point thickness and (e) corner thickness as
a function of the inclination angle, obstacle width and Froude number. Panels (b), (d) and ( f ) show the
comparison to the approximate theoretical solution. The value of μS = μ3. The values from laboratory
experiments are shown with the marker indicated by we.
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Granular flow around an obstacle on a rough inclined plane

the numerically simulated dead-zone length for a wide range of slope angles, obstacle
widths and Froude numbers. At low slope angles, the maximum pile length is obtained at
low Froude numbers, and the length reduces substantially as the flow depth and, hence,
the Froude number is increased. As the slope angle is raised, this effect is progressively
reduced until by ζ = 37◦ the pile length is relatively insensitive to the Froude number.
In order to explain this behaviour, it is instructive to consider simplified solutions for the
maximal static pile that can be supported by the obstacle.

7.1. Eikonal theory for the shape of a static pile on an empty plane
Let OXYZ be a rectangular Cartesian coordinate system with the origin O lying at the base
of the middle of the upstream face of the obstacle. The Z-axis is aligned with gravity, the
horizontal X-axis lies in the same plane as the x-axis and the Y-axis points across the slope
in the same direction as the y-axis. The height Z = H(X, Y) of the maximal pile satisfies
the Eikonal equation (Hadeler & Kuttler 1999; Pauli & Gioia 2007; Colombo, Guerra &
Monti 2012)

|∇H| =
√(

∂H
∂X

)2

+
(

∂H
∂Y

)2

= μS, (7.1)

where the static friction μS is assumed constant for simplicity. The Eikonal equation can
conveniently be written in the form

F = 1
2
( p2 + q2 − μ2

S), where p = ∂H
∂X

and q = ∂H
∂Y

, (7.2a–c)

and solved using Charpit’s method (see, e.g. Sneddon 1957; Stavroulakis & Tersian 2004).
This solution is obtained along characteristic curves (X(τ ), Y(τ )) that are parameterised
by τ , and satisfy the ordinary differential equations (ODEs)

dX
dτ

= ∂F
∂p

= p,
dY
dτ

= ∂F
∂q

= q. (7.3a,b)

The values of p and q satisfy the ODEs

dp
dτ

= −∂F
∂X

− p
∂F
∂H

= 0,
dq
dτ

= −∂F
∂Y

− q
∂F
∂H

= 0, (7.4a,b)

and the free-surface height satisfies

dH
dτ

= p
∂F
∂p

+ q
∂F
∂q

= p2 + q2 = μ2
S. (7.5)

The system of five (7.3)–(7.5) are known as Charpit’s ODEs, and are subject to the initial
conditions

X = X0(s), Y = Y0(s), p = p0(s), q = q0(s), H = H0(s), (7.6a–e)

defined along a curve parameterised by s and where p2
0(s) + q2

0(s) = μ2
S by (7.2a–c). In

classical Eikonal problems (Stavroulakis & Tersian 2004; Pauli & Gioia 2007) an auxiliary
condition is used to determine the boundary conditions for p0(s) and q0(s) on a boundary
prescribed by x0(s) and y0(s). Here the pile selects its own boundary, which needs to be
solved for as part of the problem.

For an empty chute and a constant value of the static friction, the maximal static pile
solution is generated by two expansion fans centred at X = 0 and Y = ±w/2, where w
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is the width of the obstacle. The obstacle height is implicitly assumed to be sufficient to
support the static pile. Since equations (7.4) are equal to zero, it follows that p and q are
equal to their initial values

p = p0, q = q0 = ∓
√

μ2
S − p2

0, (7.7a,b)

where p0 now parameterises the characteristic fan. This in turn allows (7.3) and (7.5) to be
integrated, subject to the initial conditions (7.6) to give the solution in parametric form

X = p0τ, Y = ∓
√

μ2
S − p2

0 τ ± w
2

, H = μ2
Sτ. (7.8a–c)

The outermost characteristics of the expansion fans are determined by the intersection of
the free-surface height (7.8c) and the inclined plane

Z = −μX. (7.9)

Substituting for X, from (7.8a), and cancelling τ , implies the minimum p0 = −μ2
S/μ.

Similarly, the innermost characteristic is given by the characteristic that intersects with
the obstacle along

Z = X/μ, (7.10)

which implies that the maximum value of p0 = μ2
Sμ. The boundaries of the pile are

therefore characteristics. The static pile is shown in figure 21(a,d) and is parameterised
by characteristics p0 ∈ [−μ2

S/μ, μ2
Sμ], which emanate from X = 0, Y = ±w/2. The

characteristics from each fan intersect along the pile ridge line, which lies along Y = 0.

The characteristics are therefore parameterised by τ ∈ [0, w/(2
√

μ2
S − p2

0)]. Eliminating
τ between (7.8a,b) implies that the characteristics are straight lines,

Y = ∓
√

μ2
S − p2

0
X
p0

± w
2

, (7.11)

and the projections of these lines onto the free surface are also straight lines whose
gradients are maximal, by construction. Eliminating p0 and τ in (7.8), the free-surface
height H can be written as a function of X and Y , i.e.

H = μS

√
X2 + (|Y| − w/2)2. (7.12)

Figure 21(a,d) shows a reconstruction of the maximal static pile supported by the obstacle
on an empty chute assuming that μS = μ3 and mapped back to the Oxyz coordinate
system. During the experiments, the dead zone does not achieve its maximal normal
height, but typically has a flat top that is roughly parallel to the plane. This truncation
does not affect the characteristics that generate the solution up to this point, provided the
truncated surface provides enough support from the obstacle to keep the pile static. The
simplified model is therefore still relevant for calculating the shape of the dead zone.

7.2. Partial submergence of the pile and increased width
During flow, the static pile is partially submerged by flowing material, which provides
additional support at the sides and modifies its shape. To model this effect it is necessary to
make a good approximation for the run-up height onto the pile. Assuming that the obstacle
is impacted by a steady uniform flow of thickness h0 and depth-averaged velocity ū0, the
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Figure 21. Three-dimensional reconstruction (a) and overhead view (d) in Oxyz coordinates of the maximal
static pile solution (light yellow) for a grey obstacle of width w = 8 cm on a 32◦ slope (mauve). The black solid
lines are of maximal slope |∇H| = μS = μ3 = 0.62032, the blue lines show the apex of the pile and the red
lines show the intersection with the inclined plane. Panels (b,c,e, f ) show the modified solution when the static
pile is submerged beneath a layer of thickness hstag and the effective width of the obstacle weffective is increased,
so that the static pile has thickness hstag at the corners of the obstacle at x = xcorner and y = ±w/2. Panels (b,e)
show the shape of the collapsed static pile, when there is a static stabilizing layer of thickness hstag = hstop =
1.68 mm and weffective = 8.4 cm, whereas panels (c, f ) show the dead-zone shape when it is submerged by a
layer of thickness hstag = 5.6 mm and weffective = 9.4 cm. This submergence depth is equivalent to an upstream
flow of thickness h0 = 4.3 mm and Fr0 = 0.77.

furthest upstream point where the velocity is zero, is a stagnation point, and it lies on the
central ridge of the static pile. The stagnation-point height hstag determines how much of
the static pile is submerged by the flow. For supercritical flow, the steady uniform flow on
the central streamline first passes through a normal shock, which is approximated by the
steady-state inviscid mass and momentum jump conditions (see, e.g. Chadwick 1976; Cui
& Gray 2013)

[[hū]] = 0, [[hū2 + 1
2 gh2 cos ζ ]] = 0, (7.13a,b)

where the jump brackets [[χ ]] = χ1 − χ0 are the difference of the enclosed quantity on the
forward and rearward sides of the shock. These imply that the downstream thickness and
velocity are

h1 = h0

2
(

√
1 + 8Fr2

0 − 1), ū1 = h0ū0

h1
, (7.14a,b)

where Fr0 is the upstream Froude number. Note that when Fr0 equals unity, the thickness
h1 = h0. On the central streamline, downstream of the shock the lateral velocity v̄ is
zero. Using the mass balance (2.1) it follows that the inviscid steady-state downstream
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momentum balance (2.2) reduces to

∂

∂x

(
ū2

2
+ hg cos ζ

)
= g cos ζ(tan ζ − μ). (7.15)

Assuming that the source term on the right-hand side of (7.15) can be neglected, (7.15) can
be integrated to relate the stagnation-point height to the downstream conditions after the
shock, i.e.

hstag = h1 + ū2
1

2g cos ζ
. (7.16)

For subcritical flows, (7.16) also gives an approximation for the stagnation-point thickness,
but since there is no shock h1 = h0 and ū1 = ū0. Figure 20(c) shows the simulated
stagnation-point height as a function of the inclination angle and Froude number. These
heights are very closely modelled by the approximate relation (7.16) for hstag as shown in
figure 20(d).

The height that the flow runs up on either side of the static pile is also close to hstag all
the way along the dead-zone/flow boundary. In particular, the run-up height as the flow
passes the upstream corners of the obstacle hcorner is well approximated by hstag, as shown
in figure 20(e, f ). The static pile height at the obstacle corner is therefore not zero (as
assumed in the static pile solution on an empty plane in § 7.1), but attains a finite thickness
hstag when material is flowing around the obstacle. In order to approximate the length of
the dead zone, it is necessary to modify the exact solution (7.12) for the shape of the dead
zone, by replacing the width of the obstacle w with its effective width weffective, i.e.

H = μS

√
X2 + (|Y| − weffective/2)2. (7.17)

An expression for weffective can be obtained by assuming that H = Hstag = hstag/ cos ζ

on the edges of the obstacle, which by (7.10) lie at Xcorner = μHstag and Y = ±w/2.
Substituting these expressions into (7.17) implies that

weffective = w + 2Hstag

√
1
μ2

S
− μ2. (7.18)

A simple prediction of the resulting dead-zone shape can be obtained by intersecting its
height (7.17) with an inclined plane that is parallel to the base and offset by a vertical
distance Hstag, i.e. the plane

Z = −μX + Hstag. (7.19)

The resulting shape is given by

Y = ±weffective

2
∓

√(−μX + Hstag

μS

)2

− X2. (7.20)

For an empty chute, when Hstag = 0, this is simply a triangle, as shown in figure 21(d) in
Oxyz coordinates. As Hstag increases in depth, this shape becomes progressively shorter
and more scalloped (figure 21e, f ).

The furthest upstream point of the dead zone is obtained by intersecting the modified
free-surface height (7.17) with the submerging plane (7.19) along the Y = 0 axis, and
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solving the resulting quadratic for

Xmin =
2μHstag −

√
4μ2

SH2
stag + (μ2 − μ2

S)μ
2
Sw2

effective

2(μ2 − μ2
S)

. (7.21)

The submerging plane (7.19) intersects the obstacle at

Xmax = μ

1 + μ2 Hstag. (7.22)

It follows that the length of the pile in slope oriented coordinates is

Ldeadzone = Xmax − Xmin

cos ζ
. (7.23)

Figure 20(b) shows that (7.23) does indeed provide a good collapse of the numerically
computed dead-zone lengths for a wide range of Froude numbers, slope inclinations and
obstacle widths. This simplified exact solution therefore provides considerable insight into
what sets the shape and size of the dead zone.

8. Vacuum length

Immediately downstream of the obstacle, the grains flowing downslope either side of the
obstacle expand inwards, eventually coming into contact with one another at the obstacle
centreline and closing the vacuum region. This expansion, and consequently the length of
the vacuum region, can be approximated using an asymptotic argument for the flow far
downstream of the obstacle, similar to that in Hogg et al. (2005). This exploits the fact
that, far downstream, variation in the downslope direction occurs over much larger length
scales than in the cross-slope direction.

In this section the Oxyz coordinate system defined in § 2 is used, but the origin is moved
to the lower right corner of the downstream face of the obstacle, so that the obstacle lies in
the quadrant x < 0, y < 0. The shape of the expansion on this side of the obstacle depends
on the basal friction, and the depth and the speed of the flow at a given slope angle. For
simplicity, the flow is assumed to be inviscid (ν = 0), and, hence, the steady conservation
equations reduce to

∇ · (hū) = 0, (8.1)

∇ · (hū ⊗ ū) + ∇
(

1
2

gh2 cos ζ

)
= gh

(
sin ζ i − μ cos ζ

ū
|ū|

)
. (8.2)

The downslope momentum balance equation (8.2) is further simplified by taking the basal
friction coefficient to be a constant. This is chosen to be equal to the tangent of the slope
angle (μ = tan ζ ) to reflect the fact that the flow adopts a near-uniform downstream speed
ū0 and thickness h0 far downslope.

An asymptotic solution can be developed based on the assumption that the downslope
component of velocity is greater than the lateral component, i.e. |v̄/ū| ≡ ε � 1. The
governing equations (8.1)–(8.2) admit a set of distinguished scalings representing flow
far downstream,

ū = ū0 + O(ε), v̄ = O(ε), h = O(1), x = O(1/ε2), y = O(1/ε), (8.3a–e)

under which the inertial and acceleration terms of the governing equations become
negligible. At leading order, the downslope components of friction and gravity are in
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balance, while the cross-slope momentum equation reduces to a balance of cross-slope
pressure gradients and basal friction, h∂h/∂y = −μhv̄/ū0. Using this cross-slope equation
to write v̄ in terms of ∂h/∂y, the mass equation then becomes

∂h
∂x

= 1
μ

∂

∂y

(
h
∂h
∂y

)
. (8.4)

As y → ∞, the boundary condition h → h0 is applied, describing the flow approaching
the thickness of the steady uniform flow far from the obstacle. The vacuum region is
represented by the condition h = 0 for y ≤ yb(x), where the unknown function yb(x)
represents the boundary of the vacuum region, at which a kinematic condition v̄ =
ū0 dyb/dx applies.

Transforming to similarity variables,

h(x, y) = h0H(η), η =
√

μ

h0

y√
x
, (8.5a,b)

reduces the parabolic partial differential equation (8.4) to a second-order ODE,

ηH′ + (H2)′′ = 0, (8.6)

where the prime indicates a derivative with respect to η. In these variables, the boundary
condition of matching to the far-field flow becomes H → 1 as η → ∞. The vacuum
boundary at y = yb(x) becomes η = η0, where η0 is a constant to be determined and, at
this point, H(η0) = 0 and the kinematic condition implies H′(η0) = −η0/2. These three
boundary conditions allow the second-order ODE (8.6) to be integrated numerically, and
determine η0 ≈ −1.2385.

The vacuum boundary far downstream of the obstacle is then at

y = yb(x) ≡ η0

√
h0

μ

√
x, (8.7)

which starts at the downstream corner of the obstacle yb = 0 at x = 0. Finding the
intersection of this boundary with the obstacle centreline, which is at y = −w/2 in the
coordinate system used in this section, gives the length of the vacuum region,

x = xv = μ

4η2
0

w2

h0
. (8.8)

This solution is shown against the numerical results in figure 22 for a variety of obstacle
widths and inflow conditions. For low Froude number values, the vacuum length is
under-predicted by the theory with the assumption of constant Coulomb friction. This
suggests that the levees at the edge of the vacuum region, which are of the greatest
volume for low Froude number values, play a role in extending the vacuum region length.
Empirically a better collapse can be shown by keeping the w2/h dependence, but also
including a Fr−1/4 dependence in place of the Coulomb friction coefficient μ. This is
shown in the inset plot in figure 22. In this plot it is shown that the vacuum length is well
predicted for all cases. However, the physical explanation for the Fr−1/4 scaling is unclear.

9. Discussion and conclusions

This paper investigates the granular flow past a blunt obstacle on a rough inclined plane.
Rough beds differ from smooth beds in that the friction allows steady uniform flows to
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Figure 22. The numerical vacuum region length against a candidate function for vacuum length from the
theory. The inset plot shows the numerical vacuum length against an empirical scaling. The colours indicate
the Froude number of the respective numerical results and marker symbols indicate various obstacle widths.
The we marker indicates the value from laboratory experiments.

develop over a wide range of inclination angles and Froude numbers. This enables the
study of subcritical as well as supercritical flows past an obstacle, and it gives rise to a
number of effects not seen on smooth beds.

For supercritical flows, a bow shock and static dead zone form upstream of the
obstacle, and a grain-free vacuum region develops on the lee side, in a similar manner
to supercritical flows on smooth beds (figures 1 and 6). However, as the vacuum forms,
a static levee develops along its boundary during the flow. This is in complete contrast
to smooth beds, where the largest velocities in the expansion are attained directly on the
vacuum boundary. When the flow wanes, the flow gradually slows down and stops, leaving
a layer of particles on the chute whose thickness is close to hstop (Pouliquen & Forterre
2002). In the final stages of the stopping process, the dead zone partially collapses and
the material triggers a sequence of erosion-deposition waves that propagate downslope
(Edwards & Gray 2015; Edwards et al. 2017; Viroulet et al. 2019; Edwards et al. 2021).
All of these features are captured by a depth-averaged avalanche model (2.1)–(2.2) that
uses a non-monotonic hysteretic friction law (2.5)–(2.8) (Edwards et al. 2019) and includes
depth-averaged in-plane viscous terms (Gray & Edwards 2014; Baker et al. 2016a). The
simulation results are shown in figures 10–14 as well as in the supplementary online
movies.

Sustained subcritical flows do not usually develop on smooth beds. The rough bed
experiments, shown in figures 1, 2 and 9, therefore allow a range of new phenomena to be
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observed for the first time. For subcritical flows, a bow shock does not form upstream of the
obstacle, and instead gravitational waves propagate upstream, which convey the presence
of the obstacle. This leads to a large upstream region of influence, where the oncoming
flow is gradually deflected to either side of the obstacle. The experiments suggest that
a St Andrew’s cross type structure forms above the obstacle (see the schematic diagram
figure 7b and experimental thickness contours figure 8b). In the lower quadrant (adjacent
to the obstacle) a static dead zone forms, in the upper quadrant the flow decelerates in the
downslope direction and spreads laterally, and in the two quadrants on either side the flow
accelerates and flows parallel to the sides of the erodible dead zone. On the lee side, the
flow expands again to form a grain-free vacuum that is bounded by static levees, which are
more substantial than those formed during supercritical flow. All of these features can be
visualised in the contrast enhanced movies that are available online. As the flow wanes,
a hstop layer is deposited on most of the chute, but a raised ridge also forms upstream of
the dead zone as shown in figure 2. This ridge develops as a consequence of the support
that is provided by the obstacle, which extends far upstream when the chute inclination is
close to the angle of repose. Numerical simulations of subcritical flow (figures 15–18) are
able to capture all these features, and show evidence of the St Andrew’s cross structure
that exists upstream of the dead-zone apex.

In § 7 the Eikonal equation is used to develop a simplified model for the height
of the maximal static pile that can be supported by the obstacle. In addition, by
partially submerging this pile with a uniform thickness layer of flowing grains, and
accounting for the support that this material provides (see figure 21), approximate
solutions are obtained for the dead zone’s scalloped shape (7.20) and its length (7.23).
Figure 20(b) shows that this simplified model provides a good collapse of the numerically
simulated dead-zone lengths for a wide range of obstacle widths, slope inclination
angles and Froude numbers that span both the supercritical and subcritical regimes.
Similarly, in § 8 an approximate similarity theory is developed, which provides a
reasonable approximation for the length of the grain-free vacuum region in the lee of the
obstacle.

It is anticipated that the results of this work may find application to a range of
geophysical mass flows in the natural environment. These include snow avalanches,
debris flows and dense volcanic pyroclastic avalanches, which pose a risk to people and
infrastructure in mountainous and volcanic regions. In particular, in recent years global
warming has led to the increased frequency of wet snow avalanches (Pielmeier et al.
2013; Naaim et al. 2016), which move at much slower speeds than their drier counterparts.
Despite their slow speeds, wet snow avalanches impose very large loads on obstacles in
their path and can be highly destructive. These flows readily form self-channelised flows
with static levees in their runout zones (Gray & Kokelaar 2010; Bartelt et al. 2012), which
suggests that a simple model might characterise their frictional behaviour with a rough-bed
friction law of the form (2.5)–(2.8).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1074.
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