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Abstract 

This study aims to develop a cost-effective atrial fibrillation detection service that 

improves outcomes for patients. The service offers continuous Atrial Fibrillation (AF) 

detection which might help to address the real-world problem of stroke prevention. AF is 

the most common sustained heart rhythm disorder in adults. AF is either intermittent 

(paroxysmal) or permanent. Both types increase the risk ischemic stroke around fivefold. 

An accurate diagnosis of AF is mandatory for treatment initiation. AF treatment reduces 

the stroke risk and for individual patients prevent stroke. Unfortunately, current AF 

detection methods often fail to detect paroxysmal AF cases, because the observation 

duration is too short. We propose to address this problem with real time monitoring and 

artificial intelligence for AF detection. We developed two distinct deep learning models 

to detect irregular heartbeats. For the first experiment, a Long Short-Term Memory 

(LSTM) classifier was used to detect and differentiate AF beats and Normal beats. The 

data were collected from MIT-BIH Atrial Fibrillation Database. This database 

incorporates 10-hour Electrocardiogram (ECG) signals from 23 participants. The second 

experiment was based on using a ResNet algorithm to detect common arrhythmias, 

namely, AF, and Atrial Flutter (AFL), as well as Normal Sinus Rhythm (NSR). The 

algorithm was trained with data from 4051 subject. The LSTM model achieved 98.51% 

accuracy with 10-fold cross-validation (20 subjects) and 99.77% with blindfold validation 

(3 subjects). Whilst, the ResNet model achieved, the following results: accuracy = 

99.98%, sensitivity = 100.00%, and specificity = 99.94%. In addition, the LSTM model 

was validated with five independents benchmark databases to establish the robustness and 

maturity through more and more varied datasets. With the LSTM validation, we 

established trust which enabled us to conduct a clinical trial study with Sheffield Teaching 

Hospital. As part of this work, an AF detection service validation tool was built for hybrid 

decision support where machine learning decisions are verified by a stroke consultant. 

This detection method makes economic sense because Heart  Rate (HR) signals are cost-

effective to measure, transmit, and process. Having such a cost-effective solution might 

lead to widespread long-term observation, which can help detecting arrhythmia earlier. 

Detection improves the outcomes for patients and reduces healthcare cost.
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 Chapter 1 Introduction 

1.1 Background 

Stroke, also known as cerebrovascular accident, is the second leading cause for mortality 

and the third leading cause of disability worldwide [1], [2]. Prevalence in the general 

population and severity of outcomes are the main drivers behind these statistics. 

Annually, stroke affects around 15 million adults globally [3]. About one in five of the 

individuals who experience a stroke die during the first 30 days [4], and over 40% of 

stroke survivors are functionally dependent after 6 months [5]. Around 5.7 million people 

die annually from stroke worldwide. 

 Ischemic stroke occurs when the bloodstream to any part of the brain is blocked by blood 

clots. Once this occurs, brain tissue is damaged due to a lack of oxygen. Therefore, the 

brain needs a steady supply of blood, delivering essential oxygen and nutrients, to 

maintain normal levels of functionality. The Framingham study showed that there is a 

connection between Atrial Fibrillation (AF) and stroke, by examining 5,070 participants 

[1]. The researchers found a positive correlation between nonrheumatic AF and stroke. 

Clinical studies showed that AF, either permanent or intermittent (paroxysmal), increases 

the risk of cardio-embolic stroke fivefold. Around 25% of all strokes happen in people 

aged 65 years or younger. In the UK, the estimated rate of having a stroke, in people aged 

45 years and below, is approximately 20,000 cases every year [6]. There are 150,000 

people getting stroke in the UK each year [7], and 53,000 people died [8]. The overall 

cost for stroke treatment is expected to exceed £ 9 billion in the UK [9]. In addition, stroke 

ranks third in the annual mortality statistics in the UK, after heart attacks and cancer [10]. 

Stroke prevalence differs according to age and sex. Statistics indicate that death caused 

by stroke in men is 9% in the UK, whereas 13% female fatalities were accounted to stroke. 

The severity of strokes in people with AF is higher and a stroke event has worse outcomes 
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when compared to people who have strokes without AF [11]. Therefore, AF treatment 

can reduce the stroke risk.  

Continuous treatment monitoring can be achieved through automated AF detection and 

wireless communication technology. In the past, remote health monitoring was difficult 

because appropriate mobile communication technology was not available [12]. Wireless 

networks can play a main role in continuously monitoring patient's health. The purpose 

of utilising wireless networks is to establish the continuous patient monitoring in a cost-

effective way. Wearable health care systems monitor various vital signs from a patient, 

such as blood pressure, Heart Rate (HR), heartbeats, respiratory rate, body temperature 

and body orientation [13]. For instance, nurses or caregivers might not be available 24/7 

in hospitals or at the home environment for monitoring patients’ status constantly. 

Therefore, there are periods of insufficient care. During these periods, the patient 

condition might significantly worsen. The only way to avoid the care gaps is to monitor 

the patient continuously. However, nurses or other human caregivers are inefficient in 

monitoring patient health. A much better setup is to involve care giving only if it is needed 

and not spend time and attention when the patient is not in a critical phase.  

We propose a real time AF detection service for stroke prevention. This service comprises 

of a commercial HR patch, central server to access patient HR data, automated AF 

detection algorithm, physician support tool to review and verify the machine decision. 

The monitoring duration of the proposed service is not limited. That means our service 

can support a long observation duration, which might help to detect paroxysmal AF cases. 

The proposed value for the healthcare providers is twofold. From a medical perspective, 

a long observation duration has the potential to generate a higher AF detection rate in 

patients who use the monitoring service. Furthermore, the unlimited observation duration 

enables a cardiologist to monitor the AF treatment’s efficacy indefinitely. To achieve this 

task, we introduce the concept of patient-led data acquisition where HR data travels from 

the point of measurement (patient) to a central storage point, i.e., a cloud server. As such 

patient led data acquisition is ideal for long-term monitoring. The second value 

proposition comes from hybrid decision support, which leads to efficiency in terms of 

both time and cost. A physician gets involved only if a deep learning algorithm detected 

a sequence of AF beats; at all other times, human expert intervention is not required. 

Furthermore, the combination of continuous machine analysis and human oversight 

creates a cost-effective system for hybrid decision support. Hence, the AF detection 
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service reduces the time a medical doctor spends on routine screening tasks. Once the 

estimated AF probability is established, the service provides information extraction tools 

to analyse critical sections of the HR trace effectively. The physician can combine the 

extracted information with other information sources, such as patient records, to reach a 

safe and reliable diagnosis. These diagnosis results can be transmitted via a feedback 

channel to the patient. Implementing the AF detection algorithm for real-time monitoring 

loads a current Central Process Unit (CPU) core by about 50%. This translates into low 

processing cost if the algorithm runs on a cloud server. Furthermore, HR has a low data 

rate and high information content when compared with ECG signals. As such, the low 

data rate implies that the wireless HR sensors have a low energy consumption, which 

keeps both size and cost down. The value propositions focus on the healthcare provider. 

The patient benefits from the AF detection service through patient-led data acquisition, 

unobtrusive HR measurement and peace of mind through real-time HR monitoring and 

diagnosis. 

1.2 Aims and objectives 

This study aims to develop a cost-effective atrial fibrillation detection service that 

improves outcomes for patients. The main objectives of this study are as follows:  

1. Measure the electrical activity through RR intervals signal.

2. Deploy the RR intervals for AF detection to prevent a stroke.

3. Use a computer-aided-diagnosis that represented by a deep learning algorithm to

detect AF episodes continuously.

4. Detect more AF events based on long-term monitoring.

5. Validate a deep learning algorithm with more and more datasets.

6. Develop service directions that improve patient outcomes.
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1.3 Research Questions 

1. Can we detect atrial fibrillation from RR intervals?

2. Does validation setup increase the confidence?

3. Does the automated atrial fibrillation detection service reduce the risk of stroke?

4. Do the service directions help patients and healthcare provider?

5. How do we continue to improve deployed medical decision support systems?

6. How do we improve the safety of a machine decision?

In the literature review, we will support and detail this research question. 

1.4  Tasks and Steps taken 

The following list details the steps taken to achieve certain objectives: 

1. Develop techniques based on neural computing deep learning for AF diagnosis.

Evaluate the system's performance with benchmark data from freely available

databases (i.e., PhysioNet).

2. Design, build and evaluate a HR monitoring system that incorporates the latest

wireless technology to be record RR intervals related health data.

3. Develop cloud computing techniques to facilitate communication between the

signal monitor and facilities to store information.

4. Patient led data acquisition through real-time transmission.

5. Validate the LSTM model with unknown data from varied databases.

6. Validate the proposed AF detection service for stroke prevention in the clinical

trial.

7. Validate the deep learning classification results by an experienced cardiologist.

8. Establish the feasibility of hybrid decision support through results analysis

formulation of the clinical study.
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1.5 Expected Contributions to Knowledge 

This research will contribute to the literature substantially in terms of human factor, 

technology, and cost [9].These factors can establish an effective environment to real-time 

patient-led data acquisition. To be specific, that scope focuses on monitoring with only 

non-invasive devices which do not require surgical procedures. As such, they offer 

technical solution which can help to detect more AF. We propose HR signal measurement 

as an ideal technology for long-term AF detection [14]. HR signal is a cost-effective 

method to measure, communicate, store and processing [15]. Distinct deep learning 

algorithms were developed to detect AF, AFL, and normal rhythm from HR measurement 

[14], [16], [17]. Intelligent Internet of Medical Things (IIoMT) were developed to 

facilitate data distribution, processing through integrated DL algorithm in the central 

cloud system, data storage and visualisation [18].  The combination of IIoMT, DL system, 

and physician involvement form the service platform concept [19]–[22].  Therefore, these 

technologies influence the human factors which determine the product success. The goal 

for all patient-led data acquisition systems is to become a product; hence, cost pressures 

exist early in the design process. Even research is influenced by arguments about cost, at 

least when it involves selecting a particular topic or conducting a specific study. 

Thus, this research has a novel approach that contains in-depth understanding and 

knowledge of identifying unmet needs as well as   solving the real-world problem which 

can benefit both patients and healthcare providers. In addition, this research attempts to 

fill the gaps by using advanced technological approaches that overcomes the challenges 

of traditional methods.  

1.6 Research methodology overview 

This research fellows a quantitative approach that demonstrate latest technical solutions 

in complex computational of digital signal processing. The quantitative approach based 

on deep learning algorithms rather than traditional machine learning. This is due to the 

fact that deep learning does not require feature engineering, feature selection and 

information reduction [23]. All the features can be extracted automatically during the 

learning phase. In addition, the quantitative methods involve training and testing the DL 
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model with benchmark data. This data is freely available for research on large database 

known as PhysioNet. The LSTM model was established to detect AF from RR intervals. 

Whereas, the ResNet model was created to detect AFL, AF and NSR from around 4050 

participants. Both models achieved such a promising result that has been compared with 

the state of the art.   To be specific, the LSTM model was validated with varied datasets 

to show the potential of an accurate detection as well as evaluating the performance 

measures.  

The safety of machine decision can be improved through human verification [19], [24]. 

From these projective, we conducted a practical study that based on AF detection in 

clinical setting. The sample size includes 20 participants from two different cohorts, 10 

participants from known AF group and the other 10 from normal group.   

1.7 Thesis outline 

This thesis structured from seven chapters. Chapter 1 incorporates a background on stroke 

risk and its relevance to AF. In chapter 2, we conducted an informative literature review 

on AF occurrence, technology based on signal measurement and devices for this emerging 

healthcare field that allows us to formulate research gaps which might be addressed in 

future projects. Chapter 3 introduces the methods used for automated arrhythmia 

detection. Chapter 4 demonstrates the additional validation setup for a deep learning 

model to reach the robustness and maturity with varied databases. Chapter 5 based on 

hybrid decision support to reach an accurate diagnosis. Chapter 6 documents the clinical 

trial study procedures, data collection and results analysis. The chapter 7 summarizes the 

thesis findings, and it delivers a conclusion, limitation, and future work. 
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 Chapter 2 Literature Review 

In this section, we introduce AF as a heart rhythm disorder, and we discuss various AF 

detection methods. Furthermore, we make an attempt to frame the research question 

better by introducing state of the art systems and frameworks that can be used to detect 

more AF. Having reviewed signal acquisition, communication, and processing for 

automated AF detection, we are in a position to put forward a number of research gaps. 

2.1 Atrial Fibrillation 

AF is the most common serious irregular heart rhythm associated with rapid HR in adults 

[25]. Atrial means to the atria (pleural of atrium), which describes the locations at the top 

two chambers of the heart. Fibrillation refers to irregular, rapid and unsynchronised 

contraction of muscle fibres. Sinus rhythm represents the normal beat of the heart, which 

is managed by a sophisticated electrical control system. This system controls the timing 

of the heart pump. When the electrical system is functioning correctly, it maintains a 

normal HR rhythm. Problems with this electrical system can cause an arrhythmia. Two 

arrhythmia types can be identified which are associated with abnormalities such as 

tachycardia and bradycardia. Tachycardia describes a situation when the heart beats too 

fast whereas bradycardia indicates that the heart beats too slow.  

The sinus node consists of a cluster of special cells, which acts as the heart’s natural 

pacemaker. The sinus node controls the rate at the atria while the heart muscles contract 

and relax. In AF, disordered electrical activity progresses in the walls of the atria, 

exceeding the sinus node. As a result, the rhythm will change from normal to abnormal 

when the atria begin to fibrillate; that leads to a rapid rhythm as their muscular walls fail 

to contract with coordination and regularity. 0.4% of adults are affected by this disease, 

and prevalence increases with age. Less than 1% of people are affected by AF in the age 
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group of 60- years or younger. The prevalence increases to 6% for those aged 80-years 

and older [26]. It is anticipated that the occurrence of AF increases, because of the aging 

population. In addition, AF incidence is related to a significant increase in stroke, heart 

failure, poor mental health, diminished life quality, as such it is a leading cause of death 

[27]. This disease is associated with various types of symptoms, such as chest pain, 

shortness of breath, fainting, fatigue, palpitation, and light-headedness [28]. AF can be 

treated by a procedure known as cardioversion, which tackles the electrical problem in 

the heart. that can be subjected to the physicians who attempt to treat the rate and rhythm 

of the heartbeat, or they can return the heart to normal sinus rhythm.  

In 2019, National Health Service (NHS) England defined their ambition to enhance 

outcomes for stroke patients by increasing the AF detection rate from 79% to 85%. Recent 

analysis from Public Health England and NHS reveals that, over 3 years, accomplishing 

optimum treatment for people diagnosed with AF could prevent up to 14,220 strokes 

across England [9]. This could save £ 240 million. To accomplish that ambition, cost-

effective technological solutions for AF detection are needed. Currently, 12-lead 

Electrocardiogram (ECG) recording and prolonged Holter ECG monitoring are the most 

common methods used to screen for AF. 12-lead ECG recordings require specialized 

medical facilities to do the recording. Holter monitoring systems can be applied inpatient 

wards; however, most of them are bulky, burdensome, and they have a limited monitoring 

duration. This limits their utility in clinical practice. In other words, resource constraints 

restrict the use of the measurement equipment, and the observation duration is insufficient 

to detect all rhythm abnormalities. The medical framework around AF was shaped by 

these limitations. That framework unfolds with all patients belonging to the ‘first detected 

AF’ category [29]. If a first detected episode ceases on its own in less than seven days 

and then another episode begins later, the category changes to paroxysmal AF. Although 

people in this category have episodes lasting up to seven days, in most cases of 

paroxysmal AF, the episodes will stop in less than 24 hours. If the episode lasts for more 

than seven days, it is unlikely to stop on its own and is then known as persistent AF. In 

this case, cardioversion can be applied to restore the rhythms back to normal. If 

cardioversion fails, and the episode continues for a long time (i.e., a year or more), the 

person's AF is classified as permanent. Labelling all confirmed cases as ‘first detected 

AF’ implies that the arrhythmia might have been present before it was discovered. Hence, 

it is expected that more measurements will lead to a larger number of first detected AF 
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cases. However, the signal acquisition period for current AF detection methods is small 

when compared to the symptomless periods of paroxysmal AF [30], [31]. Consequently, 

a patient might be symptomless during the recordings. That will result in a false negative 

diagnosis. Thus, current recording techniques will increase the chance of misdiagnosis. 

That ambiguity can diminish the number of first detected AF cases which can be increased 

by extending the recording duration [32], [33]. Detecting more AF might lead to more 

and earlier treatment which can reduce the stroke severity and in some cases prevent a 

stroke altogether [34]. That potential to reduce the disease burden is significant because 

estimates indicate that one-third of all patients who suffered a stroke have undiagnosed 

AF. Apart from this direct effect on enhancing outcomes for patients, more and longer 

measurements also aid our understanding [35]. The Framingham heart study has also 

found that AF is an independent risk factor for stroke [1]. However, the sample size and 

the analysis methods were inadequate to determine the degree of danger from untreated 

AF. A better understanding is needed to establish the stroke risk for a specific patient with 

paroxysmal AF. Treatment is another aspect that could benefit from statistical analysis. 

Current treatment methods are invasive, and they carry the risk of death. With long-term 

measurements it might be possible to show the efficacy of less invasive treatment, such 

as diet, exercise, and lifestyle changes. 

2.2 Photoplethysmogram  

Photoplethysmogram (PPG) is an optical method that measures the HR from blood 

volume changes. PPG signals are established by measuring light reflected from human 

tissues [36]. The main feature of PPG signals is a shape known as peripheral plus, which 

corresponds to R waves in the ECG. Once the signal is captured, each consecutive beat is 

quantified and maintained as an RR interval [37]. Hence, the methods used for AF 

detection are related to those that process RR intervals extracted from ECG. The pulse 

measurement can be achieved through mobile devices, such as wristwatches [38]. 

Therefore, the PPG functionality is often being adapted as an add-on feature into mobile 

devices, which is cost effective. Sensors and associated measurement technology is likely 

to become widespread for HR signal acquisition in the patient environment. 
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For user comfort, these devices are designed to be movable which is likely to cause 

activity specific artefacts in the measurement [39]. These artefacts include mandatary pre-

processing algorithms that filter the signal before it is fed to the AF detector. Salesmen et 

al. [40], addressed the lack of labelled PPG data by medical professional that found from 

publicly MIT-BIHAF databases repository to generate a PPG detection model. This 

model designed to consider cardiovascular system; hence, there might be changes by 

optimising how well that model works for a specific patient. That uncertainty also impacts 

the AF detection approaches that were established with the PPG model. Another method 

is to measure PPG alongside ECG. Once the measurement is completed, the labels 

generated by an experienced cardiologist, from ECG to PPG signals [41], [42]. Dual 

measurement helps to overcome the limitations that arise from the fact that PPG signals 

cannot be examined directly through visual inspection by cardiologists. In other words, 

the cardiologist identifies AF episodes based on ECG signals. Yet, PPG signal has not 

been used in clinical practice as a reliable diagnostic tool.   

2.3 Electrocardiogram 

ECG is a physiological signal that measures the electrical activity of the heart. ECG is a 

basic non-invasive measurement method. This measurement can be achieved through 

placing several electrodes on the chest and on other parts of the human body. The outcome 

is a time domain signal. The initial diagnosis of heart conditions is normally made through 

monitoring both characteristic ECG variations and observed symptoms during the clinical 

visit. In AF detection, the standard observation is used 12-lead ECG [43]. To reach an 

effective diagnosis, the signal is analysed by a well-trained clinical physiologist [44].  

Figure 1 demonstrates two different segments of ECG signals that were taken from MIT-

BIH Atrial Fibrillation Database [45], [46]. Normal Sinus Rhythm (NSR) indicates a 

normal ECG cycle of healthy heart. ECG comprises from three main components which 

are P wave, QRS-complex and T wave.  

Figure 1 provides an example NSR signal. In that plot, the first component P-wave is 

marked and annotated. Medically, AF can be identified as a collapse of organised atrial 

electrical activity [47]. This collapse is indicated by the absence of a P wave in the ECG 

signal. If that happens, the R peak becomes irregular [48]. The second plot in Row1 of 
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Figure1 shows an example of an ECG signal that appears with AF signs. The graphical 

representation of AF is related to irregular time intervals of R peaks due to the absence 

of P waves. The R peak, in the ECG plots, indicates ventricular depolarization, for 

example, the time of the heartbeat, assume a and b, is indicated as the RR interval. That 

time duration forms the amplitude, and the time location of the second beat b is the time 

location of an RR interval sample. The P wave, labeled in the NSR ECG plot, indicates 

atrial depolarization. 

The morphology of ECG signals varies from person-to-person [49]. ECG-based AF 

detection means to diagnose the disease-associated with variations. The main difficulty 

is that these morphology variations might not be exclusive, which results in reducing the 

specificity in diagnosing the disease that causes those changes. To solve the sensitivity 

issue, extending the observation duration might work effectively [50]. Moreover, the 

relationship between AF mechanisms, recorded by surface ECGs, and atrial activity, is 

not yet well comprehended [51]. This uncertainty translates into imprecise detection 

algorithms. AF detection based on the symptomatic rhythm disorder could be a helpful 

option for moving forward. Despite ECG being a non-invasive method, which facilitates 

that measurement, the ECG measurement setup is complex because the electrical signals 

have low amplitude. Furthermore, ECG signals have a high data rate, which makes them 

difficult to distribute and process in real-time. 
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Figure 1: The first row shows the plotting of two different ECG signals and the second 

row the subsequent RR interval traces. The first column in the plots show NSR, and the 

second column show AF symptoms [22]. 

2.4 Heart Rate  

AF episodes can be also detected through HR signals [52]. The lower plot in 

Figure 1 shows the RR intervals that correspond to the ECG signals shown in the upper 

plot. As such, beat-to-beat signals are formed from RR intervals. These RR intervals 

refer to the time measured from one R peak in the ECG signal to the next. As shown in 

Figure 1, this concept is indicated by the arrows that showed the RR intervals signal 

extracted from the ECG. Even for an experienced cardiologist, it is difficult to diagnose 

the subtle linear and nonlinear disorders in the RR interval trace that related-to AF. 

Therefore, manual interpretation of HR measurements might result in inter-and intra-

observer variability. Algorithmic decision support synchronised with digital biomarkers 

can assist to overcome these difficulties and consequently enhance the diagnostic quality 

[53], [54]. In intermittent AF, the incidence of symptomatic episodes is ambiguous [55], 

[56]. Some AF-events might end more than 48 h [55]. Numerical analysis proof that 

during AF events, the RR intervals have a shorter correlation length and a greater standard 
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deviation than those during NSR. Hence, these measures can be applied as digital 

biomarkers for detecting AF occurrence. However, the measures are not good enough 

when it involves distinguishing AF from other arrhythmias.  

2.4.1  Intelligent internet of medical things based on M-health  

Patient-led data acquisition systems must identify patient demands and data specific 

requirements. Physiological signal recording is a main factor of such systems. Once the 

signal is recorded and digitized, the samples become data with specific requirements for 

transmission, storage, and analysis. Patients require improvement of their outcomes and 

better management of their stroke risk. At the same time, a system needs to be convenient 

enough to ensure patient compliance [9]. Mobile health, also known as m-health, aims to 

provide the technical solutions which highlights addresses both data requirements and 

patient needs [57]. Thus, m-health was defined by the Global Observatory for eHealth 

(GOE) as medical and public health practice that operates through portable devices, such 

as mobile phones, patient monitoring tablets, personal digital assistants, and other 

wireless devices [58]. The core idea of m-health systems is that the data rather than the 

patient travels. More specifically, close to the patient the data is interconnected through 

wireless channels to increase convenience for long-term recordings. M-health delivers 

hospital-in-house services that overcome geographical as well as organizational 

impediments [59], [60] . More advanced m-health services provide automated diagnosis 

support through built-in AI algorithms [20]. Furthermore, the cost-effective nature of m-

health services makes them attractive for developing countries [61], [62], where health- 

care facilities are sometimes inaccessible. Hence, the m-health approach can be used to 

implement patient-led data acquisition for AF detection to prevent stroke [63]–[65]. The 

m-health concept outlines a general framework of components. that can be used for 

patient-led data acquisition. That concept is flexible enough to accommodate the rise of 

big data which established itself as an independent goal for healthcare applications. 

 

To highlight that substantial change in healthcare technology, the Intelligent Internet of 

Medical Things (IIoMT) improves m-health to capture the data centric nature of patient-

led data acquisition systems which transmit signals from a patient to a central cloud server 
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for processing and storage [66]. This approach comes from the fact that wireless 

technology enables us to exchange healthcare data in real time [67]. The real time, or 

more specifically the statistical real time, aspect is crucial, because there is only finite 

buffering in the system, and data loss will occur if one component in the processing chain 

cannot maintain the required speed. To address that problem, IIoMT systems use packet-

based transmission protocols which make the data exchange very robust [68], [69]. 

Linking the advancements of AI technology, telemedicine, and wireless body sensor 

networks, facilitates IIoMT systems to automate clinical decision-making. Human 

decision empowered AI can provide better support in terms of learning and discovering 

new knowledge from big healthcare data [70], [71]. This can be achieved through human 

validation of AI decisions. For example, in cardiology departments, human experts can 

work cooperatively with deep learning algorithms to establish a medical diagnosis [69], 

[72]. Patient-led data acquisition for AF detection to prevent stroke can be established 

with mobile health systems that measure and process physiological signals in real time. 

During the systems design, individual requirements that arise from stakeholder needs 

must be refined into a specification which governs the implementation [73]. As such, this 

improvement process has many degrees of freedom, and resolving design choices is based 

on available technologies, organization strategies, and human factors. 

2.4.2 The internet of things technology for healthcare settings 

IoT is an advanced method used to reshape the traditional healthcare domain, as such 

promising technological, economic, and social aspects [74]. IoT based healthcare 

provides various solutions which can facilitate the clinical missions in terms of 

monitoring, data acquisition, processing, and data analysis for a subject. The medical 

applications significantly increase their performance by tapping into the potential of IoT 

systems. These apps facilitate remote health monitoring of chronic diseases, sports 

programs, and elderly care. In addition, taking the medication and treatment on the 

specified time at home is another possible way IoT systems can be used in healthcare 

applications. The idea is that such systems give an alert to the patient when it is needed. 

Therefore, IoT services are projected to diminish the healthcare costs, enhance the 

subject's experience and increasing the quality of life. Furthermore, IoT based healthcare 

is an essential trend which can be updated through wireless technologies that predicted to 



Chapter 2 Literature Review   

15 

support medical emergencies, real-time monitoring, and early diagnosis. At this stage, 

cloud platform plays a main role of delivering and storing patient records on demand 

health services. The databases must be established and transmitted from medical server, 

gateways, and other health database resources. Drew [75] demonstrated that IoT 

techniques can be  deployed  for ECG monitoring in clinical settings. Their system 

facilitates HR measurement and the determination of heart rhythms as well as the 

diagnosis of multi-faced arrhythmias, myocardial ischemia, and prolonged QT intervals. 

The application IoT based ECG monitoring has the capability to provide the maximum 

information that could be extended to the longest period needed [76].  

2.5 Automated diagnosis support architectures 

An applicable IoT infrastructure can facilitate the cognitive prospective in terms of 

forming automated AF detection as a service [22].  These cognitive prospective are 

associated with improving the information that streams from the patient to the 

cardiologist. The diagram, shown in  

Figure 2: Streaming the information from patient to cardiologist [22]. 

 shows that the patient represents information acquisition source and cardiologist as the 

information sink. There are two separate directions for the information flow. The first 

direction refers to information extraction through deep learning. The second direction 

indicates to information extraction through using the digital biomarker algorithm. The 

obtained information can support as a measurable disease indicator for the physician 

during the examination process. Regardless the direct use, the obtained information can 

also apply as input for the classical Machine Learning (ML). The ML algorithms enhance 

that input into a single score. In the next section, we provide a review on the digital 

biomarker, deep learning concept, and classical ML algorithms used to reach the 

information refinement.  



Chapter 2 Literature Review   

16 

Figure 2: Streaming the information from patient to cardiologist [22]. 

2.5.1 Digital biomarkers 

The conception of digital biomarker is a significant finding factor in the review.  Digital 

biomarkers refer to identify the information of interest that was picked up from the 

original measurement [77]. To do this, algorithms can be used to extract these biomarkers 

[77]. In the past, digital biomarker was understood as complementary to the traditional 

methods, such as cardiologist interpretation of ECG [78]. Since there is a possibility of 

establishing excellent digital biomarkers quality by using statical methods, and machine 

classification, they have begun to acquire acceptance [79].  

Digital biomarkers for AF detection are often clustered into frequency, time, nonlinear 

and time frequency.  

1. Figure 3 shows a taxonomy of individual groups and the following points provide

more details on the techniques applied to obtain the digital biomarkers: Time-

domain can generate biomarkers from the algorithms that analysis signals over

time. From that prospective, they can be readily utilised to model the dynamic

performance of the human heart.  These are the most understandable digital

biomarkers because they can measure some of the annotations that could be

obtained through visual examination of the signal. However, these biomarkers are

not successful to describe   the non-linear features of heart’s fluctuation process.

Therefore, they do not provide all the existing information. To give an examples

on the digital biomarkers algorithms, such as Principle Component Analysis
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(PCA), differential equations [80], Linear Discriminant Analysis (LDA) [81], the 

Hadamard transform [82], and Independent Component Analysis [ICA].  

2. Heart rhythm is related to the frequency component of the ECG signal. From the

frequency domain, we can extract the digital biomarkers measures that refer to the

features of the rhythm variations. These biomarkers are sensitive to rhythm

variations initiated by AF. To be specific, frequency analysis techniques have

linear characteristic. Therefore, the digital biomarker obtained from the

frequency-domain fail to reflect non-linear features that is probable having a

related source of information. The theory of Fourier Transform (FT) and Power

Spectral Density (PSD) [83] are used as algorithms to extract the digital

biomarker.

3. Hybrid-domain digital biomarkers are based on the concept of mixing the analytic

power of multiple domains [84]. The practical understandings are relied on the

fact that the spectrum changes are leading from the time progresses [85]. It is

applicable to track spectral variations over time [86]. Based on the evidence that

a rhythm irregularity will appear in the frequency domain, time resolution allows

us to predict the time occurrence of AF event [87]. These digital biomarkers are

an excellent tool for describing the arrhythmia positions. However, the analysis

does not go beyond linear associations.  There is list of examples that refer to

hybrid domain transformation algorithm are: Short-Time Fourier Transform

(STFT) [88], Empirical Mode Decomposition (EMD) [89], Wavelet Packet

Decomposition (WPD) [90], Stationary Wavelet Transform (SWT), Discrete

Cosine Transform (DCT) [91], Continuous Wavelet Transform (CWT) [92],

Wavelet Transform (DWT) [84], and Time-Varying Coherence Function (TVCF)

[93].

4. Nonlinear digital biomarkers target to consider the nonlinearity nature of the

human heart [94]. Data tests replacement [95] show that the nonlinearity cannot

be avoided in the physiological signals such as ECG and RR intervals. To test the

performance of nonlinear digital biomarkers, with statistical and classification

approaches, indicating that they are an independent source of the information.

Herein some examples of algorithms that supply parameters for such biomarkers

Higher Order Spectra (HOS) [96], Fractal Dimension (FD) [97], entropy [98],

energy, Recurrence Quantification Analysis (RQA) [99] and Largest Lyapunov

Exponent (LLE) [100]. RQA describes a set of digital biomarkers that generate
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from examining the recurrence plots. Measuring the duration and number of 

occurrences in the physiological signal can assist us to comprehend the phase 

space route.  The presence of AF might be related to changes in the phase space 

route [99]. The HOS refers to a third order of the spectral representation, and 

higher instants and cumulants. It harvests nonlinear digital biomarker that 

compute the nonlinear correlation between numerous frequency contents[101]. 

These measures are important to rhythm variations, which make them valuable 

for detecting arrhythmias. FD and LLE are disorder measures in terms of the 

signal complexity [102]. Entropy scales the information content of a signal [103]. 

In general, signals with fewer structure have more information content such as RR 

intervals signals, compared to signals have more structure, i.e., ECG. Energy 

biomarkers measure the rhythm’s regularity of physiological signals. 

Figure 3: Digital Biomarkers taxonomy [22]. 
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2.5.2 Artificial Intelligence 

Artificial Intelligence (AI) incorporates from sets of computational algorithms that help 

in creating the input signal class. To be specific, classification algorithms are categorised 

into three main types: (a) supervised learning (b) unsupervised learning, and (c) 

reinforcement learning [104]. These algorithms are required a specific design step as well 

as tailored algorithms. Figure 4 illustrates a taxonomy graph of AI system management. 

Unsupervised learning structures the data as sets of clustering. To establish the cluster, a 

new data vector is used to group the objects which it most probable belongs. K-means 

clustering [105] and self-organising map [106] are examples of classification algorithms 

that based on unsupervised learning. While in the reinforcement learning approach, the 

algorithm requires continuous training by taking the feedback into the considerations for 

improving the quality of the decision. To give examples of the reinforced learning, hidden 

Markov models [and generative adversarial networks are used as algorithms for decision 

making. 

 A student-tutor relationship reflects the idea of supervised learning. Annotated data can 

be applied to train and test the supervised algorithms. The typical technique to verify the 

decision reliability, is based on using 10-fold cross validation [107]. Holdout dataset is 

indicating into blindfold cross validation which establishes the classifier performance 

through practical conditions [108]. There are some examples of the classical ML 

algorithms that relies on supervised learning as shown in Table 1. 

Table 1: Shows lists of  examples of classical ML algorithms. 

Classical ML algorithms examples References 

1. Naive Bayes (NB) [109] 

2. Probabilistic Neural Network (PNN) [110] 

3. Support Vector Machine (SVM) [111] 

4. Random Forest (RF) [112], [113] 

5. Levenberg–Marquardt Neural Network (LMNN) [114] 

6. K-Nearest Neighbor (K-NN) [115]
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The core idea of Deep Learning relies on multi-hidden layers that shapes a complex 

structure and deals with complex scenario. A Deep Neural Network (DNN) imitates the 

human intelligence that is performed by the brain in terms of the complexity and 

functionality. In the past decades, the Artificial Neural Network (ANN) algorithms was 

designed with maximum of two hidden layers, which has a small number of 

interconnected neurons [104].  These intelligent systems have the capability of learning 

through updating weight parameters within the individual neurons. However, ANN has 

less complexity; therefore, these algorithms cannot easily process high-dimensional data. 

Whereas deep learning algorithm deals with complexity to extract the knowledge from 

data structured with high-dimensional [23].  For instance, it is applicable to feed RR 

intervals data directly into a deep learning. system.  In contrast, ANN algorithms require 

information reduction through its dimensionality when they extract the digital biomarkers 

and before processing the data. Deep learning approach was effectively implemented to 

a wide range of applications, such as image analysis [117], sound classification [118], 

and signal analysis. DNNs are mainly comprised of three types of layers which are 

convolutional, pooling and fully connected. The first layer (convolutional) is an adaptive 

filer, which can update its weights during the training phase.  The pooling layer achieves 

a result directed that involves the dimension reduction of the values that spreads via the 

network. A common approach performs dimension reduction which is known as Max 

pooling [23]. The fully connected layers come at the end of DNN processing series. The 

data is combined from the previous layers, which could be more focused at the end of 

third layer, such that individual labels appear [119]. However, there are numerous types 

of variant DNN algorithms, i.e., Recurrent Neural Network (RNN) [120], Convolutional 

Neural Network (CNN) [121], Deep Belief Network (DBN) [122], and Long Short-Term 

Memory (LSTM) [123]. Figure 4 shows the taxonomy of AI. Faust et al. [22] referred to 

ANN and other algorithms as classical ML. These algorithms, plus the DNN algorithms 

belong to set of supervised learning algorithms. The main difference between deep 

learning and ML algorithms are that the previous set of algorithms require extracting the 

7. Decision Tree (DT) [156] 

8. rule-based [116]
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digital biomarker, while the latter set can handle the physiological signal directly without 

feature extraction and information reduction.  

Figure 4: Categorisation of Artificial Intelligence [22]. 

2.6 Automated Arrhythmia detection based on ECG and RR intervals 

Enormous number of studies that have been conducted by researchers to differentiate AF, 

Atrial Flutter (AFL) and NSR [16], [124], [125]. This differentiation based on automated 

arrhythmia intelligent detection algorithms through extracted knowledge from ECG and 

RR intervals. AF and AFL are types of arrhythmias that impact an increasing number of 

patients. AF is more common than AFL due to AF is a leading cause for stroke that 

increase its risk five-folds. In addition, AF increases the risk of death with double when 

compared to healthy people from the same age. In contrast, AFL is less common than AF 

with a prevalence of 0.09% of population, but whose anticipated disease burden is also 

subjected to increase by at least 2050 [17]. Approximately, over half of AFL subjects 
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have AF; however, AFL also indicate to independently increased risk factor of stroke and 

heart failure compared to those with a NSR [126]. 

 In the clinical practice, the treatment management of symptoms from these both 

arrythmias does differ, but they have the same symptoms which might lead to 

misdiagnosis through human expert. This means that the discrimination between them is 

a significant clinical step based on computer aided diagnosis. For example, while the 

stroke prophylaxis decisions in the form of anticoalition does not differ between AF and 

AFL. Treatment decisions for managing the symptoms such as a shortage of breath and 

palpitations differ greatly. In respect to the risk of effective treatment is based on using 

the medications (drugs) or cardioversion treatment (to restore the heart rhythm to normal), 

which has been significantly reported as higher in patients with AF and AFL [127]. 

Looking beyond the literature, a rich context is available about automated arrhythmias 

detection based on wide ranges of machine learning algorithms. Faust et al. [17], 

introduced a distinct deep learning algorithm for detecting arrhythmias by using RR 

intervals. This algorithm is based on ResNet/detrending 10-folds cross validation 

approaches that achieved promising results, indicating to 99.98% of accuracy, 99.94% of 

sensitivity and 100% of specificity. Fujita et al. [128], used CNN with normalisation 

LSTM to detect arrhythmias from ECG signals that they achieved the following results, 

98.45% of accuracy, 99.87% of specificity and 99.27% of sensitivity. These results 

represent the top best findings available for arrhythmias discriminations. 

2.6.1    A symbolic dynamic transformation and MSSE algorithm used 

for detecting AF based on RR intervals  

Zhang [129] have done significant research on specific algorithms for detecting AF based 

on RR intervals. Their method extracted the features from RR intervals in two stages. The 

initial stage began with pre-processing the raw RR interval by deploying symbolic 

dynamic transformation and multiscale Shannon entropy. Therefore, that step measured 

the variability of the beat-to-beat interval and hence it obtained a preliminary detection 

result. The second stage established the difference in the distribution curves of Delta RR 

intervals. These results were used to adjust the boundary between AF and normal beats, 

so that acquiring more stable and accurate results. The experimental work achieved 
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similar results when compared with the accuracy of other algorithms. The proposed 

method achieved the best performance of sensitivity and specificity with approximate 

results of 98.81% and 96.53% respectively. Consequently, this achievement is 

appropriate for ECG comprehensive analysis in clinical usage which could detect AF after 

gathering long-term ECG recordings. The detection algorithm can assist the doctors to 

enhance their work efficiency. In addition to that, the MIT/BIH- AF database has been 

collected from PhysioNet. The database includes 25 long- term ECG recordings of human 

subject with AF incidents (mostly paroxysmal), two leads signals sampled in 250 Hz has 

been used for each recording with duration of 10 hours. Using 23 ECG recording of the 

raw data due to the first two recordings are not available now. Signals are labelled with 

annotations which could identify the beats as normal (annotated "N") and AF (annotated 

"AFIB") as test data.  

2.6.2  A deep learning method based on atrial fibrillation detection by 

using RR intervals  

Faust et al. [14], introduced a cutting-edge method for detecting AF beats based on HR 

signals with a deep leaning system. The proposed system incorporates a combination of 

two deep learning algorithms: LSTM and deep RNN with 6 layers. The data was pre-

processed before feeding it to the system. The data was partitioned with a sliding window 

of 100 beats having a step length of 1. The bidirectional LSTM (1-3) layers represent the 

learning and extracting of features from the input data sequence of HR. In the second step 

these features are sent to the fully connected layers these layers classify whether AF is 

present or not. The proposed system used Computer Aided Diagnosis (CAD) for long 

term monitoring of the subject's heart. As a result, this system is the first to comprise deep 

learning method for AF detection. The data were collected from PhysioNet, which 

publishes the MIT-BIH Atrial Fibrillation Database [46] . This database consists of 23 

long-term ECG Holter recordings from different subjects. The data is recorded for a 

duration of 10 hours with two leads. The signals are sampled at 250 Hz, and they come 

with AF annotations. The data from 20 subjects was used for 10-fold cross- validating the 

model. The 3 remaining subject's data were employed for blind-fold validation. With 10-

fold cross validation to system achieved a sensitivity of 98.51% and 99.77% specificity.  



Chapter 2 Literature Review     

24 

 

 

2.7 Improving the safety of atrial fibrillation monitoring systems 

through human verification 

Faust et al. [24]  and Kareem et al. [19], introduced the concept of improving the safety 

of machine decision based on human verification in the clinical settings. From the 

assumption tested is shown that a deep learning system have the potential to detect the 

AF episodes in the real-time, also monitoring a prevalent of other types of heart 

arrhythmias, and an experienced cardiologist will confirm the outcomes to reach a 

diagnosis. This verification stage can add the essential checks and balance to improve the 

safety of computer-aided-diagnosis.  

The hybrid decision support approach has been tested through creating a prototype of AF 

monitoring service [21]. This treatment monitoring service incorporates using HR sensors 

for data acquisition as well as IoT technology for data transmission and storage. These 

high-tech facilitate transfer the HR data from patient worn sensor to universal cloud 

server. An AI algorithm task is to analysis the data in real-time, by them it would be 

reviewed by a human cardiologist once abnormal signal is detected. This human specialist 

contributes then for verifying the deep learning results by relying on HR data and 

additional knowledge acquired through patient records such as the history of clinical 

diagnosis for a patient. To establish a prerequisite for safety in any computer expert 

system, the purpose of the decision-making process should be clear and identified. 

Healthcare providers can register patients into the system of AF monitoring service [19]. 

The service provides real-time detection support by delivering a timely warning messages 

and HR analysis. Therefore, the safety prospective is a critical decision which needs the 

intervention of human practitioner. Chip integrated into wristwatch with little extra cost, 

might result in high volume of data. Getting the correct detection algorithms, that data 

can assist to determine AF periods.  
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2.8 E-health  

The World Health Organisation (WHO) defines e-health as a wide-ranging set of 

activities that involves using electronic means to provide information and services related 

to health. This is mainly manifest on Information and Communication Technology (ICT) 

deployment for health. E-health incorporates a variety of standards, tools and events that 

use the electronic devices to deliver virtual instead of face-to-face contact medical service 

[130]. The core idea of implementing and embedding e-health is to have a vision of 

enhancing the quality of health-related-information, underpinning national health systems 

by ensuring that it is accessible and having good quality of healthcare for all. The usage 

of e-health became more common over the last decades due to benefiting from several 

factors, such as, it is straightforward to educate non-lay person. In addition, a vast 

majority of elderly people became familiar with internet technology. However, the 

privacy problems were not indicating to any concern for the senior adults [131]. They 

were concerned more about how to achieve good health value. Moreover, cost 

effectiveness was also a top priority of elderly people for selecting the e-health 

application. Many patients had related skills to ICT through using apps, visiting websites 

regularly and email correspondence. A research study  showed that a number of senior 

adults that were involved  in the use of internet technology which marked with high 

percentages, especially in the developed countries, and the education played a vital role 

as an effective factor in e-health deployment [132]. One of the most important point was 

noticed from weaknesses, is the lack of evidence in terms of supporting its relevance 

when the participants begun involving in the trial which did not show the actual condition 

of elderly people. Another study emphasised that the physical barriers referred to a huge 

weakness factor. In addition, the lack of e-health education in some countries is a major 

cause for those limitations.  

Furthermore, Thingspeak from MathWorks [74] is a cloud storage solution that can be 

used for e-health applications. It is an open-source application associated with IoT 

technology and API. Storing and retrieving information from things such as smartphones, 

tablets, sensors, through HTTP protocol over internet network or via Local Area Network 

(LAN). Herein, enhancing IoT technology by expanding the power of the site to 

communicate to a social network of things with status updates in high level of remote 

monitoring, collecting, handling, and analysing the data. This technique will provide great 
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accuracy during visualizing the information in real-time. Meanwhile, IoT will play the 

significant role in the domain of healthcare. IoT systems have several advantages for 

health care projects [66], which can be used by health care projects, these positive points 

are cost reduction when Caregivers utilise healthcare connectivity solution, subject 

monitoring can be achieved in the real-time, which significantly decreases unnecessary 

visits to clinicians. Data storage functionality is to transmit information to the could 

platform where it is stored in either a private or public channel, and HR sensors can be 

enabled through Thingspeak application.  The private channel is used to store Thingspeak 

data by default; however, public channels can be employed to share data with others. 

Once data is in a Thingspeak channel, we can analyse and visualize it, calculate new data, 

or interact with social media, web services, and other devices. Using Thingtweet 

application to link a Twitter account to a Thingspeak account. As such, Things, sensors, 

devices, and channels can be updated though Twitter by using Tweeter-Control API. For 

instance, we can make a device tweet us by giving alerts notification when the AF disease 

detected. 

2.8.1  Intelligent internet of medical things based on M-health  

Patient-led data acquisition systems must identify patient demands and data specific 

requirements. Physiological signal recording is a main factor of such systems. Once the 

signal is recorded and digitized, the samples become data with specific requirements for 

transmission, storage, and analysis. Patients require improvement of their outcomes and 

better management of their stroke risk. At the same time, a system needs to be convenient 

enough to ensure patient compliance [9]. Mobile health, also known as m-health, aims to 

provide the technical solutions which addresses both data requirements and patient needs 

[57]. Thus, m-health was defined by the Global Observatory for eHealth (GOE) as 

medical and public health practice that operates through portable devices, such as mobile 

phones, patient monitoring tablets, personal digital assistants, and other wireless devices 

[58]. The core idea of m-health systems is that the data rather than the patient travels. 

More specifically, close to the patient the data is interconnected through wireless channels 

to increase convenience for long-term recordings. M-health delivers hospital-in-house 

services that overcome geographical as well as organizational impediments [59], [60]. 

More advanced m-health services provide automated diagnosis support through built-in 
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AI algorithms [20]. Furthermore, the cost-effective nature of m-health services makes 

them attractive for developing countries [61], [62], where healthcare facilities are 

sometimes inaccessible. Hence, the m-health approach can be used to implement patient-

led data acquisition for AF detection to prevent stroke [63]–[65]. The m-health concept 

outlines a general framework of components. that can be used for patient-led data 

acquisition. That concept is flexible enough to accommodate the rise of big data which 

established itself as an independent goal for healthcare applications. 

IoT is an advanced method used to reshape the traditional healthcare domain, as such 

promising technological, economic, and social aspects [74]. IoT based healthcare 

provides various solutions which can facilitate the clinical missions in terms of 

monitoring, data acquisition, processing, and data analysis for a subject. The medical 

applications significantly increase their performance by tapping into the potential of IoT 

systems. These apps facilitate remote health monitoring of chronic diseases, sports 

programs, and elderly care. In addition, taking the medication and treatment on the 

specified time at home is another possible way IoT systems can be used in healthcare 

applications. The idea is that such systems give an alert to the patient when it is needed. 

Therefore, IoT services are projected to diminish the healthcare costs, enhance the 

subject's experience and increasing the quality of life. Furthermore, IoT based healthcare 

is an essential trend which can be updated through wireless technologies that predicted to 

support medical emergencies, real-time monitoring, and early diagnosis. At this stage, 

cloud platform plays a main role of delivering and storing patient records on demand 

health services. The databases must be established and transmitted from medical server, 

gateways, and other health database resources. Drew [75] demonstrated that IoT 

techniques can be  deployed  for ECG monitoring in clinical settings. Their system 

facilitates HR measurement and the determination of heart rhythms as well as the 

diagnosis of multi-faced arrhythmias, myocardial ischemia, and prolonged QT intervals. 

The application IoT based ECG monitoring has the capability to provide the maximum 

information that could be extended to the longest period needed [76].  

To highlight that substantial change in healthcare technology, the IIoMT improves m-

health to capture the data centric nature of patient-led data acquisition systems which 

transmit signals from a patient to a central cloud server for processing and storage [66]. 

This approach comes from the fact that wireless technology enables us to exchange 

healthcare data in real time [67]. The real time, or more specifically the statistical real 
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time, aspect is crucial, because there is only finite buffering in the system, and data loss 

will occur if one component in the processing chain cannot maintain the required speed. 

To address that problem, IIoMT systems use packet-based transmission protocols which 

make the data exchange very robust [68], [69]. Linking the advancements of AI 

technology, telemedicine, and wireless body sensor networks, facilitates IIoMT systems 

to automate clinical decision-making. Human decision empowered AI can provide better 

support in terms of learning and discovering new knowledge from big healthcare data 

[70], [71]. This can be achieved through human validation of AI decisions. For example, 

in cardiology departments, human experts can work cooperatively with deep learning 

algorithms to establish a medical diagnosis [69], [72]. Patient-led data acquisition for AF 

detection to prevent stroke can be established with mobile health systems that measure 

and process physiological signals in real time. During the systems design, individual 

requirements that arise from stakeholder needs must be refined into a specification which 

governs the implementation [73]. As such, this improvement process has many degrees 

of freedom, and resolving design choices is based on available technologies, organization 

strategies, and human factors. 

2.9 State of the art atrial fibrillation detection systems 

Patient led data acquisition is based on data travelling from point of measurement 

(patient) to the universal central processor (Cloud Computing). In this review, Kareem et 

al. [9] introduce the state-of-the art of patient led data acquisition for automated AF 

detection to prevent stroke. According to Framingham heart study showed that there is a 

link between AF and stroke, which increase the risk prevalence probability by five-folds. 

Hence, there is a significant need to monitor AF for long-term with reliable detection 

methods that requires potentially unrestricted measurements. Enormous studies showed 

that patients with paroxysmal AF might have hidden symptoms during the measurement 

[9], [17], [133], [134]. That implies with undiagnosed patients which could lead for 

further cardiac complication.  
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The latest measurement approaches will leave a significant gap when it comes to AF 

detection. This concern can be reduced as well as the number of first detected AF cases 

increase by extending the data acquisition duration. Furthermore, detecting more AF  

episodes could lead to manage the treatment earlier, which can decrease the stroke 

severity, and in some cases, provide stroke prevention altogether.  

Practical restrictions mandate that these measurements are achieved in the patient 

environment. The measurement technology must be organised in line of day-to-day 

activities of the patient. Health economics require that the required resources for prolong 

measurements and monitoring should be minimal. To replicate these requirements, we 

have examined the current technology as providing real solutions in terms of benefits for 

patients, a detection quality, long-term observation duration and cost. The optimum 

patient led data acquisition system does not require face-to-face interaction during normal 

monitoring procedures. The sensor can be delivered to patient by post and the data 

connection setup can be achieved online.  

In this review, we found two significant measures for detecting AF, which are ECG and 

RR-interval signals. Decision support algorithms can extract relevant knowledge for 

medical diagnosis from both measures. However, RR-interval signals are straight forward 

to measure and inexpensive to communicate, store as well as to analyse. Yet, the current 

clinical settings and indeed cardiologist are well trained towards AF detection based on 

ECG signals. Looking beyond large body of literature, we anticipate that there will be a 

change from the traditional measurement to RR-interval based systems where will 

become widely applicable for AF detection. Initially, smart devices can be applied to 

create a suspicion that AF is detected, and the diagnosis is achieved through conventional 

with ECG gold standards measurement. Once there is enough trust in RR-interval based 

system, they might be used to even support the AF diagnosis. 

In the meantime, healthcare givers depend on costly ECG based systems for AF detection 

that opens an avenue for commercial solutions which might be not projected to medical 

device regulation. In other words, having altered measurement method-based detection 

might be driven by commercial companies which collect and process physiological 

signals to provide an automated AF diagnosis service. This service concept will be 

directed by patient led data acquisition which enables big data business strategies to 

resolve or at least to highlights healthcare demands from patients. 

In this study, we review patient led data acquisition as smart system for indefinite 

observation of AF events. Throughout the investigation, we found that all there viewed 
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systems can capture AF events based on physiological measurements [9].  However, these 

systems designed with excellent aspects in terms of technology applied, human factor 

design and cost. Our focus is related to the technical concepts which support the patient 

led data acquisition systems. From that review, we obtained two fundamentally different 

approached those results in designing very distinct patient led data acquisition systems.  

The first approach refers to signal recordings, which is responsible on data handling. The 

second approach is related to event triggering, which leads to information handling. In 

general, the obtained information about when a specific AF event occurred has a 

significantly lower data rate as same as the physiological signal data, specifically the HR 

signal.  This is such a great benefit when it comes to sensor battery lifespan as well as 

data storage or communication channel requirements. Whereas the event trigger systems 

cannot maintain the evidence which triggered at that event. As such, it is impossible to 

verify independently the outcomes of the event trigger algorithm. Moreover, the event 

trigger systems do not produce signal data that could be utilised to enhance patient data 

acquisition systems. In contrast, signal recording systems generate raw data that requires 

processing. That processing is normally achieved in the most appropriate place, i.e., 

compute clusters linked to cloud server. Such a setup can be continuously enhanced by 

refinement on the detection algorithms.  This enhancement can come from the validated 

signal partitions.  To be specific, according to the available data, medical professionals 

can independently validate the decision made by a machine algorithm [18], [19], [21]. 

Regardless the verified results being more reliable, such results can also be applied as 

labelled data to re-train the detection algorithms. Due to the fundamental differences 

between signal recording and event triggered systems, we have used these approaches as 

level 1 differentiation in our taxonomy for patient led data acquisition. Figure 5 shows a 

taxonomy of patient-led data acquisition devices for AF detection. In the remainder of 

this section, we introduce the individual concepts in detail. This provides the framework 

for the device reviews. Each reviewed device is represented as a leave node in the 

taxonomy. 
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Figure 5: Taxonomy of patient led data acquisition concept [9]. 

2.9.1 Signal recordings 

The main concept behind signal recordings systems is to maintain the original cardiac 

measurements in a digital format. Hence, the stored signals keep the track record of the 

evidence upon which a specific diagnosis was based [9]. This evidence can be used for 

identifying a root cause analysis where there is a suspicion of misdiagnosis. Moreover, 

continuous data recording implies to huge data dimensionality with reasonable 

trustworthy labels. By using real-time data acquisition offers the possibility of improving 

the decision support algorithms. These improvement leads to establish deeper 

understanding of the link between AF and stroke risk. To be specific, monitoring patient 

over long duration could help to recognise the signal pattern that are more related and 

sensitive to predict stroke risk than AF rhythms itself.  Another technical benefit comes 

from the fact that data volume is foreseeable, for ECG recordings is completely true and 

for RR interval is also true from a statistical perspective. Online and offline capabilities 

differentiate signal recording systems for patient led data acquisition. 
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2.9.1.1 Offline signal recording  

Offline recording is achieved by storing the recorded cardiac data in the sensor itself.  

That sensor can only maintain a restricted amount of digital storage- normally in form 

of removeable memory stick once the patch is returned for analysis [135], as such, the 

recording time is limited. That result in either one-off measurement or interval. 

Traditionally, there were many systems classed as the first ones that allowed 

physiological data acquisition in the patient environment [136]. Meanwhile, having a 

built-in storage capability was an important technological step that enabled data 

acquisition anywhere and anytime.  

 

Offline signal recording has the following advantages: 

1. It has lower energy requirements comparing to online-signal recording. That 

implies to mini sensors and longer duration of the cardiac measurement with one 

battery  

2. Independent of network coverage. 

3. Most trustworthy proven technology. 

4. Data is recorded – all evidence is preserved 

Drawbacks: 

1. No patient compliance feedback. 

2. The storage capacity limits the recording duration. 

3. The storage medium must travel to and from the patient environment. In most 

cases, that means the patient must travel to initiate and conclude the 

measurement. 

4. Long time (weeks) between a AF episode and the diagnosis. 

5. Labor intensive data handling at the medical facility. 

 

There are a wide range of offline sensors as presented in signal recording taxonomy in 

Figure 5, but we will mention a few of them as follows: 

1. TLC9803 Dynamic ECG Monitor- This sensor has 5 electrodes, 3 channels for 

chest ECG measurements. Recording duration is up to 24 hours. Expert electrode 

placement required such as qualified nurse. Local data processing after the 

measurement. In clinical studies, the device was used to acquire standard ECG 

signals [137] 
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2. Zio XT patch cardiac arrhythmia monitor  Single-lead display and two electrodes

skin placed to record ECG for up to two weeks. The device is sent by post to

patients, and once the measurement is completed, it is also returned by post. The

data are analysed by iRhythm, the technology provider. The device was validated

in a clinical pilot study [138]. The results show that the Zio XT Patch was accepted

by patients, and long observation durations of two weeks were achieved.

Subsequently, the diagnostic utility of this device was confirmed with three separate

clinical studies [30]. In a clinical study with 2659 participants, the device was

utilized to establish the efficacy of home-based wearable continuous ECG

monitoring for AF detection [139], [140]. A literature review established that long-

term monitoring with the Zio XT patch results in higher cardiac arrhythmia

detection rates when compared with traditional Holter monitoring [33]. The device

was also used to establish incidence and timing of potentially high-risk arrhythmias.

The device was also used to establish incidence and timing of potentially high-risk

arrhythmias. However, the disadvantage of this patch is based on offline recording

aspect.

3. E-patch extended Holter monitor Up to three channels. Five days continuous chest

ECG recording augmented with manually triggered events. The patient can activate

and apply the patch. After the measurement, the sensor is mailed back to

Biotelemetry, where the data is analysed.

4. Digitrak Plus  That sensor consist of 5 electrodes, 3 channels for chest ECG

measurements. Up to one week recording duration. Expert electrode placement

required. A clinical study found that the device provided accurate assessment of

atrial beats and rhythm diagnosis [141].

5. CardioMera ECG Holter Contains 7 electrodes, configurable for 1, 2, 3, or 5-

channel chest ECG measurement. Measurement duration is up to 24 hours. Once

the ECG is measured, the ECG data is transferred by either disconnecting a memory

card or via an optical transmission link with a local workstation. The device comes

with analysis software for arrhythmia detection. The device was used in a multi-

sensor study to determine general health [142].
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2.9.1.2 Online signal recording 

Online signal recording can also be defined a medical telemetry that facilitates 

transmitting data from the point of recordings to a central monitoring unit, such as, cloud 

storage [143]. This approach is possible to achieve with wireless technology in the patient 

environment. Hence, online signal recordings operate in real-time, which means that 

within a specific timeframe all the recorded data must be transferred to the cloud location. 

Failure to meet the real-time requirements will lead to data loss. To reduce the real-time 

requirements, the sensors are designed with a built-in buffer which can be used as a spare 

storage in case the wireless link fails for connections. Another critical problem for 

measuring the online signal is energy costing. Energy is needed to establish the 

electromagnetic waveform that conveys the physiological data from the biosensor to a 

relay station. In general, that energy requirements rely upon the wireless channel 

condition. As such, this will make the real energy requirement difficult to predict. Despite 

that uncertainty, on average the energy requirement for an online system is higher when 

compared to offline systems. 

 Online signal recording offers the following benefits: 

1. Data travels and patient can stay at home. For an ideal system arrangement that

might mean the smart sensor plus the setup instructions are delivered to patient’s

home via mail carrier, and the patient’s registration can be done via a web-portal

on the internet.

2. Offering Real-time detection as well as decision support. That might lead to: a)

Stroke physician or cardiologist gets alerted within minutes of detecting an AF

episode. b) Timely diagnosis.

3. Feedback channel for patient compliance.

Drawbacks: 

1. Online signal recordings require higher energy requirements when compared to

offline systems. With current technology, the battery might need to be replaced as

it runs out quickly or the device must be charged.

2. Wireless Network or data cellular coverage required.

3. Data plan. A network provider needs to be selected and there will be a continuous

operation cost.
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The next paragraphs present specific patient led data acquisition systems that are based 

on online signal communication technology. 

Herein a list of an online devices that are commonly used for online detection: 

1. Isansys Lifetouch Two electrodes, single lead display ECG and RR interval 

measurements. Wireless connection based on Bluetooth to a smart tablet which 

relays the data to a cloud server. The smart sensor was used in clinical studies on 

cirrhosis that showed a significant reduction in HRV for 90 days and predict the 

mortality [144] , vital sign monitoring after major abdominal surgery [145], and 

chronic obstructive pulmonary disease [146]. 

2. Apple watch  Wrist PPG. The device was implemented for a proof of feasibility 

study in a clinical setting where patients can be observed and overseen by 

healthcare providers. A built-in diagnostic algorithm has been used to detect AF 

based on PPG signals [147]. The accuracy of the AF detection model is validated 

with two clinical studies [148], [149]. Apart from that, the device was also used 

for mental state detection [150]. 

3. Medtronic SEEQ – Two electrodes, one lead, up to 30 days ECG recording. 

Wireless telemetry based on an uplink station which transmits the data via satellite 

or terrestrial channels to the Medtronic network. Clinical studies were used to 

validate the device [151], [152]. 

4. Corventis NUVANT – Two electrodes, single lead which records ECG from a 

patient chest for up to 30 days chest ECG recording. Wireless telemetry based on 

an uplink station (zLink) which communicates the data via terrestrial channels to 

a Corventis monitoring centre. Disposable patch sensor. Clinical studies were 

used for validation [153], [154]. 

 

5. Vital-Patch-Vital-Connect RTM– includes 2 electrodes one channel chest for one 

week ECG recording. Data connection via Bluetooth to an Android mobile device 

with VistaTablet software. The mobile device transmits the data to a cloud server. 

Both device wearability and low impact on day-to-day patient activities was 

verified in a clinical study [155]. 
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6. HRVLive Monitor –Two electrodes recording ECG from chest or finger PPG.

Unrestricted recording duration. RR interval extraction and analysis software.

Standalone offline PC-based solution.

7. Samsung Galaxy Watch3 – Wrist ECG with unrestricted observation duration. In

May 2020 the device was cleared by the Korean Ministry of Food and Drug Safety

for health monitoring.

2.9.2 Event trigger 

Event trigger systems make the promises based on their ability to identify a specific 

segment of the physiological signal that shows AF symptoms. That diagnosis is reached 

in the real-time. The core concept behind having the signal analysis within the 

measurement device is the demand for data reduction. To be more specific, event 

monitoring systems store only signal segments of interests. on a fundamental level, each 

sensor type has its own specifications that involves the energy requirements for 

recordings, including data storage, data analysis and data communication. Event trigger 

systems prosper on the sense that the energy kept by communicating or storing the 

physiological data is larger than the amount of energy required to achieve the processing 

which extracts the events from the measurement data. The trigger mechanisms, i.e., 

manual, or automatic, can be used to distinguish event trigger systems. 

2.9.2.1 Manual event trigger 

 This type of device accomplishes the ultimate energy saving through pushing the trigger 

decision button manually by patient.  In terms of AF detection, this could be possible due 

to many patients feel the difference once their heart rhythm becomes irregular. However, 

such manual trigger devices cannot be utilised by patients with special requirements such 

as patient suffer from physical or mental ability to operate the trigger manually. In 

addition, service users or patients are not able to trigger the devices whilst they are asleep. 

There might be even psychological consequences growing from being responsible to 

trigger the device. From a positive perspective, patients might realise their active 

engagement in the recordings process as empowerment, for example, they are considered 

as a significant active part in the disease monitoring process. whereas, on the negative 
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side, patients’ responsibility may generate the anxiety caused by the fear of missing AF 

events. To summarize, manual event trigger systems offer the following benefits 

1. Minimum energy requirements are needed. That can lead to: a) mini sensors and

b) greater measurement duration with one battery.

2. Lower data rate. That can lead to: a) Lower storage requirement and b) Lower

requirements for the communication channel – better wireless connectivity.

Drawbacks: 

1. Reliance on the patient to trigger the measurement

2. Measurement during sleep is not possible.

3. Evidence, in the form of signal data, is discarded.

Patient compliance can only be established on a local level. That means, compliance 

cannot be managed from a central location which might have more knowledge of the 

patient. 

The examples of manual event trigger are listed in the following: 

1. Tele-EKG-Card 100IR

2. REKA E100

3. Smartphone camera – Finger PPG

4. Omron W7720 HCG-801

5. HeartScan

6. King of Hearts Express

7. CardioCall ST80

8. Kardia mobile
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2.9.2.2 Automatic trigger  

Automatic event trigger devices demonstrate the capability to decide whether AF 

symptoms are present.  The decision information is either saved in the device itself or 

communicated in a real-time channel to a central cloud. Information about the suspected 

AF episode might include the signal snippet which caused the AF detection algorithm to 

trigger. The trigger algorithm is executed close to the point of measurement - usually in 

the sensor itself. Hence, these algorithms must operate in the resource constraint 

environment of a deeply embedded system.  This makes it much harder to update the 

algorithm once better methods are available. To summarize, automatic event trigger 

systems have the following advantages: 

1. Low data rate, when compared to data recording systems. 

Drawbacks: 

1. Increased energy requirements for the analysis algorithm. 

2. Black box decision-making. Humans are not involved in the decision-making 

process. 

3. Difficult to update the decision-making algorithm. 

4. Evidence, in the form of signal data is discarded. 

The examples of Automatic event trigger are listed in the following: 

1. R-Test Evolution, Novacor, France 

2. Mobile cardiac outpatient telemetry (MCOT) 

3. 1-channel Holter monitor 3100 BT Loop Recorder 

4. Cardiac sense  

5. Vitalphone 

6. Spyder Flash A 

7. CardioPal SAVI 
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2.10 Research Gaps  

All the reviewed scientific studies stopped at a one-time evaluation of the learning model. 

In other words, the implied premise is that the developed model will work for unseen 

data. However, without independent support, there is doubt that this premise holds. The 

assumption might be wrong and hence the claim that the methods are relevant for practical 

setting is invalid. We identify that as a research gap because the lack of follow up 

verification results in a lack of trust in the computer aided diagnosis systems. Our plan is 

to establish that trust, at least to some extend, by validating the existing DL system with 

new data. Another gap identified that there was no scientific work on HR analysis with 

DL before 2017. Our paper documents the first scientific work on analysing and detecting 

AF from HR signals by using a DL algorithm [14]. We believe that such work is beneficial 

for scientific progress, because DL is a very promising analysis method and HR is a good 

health indicator. To fill that research gap, we propose to analyse HR signals from normal 

and AF subjects with a DL system.  

In addition, state of the art Holter monitors operate at least with two-electrodes, which 

must be setup by a specialist i.e., nurses [156]. Another limitation of the standard care 

routine Holter monitor that it is an offline monitoring device, and the data can only be 

analysed once the monitoring session is completed which might take weeks to do so. 

From patients’ point of view, they identified Holter monitors as being bulky, and 

uncomfortable when their feedback sought during a Public Patient Involvement, 

Engagement and Participation (PPIEP) event for stroke survivors. Moreover, the PPIEP 

community addressed their preference of wearing a re-attachable heart patch rather than 

wearing a strap with HR sensor. Therefore, we selected a certified device by the NHS 

trust. The proposed monitor to be used in the study is a lightweight real-time Lifetouch 

sensor that records both ECG and RR intervals where the RR intervals forms the HR. 

These signal recordings are measured by placing a sensor on the chest, and that can be 

done by a patient. The third gap, we found that there is insufficient monitoring duration 

of AF for both inpatient and outpatient. Hence, we propose a service platform and 

directions that can extend the observation duration for AF detection indefinitely. To 

achieve that extension, we use RR intervals as an ideal measurement to record, process 

and store in central cloud storage. As such, long-term observation requires having patient-

led data acquisition to underpin regular service directions, i.e., the stroke risk monitoring 
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service can be directed to either healthcare providers or to patient environments, as 

proposed in our publication [9]. Figure 6 shows the graphical representation of the service 

directions which presents some of the advantages and drawbacks.  

 

Figure 6: Service directions for long duration of AF detection based on patient.-led data 

acquisition [9]. 

2.11 Summary  

This chapter involves a large body of literature that has been investigated various aspects 

such as signal recording methods of human’s heart, varied medical devices and DL 

algorithms. In addition, providing the relevant approach of how to improve the safety of 

machine’s decision through human verification. That approach helps to increase the 

reliability of using the DL algorithms in the clinical practice as main diagnostic tool. This 

step is significant which adds value for research and practical deployment. Another 

important point was addressed in that chapter is introducing the concept of patient-led 

data acquisition. The proposed concept tends to solve the problem of monitoring duration 

from short to long-term. To conclude, this chapter also attempt to cover the research 

questions that presented in chapter 1.  
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 Chapter 3 Automated arrhythmia detection 

with deep learning based on RR intervals 

3.1 Introduction 

Heart rhythm irregularities, known as arrhythmias, are a leading cause of mortality and 

morbidity. AF and AFL are common types of arrhythmias that affect an increasing 

number of patients. These arrhythmias can be measured either by ECG or RR intervals. 

In this study, we use RR intervals as alternative measurement method to standard ECG 

recordings. RR intervals are an ideal approach to communicate, process and store 

patients’ data in the cloud due to having low data rate and high information content. From 

that prospective, these conditions require long-term monitoring. RR intervals can 

facilitate extending the observation duration. Automated detection can be achieved 

through using a DL system. This chapter introduces two different algorithms that were 

used to detect common heart arrhythmias. The directional-LSTM was used to classify AF 

and normal beats while ResNet was applied to accomplish the discrimination of AF, AFL, 

and NSR.  

In Chapter 2, we identified a research gab which highlights the problem of detecting AF 

episodes with computer-aided-diagnosis technologies that help with extending the 

observation duration, including medical devices and signal recordings. This chapter 

describes the design of an AF detection service as a proposed solution of detecting cardiac 

arrhythmias for those who based in hospital and their home environment. First, the 

chapter describes the project ‘s design methodology Section 3.2, and material and 

methods Section 3.3. A proposed solution is then discussed Section 3.4, followed by the 

proposed prototype. 
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3.2 Design a decision support system based on physiological signal 

The main aim of designing the DL algorithm is to outperform the established methods. 

The design structure is based on the concept of having an offline and online system, as 

shown in Figure 7. The offline system is applied to shape the required algorithm 

arrangement based on labelled data. Therefore, applying the knowledge of the designed 

algorithm in the online system to process live measurement data. That system 

incorporates three sequential processing stages: 1) downloading and pre-processing the 

data from the source 2) creating DL model 3) validating the DL model [14]. The first two 

stages establish the analysis system which extracts the required information from the ECG 

signal. The third stage evaluates the model with unseen data [23]. 

 

Figure 7: Block-diagram illustrating the design of decision support algorithm based on 

data source. 

3.2.1 Offline system  

The block diagram outlines the offline system which comprises from three sequential 

steps, as shown in Figure 7:  
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1. Data for AF disease detection was collected from PhysioNet databases 

(LTAFDB).  

2. MATLAB software has been used to download ECG recordings as Excel file for 

each individual subject. Installing ECG-toolkit was required to facilitate the 

PhysioNet data visualisation. Signal processing involves the analysis, 

interpretation, and manipulation of the physiological signals. To be specific, 

building as such explicit algorithm is to extract the beat-to-beat interval from ECG 

signal, and this aspect based on Pan-Tompkins algorithm.  

3. The final stage was associated with partitioning the data into sliding window of 

100 beats for the whole time series. A deep learning system was applied to 

detect AF beats in HR signals, and the resulting signal blocks were directly fed 

into a RNN with LSTM.  

3.3 Materials and Methods  

This section presents the data used for training and testing the algorithm as well as the 

processing methods that were used to design the AF detection system. The discussion 

begins with describing the data and the pre-processing methods. The pre-processed data 

is directly fed into a DL system. As such, that system contains all the computational 

complexity. Hence, this section focuses on the DL algorithm and the design decisions 

which led to the proposed Computer-Aided Diagnosis (CAD) system. 

3.3.1 Data used for training and testing the deep learning algorithm  

The experimental work were conducted based on data collected from MIT-BIH Atrial 

Fibrillation Database (AFDB) which is available on PhysioNet [45], [46]. This database 

includes 23 long-term ECG Holter recordings of patients with paroxysmal or sustained 

AF. Each dataset contains two ECG signals that were recorded in parallel for 10 hours 

and sampled at 250 Hz with AF annotation. These recordings incorporate also beat 
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annotations and rhythm annotations accomplished manually by experienced 

cardiologists. Moreover, the R peaks are labelled, and the RR interval sequence was 

extracted based on these labels. The RR intervals sequences have been partitioned with 

overlapping windows into sequences of 100 beats for each HR trace. A sequence is 

labelled as AF if it contains one or more beats that were classified as showing signs of 

AF, all other sequences are labelled as normal or non-AF. Data from 20 subjects has been 

utilised for 10-fold cross validation of the model. This means the proposed methods can 

be used to generalise not only unknown data, but to unknown patients as well. The 

remaining data of 3 patients was held out for the usage in a blind-fold validation phase 

after achieving the training and validation stages of the model and adjusting the model 

with so-called hyper-tuning parameters. This concept ensures that the proposed approach 

is applicable not only to unseen data, but to unseen patients as well. The diagram in  

Figure 8 provides an overview of the DL design concept.  

 

Figure 8: Shows a block diagram of training and validating the DL model. 

3.3.2 10-folds cross validation  

10-fold cross-validation aims to reduce the impact of selecting test samples from an 

available dataset. Kohavi et al. [157] advises to use this approach for model selection. As 
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such, that performance measure is related to compare the classification models; as shown 

in table. The fundamental concept is to partition the dataset into 10 segments. Each 

segment contained varied data from the cross-validation dataset. To be specific, tuning 

model method were commonly followed in the practice within bioinformatics and 

machine learning community [158]. Once the data partitioning is done, the segments are 

used to generate 10 folds to be fed into the deep learning model for training and testing. 

For instance, in fold 0, segment location 0 is applied to test and the remaining 9 segments 

are utilised to train the network. Similarly, the idea is replicated for the following folds 

through shifting the segments that corresponds to fold number by allocating one segment 

for testing and the remaining 9 segments for training. The model fitting process is set to 

80 epochs. For each epoch, the bidirectional LSTM network is trained and tested. The 

training stage creates a model which is expressed as a set of weights. The LSTM network 

testing step can validate the prediction quality of the model. Prediction quality means 

selecting the best model’s block that decides which is the best model for specific fold. 

The data for the next fold is loaded once all the epochs are processed. The algorithm 

yields once all the folds processing are completed and the K best models, together with 

their accuracy (acc) are established. The right segments in the flow chart depicts the 

epoch-based fold processing. 

3.3.3 Bidirectional Long-Short Term Memory network 

DL algorithms attempt to improve the model by using all the existing information from 

the input [23]. Getting this information creates the knowledge which supports the robust 

decision process. Therefore, the deep learning method is more feasible than conventional 

machine learning, such as SVM [159]. RNN models have acquired a growing popularity 

in recent years because they resolve some of the key limitations of the traditional machine 

learning algorithms. The hypothesis is that the inputs and outputs to a model are 

completely independent from each other [160]. This hypothesis is falsely claimed when 

compared to natural language processing as one of many problems. For instance, to 

classify an expression with a sentence, it is essential to add the individual words of the 

sentence into context. RNN models achieve this by enabling the network to maintain and 
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use state information, such as information about what has occurred in the prior time-

steps/inputs. However, Bengio [161] presented that, whilst standard RNNs can 

theoretically process input dependences over long interval. Training such networks with 

gradient descent becomes more ineffective when the time span of the input sequence 

increases. Hence, it is difficult to trains RNNs successfully. 

Bidirectional LSTM overcomes some of the limitations of standard RNN models by 

including a gates mechanism which enhances the processing of time step information 

from long interval input sequences [162]. That mechanism governs the amount of 

information from the prior time steps, that contributes to the current output The LSTM 

gating mechanism comprises of three gates: 1) input-gate, 2) forget- gate and 3) output-

gate. The training algorithm determines which information is remembered and which 

information is forgotten.  

Schuster and Paliwal [163] suggested to utilise the bidirectional RNN for problems where 

the complete input sequence is available. To be specific, the bidirectional RNN 

mechanism from an input sequence uses the past and future data to train both a forward 

state RNN (working in the positive time dimension) and a backward state RNN (working 

in the negative time dimension). This enables the network to make more precise 

predictions, because of the increased context provided. Recently, bidirectional LSTM 

models have demonstrated excellent results in fields such as speech recognition. Graves 

and Schmidhuber [164] showed that the bidirectional-LSTM networks can be 

substantially more effective than the unidirectional LSTM architecture. 

The number of neurons can be determined by the input layer which is equal to the number 

of the features space (explanatory variables). However, the number of neurons in the 

output layer represents the output space. The main features of LSTM network are storing 

the information in so-called memory cells. Each memory cell has three gates to maintain 

and tuning its cell state 𝑆𝑡, which are forget gate 𝐹𝑡, an input gate 𝑖𝑡  and an output gate 

𝑂𝑡. The schematic diagram illustrated the structure of a memory cell in Figure 9.  
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Figure 9: Shows memory cell structure 

These three gates function as follows:  

1. Input gate: define which information require to add to the memory (cell state)

2. Forget gate: define which information need to be removed from the memory

(cell state)

3. Output gate: in this gate decide which information from the memory (cell state)

to be used as output.

The structure of memory cell demonstrated in the equations below are described the 

update of the memory cells in the LSTM layer at every timestep t. Hereby, the 

following notation:  

1. 𝑥𝑡 Represents the input vector at timestep t.

2. 𝑊𝑓, 𝑊𝑓,ℎ, 𝑊𝑐,𝑥, 𝑊𝑐,ℎ, 𝑊𝑖,𝑥, 𝑊𝑖,ℎ, 𝑊𝑜,𝑥 and 𝑊𝑜,ℎ are weight matrices.

3. 𝑏𝑓, 𝑏𝑐 , 𝑏𝑖 and 𝑏𝑜 are bias vector.

4. 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 represent the victors for the activation values of the respective gates.

5. 𝑆(t) and C(t) are vectors for the cell states and candidate values.

6. ℎ𝑡 represents a vector for the output of the LSTM layer.
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At the first stage, the LSTM layer decides which should be replaced from its previous 

cell states 𝑆𝑡−1. Therefore, the activation values𝑓𝑡 of the forget gates at timestep t are

calculated by using the current input 𝑥𝑡, the output ℎ𝑡−1 of the memory cells at

timestep(𝑡−1), and the bias terms 𝑏𝑓 of the forget gates. The sigmoid function measures

finally all activation values into the range between Zero (completely forget) and One 

(completely remember). Equation 1 forms the sigmoid function with inputs parameters. 

𝑓(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓,𝑥 𝑋𝑡 + 𝑊𝑓,ℎ ℎ(𝑡 − 1) + 𝑏𝑓 )     3.1

In the second stage, the LSTM layer controls which information should be added to the 

network’s cell state (𝑠𝑡). This procedure comprises two operations: first, candidate

values(𝐶), which could potentially be added to the cell states, are computed. Second, the 

activation values it of the input gates are calculated: 

𝐶(𝑡) = 𝑡𝑎𝑛 ℎ (𝑊𝑐, 𝑋𝑡 + 𝑊𝑐,ℎ ℎ(𝑡 − 1) + 𝑏𝑐)   3.2 

 𝐼(𝑡) =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖,𝑥 𝑋𝑡 + 𝑊𝑖,ℎℎ𝑡−1 + 𝑏𝑖) 3.3

In the third stage, multiplying the two previous stages which resulted in computing the 

new cell states S(t), as illustrated in the following equation: 
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𝑆(𝑡) =  (𝑓(𝑡) 𝑆𝑡−1 + 𝐼(𝑡)𝐶(𝑡))    3.4

In the last step, the output ht of the memory cells is derived as denoted in the following 

two equations:  

𝑂(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜,𝑥 𝑋𝑡 + 𝑊𝑜,ℎ ℎ𝑡−1 + 𝑏0)     3.5

ℎ(𝑡) = 𝑂(𝑡) tanh (𝑆(𝑡)) 3.6

3.3.4 Proposed system architecture 

The parameter details of the proposed bidirectional LSTM model are presented in both 

Table 2 and Figure 10. To be specific, the number of LSTM cells in each 

forward/backward layer was determined to twice the input sequence length. This has been 

empirically demonstrated to perform well on a range of time series classification and 

natural language recognition problems. To produce the final classification, we used two 

fully connected layers arranged as the top model. A single dimension of Global max 

pooling was applied between bidirectional LSTM Layers and fully connected layers so 

that it can reduce the features of the output sequences generated by the LSTM layers 

through selecting the highest values with a matrix. These LSTM layers perform 

effectively to learn and extract the knowledge represented by features from the input of 

RR interval data sequence, before forwarding these features to the fully connected top 

model to classify whether AF signs are detected or not. The proposed model was 

implemented using both TensorFlow and Keras [165]–[167]. 
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Table 2: Bidirectional-LSTM architecture [14]. 

Layer number  Type  Output shape  Number of 

parameters  

Layer-1 Input 100,1 0 

Layer-2 a LSTM feed 

(forward) 

100,400 161600 

Layer-2 b LSTM feed 

(backward) 

100,400 161600 

Layer-3 Global ID max 

pooling 

400 0 

Layer-4 Fully connected 

Rectified Linear 

Unit (ReLU) 

50 20050 

Layer-5 Dropout  50 0 

Layer-6 Fully connected 

(Sigmoid) 

1 51 
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Figure 10: The architecture of bidirectional-LSTM used for AF classification [14]. 

3.3.5 Model training 

Xavier [168] introduced the initialisation aspect of model training in terms of initialising 

all the weights of a bidirectional LSTM model as well as gradient descent 

backpropagation, through applying the Adam optimiser method [169]. We used that 

method to update the weights. The Adam optimiser was set to 1e-3 and binary cross 
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entropy was used to assess the network loss. In this experiment, a small batch size of 1024 

input sequences were used throughout the learning phase, providing a good trade-off 

between the available memory capacity in Graphical Processing Unit (GPU) and training 

speed. The recurrent dropout [170] was set with a probability of 0.1 during training the 

model to both inputs and hidden states of the bidirectional-LSTM cells while the standard 

dropout [171] was used among the fully connected layers, also with a probability of 0.1 

in order to decrease model overfitting and enhance model generalisation. 

In addition, the binary cross-entropy function was used to evaluate the training 

performance of the proposed model, and this approach provides a better understanding of 

the model performance within a range of operating conditions which is different from the 

classification accuracy that only indicates to the performance of a model at one point. 

That entropy function can compare two probability distributions which are the predicted 

distribution and true distribution so that it can bring more details about the basis of search 

landscape. A layered 10-fold cross validation approach was used to evaluate the model 

performance and tuning both the hyperparameters and model architecture. The layered 

cross fold validation was essential to ensure that each fold represented the full dataset.  

3.3.6 Performance measures  

The confusion or error matrix summarizes the prediction results of a classification 

problem [18]. The layout allows visualization of the performance of a decision-making 

algorithm. To be specific, the matrix has two rows and two columns that represent the 

classes of actual and predictive analysis. Therefore, these performance measures report 

the number of True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN). Most medical test results refer to a positive case (classifying the subject 

having the disease) and a negative case (classifying the patient not having the disease). In 

addition, from these terminologies, we can calculate the accuracy, sensitivity and 

specificity as shown in the following equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)                                                              3.7  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                                                                3.8  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)                                                                                               3.9  

 

The ROC curve is a method used to evaluate the diagnostic accuracy of tests in modern 

medicine. It is widely used to illustrate how well a diagnostic model can distinguish 

between the presence and absence of disease and works equally well with data sets that 

exhibit class imbalance. The ROC represents the TP rate (sensitivity) plotted against the 

FP rate (1-specificity) for various cut-off points [172]. Each point on the ROC graph 

indicates the sensitivity/specificity corresponding to a specific decision threshold. The 

Area Under Curve (AUC) is a summary metric indicating the discriminatory power of a 

classifier. 

 

3.3.7 LSTM model results  

This section presents the outcomes for training and testing according to 10-fold cross 

validation. We also present blind-fold validation results. In this study, the bidirectional 

LSTM model was trained by using a Nvidia Quartro M5000 system. That system has a 

Graphical Processing Unit (GPU) with 8GB of GDDR5 graphics RAM. The average time 

required to train one epoch of this model was about 215 seconds. The primary 

experiments showed that the model was set to 80 epochs during training and model fitting. 

As such, applying 80 epochs can meet the requirement of generating an excellent model 

and it limits opportunities for overfitting.  

3.3.8 10-fold cross validation results   

Figure 11 and Figure 12 depict the training and validation set performance versus the 

number of epochs. These figures illustrate the average of the performance as a solid line 
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for each of the 10-folds, and the standard deviation of the performance represented as the 

shaded region.  

 

Figure 11: Training and validation accuracy curve over 80 epochs. The shaded area with 

red marker indicates to the variance. The solid line with blue maker refers to the mean of 

10-folds cross validation [14].   
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Figure 12: Training and testing loss function over the 80 epochs. The shaded area 

indicates the variance whilst the solid line is the mean [14]. 

These figures indicate that measuring the performance on the training set is slightly better 

than the validation set. The model was tuned to a stable value and there are no signs of 

overfitting, i.e., the training performance shows ongoing improvement while the 

validation declines. The confusion matrix for the 10-fold cross-validation process is 

shown in Figure 13 and the Receiver Operating Characteristic (ROC) curve is shown in 

Figure 14. The results, shown in these figures, were achieved by employing the model to 

the validation sets and aggregating the results from all 10 folds. The mean performance 

of all 10-folds is shown in Table 3. Based on the outcomes of Figure 13 and 14 as well as 
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Table 3: Overall 10-folds cross-validation performance outcomes of LSTM model. 

TN FP FN TP Accuracy Sensitivity 

 

Specificity 

 

AUC 

523,241 

 

7,040 7 

 

7,040 7 

 

430,615 

 

98.51% 

 

98.32%  

 

98.67%  

 

0.9986 

 

 

 

Figure 13: Confusion Matrix plot of 20 subjects from 10-folds cross-validation process 

[14]. 
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Figure 14: ROC curve from the stratified 10-folds cross validation [14]. 

3.3.9 Blind-fold validation results 

After 10-fold cross validation we performed a blind-fold evaluation of the proposed 

model. That was undertaken by using normal and AF HR sequences from 3 subjects that 

were not used during 10-fold cross validation. The outcomes from this holdout test set 

are presented in Figure 15 and  Table 17 as well as in Table 4. It can be noticed from the 

results that the proposed LSTM classifier accomplishes an overall accuracy of 99.77% on 

the tested set of completely unseen subjects- identifying correctly 99.61% of normal HR 

sequences and classifying 99.87% of HR sequences that correctly showed the presence 

of AF signs.  
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Table 4: Overall blind-fold validation performance results of LSTM classifier. 

TN FP FN TP Accuracy Sensitivity Specificity AUC 

65,699 255 116 91,888 99.77% 99.87% 99.61% 1 

Figure 15: Confusion Matrix of blind-folds validation for 3 holdout subjects [14]. 
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Figure 16: ROC curve of blind-folds validation for 3 holdout subjects [14]. 

3.4 Online system 

The proposed solution incorporates establishing an automated AF detection service 

based on RR intervals. 

Figure 17 shows a graphical representation of the proposed technology that aims to 

prevent stroke. This technology involves wearing a heart patch sensor that operates in real 

time, and the measured HR data is communicated to smart phone or tablet via Bluetooth 

Low Energy (BLE). The data will be transmitted from the point of measurements (patient) 

to a central point known as cloud server through a Wi-Fi or a mobile connection. Once 

the data has reached the cloud server, the processing phase beings by using the integrated 

DL algorithm for automated AF detection. The machine’s decision quality will be verified 

and evaluated by a physician to improve the safety aspect. In case any emergencies are 

noticed, the healthcare provider will inform the patient through a feedback channel either 

by sending an email or a text message.  
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Figure 17: Architecture of the proposed AF monitoring system. 

There is a clear demand from NHS trusts for establishing automated detection and smart 

management systems of AF patients [173], [174]. The main objective of the service 

concept is to prolong the observation duration. With a service timeline we show how the 

proposed system can achieve that through patient-led data acquisition. The collected data 

from the patient is either ECG or RR intervals measured by a wearable patch. The 

resulting signals were continuously analysed, and AF signs are detected. An urgent 

medical intervention is only required when AF is detected.  To document the service 

approach, we designed a timeline that involves a sequence of synchronised actions that 

provide the desired functionality.  

Figure 18 shows the timeline that refers to certain actions for healthcare givers, patient, 

cardiologist, and AF detection service. The timeline begins with the activity of signing 

up a patient through a nurse for the AF detection service. This is when the patient-led data 

acquisition process starts. Data are measured, transmitted, stored, and analysed via IoMT 

and cloud technology [175]. This creates the continuous AF monitoring functionality. 

The cardiologist is being alerted once the DL algorithm detects AF events in the stored 

data. A cardiologist can examine the available data and combine this information with 
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knowledge gained from standard care to reach an accurate and effective diagnosis [24]. 

In case the cardiologist rejects the classification outcomes from the AF detection service, 

the monitoring continues to operate as per normal. However, if AF is detected, the patient 

is informed, and treatment can start. The AF detection service is then used for treatment 

monitoring. 

 

Figure 18: Timeline of AF detection service [22]. 

3.5 ResNet Model 

This section describes the methods used to underpin our statement that automated 

arrhythmias detection in RR interval signals is applicable. These methods were employed 

to create a signal processing system which can be used to train and test a ResNet DL 

algorithm with benchmark data. There were two targets of augmenting [176] and 

balancing [177] the dataset as directed by the design strategy. Balancing a dataset indicates 

to establish the same amount of training data for each class. From the benchmark data, we 

found that AFL had the least number of RR intervals. Therefore, we applied a scrambling 

approach to augment the dataset. To achieve the augmentation, round robin windowing 

technique was used to increase the amount of data for all signal classes. Ultimately, 

puncturing was utilised to balance the dataset [17].  
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Figure 19 provides a data processing overview block diagram. The processing starts with 

classifying the available ECG datasets, from benchmark database, into three different 

classes, which are AFIB, AF, and NSR. The RR interval signal was extracted from the 

available ECG signals. These RR interval signals were processed to train and test the 

ResNet model. The model was evaluated by using the performance measures known as 

ROC curve and confusion matrix. The following sections introduce both data and 

processing steps in more detail. 



 

 

Figure 19: Block diagram mapping the overview study setup [17]. 
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3.5.1 ECG benchmark data  

 

 

Figure 19 shows that one ECG database is used to provide benchmark data to train and 

test the ResNet algorithm. As a perquisite processing step, the ECG data requires 

denoising which contained recording information of 12-lead ECG signals from 10,646 

patients. These signals have been sampled with 500 HZ for a recording duration of 10 

seconds. The data were collected at Chapman University as well as Shaoxing people’s 

hospital (Shaoxing Hospital Zhejiang University School of Medicine) [178]. Each 

recorded signal was annotated by a cardiologist to identify one of 11 common rhythms. 

The annotation has been provided as a table that relates disease labels and ECG signal 

file name. From the given table, we selected all the files of interest that were labelled as 

AFIB, AFL, NSR. Table 5 indicates to the number of subjects for each individual signal 

class and the accumulated ECG duration (over the individual patient within a class).  

Table 5: Data properties for the three signal classes. The ‘ECG Duration (s)’ column 

provides the time duration of all ECG signal blocks for each individual class. The 

following two columns to the right provide the number of RR intervals and the number 

of RR DT. 

  Property 

Class 

ECG 

duration 

RR 

intervals 

RR_DT 

Samples 

Number 

of blocks 

Number of 

participants  

AFIB 17,800 25,995 25,995 1780 1780 

AFL 4450 7536 7536 445 445 

NSR 18,260 33,976 33,976 1826 1826 

Total 40,510 67,507 67,507 4051 4051 
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The table contains the entries for ECG duration that shows that all ECG signals recorded 

with the length of 10 seconds. The ECG recording for each patient compromises of one 

data block. Each block of ECG data includes an array of 12 × 5000 samples, where 12 

refers to the number of leads and 5000 indicates to the samples captured within 10 

seconds. Data block term refers to describe the subsequent processing stages to express 

the data from one patient.  

Figure 20 shows three examples of signal recordings namely, NSR, AFIB, and AFL. 

There are three different signals for each signal class.  The first of these signals depicts 

a 10 second ECG signal. 
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Figure 20: Example plots from AFIB, AFL, and NSR signal classes. The ECG signal 

was recorded with the aVL lead. The RR-intervals, plotted as RR-intervals over time, 
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were extracted from the ECG via QRS detection. The detrended RR-intervals were 

plotted as RR DT [17]. 

3.5.2 QRS detection 

The QRS detection is an important step that based on extracting the RR intervals from 

the ECG data blocks [17]. Hence, QRS represents the main component element in an 

ECG signal. It is generated by the ventricular depolarisation that happens when the heart’s 

muscles contract during a heartbeat. To be specific, within the QRX complex 

combination, the R wave indicates to the peak and the time location of that wave which 

symbolises the time location of the heartbeat. One RR interval means the distance 

between two consecutive R peaks. The well-known ECG kit for MATLAB was used to 

process the ECG [179]. The ECG kit framework has the wave detect algorithm that was 

implemented by Martínez et al  [180]. Once the RR interval sequences are generated, 

these sequences can be saved and maintained as the block structure. From Table 5, it can 

be seen that there is a column of RR intervals for each signal class.  As such, this step 

comprises a substantial data reduction. A better description of data reduction is illustrated 

with the following example. The number of NSR recorded as ECG data blocks involved 

109560000 samples. These samples reduced to only 33976 RR intervals after QRS 

detection. Therefore, the compression ratio accomplished by the QRS detection phase 

was 3224.6291.  

Figure 20 shows the example of each class signals of the extracted RR interval. The x-

axis scale refers to the location of RR interval such as the time location where RR interval 

ends. The y-axis scale indicates to the duration of RR interval. From the visual inspection, 

it can be recognised that the QRS detection algorithm has detected an additional beat for 

the AFIB as example signal. We have addressed that RR interval with a black circle in 

AFIB plot.  
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3.5.3 Fold generation and Patient scrambling 

Figure 20: Example plots from AFIB, AFL, and NSR signal classes. The ECG signal was 

recorded with the aVL lead. The RR-intervals, plotted as RR-intervals over time, were 

extracted from the ECG via QRS detection. The detrended RR-intervals were plotted as 

RR DT  10-fold cross validation involves partitioning the RR intervals data into 10 folds, 

of approximately equal size [181]. This approach has been described in detail in Section 

3.3.2. To achieve the fold generation, we have divided the data along RR interval blocks. 

That strategy is the same as generating the fold along subjects. In other words, the data 

related to specific subject can only be found in one-fold. Table 6 demonstrates this activity 

by presenting the number of RR intervals for NSR, AFIB, and AFL.  

Table 6 Number of RR intervals per signal class for each fold. AFLSC denotes the 

scrambled AFL dataset. 

 Fold F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10

Class 

NSR 2015 1980 1980 2029 2020 1973 1992 2017 1975 1975 

AFIB 2651 2667 2584 2566 2633 2649 2594 2512 2604 2535 

AFL 742 759 786 784 762 766 727 702 721 787 

AFLsc 2226 2277 2358 2352 2286 2298 2181 2106 2163 2361 

From the table above, it can be noticed that in all folds, the number of AFL RR intervals 

is lower by more than three times when compared to AFIB RR intervals. To correct that 

imbalance, we have implemented patient scrambling to increase the AFL data. The core 

concept of patient scrambling was established with a fold generation algorithm that uses 

the sequence in which the RR interval block appears in the dataset to create fold data.  

This sequence would affect the data vectors, which were generated via round robin 

windowing due to the window length is greater than the number of RR intervals in any 
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specific data block. Each data vector contains 100 detrended RR intervals from different 

patients. In the scrambling step, we use this feature to create more AFL data. To do this, 

we established 3 variations of the sequence in which each patient data emerged in the 

training and testing datasets-for each individual fold. Table 6 indicating to the number of 

the augmented RR intervals for AFLSC is exactly three times greater than the number of 

AFL RR intervals for the same fold. 

3.5.4 Detrending 

With detrending approach, the DC offset can be removed from the RR intervals signal 

[17].  This processing method was applied to aid the learning phase by reducing the 

training time as well as the network complexity [182]. In this experiment, we have utilised 

detrending and low-pass filter introduced by Fisher et al. [183]. The filter combination is 

based on an Ornstein-Uhlenbeck third-order Gaussian process which acts on the RR-

interval signal directly [184], [185]. Once the detrending step is completed, the datasets 

contain RR DT samples. Table 5 contains the column of processed RR DT samples. As 

such, the detrending does not increase the amount of data; therefore, the number of RR 

DT samples corresponds to RR intervals.  

Figure 20 shows the detrended plot of RR signals for each signal class. The signal graphs 

show that the DC bias is significantly reduced. 

3.5.5 Round robin windowing and Puncturing 

Applying a round robin windowing approach can augment the data through generating a 

data vector with 100 elements for each RR DT sample. That approach increases the data 

dimensionality 100-fold [17]. These vectors indicate to the specific class data for each 

fold that arranged in a window with 100 elements. This window was slid over the RR DT 

signal one sample at a time. Round robin method refers that first 100 RR DT samples for 
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each dataset were copied at the end, before applying the window. That extension would 

link one data vector for each RR DT sample.  

Puncturing is the subsequent step used after windowing which can adjust data size for 

AFIB and AFLSC datasets. The puncturing algorithm removes equidistant data vectors. 

This technique ensures that the number of training data, for each of the three classes in a 

fold, is equal. Table 7 shows that NSR has the least number of data vectors for the 10-

folds when compared with AFIB and AFLSC. As a result, we have selected the number of 

NSR data vectors as a target for puncturing AFIB and AFLSC. 

Table 7: The number of data vectors per signal class within each fold. AFLP and AFIBP 

denote the punctured datasets for NSR and AFIB respectively. 

Fold 

Class 

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10 

AFIB 2651 2667 2584 2566 2633 2649 2594 2512 2604 2535 

AFL 742 759 786 784 762 766 727 702 721 787 

NSR 2015 1980 1980 2029 2020 1973 1992 2017 1975 1975 

AFLp 2015 1980 1980 2029 2020 1973 1992 2017 1975 1975 

AFIB

p 

2015 1980 1980 2029 2020 1973 1992 2017 1975 1975 

 

The puncturing algorithm will decrease the number of data vectors until reaching the 

number of NSR data vectors in the same fold. For instance, the number of NSR data 

vectors in Fold-1 has 2015 samples. After puncturing processing, the number of AFIBP 

and AFLP is equal to the number of NSR data vectors. Once the pre-processing is 

completed, the new data vectors NSR, AFIBP, and AFLP were used to train and test the 

ResNet model.  
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3.5.6 ResNet 10-fold cross-validation 

Overfitting is a main issue for classifying the physiological signals with DL. This term 

indicates to the fact that ResNet network can remember the signals itself rather than the 

signal properties which are related to disease symptoms. In a practical implementation, 

overfitting happens when the DL algorithm classifies the training datasets correctly but 

fails to achieve that with testing datasets. There are several approaches to avoid or at least 

reduce overfitting. Model selection plays a main role in that process. In this study, we 

followed the findings by Fawaz et al. [186], in their review on DL for time series 

classification they found that ResNet Network outperforms all the other tested models.  

Figure 21 shows the ResNet model was established by using the data low structure.  
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Figure 21: ResNet architecture used for training and testing [121]. 

 

The data flow diagram is comprised from standard components which have a direct 

correspondence with the support of python Application Programming Interface (API) 

Keras [187] for the DL framework TensorFlow [188]. The structure of data flow indicates 

that there are three shortcut connections which enable the information to skip the 

processing block. This structure is known as residual block. That structure can address 

another limitation of the particular DL model which is the so-called vanishing/exploding 

gradient problem [189]. From a practical aspect, this problem occurs when increasing the 
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number of network layers results in lower training accuracy. Hence this kind of problem 

is distinct from the general overfitting problem. The hyperparameters require tuning once 

the network is selected. We have applied a trial-and-error technique to narrow down the 

optimal parameters. To be precise, we implemented a collaborative process which was 

controlled by an increasing understanding of the interaction between signal processing 

and classification model. Table 8 provides the number of data vectors used to train and 

test the ResNet model. In a final stage, these data vectors were used to shape both training 

and testing sets. Table 6 provides the parameters for these datasets. They were arranged 

by choosing one-fold for testing and using the data vectors in the remaining folds for 

training. That process is repeated until each fold was used for testing. This comes from 

the fact that the number of data vectors for AFLSC, AFLP, and AFIBP is equal for each 

fold, see Table 7, results in a perfectly balanced training dataset. That implies for any 

given test fold, the number of vector data for NSR, AFIB and AFL has the same amount. 

To achieve this process, Column1 in refers to the test fold and the remaining columns on 

the right indicate to the number of training and testing data vectors. For instance, if fold 

1 was used for testing, the data vector categories are provided in Row1 Table 8. Hence, 

the network was trained for all the data vectors (53823) starting from fold-1 to fold-10 

(53943). The network was tested with all data vectors (6892) from fold-1, including NSR, 

AFIB and AFL.  

Table 8 shows the number of data vectors used for training and testing during the 10-

fold cross validation. 

 Training datasets Testing datasets 

N Fold NSR AFIB AFL Total NSR AFIB AFL Total 

1 17,941 17,941 17,941 53,823 2015 2651 2226 6892 

2 17,976 17,976 17,976 53,928 1980 2667 2277 6924 

3 17,976 17,976 17,976 53,928 1980 2584 2358 6922 

4 17,927 17,927 17,927 53,781 2029 2566 2352 6947 
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5 17,936 17,936 17,936 53,808 2020 2633 2286 6939 

6 17,983 17,983 17,983 53,949 1973 2649 2298 6920 

7 17,964 17,964 17,964 53,892 1992 2594 2181 6767 

8 17,939 17,939 17,939 53,817 2017 2512 2106 6635 

9 17,981 17,981 17,981 53,943 1975 2604 2163 6742 

10 17,981 17,981 17,981 53,943 1975 2535 2361 6871 

3.5.7 Results analysis methods 

The result analysis starts with creating a confusion matrix based on validating the 

classification outcomes of the DL model.  Table 9 describes the confusion matrix in the 

form of the number of beats with a true and a predicted label: N predicted, true label. The 

predicted label was produced with the ResNet classification model. The combination of 

three predicted labels and three true labels forms the confusion matrix dimensionality 

with 3×3=9 beat labels. Table 9 shows the arrangement of these beat labels in the 

confusion matrix. AFIB and AFL are both arrhythmias. Hence, it is logical to combine 

AFIB and AFL beats to shape an arrhythmia class. The NSR beats constitute a non-

arrhythmia class. Table 9 shows the confusion matrix that reflects these considerations. 

Based on the confusion matrix (cm), we define TP, TN, FP, FN.  

Table 9: Confusion matrix for AFIB,AFL, and NSR. 

AFIB  AFL NSR 

AFIB NAFIB, AFIB NAFL, AFIB NNSR, AFIB 

AFL NAFIB, AFL NAFL, AFL NNSR, AFL 

NSR NAFIB, NSR NAFL, NSR NNSR, NSR 

True label 

Predicted label 
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Table 10: Confusion matrix for Arrhythmia and Non-arrhythmia. 

Arrhythmia Non-arrhythmia 

Arrhythmia NAFIB, AFIB + NAFL, AFIB + NAFIB,

AFL + NAFL, AFL 

NNSR, AFIB + NNSR, AFL 

Non-arrhythmia NAFIB, AFL +NAFL, AFL NNSR, NSR 

Based on the confusion matrix, we define TP, TN, FP, and FN for a specific class (cl) as 

follows: 

 TPcl=𝑁𝑐𝑙,𝑐𝑙 3.10 

TPcl =(∑ 𝑁𝑖,𝑖𝑖∈ 𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑡 )  – 𝑁𝑐𝑙,𝑐𝑙 3.11 

FPcl =(∑ 𝑁𝑖,𝑐𝑙𝑖∈ 𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑡 )  – 𝑁𝑐𝑙,𝑐𝑙   3.12 

FNcl =(∑ 𝑁𝑐𝑙,𝑖𝑖∈ 𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑡 )  – 𝑁𝑐𝑙,𝑐𝑙 3.13    

Where cl ∈ (Class set) and Class set is either (AFIB; AFL; NSR) or 

(Arrhythmia; Non-arrhythmia). 

These definitions were used to establish the performance measures of 

ACC, SPE, and SEN for the individual class:  

𝐴𝐶𝐶𝑐𝑙 = 
𝑇𝑃𝑐𝑙+𝑇𝑁𝑐𝑙

𝑇𝑃𝑐𝑙+𝑇𝑁𝑐𝑙+𝐹𝑃𝑐𝑙+𝐹𝑁𝑐𝑙
    3.14 

𝑆𝐸𝑁𝑐𝑙 = 
𝑇𝑃𝑐𝑙

𝑇𝑃𝑐𝑙+𝐹𝑁𝑐𝑙
 3.15 

 𝑆𝑃𝐸𝑐𝑙 = 
𝑇𝑁𝑐𝑙

𝑇𝑁𝑐𝑙+𝐹𝑃𝑐𝑙
  3.16 

Predicted label 

True label 
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10-fold cross-validation results in 10 different performance measures. These individual 

performance measures were averaged to determine the overall performance. For the 

confusion matrix, that combination implies of the accumulation the matrix classes.  Table 

11 shows the considerations of the confusion matrix. The overall performance measures 

can be determined by using Equations 3.10 to 3.16.  

A ROC curve demonstrates how the threshold level affects the diagnostic capability of a 

binary classifier [190]. AUC indicates the general performance of the classifier, for 

example, if the area is nearer to 1 that is an indication of achieving a better classification 

performance. Both Equations 3.15 and 3.16 were utilised to compute the class specific 

True Positive Rate (TPR) and False Positive Rate (FPR), respectively. The micro-average 

is the mean of the individual class results for AFIB, AFL, and NSR. The macro-average 

is computed by accumulating all the FP. Table 11: Average cross-validation confusion 

matrix. The summation symbol for test fold indicates to sum over all test folds. 

 

AFIB  AFL  NSR 

AFIB ∑{𝑁𝐴𝐹𝐼𝐵,𝐴𝐹𝐼𝐵} 

o 

   

∑   {𝑁𝐴𝐹𝐿,,𝐴𝐹𝐼𝐵} 

 

∑{𝑁𝑁𝑆𝑅,,𝐴𝐹𝐼𝐵} 

 

AFL ∑{𝑁𝐴𝐹𝐼𝐵,𝐴𝐹𝐿} 

 

∑{𝑁𝐴𝐹𝐿,,𝐴𝐹𝐿} 

 

∑{𝑁𝑁𝑆𝑅,𝐴𝐹𝐿} 

 

NSR ∑{𝑁𝐴𝐹𝐼𝐵,𝑁𝑆𝑅} 

 

∑{𝑁𝐴𝐹𝐿,𝑁𝑆𝑅} 

 

∑{𝑁𝑁𝑆𝑅,𝑁𝑆𝑅} 

 

 

 

 
            1https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html 

 

(Test Fold) (Test Fold) (Test Fold) 

(Test Fold) (Test Fold) (Test Fold) 

(Test Fold) (Test Fold) (Test Fold) 

Predicted Label  

True label  
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3.5.8 ResNet network classification outcomes  

The outcomes, presented in this section, demonstrate the classification performance 

achieved by the ResNet model. In order to establish that performance, 10-fold cross 

validation approach was applied to train and test the model. Table 8 describes the 

properties of the training and testing data. Hence, the table presents 10 Test Folds 

requiring 10 individual training and testing iterations. The training was achieved in 50 

epochs with batch size of 16. Categorical cross-entropy was used as loss function and 

Adam [191] was used as optimizer. 50 epochs were specified for each training and testing 

iteration, and the obtaining the greatest testing accuracy that was used to form the 

confusion matrix. The confusion matrix structure is described in Table 9 . Having created 

the individual confusion matrices, as such, we are able to determine the overall confusion 

matrix as presented in  Table 11. Equations 3.8 to 3.10 were used to compute the accuracy 

(ACCcl), Sensitivity (SENcl), and Specificity (SPEcl) where cl ∈ {AFIB, AFL, NSR}, 

calculating the performance measures for each class in matrix dimensionality 3x3 for each 

Test Fold. Table 12 documents the quality of the classification measures ACC, SEN, SPE, 

as well as the confusion matrix results for the 10 separate Test Folds and aggregating the 

overall test folds. Hence, the average of the overall performance measures for 10 folds 

highlighted in the last Row of table 10, are over the 95%. This reflects how perfect the 

proposed ResNet model was able to classify AFIB, AFL, and NSR using the RR interval 

signal.  

From a medical perspective, the binary problem classification of Arrhythmia vs Non-

Arrhythmia is also significant. Hence, we have used the terms, provided in Table 10, to 

refine all Test Fold confusion matrixes, presented in the last row of Table 12. In that step, 

we have established the two-class results, shown in Table 12.  Figure 22 shows the ROC 

curve which provides the graphical representation of the classification outcomes. The 

large area under curve is a direct result of the excellent classification performance 

followed by the performance measures presented in Table 12 and Table 13. 

 

 

 



 

Chapter 3 Automated arrhythmia detection with deep learning based on RR intervals   

  

77 

 

 

Table 12: Analysis results for each fold and overall aggregated folds. 

 

Test Fold    cl          ACC cl (%)    SENcl   (%)           SPEcl (%)   Confusion matrix  

 

1              AFIB           97.16              92.72                              99.27 
                  AFL             97.16              98.72                              99.18 
                  NSR            100.00            100.00                            100.00           

2064 162 0 

34 2617 0 

0 0 2015 

2              AFIB            99.87              99.60                               100.00 
                  AFL             99.87              100.00                           99.79 
                  NSR            100.00            100.00                          100.00 

2268 9 0 

0 2667 0 

0 0 1980 

3             AFIB           95.81             87.70                           100.00 

               AFL            95.81             100.00                         93.31 

               NSR           100.00            100.00                          100.00 

2068 290 0 

0 2584 0 

0 0 1980 

4             AFIB          96.95              91.11                          99.93 

               AFL           96.95              99.88                          95.23 

               NSR           100.00            100.00                       100.00 

2143 209 0 

3 2563 0 

0 0 2029 

5             AFIB          98.83               96.98                        99.74 

               AFL            98.83               99.54                        98.40 

               NSR           100.00             100.00                      100.00 

2217 69 0 

12 2649 0 

0 0 1970 

6             AFIB          100.00             100.00                      100.00 

               AFL            99.96              100.00                        99.93 

               NSR            99.96                99.85                      100.00 

2298 0 0 

0 2649 0 

0 3 1970 

7             AFIB           96.81               90.10                      100.00 

               AFL            96.81               100.00                     94.82 

               NSR            100.00             100.00                     100.00 

1965 216 0 

0 2594 0 

0 0 1992 

8             AFIB           94.32                83.05                      99.56 

               AFL             94.32                99.20                      91.34 

               NSR           100.00               100.00                    100.00 

1749 357 0 

20 2492 0 

0 0 2017 

9             AFIB           98.28                95.42                      99.63 

               AFL             98.15                99.35                      97.39 

               NSR            99.86                99.54                      100.00 

2064 99 0 

17 2587 0 

0 9 1966 

10          AFIB           100.00               100.00                    100.00 

               AFL            100.00               100.00                   100.00 

               NSR           100.00               100.00                    100.00 

2361 0 0 

0 2535 0 

0 0 1975 

              AFIB            97.82                 93.76                      99.81 

 All        AFL            97.80                 99.67                      96.66 

               NSR           99.98                  99.94                     100.00 

21197 1411 0 

86 25909 0 

0 12 19944 
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Table 13: Overall classification outcomes. Where cl=Arrhythmia 

 ACC cl (%)    SENcl   (%)           SPEcl (%)   Confusion matrix  

 

99.98              99.94                    100.00 48603 0 

12 19944 

 

 

Figure 22: The ROC curve shows the diagnostic quality results for 10 folds. 

3.6 Discussion  

Data acquisition is always a concern for learning systems. The proposed automated AF 

detection system is no exception. The database from PhysioNet MIT-BIH AF were used 

to enable collaboration and competition. Competition means that the used data is well 

known, and classifications outcomes are available from other research study. 

Collaboration is doable due to the data being publicly accessible. There was no need to 

feature extraction in the processing structure, all the required information exciting in the 

training data set is fed into the deep learning system. Therefore, knowledge can be 

extracted implicitly which allows it to make good decisions even for unseen data. Looking 
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beyond the research, we found that there are two main methods to measure the electrical 

activity of human’s heart. The LSTM method based on classifying RR interval from HR 

signal and detects the abnormality through computer-aided-diagnosis. However, the 

standard measurement method is relying on the ECG and the AF detection can be done 

either professional cardiologist or by machine learning.  

The ResNet method investigates the problem of classification NSR, AFIB and AFL by 

using the RR intervals. This problem has been highlighted with various research studies 

which extracted the information from ECG signals. The morphology of ECG signals has 

principal structural elements, such as the QRS complex, which aids the classification 

efforts. Cardiologists use changes in ECG morphology for arrhythmia diagnosis. These 

structures are removed during QRS detection which is used to extract the RR-interval 

sequence. The RR-interval reflects only the heartbeat rhythm. That rhythm is distinct for 

NSR and AFIB. Therefore, arrhythmia research based on RR-interval sequences has 

focused on differentiating AFIB and AFL. Only Ivanovic [125] address the three-class 

problem of AFIB, AFL, and NSR. Direct competition with this study is difficult because 

the authors have used a private dataset. To be specific, we could not apply the ResNet 

algorithm to their dataset and therefore we can only compare the performance results 

achieved with different datasets. A statistical comparison reveals that the LSTM based 

detection method, proposed by [125] has a ≈10% lower accuracy when compared to our 

ResNet approach.  

Table 14 provides an overview of arrhythmia detection studies based on ECG and RR 

interval signals.  

In general, ECG based arrhythmia detection achieves better accuracy values when 

compared to RR interval-based detection. We believe that this holds true, even though a 

direct comparison is not possible because different datasets were used to establish the 

performance results. ECG contains all the information about the electrical activity of the 

human heart. As such, the RR interval is part of this information. Hence, during the 

process of extracting the RR intervals we lose all the additional information contained in 

the morphology of the ECG. However, when we compare the accuracy performance 

reported by Fujita [192], with the ResNet accuracy, we find that our performance is just 

0.49% lower. The small performance benefit might not justify the increased measurement 
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effort and significantly higher data rate of ECG signals when compared to RR interval 

signals. The increased measurement effort results in the fact that ECG monitors require 

expert instrumentation, for example the sensors must be attached by a specialist nurse. In 

contrast, RR intervals can be measured with sensors that were placed by patients. State-

of-the-art ECG sensors deliver 250 samples per second. However, the heart beats around 

once a second, generating about one RR interval value per second. The fact that RR 

interval signals have a 250 times lower data rate, when compared to ECG signals, leads 

to significant cost savings when it comes to communication, storage, and processing. RR 

interval-based arrhythmia detection becomes even more important when we move away 

from the electrical activity of the human heart and consider RR intervals extracted from 

pulse signals [38]. Pulse sensors are less expensive and more readily attached when 

compared to RR interval sensors that measure the electrical activity of the human heart 

[65]. Therefore, pulse sensors can be used in wearable devices, such as smart watches. 

Coupled with the low data rate of RR interval signals, wearable technology may facilitate 

low barrier and low-cost arrhythmia detection systems. Such systems are governed by the 

laws of big data, where individual beat classifications become less significant when 

compared to accumulated evidence. Furthermore, big data helps to diversify and to 

improve classification results. This may lead to a better understanding and detection of 

early-stage arrhythmia. 

Table 14: Selected arrhythmia detection studies using RR intervals and ECG from varied databases. 

Authors list  Classifier  Data Performance  

Signal 

type 

DB Rhythm  ACC% SPE% SEN% 

Our 

proposed 

Bidirectional-

LSTM 

RR MIT-AFIB AF and 

normal 

 

98.51 98.67 98.32 



Chapter 3 Automated arrhythmia detection with deep learning based on RR intervals   

81 

methods: 

[14], [17] 

Detrending, 

ResNet 

ECG-DB NSR, 

AFIB, 

AFL 

99.98 100.00 99.94 

Ivanovic et 

al., 

2019 [125] 

CNN, LSTM RR Hospital NSR, 

AFIB 

AFL 

88 – 87.09 

Fujita et al., 

2019 [192] 

CNN with 

normalisation 

ECG AFDB, MIT-

DB, VFDB 

NSR, 

AFIB 

AFL, 

VFIB 

98.45 99.87 99.27 

Faust et al., 

2018 [14] 

LSTM RR AFDB NSR, 

AFIB 

98.32 98.32 98.51 

Acharya et 

al., 

2017 [193] 

CNN with Z-

score 

ECG AFDB, 

MITDB, 

VFDB 

AFIB, 

AFL, 

VFIB, 

NSR 

92.50 98.09 93.13 

Henzel et al., 

2017 [194] 

Statistical 

features with 

generalized 

Linear Model 

RR AFDB AFIB 

NSR 

93 95 90 
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Desai et al., 

2016 [195] 

RQA with 

Decision 

Tree, 

Random 

Forest, 

Rotation 

Forest 

 

ECG AFDB, 

MITDB, 

VFDB 

AFIB, 

AFL, 

VFIB, 

NSR 

98.37   

Acharya et 

al., 

2016 [196] 

Thirteen 

nonlinear 

features with 

ANOVA 

with KNN 

and DT 

ECG AFDB, 

MITDB,VFDB 

AFIB, 

AFL, 

VFIB, 

NSR 

97.78 99.76 98.82 

Hamed et al., 

2016 [197] 

Thirteen 

nonlinear 

features with 

ANOVA 

with KNN and 

DT 

ECG AFDB AFIB, 

AFL, 

NSR 

98.43 96.89 98.96 

Xia et al., 

2018 

[198] 

DWT, PCA 

and SVM 

ECG AFDB AFIB 98.63  98.79  97.87 

Petrenas et 

al., 

2015 [199] 

STFT/SWT 

with 

CNN 

RR NSRDB, 

AFDB 

AFIB 

NSR 

 98.3 97.1 

Zhou et al., 

2014 [200] 

 

Median filter 

with 

threshold 

RR LTAFDB, 

AFDB, 

NSRDB 

AFIB 

NSR 

96.05 95.07 96.72 
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3.7 Summary 

This chapter described design, implementation, and testing of arrythmia detection 

systems. The chapter started by describing the design approach which mainly based on 

offline and online system. From the offline system, we extracted the knowledge from 

small datasets, by generating an AI model. In the online system this model is applied to 

larger datasets. The proposed algorithms for AF detection and arrhythmia detection were 

discussed in detail in Section 3.6. Validation of a mature deep leaning system is covered 

in detail in Chapter 4 which involves testing the LSTM algorithm for AF detection with 

more and more databases to establish a feasibility. 

Muthuchudar 

et 

al., 2013 

[201] 

Median filter 

& 

Shannon 

entropy with 

threshold 

UWT NN 

ECG AFDB AFIB, 

VFIB, 

NSR 

96 

Yuan et al., 

2016 [202] 

Unsupervised 

autoencoder 

NN SoftMax 

regression   

ECG AFDB, 

NSRDB, 

ltdb, hospital 

AFIB 98.18 98.22 98.11 

Dinakarrao 

et 

al., 

2018[203] 

Daubechies-6 

with 

counters 

Anomaly 

detector 

ECG MITDB AFIB, 

VFIB 

99.19 98.25 78.70 

Salem et al., 

2018 [204] 

Spectrogram 

with CNN 

ECG AFDB 

NSRDB 

VFDB EDB 

AFIB, 

AFL 

VFIB 

NSR 

97.23 



84 

 

 Chapter 4 Validating the robustness of a 

mature deep learning system  

4.1 Introduction 

This study describes the validation of a mature deep learning model for IoT based 

healthcare applications. The original deep learning model was established to detect AF 

epoxides using RR intervals. The initial LSTM model was trained with 20 subjects, 

collected from the publicly available AFDB database, known as PhysioNet. This model 

achieved an AF detection accuracy of 98.51% with 10-fold cross-validation. In this 

chapter, we describe how we validated the initial outcomes by testing the developed DL 

model with more unknown datasets. To be specific, we used these databases for testing 

the model with a so-called blind-fold validation method. The blind fold validation 

approach has been done independently for each database which they have its own 

performance measures and results representation. Physicians can compare the 

classification results of the machine decision with their diagnosis. These results showed 

that the LSTM model can extract the feature maps from unseen data which led to accurate 

detection of AF events. Testing the model with blindfold validation we contravened a 

well-known design rule for learning systems which states that more data should be used 

for training rather testing. Therefore, we have established that the tested DL model is fit 

for practical applications. To be specific, we found that the DL model can apply 

knowledge which was extracted from a small training data set to a HR trace from a patient. 

4.2 Background on intelligent internet of things  

Intelligent Internet of Things (IIoTs) transmit the measurement of heart data to a central 

storage location for centralised decision making [205]. In the clinical domain, these 
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measurement data are usually indicated to physiological signals, such as HR signals [66]. 

Figure 23 demonstrates a use case scenario for a medical IIoTs. Monitoring session starts 

with session initialization by attaching the HR patch to patients, which presented in the 

figure as a black oval with a red dot. That real-time patch communicates the HR signal to 

a tablet or a smartphone through Bluetooth Low Energy (BLE), which then transmits the 

data from the smartphone to the cloud server via IoT protocol. The LSTM based deep 

learning model, was used for validation in this study, can analyse the transmitted HR 

signals in real-time and act as decision support tool. Once AF event is detected, a 

cardiologist will be notified. The cardiologist can examine the HR trace and reach a 

diagnosis. That diagnosis can be interpreted to the patients in form of a simple traffic light 

scheme, as shown in the Figure 23.  

Figure 23: The diagram presents the use case technology of an IoT based decision support 

system. The colour on the smartphone changes in line with diagnosis outcomes. Red 

screen refers to serious event detected and requires an urgent intervention, orange indicate 

to cautions, and green no need for attention [18]. 
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4.3 Methods  

In Chapter 3 we outlined the implementation of a LSTM model based on DL to detect the 

AF episodes in RR interval signals [14]. The model provides the required intelligence 

analytic tool for the state-of-the-art IoT based diagnosis support systems. The current 

study setup tests the same model with more and more distinct data acquired from different 

database sources. Figure 24 shows a block diagram of the study setup. The upper phase 

of the graph illustrates the initial study setup. The LSTM based DL system was trained 

and validated with Labelled RR interval signal data from 20 subjects obtained from 

PhysioNet’ AFDB. The model was tested with completely hold-out 3 subjects. Training 

the deep learning network means generating good weight values of the individual 

neurons. The weight vectors generated from the initial study were applied in the 

validation setup. However, more and more varied data were used for the blind-fold 

validation. The second phase of the figure shows the sources of different databases used 

for the validation arrangement. The following sections detail the validation setup by 

introducing the data sets and the processing steps in more detail. 
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Figure 24: Overview diagrame of the validation setup. 

4.3.1 Data used for validation setup 

The data acquisition obtained for the initial study from MIT-BIH AFDB, which is 

available on PhysioNet [45], [46]. This database involves 23 subjects for 10 hours 

recordings with ECG. These recordings were labelled with so-called rhythm annotation 

files, the content of which was arranged manually. There are different types of rhythm 

annotations found in these files, such as AFIB (atrial fibrillation), AFL referring to (Atrial 

Flutter), J: AV junctional rhythm), and N used to indicate al other rhythms. Furthermore, 

the database contains beat annotation files that were used to extract the HR signals. 

For the blindfold validation, we used the data from multiple database sources. These 

databases employed for validation setup, including Long-Term Atrial Fibrillation 

Database (LTAFDB) with 82 subjects [30], Normal Sinus Rhythm Database (NSRDB) 
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with 18 subjects, Fantasia database has 40 subjects and Arrhythmia database involved 48 

subjects. A brief description of LTAFDB, all subjects in that database were identified 

with either paroxysmal or sustained AF. Each dataset is constituted of two ECG signals 

where each signal has a recording duration of 24 to 25 hours with the sample frequency 

of 128 HZ. In addition, the datasets also contain rhythm and beat annotations, which were 

prepared by experienced cardiologists. Furthermore, the R Peaks are labelled, and the RR 

interval sequence was extracted based on these labels. The RR interval sequence indicates 

to either AF or non-AF based on rhythm annotations.  

However, the data were collected from the NSRDB [46] investigated by experienced 

cardiologists which showed that clean datasets with no signs of arrhythmias or AF. The 

signals were measured from 5 males, aged between 26 to 45, and 13 females aged from 

20 to 50. This dataset is composed from 18 long-term ECG recordings sampled at 250 

Hz. Similarly, all datasets from Fantasia database do not contain AF or arrhythmia 

episodes, all datasets are normal according to the clinical information published on the 

PhysioNet website. That database includes 20 young participants with age group between 

21-34 years old and other 20 participants from elderly group (68-85 years old). Each

subgroup of subjects includes equal numbers of men and women. The monitoring 

duration underwent continuously for 2 hours of the healthy subjects with ECG recordings. 

The ECG signal sampled with 250 HZ. Each heartbeat was labelled using an automated 

arrhythmia detection algorithm, and each beat annotation was verified by visual 

inspection. In contrast, the MIT-BIH Arrhythmia Database contains 48 subjects 

monitored with two-leads ambulatory ECG recordings for 24 hours. ECG measurements 

were collected from a mixed population of inpatients wards around 60% and outpatients 

about 40% at Boston's Beth Israel Hospital. These recordings were digitized with 

sampling frequency 360 HZ per second.  

: Provide the recordings parameters that were used to collect the data from five databases.  

Table 15: Comparison between databases sources for validation setup study. 

Database 

category 

Recording 

duration 

Sampling 

frequency 

Subjects 

Number 

Voltage 

range 

ADC 

Resolution 

AFDB 10h 250 Hz  3 ± 10 mV 12-bit

LTAFDB 24h 128 Hz 82 ± 20 mV 12-bit
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NSRDB 24-25h 250 Hz 18 ± 10 mV 12-bit

Fantasia 

DB 

2h 250 Hz 40 

Arrythmia 

DB 

24h 360 Hz 48 ± 10 mV 11-bit

The fact that the sampling frequencies were varied among these databases. The pre-

processing of the data in the validation setup follows closely the initial study. A sliding 

window was used to partition the HR signals into overlapping sequences of 100 beats. 

Each sequence of 100 beats was labelled as AF if one of the beats, within the sequence 

was labelled AF, similarly repeated with arrhythmia, all other sequences were labelled 

non-AF, indicating normal or other cardiac disease. The overall data from 188 subjects 

were used with the blindfold validation strategy to evaluate the performance of the robust 

deep learning system. This means the proposed methods can be used to generalize not 

only unknown data, but also the unknown patients as well. 

4.3.2 Performance analysis 

The performance measures can be established by using both confusion matrix and ROC 

curve. The confusion matrix is also known as error matrix which summarise the 

prediction outcomes of a classification problem [206]. The arrangement of such a matrix 

can visualise the performance of a decision-making algorithm. To be specific, the matrix 

comprises of two rows and two columns that represent the classes of actual and predictive 

analysis. Therefore, these performance measures report the number of TP, TN, FP, FN. 

TP in most medical test results refer to a positive case (patient correctly identified with a 

disease) while TN a negative case (subject correctly identified without having a disease). 

The ROC curve is a technique used to evaluate the diagnostic ac- curacy of tests in modern 

medicine [172]. It is widely used to demonstrate how well a diagnostic model can 

differentiate between the presence and absence of the disease and works equally well with 

data sets that exhibit class imbalance. The ROC represents the TP rate (sensitivity) plotted 

against the FP rate (1-specificity) for various cut-off points [207]. Each point on the ROC 

graph indicates the sensitivity/specificity corresponding to a specific decision threshold. 
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The Area Under Curve AUC) is a summary metric indicating the discriminatory power 

of a classifier. 

4.3.3 Initial study setup  

In the initial study, we designed a developed deep RNN with LSTM model to detect AF 

based on RR interval [14]. The resulting data blocks from the pre-processing method were 

directly fed into the model without doing any feature engineering. Table 16 provides the 

10-folds cross validation results achieved for the initial model that was trained with data 

of 20 subjects from AFDB database.  

Table 16: 10-fold cross-validation performance measure outcome established during the 

initial training and testing of the LSTM based deep learning model. 

TN FP FN TP Accuracy  AUC  

523,241 7040 7407 430,615 98.51% 0.9986 

4.4 Validation Results  

This section forms the blind-fold validation results of the LSTM based DL model which 

was initially established by Faust et.al [14]. The test results for LTAFDB datasets based 

on processing RR intervals signals for each individual patient’s file with overall 82 

subjects. The radar plot, shown in Figure 25, provides a graphical representation of the 

model performance in terms of accuracy, precision, recall and F1 score. The labels placed 

around the radar plot, correspond to the subject ID as found in the LTAFDB. These labels 

were arranged in order in terms of having the highest accuracy.  The signal with patient 

ID 10, reflects a position at 12 o’clock, has the greatest accuracy. The accuracy 

performance of the classification model reduces its values when it moves clockwise, for 

example, the accuracy values were fluctuating from label 12 to label 22. The model 

achieved the lowest accuracy of just under 70% for the HR signal from patient 22. 

Therefore, we have evaluated the classifier results with the performance measures such 

as the confusion matrix and ROC curve to validate the classification of AF and normal 

cases in the HR sequences processed from 82 subjects. Figure 26 shows the results 
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obtained using the new test data: (a) confusion matrix used for blindfold validation from 

82 subject’s data, (b) ROC curve of the classification model and diagnostic quality 

measures. 

Figure 25: Illustration of model performance for testing each individual subject 

measurements from LTAFDB achieved through blindfold validation . 
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    (a)       (b) 

Figure 26: Results obtained using the new test data: (a) confusion matrix by blindfold 

validation, (b) ROC of the model. 

It can be observed from the results in Table 17 that the LSTM based DL model achieved 

94% of the overall classification accuracy on the LTAFDB blindfold validation datasets 

- classifying 95% of normal and 95% of HR sequences showing signs of AF correctly,

the overall accuracy detection in the NSRDB 97% as well as 97.57% accuracy for 

Fantasia database, but with arrhythmia database the model achieved 88% of accuracy 

despite of the model has not been trained with this datasets. For the ROC curve plot, the 

DL classifier achieves 96.58% of an AUC, which is close to a perfect score of 1, as such, 

the classifier discriminates well between the presence and the absence of the AF episodes. 

The classifiers values threshold is set between 0 and 1 where zeros represent true negative 

values and 1.0 refers to true positive. The closer curve to 1 in ROC plot, the higher overall 

diagnostic accuracy of TPR against FPR is achieved. Figure 26b shows the ROC curve 

indicating the diagnostic performance of AF. Table 17 provides the blindfold validation 

results for 3 subjects of AFDB, as documented during the initial study, and 82 subjects 

from LTAFDB, 18 subjects from NSRDB, 40 subjects of Fantasia database and 48 

subjects of Arrhythmia database. The overall subjects that have been validated the model 

with blindfolds validation model are 188 subjects.  From the matrix parameters TN, FP, 

FN and TN, we can calculate the accuracy, sensitivity and specificity. AUC curve is 

plotted once AF beats are detected represented by TPR.  
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Table 17: Blindfold validation obtained from the LSTM deep learning model for five 

databases. 

Databases TN FP FN TP Total 

beats No 

Accurac

y 

%  

Sensitivit

y 

%  

Specificity 

%  

AU

C 

AFDB 65,699 255 116 91,888 157,958 99.77 100 100 1 

LTAFDB 323804

8 

31631

8 

241416 5009401 8,808,18

3 

94 95 95 96.5

8 

NSRDB 161711

7 

45936 0 0 1,663,05

3 

97 97 100 –– 

Fantasia 

DB 

269343 6630 0 0 275,973 97.57 98 100 –– 

Arrhythmi

a DB 

77941 11365 1232 12067 102,60

5 

88 88 92  

 

The tested model achieved with blindfold validation for all databases above than 80% 

which reflects excellent results according to the state-of-art. Figure 27 provides the 

confusion matrix outcomes for NSRDB. Figure 28 shows the performance measure 

results of the classification model for Fantasia database. Figure 29 depict confusion 

matrix results for arrhythmia database.  
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Figure 27: Confusion matrix for NSRDB. 

   

Figure 28: Confusion matrix outcome for Fantasia. 
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Figure 29: Confusion matrix for Arrhythmia database. 

4.5 Discussion 

This validation study demonstrates that the mature DL model can mimic human decision-

making, when it comes to extracting relevant knowledge from a labelled data set. Training 

the DL algorithm establishes the distinct model with the knowledge initiation which 

transpires during the learning of a cardiologist. The blindfold validation, conducted in 

this study, reflects the clinical practice where the decision-making system is based on 

physiological signals from a wide range of patients. Validating the DL with unknown data 

that was collected with a different measurement setup that builds the trust in AF detection 

model. Moreover, the results might be transferable to other areas of Computer-Aided 

Diagnosis and beyond. Blindfold validation should become a standard method to evaluate 

deep learning and other decision support algorithms. 

The fact that the DL system was trained with HR signals has particular importance for 

transferring the healthcare to patient home environment. HR signals capture the RR 

intervals of the human heart [208]. The R peak is the most prominent signal feature when 

the electrical activity of the human heart is recorded. That prominence is reflected in the 

high Signal-to-Noise Ratio (SNR). Hence, recording the RR intervals are significant to 
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noise. Therefore, the measurement setup is simple, when compared to other physiological 

signals, such as ECG [209]. Another benefit of HR is that the time from one R peak to 

the next can be encoded with a 2-bytes. Hence, a digital HR signal consists of 

approximately 2 bytes a second. In contrast, to sample the complete electrical activity of 

the human heart requires around 256 samples a second, each of which is encoded with 2 

bytes. Therefore, ECG signals have a 256 times higher data rate. The lower data rate has 

practical benefits, in terms of data communication, storage and processing. For instance, 

HR signals can be communicated via BLE whereas ECG signals require a broader 

wireless channel, such as radio frequency. Applying BLE instead of radio frequency has 

beneficial implications for battery lifespan powered sensors. The low data rate and patient 

led signal acquisition makes HR signals is an ideal choice for IoT based healthcare 

applications. For such applications the HR data transmits from the point of measurement 

(patient) to a central cloud service over communication infrastructure. Having the data at 

a central location has several advantages. DL can be used to detect AF in real time. That 

is a significant advantage over ECG measurements with Holter monitors, because in the 

clinical practice Holter data can only be analysed after the measurement period is 

completed with a month timeframe. Validating the deep learning model for AF detection 

has paved the way for an IoT based AF diagnosis support tool. The knowledge extracted 

from a small, labelled dataset can be used to provide real-time decision support. To reach 

the diagnosis, the deep learning outcome should be validated by a cardiologist. The basis 

for this validation can be the HR data which has been flagged as showing the subtle 

waveform alterations caused by AF.  

4.6 Summary 

This chapter described the validation of the mature DL model, which was based on an 

initial design described in Chapter 3. The validation setup was introduced in the method 

section. Our DL model understands the HR signals in such way that it can discriminate 

AF episodes from non-AF affected signals. This classification method differs from the 

classical machine learning approach that is based on manual feature extraction.  

To be specific, the classical approach discriminates AF from non-AF signals relied on 

parameters. It is possible that these parameters vary when more and more varied data are 

processed. As such, for the studies based on classical methods., it is common practice to 
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state this as a limitation, for example, more and more various data is required as well as 

retraining the machine learning model to enhance the diagnostic quality. In this study, we 

tested the model with five different databases without retraining the DL model. Varied 

data from 188 subjects were used for this blindfold validation. The accuracy of the 

classification model varies from 88% to 99.77% for the five different databases. Hence, 

these outcomes indicate that the DL model has less limitations when compared to classical 

machine learning methods. We demonstrated that the knowledge was extracted from 

small training dataset which can be applied to a larger and more diverse validation dataset. 

Our findings have significant implications for practical diagnostic support, because 

applying knowledge obtained during the limited training period is exactly what an 

experienced cardiologist achieves in the practice. Therefore, a practical IoT service based 

clinical decision support system must use the extracted knowledge during the training 

phase, to samples, for example, patient data, from a different dataset. 
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 Chapter 5 Intelligent decision support for 

Atrial Fibrillation detection through 

human verification  

5.1 Introduction 

In this chapter, we present hybrid decision support for long term AF monitoring to prevent 

stroke. Hybrid decision support means that an experienced cardiologist works 

cooperatively with machine algorithms to reach an accurate diagnosis. The human expert 

can verify the machine decisions through visual data inspection together with knowledge 

obtained from interacting with patients. This links with stroke prevention because patients 

with AF have a five times higher stroke risk. Early diagnosis, which results in adequate 

AF treatment, can reduce the risk of stroke by approximate 66% and thus it prevents 

stroke occurrence. The monitoring service can be achieved through measuring the HR 

signals in real-time. These signals are transmitted and stored with IoT technology. The 

DL algorithm automatically processes the estimated AF probability. from a technological 

perspective, we propose four different services to healthcare providers: 

1. Accessible universal location to patient data such as IoT Cloud based.

2. Automated AF detection service supported with patient alert.

3. Cardiologist support tool.

4. Feedback channels.

These four services establish an environment where cardiologists can interact 

symbiotically with machine algorithms to generate and discuss a high-quality AF 

diagnosis. 
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5.2 Materials and methods  

The principles of service design have been used to analyse and structure the AF detection 

problem [22]. First, we contemplated the demands of all stakeholders impacted by the 

proposed service [210]. This leads to a better understanding for the requirements on the 

AF detection service. The next step was to interpret the requirements and form a system 

specification. A prototype was implemented to test the validity of this specification, 

which involved hybrid decision support. The following sections provide further details 

on the individual steps that led to the AF detection service. 

5.3 Demand definition  

To establish a demand definition, it is essential to present the link between AF detection 

in relation to stroke prevention in further detail. For ischemic stroke, a lack of oxygen 

causes a blockage of the arteries that supply oxygen-rich blood to the brain. In most cases, 

that cut-off is due to plaque debris in the bloodstream. The heart pumps blood, and the 

debris might travel to the brain through arteries with a shrinking diameter. If the blood 

vessel diameter is not large enough for the debris to pass, it will block the artery, and that 

will stop the oxygen supply to the associated brain tissue [21]. The incidence of plaque 

debris is related to the fluid dynamics of the bloodstream, which is ruled by the HR 

variability. From that prospective, the first service design step was to identify the key 

stakeholders and their requirements. We found that there are four key stakeholders in the 

AF detection service, as described in  Table . The only reason for constructing the service 

is the fact that AF presents in patients and its prevalence increases. Hence, this group 

subjects to early diagnosis when it comes to AF detection for stroke prevention. 

Healthcare providers aim to identify the unmet need by creating an appropriate 

framework. That infrastructure requires investment based on the cost and the expected 

benefits for patients. From a medical perspective, cardiologists are key stakeholders. 

Their input is vital when it comes to determining the benefits of a proposed service. 

Hence, innovators who design the proposed service must consider the needs of 

cardiologists to generate a successful service. However, the effort spent in addressing 
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these needs must correspond with the required profitability of a practical problem 

solution. 

Table 18: Stakeholders’ beneficiaries from AF detection service based on hybrid 

decision support. 

Stakeholders Identify unmet needs and wants 

Patients Reduction in the cases of stroke risk, less 

clinical admissions, flexibility in 

mobility, safety 

Cardiologist Reduced the burden on the medics, 

enhanced the medical outcomes, high 

diagnostic quality, increased safety.  

Healthcare givers High efficacy and quality, cost 

effectiveness, improved productivity, 

and outcomes  

Innovators of stroke risk monitoring 

service 

Enhanced the outcome, profitability 

5.4 Requirements evaluation 

From the demand classification, we determined the required service elements and the 

associated value proposition. provides an overview for both service requirements and 

value proposition. Cost effectiveness and decision support quality are the most significant 

requirements because they determine if the proposed service element can be used to 

enhance and extend the current infrastructure. All remaining service requirements are 

practical requirements that answer the question: What service do we need to create and 

develop? An alert message should be only sent once AF event is present. This requirement 

leads to the information improvement and management nature of the service. The 

functional design highlights the main requirement for workload reduction on cardiologist 

and healthcare provider [21]. To be specific, the task to generate a suspicion that AF is 

present, has transferred from humans to machines. The AF detection service is a diagnosis 

support tool, which means all diagnostic decisions align with cardiologist verification. To 
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underpin that decision, the AF detection service must give support evidence that indicates 

to the suspicion of a disease is present. This step can help us to ensure having excellent 

evaluation for quality and safety aspect of the diagnosis tool. Furthermore, that service 

can provide additional evidence even if there is no alarm message raised, such as 

detecting normal rhythms. As such, it assists during the root cause analysis and to enhance 

the service. For instance, the proposed service misdiagnosed the AF episodes in a specific 

patient. Having the capability to retrieve the evidence in the shape of raw signals might 

help to investigate what caused that error. That root cause analysis leads to first step to 

develop the algorithms specification that provide hybrid decision support. Moreover, the 

proposed service should also provide a feedback channel that allows the service provider 

to contact with the patient. That channel can be used to circulate diagnosis results and 

send as messages that help with patient compliance.  

Table 19: Service requirement based on the proposed value. 

Service Requirement Value proposal 

1. Cost effectiveness and decision

support quality.

More e-health facilities to help a greater 

number of patients 

2. Notification with an alert once AF

is present

Detecting and transmitting a suspicion 

alarm that AF is present in real time.  

3. Show the evidence for raising the

alert

Establishing an overview of the estimated 

AF probability; this can be used to review 

the DL results that established a suspicion 

and triggered an alarm message 

4. Enable a time interval of interest;

subsequently, the corresponding

HR trace can be processed

Download the HR trace that matches to 

the selected time interval of interest, and 

calculate features from that HR trace 

5. Provide a feedback channel to the

patient

Act on the diagnosis by providing 

appropriate and timely feedback to the 

patient; act on meta data, such as data 
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stream interruptions, to ensure patient 

compliance 

To get a better understanding of the functional requirements of the proposed service, we 

visualized the service requirements as a sequence of related actions; see  

Figure 30. These actions were arranged along a timeline to establish a relevant structure 

that orders the individual events. The timeline begins with the healthcare provider, 

represented by a qualified nurse which can register a new patient with the AF detection 

service. Once registered, the patient session initiates capturing the HR measurements, 

which are displayed via either via smartphones or an android tablet to a cloud server 

[211]. In the cloud server, the data are stored and processed by deep learning model [212]. 

When the analysis outcomes indicate that estimated AF periods were detected in the HR 

data, the cloud logic will notify through an alarm message to the appointed physician. 

That message is sent within 5 min of the AF event. In relation to the alarm message, the 

cardiologist will review the evidence contained in the HR trace and fuse this information 

with further knowledge and experience concerning the patient, to reach a diagnosis. If the 

diagnosis is negative, i.e., the physician found that AF does not present in a patient record, 

monitoring for AF continues. Once AF is detected, treatment can be instructed. The 

treatment efficiency can now be monitored with the same system setup. If AF is 

diagnosed again, treatment can be changed, and the monitoring continues. The next 

section details the functional specification that was created to meet the system 

requirements. 
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Figure 30: Provides the timeline of all activities for AF detection service over requested 

duration by an experienced cardiologist [19].  

5.5 Specification 

The specification determines how the AF detection service is constructed. This is 

achieved by improving the requirements and thereby increasing both the clarity and rigour 

of the documentation. The AF monitoring is launched by identifying a disease related 

variation in HR signals. These signals are ideal to record, cost efficient to transmit, as 

well as resource efficient to store and analysis. Hence, this refinement tackles the cost 

efficacy requirement for the proposed service [22]. The requirement for using HR signals 

provides the foundation for the functional specification. We structured the functional 

specification into six service components. The following list details how to build these 

service components: 

1. Smartphone activation app: This service allows a patient’s phone to activate and

sign up an account with the healthcare provider. At the start of the service

subscription, the healthcare provider records the patient with the database on a

cloud server. The unique account contains patient information. The necessary

fields are: patient ID, appointed cardiologist, service start date, service end date.
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The registration will provide the cloud server login key. This login key is used for 

both user authentication and data acquisition setup. 

2. Cloud server storage: The patient’s HR data and the deep learning classification

results are stored in the cloud server. This service allows the authorized users to

retrieve the data anytime and anywhere.

3. Real-time HR monitoring service: The patient wears a heart patch sensor that

records both ECG and HR signal. The sensor collects both signals. However, for

continuous monitoring, the HR signal is more ideal for communicating the data

with cloud server. Hence, these real-time data are displayed on patient

smartphones. The patient co-creates value by providing and integrating the data

into the AF detection service.

4. Automated AF detection and alarm service: The deep learning algorithm

processes patient real-time HR data and classifies the data as AF or non-AF.  Once

an AF sequence is detected, the system will send an alarm message to the assigned

cardiologist. The DL algorithm generates the core value for the system.

5. Cardiologist diagnosis support service: The cardiologist support service includes

algorithm support in the form of deep learning results and diagnosis support tools.

It helps the professional medics to verify the deep learning outcomes and to reach

a diagnosis. The value of this diagnosis is twofold. First and foremost, it aids to

start treatment, which might enhance the outcomes for the patient. A secondary

use for an established diagnosis arises when we preserve refining the deep

learning algorithm. To be specific, a diagnosis becomes the ground truth, which

can be used to continuously retrain the deep learning model. That sustained

retraining has the potential to increase the detection quality of the algorithm.

6. Feedback and intervention service: Once the cardiologist has reached a diagnosis,

the feedback service can be used to contact the result to the patient. Social media

such as Twitter, email and personal phone calls can be used to provide feedback.

Timely appropriate intervention can be carried out to boost the outcomes for

patients. Another use for the feedback service is the dissemination of patient

compliance messages. For example, through data analytics, it is likely to establish

if there is a signal interruption. A compliance message over the feedback channel

might help to re-establish the data flow.
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5.6 Results 

This section describes how we translated the specification into an implementation. The 

service modules were interpreted into software analysis, executed by standard machine 

architectures, and transferred over available infrastructure. Figure 31 demonstrates the 

data stream between different functional entities of the service. The arrangement of the 

data flow diagram indicates the central role of the cloud storage. The HealthCare app 

transmits the sensor data to the cloud storage. The cluster computing sources the data 

from the cloud server and, once the data are analysed, puts the result back. The processes 

are managed based on information from the real-time database. This information is 

particularly useful to establish the conditions when and to whom an alarm message is 

sent. This functionality is essential to create the hybrid decision support, which allows 

medical experts to work efficiently with smart machines. The following sections 

introduce the functional entities in more detail. 
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Figure 31: A diagram shows the main combinations of AF detection service for hybrid 

decision support [21]. 

5.6.1 Real-time database 

The real-time database entries facilitate the patient information management. Throughout 

the initial registration process, a representative of the healthcare professionals generates 

a patient record. That record incorporates patient-personal information, such as the patient 

ID and password, as well as system-specific information like a cloud server key, which 

unlocks dedicated data channels. Once the initial registration is completed, a patient can 

apply the patient ID and password to login to the HeartCare app. This authentication 

ensures that the HR recordings are communicated to the patient-specific cloud server 

channels. The controller node in the cluster uses the patient records to set up the patient 

monitors, which processes the HR data in real time. The patient information is also used 

to manage the alarm message distribution. 

5.6.2 HeartCare mobile app 

For the pre-validation study in the clinical, we have designed an android application that 

receives, displays, and disseminates HR data. BLE technique establishes the connection 

between an android smart device and HR biosensor (Polar H10). As such, BLE transmits 

data in small packets which require less power when compared to normal Bluetooth 

packets [213]. In addition, there are some specific data types were added into Bluetooth 

standards body for supporting the Bluetooth version 4.0 specification: The Health Heart 

Rate Profile.  

The AF detection service enables patient-led data acquisition. Figure 32 shows a snapshot 

of the HeartCare app login interface. The graph illustrates a sequence of HR trace 

recorded with a polar H10 sensor. In that state, the app transfers the HR data to the 

Thingspeak cloud server [214]. Each patient has provided with a unique API key. Once 

logged in, the HeartCare app transmits the HR data from the sensor to the patient-specific 
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RR_interval_data channel on the cloud server. Both the patient and authorized 

cardiologist can access the patient’s data anywhere using the same API key. 

Figure 32: HeartCare app login interface. 

5.6.3 Thingspeak account setup 

Thingspeak is an open cloud data platform where the collected data can be stored 

retrieved, processed, and visualised. Creating new Thingspeak account is by using an 

email address and password for logging into the account. Channel establishments can be 

achieved automatically by using MATLAB program. Each channel has a capacity of 

storing and retrieving the information with maximum of 8 fields. Moreover, Users have 

unique channel ID for identifying the required channel. Two channels were created for 

storing and visualising the received data, channel-1 so called Murtadha HR data which 

performs delivering live HR measurements from wearable sensor via smart phone 

(android). In contrast, channel 2 was allocated for disseminating the deep learning results.  

In addition, Application Programming Interface (API) keys have the main role of 

accessing the channel. For instance, API keys is considered as the password to access the 

channel. API write key is used to update channel or logging data from the source. While 

the read key utilises for retrieving the data from the channel. API keys contain part of the 

transmitted link which formed as following: 

URL("https://api.thingspeak.com/channels/476872/bulk_update.json"); 

GUI allows the users to interact with Thingspeak webpage, as shown in Figure 33.
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Figure 33: Visualises the GUI of Thingspeak application. 

5.6.4 Cloud storage 

Once the Thingspeak account has been created successfully, each patient account has two 

channels for cloud storage. The first channel, called RR_interval_data, store the HR 

measurements. The data is updated when the Heart-Care app sends new HR traces to the 

cloud server with 100 beats per minute. The second channel, called AF detection result, 

keeps the deep learning classification results. The result channel data is updated after the 

patient monitor produces a new result. Figure 34  shows a patient’s HR data on the 

Thingspeak cloud server. Plotting RR intervals values and pulses duration which 

visualised as a graph varied with number of beats. The sequence of 1000 RR interval and 

each dot represent the position of beat measured in second from the heart rate signal. 

Figure 35 displaying the Pulse in beats per minute overtime and these measurements 

accomplished within 12 minutes.  
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    Figure 34: Heartbeats visualisation over RR_interval_data channel. 

Figure 35: Shows pulse in beats over 1000 RR intervals. 

The HR measurements transmit to channel-1 based Thingspeak that can be partitioned 

into five fields to solve the issue of timing. Uploading a block of 100 RR intervals 

sampled per second. The time delay between each block takes 15 second in accordance 

with time scheduling that specified for this setup. In addition to that, each field receives 

a packet of 20 beats per seconds which implies to be delivered to 5 fields at the same 

time. As a result, our channel-data distributed equally for each field, a packet of 20 beats 
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times 5 fields equal to block of 100 RR intervals.  shows HR live measurements visualised 

on Thingspeak channel 1. 

 

 

 

 

 

Figure 36: Channel-1 comprises fives fields for storing and visualising HR 

measurements in real-time.  

The last step is to query these measurements from Thingspeak-cloud computing platform 

to deep learning system. Fetching the data based on using key-Read of channel-1 that 

facilitate processing the information. Deep learning system performs classifying the HR 

measurements with two classes of AF and Normal. Consequently, binary 0 sequences 

classify the pattern as un-diseased subject. Whilst binary 1 episode indicate to presence 

of AF detected and correctly identified the subject of having the disease. However, our 
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proposed system aims to monitor patients heart health for long-term in the real time. Short 

period of AF might not be subjected to the disease. Medical intervention is needed to 

validate the acquired test outcomes. Figure 37 indicates if the HR pattern is AF or Normal.  

 

Figure 37: Deep learning classification results of HR measurements visualised on 

Thingspeak for decision support. 

When an AF episode is detected by the deep learning algorithm, the Thingtweet feature 

based on cloud logic will send an alert to the assigned physician. Sending the alert 

message can be facilitated with a range of communication channels, such as email, 

Twitter, and instant messages. The message alerts the physician that a dangerous 

condition has occurred, i.e., AF event was detected. The physician decision support and 

diagnosis service can be used to review the available evidence and to reach a diagnosis. 

5.6.5 Patient HR data processing in the cluster 

The cluster performs a patient monitor procedure for each patient. That process network 

enables a real-time data processing [215]. To accomplish that task, each patient monitor 

compromises of three processes. The first process verifies if there is new HR data in the 

RR_interval_data channel on the cloud. The new data are shifted to the second node, 

which executes a deep learning model. The deep learning results are handed to the third 

process, which transmits them to the AF_detection_result channel on the cloud server. 

Processes 1 and 2 of the patient monitors handle the data exchange between the cluster 

and the cloud server. The main role for the patient monitor and certainly for the AF 

detection service is real-time HR analysis and visualisation. We recognized this 
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functionality with an LSTM-RNN of DL model. That model was initially trained, tested 

from AFDB database, and validated with unknown data from different database sources.  

For more information about the algorithm chapter 4 describe in detail the validation 

process of the LSTM based deep learning model. Figure 38 shows the design structure of 

the proposed deep learning system. The deep learning algorithm is constituted of three 

layers, known as bidirectional LSTM layer, global max pooling layer and fully connected 

layer. The simple structure leaves little space for design errors [216]. Furthermore, the 

implemented deep learning algorithm does not require feature engineering. Hence, there 

is no information reduction due to feature selection, which improves both the accuracy 

and robustness of the performance results [23]. 

 

Figure 38: Flowchart shows data flow and classifcation processes system [21]. 

5.6.6  Cardiologist support tool  

Cardiologist diagnosis support tool is an important service component. The 

implementation of this service module directs the data available on the cloud server. The 

service module creates an interface that allows a medical doctor to confirm the automated 

diagnosis results. In other words, the appointed stroke consultant can visually inspect the 

data and either accept or reject the decision achieved by the deep learning system. We 

implemented that service component by extending a current HR analysis and 
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visualization tool. The tool is called the Heart Rate Variability Analysis Software 

(HRVAS) program, originally developed by Ramshur [217], and published under the 

GNU public license (https://github.com/jramshur/HRVAS). We developed the program 

with the capability to download both HR data and the estimated AF probability from the 

cloud server. Having both, the raw data, and the DL results, allows a physician to review 

the HR measurements which contains available evidence either through visual inspection 

or through using the digital biomarkers. For instance, visual inspection might show 

fundamental data problems, such as all RR samples having the same value. Digital 

biomarkers can assist to confirm the deep learning decision result. 

The ability to create independent human verification of the machine learning results is a 

significant factor for the proposed hybrid decision making process [24]. Figure 39 shows 

a snapshot of the developed HRVAS program. A drop-down menu allows the user to 

select the HR signal from a specific patient. The snapshot shows that the signal from 

Murtadha HR file was selected. As such, the signal for Murtadha record was streamed 

form HR sensor in real-time to cloud storage. The GUI of HRVAS program displays the 

deep learning outcomes in the upper graph on the left. Presenting the deep learning results 

gives an overview of the estimated AF probability, i.e., the examination through physician 

can determine at what time the patient had an increased AF probability. Based on that 

examination, the physician can select a region of interest and view the HR signal, which 

links to that region in the second window. The HR signals trace is coloured in accordance 

with the estimated AF probability. 

Apart from visual signal inspection, the main purpose of the HRVAS program is to 

visualize digital biomarkers. The workflow unfolds as follows. The physician selects a 

region of interest on the estimated AF probability graph. Once the region is selected, the 

matching AF trace is displayed, and the digital biomarkers for this region are calculated. 

The biomarker values are displayed in the right part of the HRVAS GUI. The snapshot 

in Figure 39 shows time domain biomarkers. The HRVAS documentation provides more 

details on the available digital biomarkers [217]. These biomarkers are designed to help 

physicians during the process of validating the deep learning results and establishing a 

diagnosis. 
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Figure 39: A snapshot of the developed HRVAS program. 

5.6.7 Feedback and intervention 

Once the physician has reached a diagnosis, the feedback and intervention service 

communicate with the concerned patient. Social media, email and personal phone calls 

can be used to provide feedback. One way to structure the feedback content is a simple 

traffic light system: green, all is well; orange, take predetermined precautionary action; 

red, see your physician immediately. 

5.7 Discussion  

A hybrid decision making process accomplishes an accurate diagnosis [24]. The hybrid 

process proposes three main benefits: 1) safety through human professional’s 

verifications and balances, 2) reduced Stroke consultant workload, and 3) increased 

effectiveness, which facilitates real-time diagnosis. The hybrid decision making process 

is based on analysis results, which are directed to an independent first opinion on the data 
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[19]. Specifically, we propose a system where an AI algorithm involves in analysing the 

available data in real time, and a human expert only becomes involved if a suspicion is 

established. However, that design option is only valid if the AI algorithm is very sensitive 

when it comes to the detection of AF in HR signals. Another central requirement is cost 

efficiency. Furthermore, irrelevant decision making is not cost effective, because a human 

expert receives an alert frequently, and the machine decisions are routinely overruled. 

Such unnecessary involvement of human expertise would be ineffective, and indeed, it 

would be wasteful in terms of time spent rejecting the machine decision, which translates 

into additional cost for the healthcare provider. Hence, we require the decision support 

algorithm to have both high Specificity (SPE) and high Sensitivity (SEN)). In effect, that 

leads to a high Accuracy (ACC).  Table 20 summarise research work for the automated 

detection of AF based on ECG and RR intervals measurement. 

The performance measures, reported in the three columns on the right of the table, 

indicate two points: 

1. There is no performance difference between studies based on ECG and RR inter

signals.

2. Both the SEN and SPE values are very high. Therefore, these algorithms are

sufficiently potent to justify large-scale AF detection in a practical service

environment.

The proposed AF detection service is based on hybrid decision support, which uses 

advanced AI for automated AF detection. The high accuracy of this algorithm sets it apart 

from other solutions currently on the market. The following paragraphs provide some 

background on current solutions. An Apple Watch and iPhone combination can be used 

to detect an irregular pulse. The Apple Watch measures the pulse. Once the signal is 

captured, an algorithm chain analyses the data. The user receives an alarm message if an 

irregular pulse is detected. During hold-out validation with benchmark data, that system 

achieved a positive predictive value of 71% (for example, only 71% of AF detections by 

the Apple Watch were actual AF detections; the remaining 29% were not). Based on the 

same measurements, researchers found that 84% of the participants that received irregular 

pulse messages. In a subsequent open study, 400,000 users were enrolled. 50% percent 

of the participants notified with irregular pulse messages. Apart from those pulse-based 

studies, the Apple Watch also features a finger ECG sensor with an AF detection function. 

However, this only works for as long as the user holds their fingers on the sensor. This 
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might not be adequate duration to detect AF. All Apple Watch-based health applications 

are consumer gadgets, which can create a suspicion that AF might be present. This 

suspicion would need to be verified by a medical doctor using a heart rate monitoring 

system. KardiaMobile with KardiaPro were employed to detect AF at home. The system 

is based on two electrodes sticked on behind the smartphone that measure the ECG by 

pressing both finger indexes. Based on these signals, the device decides if AF is present. 

In a study with 51 participants, the device had an 8% AF yield, i.e., four people were 

subsequently diagnosed with AF. Like the Apple Watch and iPhone combination, 

KardiaMobile is a gadget that establishes a suspicion that AF is present. However, the 

measurement is not continuous: 30 s ECG snippets are acquired whenever a patient 

activates the device. Based on such ad hoc measurements, the AF detection algorithm 

might miss an AF period. If an AF period is detected, the device raises an alarm, and it is 

up to the patient to interpret that information.  

Table 20: Shows the results of arrhythmia detection based on RR intervals and ECG 

signals. 

                         Performance  

Author  Classifier  Signal type      ACC% SPE% SEN% 

Salem et al., 

2018[204] 

Spectrogram 

with CNN 

ECG 97.23      

Pudukotai 

Dinakarrao & 

Jantsch, 2018 

[203] 

Daubechies-6 

with counters 

Anomaly 

ECG 99.19 98.25 78.70 

Yuanet et al., 

2017  [202] 

Unsupervised 

autoencoder 

NN SoftMax 

regression 

ECG 98.19 98.22 98.11 

Muthuchudar 

and Baboo, 

2013 [201] 

UWT NN ECG 96   
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Zhou et al., 

2014 [200] 

Shannon 

entropy with 

threshold 

RR 

interval 

96.05 95.07 96.72 

Faust & 

Acharya,2021 

[16] 

ResNet RR 

interval 

98.55 94.30 99.40 

Keidar et al, 

2021 [218] 

Modified 

Entropy 

Scale& 

decision tree 

RR 

interval 

97.8 97.4 98.1 

Wang,2020 

[219] 

CNN and 

modified 

Elman 

neural 

network 

ECG 97.4 97.1 97.9 

Petrenas et 

al., 2015 

[199] 

Median filter 

with 

threshold 

HR 98.3 97.1 

Xia et al., 

2018 [198] 

STFT/SWT 

with CNN 

ECG 98.63 98.79 97.87 

Henzel et al., 

2017[194] 

Statistical 

features with 

generalized 

Linear Model 

RR 

interval 

93 95 90 

Faust et al., 

2018 [14] 

Bidirectional 

LSTM  

RR 

interval 

98.39 98.32 98.51 

Fujita and 

Cimr, 2019 

[192] 

CNN with 

normalization 

ECG 98.45 99.87 99.27 

Ivanovic et 

al., 2019 

[125] 

CNN, LSTM RR 

interval 

88 87.09 
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Our proposed 

method [17] 

Detrending, 

ResNet 

RR 

interval 

99.98 100.00 99.94 

5.8 Summary 

In this study, we propose that a hybrid decision support approach for stroke prevention 

based on automated AF detection tool in HR signals. To achieve this task, data acquisition 

is accomplished by using Commercial HR sensors. The sensor data is transmitted via 

mobile phone to a cloud server for data storage. A DL model evaluates the HR data in 

real time. The real-time evaluation results represent the estimated AF probability. The 

physician can use that result as a second opinion which might refine the AF diagnosis, 

which ultimately leads to a stroke risk stratification. To support physicians during the 

diagnosis, we have integrated the analysis results from the LSTM classifier and 

displaying a digital biomarker in the proposed GUI to provide two independent categories 

of the analysis results. Having two options has the benefit that there is additional 

verification of the result analysis, and the digital biomarkers can be used to validate the 

DL outcomes. Real-time AF monitoring and detection systems are of great interest 

because they enable an early diagnosis, which might enhance patient quality of life, and 

provide a promising alternative to current healthcare processes. The value propositions 

focus on the healthcare provider. Therefore, the hybrid decision support for stroke 

prevention plays the key role in reduction of patient admission as well as decrease the 

workload on both healthcare provider and physician.
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 Chapter 6 Practical Atrial Fibrillation 

detection in a clinical setting 

6.1 Study overview 

We have developed a DL algorithm that can detect symptoms of AF in RR interval 

signals. With benchmark data from five different publicly accessible databases, the 

algorithm achieves excellent performance measures through a validation setup. To test 

the algorithm even further, we have conducted a clinical study which aims to validate the 

detection accuracy and to establish the diagnostic relevance. As part of this study, we will 

recruit 20 patients who have had stroke or Transient Ischaemic Attack (TIA): 10 who are 

known to have AF, and 10 who are not known to have the disease. We measured the 

electrical activity of the patients with two sensors. A Holter monitor was employed to 

measure the ECG signals and the Lifetouch sensor was allocated to record RR intervals. 

Once all recordings are collected, an experienced cardiologist or stroke physician will 

analyse the ECG signal to establish whether AF is present in a specific region of interest. 

We plan to compare this ground truth with the deep learning results. The study will be 

considered successful if the accuracy of the deep learning prediction is above 80%. 

6.2 Methods 

We have chosen the Isansys heart rate sensor because it is a medical grade device with a 

CE mark for clinical use. Further, the Isansys measurement setup is non-obtrusive and 

easy to apply. Such a device is ideal to be used alongside a Holter monitor as is the aim 

in this study.  
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We have opted to minimise wireless patient data transmission. During measurement the 

data is stored in the Isansys sensor; hence there is no wireless data transmission in the 

patient environment. Wireless patient data transmission happens only in the clinic once 

the patient has returned the sensor. From that time onwards, the data stays in the clinic. 

To be specific, the patient data is stored on a laptop which is in the clinic. Adopting this 

method limits the opportunity for an external entity to access and / or temper with patient 

data. A sample of patients with known AF (n=10) and another without known AF (n=10) 

has been chosen to enhance the chances of capturing episodes of AF to allow a 

comparative analysis between the deep learning system and Holter ECG recording. 

6.3  Setting 

The study has been undertaking on the stroke unit at the Royal Hallamshire Hospital and 

the Stroke Pathway Assessment and Rehabilitation Centre, Beech Hill, both part of 

Sheffield Teaching Hospitals NHS Foundation Trust. 

6.3.1 Inclusion criteria 

1. Adult (age > 18) patients who have suffered an ischaemic stroke or TIA. 

2. Ability to provide written informed consent. 

3. Ability to comply with study procedures in the opinion of the treating physician. 

6.3.2 Exclusion criteria 

1. Haemorrhagic stroke. 

2. Disability preventing adherence to study procedures. 

3. Clinically unstable. 

3. Premorbid bed-bound state, Modified Rankin Scale (mRS = 5). 
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6.3.3  Sample size 

A sample size of 20 has been chosen for practical reasons (ensure practice at obtaining 

the measures that we are aiming to measure, resource and time constraints). We have 

chosen to include a sample of patients with known AF to optimise our chances of picking 

up episodes of AF for comparison of the 2 monitoring methods (Deep learning system 

and ECG data analysis software). 

6.3.4 Recruitment 

Recruitment to this study have several prospective. We will recruit 20 patients from the 

stroke unit at the Royal Hallamshire Hospital. The stroke service in Sheffield receives 

approximately 900 stroke patients a year, approximately 300 of whom will require 

inpatient rehabilitation for longer than 1 week. The stroke unit currently houses 40 beds, 

and the large majority of these occupancies can be eligible for inclusion into the trial.  

Patients eligible for recruitment into the study will be highlighted by the clinical treating 

team, who will then introduce the study to the patients. Principal Investigator (PI) identify 

from the impatient bed base on the stroke unit from daily ward rounds. Eligible patients 

will be asked if they would like an information leaflet regarding the study (an aphasia 

version if appropriate) and given at least 24 hours to consider the information. Patients 

who have read the information leaflets and are keen on being involved in the study can 

then inform the research team who will arrange a mutually convenient time to meet the 

patient and answer any further questions they may have about the study. If they are still 

keen on participating consent can be taken. Capacity to consent to the study would be 

determined by the treating clinical team and confirmed by the research team according to 

the principles of the mental capacity act.  
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6.4  Outcome measures 

6.4.1 Primary outcomes 

1.  Safety of using the Isansys sensor and deep learning system. This will be assessed 

by review of the clinical data at baseline and follow up visit and review of the side 

effect diary during the observation period. Safety will be defined as: 

2. NO Society of Automotive Engineer (SAE’s) related to the Isansys monitor. 

3. Less than 4 patients with any SAE. 

4. Less than 8 adverse events across all 20 participants. 

   5. Patient acceptability: This will be assessed by review of acceptability of intervention 

diaries utilized throughout the intervention period. Acceptability will be defined as: 

•  Less than 1/3 of participants reporting moderate or greater discomfort. 

6.  Compliance with the HR monitor. This will be assessed using the patient monitoring 

diaries. Compliance will be defined as: 

• More than 80% of the intended duration of wear. 

 

7.  Prediction of an AF risk score by the DL system. We anticipate that the DL system 

will produce an AF risk prediction score throughout the period of RR interval 

recording. Success will be defined as: 

• DL system produces an AF risk score for 100% of participants. 

6.4.2 Secondary outcomes 

6.4.2.1 Accuracy of the deep learning system  

The accuracy of the deep learning system will be compared to the ground truth established 

by a human expert: review of ECG recording data by a stroke consultant, such that the 
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onset and offset of any periods of AF can be recorded. These time stamps can then be 

compared to the RR interval analysis produced by the deep learning system. If the 

algorithm produces a risk score of greater than or equal to 0.5 for these periods of AF 

then this will demonstrate evidence between the 2 methods. Success criteria for accuracy 

will be defined as: 

1. >95% of the ECG identified periods of AF also identified as high risk by 

the deep learning system.  

6.4.3 Study protocol 

Potential participants have been identified from the TIA clinical and stroke unit at 

Sheffield Teaching Hospitals. Any patients meeting the inclusion criteria and interested 

in the study will be referred to the research team by their clinician. They will be given an 

information sheet and sufficient time to consider the study. If they wish to take part a 

baseline visit will be arranged. 

Baseline visit 1 

During the baseline visit the following will occur: 

1. Eligibility criteria will be assessed and confirmed. 

2. Informed consent will be obtained.  

3. Socio-demographic (age, sex, marital status, pre-morbid function) and clinical (co- 

morbid history, medications, type, and severity of stroke, measured impairment, 

laboratory (including CRP and albumin) and radiology results, electrocardiogram, 

current mobility status) details will be recorded.  

4. One of the researchers will apply the Holter monitor and an Isansys HR sensor 

(Lifetouch), and explain that these will be kept on for 24 hours. The participants will 

be taught how to take the sensors off for showering and will be asked to demonstrate 

this to the researchers.  

5. The participants will be given a side effect diary to record any untoward effects and 

how acceptable they found having each type of HR monitor. The Holter monitor will 

record an ECG signal for 72 h. The Lifetouch sensor will record the HR signal for 24 
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h also. The participants will be allowed home or back on the ward following 

completion of the first visit. 

 

Visit 2 

After the 72-h measurement duration, the patient will return to the clinic for the second 

study visit. During the second visit, a researcher (Murtadha Kareem) will take off both 

Holter monitor and Lifetouch sensors. After that. There will be a short interview. A 

researcher will ask several structured questions aim to assess your experience as 

participant of the study. There will be feedback on the measurement results in the form 

of a diagnosis by the reading cardiologist and the stroke physician in the usual manner 

via letter sent to the participant. Following this, the participants involvement in the study 

will be complete. Figure 40 Shows a story board for the study protocol. Sign up and sensor 

placement will happen during Visit 1. Sensor return, which includes taking the 

questionnaire, will happen during Visit 2. 

 

Figure 40: A timeline which shows the overall activities conducted at Sheffield 

Teaching hospital.
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Software/Hardware overview 

6.5 Software: Atrial fibrillation service validation tool  

We developed a software tool to validate a deep learning algorithm for an atrial 

fibrillation detection service with heart rate data from a clinical study. The DL algorithm 

analyses the measurement data and establishes an estimated AF probability for each 

heartbeat. The software tool displays both data and DL analysis results. Furthermore, the 

graphical user interface can be used by medical experts to detect AF periods in the data 

and establish a reference result which will be treated as ground truth in subsequent result 

analysis steps. Once both DL and expert results are available, a confusion matrix is 

produced and the algorithm performance is validated by establishing accuracy, 

sensitivity, specificity, and f1-score. The software tool was created in Python and the 

software incorporated a graphical user interface as well as functional elements for data 

display and deep learning. To establish the required functionality, we used three different 

parallel processing methods for: 1) user interface processing, 2) data handling, and 3) 

deep learning. This highlights the need for parallel processing methods even for projects 

with a low or mid-range complexity. We have learned that the functionality of individual 

components can be expressed elegantly in Python. To be specific, there are four important 

activities that needs following to enable us visualising the graph and select the region of 

interest as follows:  

 

1. Control through Graphical User Interface (GUI) 

● Load the Heart Rate (HR) data obtained from Lifetouch sensor as an 

excel file. 

● Process the data in the Deep Learning System (DLS). 

● Plot the HR measurements 

● Label all AF regions. 

● Results analysis  

● Save results as excel files and graph  

 

2. Graphical representation that shows four sections: 
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● subplot 1: HR amplitude. 

● subplot 2:  RR intervals processed via DLS. 

● subplot 3:  Estimated probability of Atrial Fibrillation Events. 

● subplot 4:  Movable window to Select the area of interest. 

3. Add region of interest  

● In case the DLS does not detect AF event, then an experienced 

cardiologist can identify and add AF region. 

 

4. Inference  

● Confusion matrix graph: including accuracy, sensitivity, specificity, and 

F1-score.  

 

●  ROC curve. 

 

 

Figure 41: Visualisation of AF validation tool functionality as graphs and control panel.  

 

Figure 41: Demonstrates the graphical representation of the AF service validation tool. 
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6.5.1 Requirements  

The following requirements describe what software we should build [220]. The software 

tool should automate the comparison between human expert and deep learning results. 

The measurements should be processed offline with the previously developed deep 

learning algorithm. The software should allow human experts to input the ground truth 

analysis results. The output of the program should be a confusion matrix and classification 

quality measures [221].  

6.5.2 Specification 

The requirements are refined into a specification which defines how we build the software 

[222]. The software takes excel sheets as input. These excel sheets are produced by the 

Lifeguard server from Isansys and they contain HR and ECG signals amongst other 

information. The HR signals are analysed with the LSTM deep learning algorithm, which 

produces an estimated AF probability score for each heartbeat. The analysis results are 

displayed alongside the signal data in two dimensional graphs. Navigation through these 

graphs is established with crosshair functionality. These graphs can be used to review and 

annotate the ECG signal with regions of AF [223]. The annotated regions are treated as 

ground truth with which the deep learning result is compared. To be specific, every beat 

that falls within the annotated region is treated as AF and every beat outside the region is 

non-AF [224]. A threshold is used to generate regions of estimated AF. This is done by 

comparing the threshold value with the estimated AF probability for each heartbeat. 

Whenever the estimated AF probability value is larger than the threshold, that beat 

belongs to a region of estimated AF. As a result, each beat has two labels: one from a 

human expert and one from the deep learning algorithm. Based on these labels a 2×2 

confusion matrix is established. The matrix elements are used to calculate the 

performance measures of accuracy, sensitivity, specificity, and f1-score. These 

performance results, together with the estimated AF probability as well as the expert and 

algorithmic regions are saved in a separate excel file [225].  
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6.5.3 Implementation      

The implementation was a meandering journey between learning the Python language 

and establishing the specified functionality [225]. Despite the relative inexperience with 

the language itself, the need for parallel processing became apparent early in the 

implementation cycle. To start, the inference functionality of Keras, which utilizes our 

DL model, incorporates parallel processing to establish the estimated AF probability [18]. 

Fortunately, this functionality is very well abstracted and indeed hidden from the user. 

Engaging with parallel processing libraries was required to realize a speedup for the 

signal display processing. We have used pyscp to compose ECG, HR, and estimated AF 

probability data vectors in parallel. Composing these vectors and the inference processing 

has high and very high computational complexity, respectively. This translates into 

waiting times for the program user. A progress spinner was implemented which indicates 

the processing of a potentially long task. This required us to use the QT multithreading 

functionality.  

We have successfully established the specified functionality with three different parallel 

processing methods. However, the lack of debug support for parallel processing in the 

Python development environment Spyder made that task unnecessary hard. At times we 

resorted to trace messages and sometimes we bypassed the Qt multithreading 

functionality to inspect variables in code with is normally executed as a Qt thread. 

Furthermore, there is also some scope for formalizing the design and standardizing both 

code as well as file structure. This might lead to improved code quality.  
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6.6 Hardware  

6.6.1 Sheffield Hallam University laptop  

This laptop contains local Lifeguard server as well as AF service validation tool. If the 

devices are connected to the server, the HR data can be visualised in real-time on Patient 

Status Engine (PSE) interface. This enables the researcher and stroke physician to 

monitor the HR changes over the entire session duration. Figure 42 visualise the patient 

status engine page. 

 

 

Figure 42: Sheffield Hallam Laptop displays the patient status engine interface. 

6.6.2 Patient Gateway 

The patient Gateway is a technologically advanced, all wireless patient monitoring 

system. A complete ready-built configurable platform, the gateway as part of PSE is also 

a fully certified Class IIa CE-marked, and Class II 510(k) cleared medical device 

that monitors patients automatically, continuously and in real-time. It combines sensors, 

connectivity and digital biomarker in a medical platform which collects, analyses, and 

transforms vital sign data into actionable clinical insights. By automating the basic 

process of taking patient observations, the PSE offers significant efficiency gains and 
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higher quality, continuous data for making better clinical decisions, as shown in Figure 

43. The system uses trend data combined with the integrated Early Warning Scores 

to provide alerts to healthcare professionals, enabling timely interventions that enhance 

the care and safety of patients. 

 

 

Figure 43: Patient Gateway functionality utilisation. 

6.6.3 Local Area Network router  

For data protection reason, the laptop is disconnected from Wi-Fi so that data cannot be 

communicated with the hospital network. The connection is made through local router 

that arrange transmission between patient Gateway and SHU Laptop. Figure 44 

documents the connections.  
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             Figure 44: TP link router to activate the the local  area network.  

6.6.4 Lifetouch Sensor  

The Lifetouch intelligent wearable biosensor is a validated and clinically proven wireless 

medical device that has already been used to collect over 150,000 hours of data from 

patients in acute care settings. It has been developed in association with diverse clinical 

teams, particularly nurses, to ensure ease of use, reliable operation, and seamless 

integration into nursing workflows. 

With its lightweight design and ultra-low power operation, this state-of-the-art 

technology continuously samples and analyses the ECG signal in the sensor itself to 

extract the parameters of clinical interest. Providing continuous operation for 4 to 5 days 

the Lifetouch generates the data from which HR, respiration rate and HRV are calculated, 

while offering a real-time ECG streaming functionality. The device also includes a three-

axis accelerometer to provide information on patient orientation, activity, and motion. 

Figure 45: Shows an example of Lifetouch sensor.  
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Figure 45: Lifetouch sensor applied on a patient chest2. 

 

Figure 46 illustrates the complete PSE setup for continuous monitoring. For the clinical 

trial study, our strategy for inpatient and outpatient participants are to transfer the 

monitoring session from the patient gateway which allows the sensor detecting heartbeats 

and store the data in the sensor itself. This option enables us to collect data from multiple 

participants in one patient Gateway device. Once the monitoring session is completed, 

sensor removal can be applied to download the data wirelessly from the sensor to patient 

gateway point and then directly to be transmitted to Local Lifeguard server through TP 

link router.  

 

 

 

 

 

 

2https://www.isansys.com/en/Wearable-Sensor
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Figure 46: PSE setup.

Life touch sensor  

Patient Gateway 

SHU Laptop 

displays the 

vitals signs in 

real time  

LAN (TP-link 

router) 

Data travels from 

sensor to patient 

gateway through 

low power energy 

Bluetooth 

 

Wi-Fi  

Data travel from 

PSE to SHU 

laptop Via local 

Wi-Fi network  



Chapter 6- Practical atrial fibrillation detection in a clinical setting  

 134 

6.7 Data collection 

Currently, we have collected data form 13 participants and there will more participate in 

the following weeks. The recruitment strategy has been carried out either sending around 

100 invitation letters for patients who have been discharged from the hospital or recruiting 

some of those who are based in the stroke ward and, willing to take part in the study. This 

step results in receiving great response from participants. However, the main challenge is 

having limited numbers of the available Holter monitor in the cardiology department.  

These devices are mainly allocated to the patients rather than being used for research. 

Therefore, this takes some time to arrange as the participant should be contacted for the 

scheduled appointment. In addition, the monitoring duration is determined by the 

principal investigator Dr. Ali, who can assess the necessities to have longer, or shorter 

monitoring period based on diagnosis needs. Table 21 shows the details of the data 

collected from two samples.  

 

Table 21: Details of the data collected from 13 participants. 

Sample No Participant 

ID 

Heart 

monitor type  

Recording 

duration  

 Cohort 

group  

Sample-1  B6048 Holter monitor 

+ Lifetouch 

sensor  

 72 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

 Normal  

Sample-2  B6049 Holter monitor 

+Lifetouch 

sensor 

 72 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

Normal  
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Sample-3 

 

B6047 Holter monitor 

+Lifetouch 

sensor 

 24 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

 

AF 

Sample-4  B6050 Holter monitor 

+Lifetouch 

sensor 

24 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

AF 

Sample-5  B6051 Holter monitor 

+Lifetouch 

sensor 

24 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

Normal  

Sample-6  B6052 Holter monitor 

+Lifetouch 

sensor 

72 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

 AF  

Sample-7 B6053 Holter monitor 

+Lifetouch 

sensor 

24h with 

Holter & 

24 h for 

Lifetouch 

sensor 

AF, Stroke  

Sample-8 B6054 Holter monitor 

+Lifetouch 

sensor 

24 h with 

Holter & 

AF  
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24 h for 

Lifetouch 

sensor 

Sample-9 B6055 Holter monitor 

+Lifetouch 

sensor 

72 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

AF, Stroke  

Sample-10  B6056 Holter monitor 

+Lifetouch 

sensor 

72 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

AF  

Sample-11 B6159 Holter monitor 

+Lifetouch 

sensor 

72 h with 

Holter & 

24 h for 

Lifetouch 

sensor 

AF, Stroke 

Sample-12 B6160 Lifetouch 

sensor only 

30h using 

Lifetouch 

sensor only, 

recording HR 

and ECG in 

one sensor 

Normal  

Sample-13 B6161 Lifetouch 

sensor only 

48h Lifetouch 

sensor, 

recording HR 

and ECG in 

one sensor 

Normal 
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6.8 Atrial fibrillation detection service validation tool description  

In this phase, there are multiple steps to plot the Heart Rate (HR) measurements alongside 

with ECG recordings. These steps are listed as follows:  

1.      Download the participant data from the Isansys lifeguard server 

Participant data can be downloaded from the historical page once logging 

in into local server built-in Sheffield Hallam University laptop for data 

protection prospective. 

 

2. Load the Excel file into AF service validation tool  

The excel file can be loaded from the control panel which allow us to 

process both HR and ECG, as shown in  Figure 47. 

3. Process the Participant data  

In this step, we use the deep learning technology to process the data once 

the process button is pressed. The measurement from 24 hours takes 

almost 2-3 hours processing by using Python compiler so-called Spyder. 

This duration could be less if we use the GPU. However, using computer-

aided-diagnosis is still far better compared with the classical processing 

made in the hospital which almost take weeks to complete the results 

analysis. Figure 48 visualise data processing through Spyder software. 

4.   Plot data   

The graphical representation of the AF service validation tool shows that 

there are four subplots indicating to data acquisition and the estimated 

probability of AF that was detected by deep learning model. The first 

subplot refers to ECG measurements obtained by Holter where the stroke 

consultant can draw a region of AF with start and end timestamp. Whereas 

the second subplot refers to RR intervals signal recorded by Blue 

Lifetouch sensor.  The last two subplots indicate to the classification 

outcomes of the estimated AF probability. In the third subplot, the 

threshold was set to 0.5 due to binary classification varies between zeros 

and ones. The values under the 0.5 relates to normal beats whereas the 
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values equal or above 0.5 refer to AF beats detected by deep learning 

algorithm. This approach is used as standard measure to evaluate the 

classifier performance. Figure 49: Depicts plotting data as graphs.  

5.    Label all AF regions 

Labelling all AF regions detected through RR interval can be done 

automatically once this button is selected. It labels all the region of interest 

which is related to AF episodes based on the start of event and ending the 

event. These events are determined by using the timestamp for each region 

that specify the condition occurrence within certain period. Furthermore, 

we have added the option for cardiologists to label the other AF regions 

manually in case the classifier misclassifies some regions. In contrast, the 

human expert examines AF events through visual inspection of the entire 

ECG trace to correlate the machine classification with human diagnosis. 

In other words, the human specialist then works cooperatively with 

algorithmic tool to verify the deep learning results based on the HR data 

and additional knowledge obtained through patient records or by personal 

interaction with the patient. This approach would Improving the safety of 

AF monitoring systems through human verification[19], [21].In addition, 

the stroke physician can also confirm the AF suspicion generated by the 

algorithm which represents false positive classification outcome. Figure 

50 shows some regions of AF detected by deep learning algorithm.  

6. Results analysis  

From the results analysis icon, we can generate both the confusion matrix 

and ROC curve. Confusion matrix has true label classes represented by a 

cardiologist when identify normal and abnormal rhythms whilst the deep 

learning algorithm performs the predicted label classes. Both classes [True 

Negative, True Positive] represent the correctly identified beats normal 

and AF respectively. However, classes [False Positive, False Negative] are 

incorrectly identified by algorithmic machine and the cardiologist 

respectively.  In terms of ROC curve, the curve can be plotted the 

discrimination between TPR and FPR. For the initial analyse, deep 

learning algorithm processes the performance measure without stroke 
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consultant intervention. Once data acquisition stage will be completed, we 

will arrange a meeting for result formulation to reach a feasibility. 

Therefore, there were no ROC curve that plotted during the initial analysis, 

but certainly, cardiologist intervention will help refining the classification 

outcomes for both confusion matrix and ROC curve.   

 

        

 

Figure 47: Load function performs data loading to the deep learning algorithm from the 

control panel.  
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Figure 48: Process option enables us to start estimating the AF probability. 

 

Figure 49: Graphical representation of data plot. 
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Figure 50: Labelled RR AF regions. 

6.9 Results analysis  

The results analysis for the 13-participants showed excellent classification outcomes 

which has been processed by using the deep learning support. Each participant results 

have been processed independently where patient data loaded into the AF service 

validation tool. To be specific, accessing patients’ RR interval data can be retrieved from 

the built-in local cloud server at SHU laptop, known as lifeguard server. The Researcher, 

Murtadha Kareem, has only the granted access to that Patient Status Engine as greed in 

study protocol and NHS-Ethics approvals. For the time being, the cardiology department 

at Sheffield Teaching Hospital has provided the ECG analysis of Holter monitor for those 

participants as confirmed sheets by cardiologist. Initially, these sheets help the stroke 

consultant to undertake the diagnosis based on digital biomarkers, such as, Min/Max HR, 

mean, as well as visually inspecting the region of interest where the AF events present. 

However, for the POF study, we would need to have the start timestamp and the end 

timestamp of AF episodes provided from the cardiologist for all the events with complete 

duration. This can allow us to correspond the labelled region by the cardiologist to the 
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labelled regions processed by the deep learning algorithm. Once these labelled regions 

are symmetric, it indicates to the accuracy and the efficiency of the validated deep 

learning model based on professional human verification.  Alternatively, the researcher 

can combine both the RR interval measurement from Lifetouch sensor and ECG 

recordings from Holter monitor used gold standard device for recording the paroxysmal 

AF in the hospital. Both Sensors are wearable, and patients can be freely sent home for 

designated duration by the Stroke Consultant. In the meantime, the data analysis phase 

has been partially completed only for 13 participants with HR data and some ECG 

episodes captured by Lifetouch sensor. The performance measure of the binary 

classification showed that the algorithm achieved such a promising result in terms of 

accuracy and specificity.  

Table 22: Performance measure results for each participant with average. 

Sample No        ACC cl (%)  SENcl   (%)           SPEcl (%) Confusion matrix  

 

1                             99.72                 Nan                        99.72 91135 252 

0 0 

2                             99.85                 Nan                        99.85        84225 128 

0 0 

3                          99.51               Nan                     99.51 104159 514 

0 0 

4                         98.70                Nan                     98.70 80223 1049 

0 0 

5                         99.23                Nan                     99.23 90160 100 

0 0 

6                         33.12                Nan                     33.12 41000 82785 

0 0 

7                         98.99                Nan                      98.99 95646 250 

0 0 

8                         88.96               Nan                       88.96 84134 10433 

 0 

9                          99.80              Nan                       99.80 110600   200 

0 0 

10                        99.51              Nan                       99.51               92300  400 

0 0 

11                        85.47              Nan                       85.47 82521 14660 

0 0 

12                        99.22               Nan                      99.22  131620 104 

0 0 

13                        99.80               Nan                      99.80 133918 255 

0   0 

Average               92.45               Nan                      92.45 90644 9241 
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0 0 

 

Table 22 shows the results of accuracy, sensitivity, and specificity for each participant as 

well as the confusion matrix outcomes. The average is accumulated for the overall 

entities. We observed from the results analysis that there was unexpected accuracy and 

specificity of 33.12% respectively for sample 6. This is due to the suspicion of generating 

high false positive by deep learning algorithm. However, the overall false positive beats 

are produced because of the absence of the cardiologist input during the analysis phase. 

For the preliminary analysis, the stroke consultant has confirmed that participant has 

several heart problems and other conditions such as AFL, AF, stroke, Asama, and heart 

failure. As such, all these conditions are synchronised with rhythm abnormalities which 

correctly identified as irregular beats. In addition, the consultant stated that there were 

around 90,000 beats irregular detected from the Holter monitor. Therefore, this claim can 

confirm the deep learning findings and would improve the performance measures results 

once the experienced cardiologist provides the annotation of AF regions and establish 

identical diagnosis. Another observation found from the above table is the sensitivity 

values are not calculated due the true positive values are equal to zero. The link between 

the absence of true positive values and sensitivity’s values will be refined as soon as the 

clinical interpretation of ECG measurements are combined into the AF validation tool 

and corresponded with the estimated AF probability result. This leads to results analysis 

refinements in terms of confusion matrix outcomes, ROC curve, accuracy, specificity, 

and sensitivity. 
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6.10 Discussion  

The atrial fibrillation detection service validation tool automates the comparison between 

stroke consultant  and classification results of deep learning algorithm [19], [225]. 

Moreover, relevant plotted signals on graphs allow the medical professional to review the 

analysis results which might lead to a deeper understanding of AI for AF detection. To 

be specific, for medical professionals it is significant to visualize the deep learning the 

results analysis, because they tend to establish what misdiagnoses are happening and the 

extend of overreporting and underreporting of events. Based on this visualization, we can 

start a discussion with medical professionals on what action to perform as a result of a 

specific scenario. For instance, we might be able to answer questions like: How long can 

we automatically detect AF justifies potentially life-threatening intervention, such as 

anticoagulation. Currently, this is where we draw the line between machine and human 

work. The machine provides an estimated AF probability over time and human experts 

must interpret and verify that result. The interpretation should be done by combining the 

result information with history record about the patient to reach a diagnosis.  

Establishing a hybrid environment where humans work with machine algorithms is an 

important goal for future deployment in the practice [19], [21]. The current AF detection 

service validation tool can only support as an initial attempt with which we can study 

interaction patterns. These patterns might indicate a direction for further automatization. 

Currently, we are considering about rules and regulations to create a notification system. 

Understanding the estimated AF probability signal shape for a treatable case might lead 

to the automated generation of notification messages. For example, a notification message 

is sent once the estimated AF probability is equal or above a 50% threshold for more than 

5 min within one hour. Calculating that and transmitting the alarm message is straight 

forward, but significantly more research is needed to establish a useful amount of alarm 

cases. The focus on establishing alarm message conditions might seem like a minor point, 

but this is what lies at the heart of all IoMT devices that provide diagnosis support by 

measuring, transmitting, and processing patient data in real time. These systems are 

capable to extend the observation duration indefinitely which holds the promise of 

detecting diseases earlier and that detection is largely independent from whether there are 

long asymptomatic episodes [9]. Having the long observation duration together with the 
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alarm functionality is likely to improve outcomes for patients through an early diagnosis 

which will lead to less intrusive interventions.  

6.11 Summary 

At the time of writing, the clinical study is still ongoing as most of the work has been 

delayed the COVID-19 pandemic. We continue to maintain the study moving forward 

until the completion of data collection and analysis. Once these phases are done, the Chief 

Investigator, Principal Investigator and Co-investigator will discuss the final outcomes of 

the study to reach a feasibility. So far, the proposed algorithm a very promising 

performance, but these results need to be confirmed. To be specific, a cardiologist will 

establish the ECG outcome which is compared with HR classification. If there are any 

undetected events captured by the ECG monitor, we added an option for stroke 

cardiologist to label the additional region of interest which helps to improve the safety 

and accuracy of diagnostic tool. This approach can increase the learning phase and 

extracting useful features for future diagnosis.  
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 Chapter 7 Conclusion and further work 

7.1 Conclusion 

This study incorporates developing an LSTM based DL model to detect AF episodes by 

using RR intervals for stroke prevention. A large body of literature has been reviewed. 

Current technology was used in the market and clinical practice, and signal recording 

types through medical devices. ECG signals are most widely used for AF diagnosis. We 

found that ECG recordings yield a significantly higher data rate when compared with RR 

intervals. Apart from a significant data reduction, the RR interval measurement setup is 

also less complex. This makes RR interval signal acquisition less expensive. We proposed 

patient led data acquisition for continuous treatment monitoring, because with current 

technology this is a practical way to extent the observation duration for those who have 

an identified AF risk or stroke survivors. To achieve this task, a real time sensor should 

be attached to patients’ chest, and data travels from the point of measurement to the 

central cloud processing unit. DL algorithms should be used to automate the analysis and 

they might provide accurate AF detection functionality.  

Initially, the algorithm was trained with 20 subjects and tested with completely held out 

of 3subjects. In addition, the LSTM model has been validated with varied datasets 

obtained from publicly accessible databases for researchers. The overall data used for 

validation was around 188 subjects obtained from LTAFDB, NSRDB, Fantasia database 

and arrythmia database. The validation outcomes showed promising results which implies 

that the algorithms extracted the knowledge from small datasets and apply the knowledge 

on larger datasets.  

We propose the hybrid decision support tool for stroke prevention based automated AF 

detection in HR signals. From this tool, the stroke physician reviews and annotates the 

region of interest which relates to deep learning classification. The physician can use that 
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result as a second opinion, which might improve the AF diagnosis, which ultimately leads 

to a stroke risk stratification. To support physicians during the diagnosis, we incorporate 

deep learning results and digital biomarkers in the proposed GUI to provide two 

independent analysis results. Having two independent results has the advantage that there 

is no single point of failure, and the digital biomarkers can be used to validate the deep 

learning result. 

Based on the distinct results obtained from the validation study setup, we conducted a 

clinical trial study in collaboration between Sheffield Hallam University and Sheffield 

Teaching Hospital. This study involves collecting data from overall 20 participants, 

classified into two groups. These groups are 10 participants from normal cohort and the 

other 10 participants from AF and Stroke unit. However, we only collected data for 13 

participants in the meantime, and recruitment strategy will continue until completion of 

the full sample size. AF detection service support tool has been designed to helps stroke 

consultant in the analysis phase. The initial analysis of deep learning algorithm compared 

to gold standard showed an excellent results and promising approach for future 

deployment in the clinical practice.  

7.2 Summary of Work Done  

This section summarises the work done throughout the PhD project. The first step started 

with identifying the research gaps and showing the potential in filling that gaps 

scientifically.   Two distinct algorithms were developed to detect arrhythmias. The results 

of these algorithms were successfully published in peer-reviewed journals. Collaborating 

with translate MedTech in Sheffield and Leeds helped to broaden the network with 

academic, clinical and industry partners. To be specific, translate the technology offers 

greater opportunity that identify the unmet needs. Attending local and international 

conferences in which contribute the undertaken research with the relevant community. In 

addition, participating in the clinical trial study that aimed to validate the proposed 

algorithms in the ground truth.  
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7.3 Contributions to Knowledge   

The objectives of this thesis are to contribute to knowledge in theory and practice. 

Through our literature review, some of the research gaps were identified, namely that 

there was an absence of using RR intervals in AF detection based on distinct DL model 

in clinical settings. In addition, we are the first who introduced the concept of patient-led 

data acquisition that can extend the observational duration of AF [9]. The service 

directions play the main role to form patient-led data acquisition. We have critically 

investigated and evaluated the chosen topic. This section shows how the results from this 

research fill the related gaps in knowledge, thereby contributing to theory and practice. 

The achieved objectives summary our key contributions to knowledge as follows:   

1. We used HR measurements as a main monitoring and detection method. This 

comes from the fact that HR is a cost-effective signal to measure, distribute, 

process and store in the cloud. Furthermore, HR is good indicator of human health. 

Hence, we demonstrated that AF detection can be done through using RR intervals 

which were extracted from the ECG measurement obtained of publicly benchmark 

data known as PhysioNet.  

2. We designed, implemented, and tested a DL model that trained with 20 subjects 

and tested with 3 subjects from MIT AFDB databases. The LSTM model was 

evaluated with the performance measures, namely confusion matrix and ROC 

curve. These performance measures showed promising results that were achieved 

in both 10-folds-cross validation and blind folds validation. Therefore, it is a valid 

claim to argue that RR intervals is an applicable approach for automating AF 

detection. Moreover, we established a ResNet model to detect AF, AFL and NSR 

that was trained with 4051 participants. This model achieved great results in terms 

of accuracy, sensitivity and specificity.  

3. We developed a cloud computing technique based on Thingspeak. A smart app 

so-called Heartcare mobile app was developed to communicate the HR 

measurement from wireless sensor polar 10 to a smartphone through BLE 

connection. The HR data will be distributed to Thingspeak server via Wi-Fi 

network. We integrated our DL algorithm into Thingspeak which can detect AF 

episodes in real-time.  



  

 149 

4. We demonstrated patient-led data acquisition approach where the data travel from 

the point of measurement(patient) to the central location point (cloud server). This 

approach is relevant to AF detection service for stroke prevention which helps to 

extend the observational duration.  

5. The LSTM model was validated from five different benchmark databases, 

namely, AFDB, LTAFDB, NSRDB, Fantasia database and Arrhythmia database. 

These databases are completely unknown to the model. To be specific, the bi-

directional LSTM model achieved greater results in the validation setup study. 

Therefore, we established the maturity and robustness of the LSTM model 

through validation.  

6. The proposed AF detection service for stroke prevention has been validated in the 

clinical trial at Sheffield Teaching Hospital. All ethics approvals completed before 

conducting the study. The sample size of the study is 20 participants which were 

divided into two cohorts, 10 participants from normal cohort and other 10 

participants from AF cohort.  

7. We applied the concept of hybrid decision support in both research and practical 

setting. The human experts can work cooperatively with AF detection service 

validation tool to verify the classification outcome of the DL model through 

knowledge obtained of the patient interaction. This step improves the safety of 

machine decision through medical professionals’ verifications.  

7.4 Limitations and challenges  

1. Retrain the deep learning model during the validation and learning features.  To 

be specific, a cardiologist learns while doing the job. The proposed deep learning 

model is static, i.e., it did not learn during the validation. At one point the 

knowledge, extracted from 20 patients, will be insufficient to cope with practical 

scenarios. In the future, we have to find a way to model that continuous training 

in order to improve the diagnostic quality of the proposed AF detection system. 

One way of providing this continuous learning is to retrain the deep learning 

model with measurement data. A prerequisite for such a methodology is to have 

the HR data stored in a central location. Hence, streaming the HR data to a central 
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cloud server might prove to be an advantage when the continuous learning 

problem is tackled. 

2. An alarm message is sent when a dangerous situation arises. Initially, what forms 

a dangerous condition could follow Holter monitoring protocols. For example, an 

AF event is detected when the estimated AF probability is above 0.5 for at least 

30 s. However, it is not known if such an approach is sensitive and indeed specific 

enough to capture the stroke risk for patient. 

3. Obtaining necessary regulatory approvals for accessing the NHS cloud to 

facilitate uplink transmission. 

4. The current algorithm is not integrated into a medical device due to further Health 

Regulatory Approval (HRA) is required. 

7.5 Future work  

1. We plan to collect more data from multiple participant sites. We will recruit 

participants with both known and unknown aetiology to get deeper insights into 

the link between HR and the nature of embolisms, which might lead to stroke. 

2. Extending the observation for indefinite duration so that it increases AF detection 

probabilities and lead to stroke prevention. 

3. Using the proposed AF detection service for many patients over long time periods 

leads to big data with reliable labels.  

4. Integrates our deep learning algorithm into a medical device after the approval is 

granted.  

5. Establish a service platform that can monitor multiple diseases, such as, 

arrhythmias, diabetes, sleep apnea, and congestive heart failure.   
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