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 This paper presents the procedures involved in the design and analysis of a 

microstrip broadband microwave amplifier. For system design, simulation, 

optimization and analysis, a Computer Aided Design (CAD) tool known as 

Agilent Advanced Design System (ADS) was employed. The amplifier 

device- FLC317MG-4 FET, was tested for stability, and was observed to be 

unconditionally stable between 2 to 6 GHz frequency band. Two possible ideal 

matching circuits were investigated to identify the best matching circuit with 

the maximum transducer power gain. It was observed that the quarter-wave 

transformer with parallel open circuit stub, gave a high gain at a wider range 

of frequency (larger bandwidth/ broadband), than the other matching circuit. 

Hence, it was employed for the broadband amplifier design using microstrips, 

and achieved a maximum flat gain of about 9.8 dB to 10.118 dB, at a 

bandwidth of 3.5 to 4.5 GHz. 
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1.   INTRODUCTION 

The evolution of wireless communication has provided numerous applications for RF and microwave 

amplifiers. RF/microwave amplifiers are vital components employed in various electronic and communication 

system applications, including base station equipment, wireless telephones, satellites, radar applications, 

magnetic resonance imaging (MRI), broadcasting, global positioning system (GPS), air traffic systems etc [1]. 

Amplifiers are devices that increase the output power of signals. Amplifies are used whenever a weak 

signal is received, and needs to be boosted. Microwave amplifiers amplify at microwave frequencies. Various 

categories of RF/ microwave amplifiers exists. They include broadband, narrowband, variable gain, buffer, 

low-noise, and high-efficiency amplifiers etc. Broadband amplifiers amplify over a wide range of frequency, 

without significant losses within the passband. Broadband amplifiers, which have good matching properties, 

high power output, broad/wide bandwidth and low nonlinear distortion, are among the most widely used 

amplifier type in wireless communications [2]. The wide bandwidth enhances the data rate, while the increased 

power output increases the distance of communication. Thereby satisfying the requirements of modern 

communication networks. Broadband amplifiers provide a number of other advantages. They do not require 

resonant circuit tuning, and it is possible to transmit a wide multimode signal spectrum or to achieve fast 

frequency agility [3]. 

Computer Aided Design (CAD) tools are extensively used in the design of RF/microwave amplifiers 

and various engineering applications, for better systems optimization and analysis, to accelerate the design 

process, and reduce cost of producing numerous prototypes before the final implementation stage [4, 5, 6]. RF/ 

microwave amplifier design, basically requires CAD tools [7, 8], for stability analysis, device modeling, S-

parameters, matching and biasing networks etc.  
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This paper looks at the design of a microstrip broadband amplifier, at a microwave frequency range 

of 3.5 to 4.5 GHz, using Agilent ADS (Advance Design System). 

 

2. THEORETICAL BACKGROUND  

In amplifier design, it is necessary to ensure maximum gain, stability and minimal losses. All these 

steps are discussed, and some terms and parameters that are required for a proper understanding of amplifier 

design process are also discussed.  

 

2.1.  Gain 

This refers to the ratio of the magnitude of the power output to the magnitude of the power input. 

Three types of amplifier gain definitions exists. They are: 

• Power Gain (GP): this is the ratio of the power supplied to the load, to the power supplied to the 

amplifier. 

• Available Gain (GA): this is the ratio of the amplifier power output to the available source power. 

• Transducer Gain (GT): this is the ratio of the power supplied to the load, to the available source power. 

In amplifier design, the transducer gain is the most important parameter in determining its effectiveness and 

performance. The transducer gain is given as: 
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Where ГS and ΓL are the source and load reflection coefficient respectively, S11 and S22 are the 

reflection coefficient at port 1 and 2 respectively, S21 is the forward transfer gain, and S12 is the reverse gain. 

 
2.2. Maximum Gain 

The maximum (unilateral when S12 = 0) gain is the best possible gain that can be achieved. It is the 

optimum gain of the amplifier, and can be achieved when the input and output networks of the amplifier are 

conjugate matched [9] to the transistor, and when the system is stable. It is determined by the S-parameters, i.e 

when ΓS= S11*, and ΓL= S22*. Maximum Gain is given as [10]:  
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An important factor to consider in amplifier design is the trade-off between the gain and bandwidth. 

This is shown by the transfer characteristics of an amplifier with lumped coupling elements [11]. Ref. [12] 

discusses how this trade-off can be avoided, while [13] proposes how the bandwidth accuracy and bandwidth 

gain-independence can be increased. 

 

2.3. Stability Analysis 

Device stability is indeed an important factor to consider in amplifier design [14]. This is because an 

amplifier which is unstable may act as an oscillator, which is undesirable [10]. Hence, it is necessary to 

investigate if the active device is conditionally stable or unconditionally stable [15, 16, 17]. 

An amplifier is unconditionally stable if |ΓS|<1, and |ΓL| <1, for all passive source and load 

impedances, and conditionally stable only for a certain range of passive source and load impedances [16]. The 

stability of an amplifier is frequency dependent. An amplifier can be stable at a particular frequency, but 

unstable at another. A trade-off exists between the stability and bandwidth of an amplifier [18].  

According to Rollett’s stability criteria [10, 15, 19], an amplifier is assumed to be unconditionally 

stable if: 
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Where K represents Rollett’s Stability Factor, ∆ = S11S22 - S12S21, and b represents the Stability 

Measure. 

2.4. Input and Output Matching Circuits 

In other to maximize the gain, for maximum power transfer, and to minimize losses due to reflections, 

matching of both the input and output network is required [9]. In the design of an amplifier, maximum gain 

can be achieved by tuning the circuit components with the tuning function in ADS, or by matching the input 

and output circuits using a smith chart. 

 

3. DESIGN PROCEDURE AND RESULTS  

The process of amplifier design includes some important steps, which must be followed carefully, to 

achieve the desired result. These procedures and key parameters are summarized as follows: 

 

3.1. Stability Analysis 

In amplifier design, it is necessary as a first step, to investigate the stability of the active device which 

will be used [10, 15]. This is because, it is one of the most important characteristics of an amplifier, (else it 

becomes an oscillator).  

The stability of the device- FLC317MG-4 FET, with a drain source voltage of 10V and drain current 

of 720 mA, as shown in Figure 1 was tested using ADS.  

Other key parameters include: 

- Frequency Sweep range of  2 GHz – 6 GHz  and steps of 0.5 GHz. 

- Centre Frequency of 4 GHz. 

- Load and Source terminals of 50 Ohm each. 

The circuit was simulated, and the S-parameters, the stability factor (K) and the stability measure 

(b), of the transistor device was gotten. 

 

 
Figure 1. Circuit representation for the FLC317MG-4 FET Device Stability Analysis. 

 

Results: After simulation of the FET device in Figure 1, the results of the stability analysis was given in Table 

1 and Figure 2. 

 

Table 1. S-Parameters of the FLC317MG-4 FET Device. 

Frequency S(1,1) S(1,2) S(2,1) S(2,2) 

2.0 GHz -0.773+j0.459  0.013+j0.019  0.602+j2.018   -0.520-j0.049 

2.5 GHz  -0.641+j0.610  0.012+j0.024  0.736+j1.750  -0.554-j0.027 

3.0 GHz  -0.438+j0.732  0.017+j0.026  0.891+j1.537  -0.588+j0.007 

3.5 GHz  -0.151+j0.785  0.015+j0.032  1.323+j1.500  -0.612+j0.054 

4.0 GHz  0.184+j0.650  0.028+j0.032  1.820+j0.996  -0.639+j0.106 
4.5 GHz  0.318+j0.189  0.045+j0.017  2.530+j0.270  -0.687+j0.213 

5.0 GHz  -0.276+j0.006  0.032-j0.022  1.789-j1.605  -0.678+j0.430 

5.5 GHz  -0.388+j0.629  -0.007-j0.021  0.154-j1.512  -0.513+j0.614 
6.0 GHz  0.012+j0.885  -0.020-j0.006  -0.179-j0.725  -0.340+j0.707 
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Figure 2. Stability Factor and Stability Measure of the FLC317MG-4 FET Device. 

 

Comments:  

A device is assumed to be stable if S11 < 1 and S22 < 1. According to the S parameters, it was observed 

that the device is stable at the frequency range between 2-6 GHz.  

According to the stability analysis, an amplifier is said to be unconditionally stable if the stability 

measure (b) is greater than zero, and the stability factor (K) is greater than 1. According to the stability measure 

and stability factor plots shown in Figure 2, the device was observed to be unconditionally stable within the 

bandwidth of 2-6 GHz. 

It was also observed that the forward transfer gain S21 is much greater than S12, which further confirms 

the stability of the system, and proper matching of the device. Hence, the device is potentially stable at the 

given frequency range 2-6 GHz, but could be potentially unstable at other frequency ranges. 

 

3.2. Ideal Matching Circuit 

In other to match the circuit, and get the maximum transducer gain, the values for the Simultaneous 

Match–Input Impedance (SmZ1) and Simultaneous Match–Output Impedance (SmZ2) were generated at 4GHz 

(centre frequency) using the SmZ1 and SmZ2 functions in the ADS and given as: SmZ1 = 32.264 - j57.757 Ω, 

and SmZ2 = 14.160 - j4.85 Ω. 

The SmZ1 and SmZ2 give an output value of zero when the device is unstable, and tells us the 

conjugate matching impedances when the device is unconditionally stable. The values of SmZ1 and SmZ2 at 

4GHz were used to determine the best matching network (i.e the network with the highest gain and widest 

bandwidth) out of two possible matching networks, which are: 

• Short circuit parallel stub with series transmission line, 

• Quarter-wave transformer with parallel open circuit stub. 

Using the Smith Chart, with the values of SmZ1 and SmZ2 generated, the two networks were matched 

as follows: 

 

3.2.1. Short Circuit Parallel Stub with Series Transmission Line 

In the case of the input matching, the source impedance was set to be SmZ1, which was connected in 

series to the transmission line, and the transmission line was connected to a 50Ω load impedance in parallel 

with a short circuit parallel stub. The circuit was matched (from source to load) by setting the impedance values 

of the transmission line and the short circuit stub at 50Ω, and then varying the electrical length (E). The new 

matched values of the electrical length for the input and output were recorded in Table 2. 

For the output matching, the same procedure was performed as the input, but changing the source 

impedance to SmZ2. 

 

Table 2. Matched Circuit parameters for the Short circuit parallel stub with series transmission line. 

   

   

Parallel Short Circuit Stub  Transmission Line  

Z (Ohm)  E (Deg)  Z (Ohm)  E (Deg)  

Input Matching (SmZ1)  50  33.7  50  36.392  

Output Matching (SmZ2)  50  100.035  50  146.464  
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3.2.2. Quarter-wave Transformer with Parallel Open Circuit Stub  

For the input matching, the source impedance was set to be SmZ1, which was connected in series to 

a quarter-wave transformer with a fixed length of 90o, and then matched to the 50Ω load impedance through a 

parallel open circuit stub. 

For the output matching, the same procedure was performed as the input, but changing the source 

impedance to SmZ2. The new matched values of the electrical length (E) and impedance (Z) were recorded in 

Table 3.  

 

Table 3. Matched Circuit parameters for Quarter-wave transformer with parallel open circuit stub. 

   

   

Quarter-wave Transformer  Parallel Open Circuit Stub  

Z(Ohm)  E(Deg)  Z(Ohm)  E(Deg)  

(SmZ1)  83.2  90  50  33.3  

(SmZ2)  28  90  50  46.6  

 

3.3. Ideal Maximum Transducer Power Gain 

After the two circuits have been matched using smith chart, the values of the various impedance and 

electrical lengths were used to design the two input and output circuit components of the amplifier. The two 

circuits were simulated, and the Maximum Gain, and S-parameter plots were generated and analysed for both 

circuits. 

 

3.3.1. Short Circuit Parallel Stub with Series Transmission Line 

The amplifier circuit shown in Figure 3 was designed according to the matched circuit parameters 

given in Table 2. 

 

 
Figure 3. Circuit Schematic of the Short circuit parallel stub with series transmission line. 

 

Results: The amplifier circuit shown in Figure 3 was simulated, and the maximum gain response and return 

loss obtained is shown in Figure 4. 
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Figure 4. (a) Ideal Maximum Transducer Power Gain S21 and (b) Reflection Coeffcient S11 for Short circuit 

parallel stub with series transmission line. 

 

Comments: From Figure 4, the maximum gain of the amplifier was observed to be 10.564dB, which represents 

the maximum transfer gain S21, (showing that the circuit is matched) and occurs at frequency of 4GHz. It was 

also observed that at 4GHz, the return loss was very low. This could imply that at 4GHz, the amplifier would 

yield maximum amplification with little loss or reflection. 

It was also observed that the gain is high at a very small range of frequency (i.e narrowband). It was 

also observed that SmZ1 and SmZ2 had values of about 50Ω at 4GHz, which shows that the input and output 

circuit is matched. 

 

3.3.2. Quarter-wave Transformer with Parallel Open Circuit Stub 

The amplifier circuit in Figure 5 was designed according to the matched circuit parameters given in 

Table 3. 

 

 
Figure 5. Circuit Schematic of the Quarter-wave transformer with parallel open circuit stub. 

 

Results: The amplifier circuit in Figure 5 was simulated, and the maximum gain response and reflection 

coeffcient obtained is shown in Figure 6. 

(a) (b) 
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Figure 6. (a) Ideal Maximum Transducer Power Gain S21 and (b) Reflection Coeffcient S11 for Quarter-wave 

transformer with parallel open circuit stub. 

 

Comments: From Figure 6, It was shown that the maximum gain of the amplifier is 10.564dB, (in its ideal 

case) which represents the maximum transfer gain S21, showing that the circuit is matched and occurs at 4GHz. 

It was also observed that SmZ1 and SmZ2 had values of about 50Ω at 4GHz, which shows that both the input 

and output circuit is matched. 

It was also observed that for both matching circuits, we achieved same high gain, but the quarter-wave 

transformer with parallel open circuit stub, gave a higher gain at a very wide range of frequency (larger 

bandwidth/ broadband). In other words, the quarter-wave transformer with parallel open circuit stub, gave a 

flat gain at a wider range of frequency than the short circuit parallel stub with series transmission line. As a 

result, this was considered to be the best match broadband amplifier circuit, which shall be employed using the 

microstrip. 

 

3.4. Microstrip Broadband Amplifier with Constant Transducer Power Gain 

For a more practical design, the MLIN microstrip physical line models are employed to replace the 

ideal lines. The amplifier specification is a constant 10 +/- 0.2dB flat gain, with a bandwidth of 3.5 to 4.5 GHz. 

Using the gain circle tool under Simulation S_Param palette in the ADS, the locus of reflection coefficients 

that would yield the maximum gain, was seen on the smith chart, and the conjugate matching impedances 

required for both the input (and output) matching networks were determined. The gain circle was plotted 

directly on the smith chart using the GaCir tool (for input impedance matching), setting the frequency sweep 

from 3.5GHz to 4.5GHz, with a step of 0.5GHz. 
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Figure 7. Gain Circle for Input Matching of the Broadband Amplifier. 

From the constant gain circle (shown in Figure 7), the normalised impedance of 1.340-j0.99 was 

chosen as the SmZ1, since it is closest to the 50Ω point (midpoint). The matching was performed using a smith 

chart, setting the SmZ1 = 1.340 – j0.99, and leaving the SmZ2 unchanged. After matching, new input matching 

circuit parameters were obtained and presented in Table 4. 

 

Table 4. New Input and output matching circuit parameters for the Broadband Amplifier. 

 Quarter-wave Transformer   Parallel Open Circuit Stub  

Z(Ohm)  E(Deg)  Z(Ohm)  E(Deg)  

 (SmZ1)  72  90  50  19.948  

 (SmZ2)  28  90  50  46.6  

 

 

These new circuit parameters were employed in the design of the broadband amplifier circuit, and 

also including microstrip Tees and Steps where necessary. The circuit was simulated and the transducer gain 

was optimised by tuning, using the tune facility in the ADS. After the gain has been increased, at particular 

values of the electrical length and impedance, the equivalent values for the length and width of the microstrips 

are gotten using the Linecalc tool in the ADS. Using these new equivalent values of the line length and width 

of the microstrip, the Microstrip Broadband Maximum Transducer Power Gain Amplifier was designed as 

shown in Figure 8. The circuit was simulated, and the maximum gain was plotted. The circuit was tuned at the 

input to give a flat gain characteristic of about 10dB, across a frequency of 3.5 to 4.5 GHz. The new circuit 

parameters were recorded in Table 5. 

 

Table 5. Equivalent Line Length and Width of the Microstrip Broadband Amplifier Before and After Tuning. 
Before Tuning  MLIN (SmZ1) MLOC (SmZ2) 

Width 33.984 mil 61.474 mil 

Length 546 mil 119.145 mil 

 
After Tuning  MLIN (SmZ1) MLOC (SmZ2) 

Width 46.42 mil 61.474 mil 

Length 542.137 mil 214.459 mil 

 

 

 
Figure 8. Circuit Schematic of the Microstrip Broadband Amplifier. 

 

3.4.1. Results 
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The microstrip broadband amplifier circuit in Figure 8 was simulated, and the maximum flat gain 

response and reflection coeffcient obtained is shown in Figure 9. 

 
Figure 9.(a) The Gain S21 and (b) Reflection Coeffcient S11 of the Microstrip Broadband Amplifier. 

 

3.4.2. Comments 

It was observed that the flat gain broadband was achieved between 3.5 to 4.5GHz. The maximum 

transducer gain specification of 10dB +/-0.2 was also achieved. 

It was also observed that due to a wider bandwidth, the gain achieved was smaller. This is as a result 

of the trade-of between the bandwidth and the gain. That is for a broader bandwidth, the gain has to be reduced. 

In other words, you cannot have more of the bandwidth without having to give up some of the gain. The 

bandwidth is inversely proportional to the gain. 

An increase in the reflection coefficient (S11) of about -9dB was also observed in the microstrip 

broadband amplifier. This could be as a result of the losses in real practical conditions of the microstrips, unlike 

the ideal line components. 

 

3.4.3. Comparison with Existing Designs 

Various broadband microwave amplifiers with different topologies and frequency band have been 

compared. Table 6 shows a summary of the different amplifiers and their performance in comparison with this 

design. It is observed that this design has a good performance with a high gain at the given frequency band. 

 

Table 6. Comparison of Different Amplifiers and Their Performance 

Ref Technology B.W (GHz) MaxS21 (dB) S11 (dB) 

[20] 0.18 μm CMOS 0.9-3.5 8.5 -3 

[21] CMOS 1.65-2.00 5.1 ± 5 -21 

[22] CMOS 1.70-3.10 9.8 -7 

[23] GaAs PHEMT 2.45 7.51 -7.497 

This Work FLC317MG-4 FET 3.5-4.5 9.8-10.118 -9 

 

4.  CONCLUSION 

In this paper, a microstrip broadband microwave amplifier was designed and analysed using Agilent 

ADS. The design procedures and parameters were presented. In the amplifier design process, the S-parameters, 

stability factor and stability measure were suitable for investigating the stability of the amplifier, and other 

properties like the gain and losses. 

The microstrip broadband amplifier was achieved within a bandwidth of 3.5 to 4.5 GHz, and a 

maximum flat gain of around 9.8 to 10.118 dB. The transducer gain was maximized and the reflection 

coefficient minimized by matching of the input and output circuits using the smith chart and by tuning (using 

the tune function) of the ADS. There is a trade-off between the bandwidth and gain of the amplifier. As one 

increases, the other decreases. 
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