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Abstract 

Path planning for mobile robots is a complex problem. However, it 

becomes more challenging when it comes to planning paths in dynamic 

environments. This is because the robot needs to reach an agreement 

between the need of having efficient and optimal paths and the need to deal 

with unexpected obstacles. The proposed algorithm for this work is based 

on two concepts, the Voronoi Diagram used for the environment 

representation and the Deformation Retracts which are integrated into the 

system to enable the path planner to deal with the effect of the moving 

obstacle by deforming the Voronoi Diagram. The fusion of the 

aforementioned  two concepts, Voronoi Diagrams and Deformation 

Retracts, which are from two related mathematical disciplines 

(Computational geometry and Algebraic topology), has not yet been 

considered in robotics applications. The proposed system first extracts the 

collision-free space by computing a Generalised Voronoi Diagram (GVD) 

and generates a pre-planned robot path, then the deformation retract is 

applied on the free space of the Voronoi Diagram created after an 

interference due to a moving obstacle. The map is deformed, and the initial 

path is updated to an alternative path if it exists. One important feature of 

this algorithm is that it is complete because it generates a solution (path) 

and the dimension of the map has been reduced to one which represents 

the retracted free space in the environment. This makes the new system 

applicable to robot navigation in complex environments, and in other 

research areas  such as computer  games, virtual reality, and computational 

geometry to mention but a few. Simulation results of some environments 

demonstrate the effectiveness of the new algorithm. The findings of this 

work have shown that Voronoi Diagram and Deformation Retracts 
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techniques are a good combination for solving path planning problem using 

Deformable Voronoi Diagram for mobile robot in a dynamic environment.
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Chapter One 

1.0 Introduction 

1.1 Background and Motivation 

Moving from one place to another is a simple task for humans to accomplish 

without any difficulties however, this trivial task can be challenging for a mobile 

robot to overcome. Therefore, it is now imperative to address the quest of 

planning path for mobile robots to solve this challenge of moving from one point 

(called starting point) to another (called goal or target point) without collision. 

It is obvious that, be it in railway stations, airports, at  carnivals, or at international 

conferences, humans can move through to their destinations with ease. Whereas 

for a robot even a simple basic task of motion represents a challenge, and 

navigating a crowded place could be even more complicated. This work focusses 

on how to equip a mobile robot to be able to navigate crowded places without 

difficulties. 

Several researchers have conducted studies on the functions of autonomous 

mobile robots. For example, (Almanza-Ojeda & Ibarra-Manzano, 2011)  

presented a study on how an autonomous robot could navigate in outdoor 

environments using sensors, (Alves et al., 2011)  showed that the main feature of 

a mobile robot is to perform functions ranging from cleaning tasks to the 

exploration of the universe without any risk to the robot and the user, and (Raol 

& Gopal, 2013) in their work were able to discover that for a mobile robot to 

perform a task, it had to possess some functionalities such as obstacle detection, 

obstacle avoidance and finding a safe path. An overview of initial approaches for 

path planning problems by various researchers can be found in (Latombe, 1991) 

and recently by some researchers like (Campbell et al., 2020).   

In the beginning, robots were just simple mechanical arms and hence path 

planning techniques were applied solely to static environments. These types of 
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robots are mostly found in industries and are mainly used by trained and qualified 

personnel.  

However, due to technological innovations, fields like computer science, 

electrical and electronic engineering, mechanical engineering, and social sciences 

were used to manufacture different types of robots.  Nowadays, many of these 

robots are used in different areas like in mining industries (Nanda, Dash, Acharya, 

& Moharana, 2010),  nuclear energy companies (Cho & Woo, 2016), search and 

rescue for firefighters (Schneider & Wildermuth, 2017), etc.  Other examples are 

Nano robots in medicine for monitoring human health, assistive robots in 

household environments, commercial robots such as Drones in delivery services 

(https://retailminded.com/what-are-commercial-robots/#.YEKV6ej7TIU), 

disaster response robots for dangerous tasks, robots in the educational sector, 

robots in the entertainment industry, exoskeleton robots for physical therapy, 

humanoid robots that are made to look like humans (Pearson & Beran, 2018) 

(robot.net/robotics/types-of-robots), and underwater walking robot by (J. Ayers, 

2004) or robots for fast reaction to the dynamic (e.g. fish) and static (e.g. rocks) 

obstacles in the sea by (Williams, Pizarro, Mahon, & Johnson-Roberson, 2009). 

The work of (G.S. Virk, C. Herman, R. Bostelman, T. Heidegger, 2013) stated 

that robots would be used in every home in the nearest future. Few examples of 

these modern robots are in Figures 1.1, 1.2, and 1.3.  

 

                                

(Robot Hoover)                        (robot dog) 

https://retailminded.com/what-are-commercial-robots/#.YEKV6ej7TIU
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Figure 1.1 Some Robots and areas of applications 

https://th.bing.com 

 

Figure 1.2 Robot for entertaining guest 

https://www.thejakartapost.com/life/2018/06/28/end-of-the-line-for-asimo-

japans-famed-robot.html 

                                                   

Figure 1.3 robot for guiding tourists 

taiwannews.com.tw 

But for a robot to perform a given task it has to be properly equipped with 

effective algorithms that are complete, optimal, robust against changing 

environment and uncertainties, able to deal with limitations, and comply to safety 

regulations. The algorithm has to address the path planning problem based on the 

robot’s environment. Mobile robot’s environment can be static or dynamic: a 

static environment is where the whole solution must be found before starting 

https://th.bing.com/
https://www.thejakartapost.com/life/2018/06/28/end-of-the-line-for-asimo-japans-famed-robot.html
https://www.thejakartapost.com/life/2018/06/28/end-of-the-line-for-asimo-japans-famed-robot.html
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execution and a dynamic environment is characterized by the uncertainty of the 

environment that limits the ability of robot to make decisions where re-planning 

is needed at every stage with more time for planning update (A. Tuncer, M. 

Yildrim & K. Erkan, 2012). However, whether an environment is static or is 

dynamic, one common fundamental task is how can a mobile robot successfully 

navigate without any collision. Furthermore, whether it is a robotic manipulator 

or a mobile robot, obstacle detection and avoidance in the environment whilst 

performing a task is very essential. Therefore, since every robot is made for 

different purposes, the selection of suitable path planning approaches becomes 

very important. These path planning approaches are also classified into two 

categories based on the robot’s environment: Global path planning and local path 

planning. The Global path planning is mostly applied to static environments 

whilst local path planning is mainly applied to dynamic environments.  

1.2 Path planning approaches for mobile robot  

An effective path planning approach is to enable a mobile robot to navigate from 

one position to another in order to perform the required function. An overview of 

several path planning approaches for mobile robot can be found in the works of 

(Jing, 2008) and (Kunchev et.al, 2006: Kazemi et.al, 2010).  

Research on path planning approaches had gained attention already in the 70s 

with the advent of Artificial Intelligence, which led to the categorisation of path 

planning techniques into Classical approach and Reactive approach. In the work 

of (Patle et al., 2019), the classical approaches were said to be the only techniques 

used for solving path planning problems. Some of these classical approaches are 

complete i.e. they find a path if one exists or confirm that there is none found. 

Though despite its completeness, there are drawbacks such as high computational 

cost and failure to react to unexpected obstacles in the environment that affect the 

classical approaches. These drawbacks makes the traditional/classical approaches 

largely applied to static environments. However, the reactive approaches are 

mainly employed for path planning in dynamic environments (R. Brooks, 1986, 
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1990) because they have remedy for the uncertainties in the environment. Despite 

this advantage of reactive approaches over classical approaches, there are also  

some drawbacks such as high computational time, large memory requirement 

and, learning phase. Examples of Classical approaches are the Cell 

Decomposition method and Roadmap method whilst some examples of reactive 

approaches are fuzzy logic, particle swarm optimization, neural network, ant 

colony optimization, genetic algorithms (Patle, Pandey, Parhi, & Jagadeesh, 

2019).  Artificial Potential Field (APF) method is considered to belong to both 

approaches, i.e., to classical approaches, becausethe position of the target or 

direction to the target should be known, and  to reactive approaches, because the 

position of the obstacles may not be known, and  the robot reacts to them only 

when it ‘senses’ them.  

The classical approaches have been proven to be less capable of dealing with 

unknown, partially understood, or dynamic settings, and they are known to be 

computationally costly. They are found to be dependent on the prior knowledge 

of the environment to generate a feasible path for robot whilst dynamic 

approaches can address these challenges due to their ability to handle unexpected 

or partially known environments. 

Amongst the classical and reactive approaches lies a gap that needs to be bridged, 

which can be addressed by the deformation retracts technique. This (gap) problem 

emerges when an obstacle changes position after a path has been generated, the 

pre-planned path becomes inapplicable to avoid a collision. Therefore, an 

alternative path is needed.  Since the classical approach cannot address such 

changes in the environment, the deformation retract may  re-plan the 

environment, and update the connectivity in the free space so that an alternative 

or a new path is generated for robot execution. However, whether it is classical 

or reactive, researchers have shown that every approach has its limitations and 

also that one approach sometimes cannot solve certain problems. Therefore, 

researchers have come up with the fusion or integration of two or more 

approaches to solve path planning problems.  



6 
 

In this work, the fusion of the generalized Voronoi diagram (GVD) and 

deformation retracts is used to enhance the capabilities of a mobile with 

deformable diagram to deal with dynamic environment. This is because the 

changes in the environemnt required an update that leads to replanning. To 

finding the shortest route/path Dijkstra’s algorithm is employed. This approach 

addresses the problem of path planning using deformable diagram by combining 

the generalized Voronoi diagram and deformation retracts techniques. 

1.3 Aim of the study 

This study aims to complement the efforts of the past studies resulting from 

integrating two or more techniques for designing the path. The research is based 

on the evaluation of theoretical concepts and their application in simulation.  The 

focus of the proposed research work is to design a path planning system for a 

mobile robot in a dynamic environment. To achieve this aim, a list of objectives 

is stated below. 

1.4 Objectives of the study 

1. To compute a generalized Voronoi diagram with static obstacles. 

2. To plan a path for a mobile robot from a source point to a goal point without 

colliding with obstacles in a dynamic environment. 

3. To design an algorithm for finding the shortest path on the free space  by 

implementing a Voronoi diagram. 

4. To introduce dynamic obstacles. 

5. To describe the method of the deformation retracts and to analyse its 

procedures. 

6. To build a simulation for testing and simulate several scenarios within the 

environment and discuss the results.    
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1.5 Contribution of the thesis 

This work develops a technique based on the fusion of two fundamental concepts: 

Topology (Deformation retracts) and Computational geometry (Voronoi 

Diagrams). The novel contribution of this work is how the combination of these 

two established concepts: Deformation Retracts and Voronoi Diagrams, can be 

used to address path planning problems in a dynamic environment.  Whilst these 

concepts (Voronoi Diagrams and Deformation Retracts) have been  developed in 

related domains, their fusion has not yet been considered. The Generalized 

Voronoi diagram is used to reduce the workspace to one dimension by extracting 

the free space and the deformation retract is to re-plan and update the connectivity 

of the free space due to the movement of an obstacle in the environment and 

finally generate a new path. The combination of these two concepts results in the 

so-called Deformable Voronoi Diagrams. Using Deformable Voronoi Diagrams 

and also taking into consideration  such factors  as time, paths lengths and sizes 

of the Voronoi diagrams in simulation the effectiveness of the proposed algorithm 

is demonstrated. The proposed algorithm can be useful not only in robotics but 

also in other domains such as computer  games, virtual reality, and computational 

geometry.  

1.6 Outline of the Thesis 

Chapter one presents the introduction, background and motivation, the aims and 

objective of the study, and the contribution of the thesis. Chapter two is the 

literature review about mobile robot path planning techniques in dynamic 

environments. Chapter three describes some theoretical concepts related to the 

subject matter. Chapter four describes the methodology in detail and initial 

results, and Chapter five presents simulations and a discussion of the results. 

Chapter six concludes the Thesis. 
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Chapter Two 
2.0 Literature review 

2.1 Background 

Several researchers have been working tirelessly to find efficient solutions to path 

planning problems because robot motion is one of the major tasks of a robot 

whilst accomplishing its purpose. There are many works on robot navigation in 

both static and dynamic environments. Examples of some of these works can be 

found in (Blanco, Moreno, & Curto, 1998) where the design of a method for 

planning path for mobile robot in a dynamic environment, and specifically 

emphasized on the use of online method for dynamic environments for 

developing an optimal path planner, and in (Mahajan & Marbate, 2013) emphasis 

on how robots could socially interact with humans in the same environment 

without conflicts was made. However, path planning for robots in changing 

environments has been a focus for many researchers recently.  

Considering the environment, there are two categories of path planning systems:   

the online planning system and the offline planning system. In online path 

planning, the total information about the environment is known in advance. Some 

of the approaches used for online path planning systems are Voronoi Diagram 

(Ó'Dúnlaing & Yap, 1985), and Visibility graph (Mitchell, 1988). The most 

applied in recent times are local path planning systems where obstacles motions 

cannot be determined in advance. In local path planning, the robots get 

information through sensors, a suitable approach used in local path planning is 

the Artificial potential field.  This work contributes to the solutions of robot path 

planning problems and obstacle avoidance in a dynamic environment using 

deformable Voronoi Diagrams.  

However, among the most widely used techniques for path planning problems are 

Visibility graph, Voronoi Diagrams, Cell Decomposition, and Artificial Potential 

Field (Campbell et al., 2020b). These approaches are faced with some drawbacks 



9 
 

like the high cost of computation, and high time in execution of algorithms even 

if a small number of robots are implemented, and getting trapped in local minima 

(Bounini, Gingras, Pollart, & Gruyer, 2017; Lv & Feng, 2006) which becomes 

worse when the environment is changing. Heuristic or soft computing techniques 

such as Fuzzy logic (Mac, Copot, Tran, & De Keyser, 2016; Saffiotti, 1997), Ant 

Colony optimization (Bi, Yimin, & Yisan, 2009; Rashid et al., 2016), Genetics 

algorithms (Han, W., Baek, & Kuc, 1997; Lamini, Benhlima, & Elbekri, 2018), 

and Neural networks (Engedy & Horváth, 2009; Yu, Su, & Liao, 2020) are also 

used for robot path planning applications.  

 

2.2 Path Planning Techniques 

The research on path planning techniques has been in existence since in the 60s 

but this area of research did not get much attention until the work of (Lozano-

Perez, 1990). He presented his work on spatial planning where he introduced a 

configuration approach, which was applied to selecting the motion of an object 

without collision. This was followed by many works on robot path planning 

techniques such like, a work on socially-aware trajectory planning was presented 

by (Kruse, Pandey, Alami, & Kirsch, 2013) which mainly deals with the 

behaviour of robot during navigation, also a work that divides path planners into 

a global planner and a local planner for robot navigation was presentented by 

(Chik et al., 2016), a comparative evaluation of Velocity Obstacle (VO) 

approaches for various agents was reported in (Douthwaite, Zhao, & Mihaylova, 

2018). Different evaluation metrics to deal with the uncertainty produced by the 

robot's low-resolution sensors were also presented. The motion planning methods 

were categorized into classical and heuristic methods by (Cheng, Cheng, Meng, 

& Zhang, 2018). When the two approaches were compared, it was discovered that 

the heuristic technique performed better in online path planning and because of 

the application of mobile robots in many areas like health sectors, manufacturing 

companies, under-water operations, space explorations, nuclear energy plants. A 

good path planning technique allows autonomous mobile robot to traverse a path 
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from the start location to the target location without any collision in the 

workspace, to minimize the danger to the robot, to take care of uncertainties, to 

find an optimal path in a short time, and to report to the user if there is none. 

Today, there are numerous techniques for robot path planning. This can be 

divided into: Conventional and Heuristic techniques. Some of the Conventional 

techiques are Bug Algorithms, Roadmap approach, Cell Decomposition, 

Potential Fields methods, Sampling-based approach, Kalman filtering, and 

Heuristic approaches are Artificial Neural Network, Ant Colony Optimization, 

Genetic Algorithms etc. Each of these methods is effective for different path 

planning problems. The proposed algorithm is to compliment the efforts of the 

researchers in dealing with path planning problems with deformable Voronoi 

diagrams using the combination of generalized Voronoi diagrams and 

deformation retracts. 

In what follows, more details are provided on the aforementioned techniques. 

 

2.3 Conventional techniques  

2.3.1 Bug algorithm  

There are several types of Bug Algorithms, but the most widely implemented in 

path planning problems are Bug1, Bug2, VisBug, DistBug, and TangentBug 

(Choset Howie et al., 2005; Sariff & Buniyamin, 2006). The Bug’s algorithms 

are simple path planning techniques with good assurance (Choset Howie et al., 

2005) and the basic concept of Bug1 is that the robot continues to navigate 

towards the goal along the path from the start to the goal unless there is an 

obstacle, then the robot explores the alternative paths around  the obstacle until 

the motion to the goal is available again (or concludes that there is no path) 

(Sankaranarayanan & Vidyasagar, 1990). Whilst in Bug2 the robot continuously 

follows the the straight line to the goal, and if an obstacle is encountered then it 

follows the  edges of the obstacles until the line to the goal is  discovered (Magid 

& Rivlin, 2004). Bug algorithms are good for online path planners with a few 

sensors (NGAH, Buniyamin, & Mohamad, 2010) (Behnke, 2003). However, 
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these techniques have shown that they have complete solutions and the main 

weakness is at the cost of the length of the paths and time. This proposed work 

can also be seen in chapter 5 of the dissertation, Figure 5.34 and Figure 5.35 

where ‘time’ is used as performance factor for evaluation where the time spent 

for the VD construction before and after deformation were considered. 

 

                     

 Bug1       Bug2 

Bug1 algorithm with H1, H2 are hit points                                                Bug2 algorithm with H11, H1, and H2 are hit points 

                whilst L1, L2 are leave points                                                                   whilst L11, L12, L2 are leave points 

Figure 2. 1 Mobile robot’s path (Nguyen & Le, 2016) 

 

2.3.2 Sampling-based approach 

The sampling-based approach was presented in the 90s to solve the problem of 

deterministic path planning techniques for robots of six degrees of freedom under 

different constraints (Hsu, Kindel, Latombe, & Rock, 2002). The basic concept 

is to focus the search on the randomly explored configuration space instead of the 

whole space including obstacle spaces. This makes the design of the path 

planning algorithm less dependent on the geometric model of the environment. 

The sampling-based approach uses a collision detector as the only source of 

information. The free space has many samples that can be connected with free 

paths to get the path planning problem solved (Khaksar, Hong, Khaksar, & 

Motlagh, 2012).  A sampling-based approach is simple, and it still works under 

many barriers or constraints. Some of the works on these constraints are:  

(1) kinematic and/or dynamic motion constraints (Hsu et al., 2002),  

(2) closure constraints (Han, L. & Amato, 2001),  
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(3) dynamic balance restrictions (Kuffner, Nishiwaki, Kagami, Inaba, & Inoue, 

2001),  

(4) re-configurable robots (Fitch, Butler, & Rus, 2003),  

(5) manipulation constraints (Lamiraux & Kavraki, 2001),  

(6) contact state constraints (Ji & Xiao, 2001),  

(7) short inspection constraints (Danner & Kavraki, 2000).  

It may be simple in a cluster environment where a sampling scheme may be 

applied, but the planning time is higher and makes it inefficient. 

 

2.3.3 Artificial Potential Field approach 

The Artificial Potential Field method in the past years has gained much attention 

for the obstacle avoidance problems in robotics. The main idea of this method is 

that artificial forces act on robots (Khatib, 1986). The Artificial forces comprise 

of the attractive force that attracts the robot to the goal and the repulsive forces 

that repulse the robot from obstacles. This approach can be used for global path 

planning with convex obstacles for a mobile robot using sensor data (Azariadis 

& Aspragathos, 2005). However, its simplicity makes it very popular among 

other approaches. In the work of (Krogh & Thorpe, 1986) they used potential 

field method for both offline and online path planning.  The APF method has the 

problem of local minima, where a robot gets trapped and the goal not attainable 

(Ge & Cui, 2000). (Boukas, Kostavelis, Gasteratos, & Sirakoulis, 2014) in their 

work proposed an evacuation system using the Artificial Potential Field approach. 

However, the APF is not a retraction, but a robot in Potential Fields method is 

treated as a point represented in configuration space as a particle under the 

influence of an artificial potential field whose local variations reflect the structure 

of the free space. 
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Figure 2. 2 Artificial Potential Field Approach1  

 

2.3.4 The graph-based approaches 

The Graph-based approaches are one of the oldest ways of building free space for 

the robot. These free spaces are connected through edges to generate free paths. 

The vertices can be considered as free spaces, and the network between the free 

spaces (vertices) and the lines (edges) are used by the graph-based approach to 

generate a collision-free path for the robot. This approach is applicable to both 

static and dynamic environments. The two well-known roadmap methods are the 

Visibility Graphs (VG) and Voronoi diagram (VD). They have achieved very 

good results with diagramatically different types of roads. A visibility graph is a 

graph that allows robot to come as close as possible to obstacles. As a result, the 

shortest path is found by applying this method. The path in VG touches obstacles 

at the vertices or edges which is dangerous for the robot. Contrarily, a Voronoi 

diagram generates a road that tends to maximize the distance between the robot 

and the obstacles. However, the solution paths based onVoronoi diagrams are not 

optimal with respect to path length (Mac et al., 2016). 

 

a. Roadmap  

 
1.https://miro.medium.com/max/450/1*podzvpWd_ApSOo-SaYGw3w.jpeg  
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The Roadmap approach is used to achieve the connectivity of the graph in the 

free space. (Tang, Khaksar, Ismail, & Ariffin, 2012) presented three stages to be 

followed whilst implementing the roadmap approach:  

1) Navigation of robot from source to goal on the roadmap 

2) Then moving from the target to another point and  

3) Connecting the two points with lines in the roadmap. 

The roadmap-based approach can also be used to solve computational difficulties 

in a complex environment. It can also make free space smaller using an undirected 

graph structure (Chia, Su, Guo, & Chung, 2010). The Visibility graphs and 

Voronoi Diagrams have computational geometry structures. Whilst Visibility 

graphs are designed for finding the shortest path, the Voronoi diagrams are 

implemented for maximum clearance paths. Though, the paths generated by the 

Visibility graph are shortest paths but not optimal, because the robots touch the 

obstacles whilst navigating which might not be too safe for robots. Therefore,with 

the introduction of the Voronoi diagrams, maximum clearance paths are created 

to make it safer for robot during navigation. This provides one of the solutions to 

the problem of Visibility graph. It was pointed out by (Šeda, 2007) that every 

region in a Voronoi diagram corresponds to a site which implies that all points in 

a region are closer to the site in that region than any site from other regions. One 

of the advantages of Voronoi-based path planning is that it reduces the dimension 

of the problem to one and this can be also refered to as Retraction.  

 

b. Visibility graph 

The idea of a Visibility graph is to form a network or graph of vertices of polygons 

(obstacles). (Saska, et al, 2006) indicated that for two vertices to be connected, 

they must be visible whilst Dijkstra’s algorithm is applied to search the shortest 

path. (Masehian & Sedighizadeh, 2007) showed  in their work that a Visibility 

graph is a set of lines in the free space that connects the characteristic (node) of 

one obstacle to another and these are of polygonal shapes with 𝑂(𝑛2) edges in 

the visibility graph.This approach is good for generating shortest path, though the 
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paths may not be considered as safe because the robot touches the obstacles whilst 

navigating towards the goal. Since there are numerous complicated paths to be 

searched for, the efficiency of this method is negatively affected.  

 

  

Figure 2. 3 Visibility graph2 

 

c. Voronoi Diagrams and Generalised Voronoi Diagram 

The Voronoi concept origin dates back to 17th century. Structures that looks like 

Voronoi diagrams can be traced back to the work of Rene Descartes in 1644, 

where he used a Voronoi-like diagram to refer to the location of matter within the 

solar system and since then researchers have started the development of numerous 

algorithms for the computation of Voronoi diagrams. The survey of some of these 

work can be found in  (Aurenhammer & Klein, 2000), (De Berg, Van Kreveld, 

Overmars, & Schwarzkopf, 1997), and (Okabe, Boots, Sugihara, & Chiu, 2009)  

where numerous algorithms and their applications to Voronoi diagrams were 

discussed. (Canny & Donald, 1990) presented work on a Voronoi diagram as a 

tool in robot path planning where a search for a path in a particular space can be 

reduced to a search in one-dimensional space. The GVD has been used by many 

researchers as a basis for path planning for a long time as shown in the works of 

(Choset & Burdick, 1995), (Choset and Burdick, 1996), (ó'Dúnlaing, Sharir, & 

Yap, 1983), and (Wilmarth, Amato, & Stiller, 1999). However, the proposed 

 
2. https://media.springernature.com/full/springer-static/image/art%3A10.1007%2Fs42154-019-00081-

1 
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work differs from other work by deforming the Voronoi diagrams and still 

regenerates the robot path. 

Several previous works have shown the computation of Voronoi diagrams such 

like (Fortune, 1987; Zavershynskyi & Papadopoulou, 2013) where a sweepline 

algorithm can be used to compute Voronoi diagram for n point sites in O(nlogn) 

time and an algorithm to construct order-k Voronoi diagrams with a sweepline 

technique in  O(k2nlogn) time complexity and O(nk) space complexity 

respectively were presented. However, this work differ from the works mentioned 

above in the computation of Voronoi where a matlab function called ‘voronoi’ is 

used for the computation of Voronoi Diagrams where point sites are used for 

computing Voronoi diagrams for polygonal obstacles. 

 

Figure 2. 4 Voronoi Diagram (http:/en.wikipedia.org/wiki/Voronoi_diagram) 

The use of Voronoi Diagrams and deformation retracts to obtain a Deformable 

Voronoi diagram in solving path planning problem also makes this work 

different. 

According to (Choset Howie et al., 2005), the generalized Voronoi diagram can 

be said to be a set of points in the workspace from different regions are equidistant 

from each other. Whilst (Mahkovic & Slivnik, 1998) and (Nagatani, Choset, & 

Thrun, 1998) developed a technique for the building of a generalized local 

Voronoi diagram and a Voronoi diagram in a dynamic environment respectively, 

none of these works combined VD with deformation retracts nor did they deform 

the VD in generating paths. Constructing an efficient generalized Voronoi 

diagram has always been not without drawbacks in path planning but some 
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solutions have helped other works including this work in the construction of 

Voronoi diagrams. For instance, in works of Choset (Choset, 1995 and Choset, 

1996) an algorithm solution, called the hierarchical generalized Voronoi graph, 

was designed for a robot to navigate a changing environment, and in (Steven et 

al., 1999) it  was shown how the points on the diagram can be searched without 

constructing the whole map. 

 

   

Figure 2. 5 Generalized Voronoi Diagram (https://th.bing.com/th/id/)  

 

d. Deformation Retracts 

The basic concept of deformation retracs is to smoothly deform a path or map 

without losing some of the properties of the original path or map. This is because 

deformation is about stretching or shrinking of a space or object but not crushing 

or cutting of a space or object. However, if a path is referred to as a sequence of 

vertices with the property that each vertex in the sequence is adjacent to the next 

vertex is smoothly deformed the number of vertices will still be the same with the 

original path before deformation. A similar work from (Gayle, Sud, Lin, & 

Manocha, 2007) was presented where an algorithm for motion planning that used 

deformable links and dynamically retracted to capture the connectivity of the free 

space for autonomous robots in a dynamic environment, and in the work of 

(Lamiraux & Bonnafous, 2002) a method to reactive obstacle avoidance for non-

https://th.bing.com/th/id/Rc7e95b343f074f47a2318fa92ffb9de8?rik=Gy8nhOCCkOo1Ew&riu=http%3a%2f%2fwww.cs.cmu.edu%2fafs%2fcs.cmu.edu%2facademic%2fclass%2f16311%2fwww%2fs06%2flecture%2fzack_update.gif&ehk=YG%2f3NkIAk%2bUDdbEtx2ftnsNcwwdkJLy%2bMliEe5CarK8%3d&risl=&pid=ImgRaw
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holonomic systems which was based on deformation of an initial motion 

generated by a path planner was presented.  

Consider the figure 2.6, let the space 𝐴 = 𝑆1 is the unit circle 

And 𝑋 = 𝑆1 × [0,1] is the unit cylinder 

Then, 𝐴 is a deformation retract of 𝑋. 

 

   

 

 
 

       
 𝑆1 × [0,1]                                                                                                                                                         𝑆1 

                                                                                                                    

 

Figure 2.6 Example of deformation retract 

 

2.4 Heuristic Approaches 

The traditional techniques for path planning have problems of high time for 

algorithm execution and the presence of local minima that poses challenges to the 

efficiency of their implementation, but the heuristics approaches have some 

algorithmic solutions to address some of these problems. Therefore,  there are 

many works on heuristic approaches, such like Neural Network (Zhu & Yang, 

2006), Genetic Algorithms (Zhang, Sun, Xiao, & Tsang, 2007), Simulated 

Annealing (Manousakis, McAuley, Morera, & Baras, 2005; Mohamad, Taylor, 

& Dunnigan, 2006), Ant Colony Optimization (Mohamad, Taylor, & Dunnigan, 

2006), PSO (Saska, Macas, Preucil, & Lhotska, 2006),  Tabu Search (Masehian 

& Amin Naseri, 2004), and Fuzzy Logic (Lee & Wu, 2003). Most of these 
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techniques both conventional and heuristic are combined to develop an efficient 

path planner (Charalampous, Kostavelis, & Gasteratos, 2015).  

 

2.5 Path Planning Algorithms 

The major characteristic of an algorithm for path planning is convergence. This 

implies that an algorithm for path planning must be able to discover a path, if one 

exists, otherwise to tell the user if such a path does not exist and then to stop. 

However, in the work of (Coenen & Steinbuch, 2012) we can find the 

characteristics of Convergent Algorithms as:  

i) Length- the distance between the source and the goal should be the shortest. 

This implies that the algorithm should be able to find an optimal path.  

ii) Time- the execution period needs to be as small as possible 

iii) Robustness- this is the capacity of the algorithm to fault tolerance should 

be high. This implies that the approach should be able to deal with uncertainty, 

and this has been addresed by the proposed method, uncertainties such like the 

size of the obstacles. However, the new method still work correctly.  

iv) Simplicity- the implementation of the algorithm should be as simple as 

possible. 

2.6 Related Works on path planning using combined methods 

Combinations of several path planning methods for the path planning problem 

can be found in (Guo et al., 2021; Masehian & Amin‐Naseri, 2004) and (Dongbin 

& Jianqiang, 2006). However, few examples that include Voronoi Diagrams are 

reviewed below. 

 

2.6.1 Voronoi Diagrams and Fast Marching 

A method was presented by (Garrido, S. & Moreno, 2015; Garrido, Santiago, 

Moreno, Blanco, & Jurewicz, 2011) using the fusion of  Voronoi diagrams and 

fast marching for mobile robot path planning. This method combines map-based 
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and sensor-based techniques to generate a feasible motion plan, whereas it 

operates at the frequency of the sensor. The Voronoi diagram was used to reduce 

the configuration space into a unidimensional space and used fast marching to 

obtain the path from the collision-free areas of the Voronoi diagrams. This 

permits the usage of this method in complex environments where different 

Voronoi-based strategies will not work  

2.6.2 Tube Skeletons structure and Fast Marching 

(Garrido, Santiago, Moreno, Abderrahim, & Blanco, 2009) presented a similar to 

the work 2.6.1 but the safest areas in the environment are extracted by means of 

a tube skeleton like a Voronoi diagram but with tubular shape, then the fast 

marching obtained the collision-free path from the tube skeleton. This method is 

map-based and sensor-based, good for static environments. Its effective, it 

produces smooth trajectories and is characterized by non-holonomic restrictions.  

2.6.3 Voronoi Diagrams and Genetic Algorithms 

Researchers like (Li, Dong, Bikdash, & Song, 2005) and (Benavides, Tejera, 

Pedemonte, & Casella, 2011)  developed methods for path planning based on 

Voronoi diagrams, where obstacles in the environment are considered as the 

generating points of the diagram, and a genetic algorithm is used to find a path 

without collision from the robot initial position to robot target position. For the 

optimal path, the fitness function was used. This method is good for static 

environments, efficiency is good, and has low execution time. 

2.6.4 Ant Colony Optimization and Dynamic Voronoi Diagrams 

This approach is presented by (Habib, Purwanto, & Soeprijanto, 2016) for mobile 

robot planning problem using the modified ant colony optimization algorithm 

based on the Voronoi diagram. The VD generates vertices that is assumed nodes 

in the ACO and the mobile robot is assumes as ant. This is robust for dynamic 

environments, attracts adaptability, and very good efficiency in path planning. It 

is also generates path that is more safe than the previous above. 
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2.6.5 Voronoi diagram using Parameter Clearance-based Shortest Path 

(Bhattacharya & Gavrilova, 2008) presented a work that constructed a roadmap 

and the best path was obtained from the Voronoi diagram using clearance 

condition or constraint which would be set by the user initially and (Niu, Lu, 

Savvaris, & Tsourdos, 2018) combines the Voronoi-Visibility to allow 

Unmanned Surface Vehicles to avoid obstacles whilst at the same time using 

minimum amount of energy. The impact of parameters such as mission time, the 

USV speed and sea current state on the results were analysed and it shows that 

the proposed VV algorithm improves the quality of the Voronoi energy efficient 

path whilst keeping the same level of computational efficiency as that of the 

Voronoi energy efficient path planning algorithm. This assures the optimality of 

the path. This is used in a dynamic environment, more effective in speed quality, 

and generally very effective. 

2.6.6 Voronoi Diagram and Probability Roadmap 

(Bhattacharya & Gavrilova, 2007) designed a method based on sampling-based 

techniques that supported taking the problem into an imaginary environment. 

This is effective in dynamic environment, it is characterized by the time spent 

between the re-plan and deformation.  

2.7 Obstacle Avoidance 

Obstacle avoidance is a major problem in robot path planning simply because a 

robot needs to reach its destination without a collision with any obstacle. 

However, a path is said to be free if obstacles are avoided during robot navigation. 

(Khatib, 1986),  in his work designed a unique real-time collision avoidance 

method for mobile robots and manipulators using the artificial potential fields to 

enable robot in a real-time dynamic environment, (Petres et al., 2007) designed a 

framework that was applied to path planning and obstacle avoidance for 

underwater vehicles for sonar purpose and (Choset Howie et al., 2005) applied an 

online technique to develop an algorithm for obstacle avoidance by means of  

reactive control during the robot motion. (Lamiraux & Kavraki, 2001) also 
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presented an algorithm to address a path deformation for obstacle avoidance. 

Lastly on this, since one of the essential requirements for all intelligent machines 

is safety when it encountered an emergency during the task, it has made path 

planning and obstacle avoidance an interested area of research. In the work of  

(Liu, Li, Zhang, Zheng, & Yang, 2019) a dynamic obstacle avoidance and path 

planning problem of USV based on the Ant Colony Algorithm (ACA) and the 

Clustering Algorithm (CA) to construct an auto-obstacle avoidance method 

which is suitable for the complicated maritime environment was presented. 

2.8 Conclusions 

Several methods of representation have been reviewed and it is concluded that 

there is no method with absolute perfection. All the methods reviewed showed 

that they all have limitations. However, to resolve some of these limitations, some 

methods were combined, and the proposed method of this work is an example. 

This study proposes the combination of the Voronoi diagram and the Deformation 

retract method for the planner. This is a roadmap-based method that uses a 

computational geometry data structure. However, before designing a path 

planning method, three criteria need to be taken into consideration: path length, 

computational complexity, and completeness. In a dynamic environment, 

findings have shown that some methods like Visibility graphs produce a shortest 

path but they may be computationally intractable as they may run in non-

polynomial time with respect to the number of obstacles, whilst considering the 

Voronoi Diagrams, the paths generated are relatively safe since the edges of the 

path are positioned far away from the obstacles, but may not be shortest, though 

these paths are not optimal in terms of path length but has the fastest computation 

time compared to other methods. For instance, the computation time of VG 

exponentially increases with respect to the number of obstacles, whilst, VD had 

a consistent increment in computation time as the number of obstacles increases. 

The difficulty of a motion planning problem is determined by the complexity of 

the obstacle space 𝑂 and the configuration space dimension 𝐷. The finite number 

of nodes utilised to approximate a continuous space is indicated by N.  For 
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computational complexity, one needs to establish upper and lower limits on the 

time required by the most efficient solution to solve a given problem. However, 

an algorithm's complexity is assumed to represent its worst-case complexity, 

unless otherwise stated. To prove an upper limit T(n) on a problem's time 

complexity for a given number of inputs n, all that is required is to show that there 

is a specific method with a running time of at most T(n) and to show a lower limit 

of T(n) for a problem, one must demonstrate that no algorithm has a temporal 

complexity lower than T(n). Big 𝑂 notation is used to express the upper bound or 

worst-case complexity, which hides constant factors and smaller words. This 

makes the limits independent of the specific details of the computational model 

used. For instance, if 𝑇(𝑛)  =  7𝑛2  +  15𝑛 +  40, in big O notation one would 

write T(n) = 𝑂(𝑛2). 

The reasons for the selection of this method are: because of its completeness, 

ability to create a maximum clearance path for the safety of robot that is not 

guarranteed with some methods and, the fastest time of computation which is in 

𝑂(𝑛𝑙𝑜𝑔𝑛) time (complexity) and lastly, the querying for a path in this method is 

faster than in other methods even though the quality of paths generated from the 

Voronoi diagrams are far from being optimal. Combining this method with 

another methods, the deformation retract enables the new system to react to 

unexpected changes in the environment by deforming and updating the map.  
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Chapter Three 

3.0 Study Related Theory 

3.1 Background 

Robots are used in many areas such as factories, airports, train stations, offices, 

shopping malls, and international conferences. The objectives of robots to these 

areas are numerous: to save time, prevent risk, avoid hazards and reduce 

manpower also to improve productivity to mention but a few.  

 

Figure 3. 1 A conference venue at Sheffield Hallam University 

Figure 3.1 is a typical example of crowded and/or dynamic environments. This 

type of environment requires some resources (human) to perform the smallest 

task which could be boring, tedious and wasting the time of trained personnel. 

However, the application of robotic technology has addressed most of the 

aforementioned problems. For example, a mobile robot that can perform “a search 

and rescue” task could relieve/save fire brigade personnel from a dangerous (risk) 

task. Path planning is a very significant aspect of robotics, it is an integral part of 

many robotic applications, for example,  in medical (endoscopic path planning) 

where a target is located in a lung by generating an endoscopic path to the target 

(Geiger, Kiraly, Naidich, & Novak, 2010), in graphics applications where the 

graphic-based path planning approach is used on ray casting and voxel models 
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(Tarbutton, Kurfess, & Tucker, 2010), in manufacturing and CAD, an 

autonomous system was used in place of painting manually (Chen, Fuhlbrigge, 

& Li, 2008). The task of finding or generating a path between two points (start 

and stop/goal/target) and avoiding collision is known as the path planning 

problem. The path planning problem faces numerous challenges such as sensor 

problems like giving error information, unexpected scenarios (open or closed 

door), real-time issues, and dynamic obstacles. However, finding the optimal path 

is mostly the objective of researchers working on path planning problems. 

3.2 Path planning/Navigation system   

Motion planners are algorithms that deal with the problems of motion planning 

and are characterized by the followings (Coenen & Steinbuch, 2012):  

i. Task, which comprises navigation, environment coverage, and mapping 

(is a task related to an unknown environment) 

ii. Completeness, a planner can be complete, if a solution is found or tell 

the user if no solution exists, resolution complete if a solution exists based 

on some features of space resolution, if a solution exists with probability 

of finding the solution tends to one whilst number of sample tends to 

infinity, then it is probabilistic complete, and incomplete if a planner is not 

capable of guaranteeing a solution. 

iii. Optimality, which comprises optimal, conditional optimal and non-

optimal 

A path planning system transforms a high-level task into a low-level illustrations 

of a robot motion. For the robot motion to be planned, the robot needs the 

representation of the environment (map), and the representation of the 

environment is computed through perception with the aid of sensors, then the 

robot needs to identify its position (localization) after mapping the obstacles into 

the environment. Figure 3.2 illustrates the architecture of a navigation system, it 
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shows how the robotic system performs its tasks/functions whilst moving towards 

the target.  

 

 

 

 

 

 

 

 

 

 

Figure 3. 2  Navigation system of a robot: Motion planning, Mapping, and localization3 

 

3.2.1 Motion Planning Problem 

We model a robot as a rigid body 𝓐 moving in a workspace 𝒲 = ℝd (ℝd is 

Euclidean space) where d can be 2 or 3.  The obstacle region 𝓒𝒪𝑖 is then the space 

occupied by obstacles 𝒪𝑖 such that 𝑖 = 1, 2…𝑛.  The obstacle region is also referred 

to as the union of all obstacles. Since 𝓐 and 𝒲𝒪𝑖 are subsets of 𝒲, then the 

location and the size of 𝓐 and 𝒪𝑖 are known. Therefore, motion planning problem 

is referred to as: “given two points, the source and the goal of 𝓐 in 𝒲, find a 

path c that will not collide with 𝒪𝑖 and will be used by 𝓐 to move from the source 

to the goal and also indicate if such path does not exist” (Latombe, 1990).  

 

3. https://www.semanticscholar.org/paper/Motion-Planning-for-Mobile-Robots-A-Guide-Coenen-

Steinbuch/6d6878f905d64ce8df9fd3d19ad2c11afbe4ee8e#extracted 
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https://www.semanticscholar.org/paper/Motion-Planning-for-Mobile-Robots-A-Guide-Coenen-Steinbuch/6d6878f905d64ce8df9fd3d19ad2c11afbe4ee8e#extracted
https://www.semanticscholar.org/paper/Motion-Planning-for-Mobile-Robots-A-Guide-Coenen-Steinbuch/6d6878f905d64ce8df9fd3d19ad2c11afbe4ee8e#extracted
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3.2.2 World Representation 

To finding solution to path planning problem, identifying the position of the robot 

in regards to the workspace is necessary. This localization of the robot is 

considered whilst planning the motion so that no part of the robot will touch any 

obstacle when moving towards the goal. These considerations brought up the idea 

of configuration space (Lozano-Perez, 1983). 

3.2.3 Configuration Space Vs Workspace 

The real world where the robot performs its function or the space in which the 

robot works that can 2D or 3D is referred to as Workspace whilst the 

Configuration space or C-space of a robot is the space of possible positions robot 

may occupy.  If the robot is taken to be polygonal, operating in a 2D environment, 

then the configuration of the robot will be specified by a translational vector, 

which can be represented by two coordinates (𝑥, 𝑦). But if the robot changes its 

orientation by rotating, then an extra parameter 𝜃 is required for its orientation. 

Therefore (𝑥, 𝑦, 𝜃) can be used to represent the configuration space. The 

configuration of a robot is represented by the number of parameters which is 

equal to the number of degrees of freedom (DOF) of the robot. Generally, a robot 

translating in ℝ3   will have three degrees of freedom because it can rotate about 

the (𝑥, 𝑦, 𝑧) axes whilst a robot translating and rotating in ℝ3 will have six degrees 

of freedom because it can move laterally about all the axes and also rotates about 

all the axes. The configuration space can therefore be thought of as the parameter 

space of a robot 𝓐, i.e. (𝒜).  

3.2.4 Obstacle Configuration Space  

Let 𝒲 be the world that contains the robot and obstacles. For Euclidean space 

ℝ2, let us consider that 𝒲 ⊂ ℝ2 and 𝒪 ⊂ 𝒲 is the obstacle region, that has a 

boundary. Then the complement 𝒲 ⧵ 𝒪 is taken as an open bounded set. And  

configuration space or 𝒞 − 𝑠𝑝𝑎𝑐𝑒 is the set of all rigid body transformations 

applied to the robot. Let 𝒞𝒪 be the part of 𝒞 that part a robot cannot enter and let 

𝒜 (q) ⊂ 𝒲 be a closed set of points occupied by robot 𝒜 when it transformed to 

configuration 𝓆. A configuration 𝓆 ∊ 𝒞 puts the robot into a collision if and only 
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if  𝒜 (q)∩ 𝒪 = ∅, which implies that the robot and the obstacle intersect at least 

at one common point in 𝒲, then the set of all non-colliding configurations is 

referred to as free space, 𝒞free. This is also described as: 

 𝒞free  = {q ϵ 𝒞 | 𝒜 (q)∩ 𝒪 ₌ ∅}      (3.1) 

Whilst the compliment is referred to as the obstacle configuration space 𝒞𝒪 and 

is also defined as: 

 𝒞obs  = {q ϵ 𝒞 | 𝒜 (q)∩ 𝒪 ≠ ∅}.      (3.2) 

 𝒞obs  =  𝒞/𝒞free        (3.3) 

The obstacle configuration space region is the union of the obstacle 

configuration spaces:  

 𝒞𝒪 = ∪𝒞𝒪         (3.4) 

Then the compliment of the configuration obstacle space region is the free 

configuration space, 𝒞free: 

 𝒞free = = 𝒲∖ ⋃ ⋃𝑖=1
𝑖=𝑛 𝐶𝑜𝑏𝑠              (3.5) 

The motion planning problem is to find a path in 𝒞free from a starting location 𝑞0 

to another location 𝑞1.  

Definition 3.1 

A path is a continuous function c, which maps a parameter of path s to a curve 

in 𝒞:  

 c : [0, 1] → 𝒞          (3.6) 

such that c(0) = q0, c(1) = q1  and c(s) ϵ 𝒞   for all s ϵ [0, 1]. 

If c(0) and c(1) belong to the same 𝒞free, then a continuous function c is called a 

free path. When the robot touches the obstacle, the space that represents this 

configuration is referred to as contact space, 𝒞contact.  
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3.2.5 Configuration space representation 

The problem of motion planning is described in the real world however, it is 

actually in an imaginary space. Because the configuration space transforms the 

problem of an imaginary shape object into a point. Then finding likely motions 

of that point in the configuration space, depends on the connectivity of the 

configuration of the free space. Roadmap, Cell decomposition, Sampling-based 

and Artificial Potential fields are methods that represent the connectivity of the 

free space in the configuration space in different forms. There are three prominent 

map concepts: 

1) Topological concept, 

2) Geometric concept, 

3) The Grid concept. 

1) The topological concept is about representing the environments in a graph 

structure, where nodes represent locations or objects, and the edges represent the 

relationship between the nodes. 

2) The geometric concept is about using geometric primitives for representing the 

environment, by mapping the primitive’s parameters with the sensors 

observation. 

3) The grid concept is where the configuration is decomposed into a grid of cells 

with a predefined shape or size which are dominantly square or rectancular 

(Coenen & Steinbuch, 2012). 

3.3 Roadmap 

The roadmap is a type of a  map in topology, it is a graph-like structure with nodes 

and edges. The nodes represent the object or location whilst the edges represent 

the relationship between two nodes. A roadmap can also be described as the 

network ofcurves in the free configuration space. An example of a roadmap is 

given in Figure 3.3. 
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Figure 3. 3 Representation of an environment by the roadmap method 

Definition3.2 

An environment is a roadmap, R, if for all qi and qg in 𝒞free that can be connected 

by a path, the following hold: 

1. there is a path from the qi ϵ 𝒞free to some q′i  ϵ R 

2. there is a path from some q′g ϵ R to qg ϵ 𝒞free 

3. there exists a path in R between q′i  and q′g  

Some of the types of roadmaps are: 

a. Deformation Retract is a function that maps a continuously shrinking or 

retracting a space into a subspace, this is similar to when a free space eroded into 

a skeleton shape, whilst this skeleton can be used for robot path planning.  

b. Visibility graph technique is a non-directed graph, where the nodes 

corresponds to the vertices, and edges correspond to the edges in the polygon 

(Coenen & Steinbuch, 2012), 

c. Retract-like structure is the union of one-dimensional structures (Choset 

Howie et al., 2005),  

d. Piecewise retract is a graph for edge operating in the plane and  

e. Silhouette's approaches have been proved to be complete for a number of 

dimensions with arbitrary obstacle structures. A brief description of Silhouette 

method can be found in (Choset Howie et al., 2005). 
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In this study, we restrict our attention to Deformation Retract. 

3.3.1 Deformation Retract 

Deformation Retract can simply be described by an analogy of a dissolving 

doughnut-shaped candy into a ring. The resulting ring is a subspace of the 

topological structure (space) of the candy. This ring that looks like a skeleton can 

be used for planning the robot's motion. We can deduct from this analogy that the 

doughnut-shaped candy to be the free space 𝒞free, and the ring or skeleton to be 

taking for a Deformation Retract.  

For a set X, a retraction is a continuous function 𝑓 ∶ 𝑋 → 𝐴 such that 𝐴 ⊂ 𝑋, 

 and 𝑓(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴.  

Then, the subset 𝐴 ⊂ 𝑋 is the retract of 𝑋 which implies that the dimension of  𝑋 

is greater than the dimension of 𝐴. Deformation is about space stretching or 

shrinking but not crushing or cutting, and retraction implies the continuous 

function of a space to a subspace. Deformation retract basic idea is to 

continuously squezing a space onto a space. So, a deformation retract is a 

geometrical structure obtained from a process of shrinking space to a subspace. 

It is the same as to eroding a free space into a subspace shaped like a skeleton, 

and this skeleton can be used for robot motion planning. However, the such a 

skeleton is mostly constructed by Voronoi diagram of free space. 

Both the Generalized Voronoi Diagram and Deformation Retract are roadmap-

based methods. Roadmap-based methods have two properties, the accessibility 

and the connectivity. However, the properties of both Deformation Retract and 

the GVD are completely the same because they can all be used to construct 

roadmap, both GVD and deformation retract follow from the connectivity and 

accessibility property of roamap method.  

Characteristics of Deformation retract are: 
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Complete: the retraction technique is complete for any kind of search algorithm 

used for the roadmap because there exists always a path. 

Optimal: The distance to obstacles and the computation cost of the  diagram that 

allows maximum clearance from obstacles. 

Complexity: the computation of the generalized Voronoi diagram depends on the 

number of edges, the more the number of edges the more point sites it involves. 

From the point of view of algebraic topology, which is inspired by the work of 

(Rahul, 2016): 

 

 

  

 

Figure 3. 4 Example of a Deformation 

 

A retraction is called a deformation retraction if there is a continuous function, ℛ 

: [0, 1] x 𝑋→ 𝑋 such that ℛ(0, .) is the identity map on X and ℛ(1, .) = r 

Therefore, whenever there is a deformation retraction from X to Y, then we call 

Y a deformation retract of X.  

If 𝒞free describes the obstacle free space in an environment, the retraction function 

say, ℛ builds a continuous subset where there is a path from starting point 𝒮 and 

end point 𝒢.  

However, the problem of path planning for a robot is to find a path say, 𝓅 from 

the source 𝒮, to the goal 𝒢.  

With the prior information about 𝒮 and 𝒢 ∈ 𝒞free . 

Therefore the general state in the robot path is 𝓅(s),  

if 𝓅 : [0, 1] →  𝒞free,  𝓅(0) = 𝒮,  𝓅(1) = 𝒢.  

From Figure 3.4, there are two paths of the same homotopic group, because one 

of the path can be deformed to the other with multiple small deformations that 

will lead to collision-free paths. 
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Let 𝓅1 : [0, 1] →  𝒞free and 𝓅2 : [0, 1] →  𝒞free be two paths,  

with 𝓅1(0) = 𝓅2(0) =  𝒮 and 𝓅2(1) = 𝓅2(1) = 𝒢. 

A deformation can be said to be: 

ℱ : ℱ0 = 𝓅1,  ℱ1 = 𝓅2,  ℱ0 = 𝒮,  ℱ1 = 𝒢 

Therefore, two paths are said to be in the same homotopic group if such a 

continuous mapping ℱ exists from the first path ℱ0 = 𝓅1 to the second path  

ℱ1 = 𝓅2 and such that all intermediate paths 𝓅t are collision-free from source to 

goal. 

 

Definition 3.3 

A Voronoi Diagram is the partitioning of a plane with 𝓃 points into convex 

polygons such that each polygon consists of exactly one generating point and 

every point in a particular polygon is closer to its generating point than to any 

other. 

Let 𝒮 denote a set of point sites, 𝓃 in the plane. i.e. = 𝓍, 𝓎, ..  

Given two points 𝓍 = (𝓍1, 𝓍2) and 𝑎 =  (𝑎1, 𝑎2), then let the Euclidean distance 

between the 𝑥 and 𝑎 be 𝒹(𝓍, 𝑎) 

                          = √(𝓍1 − 𝑎1)2 +  (𝓍2 − 𝑎2)22
      (3.7) 

 

Then, for 𝓍, 𝓎 ∈ 𝒮    

let 𝑃(𝓍, 𝓎) =  {𝑎 ⃒ 𝒹(𝓍, 𝑎) = 𝒹(𝓎, 𝑎)}  be a perpendicular bisector of 𝓍 and 𝓎. 

ℬ(𝓍1, 𝓍2) is the perpendicular line through the segment, 𝓍1𝓍2̅̅ ̅̅ ̅̅  that divides the 

half-plane 

𝑄(𝓍, 𝓎) =  {𝑎 ⃒ 𝒹(𝓍, 𝑎) < 𝒹(𝓎, 𝑎)} containing 𝓍 from the half-plane 𝑄(𝓎, 𝓍) 

containing 𝓎. Therefore, the Voronoi region of 𝓍 with respect to 𝒮 is written as, 

𝒱ℛ(𝓍, 𝒮) = ⋂ 𝑄(𝓍, 𝓎)𝓎∈𝒮,𝒴≠𝓍                   (3.8) 

Then, the Voronoi region of 𝒮 is now written as, 
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𝒱(𝒮) = ⋃ 𝒱ℛ(𝓍, 𝒮)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋂ 𝒱ℛ(𝓎, 𝒮)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝓍,𝓎∈𝒮,𝓍≠𝓎

       (3.9) 

 

a. Construction of Voronoi Diagram 

 

 

 

 

 

Figure 3. 5 Construction of Voronoi Diagram 

 

Considering Figure 3.5(a), it shows four locations/points in an area/plane and 

Figure 3.5 (b) shows where these areas are divided into regions. Therefore, each 

location has a region, that consist of the area for which that location is the closest. 

(a) Depicts a collection of points in a plane  

(b) Divides the plane into regions, one region per generator and each region 

consist of those points that closer to the generator of the region than to any other 

generator.  

(c) To construct a Voronoi Diagram, if we consider two points 𝒳  and 𝒴 Figure 

3.6, the region for point 𝒳  is all the points closer to 𝒳 than 𝒴.  

The half-plane is shown in Figure 3.6 C(i) whilst the boundary is the 

perpendicular bisector of the edge 𝑥𝑦.̅̅ ̅̅   Adding another point in Figure 3.6 C (ii) 

say 𝒵, we will get the region of 𝒳 that consists of the points that are both closer 

to 𝒳 than 𝒴, and also closer to 𝒳 than 𝒵. And these intersections are 𝒳𝒴 and𝒳𝒵 

half-planes. This goes on to produce the final diagram called the Voronoi 

Diagram in Figure 3.6 C(iii) that shows three perpendicular bisectors by deleting 

all the unnecessary parts.   

 

 

(a) (b) 
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                 C(i)                                              C(ii)                                           C(iii) 

Figure 3. 6  Construction of VD  

An edge of a Voronoi Diagram is the intersection of two Voronoi regions that is 

equidistant to the nearest sites. A Voronoi cell is the set of all points closer to a 

fixed site than any other site.  

A Voronoi vertex is the intersection of at least three Voronoi edges, so a 

Voronoi vertex is equidistant from at least three sites. 

Some Features of  Voronoi Diagrams are: 

1) the Voronoi Diagram of n-1 parallel lines forms n cells if points Pi are 

collinear. 

2) the edges of the Voronoi Diagram are segments if points P are not collinear. 

3) Voronoi cells are convex. 

Like the Voronoi Diagram, there is an important geometric structure called 

Delaunay triangulation. It is also referred to as the dual structure of the Voronoi 

diagram. The Delaunay triangulation is constructed by drawing lines between two 

sites whose Voronoi regions have the same edge. It also divides the convex hull 

into triangles. 

There are numerous areas of application of the Voronoi Diagram (Mark, Maxim, 

Ming & Dinesh, 2001) 

1. The Generalized Voronoi Diagram of the map (workspace) is used to bias 

sample generation in a randomized planner. 
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2. The path found from the Generalized Voronoi Diagram of the workspace 

is also used to provide intermediate points to serve as temporary attractive 

wells for a potential field planner. 

3. The VD of the configuration can be searched simply for a path once the 

source and the target are connected. 

In this study, the third application was used to generate the initial workspace 

path. 

 

Figure 3.7   Sample of Delaunay triangulation4 

b. Generalized Voronoi Diagram 

Modelling obstacles as points, a Voronoi diagram is used to model the 

configuration space of a robot. In this model, the configuration space is the set of 

collection free spaces and the configuration space occupied 𝒞free and 𝒞obs 

respectively. A Voronoi diagram will help a robot to avoid obstacles with 

maximum clearance and a fast search is obtained because of the above 

assumption. However, in real life, obstacles are not points, but have shapes thus, 

generalized Voronoi diagrams were introduced by replacing points with objects. 

Generalized Voronoi diagrams (GVDs) can be used in high-dimensional spaces. 

(La Valle, 2006) suggested that the number of edges in the GVD would determine 

the computational complexity of GVD which is in 𝑂(𝐸𝑙𝑜𝑔𝐸) time. Despite 

having straight line segments, it also contains arcs which make it visible. Here 

 
4. https://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Delaunay_Voronoi.svg/200px-

Delaunay_Voronoi.svg.png 
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the product of the retractions of qi and qg i.e. r(qi) and r(qg) with segment(path) 

between qi and qg is the path. 

 

                                                                                     

(a) Voronoi diagram                                 (b) (Coenen & Steinbuch, 2012) 

Figure 3.8 Deformation retract from (a)VD and (b)GVD 

From Figure 3.8(a), considering a finite set of nodes in the plane. Each node is a 

Voronoi site, and its corresponding Voronoi cell consists of all points whose 

distance to this site is not greater than their distance to any other site. The edges 

of the VD are the points in the plane which are equidistant to the two nearest sites 

and the Voronoi nodes are e the points equidistant to three (or more) sites. The 

diagram becomes a generalised Voronoi diagram (GVD) for higher order site 

geometries, Figure 3.8 (b) illustrates this. The higher order character may be seen 

in the diagram, which includes arcs in addition to straight line segments. In the 

case of a GVD, the path is the product of retractions 𝑞𝑖 and 𝑞𝑔 on 𝑅, respectively 

𝑟(𝑞𝑖) and 𝑟(𝑞𝑖), and a path between them in 𝑅.   

A Generalized Voronoi Diagram is a Voronoi Diagram where point obstacles are 

replaced by objects, which implies that instead of regions around points, regions 

around objects are taken into account as shown in Figure 3.8. Path planning using 

a generalized Voronoi Diagram is obtained by using the follwing steps: 

1. moving away from the closest point until getting to GVD. 

 2. navigate through the two equidistant towards the target. 

 3. then, from the GVD to the goal. 

r(qi) 

r(qg) 

 (qi) 

(qg) 
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Since the Generalized Voronoi Diagram and Deformation Retract are both 

geometric structures that have the same properties in path planning it implies that 

both the Generalized Voronoi Diagram and Deformation Retract are examples of 

the roadmap approach.  

3.3.2 Visibility Graph 

Visibility graph is a method of inter-visible areas for set points and obstacles in 

the plane. Where vertex are locations and edge are connection between the 

locations. If no obstacle obstructs the line segment drawn to connect the 

nodes/locations, then an edge is drawn between the locations.  

 

Figure 3.9  Visibility graph5 

 

          Figure 3.10  Supporting and separating line segments6 

Using the Euclidean plane, the shortest path can be searched for with the visibility 

graph. Since the visibility graph consists of numerous edges, supporting lines and 

separating lines are used to reduce these numerous edges. A supporting line is a 

tangent to the obstacles where all obstacles belong to the same side of the line 

 
5. https://media.springernature.com/full/springer-static/image/art%3A10.1007%2Fs42154-019-00081 

 

6. https://image.slidesharecdn.com/visibilitygraphs-/visibility-graphs  
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and a separating line is a tangent to two obstacles such that the obstacles belong 

to the opposites side of the line. Both the supporting line and separating line are 

used for the construction of what we called a Reduced visibility graph.    

This implies that most of the lines in the visibility graph that are not part of the 

supporting and separating line will be deleted. This method is hardly used for 

problems with higher dimension (greater than 2D) because the method has a 

problem of optimality or completeness when applied to the high dimension. If a 

robot moves in a 𝒲 = ℝ3 with a fixed translation, the paths generated may no 

longer be the shortest. However, a translating and rotating robot in 𝒲 = ℝ2 with 

𝒞 = ℝ2 can be planned with a visibility graph method but it will be an incomplete 

solution. However, the problem of visibility graphs is that the generated paths 

touch or move too close to the objects’ vertices and the edges. This may expose 

the robot to risk. Therefore, it reduces the chances of using of the method. 

However, Voronoi diagrams was designed to address this issue. 

3.4 Artificial Potential fields 

Researchers have shown that the Artificial Potential Field, APF method is mostly  

used because of its simplicity and mathematical sophistication however, it is good 

for static environment. The concept of the Artificial Potential field (APF) 

approach can be likened to the electric charge concept. In this method, the robot's 

environment (workspace) contains artificial forces, where obstacles are assigned 

with repulsive forces and goal point with the attractive force. The idea involves 

two types of forces; the attractive force generated by the goals and the repulsive 

force generated by the obstacles. 
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(a) Attractive Potential Field 

 

Figure 3.11  Artificial Potential field Method7 

This method is good for implementation in static environments where both 

obstacles and the goal are stationary. However, in real-life scenarios where 

obstacles and environment are dynamic, the Artificial potential fields method is 

faced with local minima problem. Due to this, the Artificial potential field 

approach is not considered to be effective. But It is an efficient algorithm if 

compared to some other approaches, due to its simplicity, high safety and 

mathematical sophistication. However, it can applied for real-time scenarios 

because of low computation time (Sabudin, Omar, & Che Ku Melor, 2016). It is  

also applicable in workspaces greater than 2D. Another great advantage of the 

APF approach is that the robot still maintains its direction towards the goal even 

if there are changes in the environment. It models the robot as a point in a 

potential field U, which is the combination of attractive force used for goal 

attraction and the repulsive force used for obstacle repulsion. The Artificial 

potential field method is a local method and one of the features is iteration.  

3.4.1 Attractive Potential 

The sum of the attractive and repulsive forces is the artificial potential function, 

U. 

  U(q) = Uatt(q) + Urep(q)      (3.10) 

 

7. https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf 

 

(b) Concept of Potential field 
     

Repulsive potential field 

                      (c) 

https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf
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where Uatt(q) is the function that attracts the robot towards the goal and Urep(q) is 

the repulsive function that repels the robot from the obstacle.  

The sums of the two negative gradients vectors are, 

  𝐹⃗𝑎𝑡𝑡(𝑞)  = -∇⃗⃗⃗𝑈att(q)  and      (3.11) 

𝐹⃗𝑟𝑒𝑝  = -∇⃗⃗⃗rep(q)      (3.12) 

These are the attractive and repulsive forces respectively. 

A parabolic function is proportional to the square of the Euclidean distance 

𝒹(𝓆, 𝓆ℊ) to the goal: 

    Uatt(q) = 
1

2
𝜁𝑑2(𝑞, 𝑞𝑔)    (3.13) 

where 𝜁 is a positive scaling factor, a parameter use to scale the effect of the 

attractive potential, whilst 𝑑2(𝑞, 𝑞𝑔) is the distance criteria that is selected as the 

Euclidean distance, 𝒹(𝓆, 𝓆ℊ).  When attracting force ∇𝑈𝑎𝑡𝑡(𝑞) converges 

linearly to zero, the robot approaches the goal 𝑞𝑔 and tends to infinity when d(q, 

qg) moves away from 𝑞𝑔. 

   𝐹⃗𝑎𝑡𝑡(𝑞)  = -∇⃗⃗⃗𝑈att(q)    (3.14) 

         = −𝜁𝑑(𝑞)∇d(q) 

          = −𝜁(𝑞 − qg)    (3.15) 

When there is an increase in velocity as a result of the 𝑞𝑖 being far from the 𝑞𝑔, a 

combination of both quadratic and conic potentials is used. This implies to use 

the quadratic potential near goal and the conical potential farther away.   Then the 

conic potential draws the robot from a far 𝑞𝑔 whilst the quadratic potential also 

attracts the robot when it is close to 𝑞𝑔. The attractive potential is also called a 

conical function: 
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  Uatt(q) = 𝜁𝑑(𝑞, 𝑞𝑔)       (3.16) 

with equations 3.13 and 3.14, the attractive force is constant and indefinite in qg. 

The basic idea of the attractive potential is that: Uatt(q) should increase as q moves 

away from 𝑞𝑔, for instance, potential energy increases as one moves away from 

the surface of the earth. 

3.4.2 Repulsive Potential 

The basic idea of the repulsive potential is to make sure that the robot moves 

away from obstacles. This is achieved by creating a barrier around the obstacles 

to prevent the robot from traversing through, whilst the motion of the robot is 

maintained without any influence when it is far away. Essentially, a robot 𝒜 

should be repelled from obstacles, not letting 𝒜 hit an obstacle and if 𝒜 is far 

from the obstacle, it is not desirable that an obstacle to affect 𝒜’s motion. 

However, a potential function for convex obstacle that satisfies the two 

requirements is: 

  𝑈𝑟𝑒𝑝,𝑖(𝑞) = {

𝜁𝑟,𝑖

2
(

1

𝑑𝑖(𝑞)
−

1

𝑑0,𝑖
) ²   𝑓𝑜𝑟 𝑑𝑖 (𝑞)  ≤  𝑑0,𝑖 

0                           𝑓𝑜𝑟 𝑑𝑖 (𝑞)  >  𝑑0,𝑖

  (3.17) 

Where  𝜁𝑟,𝑖 = the positive scaling factor, 

𝑑𝑖(𝑞) =  𝑚𝑖𝑛𝑞′∈𝐶𝒪𝑑(𝑞,𝑞′) = the minimal distance from obstacles to 𝑞: 

𝑑0,𝑖 is the positive constant for the range at which obstacle influence the robot 

motion (i.e. the distance of influence): Then, as q approaches 𝐶𝒪, 𝑈𝑟𝑒𝑝,𝑖(𝑞) 

approaches ∞.      𝑈𝑟𝑒𝑝(𝑞) =  ∑ 𝑈𝑟𝑒𝑝,𝑖(𝑞)𝑛0
𝑖=1              (3.18) 

The above equation is the sum of the individual potentials associated with the 

convex components of 𝐶𝒪. Figure 3.12 demonstrates how the potential field 
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method is used to solve the motion planning problem.              

                   

(a)Two Obstacles  

                             

 

                                        

 

 

Figure 3. 12  An example of motion planning problem by APF8 

  

3.4.3 Local Minima 

The key shortcoming of the potential field method is the problem of local minima. 

That is, when the attractive potential and the repulsive potential are equal or 

 

8. 16-735, Howie Choset, with slides from Ji Yeong Lee, G. D. Hager and Z Dodds 

(c) Repulsive potential Urep over the obstacles (d) Total potℝ2ential function, 

Utot 

(b) Uatt  is attractive potential towards the goal 

(e) The equipotential contours of the total potential 

and a path that is generated by the following the 

gradient of the combined potential. 

(f) The gradient vector orientation 

over the field 𝐹⃗(𝑐) 
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nearly equal in the opposite way, the potential field is zero, and the robot is 

trapped. Therefore, no path is found and so the process is incomplete. This 

problem of local minima plagues all gradient (gradient of potential field function) 

descent algorithms. Gradient descent algorithm is a method used to optimize the 

problem by first starting from the current configuration, then moving a bit 

towards the opposite direction to the gradient which will produce a configuration 

different from the current configuration (Choset Howie et al., 2005). This is 

continued iteratively until the gradient approaches zero. Then a scalar ∝ (𝑖) is 

used as a determinant factor for the step size at the iteration. This scalar ∝ (𝑖) 

must be set to be smaller than the current distance to obstacle, ∝ (𝑖) should be so 

small that it will prevent robot from collision with obstacle also so as not to 

overshoot the goal that may lead to high time in computation. However, when the 

robot reaches a point where the gradient descent converges, where ∇⃗⃗⃗𝑈(𝑞(𝑖)) =

0 such point  𝑞(𝑖) is a critical point of i. This point can be a minimum, a maximum 

or a saddle point. However, most potential field methods are incomplete, 

however, they are computationally fast. 

3.4.4 Navigation Function 

The navigation function is a potential field that is specified by functions that are 

free of local minima. And a function is referred to as a navigation function if it is 

infinitely differentiable with one minimum only at the goal configuration. This 

implies creating an artificial potential field that will have unique minima, so that 

when the robot moves, it is garranteed that it will reach the goal. 

Definition 3.4  

A function 𝜑: 𝑄𝑓𝑟𝑒𝑒  → [0,1] is called a navigation function if it satisfies the 

following: 

i. 𝜑 is smooth (or at least 𝐶2) 

ii. it has a unique minimum at qg 

iii. it is uniformly maximal on the boundary of the free space 

iv. it is Morse (i.e. if every critical point is isolated). 
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 3.5 Cell decomposition 

The free space 𝒞 can be represented using the cell decomposition method. The 

basic concept of this approach is that giving a point as the robot in a free space 𝒞, 

first subdivide the free space into cells and make sure that the cells are not 

intersecting. Then construct a graph called adjacency graph since the cells have 

an adjacent relationship between them. These cells are the vertices of the graph 

whilst the edges are derived from the cells of common boundary. The planner 

then determines if the start and goal are contained in the cells before searching 

for a path in the adjacency graph. The cell decomposition method has some 

advantages over other methods of path planning because it can be used to achieve 

coverage since every cell has a simple shape that can be covered with a simple 

motion. Exact decomposition and approximate cell decomposition methods are 

the categories of cell decomposition method. 

3.5.1 Exact cell decomposition method 

The basic idea of Exact decomposition is that the shape and size of the cells 

depend on the dimension of the environment with the geometrical structure of the 

objects in the space. Using the dimension of the workspace and the location of 

the obstacle, there exist methods to decompose robot free space.  to subdivide the 

robot's free space by decomposing free space into trapezoidal and triangular cells 

that are bounded with polygons, by drawing a non-overlapping line from each 

node of polygon internally to the vertex outside the boundary.  A good example 

of these methods is the vertical cell decomposition or trapezoidal decomposition 

and also characterized as complete. 
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Figure 3.13  Vertical cell decomposition or trapezoidal decomposition 9 

(Patle, Pandey, Parhi, & Jagadeesh, 2019b) 

3.5.2 Approximate cell decomposition  

This type of cell decomposition is different from the exact cell decomposition 

because it has a recursive approach to subdividing the cells repeatedly until either 

the cells are completely within the obstacle region or an arbitrary limit resolution 

is reached. It is also referred to as quad-tree decomposition since every cell is 

subdivided into four smaller cells repeatedly until a free continuous path is 

discovered (Choset Howie et al., 2005). 

3.6 Sampling-based approach 

The basic concept of this approach is that rather than exhaustively exploring all 

possible spaces, a subset of the space is explored randomly and keeping track of 

the progress. The sampling-based method is very complex to use when the size 

of the configuration space increases. This method can also be described as 

searching for a collision-free path by sampling points. There are two categories 

of sampling-based method: the probabilistic roadmap (PRM) and the single-

query planners (Coenen & Steinbuch, 2012). 

 

9. https://ars.els-cdn.com/content/image/1-s2.0-S2214914718305130-gr3.jpg 
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3.6.1 Probabilistic Roadmap  

A probabilistic roadmap (PRM) is a sample-based concept that also constructs a 

roadmap that results also into a network of edges and nodes in free space. The 

network between the nodes is used to search for a free path between the start and 

goal. Every sample is a node in the roadmap and robot configuration is 

represented by the sample. There are two phases involved in the construction of 

the probabilistic roadmap: the learning phase and the query phase. 

a. Learning phase 

The learning phase is where the configuration space is sampled and confirmed 

that the random configuration exists that is also free from collision, then the 

random configuration is added to the roadmap. Using a predefined distance, the 

random configuration space can be connected to a near sample using a straight 

line. This iteration continues until a predefined size of sampled nodes is achieved. 

b. Query phase 

This is where the connection between the initial configuration and goal 

configuration to the roadmap is done. However, a path search is only successful 

if there is a connection between the roadmap and both the initial and goal 

configurations. Otherwise, the planner returns to the query phase or failure if 

there is no success in trying to improve on the roadmap. 

3.6.2 Single-query planner 

The basic idea of a single-query planner is that a single path planning problem 

can be solved quickly without any pre-processing. The subset of free space 

relevant to the path planning problem is explored instead of representing 

exhaustively the free space of the roadmap. This is done with the use of a tree 

structure. In the probabilistic roadmap method, the random configuration is 

allowed to be added to the roadmap if it belongs to the configuration free space. 

However, in a single-query planner, it can only be added if there is a connection 

to the current configuration. 
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3.7  Search Algorithm 

The space representation methods: Roadmap, APF, Cell Decomposition and 

Sampling-based method discussed earlier have solutions to path planning 

problems that need to be solved. These approaches convert the repeated process 

of searching for a path in free space into a process of searching a graph. The 

collection of nodes and edges is referred to as a graph, and if an edge connects 

two nodes it implies that there is a relationship between these two nodes called 

adjacent relationship.  

This connection between two nodes is characterized by an 'adjacent relation'. 

There are also two types of graph: the 'directed graph' and 'undirected graph'. A 

directed graph is an environment where a robot can move in one direction only 

but if the robot can move in both directions on the edge it is referred to as an 

undirected graph. However, a graph is just like a tree, however, what 

differentiates a graph search from a tree search is that in graph search the track of 

the nodes visited are kept in an explored set whilst a tree search does not take note 

of the visited nodes and this creates unnecessary search loop. More about tree and 

graph can be found in Data structure10. For this work, we are going to consider 

the graph search approach which is in the next chapter. Graph Search can be 

categorized into the followings: Uniformed, Informed and Local search.  

3.7.1 Uninformed search  

Uninformed search is the type of algorithm that allows traversing through the 

graph without any prior information about the goal node and some examples of 

this search are Breadth-First search, Depth-first search and Dijkstra’s algorithm 

(Pathak, Patel, & Rami, 2018). 

a. Breadth-first search  

The idea behind this search is that the source or root node is first traversed 

followed by traversing all the nodes that are directly connected to the source node 

then traversing to the next layer of nodes. Every node is traversed and checked 

 
10. https://www.techgeekbuzz.com  
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whether it is the goal node and if not it repeats the process until the goal node is 

discovered. All nodes of every layer are traversed before the nodes of the next 

layer is traversed, which implies first explore all the nodes of the current layer, 

then move to the next layer.  

 b. Depth-First search  

The concept of the depth-first search is backtracking by a recursive algorithm. It 

traverses the deepest node of the tree. All the nodes are visited until the unvisited 

are  visited then the next frontier is checked before backtracking. 

c. Dijkstra' algorithm  

This is the algorithm to find the shortest path from the root node to every other 

node in the graph. Both BFS, DFS and Dijkstra’s algorithm use the same function 

f(n) that determines the cost of expansion of node 

  f(n) = g(n) 

however, in the case of breadth-first search, g(n) is determined by  First-In-First-

Out, (FIFO) queue whilst in Depth-first search the g(n) is determined by Last-In-

First-Out, (LIFO) for the expansion of the stack. 

3.7.2 Informed Search  

This is a search that involves prior knowledge of the goal node. It requires a 

heuristic cost that will determine which node to explore next. A Euclidean 

distance to the goal node can be used as an example of a heuristic approach. This 

can also be used as a catalyst for a search. However, does not guarantee that the 

path obtained is the shortest. Two categories of informed search are Greedy Best-

First and A* search.  

a. Greedy Best-First search  

In this search, the node closes the goal node is traversed first. The greedy best-

first does not apply g(n) to determine the expansion of nodes, it uses only the 

heuristic to quickly found a path or solution. This search method cares less about 
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the cost of the path but the cost to reach the goal node because even if the path 

length increases it keeps moving on. 

b. A* Search 

This is another type of search for finding the shortest path. A* uses the 

combination of the cost function g(n) to reach a node and the cost function h(n) 

to get from the goal node. i.e. f(n) = g(n) + h(n), (Charalampous, Kostavelis, 

Amanatiadis, & Gasteratos, 2014). 

c. D* Search  

An extension of A* that addresses the problem of expensive re-planning when 

obstacles appear in the path of the robot, is known as D*. Unlike A*, D* starts 

from the goal vertex and can change the costs of parts of the path that include an 

obstacle. This allows D* to re-plan around an obstacle whilst maintaining most 

of the already calculated path. 

3.7.3 Local search  

The uninformed and informed search achieves their search by storing path(s) and 

also keeping a record of the visited node along the path. But local search does not 

bother about paths, instead of multiple paths it uses an existing node and traverse 

only to neighbouring nodes without keeping path(s) in memory. 

3.8 Conclusions 

The representation methods and search algorithms discussed in this chapter are 

purposely for the solution of path planning problems. The basic motion planning 

problem is to find a path for the robot from starting point to target without any 

collision, however, this path planning problem is now extended to path planning 

in a dynamic environment which is in the scope of this work. The focus is on 

motion planning with uncertainty and some constraints. To solve these extensions 

of the path planning problems both the representation method and the search 

algorithm can also be combined.  

 

 

http://en.wikipedia.org/wiki/D*
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Chapter Four  

4.0 Problem Definition and Method Used 

4.1 Introduction 

An environment is complex if there exist obstacles that are dynamic with 

uncertainties like open or closed doors. Most path planning techniques mentioned 

in Chapter Three are not effective in these kinds of environments. For instance, 

the Artificial potential field method results in the problem of local minima and 

this may occur quite often when there are several obstacles in the environment. 

However, among all the path planning techniques the roadmap-based technique 

is more effective and good for implementation because it is concise in 

representation i.e. the entire workspace is not needed to be discretized into small 

cells. A roadmap-based method called Generalized Voronoi Diagram (GVD) is 

applied in this work. Using the GVD, the robot is guaranteed a maximum 

clearance from the obstacles whilst moving through the environment. (Choset & 

Burdick, 1995) and (Choset & Burdick, 1996) works show that the generalized 

Voronoi Diagram has always been applied as a basis for motion planning 

algorithms for a long period. 

Figure 4.1 shows an environment set up with different obstacles at different 

locations, having the robot starting position at the lower-left corner whilst the 

target at the upper right corner. The static obstacles are in pink colour and the 

moving obstacle in blue colour. This is a typical example of the proposed setting 

used for this work.  
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Figure 4.1 Proposed setting of the work. 

However, Figure 4.2 is an example of a complex/dynamic environment where 

tables, walls, bins can be static obstacles and humans, robots are the moving 

obstacles in the workspace.  

 

Figure 4.2 Train station, New York city11  

4.2 Problem Definition 

Assuming the robot is a circular object and with little information of the 

environment where the robot operates, i.e., workspace, 𝒲.  Let 𝒲 be a subset of 

a two-dimensional (2D) plane. And if this workspace 𝒲 contains polygonal 

obstacles, the problem now is,  what is the minimal cost of path generation from 

where the robot is (starting point) to where the robot is asked to go (goal point).  

To generate the path, it is assumed that the workspace contains two categories of 

objects: the obstacles (occupied space) and the free space. The obstacles are 

places where the robot cannot navigate through whilst the free space is where the 

 

11. https://traveltips.usatoday.com/new-york-train-routes 

 

Static 

obstacle

s 

Moving 

obstacle 

https://traveltips.usatoday.com/new-york-train-routes
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robot can navigate. However, in this work, the workspace will be ℝ2, for path 

generation purpose, the robot is modelled as a point, and the  workspace as an 

arbitrary map which implies that the robot is reduced to a point whilst the 

workspace 𝒲, is transformed to configuration space 𝒞 . This idea was presented 

by (Lozano-Perez, 1987). 

The configuration space occupied by the obstacles is referred to as 𝒞obs whilst the 

remaining part of the configuration space is free space where the robot is free to 

move is denoted by 𝒞free (Latombe, 2012). 

𝒞free = 𝒲∖ ⋃  𝒞𝑖=𝑛
𝑖=1 𝑜𝑏𝑠

        (4.1) 

4.3 Voronoi Diagram 

The concept of Voronoi Diagram is to produce line segments that are equidistant 

to all points of the obstacle space whilst the meeting point of the line segments is 

referred to as nodes or vertices. Voronoi Diagram is a concept of computational 

geometry used to find the collision-free path and to build a map. Figures 4.3 

shows a Voronoi Diagram, where a point in the yellow region is closer to another 

point in the same yellow region than any other point in another colour region, and 

Figure 4.4 shows a Generalized Voronoi Diagram of three polygonal obstacles. 

In Voronoi diagram, obstacles are assumed to be points so, VD is a graph with 

points and vertices. However, in a real world obstacles are not points, they are 

objects. Therefore, instead of regions around points, it is regions around objects 

which is GVD as seen in Figure 4.4.  
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Figure 4.3 Example of a Voronoi Diagram12  

 

 

 

Figure 4.4 Voronoi Diagram (Nieuwenhuisen, Kamphuis, Mooijekind, & Overmars, 2004) 

 

Let 𝒹(𝒫𝒾, 𝒫𝒿) be a distance from a point 𝒫𝒾 = (𝓍𝒾, 𝓎𝒾) to  𝒫𝒿 = (𝓍𝑗 , 𝓎𝑗) in a 

plane, then  

Let 𝒫 = { 𝒫1, 𝒫2, … , 𝒫n} ⊂ ℜ2  

be a set of points with the cartesian coordinates (𝓍1, 𝓎1), …, (𝓍n, 𝓎n)  

where 2 < n < ∞ and 𝒫i ≠ 𝒫j  for i ≠ j.  

V (𝒫i) = { 𝓍 ∈ ℜ2 | 𝒹(𝓍, 𝒫i ) ≤ 𝒹(𝓍, 𝒫j ) for j ≠ i}     (4.2) 

We call V (𝒫i) the region Voronoi Diagram of 𝒫i.   

Then, the 𝒫i  of  V (𝒫i) is called the site or the generator of ith Voronoi polygon 

whilst the set 𝒫 = { 𝒫1, 𝒫2, … , 𝒫n} is called the generator set of  Voronoi 

Diagram V .  

𝑉 (𝒫)  = ⋃ v(𝑝𝑖)𝑝𝑖∈𝑝
                 (4.3) 

     =⋃ {𝒳
𝑝𝑖∈𝑝

𝜖 ℜ2 |𝒹(𝒳, 𝒫𝑖 )  ≤  𝒹(𝒳, 𝓆 ) : ∀ 𝓆 𝜖 (𝒫 −  {𝒫𝑖})} 

 

12.  en.wikipedia.org/wiki/Voronoi Diagram 
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= ⋃ [⋂ {𝒳 𝜖 ℜ2 |𝒹(𝒳, 𝒫𝑖 )  ≤  𝒹(𝒳, 𝓆 )}𝓆𝜖𝒫−{𝒫𝑖} ]
pi∈p

 (4.4) 

A Voronoi Diagram is a partitioning of a plane into regions based on the distance 

to points in a specific subset of the plane. The set of points (sites, or generators) 

is specified beforehand, and for each site, there is a corresponding region 

consisting of all points closer to that site than to any other. These regions are 

called Voronoi cells. The Voronoi Diagram of a set of points is dual to its 

Delaunay triangulation. 

 

        

Figure 4.5 Voronoi Diagram V for 9 points and the Delaunay triagulation of the same VD 

Using ‘voronoi’ function in MATLAB 

4.4 Generalized Voronoi Diagram 

Since it is assumed that robot operates in a bounded and connected subset of 

free space 𝒞free, 

therefore, this subset is also bounded by obstacles. 

Mathematically,  for every obstacle space 𝒞obs , the distance function: 

   𝒹𝑖 (𝓍) = 𝑑𝑖𝑠𝑡(𝐶𝑜𝑏𝑠, 𝓍)     (4.5) 

Then the Voronoi region is: 

   𝒱ℛ𝑖 =  {𝑥 ⃒ 𝑑𝒿(𝑥)  ≤   ∀ 𝒿 ≠ 𝒾}   (4.6) 

However, the Generalized Voronoi Diagram is the set of the Voronoi regions. 
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The Generalized Voronoi Diagram GVD basic concept in planning path for 

Robot is to maximize the distance from the robot to the obstacles. It consists of 

a point equidistant to two or more closest obstacles with straight and parabolic 

lines where obstacles are polygons. 

Advantages of  Voronoi Diagram over other methods 

1. The Voronoi Diagram can be computed in 𝑂(𝑛𝑙𝑜𝑔𝑛) time whilst it took 

𝑂(𝑛2) time for the fastest construction of the visibility graph. 

2. Querying of a path in the Voronoi Diagram is faster than the querying in 

visibility graph since it has 𝑂(𝑛) edges. 

3. It is difficult to construct the VD in higher dimensions or with non-

polygonal subjects, approximation algorithms exist. 

4. The VD is not good for heuristic, it is good for a known terrain where robot 

stays away from obstacles 

5. Using robots that have a long sensor range, the Voronoi Diagram method 

has the advantage of execution over other obstacle avoidance techniques. 

In fact, following the Voronoi path results from maximizing the distance 

whilst maintaining equidistant from the surrounding objects, which can be 

done relatively easily with a good range finder.  

4.5 The description of the proposed method 

4.5.1 Part 1. Implementation of the method  

This proposed method combines the GVD and Deformation Retracts. This is 

presented in a graphical user interface GUI. This section describes the new 

method’s implementation. Figure 4.6 shows the GUI with three polygonal 

obstacles in a rectangular wall which is also considered to be an obstacle, with a 

starting point (green colour) and a goal point (red colour).  

                         



57 
 

 

Figure 4.6 Representation of environment configuration 

4.5.2 Roadmap generation 

In 2D planar Euclidean space, when two Voronoi regions meet a Voronoi edge is 

obtained. And when two Voronoi edges meet we have a Voronoi vertex. The 

Voronoi edge can be a straight line or a curved segment. However, the straight 

line is the set of configuration that are closet to the same pair of obstacles’ edges 

(edge/edge)  or the same pair of obstacles’ vertices (vertex/vertex) and a curved 

segment is the set of configurations that are closet to the same pair of an obstacles’ 

edge and a vertex (edge/vertex).  

To construct the Voronoi Diagram, the polygonal obstacles can be viewed as a 

set of line obstacles whilst each line obstacle can be also viewed as a set of point 

obstacles separated by a distance of ℰ. Then to draw the Voronoi Diagram in this 

configuration, the matlab function ‘voronoi()’  divides the polygons into some 

point sites using the parameter ℰ to determine the distance between two 

consecutive point sites. If the distance between these consecutive point sites is 

small, there will be a greater  number of vertices and this would lead to more 

spaced edges. Therefore, lesser ℰ generates a smooth path or map but execution 

time will increase because of the increase in the number of points. Below are 

some examples of different samples of Voronoi Diagrams with different values 

of ℰ. Voronoi diagram for a line site can be generated by considering line as a 

linear array of point sites whilst the Voronoi diagran for polygonal ogject can be 

drawn by the polygon asa set of line segments. 
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Figure 4.7 VD with ℰ = 0.2 

 

                            Figure 4.8 VD with ℰ = 0.5 

 

   

Figure 4.9 VD with  ℰ = 0.8 
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Figure 4.10 VD with  ℰ = 1 

 

 

 

Figure 4.11 with ℰ = 1.5 

 

 

 

Figure 4.12  VD with ℰ = 1.8 
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Figure 4.13 VD with ℰ = 2 

 

In Figures 4.7 to 4.13, it is shown that the higher the ℰ the lesser the number of 

vertices and the lower the computation time for the construction of the Voronoi 

Diagram. It is also shown that there are set of points from the same objects and  

set of points from different objects that generate two different types of edges. 

However, it can also be observed that every Voronoi edge corresponds to two 

points and also a perpendicular bisector of the line to the points. The ℰ = 1 is use 

to compute the Voronoi Diagram in order to reduce the number of vertices, and 

also lower computation time. Figure 4.10 shows Voronoi diagram for a given two 

obstacles configuration with ℰ = 1. This generates two types of Voronoi edges: 

Voronoi edges formed by the same object's point sites and Voronoi edges 

generated by two separate object's point sites. Each Voronoi edge, on the other 

hand, corresponds to two point sites that are perpendicular to the segment 

connecting the points. The goal is to keep the second-category edges i.e. those 

formed from point sites of different objects whilst removing those that are formed 

by point sites of the same objects.     now Then, followed by the task of removing 

those edges that are generated by point sites of the obstacles whilst preserving 

those edges generated from two different objects. Since, Matlab does not directly 

provide information about the edges that relate to point sites. Then, a matlab 

function “drawVoronoi” is used as follows:  

[Voro_Vertex, Voro_Cell] = drawVoronoi ([X_Total_points’ Y_Total_points’]) 
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Voro_Vertex holds an array of all Voronoi vertices, whilst Voro_Cell holds 

information about the edges that correspond to each point site. As a result, the 

information in Voro Cell can be used to separate the Voronoi edges of the second 

category.  Figure 4.14 depicts the second category's separated Voronoi edges in 

green and this is the VD of the given obstacle configuration. 

 

 

Figure 4.14 VD of a given obstacle configuration 

To generate path, the Voronoi diagram for the environment needs to be computed 

to obtain the Voronoi edges which represent the maximum clearance between the 

nearest obstacles. Then, these associated Voronoi edges are followed to the goal. 

This implies that the series of Voronoi edges form the path for the robot to follow. 

However, whenever there is a change in the environment, the Voronoi diagram is 

deformed and the Voronoi edge is updated and new path is generated. 

 

Next is to find the shortest collision-free path from the source to the goal. In some 

scenarios, both the starting point and goal point may not be on the Voronoi 

Diagram, the nearest vertex from the start and goal points are identified and 

referred to as Start* and Goal* respectively. Then, using Dijkstra’ algorithm, the 

shortest path between the Start* and Goal* can be found. The final path from 

Start to Goal will be for instance, the combination of the paths Start (Start that 

do not lies on the VD) to  Start* (Start* that lies on the VD), to Goal* (Goal* 

that lies on the VD), and to Goal (Goal that do not lies on the VD). 

Then, the final path is shown in magenta colour in Figure 4.15. 

 



62 
 

 

Figure 4.15 Final path (magenta) for robot 
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Figure 4.16 Flowchart of VD for the new system 
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In a real life situation, the proposed system would work for two different states; 

the execution and planning simultaneously. The environmental changes would be 

detected by sensing mechanisms and as soon as signals are received execution is 

done by updating the problem without stopping if updating is required. However, 

if no collision is anticipated, that is if the interference is insignificant, it would 

keep executing the path to avoid repetition of action by generating new path each 

time a change occurs. 

Moreso, simulators are needed to drive this theoritical concept since many 

simulators have been implemented in Matlab, for instance (Corke & Khatib, 

2011)  presented a comprehensive set of Matlab and simulink scripts that deals 

with mobile robot navigation; motion planning, motion control, localization and 

mapping. Some of the functions of these simulators is to consider the physical 

characteristics of the robot i.e. size, weight and also speed that would definitely 

have impact on the performance evaluation.  

4.6 Implementation of Deformable Voronoi Diagram 

4.6.1 Deformation process 

In a dynamic environment,  when an obstacle moves or a new obstacle appears, 

a  pre-planned path becomes inapplicable since the environment has changed, 

therefore the environment is deformed and updated to re-plan an alternative path 

for obstacle avoidance, which implies that every path in the configuration space 

must be continuously deformable to another path. This implies generating a new 

roadmap that will dynamically retract to capture the connectivity of the free 

space. The robot continues to follow the pre-planned path as long as it remains 

applicable unless the deformation of the environment due to the obstacle’s 

motion.  

4.6.2 Deformation distance 

The procedure here is inspired by the work of (Yoshida & Kanehiro, 2011) 

Let li be a repulsive distance.  
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If the distance between the robot and the obstacle is less than a repulsion distance 

li, then the deformation occurs. 

Let X and Y be two closest points on the obstacle and the robot and let ln be a 

vector, where l is the distance between point X and point Y and n as the unit 

vector. 

If there is a move from point X which makes l greater than the repulsion distance 

li and let the displacement be △X. 

If △X satisfies the equation below: 

   △X ⋅ n ≥ li – l        4.7 

Then if we use Jacobian matrix Jx at X to show the relationship between the 

small displacement △y and △X in the configuration space as: 

 

          if △X = Jx△y 

  then, Jx△y ⋅ n = △y ⋅ 𝐽𝑋
𝑇𝑛 ≥  𝑙𝑖 − 𝑙      4.8 

 

using, li – l, and without inversing the Jx,   

△y can be derived as: 

   = (li - l) 
𝐽𝑋

𝑇𝑛

‖𝐽𝑋
𝑇𝑛‖

2  

This implies that the robot cannot move beyond the absolute value of △y because 

it will go outside the boundary. 

The diagram below describes the concept of deformation. 

                 

 

 

 

 

 

Figure 4.17 Path Deformation direction due to small displacement to avoid collision  

X Y 
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The obstacle is not continuously moving, and our proposed system does not imply 

re-planning the Voronoi Diagram completely. So once there is interference due 

to environmental changes caused by the movement of the obstacle, the pre-

planned path for the robot to execute will no longer be applicable and the robot 

will be in a state of “waiting time concept”. The problem is updated and check if 

an alternative path can be generated by updating the part of the VD affected by 

the obstacle motion. However, if an alternative path is found which implies that 

the deformation is successful then the alternative path can now be substituted with 

the pre-planned path and then continue the execution on the deformed Voronoi 

Diagram. 
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Figure 4.18 Flowchart for deformable Voronoi Diagram. 
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Figure 4.19 The flowchart of replanning and execution in a real life situation 
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4.7 The Graphical User Interface for the proposed system 

Our new system presents a Graphical User Interface (GUI) that will allow any 

user to interact with the system using images instead of text commands.  The GUI 

shows some graphical environments where some results are displayed. Space, 

where the robot operates, can be described as a Matlab axes object and there are 

push buttons for the user to perform actions required. The GUI which is shown 

in Fig.4.19 has a wide space/environment where the results are displayed which 

is called the workspace (W).  

The GUI comprises four panels: the menu bar, the title bar, the workspace, and 

the path planning panel.  

 

      

Figure 4.19 The main window of the setting. 

(a) The Menu Bar is placed at the top of the window, horizontally displayed 

Menu. Sometimes called a file menu and helps in file handling in some 

cases. 

(b) The title bar comes after the Menu bar on the top of the window: this 

describes the name of the GUI. 

(c) The workspace panel is made up of a wide white space where obstacles 

are created, and the trajectory that is produced from the path planning 

algorithms displayed, also where the simulation are displayed.  

(d) Path planning panel is placed vertically at the left side of the GUI which 

consists of eleven pushbuttons. Each of these pushbuttons is named for a 

Workspace 

Menu Title bar 

Path Planning Panel 
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particular purpose. The first pushbutton 'Draw Obstacle’ is used for 

drawing obstacles, the pushbutton ‘Draw Robot’ is to draw a robot and the 

pushbutton ’Voronoi Path’ is used to compute the GVD as the approach 

for planning the path. Clicking on ‘Robot Final Path' to obtain the shortest 

path for the robot. For each pushbutton on the panel, its label describes it 

is function.  
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Chapter Five 

5.0 Results and Analysis 

5.1 Background 

This chapter discusses the simulation results and the evaluation of the 

performance of the proposed path planner using the simulation results. The 

Generalised Voronoi Diagram is used to extract the free space for a mobile robot 

and the Deformation Retract technique is applied to the extracted free space to 

generate alternative paths. The experimentation was done in MATLAB for 

different environmental settings. The graphical user interface (GUI) is designed 

for the path planning system to enable user-friendliness of the new system. 

This is a path planning algorithm for a mobile robot with 2-dimensional complex 

environments and polygonal obstacles. However, the shortest paths are expected 

to be optimal, factors such as unevenness of the terrain, the path length, and the 

delay in executing the path (due to some constrained routes where robots need to 

navigate through some wave points) may produce shortest paths that do not end 

at the stated target location because it will be at the expence execution time.  

 

5.2 Environments and Algorithms 

To address the path planning problems, maps of the environments are required. 

These environments contain both static/dynamic obstacles, robots, and are 

represented in the GUI window (workspace). Both obstacles, robots and maps are 

created in the workspace and the simulation results are presented. The boundary 

of the workspace and robot are also regarded as obstacles. In this work, to 

compute the Voronoi Diagram using the parameter ℰ, the polygonal objects 

(obstacles) are divided into point sites and the map for all set of points is 

constructed. The distance between successive point sites is controlled by the 
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parameter ℰ. If the value of parameter ℰ is small, say, 0.5 or 0.8, then the number 

of nodes increases and this implies more spaced Voronoi edges.  

The smaller the ℰ, the smoother the path generated at the cost of computation 

time, because the number of points increases. However, if a high value of ℰ is 

employed, such an experiment will generate non-smooth and/or unconnected 

segments, because the points sites considered are not enough. Since the distance 

between the consecutive point sites is based on the parameter ℰ.  

If the ℰ ≤ 2, the smoother the path generated whilst the path generated will be 

non-smooth and/or unconnected segments if the ℰ ≥ 3. 

 

 

Figure 5.1 ℰ =1.5 with smoother path 
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Figure 5.2 ℰ = 5 with non-smooth but connected segments 

 

 

Figure 5.3 ℰ = 10 with non-smooth and unconnected segments 

 

The comparison variations of ℰ and the number of edges and vertices in a static 

environment, i.e., before the deformation of the Voronoi Diagram can be 

illustrated in Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and Table 5.1. 



74 
 

 

 

Figure 5.4 Env1 with ℰ =0.4 

 

 

          Figure 5.5 Env2 with ℰ = 0.8 

 

 

Figure 5.6 Env3 with ℰ = 1.0 
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       Figure 5.7 Env4 with ℰ = 1.5 

 

 

Figure 5.8 Env5 with ℰ = 3 

 

 

Figure 5.9 Env6 with ℰ= 5 
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Table 5.1 Comparing Variations of ℰ and number of edges & vertices before VD deformation   

Environments Number of 

obstacles 

Epsilon, ℰ Number of 

Vertices 

Number of 

Edges 

Env1 3 0.4 1069 1381 

Env2 3 0.8 505 648 

Env3 3 1.0 421 547 

Env4 3 1.5 302 394 

Env5 3 3.0 145 181 

Env6 3 5.0 85 103 

However, the comparison of variations of ℰ and the number of edges and 

vertices in a dynamic environment, i.e., after the deformation of the Voronoi 

Diagram can be illustrated in Figures 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, and 

Table 5.2. 

 

Figure 5.10 Env1 with ℰ = 0.4 

 

     Figure 5.11 Env2 with ℰ = 0.8 
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Figure 5.12 Env3 with ℰ = 1.0 

 

    Figure 5.13 Env4 with ℰ = 1.5 

 

 

Figure 5.14 Env5 with ℰ = 3.0 

 

 

 

     Figure 5.15 Env6 with ℰ = 5.0 
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Table 5. 2 Comparing Variations of ℰ and number of edges & vertices after VD deformation   

Environments Number of 

obstacles 

Epsilon, ℰ Number of 

Vertices 

Number of 

Edges 

Env1 3 0.4 
1088 1405 

Env2 3 0.8 
559 724 

Env3 3 1.0 
417 528 

Env4 3 1.5 
308 405 

          Env5 3 3.0 
152 202 

Env6    3 5.0 
92 121 

 

 Six environments will also be used to make a comparison of the execution time 

for the Voronoi Diagram and the final path before and after deformation. Three 

obstacles are going to be used for these illustrations, one moving obstacle and 

two static obstacles. The first obstacle (i.e., upper left obstacle) is the moving 

obstacle as shown in Figure 5.16.  

Considering the comparison of the execution time for computing the VD and the 

robot final path using six environments before deformation is illustrated in 

Figures 5.16 to 5.21.   

 

Figure 5.16 Env1 with ℰ = 0.4, 

VD (t=6.94s), Final Path (t=26.89s) 

The first obstacle 
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      Figure 5.17 Env2 with ℰ = 0.8, 

       VD (t=2.07s), Final Path (t=7.11s) 

 

 

Figure 5.18 Env3 with ℰ = 1.0, 

VD (t=1.30s), Final Path (t=6.25s) 

 

 

        Figure 5.19 Env4 with ℰ = 1.5,  

              VD (t=0.77s), Final Path (t=1.70s) 
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     Figure 5.20 Env5 with ℰ = 3.0, 

VD (t=0.35s), Final Path (t=1.56s) 

 

 

      Figure 5.21 Env6 with ℰ = 5.0, 

VD (t=0.32s), Final Path (t=0.91s) 

 

This is also demonstrated in Table 5.3. 

Table 5.3 Comparison of the execution time of getting VD and Final path before Deformation 

for six environments 

Environments Number of 

Obstacles 

ℰ Voronoi 

Computation 

Time(s) 

Final Path 

Execution 

time(s) 

Env1 3 0.4 6.94 26.89 

Env2 3 0.8 2.07 7.11 

Env3 3 1.0 1.30 6.25 

Env4 3 1.5 0.77 1.70 
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Env5 3 3.0 0.35 1.56 

Env6 3 5.0 0.32 0.91 

 

However, the comparison of the execution time for computing the VD and the 

robot final path using the first obstacle (upper left 4-sided object) as the moving 

obstacle for the six environments after deformation is illustrated in Figures 5.22 

to 5.27. The Voronoi computation time is proportional to the final path execution 

time. 

 

Figure 5.22 Env1 with ℰ = 0.4, 

VD (t=6.26s), Final Path (t=20.32s) 

 

Figure 5.23 Env2 with ℰ = 0.8, 

VD (t=1.86s), Final Path (t=6.27s) 
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Figure 5.24 Env3 with ℰ = 1.0, 

VD (t=1.83s), Final Path (t=3.82s) 

 
 

 

    Figure 5.25 Env4 with ℰ = 1.5, 

VD (t=0.83s), Final Path (t=1.60s) 

 

 

 

Figure 5.26 Env5 with ℰ = 3.0, 

VD (t=0.31s), Final Path (t=0.74s) 
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         Figure 5.27 Env5 with ℰ = 5.0, 

VD (t=0.17s), Final Path (t=0.70s) 

 

A similar analysis for dynamic environments is described in table 5.4. 

 

Table 5.4 Comparison of the execution time of getting VD and Final path after Deformation 

for six environments 

Environments Number of 

Obstacles 

ℰ VD 

computation 

Time(s) 

Final Path 

Execution  

time(s) 

Env1 3 0.4 6.26 20.32 

Env2 3 0.8 1.86 4.16 

Env3 3 1.0 1.83 3.82 

Env4 3 1.5 0.83 1.60 

Env5 3 3.0 0.31 0.74 

Env6 3 5.0 0.17 0.70 

 

5.3 Path Deformation process 

To simulate the Voronoi Diagram deformation process, a scenario with three 

static and one dynamic obstacle was used. The robot is expected to traverse 

around these obstacles to reach the goal position. The first planned path has been  

generated with the assumption that all four obstacles are static. The point robot 
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executes the first free path planned and successfully reaches the goal point since 

no obstacle moves and there is prior knowledge of the environment. However, in 

the dynamic environment, when the robot tries to execute the pre-planned path, 

interference occurs due to the moving obstacle (in this study the first obstacle). 

Furthermore, after the interference of the obstacle on the Voronoi, the robot 

observes a wait and check state whilst a new Voronoi Diagram is ccomputed and 

an alternative (collision-free) path is generated. Therefore, after the deformation 

of the map, the robot now executes the new path as shown in Figures 5.9, 5.10, 

5.11, 5.12, 5.13 and 5.14. A planning result for the deformation process with the 

upper left object as the moving obstacle.  

 

Figure 5.28 VD without interference (see the distance from the first obstacle and 

the final path, also to the segment in arrow) 

 

                                   

 Figure 5.29 VD with minor interference (the first obstacle has moved away a bit 

from the magenta line and closer to the segment ) 
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Figure 5.30 VD with less interference (the moving obstacle has again moved 

farther away from the final path and closer to segment)                   

   

                 

Figure 5.31 VD with noticeable interference (See the distance traversed by the 

moving obstacle as indicated by the red arrow) 

 

 

Figure 5.32 VD with high interference (the interference has made the final path to 

completely deformed to anther path in the VD as shown by the black arrow and 

also see the distance be the moving obstacle in red arrow )  
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Figure 5.33 VD with higher interference (the final path has deformed due to the 

interference caused by the moving obstacle, see the pre-planned path in blue 

colour whilst the new path in magenta ) 

 

As the obstacle moves into the path of the robot, the distance between it and the 

robot (and hence, the minimum distance between the robot and any obstacle in 

the configuration space) becomes less than the repulsive distance, and the map is 

updated.  The original path in 5.28 becomes inapplicable and as shown in Figure 

5.33 it deforms to avoid the obstacle. This deformation continues as long as there 

is an obstacle. This goes through 5.30, 5.31, and 5.32 towards the goal position 

at 5.33 as the shortest path from the initial position. This process is repeated until 

the goal is reached. The Voronoi Diagram is updated whenever an obstacle moves 

and encounters interference.  

To evaluate the efficiency of the new system, the performance was tested by 

comparing the execution of time spent computing the Voronoi Diagram before 

deformation (VD t1) with the execution time on Voronoi Diagram after 

deformation (VD t2) and it shows that there is no significant difference. Figure 

5.34 uses different ℰ values for various Voronoi Diagram before and during 

deformation.  
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Figure 5.34 The comparison of computation time for VD before and during deformation 

The comparison of the execution time for robot final path in a static environment 

with execution time for robot final path in a dynamic environment is considered. 

This shows that there is not much difference in the time spent on the final path 

before and after the deformation as it is illustrated in Figure 5.35.  
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Figure 5.35 Comparison of execution time before and during deformation on robot final 

path. 

 

 

Figure 5.36 The comparison of VD size before and after deformation 

Figures 5.28 to 5.33 show that the Voronoi Diagram size is almost the same with 

and without deformation. However, it is observe that the number of nodes visited 

between 0.5 and 1 time without deformation is greater than that with deformation, 

but later became almost the same. 

From all the results, it is remarked that the combination of the Voronoi Diagram 

and Deformation Retract can also solve the problem of path planning effectively. 

 

 

 

 

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3

N
U

M
B

ER
 O

F 
V

ER
TI

C
ES

TIME

Voronoi Diagram size with and without 
Deformation

Number of nodes without Deformation Number of nodes with deformation



89 
 

 

Chapter Six 

6.0 Summary and Conclusion 

This study aims to design a planner for a mobile robot in a dynamic environment 

using the fusion of the Voronoi Diagram method and deformation refracts. And 

for this to be achieved, the first task was how to generate the representation of the 

map using the Voronoi Diagram by extracting the safest areas in the environment 

based on parameter ℰ and also to generate the final shortest free path for the given 

obstacle configuration and start and goal points. Then a deformation technique is 

introduced to the extracted free space based on a distance i.e. repulsive distance 

to the obstacle. This is aimed at dealing with the changes in the environment. The 

deformation occurs when the distance between a moving obstacle and a static or 

another moving obstacle is less than the repulsive distance. However, the first 

path generated becomes inapplicable since the initial map is deformed.  This 

proposed method is a roadmap representation that retracts and updates as a 

function in the dynamic environment. It can only be used to plan the path of a 

single robot among dynamic obstacles. 

Finally, a method is developed to allow the robot to reach its goal using the fusion 

of Generalised Voronoi Diagram and Deformation Retracts. 

Our new system offers many advantages over existing methods. Most existing 

methods remove the edges as soon as they are invalidated but our edges retract 

based on the moving obstacle, they are not invalidated quite often. Therefore, the 

system updates and retracts the affected area of the map. Another advantage of 

the new path planner is that it uses the Voronoi Diagram that has the 

characteristics of maximizing  the clearance between the robot and obstacle by 

generating the safest areas in the environment. The new path planning system will 

not only be useful in robotics to help robots in dynamic environments but also in 

other domains such as games theory, virtual reality, computational geometry to 

mention few. 
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The paths generated by the new system are smooth and safe and are free of any 

trap due to the integration of the deformation mechanism on the continuously 

updated map. A graphical user interface is used to implement the algorithm, to 

make the system user friendly. The new system can work also with a different 

type of shaped objects including circle. The algorithm is written in MATLAB, it 

is fast, works for dynamic obstacle, and can find a path if it exists. 

The new method has some disadvantages because there are no assumptions on 

the motion of the moving obstacle, the path planned is likely to be influenced by 

other objects, it cannot also guarantee the optimality of the path generated. If the 

point robot is replaced with a robot with a shape, the new system needs to be 

updated for every robot shape. This system is designed only for point robot it 

cannot be applied to multiple robots. 

The simulation results are produced to evaluate the effectiveness of the new 

system. Several types of environments were designed to evaluate the performance 

of the algorithm, and these simulation results confirmed that the lesser the value 

of ℰ the geater number of vertices, and the smoother the output path but a higher 

cost of computation. Furthermore, the simulation results for a crowded 

environment with static and dynamic obstacles shows that the new system 

performance is effective because the computation cost before and after 

interference is almost the same. 

The simulation results also showed that when the environment with two obstacles 

and another environment with three obstacles tested, and if the ℰ value is the 

same, the new system performs at almost the same cost computation before and 

after the deformation. 

The new method is very efficient because it deals properly with each scenario 

whilst applying the deformation and updating the environment in a timely way. 

In this method, the deformation mechanism is used based on the distance 

observed to obstacle and it enhances the method to address the problem of 

environment changing due to obstacle movement through deformation. This 
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deformation is necessary when avoiding collisions, and based on the continuing 

update of the environment. 

 6.1 Future work 

Deformable Voronoi diagram for robot path planning is a theoritical method that 

needs to be implemented in real life, there is also room for improvement in the 

number of moving obstacles used. Only one moving obstacle is used in this study. 

Though, this approach is promising the path deformation can be made more 

effective by removing extra work whenever there is little risk of anticipation of 

collision. The proposed system needs to be validated with complex robots in 

dynamic simulations. Also, hardware experiments need to be addressed in future 

by using the e-puck robot and also sensors. 
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Appendix A (MATLAB Code) 
 

Main Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Code and Documentation 

% By Tajudeen Adeleke Badmos 

% PhD MERI Path planning for mobile robot 

% Sheffield Hallam University 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%% Clear the data and Figure opened, then call function ‘Main’ 

clear: 

clc 

  

  

main 

 

%% MAIN MATLAB code for main.fig 
function varargout = main(varargin) 
% Begin initialization code 
gui_Singleton = 1: 
gui_State = struct('gui_Name',       mfilename, ... 
    'gui_Singleton',  gui_Singleton, ... 
    'gui_OpeningFcn', @main_OpeningFcn, ... 
    'gui_OutputFcn',  @main_OutputFcn, ... 
    'gui_LayoutFcn',  [] , ... 
    'gui_Callback',   []): 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}): 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}): 
else 
    gui_mainfcn(gui_State, varargin{:}): 
end 

 

end 
% End initialization code 

 

% --- Executes just before main is made visible. 
function main_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to Figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to main (see VARARGIN) 

     
    [handles] = initialize(handles): 

     
    % Choose default command line output for main 
    handles.output = hObject: 

  

    % Update handles structure 
    guidata(hObject, handles): 

  
    % UIWAIT makes main wait for user response (see UIRESUME) 
    % uiwait(handles.Figure1): 
end 

  

% --- Outputs from this function are returned to the command line. 
function varargout = main_OutputFcn(hObject, eventdata, handles) 
    % varargout  cell array for returning output args (see VARARGOUT): 
    % hObject    handle to Figure 
    % eventdata  reserved - to be defined in a future version of MATLAB 
    % handles    structure with handles and user data (see GUIDATA) 

     
    % Get default command line output from handles structure 
    varargout{1} = handles.output:     
end 

  
% --- Executes on button press in pushbuttonDrawObstacle. 
function pushbuttonDrawObstacle_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonDrawObstacle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

     
   handles = drawObstacle(handles): 

    
   if handles.Num_Object > 1 
       % 
       set(handles.pushbuttonVoronoiPath, 'Enable', 'on'): 
       %set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'): 
   end 

     
    % Save the handles structure. 
    guidata(hObject,handles) 
end 

  

  

% --- Executes on button press in pushbuttonDrawRobot. 
function pushbuttonDrawRobot_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonDrawRobot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    handles = drawRobot(handles): 

     

    %  
    if ~isempty(handles.Robot) && ~isempty(handles.Goal) && 

~isempty(handles.Edge_X1) 
        set(handles.pushbuttonRobotFinalPath, 'Enable', 'on'): 
    end  
% Save the handles structure. 
    guidata(hObject,handles) 
end 
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% --- Executes on button press in pushbuttonDrawGoal. 
function pushbuttonDrawGoal_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonDrawGoal (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    handles = drawGoal(handles): 

     
    %  
    if ~isempty(handles.Robot) && ~isempty(handles.Goal) && 

~isempty(handles.Edge_X1) 
        set(handles.pushbuttonRobotFinalPath, 'Enable', 'on'): 
    end    
    % Save the handles structure. 
    guidata(hObject,handles) 
end 

  
% --- Executes on button press in pushbuttonVoronoiPath. 
function pushbuttonVoronoiPath_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonVoronoiPath (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    X = ('MenuStart: Voronoi '): 
    disp(X):     
    tstart = tic: 

     
    % create point obstacles at the edges 
    [handles]= createObstaclePoints(handles): 
    [handles]= drawVoronoi(handles): 

     
    X = ['MenuEnd: Voronoi time= ', num2str(toc(tstart)) ]: 
    disp(X): 

     
    set(handles.pushbuttonDrawRobot, 'Enable', 'on'): 
    set(handles.pushbuttonDrawGoal, 'Enable', 'on'): 
    %  
    if ~isempty(handles.Robot) && ~isempty(handles.Goal) && 

~isempty(handles.Edge_X1)         
        set(handles.pushbuttonRobotFinalPath, 'Enable', 'on'):         
    end    

     
    set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'on'): 
    set(handles.pushbuttonShowEpsilon, 'Enable', 'on'): 

     

    handles.radiobuttonLastObstacle.Value = 0: 
    set(handles.radiobuttonLastObstacle, 'Enable', 'off'): 
    handles.radiobuttonScreen.Value = 1: 

        

     
    % Save the handles structure. 
    guidata(hObject,handles) 
end 

  
% --- Executes on button press in pushbuttonRobotFinalPath. 
function pushbuttonRobotFinalPath_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonRobotFinalPath (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    X = ('MenuStart: Robot Final Path '): 



111 
 

    disp(X): 
    tstart = tic: 

     
    handles = drawRobotFinalPath(handles):    

     
    X = ['MenuEnd: Robot Final Path time= ', num2str(toc(tstart)) ]: 
    disp(X): 
    %  
    if ~isempty(handles.Path) 
        set(handles.pushbuttonBoundaryRobot, 'Enable', 'on'): 
    end   

     
    % Save the handles structure. 
    guidata(hObject,handles) 
end 

  
% --- Executes on button press in pushbuttonBoundaryRobot. 
function pushbuttonBoundaryRobot_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonBoundaryRobot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% hObject    handle to pushbuttonDrawGoal (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    handles = addBoundaryRobot(handles): 

     
    % Save the handles structure. 
    guidata(hObject,handles) 
end 

  
% --- Executes on button press in pushbuttonReset. 
function pushbuttonReset_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonReset (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

     
    if handles.radiobuttonLastObstacle.Value == 1 
        handles = removeObstacle(handles): 
    else 
        handles = resetWorkspace(handles): 
    end 

     

     
    if handles.Num_Object < 2 
        % 
        set(handles.pushbuttonVoronoiPath, 'Enable', 'off'): 
        %set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'): 
    end 

       
    % Save the handles structure. 
    guidata(hObject,handles) 
end 

  

  
% --- Executes on button press in pushbuttonMoveFirstObstacle. 
function pushbuttonMoveFirstObstacle_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonMoveFirstObstacle (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Save the handles structure. 
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    set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'off'): 

     
    X = ('MenuStart: Move First Obstacle'): 
    disp(X):     
    tstart = tic: 

     
    handles = movingFirstObstacle(handles): 

     

    X = ['MenuEnd: Move First Obstacle time= ', num2str(toc(tstart)) ]: 
    disp(X): 

     
    % 
    set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'on'): 

     
    guidata(hObject,handles) 

     
end 

  

  
% --- Executes on button press in pushbuttonWriteSimulationData. 
function pushbuttonWriteSimulationData_Callback(hObject, eventdata, 

handles) 
% hObject    handle to pushbuttonWriteSimulationData (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
%     T_Edges = table(handles.Edge_X1', handles.Edge_Y1', handles.Edge_X2', 

handles.Edge_Y2', 'VariableNames',{'X1','Y1','X2','Y2'}): 
%     writetable(T_Edges, 'T_Edges.xlsx') 

     

    Vertex_Cord = table(handles.Vertex_Cord(:,1), handles.Vertex_Cord(:,1), 

'VariableNames',{'X','Y'}): 
    writetable(Vertex_Cord, '_Vertex_Cord.xlsx') 

     
    %calculate voronoi path distance 
    handles.VoronoiPath_distance = 0: 
    for i=1:size(handles.VoronoiPath,1) 
        a = handles.VoronoiPath(i,1:2): 
        b = handles.VoronoiPath(i,3:4): 
        d = norm(b-a): 
        handles.VoronoiPath_distance = handles.VoronoiPath_distance + d: 
    end 
    TVoronoiPath = 

table(handles.VoronoiPath(:,1),handles.VoronoiPath(:,2),handles.VoronoiPath

(:,3),handles.VoronoiPath(:,4),'VariableNames',{'X1','Y1','X2','Y2'}): 
    writetable(TVoronoiPath, '_VoronoiPath.xlsx') 

     
    %calculate robot path distance 
    handles.RobotPath_distance = 0: 
    for i=1:size(handles.RobotPath,1) 
        a = handles.RobotPath(i,1:2): 
        b = handles.RobotPath(i,3:4): 
        d = norm(b-a): 
        handles.RobotPath_distance = handles.RobotPath_distance + d: 
    end 

     
    TRobotPath = 

table(handles.RobotPath(:,1),handles.RobotPath(:,2),handles.RobotPath(:,3),

handles.RobotPath(:,4),'VariableNames',{'X1','Y1','X2','Y2'}): 
    writetable(TRobotPath, '_RobotPath.xlsx') 

     
    % 
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    Edges_N = size(handles.VoronoiPath,1): 
    Vertex_N = size(handles.Vertex_Cord,1): 
    Robot_N = size(handles.RobotPath,1): 
    T = table(handles.Epsilon, Vertex_N, Edges_N, 

handles.VoronoiPath_distance, Robot_N, handles.RobotPath_distance, ... 
        'VariableNames',{'Epsilon', 'Vertex_No','Edgdes_No', 

'VoronoiPath_D', 'Robot_Edges_No', 'RobotPath_D'}): 
    writetable(T, '_Summary.xlsx') 

     

     
end 

  

  
% --- Executes on button press in pushbuttonShowEpsilon. 
function pushbuttonShowEpsilon_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbuttonShowEpsilon (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    plot(handles.X_Total_points, handles.Y_Total_points, 'r.'): 
    plot(handles.Voro_Vertex(:,1), handles.Voro_Vertex(:,2), 'r.'): 
end 

 

 

 

%% Initializing 

function [handles] = initialize(handles) 

     
    handles.W = [0 100 0 100]: 
    handles.D = 2: 
    axis(handles.W): 
    handles.i = 0: 
    handles.Cx = 0: 
    handles.Cy = 1: 
    handles.xstep = 2: 
    handles.ystep = 2: 

     
    handles.X1 = []: 
    handles.X1{1} = []: 

     
    handles.Poly = []: 
    handles.Poly{1} = []: 
    handles.PPoly = []: 
    handles.PPoly{1} = []:     
    handles.showCircleRegion = 0: 
    handles.PolyCircle = []: 
    handles.PolyCircle{1} = []:    
    handles.PPolyC = []: 
    handles.PPolyC{1} =[]: 

     

    handles.Epsilon = 1: 
    handles.Num_Object=0: 

     
    handles.isBoundary = 0: 

     
    handles.Robot = []: 
    handles.Goal = []: 
    handles.DynObstacle = []: 
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    handles.AllowMultipleRobot = 0: 
    handles.AllowMultipleGoal = 0: 
    handles.AllowMultipleDynObstacle = 0: 

     
    %Total points 
    handles.X_Total_points = 0: 
    handles.Y_Total_points = 0: 
    handles.All_cells_Number = 0: 
    handles.Cell_start = 1: 

     
    % 
    handles.Voro_Vertex = []: 
    handles.Voro_Cell = []: 
    handles.Temp_Edge = []: 
    handles.Path = []: 
    handles.Vertex_Cord = []: 

  
    handles.Edge_X1 = []: 
    handles.Edge_X2 = []: 
    handles.Edge_Y1 = []: 
    handles.Edge_Y2 = []: 

     

    handles.VoronoiPath = []: 
    handles.RobotPath = []: 
    handles.VoronoiPath_distance = 0: 
    handles.RobotPath_distance = 0: 
    % 
    hold on: 

     
    %  
    set(handles.pushbuttonDrawRobot, 'Enable', 'on'): 
    set(handles.pushbuttonDrawGoal, 'Enable', 'on'): 
    set(handles.pushbuttonVoronoiPath, 'Enable', 'off'): 
    set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'): 
    set(handles.pushbuttonBoundaryRobot, 'Enable', 'off'): 

     

     

    set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'off'): 
    set(handles.pushbuttonShowEpsilon, 'Enable', 'off'): 

     
    % 
    handles.radiobuttonLastObstacle.Value = 1: 
    set(handles.radiobuttonLastObstacle, 'Enable', 'on'): 
    handles.radiobuttonScreen.Value = 0: 

     

end 

 

%% Drawing Obstacles 

function [handles] = drawObstacle(handles) 
%DRAW_OBSTACLE Summary of this function goes here 
%   Detailed explanation goes here 
     % get points 
    p = 1: 
    x=[]: 
    y=[]: 
    button = 1: 
    while button == 1 
        [px, py, button] = ginput(1): 
        if button == 1 && p < 31 
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            x(p)=px: %point(1,1): 
            y(p)=py: %point(1,2): 
            if p > 1 
                line([x(p-1), x(p)], [y(p-1), y(p)], 'Color', 'blue'): 
            end 
            p = p+1: 
        else 
            k=0: 
        end 
    end 

    
    [x,y]=fixPoints(x,y): 

     
    % patch(x,y,'b'): 
    [handles] = getPoints(handles,[x',y'],1): 
end 

 

 

 

%% Drawing Robot (point) 

function [handles] = drawRobot(handles) 
%DRAW_ROBOT Summary of this function goes here 
%   Detailed explanation goes here 
    if isempty(handles.Robot) || handles.AllowMultipleRobot == 1  
        %  
        %Code for taking handles.Robot and End point as input 
        handles.Robot = ginput(1): 
        plot(handles.Robot(1),handles.Robot(2),'--

go','MarkerSize',10,'MarkerFaceColor','g'): 
        % drawnow:  
    end 
end 

 

%% Drawing the goal 

function [handles] = drawGoal(handles) 
%DRAW_GOAL Summary of this function goes here 
%   Detailed explanation goes here 
    if isempty(handles.Goal) || handles.AllowMultipleGoal == 1  
        handles.Goal  = ginput(1): 
        plot(handles.Goal(1),handles.Goal(2),'--

ro','MarkerSize',10,'MarkerFaceColor','r'): 
        %drawnow: 
    end 
end 

 

%% Drawing the Voronoi Diagram 

function [handles]= drawVoronoi(handles) 
%DRAWVORONOI Summary of this function goes here 
%   Detailed explanation goes here 
%set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'): 
    % timetimer 
    tstart = tic: 

     

    % handles.Num_Object=length(handles.X1): 
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    handles.Num_Object = handles.i: 

     
    %Getting Parameters of Voronoi Diagram 
    [handles.Voro_Vertex, handles.Voro_Cell] = 

voronoin([handles.X_Total_points' handles.Y_Total_points']): 

     
    k=1: 
    temp=0: 
    for i=1:length(handles.All_cells_Number) 
        L=length(handles.Voro_Cell{i}): 
      for j=1:L 
          a=handles.Voro_Cell{i}(j): 
          if(j==L) 
              b=handles.Voro_Cell{i}(1): 
          else 
              b=handles.Voro_Cell{i}(j+1): 
          end 
          for l=1:handles.Num_Object 
              if(temp==1) 
                  temp=0: 
                  break: 
              end 
              if (l==handles.All_cells_Number(i)) 
                  continue: 
              end 
              for m=handles.Cell_start(l):handles.Cell_start(l+1)-1 
                  if((~isempty(find(handles.Voro_Cell{m}==a, 1))) && 

(~isempty(find(handles.Voro_Cell{m}==b, 1)))) 
                      handles.Temp_Edge(k,:)=[a b]: 
                      k=k+1: 
                      temp=1: 
                      break: 
                  end 
              end      
          end 
      end     
    end 

  
    handles.Temp_Edge=unique(handles.Temp_Edge,'rows'): 

  
    for i=1:length(handles.Temp_Edge) 
        handles.Edge_X1(i)=handles.Voro_Vertex(handles.Temp_Edge(i,1),1): 
        handles.Edge_X2(i)=handles.Voro_Vertex(handles.Temp_Edge(i,2),1): 
        handles.Edge_Y1(i)=handles.Voro_Vertex(handles.Temp_Edge(i,1),2): 
        handles.Edge_Y2(i)=handles.Voro_Vertex(handles.Temp_Edge(i,2),2): 
    end 

     

    % draw voronoi 
    [g1, g2] = inObstacle(handles): 
    for i=1:length(g1) 
        handles.Edge_X1(i)= g1(i,1): 
        handles.Edge_X2(i)= g2(i,1): 
        handles.Edge_Y1(i)= g1(i,2): 
        handles.Edge_Y2(i)= g2(i,2): 
        plot([handles.Edge_X1(i) handles.Edge_X2(i)],[handles.Edge_Y1(i) 

handles.Edge_Y2(i)],'color','g','LineWidth',2): 

         
        handles.VoronoiPath(i,:) = [[handles.Edge_X1(i) 

handles.Edge_Y1(i)],[handles.Edge_X2(i) handles.Edge_Y2(i)]]: 
    end   

     
     X = ['Voronoi time ', num2str(toc(tstart)) ]: 
     disp(X): 
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end 

 

%% Drawing the Collision free path for robot 

function [handles] = drawRobotFinalPath(handles) 
%DRAWROBOTFINALPATH Summary of this function goes here 
%   Detailed explanation goes here 
    tstart =tic: 

  
    Vertex = unique(handles.Temp_Edge): 
    N = length(Vertex): 
    M = length(handles.Temp_Edge): 

  
    for i=1:N 
        handles.Vertex_Cord(i,:)= handles.Voro_Vertex(Vertex(i),:): 
        Robot_distance(i)= norm(handles.Robot-handles.Vertex_Cord(i,:)): 
        Goal_distance(i)= norm(handles.Goal-handles.Vertex_Cord(i,:)): 
    end 

  

  
    Voro_Graph = inf*ones(N): 

  
    %Figure: 
%     axis([0 100 0 100]): 
%     hold on: 

  
    for i = 1:M 
        a= find(Vertex==handles.Temp_Edge(i,1)): 
        b= find(Vertex==handles.Temp_Edge(i,2)): 
        Distance = norm(handles.Vertex_Cord(a,:)-handles.Vertex_Cord(b,:)): 
        Voro_Graph(a,b)=Distance: 
        Voro_Graph(b,a)=Distance: 
    end 

  
    [~, Index_Robot]= min(Robot_distance): 
    [~, Index_Goal]= min(Goal_distance): 

     

    [handles.Path totalCost] = dijkstra(Voro_Graph,Index_Robot,Index_Goal): 

     
    k = 0: 
    % draw final path 
    x=[handles.Robot(1) handles.Vertex_Cord(handles.Path(1),1)]: 
    y=[handles.Robot(2) handles.Vertex_Cord(handles.Path(1),2)]: 
    k=k+1: 
    handles.RobotPath(k,:) = [[x(1) y(1)],[x(2) y(2)]]:  
    plot(x,y,'-','color','m','LineWidth',3):     
    drawnow: 

     
    for i=1:length(handles.Path)-1 
        x=[handles.Vertex_Cord(handles.Path(i),1) 

handles.Vertex_Cord(handles.Path(i+1),1)]: 
        y=[handles.Vertex_Cord(handles.Path(i),2) 

handles.Vertex_Cord(handles.Path(i+1),2)]: 
        plot(x,y,'-','color','m','LineWidth',3): 
        k=k+1: 
        handles.RobotPath(k,:) = [[x(1) y(1)],[x(2) y(2)]]:  
        drawnow: 
        hold on: 
    end 

     

    x=[handles.Vertex_Cord(handles.Path(i),1) handles.Goal(1)]: 
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    y=[handles.Vertex_Cord(handles.Path(i),2) handles.Goal(2)]: 
    plot(x,y,'-','color','m','LineWidth',3): 
    k=k+1: 
    handles.RobotPath(k,:) = [[x(1) y(1)],[x(2) y(2)]]:  
    drawnow: 

     
    X = ['Robot final path time ', num2str(toc(tstart)) ]: 
    disp(X): 

      
end 

 

%% Moving Obstacle 

function [handles] = movingFirstObstacle(handles) 
%MOVINGFIRSTOBSTACLE Summary of this function goes here 
%   Detailed explanation goes here 
    % get an obstacle 
    tstart = tic: 

     
    p = 1:     
    poly1 = handles.Poly{p}: 
    h1 = handles.PPoly{p}: 

     
    % up 
    x = handles.Cx: 
    y = handles.Cy: 
%     handles.xstep=2: 
%     handles.ystep=2: 

     

    moves =1: 
    for k=1:moves 
        x = x + handles.xstep: 
        y = y + handles.ystep: 

         
        poly1m = translate(poly1,x,y): 

         
        [handles, poly1m, h1] = redrawObstacle(handles, h1, poly1m, p):  

                 
        inOO = 0: 

         
        % check if intercept with obstacles 
        for i=1:handles.Num_Object-1 
            if p ~= i 
                poly2 = handles.Poly{i}: 
                % check if in or out                 
                [inF, inP, out] = collides(poly1m, poly2): 
                if out                     
                    polyB = handles.Poly{handles.Num_Object}: 
                    [inF2, inP2, out2] = collides(poly1m, polyB): 
                    if inF2 
                       %[handles, poly1, h1]= 

moveObstacleAndRedraw(handles, h1, poly1m, p): 
                        inOO=0: 
                    else 
                        inOO =1: 
                        [poly1m,handles.xstep,handles.ystep] = 

obstacleCollision(poly1m,x,y,handles.xstep,handles.ystep):                        
                        break: 
                    end 
                else 
                    inOO =1: 
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                    [poly1m,handles.xstep,handles.ystep] = 

obstacleCollision(poly1m,x,y,handles.xstep,handles.ystep): 
                    break: 
                end 
            end 
        end 

         
%         if inOO == 0 
            [handles, poly1, h1]= moveObstacleAndRedraw(handles, h1, 

poly1m, p): 
%         end 
        if inOO == 1 
            handles.xstep = handles.xstep * -1: 
            handles.ystep = handles.ystep * -1: 
        end 
    end 
    % 
    handles.PPoly{p} = h1: 
    handles.Poly{p} = poly1: 

     
    X = ['Move First Obstacle time ', num2str(toc(tstart)) ]: 
    disp(X): 

     

end 

  
function [poly1,xstep,ystep] = obstacleCollision(poly1,x,y,xstep,ystep) 
    poly1 = translate(poly1,(x.*-2),(y.*-2)): 
%     [x1,y1]= changeDirection(x,y): 
%     xstep = xstep * x1: 
%     ystep = ystep * y1: 

     

  
end 

  
function [handles, poly1, h1] = redrawObstacle(handles, h1, poly1m, p) 
    delete(h1): 

     
    % move 
    poly1 = poly1m: 

  
    %  
    if length(handles.PolyCircle) < p || isempty(handles.PolyCircle{p}) 
       h1 = plot(poly1): 
    else 

         

        points = poly1.Vertices: 
        [cx, cy]= getCirclePoints(points): 
        handles.PolyCircle{p} = polyshape(cx,cy): 

         
        if handles.showCircleRegion == 1 
            delete(handles.PPolyC{p}): 
            handles.PPolyC{p} = plot(poly1): 
        end 

         
        h1 = plot(handles.PolyCircle{p}): 
    end 

  
    hold on 
    drawnow 
end 
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function [handles, poly1, h1]= moveObstacleAndRedraw(handles, h1, poly1m, 

p) 
    [handles, poly1, h1] = redrawObstacle(handles, h1, poly1m, p): 

  
    % redraw voronoi 
    [handles]=redraw_voronoi(handles, poly1, p): 

  
    %redraw final path 
    [handles]=redrawRobotFinalPath(handles): 
end 

  
function [handles]= redraw_voronoi(handles, poly1, p) 
    hVor = findobj('type','Line','color','g','LineWidth',2): 

  
    handles.X1{p} = []: 
    handles.Poly{p} = poly1:     
    handles.X1{p} = poly1.Vertices: 

     
    % initialize for new voronoi 

     
    %Total points 

      
    handles.X_Total_points = 0: 
    handles.Y_Total_points = 0: 
    handles.All_cells_Number = 0: 
    handles.Cell_start = 1: 

     
    % 
    handles.Voro_Vertex = []: 
    handles.Voro_Cell = []: 
    handles.Temp_Edge = []: 
    handles.Path = []: 

  
    handles.Edge_X1 = []: 
    handles.Edge_X2 = []: 
    handles.Edge_Y1 = []: 
    handles.Edge_Y2 = []: 

     

    for obs_i=1:handles.Num_Object 
        [handles]= setObstaclePoints(handles, obs_i): 
    end 

     
    [handles]= drawVoronoi(handles): 

     
    %pause(2): 
    for h=1:length(hVor) 
        delete(hVor(h)) 
    end 

     
%     drawnow() 
%     hold on 
end 

  

function [handles] = redrawRobotFinalPath(handles) 
    hVor = findobj('type','Line','color','m','LineWidth',3): 

  
%     [handles] = drawRobotFinalPath(handles): 

     
    for h=1:length(hVor) 
        delete(hVor(h)) 
    end 
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    [handles] = drawRobotFinalPath(handles): 

     
    drawnow 
    hold on      
end 

 

%% Reset workspace 

function [handles] = resetWorkspace(handles) 
%RESETWORKSPACE Summary of this function goes here 
%   Detailed explanation goes here 
    hold off 
    cla(handles.axesMap): 

     
    [handles] = initialize(handles): 
end 
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Appendix B: How to use the GUI 

  

We have made some screenshots below from our proposed algorithm on how to 

use the GUI for computing the GVD. 

When the program starts, a window pops up as in fig.4.20  

 

Figure 7. 1 GUI window 

Push the “Draw Obstacle” to draw the obstacle whilst using the left mouse button 

to set the vertices of each obstacle in the workspace (the white space in the GUI), 

and using the right mouse button to end the process. Also, do the same procedure 

to draw the robot and to draw the goal by clicking the pushbutton “Draw Robot” 

and “Draw Goal” respectively. To compute the GVD, click on the pushbutton 

“Voronoi Path”. 

To generate the shortest collision-free path, click the pushbutton “Robot Final 

Path”, then the path is shown from the robot to the goal. The pushbutton “Add 

Boundary Robot” can be used to describe the motion of a robot or an obstacle 

coming towards the configuration from a different configuration. The pushbutton 

“Reset” to start another set application on the GUI. To show the motion of a 

moving obstacle, push the button “Move First Obstacle” and lastly, the 

pushbutton “Write Simulation Data” is to generate some data on an excel sheet. 
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Figure 7.2 Using GUI buttons 

 

 

Figure 7.3 GUI buttons for  “Add Boundary Robot” 
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Appendix C: Description of the Matlab Files 

  

1. startUp 

a. clears the environment variables for a clean start 

b. calls the main program 

2. main 

a. Creates the GUI 

b. Calls the initialize function.  

c. Open/display the GUI 

d. Controls and handles the GUI events, such as when buttons (Draw 

Obstacle) are clicked. 

e. Can call the following functions when their buttons are enabled 

i. drawObstacle 

ii. drawVoronoi 

iii. drawRobot 

iv. drawGoal 

v. drawRobotFinalPath 

vi. addBoundaryRobot 

vii. resetWorkspace 

viii. movingFirstObstacle 

3. Initialize 

a. Initializes the GUI and program global variables  

b. Set Epsilon to determine point obstacle size 

c. Enables and disables GUI controls 

d. Disabled all buttons except the Draw Obstacle, Draw Goal and Draw 

Robot 

 

4. drawObstacle 

a. Use to add one obstacle to the workspace.  

b. Click on the |Draw Obstacle| button. 

c. Obstacles are drawn using the mouse left click on the workspace. 
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d. Mouse right-click ends obstacle drawing and connect the last point 

to the first point to form a solid polygon shape. For example to draw 

a rectangle left-click the four (4) points and end with a right-click to 

close the shape. 

e. Repeat the above step to add more obstacles to the workspace. 

f. Calls fixPoints functions 

g. Calls getPoints functions 

h. After adding more than one obstacle to the workspace, the button 

command to draw Voronoi is enabled. 

5. fixPoints 

a. makes sure the points are not too smooth. Smooth point prevents 

epsilon division of edges. 

6. getPoints 

a. Removes the obstacle drawing cursor lines. 

b. Draw the obstacle shape and fill it with a solid colour. 

c. Calls the setObstaclePoints function 

7. setObstaclePoints 

a. Convert the obstacle edges to point obstacles using the Epsilon with 

the default value of 1. 

b. Stores the points with other obstacles points. 

8. drawVoronoi 

a. Draws the boundary obstacle if not drawn already. 

b. Call the MATLAB in-built voronoin function with all the point 

obstacles.  

c. Store the return value of voronoin, possible Voronoi vertices and 

cells for the point obstacles. 

d. Find the valid Voronoi diagram for each obstacle polygon from the  

obstacles points that areVoronoi vertices. 

e. Call inObstacle function to fix missing edges. 

f. Draws connecting edges of the Voronoi in green colour. 
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g. Enable the |Draw Robot|, |Draw Goal| and |Move First Obstacle|  

h. Enable the |Robot Final Path| if Robot, Goal and Voronoi are in 

place. 

9. inObstacle 

a. Removes all connecting Voronoi points in obstacles. 

b. Find unique connecting edges representing the Voronoi of the 

obstacles on the workspace. 

10.   drawRobot 

a. Use to draw the robot on the Workspace 

b. Click on the |Draw Robot| to add the robot to the Workspace. 

c. Click anywhere on the workspace using the left mouse button. 

d. A point dot of green colour will be added to the Workspace. 

e. Only one robot is allowed 

f. Enable the |Robot Final Path| if Robot, Goal and Voronoi are in 

place. 

11.   drawGoal 

a. Use to draw the goal or target on the Workspace 

b. Click on the |Draw Goal| to add the goal to the workspace. 

c. Click anywhere on the workspace using the left mouse button. 

d. A point dot of red colour will be added to the workspace. 

e. Only one goal (destination) allowed. 

f. Enable the |Robot Final Path| if Robot, Goal and Voronoi are in 

place. 

12. drawRobotFinalPath 

a. Use to calculate and draw the shortest feasible distance between 

robot and goal. 

b. Calculate distance between each vertex and Robot, dRi 

c. Calculate distance between each vertex and Goal, dGi 

d. Calculate distance between each vertex to each other, dVi and stored 

in a square matrix. 
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e. Find the minimum distance dRi, dGi 

f. Call a utility function Dijkstra to get the shortest path, using all the 

values of dVi and the minimum values of dRi and dGi. 

g. Draws the shortest distance or path in magenta colour. 

h. Enable the |Add Boundary Robot| button. 

13. addBoundaryRobot 

a. Use to calculate and draw the shortest distance from the boundary 

robot and the goal parallel to the boundary. 

b. Click on the |Add Boundary Robot| button. 

c. Click anywhere on the workspace outside the boundary of the 

Voronoi Diagram. 

d. Add a new Robot. 

e. Calculate distance between each vertex and Robot, dR2i 

f. Calculate distance between each vertex and Goal, dGi 

g. Get the boundary vertices. 

h. Calculate distance between each boundary vertex to each other, dVi 

and stored in a square matrix. 

i. Find the minimum distance dR2i, dGi 

j. Call a utility function Dijkstra to get the shortest path, using all the 

values of dVi and the minimum values of dR2i and dGi. 

k. Compute a parallel path to the shortest distance. 

l. Draws the parallel shortest distance or path in red colour 

m.  

14. resetWorkspace 

a. Use to rest the workspace to the initial state. 

b. Click on the |Reset| button. 

c. All the variables are cleared and reinitialized. 

15. movingFirstObstacle 

a. Use to calculate and redraw the Voronoi path when the first obstacle 

becomes dynamic. 
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b. Click on the | Move First Obstacle | button. 

c. Disable the | Move First Obstacle | button. 

d. Set the step value for the x and y direction distance, mstep. 

e. Set the number of steps the first obstacle will take before stopping, 

default = 10. 

f. Get the first obstacle polygon. 

g. Move the obstacle in a new x and y-direction 

h. Check if the new position intercepts any other obstacle 

i. And if Yes and if the minimum distance between the robot and the 

obstacle is less than the repulsive distance 

j. Then apply deformation 

k. If a new path found 

l. Delete the old position and redraw at a new position. 

m. And change direction and move in the new direction. 

n. Repeat “step f” to i, for the default number of steps. 

 




