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ABSTRACT 
 

There has been a rise in the number of studies relating to the role of artificial intelligence 

(AI) in healthcare.  Its potential in Emergency Medicine (EM) has been explored in recent 

years with operational, predictive, diagnostic and prognostic emergency department (ED) 

implementations being developed. For EM researchers building models de novo, 

collaborative working with data scientists is invaluable throughout the process. Synergism 

and understanding between domain (EM) and data experts increases the likelihood of 

realising a successful real-world model. Our linked manuscript provided a conceptual 

framework (including a glossary of AI terms) to support clinicians in interpreting AI research. 

The aim of this paper is to supplement that framework by exploring the key issues for 

clinicians and researchers to consider in the process of developing an AI model. 
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INTRODUCTION 

There has been a rise in the number of studies relating to the role of artificial intelligence 

(AI) in healthcare. Its potential in Emergency Medicine (EM) has been explored in recent 

years with operational, predictive, diagnostic and prognostic emergency department (ED) 

implementations being developed.(1) For EM researchers building models de novo, 

collaborative working with data scientists is invaluable throughout the process. Synergism 

and understanding between domain (EM) and data experts increases the likelihood of 

realising a successful real-world model. Our linked manuscript provided a conceptual 

framework (including a glossary of AI terms) to support clinicians in interpreting AI 

research.(1) The aim of this paper is to supplement that framework by exploring the key 

issues for clinicians and researchers to consider in the process of developing an AI model.    

STAGES IN DEVELOPING AN AI (MACHINE LEARNING) MODEL  

EM research in AI is almost entirely focussed on Machine Learning (ML) models, and 

therefore the focus henceforth will be on ML, although the framework and principles will 

also apply to almost any AI model. There is significant variability in the reporting and 

conduct of ML research, which can make interpretation challenging – particularly when 

some of the models used are by their nature ‘black boxes’. (2) A Machine Learning model 

should be developed systematically, with the same structure and clinical focus as any 

traditional EM clinical research. The steps in model development from conception to 

deployment are outlined in Figure 1. Traditional reporting guidelines such as TRIPOD (and 

eventually TRIPOD-AI) for prognostic models or STARD for diagnostic models(3)  can 

supplement these steps and serve as checkpoints while building a model.  
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Figure 1 Steps in AI model development. [square brackets denote steps which are sometimes described during data 

management, model development or evaluation]. Feedback and iterations of preceding steps are expected. AI, artificial 
intelligence; ML, machine learning; PECO, Population-Exposure- Comparison- Outcome; PICO, Population-Intervention-
Comparison-Outcome. 
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Study Question 

Although this may seem simplistic, it is critical that the problem or question be clearly 

defined as well as the proposed clinical benefit. Unless one is undertaking data mining or 

exploratory analysis of a novel dataset (although arguably, an idea of what is being asked is 

still important in these activities), this will act as an anchor further in the model 

development pipeline to mitigate against bias or misinterpretation. Domain knowledge, i.e. 

real-world clinical EM experience of the clinical workflow or problem is key to developing a 

relevant, interpretable and generalisable model. 

In addition, as more open access ML libraries (containing ML algorithms and other related 

code), such as scikit-learn.org and CRAN-R packages (cran.r-project.org) and even 

automated ML (AutoML) become freely available, the temptation is to apply ML to a 

problem when traditional solutions work well or are more suitable. (4–6) The current clinical 

status quo should be examined, and any proposed improvement in its performance 

considered in terms of potential clinically significant patient or system benefit. A priori 

determination of an ideally patient centred (or shared) minimal acceptable difference in 

outcome should be made. (7) The performance measures by which this outcome is 

evaluated should also be defined a priori. 

Consideration of these issues at conception is important – even traditionally derived 

diagnostic and prognostic models often make no difference in clinical outcomes or are never 

used in a clinical setting. (8,9) Many published ML models are likely to suffer the same fate, 

with evidence suggesting that ML does not consistently outperform clinicians, (6,10,11) with 

inappropriate usage and methods likely to result in unsuccessful deployment. Even accurate 

ML models may not necessarily confer a clinical benefit – the so-called AI chasm. (12) 
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Finally, as with almost all types of EM relevant research, patient and public engagement 

should be sought where appropriate. This not only pertains to outcomes, but also regarding 

the use of routine personal patient data for AI purposes, and the acceptability of a ML 

model informing their clinical management and profiling. (13,14) 

Data Management 

Unsurprisingly, data preparation is the most time-consuming aspect of ML model 

development. ML is dependent on data, therefore the quality and relevance of data used in 

developing a model is of paramount importance - the programming cliché of ‘garbage in, 

garbage out’ is particularly true in ML. Most EM datasets will be retrospectively curated, 

with only a few prospective collected. The challenge is to ensure that the data available is 

homogenous and representative of the population and setting in which the model will be 

deployed. Any potential for bias should be addressed, as failure to do so may lead to 

significant disadvantages to certain groups when the model is implemented. (15) In 

addition, data collection methods at the point of acquisition should be as objective as 

possible to minimise heterogeneity due to human interpretation. As data is often historical, 

some sense checking should take place to identify clinical practice evolutions which may 

alter outcomes; hence negating or amplifying the impact of features used in a model 

developed from temporally distinct data. 

Recently, Federated Learning has been developed, whereby disparate data sources from 

multiple sites are used to train models, without the data being transferred outside their 

original source location. This allows a range of data to be used, and in turn may produce 

more generalisable models. (16) 
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Sample size 

 Although a core consideration in classical statistical methods, sample size calculations are 

uncommon in ML research. (17) Rule of thumb estimates from traditional regression 

methods are often used as a default, and varies from 10-50 events per feature (18), the 

square of the number of features or fitting a weighted learning curve. (19) The constant 

however, is that the quality of the data is more important, and although in general, more 

data is better, it depends on the specific task and model. With inaccurate (high bias) models, 

more data is unlikely to help with underfitting, whereas in high variance (overfitted) models, 

more data will probably help. (20) 

Once a suitable dataset is identified, it must be cleaned and presented in a format which is 

interpretable to the selected ML algorithm, and which allows reproducibility and ideally 

reversibility. The following preparation/pre-processing activities should be considered. 

Duplicate removal 

 Because most ML algorithms consider each individual sample of input data in relation to 

the rest of the dataset, having duplicates will bias the model towards the features in that 

sample. If duplicates are used in training and test sets, it will also contribute to data leakage. 

Missing Data 

 Some advanced algorithms can handle missing data. However, it is worth considering 

whether the missing data is random, or represents bias in data collection or recording.  The 

impact of the method of dealing with missing values needs to be considered in the context 

of the effect on the model - some methods will reduce the available data, while others may 

introduce new categories, and fail to consider covariance, for example. Common 
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approaches are: removal of samples/subjects with missing data; imputation – where an 

estimate (mean, median, mode) based on the remainder of data is input; where 

interpolated data (for example between two valid times in a time-series variable) or last-

observed-carry-forward (for example in longitudinal physiological data) are used; 

unsurprisingly, using a DNN to impute missing data into the dataset; or finally, simply 

encoding as null/missing and letting the algorithm deal with it.   

Outliers 

 Nonsense values will be obvious to an Emergency Physician (EP) looking at a dataset, 

although not necessarily to a data analyst, reinforcing the importance of combining domain 

knowledge and expertise. True outliers can affect model performance and metrics, making 

identification important before training. However, some outliers can be hard to define and 

may represent important data relationships. Caution must therefore be exercised before 

removing or changing values, especially if the sample size is small. (21) Similarly, extraneous 

or irrelevant data (noise) can affect model performance, and consideration of how to handle 

it is necessary.(22) Identification of irrelevant or impractical data or variables will be enabled 

by sound EM domain expertise. 

Feature (Variable) Selection 

As should be apparent, basic ML algorithms work best with data that is relevant to the 

problem. Although databases can have high numbers of variables (high dimensionality), not 

all will be useful, and may simply add to the complexity and computational requirements of 

the model pipeline. In addition, there may be a tendency to overfit as with outliers or noise. 

Good ML features should be unambiguous, represent the EM operational/clinical meaning 

and context of the data and their inter-relationships.  Confounders and covariates should be 
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addressed, as they are unlikely to add to the model if there are other mutually uncorrelated 

features. (23) 

In some classification tasks, there may be only a few instances of an uncommon value for a 

categorical variable. By chance, these may have the same outcome - being ‘perfect’ 

predictors - and hence result in overfitting. This may be addressed by using a modelling 

method with feature selection, and removing rare categories which appear highly important 

to the model. (24) An alternative method removes dummy variables (with less than say 10 

observations) as if they were an outlier. 

In most EM applications, feature selection by clinical domain experts (EPs) will be sufficient 

based on clinical experience, known predictive or prognostic variables, and some common 

sense.  The idea of scientific plausibility is of particular relevance. For example, an imaging 

Deep Neural Network (DNN) determined that images taken by a portable x-ray machine 

predicted significant pathology rather than using the images themselves. This would have 

been apparent given that sicker patients in ED would have portable films, but this 

knowledge would not be discernible to the algorithm. (25) There are other, non-human 

methods of selecting features, such as removal of those with low statistical variance, using 

an algorithm which shows the importance of features in the dataset (e.g. random forest or 

linear regularisation models such as LASSO regression) or using a grid search where multiple 

models with a selection of features are compared to identify the best feature set. (26) 

Feature Engineering 

There are several ways to represent variables, and some types of models handle different 

types of data differently to others. Feature engineering is the process of transforming data 

in order to improve the effectiveness of the model being used for a particular task. (27) EM 
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databases may include data from various sources, and with a range of values. Algorithms 

may be biased towards variables with larger values, in which case the data can be 

standardised by rescaling i.e., changing the range of values (usually between 0 and 1), or 

normalisation i.e., changing to a normal distribution.  

Another EM phenomenon is of imbalanced datasets, where patients with an event/outcome 

are relatively uncommon compared with the rest of the ED population. In this case, an 

algorithm may be biased to learning characteristics of the majority (without the outcome) 

rather than the group we are generally interested in – those with the outcome. The effect of 

imbalanced datasets can be offset by stratified re-sampling, over- and under- sampling 

minority and majority classes respectively, increasing the weight of samples in the minority 

class during training, or by adding artificially generated data which approximates the 

minority class. (28) Care must be taken with interpreting performance metrics, such as 

AUROC, in imbalanced datasets, particularly when artificial data is introduced. 

It may be desirable to aggregate some features, for example grouping components of a 

recognised score together rather than each separate component being considered 

individually. Provided that this is done in a contextually appropriate manner, it can reduce 

the dimensionality of the dataset. Conversely, it may be desirable to decompose a complex 

feature into constituent parts which are useful for the problem and algorithm, for example 

separating the Glasgow Coma Scale into motor, verbal and eye opening. 

Encoding 

Machines do not generally understand non-numerical input, and therefore even image and 

text data have to be converted into a format which can be used by an algorithm. Most data 

used in EM applications will be numerical, however care should be taken that encoding 
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preserves interval/ratio relationships. For nominal categorical data, one-hot encoding is 

commonly used. This assigns a binary style of coding, where the position of a ‘1’ will be 

interpreted by the machine as the particular category. For example, 3 labels for ethnicity 

will be encoded as 100 (White), 010 (Black), 001 (Asian), and a dummy variable - 000. 

However, consideration should be given to the effect of the selected encoding. For example, 

if rather than 3 ethnicity codes, we used 15, one-hot encoding of this higher cardinality, 

categorical variable will substantially increase dimensionality, and thus the number of 

features and variables the model needs to consider - just for ethnicity. This makes 

overfitting much more likely as it can easily fit relatively unimportant variables to the model. 

Similarly, care should be taken to encode ordinal data so that its clinical meaning is 

preserved, for example with the AVPU scale or A-E triage. 

In ML, the model being developed is meant to be used for making predictions on unseen 

data when clinically or operationally deployed. Before the model can be finalised, an 

estimate of how it will perform on new data is necessary. Resampling is the process of 

splitting the dataset, so that this estimate can be made on a subset of data which will be 

new to the model, but where the outputs are in fact labelled, but known only to the analyst.  

The most robust methodology involves splitting data early on so that data leakage and the 

inevitable overfitting is avoided.  Data leakage occurs when any data from outside the 

training set manages to leak into the model building (training) process. The model therefore 

has already ‘seen’ the test dataset, hence inappropriately influencing the model and its 

validation.  A list of pre-processing techniques should be estimated and developed in the 

presence of the training data only, and the same list then applied to future data. (27) This is 

even more important where transformations which use group parameters are used, such as 
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imputation or use of measures of spread. In order to mitigate against data leakage, there is 

a compelling case for splitting off the test dataset and setting it aside before anything is 

done with any of the data.  

The terminology used in splitting data can be confusing, with different terms being used to 

describe the same procedures. For example, when evaluating a final model, a test dataset in 

ML is analogous to an internal validation dataset in conventional statistical modelling, even 

if temporally split. (29) During model development, the training dataset is often split to 

provide data to facilitate feature selection, model refinement (tuning of hyperparameters), 

between-model performance comparison and give an idea as to how a model will perform 

in practice. This split is commonly termed a validation set, or sometimes a tuning or 

calibration set and is used to assess the model which was fit on the training set. 

 

Figure 2 Overview of data flow in Resampling (Train:Test) †No data transformation should occur before the test set is set 
aside. *Training set can  also be used to determine the final model, without splitting into Train:Validation or Cross-
Validation (CV). +CV splits Training set, hence a manual Train:Validation split may be unnecessary. ‡The final (good) model 
can be trained on the entire dataset before deployment/external validation. ¥External validation dataset - ideally 
temporally and geographically distinct. 
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The ratio for splitting the complete dataset into train:test or the training set into 

train:validate can be set based on the size of the dataset, the purpose of the model and the 

algorithm being used. Most EM applications will use complex models which requires more 

training and will need a larger proportion of data in the training set. This is commonly set at 

70:30 (train:test) or 70:10:20 (train:validate:test), however if the model has a large number 

of hyperparameters to tune, then a larger validation proportion is prudent. The probability 

distributions of features in each set should also be the same i.e., stratified if possible. 

Cross Validation 

There are several concerns with the traditional train:validate approach to resampling. 

Particularly in smaller datasets, or those with uncommon outcomes, data is wasted insofar 

as it is not available to train the model. The model is also dependent on the random 

selection of the subsets, and this may bias it towards a particular subset. Increasingly, a 

cross-validation approach is being preferred, whereby the training set is split as before, but 

the process is repeated a number of times with different subsets of data. Multiple 

performance measures of the model can then be made, which gives a better estimate of 

generalisation. In addition, this method allows the optimal hyperparameters to be assessed 

and chosen for the final model. The common methods for cross validation are bootstrapping 

and k-fold cross validation.  In bootstrapping, random samples from the training dataset are 

selected (with replacement - the size of the whole set is maintained) for training, and the 

non-selected samples are used for testing. This tends to reduce variance, but increase bias 

due to the stochastic nature of the sampling. (21) 

k-fold cross-validation is becoming increasingly popular as an alternative resampling method 

as it gives a good estimate of the generalisation properties of the model as well as low bias. 



13 
 

The training set is divided into k equal folds or subsets (k is usually set at 5-10) and k-1 folds 

are used to train, while the remaining fold is held as the test set. (Figure 3) The process is 

repeated with each successive fold being held back as the test set, while the remaining k-1 

are used to train. The performance over the k cycles is averaged to give an estimate of the 

performance of the model, and also an estimate of the expected variance in new, out-of-

sample data (generalisation). (21,23) For small classes or rare categorical features, stratified 

k-fold cross validation should be used. (24) K-fold cross validation is particularly useful when 

evaluating several models in order to choose the best performing. 

 

Figure 3 k-fold  cross validation. Training set divided into k folds (k=10 in this example). k-1 folds are used to train; the 
remaining fold is  used as the test set. The process is repeated with each fold being held back as the test set, and the 
remaining 9 used to train. Performance metrics are averaged over k splits to give an estimate of the out-of-sample 
performance of the model. 
 

 

When a model is evaluated, all of the steps leading to the final model are in fact being 

evaluated. This includes data preparation/transformation, the algorithm(s), training and 

tuning/calibration.  

It is clear that much of the process of model development is iterative, and although the 

steps are described in order, some anticipation of later steps is necessary at the outset. 
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Conversely, adjustments in earlier steps may be undertaken based on experience and 

information gained later in the model development pipeline. 

Model Development 

At the initial stages of identifying the question being asked of the proposed ML model, the 

type of solution (or task) should also be defined. The majority of ML algorithms used in EM 

will be for supervised classification (discrete binary or multi-class prediction) or regression 

(predicting a continuous value) tasks. Even complex tasks such as image recognition or text 

analysis can usually be broken down into either of these. Less commonly in EM, 

unsupervised learning models can find relationships with unlabelled data by using 

clustering, association or dimensionality-reduction algorithms, for example. It is therefore 

important to determine which of these tasks will best answer the question posed, given the 

characteristics of the available data. Once this is decided, the most appropriate algorithms 

can then be chosen for developing the model. 

Unfortunately, there is no single algorithm that works best for a given task or clinical 

question. Interdependencies such as the type, quantity and quality of data as well as the 

proposed place in the ED workflow for the deployed models are key considerations. The aim 

is to choose an algorithm or group of algorithms which suits the task, performs best and 

generalises appropriately. It is generally preferable to use simple algorithms, such as 

decision trees, and then progress to more complex ones, such as ensembles or DNNs if 

necessary, as simpler methods do not necessarily equate to poorer performance compared 

with more complex algorithms. (6) The process often involves a degree of trial and error, 

with the caveat of more complex models generally being more difficult to interpret or 

visualise and requiring more computational power. 
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Ensemble learning combines diverse simpler algorithms with the aim of improving their 

performance. It is based on considering several algorithms’ output in a democratic manner 

and using this to find the best combination. (30) The simplest ensembling methods use 

mean, weighted mean or mode to combine model outputs. More advanced ensembles 

include stacking/blending (sequentially building new models on each other using the 

performance of the previous model); bootstrap aggregation (bagging – multiple 

independent models running in parallel on subsets of data and giving a combined output); 

and boosting (models created in sequence with each successive model correcting the errors 

of the previous model thus combining the strengths of weaker models into a strong model). 

(31) 

Ensemble learning should create models with relatively fixed (or similar) bias and reduce 

variance by combining outputs. It should be noted that the ensemble may not necessarily 

perform better than any individual contributing algorithm/model, and in some cases, can 

perform worse than a single strong contributing model. (30) These more complex learning 

models are being used more frequently, but benchmarking them against their simpler 

constituent algorithms is essential. 

Model Tuning & Calibration 

Whilst model tuning can occur after validation against the hold-out test set, it is preferable 

that this be done during model development. It should be apparent that training, validation 

and tuning/re-tuning occurs iteratively and encompasses model evaluation using defined 

metrics and feedback. Tuning of model hyperparameters can improve performance by 

improving the skill of the model at making predictions, allowing recalibration and minimising 

overfitting by regularisation and optimisation. Examples of tuneable hyperparameters 
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include the maximum number of features, number of trees, depth of forest, samples at each 

leaf node (Random Forest models), number of nodes and depth of layers (DNNs). 

Calibration  

In EM classification studies, it may be more practical to determine the probability of an 

input falling into a particular output class. This calibration allows an assessment of 

uncertainty of the model’s prediction which is useful in clinical decision making and in 

communicating risk. This should also be the aim in regression where calibration is the 

adjustment in the model’s predictions to more closely match actual outcomes. (21) Some 

algorithms will calibrate their predictions (such as logistic regression algorithms) 

automatically, whereas others such as DNNs or tree-based algorithms do not. There are 

several ways of assessing model calibration with varying robustness, however notably, the 

commonly used Hosmer-Lemeshow method is not recommended as it artificially risk 

stratifies patients and is uninformative regarding the type of miscalibration. (32) 

Model Evaluation 

Models are repeatedly evaluated - the process is a fundamental part of model development, 

internal validation and estimates of generalisability. Predictions from initial model 

configurations are compared with actual/target outputs, and readjusted iteratively to attain 

optimal performance or for between-model comparison by comparing performance metrics. 

Activities such as feature selection, cross-validation, tuning or comparison of several 

candidate algorithms are all grounded in robust model evaluation. Even post-deployment 

evaluation for stability and external generalisability are premised on defined evaluation 

metrics. Clearly, an objective measurement of the model’s performance is central to model 

evaluation at all stages.  
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Reported ML performance metrics should mirror conventional statistical measures, and be 

standardised to allow interpretability in a clinical context. For both classification and 

regression tasks, the metric should reflect the intended clinical deployment. AUROC is a 

measure of discrimination (i.e., the ability to predict higher risk in patients with the outcome 

than those without), however, it is often used for a blanket comparison in classification 

tasks, but without consideration of the impact of clinical usage or class imbalance. For 

example, a good AUROC for a sepsis score does not necessarily translate to clinical utility for 

excluding a poor outcome. (33) Imbalanced classes is a recognised problem in AI, and 

metrics should be interpretable based on distribution and prevalence. (34,35) For example, 

Precision- Recall curves may be preferable in imbalanced classes where missing a true 

positive is undesirable. A confusion matrix (akin to a n x n contingency table, Figure 4) is 

usually reported for classification models (or regression models where a class threshold is 

set) and this represents good practice. It facilitates assessment of individual components of 

model performance, and allows determination of performance at the intended place in the 

ED clinical workflow. The standard statistical terms and metrics should be used rather than 

the ML terms as far as possible, for example sensitivity rather than recall.  

 

Figure 4 Confusion matrix with ML and standard statistical terms. ROC, receiver operator curve. 
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In regression tasks, the most commonly used metrics are related to the error (i.e. the 

difference between predicted and actual values) of the model. This can simply be the Mean 

Absolute Error (MAE) which weighs differences equally and is robust to outliers. However, it 

may not be as amenable to tuning and calibration as other metrics. Mean Squared Error 

(MSE), Root MSE and Coefficient of Determination (R²) are other metrics which are 

preferable when large errors are undesirable or to compare with a constant baseline 

performance. In most cases, it is helpful if the error is interpretable in a clinical context, and 

so may require re-conversion into an absolute value. Similarly, interpretability of 

performance is facilitated by Bland-Altman plots when predictions are tied to a clinical 

measurement, and measures such as interobserver reliability may also be appropriate. (36) 

The final model(s) will be assessed against the hold-out (test) dataset, where ideally, 

acceptable performance will be demonstrated using pre-determined metrics. An estimate of 

performance would also have been available from cross-validation. Confidence limits (or 

non-parametric estimates from cross-validation) are helpful in assessing the expected 

generalisability of performance metrics. Sensitivity analysis is suggested as a standard for 

model interpretation, with a range of performance reported (features of instances where it 

was most/least confident in classification tasks or had largest/smallest errors in regression 

tasks). (37) 

External Validation and Generalisability 

The ultimate aim in ML is to create generalisable models – those which can perform 

predictably well on new, unseen (clinical or non-clinical) information. The majority of 

published EM models do not consider this in detail, and are commonly framed on the data 

on which they were trained or tested in internal validation. In most cases, the testing data is 
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derived from the same repository or hospital(s) as the training data, and therefore is too 

homogenous to confidently extrapolate to other temporally or geographically distinct 

settings or datasets.  

There are measures which may reduce overfitting to training/internal validation data and 

the resulting non-generalisability concerns. Some of these have been discussed earlier, but 

in general features should be chosen which are reasonable clinically or causal predictors of 

the outcome of interest. This human plausibility or explainability is fundamental to the 

generalisability as well as clinical trustworthiness of the model. 

Models vary in their complexity and often in vitro performance is inversely related to this 

complexity. Interpretability is often difficult with more complex models, meaning that the 

decision-making steps are not open to interrogation to determine why a model made a 

particular prediction. A balance between performance and interpretability/ explain-ability is 

important for AI models to be considered for adoption and for patients, clinicians and 

regulators to trust the outputs when deployed for actual patient decisions. (14,38) This is 

being facilitated by more transparent reporting of model pipelines and increasingly, 

visualisations of model decision-making are being harnessed in order to translate the 

mechanics of model predictions into a digestible and interpretable format for clinicians. (39) 

The best immediate assessment of generalisability is the use of an external validation test 

dataset. Whereas a temporally separate validation sample is often acceptable in 

traditionally derived prediction models, this is not necessarily the case in ML models. (40) At 

least geographically distinct (and ideally temporally, by independent investigators if 

possible) is preferable to allow testing of performance on a dataset which is completely new 

to the model.  This will approximate real-world deployment, and combined with estimates 
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of spread/variance from internal validation, should provide confidence in model predictions 

when used clinically. The latter is of importance, as due to the stochastic nature of most 

algorithms, some variability in predictions is expected. 

It is recognised that a truly independent dataset may not be available to model developers. 

Good practice entails provision of the code and processes used in model development so 

that, like with traditional research, enough detail is available for reproducibility by 

independent researchers. In some instances, where intellectual property concerns may be 

an issue, independent third-party evaluation may be utilised. Alternatively, a virtual 

machine can be made available, which allows the input of data from a clinician’s own setting 

to test performance. (36,37) Not only can this approach to reproducibility provide an 

assessment of generalisability, but it also facilitates adaptation of the model to fit a 

particular setting, hence avoiding duplication of effort and research wastage. Furthermore, 

it will also allow consideration of model stability across variably resourced settings and as 

clinical care and knowledge evolves over time. 

Conclusion 

 

Interpretation of AI research in EM requires clear reporting and studies should meet 

research reporting standards by describing methodology transparently. The preceding 

overview of AI model development supplements the conceptual framework for 

interpretation and appraisal of AI studies covered in the companion paper. It should support 

clinicians in interpreting and undertaking AI studies (collaboratively with data scientists) and 

in critically appraising models which are proposed for use in their setting.  This will facilitate 

a better understanding of the methods used in model pipelines and how these methods can 

be contextually adapted for various EM and AI tasks.  
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