
Deformable Voronoi diagrams for robot path planning in dynamic environments

BADMOS, Tajudeen

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/29439/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/29439/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Deformable Voronoi Diagrams for Robot Path Planning

in Dynamic Environments

Tajudeen Adeleke Badmos

A thesis submitted in partial fulfilment of the requirements of Sheffield Hallam

University for the degree of Doctor of Philosophy.

April 2021

ii

Declaration

I hereby declare that:

1. I have not been enrolled for another award of the University, or other

academic or professional organization, whilst undertaking my research

degree.

2. None of the material contained in the thesis has been used in any other

submission for an academic award.

3. I am aware of and understand the university’s policy on plagiarism and

certify that this thesis is my own work. The use of all published or other

sources of material consulted have been properly and fully

acknowledged.

4. The work undertaken towards the thesis has been conducted in

accordance with the SHU Principles of Integrity in Research and the

SHU Research Ethics Policy.

5. The word count of the thesis is 26,858

Name Deformable Voronoi Diagrams for Robot Path

Planning in Dynamic Environments

Date April 2021

Award PhD

Faculty Industry and Innovation Research Institute,

MERI.

Director of Studies Dr Lyuba Alboul

iii

Acknowledgement

My gratitude first goes to my creator almighty Allah for seeing me through this

research work leading to this thesis. Utmost thanks to my supervisory team led

by my Director of Studies Lyuba Alboul PhD, the memories of late Prof Jacques

Penders who passed away after my viva, and David O’Sullivan, but specifically

Dr Lyuba Alboul who has been a motivating mentor and I offer her my deepest

thanks. She provides an excellent environment and supports for me to accomplish

my desires. She has made a lasting influence on me, particularly in the field of

robotics. Our face-to-face discussions and other discussions such as Skype, phone

calls, and WhatsApp chat with her have certainly helped shape this thesis and

contributed enormously to my understanding of the course of study. I also

appreciate all my fellow students in the MERI lab especially those of you in

robotics.

I am also grateful to the previous and present rectors of Federal polytechnic,

Nasarawa Prof. Shetima AbdulKadir and Alhassan Ahmed, PhD, for their support

and agree with me to go for this study abroad.

I will be ungrateful if I did not express my sincere gratitude to the man that God

used to save me from dropping out of this programme when the Nigerian

government failed to pay my tuition fees after sending me to the UK. Thank you

so much Alh. Engr. Raufu Olaniyan, the Deputy Governor of Oyo State, Nigeria.

May Almighty Allah be pleased with every step you take.

 Special thanks to my friends, Benedict Ayomanor PhD, AbdulWahab Muyideen,

Prince Olaide Mohammed (my Boss), Mr Jerry O. Akimoh, Chief Dele

AbdulSalam, Pharmacist AbdulAzeez Busari, Tope Adediji, Ogunbiyi Victor,

Imrana Rufai, Bro Ahmed Abdullah and all staff of computer science department.

Finally, my special thanks to my loving wife Mrs Fausat Iyabo Badmos for being

so understanding, to my children Aishat, AbdulRahman, Badmos Jnr and Fatima.

iv

I say thank you for your sacrifices to you my brothers, Col W. A. Bakare, Alh.

AbdulRasheed Giwa, AbdulGaniyu Yisau, Mr Tajudeen Giwa, am grateful for

being supportive all the way to arrive at this point.

v

Dedication

I dedicate this dissertation to my darling wife, Hajia Fausat Badmos, and my

dear children, Aishat, AbdulRahman, Badmos Jnr and Fatima who have

sacrificed a lot to help me with this study and have been a source of inspiration

and encouragement for me to achieve this goal.

vi

Table of Contents

Declaration ... ii

Acknowledgement .. iii

Dedication ... v

List of Figures ... ix

List of Tables ... xi

List of Notations ... xii

Abstract ...xiii

Chapter One ... 1

1.0 Introduction ... 1

1.1 Background and Motivation .. 1

1.2 Path planning approaches for mobile robot ... 4

1.3 Aim of the study ... 6

1.4 Objectives of the study ... 6

1.5 Contribution of the thesis .. 7

1.6 Outline of the Thesis .. 7

Chapter Two .. 8

2.0 Literature review ... 8

2.1 Background .. 8

2.2 Path Planning Techniques ... 9

2.3 Conventional techniques .. 10

2.3.1 Bug algorithm ... 10

2.3.2 Sampling-based approach .. 11

2.3.3 Artificial Potential Field approach .. 12

2.3.4 The graph-based approaches ... 13

... 18

2.4 Heuristic Approaches... 18

2.5 Path Planning Algorithms ... 19

2.6 Related Works on path planning using combined methods 19

2.6.1 Voronoi Diagrams and Fast Marching .. 19

2.6.2 Tube Skeletons structure and Fast Marching ... 20

2.6.3 Voronoi Diagrams and Genetic Algorithms .. 20

2.6.4 Ant Colony Optimization and Dynamic Voronoi Diagrams 20

2.6.5 Voronoi diagram using Parameter Clearance-based Shortest Path 21

2.6.6 Voronoi Diagram and Probability Roadmap .. 21

2.7 Obstacle Avoidance .. 21

2.8 Conclusions .. 22

vii

Chapter Three .. 24

3.0 Study Related Theory .. 24

3.1 Background .. 24

3.2 Path planning/Navigation system .. 25

3.2.1 Motion Planning Problem .. 26

3.2.2 World Representation .. 27

3.2.3 Configuration Space Vs Workspace .. 27

3.2.4 Obstacle Configuration Space .. 27

3.2.5 Configuration space representation ... 29

3.3 Roadmap .. 29

3.3.1 Deformation Retracts ... 31

3.3.2 Visibility Graph .. 38

3.4 Artificial Potential fields .. 39

3.4.1 Attractive Potential .. 40

3.4.2 Repulsive Potential ... 42

3.4.3 Local Minima .. 43

3.4.4 Navigation Function ... 44

3.5 Cell decomposition ... 45

3.5.1 Exact cell decomposition method ... 45

3.5.2 Approximate cell decomposition .. 46

3.6 Sampling-based approach ... 46

3.6.1 Probabilistic Roadmap ... 47

3.6.2 Single-query planner .. 47

3.7 Search Algorithm .. 48

3.7.1 Uninformed search.. 48

3.7.2 Informed Search ... 49

3.7.3 Local search .. 50

3.8 Conclusions .. 50

Chapter Four.. 51

4.0 Problem Definition and Method Used ... 51

4.1 Introduction ... 51

4.2 Problem Definition ... 52

4.3 Voronoi Diagram ... 53

4.4 Generalized Voronoi Diagram... 55

4.5 The description of the proposed method ... 56

4.5.1 Part 1. Implementation of the method ... 56

4.5.2 Roadmap generation .. 57

4.6 Implementation of Deformable Voronoi Diagram...................................... 64

viii

4.6.1 Deformation process ... 64

4.6.2 Deformation distance ... 64

4.7 The Graphical User Interface for the proposed system 69

Chapter Five ... 71

5.0 Results and Analysis .. 71

5.1 Background .. 71

5.2 Environments and Algorithms .. 71

5.3 Path Deformation process .. 83

Chapter Six... 89

6.0 Summary and Conclusion.. 89

6.1 Future work ... 91

References .. 92

Appendix A (MATLAB Code) ... 108

Appendix B: How to use the GUI ... 122

Appendix C: Description of the Matlab Files 124

ix

List of Figures
Figure 1.1 Some Robots and areas of applications .. 3

Figure 1. 2 Robot for entertaining guest .. 3

Figure 1. 3 robot for guiding tourists .. 3

Figure 2. 1 Mobile robot’s path (Nguyen & Le, 2016) ... 11

Figure 2. 2 Artificial Potential Field Approach ... 13

Figure 2. 3 Visibility graph ... 15

Figure 2. 4 Voronoi Diagram (http:/en.wikipedia.org/wiki/Voronoi_diagram) 16

Figure 2. 5 Generalized Voronoi Diagram (https://th.bing.com/th/id/) 17

Figure 3. 1 A conference venue at Sheffield Hallam University ... 24

Figure 3. 2 Navigation system of a robot: Motion planning, Mapping, and localization 26

Figure 3. 3 Representation of an environment by roadmap method 30

Figure 3. 4 Example of a Deformation .. 32

Figure 3. 5 Construction of Voronoi Diagram ... 34

Figure 3. 6 Construction of VD continues... 35

Figure 3. 7 Sample of Delaunay triangulation ... 36

Figure 3. 8 Generalized Voronoi Diagram .. 37

Figure 3. 9 Visibility graph .. 38

Figure 3.10 Supporting and separating line segments .. 38

Figure 3. 11 Artificial Potential field Method ... 40

Figure 3. 12 An example of motion planning problem by APF .. 43

Figure 3. 13 Vertical cell decomposition or trapezoidal decomposition 46

Figure 4. 1 Proposed setting of the work. .. 52

Figure 4. 2 https://traveltips.usatoday.com/new-york-train-routes 52

Figure 4. 3 en.wikipedia.org/wiki/Voronoi Diagram ... 54

Figure 4. 4 generalized Voronoi Diagram ... 54

Figure 4. 5 Voronoi Diagram V for 9 points .. 55

Figure 4. 6 Representation of environment configuration .. 57

Figure 4. 7 VD with ℰ = 0.2 .. 58

Figure 4. 8 VD with ℰ = 0.5 .. 58

Figure 4. 9 VD with ℰ = 0.8 ... 58

Figure 4. 10 VD with ℰ = 1 .. 59

Figure 4. 11 with ℰ = 1.5 .. 59

Figure 4. 12 VD with ℰ = 1.8 ... 59

Figure 4. 13 VD with ℰ = 2 ... 60

Figure 4. 14 VD of a given obstacle configuration .. 61

Figure 4. 15 Free path (magenta) for robot ... 62

Figure 4. 16 Flowchart of VD for new system ... 63

Figure 4. 17 Deformation after movement to avoid collision ... 65

Figure 4. 18 Flowchart for deformable Voronoi Diagram. .. 67

Figure 4. 19 The main window of the setting. .. 69

Figure 4. 20 GUI window .. 122

Figure 4. 21 Using GUI buttons .. 123

Figure 4. 22 GUI buttons for “Add Boundary Robot” .. 123

Figure 5. 1 ℰ =1.5 with smoother path .. 72

Figure 5. 2 ℰ = 5 with non-smooth but connected segments .. 73

x

Figure 5. 3 ℰ = 10 with non-smooth and unconnected segments .. 73

Figure 5. 4 Env1 with ℰ =0.4 .. 74

Figure 5. 5 Env2 with ℰ = 0.8 ... 74

Figure 5. 6 Env3 with ℰ = 1.0 ... 74

Figure 5. 7 Env4 with ℰ = 1.5 ... 75

Figure 5. 8 Env5 with ℰ = 3 .. 75

Figure 5. 9 Env6 with ℰ= 5 ... 75

Figure 5. 10 Env1 with ℰ = 0.4 ... 76

Figure 5. 11 Env2 with ℰ = 0.8 ... 76

Figure 5. 12 Env3 with ℰ = 1.0 ... 77

Figure 5. 13 Env4 with ℰ = 1.5 ... 77

Figure 5. 14 Env5 with ℰ = 3.0 ... 77

Figure 5. 15 Env6 with ℰ = 5.0 ... 77

Figure 5. 16 Env1 with ℰ = 0.4, ... 78

Figure 5. 17 Env2 with ℰ = 0.8, ... 79

Figure 5. 18 Env3 with ℰ = 1.0, .. 79

Figure 5. 19 Env4 with ℰ = 1.5, .. 79

Figure 5. 20 Env5 with ℰ = 3.0, .. 80

Figure 5. 21 Env6 with ℰ = 5.0, .. 80

Figure 5. 22 Env1 with ℰ = 0.4, .. 81

Figure 5. 23 Env2 with ℰ = 0.8, .. 81

Figure 5. 24 Env3 with ℰ = 1.0, .. 82

Figure 5. 25 Env4 with ℰ = 1.5, .. 82

Figure 5. 26 Env5 with ℰ = 3.0, .. 82

Figure 5. 27 Env5 with ℰ = 5.0, .. 83

Figure 5. 28 VD without interference .. 84

Figure 5. 29 VD with minor interference ... 84

Figure 5. 30 VD with less interference .. 85

Figure 5. 31 VD with noticeable interference .. 85

Figure 5. 32 VD with high interference ... 85

Figure 5. 33 VD with higher interference .. 86

Figure 5. 34 The comparison of computation time for VD before and during deformation ... 87

Figure 5. 35 Comparison of time before and during deformation on robot final path. 88

Figure 5. 36 The comparison of VD size before and after deformation 88

xi

List of Tables
Table 5. 1 Comparing Variations of ℰ and number of edges & vertices before VD

deformation ... 76

Table 5. 2 Comparing Variations of ℰ and number of edges & vertices after VD deformation

 ... 78

Table 5. 3 Comparison of the execution time of getting VD and Final path before

Deformation for six environments ... 80

Table 5. 4 Comparison of the execution time of getting VD and Final path after Deformation

for six environments .. 83

xii

List of Notations

The following notations are used in this research work.

𝓐 = denotes a robot

𝒲 = denotes robots’ workspace

𝒲𝒪 = denotes Obstacle in 𝒲

𝓒 = is the configuration space of 𝓐.

𝓺 = An element of the set 𝓒.

𝓐(𝓺) = is the subset of 𝒲 occupied by 𝓐

𝓒𝒪 = is the configuration space obstacle region

𝓒free = is the free configuration space and is the complement of 𝓒𝒪

VD = Voronoi Diagram

GVD = Generalized Voronoi Diagram

APF = Artificial Potential Field

xiii

Abstract

Path planning for mobile robots is a complex problem. However, it

becomes more challenging when it comes to planning paths in dynamic

environments. This is because the robot needs to reach an agreement

between the need of having efficient and optimal paths and the need to deal

with unexpected obstacles. The proposed algorithm for this work is based

on two concepts, the Voronoi Diagram used for the environment

representation and the Deformation Retracts which are integrated into the

system to enable the path planner to deal with the effect of the moving

obstacle by deforming the Voronoi Diagram. The fusion of the

aforementioned two concepts, Voronoi Diagrams and Deformation

Retracts, which are from two related mathematical disciplines

(Computational geometry and Algebraic topology), has not yet been

considered in robotics applications. The proposed system first extracts the

collision-free space by computing a Generalised Voronoi Diagram (GVD)

and generates a pre-planned robot path, then the deformation retract is

applied on the free space of the Voronoi Diagram created after an

interference due to a moving obstacle. The map is deformed, and the initial

path is updated to an alternative path if it exists. One important feature of

this algorithm is that it is complete because it generates a solution (path)

and the dimension of the map has been reduced to one which represents

the retracted free space in the environment. This makes the new system

applicable to robot navigation in complex environments, and in other

research areas such as computer games, virtual reality, and computational

geometry to mention but a few. Simulation results of some environments

demonstrate the effectiveness of the new algorithm. The findings of this

work have shown that Voronoi Diagram and Deformation Retracts

xiv

techniques are a good combination for solving path planning problem using

Deformable Voronoi Diagram for mobile robot in a dynamic environment.

1

Chapter One

1.0 Introduction

1.1 Background and Motivation

Moving from one place to another is a simple task for humans to accomplish

without any difficulties however, this trivial task can be challenging for a mobile

robot to overcome. Therefore, it is now imperative to address the quest of

planning path for mobile robots to solve this challenge of moving from one point

(called starting point) to another (called goal or target point) without collision.

It is obvious that, be it in railway stations, airports, at carnivals, or at international

conferences, humans can move through to their destinations with ease. Whereas

for a robot even a simple basic task of motion represents a challenge, and

navigating a crowded place could be even more complicated. This work focusses

on how to equip a mobile robot to be able to navigate crowded places without

difficulties.

Several researchers have conducted studies on the functions of autonomous

mobile robots. For example, (Almanza-Ojeda & Ibarra-Manzano, 2011)

presented a study on how an autonomous robot could navigate in outdoor

environments using sensors, (Alves et al., 2011) showed that the main feature of

a mobile robot is to perform functions ranging from cleaning tasks to the

exploration of the universe without any risk to the robot and the user, and (Raol

& Gopal, 2013) in their work were able to discover that for a mobile robot to

perform a task, it had to possess some functionalities such as obstacle detection,

obstacle avoidance and finding a safe path. An overview of initial approaches for

path planning problems by various researchers can be found in (Latombe, 1991)

and recently by some researchers like (Campbell et al., 2020).

In the beginning, robots were just simple mechanical arms and hence path

planning techniques were applied solely to static environments. These types of

2

robots are mostly found in industries and are mainly used by trained and qualified

personnel.

However, due to technological innovations, fields like computer science,

electrical and electronic engineering, mechanical engineering, and social sciences

were used to manufacture different types of robots. Nowadays, many of these

robots are used in different areas like in mining industries (Nanda, Dash, Acharya,

& Moharana, 2010), nuclear energy companies (Cho & Woo, 2016), search and

rescue for firefighters (Schneider & Wildermuth, 2017), etc. Other examples are

Nano robots in medicine for monitoring human health, assistive robots in

household environments, commercial robots such as Drones in delivery services

(https://retailminded.com/what-are-commercial-robots/#.YEKV6ej7TIU),

disaster response robots for dangerous tasks, robots in the educational sector,

robots in the entertainment industry, exoskeleton robots for physical therapy,

humanoid robots that are made to look like humans (Pearson & Beran, 2018)

(robot.net/robotics/types-of-robots), and underwater walking robot by (J. Ayers,

2004) or robots for fast reaction to the dynamic (e.g. fish) and static (e.g. rocks)

obstacles in the sea by (Williams, Pizarro, Mahon, & Johnson-Roberson, 2009).

The work of (G.S. Virk, C. Herman, R. Bostelman, T. Heidegger, 2013) stated

that robots would be used in every home in the nearest future. Few examples of

these modern robots are in Figures 1.1, 1.2, and 1.3.

(Robot Hoover) (robot dog)

https://retailminded.com/what-are-commercial-robots/#.YEKV6ej7TIU

3

Figure 1.1 Some Robots and areas of applications

https://th.bing.com

Figure 1.2 Robot for entertaining guest

https://www.thejakartapost.com/life/2018/06/28/end-of-the-line-for-asimo-

japans-famed-robot.html

Figure 1.3 robot for guiding tourists

taiwannews.com.tw

But for a robot to perform a given task it has to be properly equipped with

effective algorithms that are complete, optimal, robust against changing

environment and uncertainties, able to deal with limitations, and comply to safety

regulations. The algorithm has to address the path planning problem based on the

robot’s environment. Mobile robot’s environment can be static or dynamic: a

static environment is where the whole solution must be found before starting

https://th.bing.com/
https://www.thejakartapost.com/life/2018/06/28/end-of-the-line-for-asimo-japans-famed-robot.html
https://www.thejakartapost.com/life/2018/06/28/end-of-the-line-for-asimo-japans-famed-robot.html

4

execution and a dynamic environment is characterized by the uncertainty of the

environment that limits the ability of robot to make decisions where re-planning

is needed at every stage with more time for planning update (A. Tuncer, M.

Yildrim & K. Erkan, 2012). However, whether an environment is static or is

dynamic, one common fundamental task is how can a mobile robot successfully

navigate without any collision. Furthermore, whether it is a robotic manipulator

or a mobile robot, obstacle detection and avoidance in the environment whilst

performing a task is very essential. Therefore, since every robot is made for

different purposes, the selection of suitable path planning approaches becomes

very important. These path planning approaches are also classified into two

categories based on the robot’s environment: Global path planning and local path

planning. The Global path planning is mostly applied to static environments

whilst local path planning is mainly applied to dynamic environments.

1.2 Path planning approaches for mobile robot

An effective path planning approach is to enable a mobile robot to navigate from

one position to another in order to perform the required function. An overview of

several path planning approaches for mobile robot can be found in the works of

(Jing, 2008) and (Kunchev et.al, 2006: Kazemi et.al, 2010).

Research on path planning approaches had gained attention already in the 70s

with the advent of Artificial Intelligence, which led to the categorisation of path

planning techniques into Classical approach and Reactive approach. In the work

of (Patle et al., 2019), the classical approaches were said to be the only techniques

used for solving path planning problems. Some of these classical approaches are

complete i.e. they find a path if one exists or confirm that there is none found.

Though despite its completeness, there are drawbacks such as high computational

cost and failure to react to unexpected obstacles in the environment that affect the

classical approaches. These drawbacks makes the traditional/classical approaches

largely applied to static environments. However, the reactive approaches are

mainly employed for path planning in dynamic environments (R. Brooks, 1986,

5

1990) because they have remedy for the uncertainties in the environment. Despite

this advantage of reactive approaches over classical approaches, there are also

some drawbacks such as high computational time, large memory requirement

and, learning phase. Examples of Classical approaches are the Cell

Decomposition method and Roadmap method whilst some examples of reactive

approaches are fuzzy logic, particle swarm optimization, neural network, ant

colony optimization, genetic algorithms (Patle, Pandey, Parhi, & Jagadeesh,

2019). Artificial Potential Field (APF) method is considered to belong to both

approaches, i.e., to classical approaches, becausethe position of the target or

direction to the target should be known, and to reactive approaches, because the

position of the obstacles may not be known, and the robot reacts to them only

when it ‘senses’ them.

The classical approaches have been proven to be less capable of dealing with

unknown, partially understood, or dynamic settings, and they are known to be

computationally costly. They are found to be dependent on the prior knowledge

of the environment to generate a feasible path for robot whilst dynamic

approaches can address these challenges due to their ability to handle unexpected

or partially known environments.

Amongst the classical and reactive approaches lies a gap that needs to be bridged,

which can be addressed by the deformation retracts technique. This (gap) problem

emerges when an obstacle changes position after a path has been generated, the

pre-planned path becomes inapplicable to avoid a collision. Therefore, an

alternative path is needed. Since the classical approach cannot address such

changes in the environment, the deformation retract may re-plan the

environment, and update the connectivity in the free space so that an alternative

or a new path is generated for robot execution. However, whether it is classical

or reactive, researchers have shown that every approach has its limitations and

also that one approach sometimes cannot solve certain problems. Therefore,

researchers have come up with the fusion or integration of two or more

approaches to solve path planning problems.

6

In this work, the fusion of the generalized Voronoi diagram (GVD) and

deformation retracts is used to enhance the capabilities of a mobile with

deformable diagram to deal with dynamic environment. This is because the

changes in the environemnt required an update that leads to replanning. To

finding the shortest route/path Dijkstra’s algorithm is employed. This approach

addresses the problem of path planning using deformable diagram by combining

the generalized Voronoi diagram and deformation retracts techniques.

1.3 Aim of the study

This study aims to complement the efforts of the past studies resulting from

integrating two or more techniques for designing the path. The research is based

on the evaluation of theoretical concepts and their application in simulation. The

focus of the proposed research work is to design a path planning system for a

mobile robot in a dynamic environment. To achieve this aim, a list of objectives

is stated below.

1.4 Objectives of the study

1. To compute a generalized Voronoi diagram with static obstacles.

2. To plan a path for a mobile robot from a source point to a goal point without

colliding with obstacles in a dynamic environment.

3. To design an algorithm for finding the shortest path on the free space by

implementing a Voronoi diagram.

4. To introduce dynamic obstacles.

5. To describe the method of the deformation retracts and to analyse its

procedures.

6. To build a simulation for testing and simulate several scenarios within the

environment and discuss the results.

7

1.5 Contribution of the thesis

This work develops a technique based on the fusion of two fundamental concepts:

Topology (Deformation retracts) and Computational geometry (Voronoi

Diagrams). The novel contribution of this work is how the combination of these

two established concepts: Deformation Retracts and Voronoi Diagrams, can be

used to address path planning problems in a dynamic environment. Whilst these

concepts (Voronoi Diagrams and Deformation Retracts) have been developed in

related domains, their fusion has not yet been considered. The Generalized

Voronoi diagram is used to reduce the workspace to one dimension by extracting

the free space and the deformation retract is to re-plan and update the connectivity

of the free space due to the movement of an obstacle in the environment and

finally generate a new path. The combination of these two concepts results in the

so-called Deformable Voronoi Diagrams. Using Deformable Voronoi Diagrams

and also taking into consideration such factors as time, paths lengths and sizes

of the Voronoi diagrams in simulation the effectiveness of the proposed algorithm

is demonstrated. The proposed algorithm can be useful not only in robotics but

also in other domains such as computer games, virtual reality, and computational

geometry.

1.6 Outline of the Thesis

Chapter one presents the introduction, background and motivation, the aims and

objective of the study, and the contribution of the thesis. Chapter two is the

literature review about mobile robot path planning techniques in dynamic

environments. Chapter three describes some theoretical concepts related to the

subject matter. Chapter four describes the methodology in detail and initial

results, and Chapter five presents simulations and a discussion of the results.

Chapter six concludes the Thesis.

8

Chapter Two
2.0 Literature review

2.1 Background

Several researchers have been working tirelessly to find efficient solutions to path

planning problems because robot motion is one of the major tasks of a robot

whilst accomplishing its purpose. There are many works on robot navigation in

both static and dynamic environments. Examples of some of these works can be

found in (Blanco, Moreno, & Curto, 1998) where the design of a method for

planning path for mobile robot in a dynamic environment, and specifically

emphasized on the use of online method for dynamic environments for

developing an optimal path planner, and in (Mahajan & Marbate, 2013) emphasis

on how robots could socially interact with humans in the same environment

without conflicts was made. However, path planning for robots in changing

environments has been a focus for many researchers recently.

Considering the environment, there are two categories of path planning systems:

the online planning system and the offline planning system. In online path

planning, the total information about the environment is known in advance. Some

of the approaches used for online path planning systems are Voronoi Diagram

(Ó'Dúnlaing & Yap, 1985), and Visibility graph (Mitchell, 1988). The most

applied in recent times are local path planning systems where obstacles motions

cannot be determined in advance. In local path planning, the robots get

information through sensors, a suitable approach used in local path planning is

the Artificial potential field. This work contributes to the solutions of robot path

planning problems and obstacle avoidance in a dynamic environment using

deformable Voronoi Diagrams.

However, among the most widely used techniques for path planning problems are

Visibility graph, Voronoi Diagrams, Cell Decomposition, and Artificial Potential

Field (Campbell et al., 2020b). These approaches are faced with some drawbacks

9

like the high cost of computation, and high time in execution of algorithms even

if a small number of robots are implemented, and getting trapped in local minima

(Bounini, Gingras, Pollart, & Gruyer, 2017; Lv & Feng, 2006) which becomes

worse when the environment is changing. Heuristic or soft computing techniques

such as Fuzzy logic (Mac, Copot, Tran, & De Keyser, 2016; Saffiotti, 1997), Ant

Colony optimization (Bi, Yimin, & Yisan, 2009; Rashid et al., 2016), Genetics

algorithms (Han, W., Baek, & Kuc, 1997; Lamini, Benhlima, & Elbekri, 2018),

and Neural networks (Engedy & Horváth, 2009; Yu, Su, & Liao, 2020) are also

used for robot path planning applications.

2.2 Path Planning Techniques

The research on path planning techniques has been in existence since in the 60s

but this area of research did not get much attention until the work of (Lozano-

Perez, 1990). He presented his work on spatial planning where he introduced a

configuration approach, which was applied to selecting the motion of an object

without collision. This was followed by many works on robot path planning

techniques such like, a work on socially-aware trajectory planning was presented

by (Kruse, Pandey, Alami, & Kirsch, 2013) which mainly deals with the

behaviour of robot during navigation, also a work that divides path planners into

a global planner and a local planner for robot navigation was presentented by

(Chik et al., 2016), a comparative evaluation of Velocity Obstacle (VO)

approaches for various agents was reported in (Douthwaite, Zhao, & Mihaylova,

2018). Different evaluation metrics to deal with the uncertainty produced by the

robot's low-resolution sensors were also presented. The motion planning methods

were categorized into classical and heuristic methods by (Cheng, Cheng, Meng,

& Zhang, 2018). When the two approaches were compared, it was discovered that

the heuristic technique performed better in online path planning and because of

the application of mobile robots in many areas like health sectors, manufacturing

companies, under-water operations, space explorations, nuclear energy plants. A

good path planning technique allows autonomous mobile robot to traverse a path

10

from the start location to the target location without any collision in the

workspace, to minimize the danger to the robot, to take care of uncertainties, to

find an optimal path in a short time, and to report to the user if there is none.

Today, there are numerous techniques for robot path planning. This can be

divided into: Conventional and Heuristic techniques. Some of the Conventional

techiques are Bug Algorithms, Roadmap approach, Cell Decomposition,

Potential Fields methods, Sampling-based approach, Kalman filtering, and

Heuristic approaches are Artificial Neural Network, Ant Colony Optimization,

Genetic Algorithms etc. Each of these methods is effective for different path

planning problems. The proposed algorithm is to compliment the efforts of the

researchers in dealing with path planning problems with deformable Voronoi

diagrams using the combination of generalized Voronoi diagrams and

deformation retracts.

In what follows, more details are provided on the aforementioned techniques.

2.3 Conventional techniques

2.3.1 Bug algorithm

There are several types of Bug Algorithms, but the most widely implemented in

path planning problems are Bug1, Bug2, VisBug, DistBug, and TangentBug

(Choset Howie et al., 2005; Sariff & Buniyamin, 2006). The Bug’s algorithms

are simple path planning techniques with good assurance (Choset Howie et al.,

2005) and the basic concept of Bug1 is that the robot continues to navigate

towards the goal along the path from the start to the goal unless there is an

obstacle, then the robot explores the alternative paths around the obstacle until

the motion to the goal is available again (or concludes that there is no path)

(Sankaranarayanan & Vidyasagar, 1990). Whilst in Bug2 the robot continuously

follows the the straight line to the goal, and if an obstacle is encountered then it

follows the edges of the obstacles until the line to the goal is discovered (Magid

& Rivlin, 2004). Bug algorithms are good for online path planners with a few

sensors (NGAH, Buniyamin, & Mohamad, 2010) (Behnke, 2003). However,

11

these techniques have shown that they have complete solutions and the main

weakness is at the cost of the length of the paths and time. This proposed work

can also be seen in chapter 5 of the dissertation, Figure 5.34 and Figure 5.35

where ‘time’ is used as performance factor for evaluation where the time spent

for the VD construction before and after deformation were considered.

 Bug1 Bug2

Bug1 algorithm with H1, H2 are hit points Bug2 algorithm with H11, H1, and H2 are hit points

 whilst L1, L2 are leave points whilst L11, L12, L2 are leave points

Figure 2. 1 Mobile robot’s path (Nguyen & Le, 2016)

2.3.2 Sampling-based approach

The sampling-based approach was presented in the 90s to solve the problem of

deterministic path planning techniques for robots of six degrees of freedom under

different constraints (Hsu, Kindel, Latombe, & Rock, 2002). The basic concept

is to focus the search on the randomly explored configuration space instead of the

whole space including obstacle spaces. This makes the design of the path

planning algorithm less dependent on the geometric model of the environment.

The sampling-based approach uses a collision detector as the only source of

information. The free space has many samples that can be connected with free

paths to get the path planning problem solved (Khaksar, Hong, Khaksar, &

Motlagh, 2012). A sampling-based approach is simple, and it still works under

many barriers or constraints. Some of the works on these constraints are:

(1) kinematic and/or dynamic motion constraints (Hsu et al., 2002),

(2) closure constraints (Han, L. & Amato, 2001),

12

(3) dynamic balance restrictions (Kuffner, Nishiwaki, Kagami, Inaba, & Inoue,

2001),

(4) re-configurable robots (Fitch, Butler, & Rus, 2003),

(5) manipulation constraints (Lamiraux & Kavraki, 2001),

(6) contact state constraints (Ji & Xiao, 2001),

(7) short inspection constraints (Danner & Kavraki, 2000).

It may be simple in a cluster environment where a sampling scheme may be

applied, but the planning time is higher and makes it inefficient.

2.3.3 Artificial Potential Field approach

The Artificial Potential Field method in the past years has gained much attention

for the obstacle avoidance problems in robotics. The main idea of this method is

that artificial forces act on robots (Khatib, 1986). The Artificial forces comprise

of the attractive force that attracts the robot to the goal and the repulsive forces

that repulse the robot from obstacles. This approach can be used for global path

planning with convex obstacles for a mobile robot using sensor data (Azariadis

& Aspragathos, 2005). However, its simplicity makes it very popular among

other approaches. In the work of (Krogh & Thorpe, 1986) they used potential

field method for both offline and online path planning. The APF method has the

problem of local minima, where a robot gets trapped and the goal not attainable

(Ge & Cui, 2000). (Boukas, Kostavelis, Gasteratos, & Sirakoulis, 2014) in their

work proposed an evacuation system using the Artificial Potential Field approach.

However, the APF is not a retraction, but a robot in Potential Fields method is

treated as a point represented in configuration space as a particle under the

influence of an artificial potential field whose local variations reflect the structure

of the free space.

13

Figure 2. 2 Artificial Potential Field Approach1

2.3.4 The graph-based approaches

The Graph-based approaches are one of the oldest ways of building free space for

the robot. These free spaces are connected through edges to generate free paths.

The vertices can be considered as free spaces, and the network between the free

spaces (vertices) and the lines (edges) are used by the graph-based approach to

generate a collision-free path for the robot. This approach is applicable to both

static and dynamic environments. The two well-known roadmap methods are the

Visibility Graphs (VG) and Voronoi diagram (VD). They have achieved very

good results with diagramatically different types of roads. A visibility graph is a

graph that allows robot to come as close as possible to obstacles. As a result, the

shortest path is found by applying this method. The path in VG touches obstacles

at the vertices or edges which is dangerous for the robot. Contrarily, a Voronoi

diagram generates a road that tends to maximize the distance between the robot

and the obstacles. However, the solution paths based onVoronoi diagrams are not

optimal with respect to path length (Mac et al., 2016).

a. Roadmap

1.https://miro.medium.com/max/450/1*podzvpWd_ApSOo-SaYGw3w.jpeg

14

The Roadmap approach is used to achieve the connectivity of the graph in the

free space. (Tang, Khaksar, Ismail, & Ariffin, 2012) presented three stages to be

followed whilst implementing the roadmap approach:

1) Navigation of robot from source to goal on the roadmap

2) Then moving from the target to another point and

3) Connecting the two points with lines in the roadmap.

The roadmap-based approach can also be used to solve computational difficulties

in a complex environment. It can also make free space smaller using an undirected

graph structure (Chia, Su, Guo, & Chung, 2010). The Visibility graphs and

Voronoi Diagrams have computational geometry structures. Whilst Visibility

graphs are designed for finding the shortest path, the Voronoi diagrams are

implemented for maximum clearance paths. Though, the paths generated by the

Visibility graph are shortest paths but not optimal, because the robots touch the

obstacles whilst navigating which might not be too safe for robots. Therefore,with

the introduction of the Voronoi diagrams, maximum clearance paths are created

to make it safer for robot during navigation. This provides one of the solutions to

the problem of Visibility graph. It was pointed out by (Šeda, 2007) that every

region in a Voronoi diagram corresponds to a site which implies that all points in

a region are closer to the site in that region than any site from other regions. One

of the advantages of Voronoi-based path planning is that it reduces the dimension

of the problem to one and this can be also refered to as Retraction.

b. Visibility graph

The idea of a Visibility graph is to form a network or graph of vertices of polygons

(obstacles). (Saska, et al, 2006) indicated that for two vertices to be connected,

they must be visible whilst Dijkstra’s algorithm is applied to search the shortest

path. (Masehian & Sedighizadeh, 2007) showed in their work that a Visibility

graph is a set of lines in the free space that connects the characteristic (node) of

one obstacle to another and these are of polygonal shapes with 𝑂(𝑛2) edges in

the visibility graph.This approach is good for generating shortest path, though the

15

paths may not be considered as safe because the robot touches the obstacles whilst

navigating towards the goal. Since there are numerous complicated paths to be

searched for, the efficiency of this method is negatively affected.

Figure 2. 3 Visibility graph2

c. Voronoi Diagrams and Generalised Voronoi Diagram

The Voronoi concept origin dates back to 17th century. Structures that looks like

Voronoi diagrams can be traced back to the work of Rene Descartes in 1644,

where he used a Voronoi-like diagram to refer to the location of matter within the

solar system and since then researchers have started the development of numerous

algorithms for the computation of Voronoi diagrams. The survey of some of these

work can be found in (Aurenhammer & Klein, 2000), (De Berg, Van Kreveld,

Overmars, & Schwarzkopf, 1997), and (Okabe, Boots, Sugihara, & Chiu, 2009)

where numerous algorithms and their applications to Voronoi diagrams were

discussed. (Canny & Donald, 1990) presented work on a Voronoi diagram as a

tool in robot path planning where a search for a path in a particular space can be

reduced to a search in one-dimensional space. The GVD has been used by many

researchers as a basis for path planning for a long time as shown in the works of

(Choset & Burdick, 1995), (Choset and Burdick, 1996), (ó'Dúnlaing, Sharir, &

Yap, 1983), and (Wilmarth, Amato, & Stiller, 1999). However, the proposed

2. https://media.springernature.com/full/springer-static/image/art%3A10.1007%2Fs42154-019-00081-

1

16

work differs from other work by deforming the Voronoi diagrams and still

regenerates the robot path.

Several previous works have shown the computation of Voronoi diagrams such

like (Fortune, 1987; Zavershynskyi & Papadopoulou, 2013) where a sweepline

algorithm can be used to compute Voronoi diagram for n point sites in O(nlogn)

time and an algorithm to construct order-k Voronoi diagrams with a sweepline

technique in O(k2nlogn) time complexity and O(nk) space complexity

respectively were presented. However, this work differ from the works mentioned

above in the computation of Voronoi where a matlab function called ‘voronoi’ is

used for the computation of Voronoi Diagrams where point sites are used for

computing Voronoi diagrams for polygonal obstacles.

Figure 2. 4 Voronoi Diagram (http:/en.wikipedia.org/wiki/Voronoi_diagram)

The use of Voronoi Diagrams and deformation retracts to obtain a Deformable

Voronoi diagram in solving path planning problem also makes this work

different.

According to (Choset Howie et al., 2005), the generalized Voronoi diagram can

be said to be a set of points in the workspace from different regions are equidistant

from each other. Whilst (Mahkovic & Slivnik, 1998) and (Nagatani, Choset, &

Thrun, 1998) developed a technique for the building of a generalized local

Voronoi diagram and a Voronoi diagram in a dynamic environment respectively,

none of these works combined VD with deformation retracts nor did they deform

the VD in generating paths. Constructing an efficient generalized Voronoi

diagram has always been not without drawbacks in path planning but some

17

solutions have helped other works including this work in the construction of

Voronoi diagrams. For instance, in works of Choset (Choset, 1995 and Choset,

1996) an algorithm solution, called the hierarchical generalized Voronoi graph,

was designed for a robot to navigate a changing environment, and in (Steven et

al., 1999) it was shown how the points on the diagram can be searched without

constructing the whole map.

Figure 2. 5 Generalized Voronoi Diagram (https://th.bing.com/th/id/)

d. Deformation Retracts

The basic concept of deformation retracs is to smoothly deform a path or map

without losing some of the properties of the original path or map. This is because

deformation is about stretching or shrinking of a space or object but not crushing

or cutting of a space or object. However, if a path is referred to as a sequence of

vertices with the property that each vertex in the sequence is adjacent to the next

vertex is smoothly deformed the number of vertices will still be the same with the

original path before deformation. A similar work from (Gayle, Sud, Lin, &

Manocha, 2007) was presented where an algorithm for motion planning that used

deformable links and dynamically retracted to capture the connectivity of the free

space for autonomous robots in a dynamic environment, and in the work of

(Lamiraux & Bonnafous, 2002) a method to reactive obstacle avoidance for non-

https://th.bing.com/th/id/Rc7e95b343f074f47a2318fa92ffb9de8?rik=Gy8nhOCCkOo1Ew&riu=http%3a%2f%2fwww.cs.cmu.edu%2fafs%2fcs.cmu.edu%2facademic%2fclass%2f16311%2fwww%2fs06%2flecture%2fzack_update.gif&ehk=YG%2f3NkIAk%2bUDdbEtx2ftnsNcwwdkJLy%2bMliEe5CarK8%3d&risl=&pid=ImgRaw

18

holonomic systems which was based on deformation of an initial motion

generated by a path planner was presented.

Consider the figure 2.6, let the space 𝐴 = 𝑆1 is the unit circle

And 𝑋 = 𝑆1 × [0,1] is the unit cylinder

Then, 𝐴 is a deformation retract of 𝑋.

 𝑆1 × [0,1] 𝑆1

Figure 2.6 Example of deformation retract

2.4 Heuristic Approaches

The traditional techniques for path planning have problems of high time for

algorithm execution and the presence of local minima that poses challenges to the

efficiency of their implementation, but the heuristics approaches have some

algorithmic solutions to address some of these problems. Therefore, there are

many works on heuristic approaches, such like Neural Network (Zhu & Yang,

2006), Genetic Algorithms (Zhang, Sun, Xiao, & Tsang, 2007), Simulated

Annealing (Manousakis, McAuley, Morera, & Baras, 2005; Mohamad, Taylor,

& Dunnigan, 2006), Ant Colony Optimization (Mohamad, Taylor, & Dunnigan,

2006), PSO (Saska, Macas, Preucil, & Lhotska, 2006), Tabu Search (Masehian

& Amin Naseri, 2004), and Fuzzy Logic (Lee & Wu, 2003). Most of these

19

techniques both conventional and heuristic are combined to develop an efficient

path planner (Charalampous, Kostavelis, & Gasteratos, 2015).

2.5 Path Planning Algorithms

The major characteristic of an algorithm for path planning is convergence. This

implies that an algorithm for path planning must be able to discover a path, if one

exists, otherwise to tell the user if such a path does not exist and then to stop.

However, in the work of (Coenen & Steinbuch, 2012) we can find the

characteristics of Convergent Algorithms as:

i) Length- the distance between the source and the goal should be the shortest.

This implies that the algorithm should be able to find an optimal path.

ii) Time- the execution period needs to be as small as possible

iii) Robustness- this is the capacity of the algorithm to fault tolerance should

be high. This implies that the approach should be able to deal with uncertainty,

and this has been addresed by the proposed method, uncertainties such like the

size of the obstacles. However, the new method still work correctly.

iv) Simplicity- the implementation of the algorithm should be as simple as

possible.

2.6 Related Works on path planning using combined methods

Combinations of several path planning methods for the path planning problem

can be found in (Guo et al., 2021; Masehian & Amin‐Naseri, 2004) and (Dongbin

& Jianqiang, 2006). However, few examples that include Voronoi Diagrams are

reviewed below.

2.6.1 Voronoi Diagrams and Fast Marching

A method was presented by (Garrido, S. & Moreno, 2015; Garrido, Santiago,

Moreno, Blanco, & Jurewicz, 2011) using the fusion of Voronoi diagrams and

fast marching for mobile robot path planning. This method combines map-based

20

and sensor-based techniques to generate a feasible motion plan, whereas it

operates at the frequency of the sensor. The Voronoi diagram was used to reduce

the configuration space into a unidimensional space and used fast marching to

obtain the path from the collision-free areas of the Voronoi diagrams. This

permits the usage of this method in complex environments where different

Voronoi-based strategies will not work

2.6.2 Tube Skeletons structure and Fast Marching

(Garrido, Santiago, Moreno, Abderrahim, & Blanco, 2009) presented a similar to

the work 2.6.1 but the safest areas in the environment are extracted by means of

a tube skeleton like a Voronoi diagram but with tubular shape, then the fast

marching obtained the collision-free path from the tube skeleton. This method is

map-based and sensor-based, good for static environments. Its effective, it

produces smooth trajectories and is characterized by non-holonomic restrictions.

2.6.3 Voronoi Diagrams and Genetic Algorithms

Researchers like (Li, Dong, Bikdash, & Song, 2005) and (Benavides, Tejera,

Pedemonte, & Casella, 2011) developed methods for path planning based on

Voronoi diagrams, where obstacles in the environment are considered as the

generating points of the diagram, and a genetic algorithm is used to find a path

without collision from the robot initial position to robot target position. For the

optimal path, the fitness function was used. This method is good for static

environments, efficiency is good, and has low execution time.

2.6.4 Ant Colony Optimization and Dynamic Voronoi Diagrams

This approach is presented by (Habib, Purwanto, & Soeprijanto, 2016) for mobile

robot planning problem using the modified ant colony optimization algorithm

based on the Voronoi diagram. The VD generates vertices that is assumed nodes

in the ACO and the mobile robot is assumes as ant. This is robust for dynamic

environments, attracts adaptability, and very good efficiency in path planning. It

is also generates path that is more safe than the previous above.

21

2.6.5 Voronoi diagram using Parameter Clearance-based Shortest Path

(Bhattacharya & Gavrilova, 2008) presented a work that constructed a roadmap

and the best path was obtained from the Voronoi diagram using clearance

condition or constraint which would be set by the user initially and (Niu, Lu,

Savvaris, & Tsourdos, 2018) combines the Voronoi-Visibility to allow

Unmanned Surface Vehicles to avoid obstacles whilst at the same time using

minimum amount of energy. The impact of parameters such as mission time, the

USV speed and sea current state on the results were analysed and it shows that

the proposed VV algorithm improves the quality of the Voronoi energy efficient

path whilst keeping the same level of computational efficiency as that of the

Voronoi energy efficient path planning algorithm. This assures the optimality of

the path. This is used in a dynamic environment, more effective in speed quality,

and generally very effective.

2.6.6 Voronoi Diagram and Probability Roadmap

(Bhattacharya & Gavrilova, 2007) designed a method based on sampling-based

techniques that supported taking the problem into an imaginary environment.

This is effective in dynamic environment, it is characterized by the time spent

between the re-plan and deformation.

2.7 Obstacle Avoidance

Obstacle avoidance is a major problem in robot path planning simply because a

robot needs to reach its destination without a collision with any obstacle.

However, a path is said to be free if obstacles are avoided during robot navigation.

(Khatib, 1986), in his work designed a unique real-time collision avoidance

method for mobile robots and manipulators using the artificial potential fields to

enable robot in a real-time dynamic environment, (Petres et al., 2007) designed a

framework that was applied to path planning and obstacle avoidance for

underwater vehicles for sonar purpose and (Choset Howie et al., 2005) applied an

online technique to develop an algorithm for obstacle avoidance by means of

reactive control during the robot motion. (Lamiraux & Kavraki, 2001) also

22

presented an algorithm to address a path deformation for obstacle avoidance.

Lastly on this, since one of the essential requirements for all intelligent machines

is safety when it encountered an emergency during the task, it has made path

planning and obstacle avoidance an interested area of research. In the work of

(Liu, Li, Zhang, Zheng, & Yang, 2019) a dynamic obstacle avoidance and path

planning problem of USV based on the Ant Colony Algorithm (ACA) and the

Clustering Algorithm (CA) to construct an auto-obstacle avoidance method

which is suitable for the complicated maritime environment was presented.

2.8 Conclusions

Several methods of representation have been reviewed and it is concluded that

there is no method with absolute perfection. All the methods reviewed showed

that they all have limitations. However, to resolve some of these limitations, some

methods were combined, and the proposed method of this work is an example.

This study proposes the combination of the Voronoi diagram and the Deformation

retract method for the planner. This is a roadmap-based method that uses a

computational geometry data structure. However, before designing a path

planning method, three criteria need to be taken into consideration: path length,

computational complexity, and completeness. In a dynamic environment,

findings have shown that some methods like Visibility graphs produce a shortest

path but they may be computationally intractable as they may run in non-

polynomial time with respect to the number of obstacles, whilst considering the

Voronoi Diagrams, the paths generated are relatively safe since the edges of the

path are positioned far away from the obstacles, but may not be shortest, though

these paths are not optimal in terms of path length but has the fastest computation

time compared to other methods. For instance, the computation time of VG

exponentially increases with respect to the number of obstacles, whilst, VD had

a consistent increment in computation time as the number of obstacles increases.

The difficulty of a motion planning problem is determined by the complexity of

the obstacle space 𝑂 and the configuration space dimension 𝐷. The finite number

of nodes utilised to approximate a continuous space is indicated by N. For

23

computational complexity, one needs to establish upper and lower limits on the

time required by the most efficient solution to solve a given problem. However,

an algorithm's complexity is assumed to represent its worst-case complexity,

unless otherwise stated. To prove an upper limit T(n) on a problem's time

complexity for a given number of inputs n, all that is required is to show that there

is a specific method with a running time of at most T(n) and to show a lower limit

of T(n) for a problem, one must demonstrate that no algorithm has a temporal

complexity lower than T(n). Big 𝑂 notation is used to express the upper bound or

worst-case complexity, which hides constant factors and smaller words. This

makes the limits independent of the specific details of the computational model

used. For instance, if 𝑇(𝑛) = 7𝑛2 + 15𝑛 + 40, in big O notation one would

write T(n) = 𝑂(𝑛2).

The reasons for the selection of this method are: because of its completeness,

ability to create a maximum clearance path for the safety of robot that is not

guarranteed with some methods and, the fastest time of computation which is in

𝑂(𝑛𝑙𝑜𝑔𝑛) time (complexity) and lastly, the querying for a path in this method is

faster than in other methods even though the quality of paths generated from the

Voronoi diagrams are far from being optimal. Combining this method with

another methods, the deformation retract enables the new system to react to

unexpected changes in the environment by deforming and updating the map.

24

Chapter Three

3.0 Study Related Theory

3.1 Background

Robots are used in many areas such as factories, airports, train stations, offices,

shopping malls, and international conferences. The objectives of robots to these

areas are numerous: to save time, prevent risk, avoid hazards and reduce

manpower also to improve productivity to mention but a few.

Figure 3. 1 A conference venue at Sheffield Hallam University

Figure 3.1 is a typical example of crowded and/or dynamic environments. This

type of environment requires some resources (human) to perform the smallest

task which could be boring, tedious and wasting the time of trained personnel.

However, the application of robotic technology has addressed most of the

aforementioned problems. For example, a mobile robot that can perform “a search

and rescue” task could relieve/save fire brigade personnel from a dangerous (risk)

task. Path planning is a very significant aspect of robotics, it is an integral part of

many robotic applications, for example, in medical (endoscopic path planning)

where a target is located in a lung by generating an endoscopic path to the target

(Geiger, Kiraly, Naidich, & Novak, 2010), in graphics applications where the

graphic-based path planning approach is used on ray casting and voxel models

25

(Tarbutton, Kurfess, & Tucker, 2010), in manufacturing and CAD, an

autonomous system was used in place of painting manually (Chen, Fuhlbrigge,

& Li, 2008). The task of finding or generating a path between two points (start

and stop/goal/target) and avoiding collision is known as the path planning

problem. The path planning problem faces numerous challenges such as sensor

problems like giving error information, unexpected scenarios (open or closed

door), real-time issues, and dynamic obstacles. However, finding the optimal path

is mostly the objective of researchers working on path planning problems.

3.2 Path planning/Navigation system

Motion planners are algorithms that deal with the problems of motion planning

and are characterized by the followings (Coenen & Steinbuch, 2012):

i. Task, which comprises navigation, environment coverage, and mapping

(is a task related to an unknown environment)

ii. Completeness, a planner can be complete, if a solution is found or tell

the user if no solution exists, resolution complete if a solution exists based

on some features of space resolution, if a solution exists with probability

of finding the solution tends to one whilst number of sample tends to

infinity, then it is probabilistic complete, and incomplete if a planner is not

capable of guaranteeing a solution.

iii. Optimality, which comprises optimal, conditional optimal and non-

optimal

A path planning system transforms a high-level task into a low-level illustrations

of a robot motion. For the robot motion to be planned, the robot needs the

representation of the environment (map), and the representation of the

environment is computed through perception with the aid of sensors, then the

robot needs to identify its position (localization) after mapping the obstacles into

the environment. Figure 3.2 illustrates the architecture of a navigation system, it

26

shows how the robotic system performs its tasks/functions whilst moving towards

the target.

Figure 3. 2 Navigation system of a robot: Motion planning, Mapping, and localization3

3.2.1 Motion Planning Problem

We model a robot as a rigid body 𝓐 moving in a workspace 𝒲 = ℝd (ℝd is

Euclidean space) where d can be 2 or 3. The obstacle region 𝓒𝒪𝑖 is then the space

occupied by obstacles 𝒪𝑖 such that 𝑖 = 1, 2…𝑛. The obstacle region is also referred

to as the union of all obstacles. Since 𝓐 and 𝒲𝒪𝑖 are subsets of 𝒲, then the

location and the size of 𝓐 and 𝒪𝑖 are known. Therefore, motion planning problem

is referred to as: “given two points, the source and the goal of 𝓐 in 𝒲, find a

path c that will not collide with 𝒪𝑖 and will be used by 𝓐 to move from the source

to the goal and also indicate if such path does not exist” (Latombe, 1990).

3. https://www.semanticscholar.org/paper/Motion-Planning-for-Mobile-Robots-A-Guide-Coenen-

Steinbuch/6d6878f905d64ce8df9fd3d19ad2c11afbe4ee8e#extracted

High level control

Motion

Planning

Mapping

Environment

Localization

Robot

Map

Task

Perception
Task

Motion
Task

https://www.semanticscholar.org/paper/Motion-Planning-for-Mobile-Robots-A-Guide-Coenen-Steinbuch/6d6878f905d64ce8df9fd3d19ad2c11afbe4ee8e#extracted
https://www.semanticscholar.org/paper/Motion-Planning-for-Mobile-Robots-A-Guide-Coenen-Steinbuch/6d6878f905d64ce8df9fd3d19ad2c11afbe4ee8e#extracted

27

3.2.2 World Representation

To finding solution to path planning problem, identifying the position of the robot

in regards to the workspace is necessary. This localization of the robot is

considered whilst planning the motion so that no part of the robot will touch any

obstacle when moving towards the goal. These considerations brought up the idea

of configuration space (Lozano-Perez, 1983).

3.2.3 Configuration Space Vs Workspace

The real world where the robot performs its function or the space in which the

robot works that can 2D or 3D is referred to as Workspace whilst the

Configuration space or C-space of a robot is the space of possible positions robot

may occupy. If the robot is taken to be polygonal, operating in a 2D environment,

then the configuration of the robot will be specified by a translational vector,

which can be represented by two coordinates (𝑥, 𝑦). But if the robot changes its

orientation by rotating, then an extra parameter 𝜃 is required for its orientation.

Therefore (𝑥, 𝑦, 𝜃) can be used to represent the configuration space. The

configuration of a robot is represented by the number of parameters which is

equal to the number of degrees of freedom (DOF) of the robot. Generally, a robot

translating in ℝ3 will have three degrees of freedom because it can rotate about

the (𝑥, 𝑦, 𝑧) axes whilst a robot translating and rotating in ℝ3 will have six degrees

of freedom because it can move laterally about all the axes and also rotates about

all the axes. The configuration space can therefore be thought of as the parameter

space of a robot 𝓐, i.e. (𝒜).

3.2.4 Obstacle Configuration Space

Let 𝒲 be the world that contains the robot and obstacles. For Euclidean space

ℝ2, let us consider that 𝒲 ⊂ ℝ2 and 𝒪 ⊂ 𝒲 is the obstacle region, that has a

boundary. Then the complement 𝒲 ⧵ 𝒪 is taken as an open bounded set. And

configuration space or 𝒞 − 𝑠𝑝𝑎𝑐𝑒 is the set of all rigid body transformations

applied to the robot. Let 𝒞𝒪 be the part of 𝒞 that part a robot cannot enter and let

𝒜 (q) ⊂ 𝒲 be a closed set of points occupied by robot 𝒜 when it transformed to

configuration 𝓆. A configuration 𝓆 ∊ 𝒞 puts the robot into a collision if and only

28

if 𝒜 (q)∩ 𝒪 = ∅, which implies that the robot and the obstacle intersect at least

at one common point in 𝒲, then the set of all non-colliding configurations is

referred to as free space, 𝒞free. This is also described as:

 𝒞free = {q ϵ 𝒞 | 𝒜 (q)∩ 𝒪 ₌ ∅} (3.1)

Whilst the compliment is referred to as the obstacle configuration space 𝒞𝒪 and

is also defined as:

 𝒞obs = {q ϵ 𝒞 | 𝒜 (q)∩ 𝒪 ≠ ∅}. (3.2)

 𝒞obs = 𝒞/𝒞free (3.3)

The obstacle configuration space region is the union of the obstacle

configuration spaces:

 𝒞𝒪 = ∪𝒞𝒪 (3.4)

Then the compliment of the configuration obstacle space region is the free

configuration space, 𝒞free:

 𝒞free = = 𝒲∖ ⋃ ⋃𝑖=1
𝑖=𝑛 𝐶𝑜𝑏𝑠 (3.5)

The motion planning problem is to find a path in 𝒞free from a starting location 𝑞0

to another location 𝑞1.

Definition 3.1

A path is a continuous function c, which maps a parameter of path s to a curve

in 𝒞:

 c : [0, 1] → 𝒞 (3.6)

such that c(0) = q0, c(1) = q1 and c(s) ϵ 𝒞 for all s ϵ [0, 1].

If c(0) and c(1) belong to the same 𝒞free, then a continuous function c is called a

free path. When the robot touches the obstacle, the space that represents this

configuration is referred to as contact space, 𝒞contact.

29

3.2.5 Configuration space representation

The problem of motion planning is described in the real world however, it is

actually in an imaginary space. Because the configuration space transforms the

problem of an imaginary shape object into a point. Then finding likely motions

of that point in the configuration space, depends on the connectivity of the

configuration of the free space. Roadmap, Cell decomposition, Sampling-based

and Artificial Potential fields are methods that represent the connectivity of the

free space in the configuration space in different forms. There are three prominent

map concepts:

1) Topological concept,

2) Geometric concept,

3) The Grid concept.

1) The topological concept is about representing the environments in a graph

structure, where nodes represent locations or objects, and the edges represent the

relationship between the nodes.

2) The geometric concept is about using geometric primitives for representing the

environment, by mapping the primitive’s parameters with the sensors

observation.

3) The grid concept is where the configuration is decomposed into a grid of cells

with a predefined shape or size which are dominantly square or rectancular

(Coenen & Steinbuch, 2012).

3.3 Roadmap

The roadmap is a type of a map in topology, it is a graph-like structure with nodes

and edges. The nodes represent the object or location whilst the edges represent

the relationship between two nodes. A roadmap can also be described as the

network ofcurves in the free configuration space. An example of a roadmap is

given in Figure 3.3.

30

Figure 3. 3 Representation of an environment by the roadmap method

Definition3.2

An environment is a roadmap, R, if for all qi and qg in 𝒞free that can be connected

by a path, the following hold:

1. there is a path from the qi ϵ 𝒞free to some q′i ϵ R

2. there is a path from some q′g ϵ R to qg ϵ 𝒞free

3. there exists a path in R between q′i and q′g

Some of the types of roadmaps are:

a. Deformation Retract is a function that maps a continuously shrinking or

retracting a space into a subspace, this is similar to when a free space eroded into

a skeleton shape, whilst this skeleton can be used for robot path planning.

b. Visibility graph technique is a non-directed graph, where the nodes

corresponds to the vertices, and edges correspond to the edges in the polygon

(Coenen & Steinbuch, 2012),

c. Retract-like structure is the union of one-dimensional structures (Choset

Howie et al., 2005),

d. Piecewise retract is a graph for edge operating in the plane and

e. Silhouette's approaches have been proved to be complete for a number of

dimensions with arbitrary obstacle structures. A brief description of Silhouette

method can be found in (Choset Howie et al., 2005).

31

In this study, we restrict our attention to Deformation Retract.

3.3.1 Deformation Retract

Deformation Retract can simply be described by an analogy of a dissolving

doughnut-shaped candy into a ring. The resulting ring is a subspace of the

topological structure (space) of the candy. This ring that looks like a skeleton can

be used for planning the robot's motion. We can deduct from this analogy that the

doughnut-shaped candy to be the free space 𝒞free, and the ring or skeleton to be

taking for a Deformation Retract.

For a set X, a retraction is a continuous function 𝑓 ∶ 𝑋 → 𝐴 such that 𝐴 ⊂ 𝑋,

 and 𝑓(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴.

Then, the subset 𝐴 ⊂ 𝑋 is the retract of 𝑋 which implies that the dimension of 𝑋

is greater than the dimension of 𝐴. Deformation is about space stretching or

shrinking but not crushing or cutting, and retraction implies the continuous

function of a space to a subspace. Deformation retract basic idea is to

continuously squezing a space onto a space. So, a deformation retract is a

geometrical structure obtained from a process of shrinking space to a subspace.

It is the same as to eroding a free space into a subspace shaped like a skeleton,

and this skeleton can be used for robot motion planning. However, the such a

skeleton is mostly constructed by Voronoi diagram of free space.

Both the Generalized Voronoi Diagram and Deformation Retract are roadmap-

based methods. Roadmap-based methods have two properties, the accessibility

and the connectivity. However, the properties of both Deformation Retract and

the GVD are completely the same because they can all be used to construct

roadmap, both GVD and deformation retract follow from the connectivity and

accessibility property of roamap method.

Characteristics of Deformation retract are:

32

Complete: the retraction technique is complete for any kind of search algorithm

used for the roadmap because there exists always a path.

Optimal: The distance to obstacles and the computation cost of the diagram that

allows maximum clearance from obstacles.

Complexity: the computation of the generalized Voronoi diagram depends on the

number of edges, the more the number of edges the more point sites it involves.

From the point of view of algebraic topology, which is inspired by the work of

(Rahul, 2016):

Figure 3. 4 Example of a Deformation

A retraction is called a deformation retraction if there is a continuous function, ℛ

: [0, 1] x 𝑋→ 𝑋 such that ℛ(0, .) is the identity map on X and ℛ(1, .) = r

Therefore, whenever there is a deformation retraction from X to Y, then we call

Y a deformation retract of X.

If 𝒞free describes the obstacle free space in an environment, the retraction function

say, ℛ builds a continuous subset where there is a path from starting point 𝒮 and

end point 𝒢.

However, the problem of path planning for a robot is to find a path say, 𝓅 from

the source 𝒮, to the goal 𝒢.

With the prior information about 𝒮 and 𝒢 ∈ 𝒞free .

Therefore the general state in the robot path is 𝓅(s),

if 𝓅 : [0, 1] → 𝒞free, 𝓅(0) = 𝒮, 𝓅(1) = 𝒢.

From Figure 3.4, there are two paths of the same homotopic group, because one

of the path can be deformed to the other with multiple small deformations that

will lead to collision-free paths.

33

Let 𝓅1 : [0, 1] → 𝒞free and 𝓅2 : [0, 1] → 𝒞free be two paths,

with 𝓅1(0) = 𝓅2(0) = 𝒮 and 𝓅2(1) = 𝓅2(1) = 𝒢.

A deformation can be said to be:

ℱ : ℱ0 = 𝓅1, ℱ1 = 𝓅2, ℱ0 = 𝒮, ℱ1 = 𝒢

Therefore, two paths are said to be in the same homotopic group if such a

continuous mapping ℱ exists from the first path ℱ0 = 𝓅1 to the second path

ℱ1 = 𝓅2 and such that all intermediate paths 𝓅t are collision-free from source to

goal.

Definition 3.3

A Voronoi Diagram is the partitioning of a plane with 𝓃 points into convex

polygons such that each polygon consists of exactly one generating point and

every point in a particular polygon is closer to its generating point than to any

other.

Let 𝒮 denote a set of point sites, 𝓃 in the plane. i.e. = 𝓍, 𝓎, ..

Given two points 𝓍 = (𝓍1, 𝓍2) and 𝑎 = (𝑎1, 𝑎2), then let the Euclidean distance

between the 𝑥 and 𝑎 be 𝒹(𝓍, 𝑎)

 = √(𝓍1 − 𝑎1)2 + (𝓍2 − 𝑎2)22
 (3.7)

Then, for 𝓍, 𝓎 ∈ 𝒮

let 𝑃(𝓍, 𝓎) = {𝑎 ⃒ 𝒹(𝓍, 𝑎) = 𝒹(𝓎, 𝑎)} be a perpendicular bisector of 𝓍 and 𝓎.

ℬ(𝓍1, 𝓍2) is the perpendicular line through the segment, 𝓍1𝓍2̅̅ ̅̅ ̅̅ that divides the

half-plane

𝑄(𝓍, 𝓎) = {𝑎 ⃒ 𝒹(𝓍, 𝑎) < 𝒹(𝓎, 𝑎)} containing 𝓍 from the half-plane 𝑄(𝓎, 𝓍)

containing 𝓎. Therefore, the Voronoi region of 𝓍 with respect to 𝒮 is written as,

𝒱ℛ(𝓍, 𝒮) = ⋂ 𝑄(𝓍, 𝓎)𝓎∈𝒮,𝒴≠𝓍 (3.8)

Then, the Voronoi region of 𝒮 is now written as,

34

𝒱(𝒮) = ⋃ 𝒱ℛ(𝓍, 𝒮)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋂ 𝒱ℛ(𝓎, 𝒮)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝓍,𝓎∈𝒮,𝓍≠𝓎

 (3.9)

a. Construction of Voronoi Diagram

Figure 3. 5 Construction of Voronoi Diagram

Considering Figure 3.5(a), it shows four locations/points in an area/plane and

Figure 3.5 (b) shows where these areas are divided into regions. Therefore, each

location has a region, that consist of the area for which that location is the closest.

(a) Depicts a collection of points in a plane

(b) Divides the plane into regions, one region per generator and each region

consist of those points that closer to the generator of the region than to any other

generator.

(c) To construct a Voronoi Diagram, if we consider two points 𝒳 and 𝒴 Figure

3.6, the region for point 𝒳 is all the points closer to 𝒳 than 𝒴.

The half-plane is shown in Figure 3.6 C(i) whilst the boundary is the

perpendicular bisector of the edge 𝑥𝑦.̅̅ ̅̅ Adding another point in Figure 3.6 C (ii)

say 𝒵, we will get the region of 𝒳 that consists of the points that are both closer

to 𝒳 than 𝒴, and also closer to 𝒳 than 𝒵. And these intersections are 𝒳𝒴 and𝒳𝒵

half-planes. This goes on to produce the final diagram called the Voronoi

Diagram in Figure 3.6 C(iii) that shows three perpendicular bisectors by deleting

all the unnecessary parts.

(a) (b)

35

 C(i) C(ii) C(iii)

Figure 3. 6 Construction of VD

An edge of a Voronoi Diagram is the intersection of two Voronoi regions that is

equidistant to the nearest sites. A Voronoi cell is the set of all points closer to a

fixed site than any other site.

A Voronoi vertex is the intersection of at least three Voronoi edges, so a

Voronoi vertex is equidistant from at least three sites.

Some Features of Voronoi Diagrams are:

1) the Voronoi Diagram of n-1 parallel lines forms n cells if points Pi are

collinear.

2) the edges of the Voronoi Diagram are segments if points P are not collinear.

3) Voronoi cells are convex.

Like the Voronoi Diagram, there is an important geometric structure called

Delaunay triangulation. It is also referred to as the dual structure of the Voronoi

diagram. The Delaunay triangulation is constructed by drawing lines between two

sites whose Voronoi regions have the same edge. It also divides the convex hull

into triangles.

There are numerous areas of application of the Voronoi Diagram (Mark, Maxim,

Ming & Dinesh, 2001)

1. The Generalized Voronoi Diagram of the map (workspace) is used to bias

sample generation in a randomized planner.

36

2. The path found from the Generalized Voronoi Diagram of the workspace

is also used to provide intermediate points to serve as temporary attractive

wells for a potential field planner.

3. The VD of the configuration can be searched simply for a path once the

source and the target are connected.

In this study, the third application was used to generate the initial workspace

path.

Figure 3.7 Sample of Delaunay triangulation4

b. Generalized Voronoi Diagram

Modelling obstacles as points, a Voronoi diagram is used to model the

configuration space of a robot. In this model, the configuration space is the set of

collection free spaces and the configuration space occupied 𝒞free and 𝒞obs

respectively. A Voronoi diagram will help a robot to avoid obstacles with

maximum clearance and a fast search is obtained because of the above

assumption. However, in real life, obstacles are not points, but have shapes thus,

generalized Voronoi diagrams were introduced by replacing points with objects.

Generalized Voronoi diagrams (GVDs) can be used in high-dimensional spaces.

(La Valle, 2006) suggested that the number of edges in the GVD would determine

the computational complexity of GVD which is in 𝑂(𝐸𝑙𝑜𝑔𝐸) time. Despite

having straight line segments, it also contains arcs which make it visible. Here

4. https://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Delaunay_Voronoi.svg/200px-

Delaunay_Voronoi.svg.png

37

the product of the retractions of qi and qg i.e. r(qi) and r(qg) with segment(path)

between qi and qg is the path.

(a) Voronoi diagram (b) (Coenen & Steinbuch, 2012)

Figure 3.8 Deformation retract from (a)VD and (b)GVD

From Figure 3.8(a), considering a finite set of nodes in the plane. Each node is a

Voronoi site, and its corresponding Voronoi cell consists of all points whose

distance to this site is not greater than their distance to any other site. The edges

of the VD are the points in the plane which are equidistant to the two nearest sites

and the Voronoi nodes are e the points equidistant to three (or more) sites. The

diagram becomes a generalised Voronoi diagram (GVD) for higher order site

geometries, Figure 3.8 (b) illustrates this. The higher order character may be seen

in the diagram, which includes arcs in addition to straight line segments. In the

case of a GVD, the path is the product of retractions 𝑞𝑖 and 𝑞𝑔 on 𝑅, respectively

𝑟(𝑞𝑖) and 𝑟(𝑞𝑖), and a path between them in 𝑅.

A Generalized Voronoi Diagram is a Voronoi Diagram where point obstacles are

replaced by objects, which implies that instead of regions around points, regions

around objects are taken into account as shown in Figure 3.8. Path planning using

a generalized Voronoi Diagram is obtained by using the follwing steps:

1. moving away from the closest point until getting to GVD.

 2. navigate through the two equidistant towards the target.

 3. then, from the GVD to the goal.

r(qi)

r(qg)

 (qi)

(qg)

38

Since the Generalized Voronoi Diagram and Deformation Retract are both

geometric structures that have the same properties in path planning it implies that

both the Generalized Voronoi Diagram and Deformation Retract are examples of

the roadmap approach.

3.3.2 Visibility Graph

Visibility graph is a method of inter-visible areas for set points and obstacles in

the plane. Where vertex are locations and edge are connection between the

locations. If no obstacle obstructs the line segment drawn to connect the

nodes/locations, then an edge is drawn between the locations.

Figure 3.9 Visibility graph5

 Figure 3.10 Supporting and separating line segments6

Using the Euclidean plane, the shortest path can be searched for with the visibility

graph. Since the visibility graph consists of numerous edges, supporting lines and

separating lines are used to reduce these numerous edges. A supporting line is a

tangent to the obstacles where all obstacles belong to the same side of the line

5. https://media.springernature.com/full/springer-static/image/art%3A10.1007%2Fs42154-019-00081

6. https://image.slidesharecdn.com/visibilitygraphs-/visibility-graphs

39

and a separating line is a tangent to two obstacles such that the obstacles belong

to the opposites side of the line. Both the supporting line and separating line are

used for the construction of what we called a Reduced visibility graph.

This implies that most of the lines in the visibility graph that are not part of the

supporting and separating line will be deleted. This method is hardly used for

problems with higher dimension (greater than 2D) because the method has a

problem of optimality or completeness when applied to the high dimension. If a

robot moves in a 𝒲 = ℝ3 with a fixed translation, the paths generated may no

longer be the shortest. However, a translating and rotating robot in 𝒲 = ℝ2 with

𝒞 = ℝ2 can be planned with a visibility graph method but it will be an incomplete

solution. However, the problem of visibility graphs is that the generated paths

touch or move too close to the objects’ vertices and the edges. This may expose

the robot to risk. Therefore, it reduces the chances of using of the method.

However, Voronoi diagrams was designed to address this issue.

3.4 Artificial Potential fields

Researchers have shown that the Artificial Potential Field, APF method is mostly

used because of its simplicity and mathematical sophistication however, it is good

for static environment. The concept of the Artificial Potential field (APF)

approach can be likened to the electric charge concept. In this method, the robot's

environment (workspace) contains artificial forces, where obstacles are assigned

with repulsive forces and goal point with the attractive force. The idea involves

two types of forces; the attractive force generated by the goals and the repulsive

force generated by the obstacles.

40

(a) Attractive Potential Field

Figure 3.11 Artificial Potential field Method7

This method is good for implementation in static environments where both

obstacles and the goal are stationary. However, in real-life scenarios where

obstacles and environment are dynamic, the Artificial potential fields method is

faced with local minima problem. Due to this, the Artificial potential field

approach is not considered to be effective. But It is an efficient algorithm if

compared to some other approaches, due to its simplicity, high safety and

mathematical sophistication. However, it can applied for real-time scenarios

because of low computation time (Sabudin, Omar, & Che Ku Melor, 2016). It is

also applicable in workspaces greater than 2D. Another great advantage of the

APF approach is that the robot still maintains its direction towards the goal even

if there are changes in the environment. It models the robot as a point in a

potential field U, which is the combination of attractive force used for goal

attraction and the repulsive force used for obstacle repulsion. The Artificial

potential field method is a local method and one of the features is iteration.

3.4.1 Attractive Potential

The sum of the attractive and repulsive forces is the artificial potential function,

U.

 U(q) = Uatt(q) + Urep(q) (3.10)

7. https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf

(b) Concept of Potential field

Repulsive potential field

 (c)

https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf

41

where Uatt(q) is the function that attracts the robot towards the goal and Urep(q) is

the repulsive function that repels the robot from the obstacle.

The sums of the two negative gradients vectors are,

 𝐹⃗𝑎𝑡𝑡(𝑞) = -∇⃗⃗⃗𝑈att(q) and (3.11)

𝐹⃗𝑟𝑒𝑝 = -∇⃗⃗⃗rep(q) (3.12)

These are the attractive and repulsive forces respectively.

A parabolic function is proportional to the square of the Euclidean distance

𝒹(𝓆, 𝓆ℊ) to the goal:

 Uatt(q) =
1

2
𝜁𝑑2(𝑞, 𝑞𝑔) (3.13)

where 𝜁 is a positive scaling factor, a parameter use to scale the effect of the

attractive potential, whilst 𝑑2(𝑞, 𝑞𝑔) is the distance criteria that is selected as the

Euclidean distance, 𝒹(𝓆, 𝓆ℊ). When attracting force ∇𝑈𝑎𝑡𝑡(𝑞) converges

linearly to zero, the robot approaches the goal 𝑞𝑔 and tends to infinity when d(q,

qg) moves away from 𝑞𝑔.

 𝐹⃗𝑎𝑡𝑡(𝑞) = -∇⃗⃗⃗𝑈att(q) (3.14)

 = −𝜁𝑑(𝑞)∇d(q)

 = −𝜁(𝑞 − qg) (3.15)

When there is an increase in velocity as a result of the 𝑞𝑖 being far from the 𝑞𝑔, a

combination of both quadratic and conic potentials is used. This implies to use

the quadratic potential near goal and the conical potential farther away. Then the

conic potential draws the robot from a far 𝑞𝑔 whilst the quadratic potential also

attracts the robot when it is close to 𝑞𝑔. The attractive potential is also called a

conical function:

42

 Uatt(q) = 𝜁𝑑(𝑞, 𝑞𝑔) (3.16)

with equations 3.13 and 3.14, the attractive force is constant and indefinite in qg.

The basic idea of the attractive potential is that: Uatt(q) should increase as q moves

away from 𝑞𝑔, for instance, potential energy increases as one moves away from

the surface of the earth.

3.4.2 Repulsive Potential

The basic idea of the repulsive potential is to make sure that the robot moves

away from obstacles. This is achieved by creating a barrier around the obstacles

to prevent the robot from traversing through, whilst the motion of the robot is

maintained without any influence when it is far away. Essentially, a robot 𝒜

should be repelled from obstacles, not letting 𝒜 hit an obstacle and if 𝒜 is far

from the obstacle, it is not desirable that an obstacle to affect 𝒜’s motion.

However, a potential function for convex obstacle that satisfies the two

requirements is:

 𝑈𝑟𝑒𝑝,𝑖(𝑞) = {

𝜁𝑟,𝑖

2
(

1

𝑑𝑖(𝑞)
−

1

𝑑0,𝑖
) ² 𝑓𝑜𝑟 𝑑𝑖 (𝑞) ≤ 𝑑0,𝑖

0 𝑓𝑜𝑟 𝑑𝑖 (𝑞) > 𝑑0,𝑖

 (3.17)

Where 𝜁𝑟,𝑖 = the positive scaling factor,

𝑑𝑖(𝑞) = 𝑚𝑖𝑛𝑞′∈𝐶𝒪𝑑(𝑞,𝑞′) = the minimal distance from obstacles to 𝑞:

𝑑0,𝑖 is the positive constant for the range at which obstacle influence the robot

motion (i.e. the distance of influence): Then, as q approaches 𝐶𝒪, 𝑈𝑟𝑒𝑝,𝑖(𝑞)

approaches ∞. 𝑈𝑟𝑒𝑝(𝑞) = ∑ 𝑈𝑟𝑒𝑝,𝑖(𝑞)𝑛0
𝑖=1 (3.18)

The above equation is the sum of the individual potentials associated with the

convex components of 𝐶𝒪. Figure 3.12 demonstrates how the potential field

43

method is used to solve the motion planning problem.

(a)Two Obstacles

Figure 3. 12 An example of motion planning problem by APF8

3.4.3 Local Minima

The key shortcoming of the potential field method is the problem of local minima.

That is, when the attractive potential and the repulsive potential are equal or

8. 16-735, Howie Choset, with slides from Ji Yeong Lee, G. D. Hager and Z Dodds

(c) Repulsive potential Urep over the obstacles (d) Total potℝ2ential function,

Utot

(b) Uatt is attractive potential towards the goal

(e) The equipotential contours of the total potential

and a path that is generated by the following the

gradient of the combined potential.

(f) The gradient vector orientation

over the field 𝐹⃗(𝑐)

44

nearly equal in the opposite way, the potential field is zero, and the robot is

trapped. Therefore, no path is found and so the process is incomplete. This

problem of local minima plagues all gradient (gradient of potential field function)

descent algorithms. Gradient descent algorithm is a method used to optimize the

problem by first starting from the current configuration, then moving a bit

towards the opposite direction to the gradient which will produce a configuration

different from the current configuration (Choset Howie et al., 2005). This is

continued iteratively until the gradient approaches zero. Then a scalar ∝ (𝑖) is

used as a determinant factor for the step size at the iteration. This scalar ∝ (𝑖)

must be set to be smaller than the current distance to obstacle, ∝ (𝑖) should be so

small that it will prevent robot from collision with obstacle also so as not to

overshoot the goal that may lead to high time in computation. However, when the

robot reaches a point where the gradient descent converges, where ∇⃗⃗⃗𝑈(𝑞(𝑖)) =

0 such point 𝑞(𝑖) is a critical point of i. This point can be a minimum, a maximum

or a saddle point. However, most potential field methods are incomplete,

however, they are computationally fast.

3.4.4 Navigation Function

The navigation function is a potential field that is specified by functions that are

free of local minima. And a function is referred to as a navigation function if it is

infinitely differentiable with one minimum only at the goal configuration. This

implies creating an artificial potential field that will have unique minima, so that

when the robot moves, it is garranteed that it will reach the goal.

Definition 3.4

A function 𝜑: 𝑄𝑓𝑟𝑒𝑒 → [0,1] is called a navigation function if it satisfies the

following:

i. 𝜑 is smooth (or at least 𝐶2)

ii. it has a unique minimum at qg

iii. it is uniformly maximal on the boundary of the free space

iv. it is Morse (i.e. if every critical point is isolated).

45

 3.5 Cell decomposition

The free space 𝒞 can be represented using the cell decomposition method. The

basic concept of this approach is that giving a point as the robot in a free space 𝒞,

first subdivide the free space into cells and make sure that the cells are not

intersecting. Then construct a graph called adjacency graph since the cells have

an adjacent relationship between them. These cells are the vertices of the graph

whilst the edges are derived from the cells of common boundary. The planner

then determines if the start and goal are contained in the cells before searching

for a path in the adjacency graph. The cell decomposition method has some

advantages over other methods of path planning because it can be used to achieve

coverage since every cell has a simple shape that can be covered with a simple

motion. Exact decomposition and approximate cell decomposition methods are

the categories of cell decomposition method.

3.5.1 Exact cell decomposition method

The basic idea of Exact decomposition is that the shape and size of the cells

depend on the dimension of the environment with the geometrical structure of the

objects in the space. Using the dimension of the workspace and the location of

the obstacle, there exist methods to decompose robot free space. to subdivide the

robot's free space by decomposing free space into trapezoidal and triangular cells

that are bounded with polygons, by drawing a non-overlapping line from each

node of polygon internally to the vertex outside the boundary. A good example

of these methods is the vertical cell decomposition or trapezoidal decomposition

and also characterized as complete.

46

Figure 3.13 Vertical cell decomposition or trapezoidal decomposition 9

(Patle, Pandey, Parhi, & Jagadeesh, 2019b)

3.5.2 Approximate cell decomposition

This type of cell decomposition is different from the exact cell decomposition

because it has a recursive approach to subdividing the cells repeatedly until either

the cells are completely within the obstacle region or an arbitrary limit resolution

is reached. It is also referred to as quad-tree decomposition since every cell is

subdivided into four smaller cells repeatedly until a free continuous path is

discovered (Choset Howie et al., 2005).

3.6 Sampling-based approach

The basic concept of this approach is that rather than exhaustively exploring all

possible spaces, a subset of the space is explored randomly and keeping track of

the progress. The sampling-based method is very complex to use when the size

of the configuration space increases. This method can also be described as

searching for a collision-free path by sampling points. There are two categories

of sampling-based method: the probabilistic roadmap (PRM) and the single-

query planners (Coenen & Steinbuch, 2012).

9. https://ars.els-cdn.com/content/image/1-s2.0-S2214914718305130-gr3.jpg

47

3.6.1 Probabilistic Roadmap

A probabilistic roadmap (PRM) is a sample-based concept that also constructs a

roadmap that results also into a network of edges and nodes in free space. The

network between the nodes is used to search for a free path between the start and

goal. Every sample is a node in the roadmap and robot configuration is

represented by the sample. There are two phases involved in the construction of

the probabilistic roadmap: the learning phase and the query phase.

a. Learning phase

The learning phase is where the configuration space is sampled and confirmed

that the random configuration exists that is also free from collision, then the

random configuration is added to the roadmap. Using a predefined distance, the

random configuration space can be connected to a near sample using a straight

line. This iteration continues until a predefined size of sampled nodes is achieved.

b. Query phase

This is where the connection between the initial configuration and goal

configuration to the roadmap is done. However, a path search is only successful

if there is a connection between the roadmap and both the initial and goal

configurations. Otherwise, the planner returns to the query phase or failure if

there is no success in trying to improve on the roadmap.

3.6.2 Single-query planner

The basic idea of a single-query planner is that a single path planning problem

can be solved quickly without any pre-processing. The subset of free space

relevant to the path planning problem is explored instead of representing

exhaustively the free space of the roadmap. This is done with the use of a tree

structure. In the probabilistic roadmap method, the random configuration is

allowed to be added to the roadmap if it belongs to the configuration free space.

However, in a single-query planner, it can only be added if there is a connection

to the current configuration.

48

3.7 Search Algorithm

The space representation methods: Roadmap, APF, Cell Decomposition and

Sampling-based method discussed earlier have solutions to path planning

problems that need to be solved. These approaches convert the repeated process

of searching for a path in free space into a process of searching a graph. The

collection of nodes and edges is referred to as a graph, and if an edge connects

two nodes it implies that there is a relationship between these two nodes called

adjacent relationship.

This connection between two nodes is characterized by an 'adjacent relation'.

There are also two types of graph: the 'directed graph' and 'undirected graph'. A

directed graph is an environment where a robot can move in one direction only

but if the robot can move in both directions on the edge it is referred to as an

undirected graph. However, a graph is just like a tree, however, what

differentiates a graph search from a tree search is that in graph search the track of

the nodes visited are kept in an explored set whilst a tree search does not take note

of the visited nodes and this creates unnecessary search loop. More about tree and

graph can be found in Data structure10. For this work, we are going to consider

the graph search approach which is in the next chapter. Graph Search can be

categorized into the followings: Uniformed, Informed and Local search.

3.7.1 Uninformed search

Uninformed search is the type of algorithm that allows traversing through the

graph without any prior information about the goal node and some examples of

this search are Breadth-First search, Depth-first search and Dijkstra’s algorithm

(Pathak, Patel, & Rami, 2018).

a. Breadth-first search

The idea behind this search is that the source or root node is first traversed

followed by traversing all the nodes that are directly connected to the source node

then traversing to the next layer of nodes. Every node is traversed and checked

10. https://www.techgeekbuzz.com

49

whether it is the goal node and if not it repeats the process until the goal node is

discovered. All nodes of every layer are traversed before the nodes of the next

layer is traversed, which implies first explore all the nodes of the current layer,

then move to the next layer.

 b. Depth-First search

The concept of the depth-first search is backtracking by a recursive algorithm. It

traverses the deepest node of the tree. All the nodes are visited until the unvisited

are visited then the next frontier is checked before backtracking.

c. Dijkstra' algorithm

This is the algorithm to find the shortest path from the root node to every other

node in the graph. Both BFS, DFS and Dijkstra’s algorithm use the same function

f(n) that determines the cost of expansion of node

 f(n) = g(n)

however, in the case of breadth-first search, g(n) is determined by First-In-First-

Out, (FIFO) queue whilst in Depth-first search the g(n) is determined by Last-In-

First-Out, (LIFO) for the expansion of the stack.

3.7.2 Informed Search

This is a search that involves prior knowledge of the goal node. It requires a

heuristic cost that will determine which node to explore next. A Euclidean

distance to the goal node can be used as an example of a heuristic approach. This

can also be used as a catalyst for a search. However, does not guarantee that the

path obtained is the shortest. Two categories of informed search are Greedy Best-

First and A* search.

a. Greedy Best-First search

In this search, the node closes the goal node is traversed first. The greedy best-

first does not apply g(n) to determine the expansion of nodes, it uses only the

heuristic to quickly found a path or solution. This search method cares less about

50

the cost of the path but the cost to reach the goal node because even if the path

length increases it keeps moving on.

b. A* Search

This is another type of search for finding the shortest path. A* uses the

combination of the cost function g(n) to reach a node and the cost function h(n)

to get from the goal node. i.e. f(n) = g(n) + h(n), (Charalampous, Kostavelis,

Amanatiadis, & Gasteratos, 2014).

c. D* Search

An extension of A* that addresses the problem of expensive re-planning when

obstacles appear in the path of the robot, is known as D*. Unlike A*, D* starts

from the goal vertex and can change the costs of parts of the path that include an

obstacle. This allows D* to re-plan around an obstacle whilst maintaining most

of the already calculated path.

3.7.3 Local search

The uninformed and informed search achieves their search by storing path(s) and

also keeping a record of the visited node along the path. But local search does not

bother about paths, instead of multiple paths it uses an existing node and traverse

only to neighbouring nodes without keeping path(s) in memory.

3.8 Conclusions

The representation methods and search algorithms discussed in this chapter are

purposely for the solution of path planning problems. The basic motion planning

problem is to find a path for the robot from starting point to target without any

collision, however, this path planning problem is now extended to path planning

in a dynamic environment which is in the scope of this work. The focus is on

motion planning with uncertainty and some constraints. To solve these extensions

of the path planning problems both the representation method and the search

algorithm can also be combined.

http://en.wikipedia.org/wiki/D*

51

Chapter Four

4.0 Problem Definition and Method Used

4.1 Introduction

An environment is complex if there exist obstacles that are dynamic with

uncertainties like open or closed doors. Most path planning techniques mentioned

in Chapter Three are not effective in these kinds of environments. For instance,

the Artificial potential field method results in the problem of local minima and

this may occur quite often when there are several obstacles in the environment.

However, among all the path planning techniques the roadmap-based technique

is more effective and good for implementation because it is concise in

representation i.e. the entire workspace is not needed to be discretized into small

cells. A roadmap-based method called Generalized Voronoi Diagram (GVD) is

applied in this work. Using the GVD, the robot is guaranteed a maximum

clearance from the obstacles whilst moving through the environment. (Choset &

Burdick, 1995) and (Choset & Burdick, 1996) works show that the generalized

Voronoi Diagram has always been applied as a basis for motion planning

algorithms for a long period.

Figure 4.1 shows an environment set up with different obstacles at different

locations, having the robot starting position at the lower-left corner whilst the

target at the upper right corner. The static obstacles are in pink colour and the

moving obstacle in blue colour. This is a typical example of the proposed setting

used for this work.

52

Figure 4.1 Proposed setting of the work.

However, Figure 4.2 is an example of a complex/dynamic environment where

tables, walls, bins can be static obstacles and humans, robots are the moving

obstacles in the workspace.

Figure 4.2 Train station, New York city11

4.2 Problem Definition

Assuming the robot is a circular object and with little information of the

environment where the robot operates, i.e., workspace, 𝒲. Let 𝒲 be a subset of

a two-dimensional (2D) plane. And if this workspace 𝒲 contains polygonal

obstacles, the problem now is, what is the minimal cost of path generation from

where the robot is (starting point) to where the robot is asked to go (goal point).

To generate the path, it is assumed that the workspace contains two categories of

objects: the obstacles (occupied space) and the free space. The obstacles are

places where the robot cannot navigate through whilst the free space is where the

11. https://traveltips.usatoday.com/new-york-train-routes

Static

obstacle

s

Moving

obstacle

https://traveltips.usatoday.com/new-york-train-routes

53

robot can navigate. However, in this work, the workspace will be ℝ2, for path

generation purpose, the robot is modelled as a point, and the workspace as an

arbitrary map which implies that the robot is reduced to a point whilst the

workspace 𝒲, is transformed to configuration space 𝒞 . This idea was presented

by (Lozano-Perez, 1987).

The configuration space occupied by the obstacles is referred to as 𝒞obs whilst the

remaining part of the configuration space is free space where the robot is free to

move is denoted by 𝒞free (Latombe, 2012).

𝒞free = 𝒲∖ ⋃ 𝒞𝑖=𝑛
𝑖=1 𝑜𝑏𝑠

 (4.1)

4.3 Voronoi Diagram

The concept of Voronoi Diagram is to produce line segments that are equidistant

to all points of the obstacle space whilst the meeting point of the line segments is

referred to as nodes or vertices. Voronoi Diagram is a concept of computational

geometry used to find the collision-free path and to build a map. Figures 4.3

shows a Voronoi Diagram, where a point in the yellow region is closer to another

point in the same yellow region than any other point in another colour region, and

Figure 4.4 shows a Generalized Voronoi Diagram of three polygonal obstacles.

In Voronoi diagram, obstacles are assumed to be points so, VD is a graph with

points and vertices. However, in a real world obstacles are not points, they are

objects. Therefore, instead of regions around points, it is regions around objects

which is GVD as seen in Figure 4.4.

54

Figure 4.3 Example of a Voronoi Diagram12

Figure 4.4 Voronoi Diagram (Nieuwenhuisen, Kamphuis, Mooijekind, & Overmars, 2004)

Let 𝒹(𝒫𝒾, 𝒫𝒿) be a distance from a point 𝒫𝒾 = (𝓍𝒾, 𝓎𝒾) to 𝒫𝒿 = (𝓍𝑗 , 𝓎𝑗) in a

plane, then

Let 𝒫 = { 𝒫1, 𝒫2, … , 𝒫n} ⊂ ℜ2

be a set of points with the cartesian coordinates (𝓍1, 𝓎1), …, (𝓍n, 𝓎n)

where 2 < n < ∞ and 𝒫i ≠ 𝒫j for i ≠ j.

V (𝒫i) = { 𝓍 ∈ ℜ2 | 𝒹(𝓍, 𝒫i) ≤ 𝒹(𝓍, 𝒫j) for j ≠ i} (4.2)

We call V (𝒫i) the region Voronoi Diagram of 𝒫i.

Then, the 𝒫i of V (𝒫i) is called the site or the generator of ith Voronoi polygon

whilst the set 𝒫 = { 𝒫1, 𝒫2, … , 𝒫n} is called the generator set of Voronoi

Diagram V .

𝑉 (𝒫) = ⋃ v(𝑝𝑖)𝑝𝑖∈𝑝
 (4.3)

 =⋃ {𝒳
𝑝𝑖∈𝑝

𝜖 ℜ2 |𝒹(𝒳, 𝒫𝑖) ≤ 𝒹(𝒳, 𝓆) : ∀ 𝓆 𝜖 (𝒫 − {𝒫𝑖})}

12. en.wikipedia.org/wiki/Voronoi Diagram

55

= ⋃ [⋂ {𝒳 𝜖 ℜ2 |𝒹(𝒳, 𝒫𝑖) ≤ 𝒹(𝒳, 𝓆)}𝓆𝜖𝒫−{𝒫𝑖}]
pi∈p

 (4.4)

A Voronoi Diagram is a partitioning of a plane into regions based on the distance

to points in a specific subset of the plane. The set of points (sites, or generators)

is specified beforehand, and for each site, there is a corresponding region

consisting of all points closer to that site than to any other. These regions are

called Voronoi cells. The Voronoi Diagram of a set of points is dual to its

Delaunay triangulation.

Figure 4.5 Voronoi Diagram V for 9 points and the Delaunay triagulation of the same VD

Using ‘voronoi’ function in MATLAB

4.4 Generalized Voronoi Diagram

Since it is assumed that robot operates in a bounded and connected subset of

free space 𝒞free,

therefore, this subset is also bounded by obstacles.

Mathematically, for every obstacle space 𝒞obs , the distance function:

 𝒹𝑖 (𝓍) = 𝑑𝑖𝑠𝑡(𝐶𝑜𝑏𝑠, 𝓍) (4.5)

Then the Voronoi region is:

 𝒱ℛ𝑖 = {𝑥 ⃒ 𝑑𝒿(𝑥) ≤ ∀ 𝒿 ≠ 𝒾} (4.6)

However, the Generalized Voronoi Diagram is the set of the Voronoi regions.

56

The Generalized Voronoi Diagram GVD basic concept in planning path for

Robot is to maximize the distance from the robot to the obstacles. It consists of

a point equidistant to two or more closest obstacles with straight and parabolic

lines where obstacles are polygons.

Advantages of Voronoi Diagram over other methods

1. The Voronoi Diagram can be computed in 𝑂(𝑛𝑙𝑜𝑔𝑛) time whilst it took

𝑂(𝑛2) time for the fastest construction of the visibility graph.

2. Querying of a path in the Voronoi Diagram is faster than the querying in

visibility graph since it has 𝑂(𝑛) edges.

3. It is difficult to construct the VD in higher dimensions or with non-

polygonal subjects, approximation algorithms exist.

4. The VD is not good for heuristic, it is good for a known terrain where robot

stays away from obstacles

5. Using robots that have a long sensor range, the Voronoi Diagram method

has the advantage of execution over other obstacle avoidance techniques.

In fact, following the Voronoi path results from maximizing the distance

whilst maintaining equidistant from the surrounding objects, which can be

done relatively easily with a good range finder.

4.5 The description of the proposed method

4.5.1 Part 1. Implementation of the method

This proposed method combines the GVD and Deformation Retracts. This is

presented in a graphical user interface GUI. This section describes the new

method’s implementation. Figure 4.6 shows the GUI with three polygonal

obstacles in a rectangular wall which is also considered to be an obstacle, with a

starting point (green colour) and a goal point (red colour).

57

Figure 4.6 Representation of environment configuration

4.5.2 Roadmap generation

In 2D planar Euclidean space, when two Voronoi regions meet a Voronoi edge is

obtained. And when two Voronoi edges meet we have a Voronoi vertex. The

Voronoi edge can be a straight line or a curved segment. However, the straight

line is the set of configuration that are closet to the same pair of obstacles’ edges

(edge/edge) or the same pair of obstacles’ vertices (vertex/vertex) and a curved

segment is the set of configurations that are closet to the same pair of an obstacles’

edge and a vertex (edge/vertex).

To construct the Voronoi Diagram, the polygonal obstacles can be viewed as a

set of line obstacles whilst each line obstacle can be also viewed as a set of point

obstacles separated by a distance of ℰ. Then to draw the Voronoi Diagram in this

configuration, the matlab function ‘voronoi()’ divides the polygons into some

point sites using the parameter ℰ to determine the distance between two

consecutive point sites. If the distance between these consecutive point sites is

small, there will be a greater number of vertices and this would lead to more

spaced edges. Therefore, lesser ℰ generates a smooth path or map but execution

time will increase because of the increase in the number of points. Below are

some examples of different samples of Voronoi Diagrams with different values

of ℰ. Voronoi diagram for a line site can be generated by considering line as a

linear array of point sites whilst the Voronoi diagran for polygonal ogject can be

drawn by the polygon asa set of line segments.

58

Figure 4.7 VD with ℰ = 0.2

 Figure 4.8 VD with ℰ = 0.5

Figure 4.9 VD with ℰ = 0.8

59

Figure 4.10 VD with ℰ = 1

Figure 4.11 with ℰ = 1.5

Figure 4.12 VD with ℰ = 1.8

60

Figure 4.13 VD with ℰ = 2

In Figures 4.7 to 4.13, it is shown that the higher the ℰ the lesser the number of

vertices and the lower the computation time for the construction of the Voronoi

Diagram. It is also shown that there are set of points from the same objects and

set of points from different objects that generate two different types of edges.

However, it can also be observed that every Voronoi edge corresponds to two

points and also a perpendicular bisector of the line to the points. The ℰ = 1 is use

to compute the Voronoi Diagram in order to reduce the number of vertices, and

also lower computation time. Figure 4.10 shows Voronoi diagram for a given two

obstacles configuration with ℰ = 1. This generates two types of Voronoi edges:

Voronoi edges formed by the same object's point sites and Voronoi edges

generated by two separate object's point sites. Each Voronoi edge, on the other

hand, corresponds to two point sites that are perpendicular to the segment

connecting the points. The goal is to keep the second-category edges i.e. those

formed from point sites of different objects whilst removing those that are formed

by point sites of the same objects. now Then, followed by the task of removing

those edges that are generated by point sites of the obstacles whilst preserving

those edges generated from two different objects. Since, Matlab does not directly

provide information about the edges that relate to point sites. Then, a matlab

function “drawVoronoi” is used as follows:

[Voro_Vertex, Voro_Cell] = drawVoronoi ([X_Total_points’ Y_Total_points’])

61

Voro_Vertex holds an array of all Voronoi vertices, whilst Voro_Cell holds

information about the edges that correspond to each point site. As a result, the

information in Voro Cell can be used to separate the Voronoi edges of the second

category. Figure 4.14 depicts the second category's separated Voronoi edges in

green and this is the VD of the given obstacle configuration.

Figure 4.14 VD of a given obstacle configuration

To generate path, the Voronoi diagram for the environment needs to be computed

to obtain the Voronoi edges which represent the maximum clearance between the

nearest obstacles. Then, these associated Voronoi edges are followed to the goal.

This implies that the series of Voronoi edges form the path for the robot to follow.

However, whenever there is a change in the environment, the Voronoi diagram is

deformed and the Voronoi edge is updated and new path is generated.

Next is to find the shortest collision-free path from the source to the goal. In some

scenarios, both the starting point and goal point may not be on the Voronoi

Diagram, the nearest vertex from the start and goal points are identified and

referred to as Start* and Goal* respectively. Then, using Dijkstra’ algorithm, the

shortest path between the Start* and Goal* can be found. The final path from

Start to Goal will be for instance, the combination of the paths Start (Start that

do not lies on the VD) to Start* (Start* that lies on the VD), to Goal* (Goal*

that lies on the VD), and to Goal (Goal that do not lies on the VD).

Then, the final path is shown in magenta colour in Figure 4.15.

62

Figure 4.15 Final path (magenta) for robot

Start

Start*

Goal

Goal*

63

Figure 4.16 Flowchart of VD for the new system

Get the dimensions of the obstacles, then

divide up the obstacle edges to

equidistance points using epsilon 𝜀

Since the boundaries are also

obstacles, get the dimensions

and divide up the boundary

obstacles to equidistance points

Then call the Voronoi function,

“drawVoronoi” to compute the

vertex and the edge. Search for

connected points in the Voronoi

and connects the two points.

Is

𝜀 <1

?

Remove the edges generated

from point sites of same

objects and retain the edges

generated from point sites of

different objects

*Draw the robot/start.

*Draw the goal.

* Then draw Voronoi

Diagram.

Using Dijkstra’s algorithm,

compute the shortest free path

from the start to the

 Start

Refine path

Using Dijkstra’s algorithm,

compute the shortest free path

from the start to the goal.

End

YES NO

64

In a real life situation, the proposed system would work for two different states;

the execution and planning simultaneously. The environmental changes would be

detected by sensing mechanisms and as soon as signals are received execution is

done by updating the problem without stopping if updating is required. However,

if no collision is anticipated, that is if the interference is insignificant, it would

keep executing the path to avoid repetition of action by generating new path each

time a change occurs.

Moreso, simulators are needed to drive this theoritical concept since many

simulators have been implemented in Matlab, for instance (Corke & Khatib,

2011) presented a comprehensive set of Matlab and simulink scripts that deals

with mobile robot navigation; motion planning, motion control, localization and

mapping. Some of the functions of these simulators is to consider the physical

characteristics of the robot i.e. size, weight and also speed that would definitely

have impact on the performance evaluation.

4.6 Implementation of Deformable Voronoi Diagram

4.6.1 Deformation process

In a dynamic environment, when an obstacle moves or a new obstacle appears,

a pre-planned path becomes inapplicable since the environment has changed,

therefore the environment is deformed and updated to re-plan an alternative path

for obstacle avoidance, which implies that every path in the configuration space

must be continuously deformable to another path. This implies generating a new

roadmap that will dynamically retract to capture the connectivity of the free

space. The robot continues to follow the pre-planned path as long as it remains

applicable unless the deformation of the environment due to the obstacle’s

motion.

4.6.2 Deformation distance

The procedure here is inspired by the work of (Yoshida & Kanehiro, 2011)

Let li be a repulsive distance.

65

If the distance between the robot and the obstacle is less than a repulsion distance

li, then the deformation occurs.

Let X and Y be two closest points on the obstacle and the robot and let ln be a

vector, where l is the distance between point X and point Y and n as the unit

vector.

If there is a move from point X which makes l greater than the repulsion distance

li and let the displacement be △X.

If △X satisfies the equation below:

 △X ⋅ n ≥ li – l 4.7

Then if we use Jacobian matrix Jx at X to show the relationship between the

small displacement △y and △X in the configuration space as:

 if △X = Jx△y

 then, Jx△y ⋅ n = △y ⋅ 𝐽𝑋
𝑇𝑛 ≥ 𝑙𝑖 − 𝑙 4.8

using, li – l, and without inversing the Jx,

△y can be derived as:

 = (li - l)
𝐽𝑋

𝑇𝑛

‖𝐽𝑋
𝑇𝑛‖

2

This implies that the robot cannot move beyond the absolute value of △y because

it will go outside the boundary.

The diagram below describes the concept of deformation.

Figure 4.17 Path Deformation direction due to small displacement to avoid collision

X Y

Moving

obstacle

li

l

△X 𝑛

△y

66

The obstacle is not continuously moving, and our proposed system does not imply

re-planning the Voronoi Diagram completely. So once there is interference due

to environmental changes caused by the movement of the obstacle, the pre-

planned path for the robot to execute will no longer be applicable and the robot

will be in a state of “waiting time concept”. The problem is updated and check if

an alternative path can be generated by updating the part of the VD affected by

the obstacle motion. However, if an alternative path is found which implies that

the deformation is successful then the alternative path can now be substituted with

the pre-planned path and then continue the execution on the deformed Voronoi

Diagram.

67

Figure 4.18 Flowchart for deformable Voronoi Diagram.

YES

NO

Start

Voronoi Diagram &

final path

Is obstacle

moving?

Update

problem

Is there

collision?

Apply deformation to the

affected part of VD

Is path

found

?

Execute

i=1…..n

Robot

Waiting time

End

YES

NO

NO

YES

68

Figure 4.19 The flowchart of replanning and execution in a real life situation

VD & Final path

YES

Planning

Wait for problem

Update problem

Idle

Safe stop & wait

Change in Env Collision

testing

 Up

Updating/Deformation

Execution

NO

Change in Env

Path planned

Path found

Start

69

4.7 The Graphical User Interface for the proposed system

Our new system presents a Graphical User Interface (GUI) that will allow any

user to interact with the system using images instead of text commands. The GUI

shows some graphical environments where some results are displayed. Space,

where the robot operates, can be described as a Matlab axes object and there are

push buttons for the user to perform actions required. The GUI which is shown

in Fig.4.19 has a wide space/environment where the results are displayed which

is called the workspace (W).

The GUI comprises four panels: the menu bar, the title bar, the workspace, and

the path planning panel.

Figure 4.19 The main window of the setting.

(a) The Menu Bar is placed at the top of the window, horizontally displayed

Menu. Sometimes called a file menu and helps in file handling in some

cases.

(b) The title bar comes after the Menu bar on the top of the window: this

describes the name of the GUI.

(c) The workspace panel is made up of a wide white space where obstacles

are created, and the trajectory that is produced from the path planning

algorithms displayed, also where the simulation are displayed.

(d) Path planning panel is placed vertically at the left side of the GUI which

consists of eleven pushbuttons. Each of these pushbuttons is named for a

Workspace

Menu Title bar

Path Planning Panel

70

particular purpose. The first pushbutton 'Draw Obstacle’ is used for

drawing obstacles, the pushbutton ‘Draw Robot’ is to draw a robot and the

pushbutton ’Voronoi Path’ is used to compute the GVD as the approach

for planning the path. Clicking on ‘Robot Final Path' to obtain the shortest

path for the robot. For each pushbutton on the panel, its label describes it

is function.

71

Chapter Five

5.0 Results and Analysis

5.1 Background

This chapter discusses the simulation results and the evaluation of the

performance of the proposed path planner using the simulation results. The

Generalised Voronoi Diagram is used to extract the free space for a mobile robot

and the Deformation Retract technique is applied to the extracted free space to

generate alternative paths. The experimentation was done in MATLAB for

different environmental settings. The graphical user interface (GUI) is designed

for the path planning system to enable user-friendliness of the new system.

This is a path planning algorithm for a mobile robot with 2-dimensional complex

environments and polygonal obstacles. However, the shortest paths are expected

to be optimal, factors such as unevenness of the terrain, the path length, and the

delay in executing the path (due to some constrained routes where robots need to

navigate through some wave points) may produce shortest paths that do not end

at the stated target location because it will be at the expence execution time.

5.2 Environments and Algorithms

To address the path planning problems, maps of the environments are required.

These environments contain both static/dynamic obstacles, robots, and are

represented in the GUI window (workspace). Both obstacles, robots and maps are

created in the workspace and the simulation results are presented. The boundary

of the workspace and robot are also regarded as obstacles. In this work, to

compute the Voronoi Diagram using the parameter ℰ, the polygonal objects

(obstacles) are divided into point sites and the map for all set of points is

constructed. The distance between successive point sites is controlled by the

72

parameter ℰ. If the value of parameter ℰ is small, say, 0.5 or 0.8, then the number

of nodes increases and this implies more spaced Voronoi edges.

The smaller the ℰ, the smoother the path generated at the cost of computation

time, because the number of points increases. However, if a high value of ℰ is

employed, such an experiment will generate non-smooth and/or unconnected

segments, because the points sites considered are not enough. Since the distance

between the consecutive point sites is based on the parameter ℰ.

If the ℰ ≤ 2, the smoother the path generated whilst the path generated will be

non-smooth and/or unconnected segments if the ℰ ≥ 3.

Figure 5.1 ℰ =1.5 with smoother path

73

Figure 5.2 ℰ = 5 with non-smooth but connected segments

Figure 5.3 ℰ = 10 with non-smooth and unconnected segments

The comparison variations of ℰ and the number of edges and vertices in a static

environment, i.e., before the deformation of the Voronoi Diagram can be

illustrated in Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and Table 5.1.

74

Figure 5.4 Env1 with ℰ =0.4

 Figure 5.5 Env2 with ℰ = 0.8

Figure 5.6 Env3 with ℰ = 1.0

75

 Figure 5.7 Env4 with ℰ = 1.5

Figure 5.8 Env5 with ℰ = 3

Figure 5.9 Env6 with ℰ= 5

76

Table 5.1 Comparing Variations of ℰ and number of edges & vertices before VD deformation

Environments Number of

obstacles

Epsilon, ℰ Number of

Vertices

Number of

Edges

Env1 3 0.4 1069 1381

Env2 3 0.8 505 648

Env3 3 1.0 421 547

Env4 3 1.5 302 394

Env5 3 3.0 145 181

Env6 3 5.0 85 103

However, the comparison of variations of ℰ and the number of edges and

vertices in a dynamic environment, i.e., after the deformation of the Voronoi

Diagram can be illustrated in Figures 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, and

Table 5.2.

Figure 5.10 Env1 with ℰ = 0.4

 Figure 5.11 Env2 with ℰ = 0.8

77

Figure 5.12 Env3 with ℰ = 1.0

 Figure 5.13 Env4 with ℰ = 1.5

Figure 5.14 Env5 with ℰ = 3.0

 Figure 5.15 Env6 with ℰ = 5.0

78

Table 5. 2 Comparing Variations of ℰ and number of edges & vertices after VD deformation

Environments Number of

obstacles

Epsilon, ℰ Number of

Vertices

Number of

Edges

Env1 3 0.4
1088 1405

Env2 3 0.8
559 724

Env3 3 1.0
417 528

Env4 3 1.5
308 405

 Env5 3 3.0
152 202

Env6 3 5.0
92 121

 Six environments will also be used to make a comparison of the execution time

for the Voronoi Diagram and the final path before and after deformation. Three

obstacles are going to be used for these illustrations, one moving obstacle and

two static obstacles. The first obstacle (i.e., upper left obstacle) is the moving

obstacle as shown in Figure 5.16.

Considering the comparison of the execution time for computing the VD and the

robot final path using six environments before deformation is illustrated in

Figures 5.16 to 5.21.

Figure 5.16 Env1 with ℰ = 0.4,

VD (t=6.94s), Final Path (t=26.89s)

The first obstacle

79

 Figure 5.17 Env2 with ℰ = 0.8,

 VD (t=2.07s), Final Path (t=7.11s)

Figure 5.18 Env3 with ℰ = 1.0,

VD (t=1.30s), Final Path (t=6.25s)

 Figure 5.19 Env4 with ℰ = 1.5,

 VD (t=0.77s), Final Path (t=1.70s)

80

 Figure 5.20 Env5 with ℰ = 3.0,

VD (t=0.35s), Final Path (t=1.56s)

 Figure 5.21 Env6 with ℰ = 5.0,

VD (t=0.32s), Final Path (t=0.91s)

This is also demonstrated in Table 5.3.

Table 5.3 Comparison of the execution time of getting VD and Final path before Deformation

for six environments

Environments Number of

Obstacles

ℰ Voronoi

Computation

Time(s)

Final Path

Execution

time(s)

Env1 3 0.4 6.94 26.89

Env2 3 0.8 2.07 7.11

Env3 3 1.0 1.30 6.25

Env4 3 1.5 0.77 1.70

81

Env5 3 3.0 0.35 1.56

Env6 3 5.0 0.32 0.91

However, the comparison of the execution time for computing the VD and the

robot final path using the first obstacle (upper left 4-sided object) as the moving

obstacle for the six environments after deformation is illustrated in Figures 5.22

to 5.27. The Voronoi computation time is proportional to the final path execution

time.

Figure 5.22 Env1 with ℰ = 0.4,

VD (t=6.26s), Final Path (t=20.32s)

Figure 5.23 Env2 with ℰ = 0.8,

VD (t=1.86s), Final Path (t=6.27s)

82

Figure 5.24 Env3 with ℰ = 1.0,

VD (t=1.83s), Final Path (t=3.82s)

 Figure 5.25 Env4 with ℰ = 1.5,

VD (t=0.83s), Final Path (t=1.60s)

Figure 5.26 Env5 with ℰ = 3.0,

VD (t=0.31s), Final Path (t=0.74s)

83

 Figure 5.27 Env5 with ℰ = 5.0,

VD (t=0.17s), Final Path (t=0.70s)

A similar analysis for dynamic environments is described in table 5.4.

Table 5.4 Comparison of the execution time of getting VD and Final path after Deformation

for six environments

Environments Number of

Obstacles

ℰ VD

computation

Time(s)

Final Path

Execution

time(s)

Env1 3 0.4 6.26 20.32

Env2 3 0.8 1.86 4.16

Env3 3 1.0 1.83 3.82

Env4 3 1.5 0.83 1.60

Env5 3 3.0 0.31 0.74

Env6 3 5.0 0.17 0.70

5.3 Path Deformation process

To simulate the Voronoi Diagram deformation process, a scenario with three

static and one dynamic obstacle was used. The robot is expected to traverse

around these obstacles to reach the goal position. The first planned path has been

generated with the assumption that all four obstacles are static. The point robot

84

executes the first free path planned and successfully reaches the goal point since

no obstacle moves and there is prior knowledge of the environment. However, in

the dynamic environment, when the robot tries to execute the pre-planned path,

interference occurs due to the moving obstacle (in this study the first obstacle).

Furthermore, after the interference of the obstacle on the Voronoi, the robot

observes a wait and check state whilst a new Voronoi Diagram is ccomputed and

an alternative (collision-free) path is generated. Therefore, after the deformation

of the map, the robot now executes the new path as shown in Figures 5.9, 5.10,

5.11, 5.12, 5.13 and 5.14. A planning result for the deformation process with the

upper left object as the moving obstacle.

Figure 5.28 VD without interference (see the distance from the first obstacle and

the final path, also to the segment in arrow)

 Figure 5.29 VD with minor interference (the first obstacle has moved away a bit

from the magenta line and closer to the segment)

85

Figure 5.30 VD with less interference (the moving obstacle has again moved

farther away from the final path and closer to segment)

Figure 5.31 VD with noticeable interference (See the distance traversed by the

moving obstacle as indicated by the red arrow)

Figure 5.32 VD with high interference (the interference has made the final path to

completely deformed to anther path in the VD as shown by the black arrow and

also see the distance be the moving obstacle in red arrow)

86

Figure 5.33 VD with higher interference (the final path has deformed due to the

interference caused by the moving obstacle, see the pre-planned path in blue

colour whilst the new path in magenta)

As the obstacle moves into the path of the robot, the distance between it and the

robot (and hence, the minimum distance between the robot and any obstacle in

the configuration space) becomes less than the repulsive distance, and the map is

updated. The original path in 5.28 becomes inapplicable and as shown in Figure

5.33 it deforms to avoid the obstacle. This deformation continues as long as there

is an obstacle. This goes through 5.30, 5.31, and 5.32 towards the goal position

at 5.33 as the shortest path from the initial position. This process is repeated until

the goal is reached. The Voronoi Diagram is updated whenever an obstacle moves

and encounters interference.

To evaluate the efficiency of the new system, the performance was tested by

comparing the execution of time spent computing the Voronoi Diagram before

deformation (VD t1) with the execution time on Voronoi Diagram after

deformation (VD t2) and it shows that there is no significant difference. Figure

5.34 uses different ℰ values for various Voronoi Diagram before and during

deformation.

87

Figure 5.34 The comparison of computation time for VD before and during deformation

The comparison of the execution time for robot final path in a static environment

with execution time for robot final path in a dynamic environment is considered.

This shows that there is not much difference in the time spent on the final path

before and after the deformation as it is illustrated in Figure 5.35.

y = -1.8774x + 3.1085

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
LA

N
N

IN
G

 T
IM

E

EPSILON

Performance evaluation

VD T1 VD t2 Linear (VD t2)

y = -8.4245x + 13.728

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
LA

N
N

IN
G

 T
IM

E

EPSILON, ℰ

Performance Evaluation 2

FP t1 FP t2 Linear (FP t2)

88

Figure 5.35 Comparison of execution time before and during deformation on robot final

path.

Figure 5.36 The comparison of VD size before and after deformation

Figures 5.28 to 5.33 show that the Voronoi Diagram size is almost the same with

and without deformation. However, it is observe that the number of nodes visited

between 0.5 and 1 time without deformation is greater than that with deformation,

but later became almost the same.

From all the results, it is remarked that the combination of the Voronoi Diagram

and Deformation Retract can also solve the problem of path planning effectively.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3

N
U

M
B

ER
 O

F
V

ER
TI

C
ES

TIME

Voronoi Diagram size with and without
Deformation

Number of nodes without Deformation Number of nodes with deformation

89

Chapter Six

6.0 Summary and Conclusion

This study aims to design a planner for a mobile robot in a dynamic environment

using the fusion of the Voronoi Diagram method and deformation refracts. And

for this to be achieved, the first task was how to generate the representation of the

map using the Voronoi Diagram by extracting the safest areas in the environment

based on parameter ℰ and also to generate the final shortest free path for the given

obstacle configuration and start and goal points. Then a deformation technique is

introduced to the extracted free space based on a distance i.e. repulsive distance

to the obstacle. This is aimed at dealing with the changes in the environment. The

deformation occurs when the distance between a moving obstacle and a static or

another moving obstacle is less than the repulsive distance. However, the first

path generated becomes inapplicable since the initial map is deformed. This

proposed method is a roadmap representation that retracts and updates as a

function in the dynamic environment. It can only be used to plan the path of a

single robot among dynamic obstacles.

Finally, a method is developed to allow the robot to reach its goal using the fusion

of Generalised Voronoi Diagram and Deformation Retracts.

Our new system offers many advantages over existing methods. Most existing

methods remove the edges as soon as they are invalidated but our edges retract

based on the moving obstacle, they are not invalidated quite often. Therefore, the

system updates and retracts the affected area of the map. Another advantage of

the new path planner is that it uses the Voronoi Diagram that has the

characteristics of maximizing the clearance between the robot and obstacle by

generating the safest areas in the environment. The new path planning system will

not only be useful in robotics to help robots in dynamic environments but also in

other domains such as games theory, virtual reality, computational geometry to

mention few.

90

The paths generated by the new system are smooth and safe and are free of any

trap due to the integration of the deformation mechanism on the continuously

updated map. A graphical user interface is used to implement the algorithm, to

make the system user friendly. The new system can work also with a different

type of shaped objects including circle. The algorithm is written in MATLAB, it

is fast, works for dynamic obstacle, and can find a path if it exists.

The new method has some disadvantages because there are no assumptions on

the motion of the moving obstacle, the path planned is likely to be influenced by

other objects, it cannot also guarantee the optimality of the path generated. If the

point robot is replaced with a robot with a shape, the new system needs to be

updated for every robot shape. This system is designed only for point robot it

cannot be applied to multiple robots.

The simulation results are produced to evaluate the effectiveness of the new

system. Several types of environments were designed to evaluate the performance

of the algorithm, and these simulation results confirmed that the lesser the value

of ℰ the geater number of vertices, and the smoother the output path but a higher

cost of computation. Furthermore, the simulation results for a crowded

environment with static and dynamic obstacles shows that the new system

performance is effective because the computation cost before and after

interference is almost the same.

The simulation results also showed that when the environment with two obstacles

and another environment with three obstacles tested, and if the ℰ value is the

same, the new system performs at almost the same cost computation before and

after the deformation.

The new method is very efficient because it deals properly with each scenario

whilst applying the deformation and updating the environment in a timely way.

In this method, the deformation mechanism is used based on the distance

observed to obstacle and it enhances the method to address the problem of

environment changing due to obstacle movement through deformation. This

91

deformation is necessary when avoiding collisions, and based on the continuing

update of the environment.

 6.1 Future work

Deformable Voronoi diagram for robot path planning is a theoritical method that

needs to be implemented in real life, there is also room for improvement in the

number of moving obstacles used. Only one moving obstacle is used in this study.

Though, this approach is promising the path deformation can be made more

effective by removing extra work whenever there is little risk of anticipation of

collision. The proposed system needs to be validated with complex robots in

dynamic simulations. Also, hardware experiments need to be addressed in future

by using the e-puck robot and also sensors.

92

References

Alves, S. F., Rosario, J. M., Ferasoli Filho, H., Rincon, L. K., Yamasaki, R. A.,

& Barrera, A. (2011). Conceptual bases of robot navigation modelling

control and applications. Advances in Robot Navigation, , 26.

Aurenhammer, F., & Klein, R. (2000). Voronoi diagrams. Handbook of

Computational Geometry, 5(10), 201-290.

Azariadis, P. N., & Aspragathos, N. A. (2005). Obstacle representation by

bump-surfaces for optimal motion-planning. Robotics and Autonomous

Systems, 51(2-3), 129-150.

Behnke, S. (2003). Local multiresolution path planning. Paper presented at the

Robot Soccer World Cup, 332-343.

Benavides, F., Tejera, G., Pedemonte, M., & Casella, S. (2011). Real path

planning based on genetic algorithm and voronoi diagrams. Paper presented

at the IX Latin American Robotics Symposium and IEEE Colombian

Conference on Automatic Control, 2011 IEEE, 1-6.

Bi, Z., Yimin, Y., & Yisan, X. (2009). Mobile robot navigation in unknown

dynamic environment based on ant colony algorithm. Paper presented at the

2009 WRI Global Congress on Intelligent Systems, , 3 98-102.

93

Blanco, F. J., Moreno, V., & Curto, B. (1998). Path planning method for mobile

robots in changing environments. IFAC Proceedings Volumes, 31(2), 371-

376. doi:10.1016/S1474-6670(17)44225-X

Boukas, E., Kostavelis, I., Gasteratos, A., & Sirakoulis, G. C. (2014). Robot

guided crowd evacuation. IEEE Transactions on Automation Science and

Engineering, 12(2), 739-751.

Bounini, F., Gingras, D., Pollart, H., & Gruyer, D. (2017). Modified artificial

potential field method for online path planning applications. Paper

presented at the 2017 IEEE Intelligent Vehicles Symposium (IV), 180-185.

Campbell, S., O'Mahony, N., Carvalho, A., Krpalkova, L., Riordan, D., &

Walsh, J. (2020). Path planning techniques for mobile robots a review.

Paper presented at the 2020 6th International Conference on Mechatronics

and Robotics Engineering (ICMRE), 12-16.

Campbell, S., O'Mahony, N., Carvalho, A., Krpalkova, L., Riordan, D., &

Walsh, J. (2020). Path planning techniques for mobile robots a review.

Paper presented at the 2020 6th International Conference on Mechatronics

and Robotics Engineering (ICMRE), 12-16.

Canny, J., & Donald, B. (1990). Simplified voronoi diagrams. Autonomous

robot vehicles (pp. 272-289) Springer.

94

Charalampous, K., Kostavelis, I., Amanatiadis, A., & Gasteratos, A. (2014).

Real-time robot path planning for dynamic obstacle avoidance. Journal of

Cellular Automata, 9

Charalampous, K., Kostavelis, I., & Gasteratos, A. (2015). Thorough robot

navigation based on SVM local planning. Robotics and Autonomous

Systems, 70, 166-180.

Chen, H., Fuhlbrigge, T., & Li, X. (2008). Automated industrial robot path

planning for spray painting process: A review. Paper presented at the 2008

IEEE International Conference on Automation Science and Engineering,

522-527.

Cheng, J., Cheng, H., Meng, M. Q., & Zhang, H. (2018). Autonomous

navigation by mobile robots in human environments: A survey. Paper

presented at the 2018 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 1981-1986.

Chia, S., Su, K., Guo, J., & Chung, C. (2010). Ant colony system based mobile

robot path planning. Paper presented at the 2010 Fourth International

Conference on Genetic and Evolutionary Computing, 210-213.

Chik, S. F., Yeong, C. F., Su, E., Lim, T. Y., Subramaniam, Y., & Chin, P.

(2016). A review of social-aware navigation frameworks for service robot in

dynamic human environments. Journal of Telecommunication, Electronic

and Computer Engineering (JTEC), 8(11), 41-50.

95

Cho, H. S., & Woo, T. H. (2016). Mechanical analysis of flying robot for

nuclear safety and security control by radiological monitoring. Annals of

Nuclear Energy, 94, 138-143.

Choset Howie, Hutchinson Seth, Lynch, K., Kantor George, Burgard Wolfram,

Kavraki Lydia, . . . Thrun Sebastian. (2005). Principles of robot motion:

Theory, algorithms, and implementation MIT press.

Choset, H., & Burdick, J. (1995). Sensor based planning. II. incremental

construction of the generalized voronoi graph. Paper presented at the

Proceedings of 1995 IEEE International Conference on Robotics and

Automation, , 2 1643-1648.

Choset, H., & Burdick, J. (1996). Sensor based motion planning: The

hierarchical generalized voronoi graph. Algorithms for Robot Motion and

Manipulation, , 47-61.

Coenen, S., & Steinbuch, M. M. (2012). Motion planning for mobile robots—A

guide. Control Systems Technology, , 79.

Corke, P. I., & Khatib, O. (2011). Robotics, vision and control: Fundamental

algorithms in MATLAB Springer.

Danner, T., & Kavraki, L. E. (2000). Randomized planning for short inspection

paths. Paper presented at the Proceedings 2000 ICRA. Millennium

96

Conference. IEEE International Conference on Robotics and Automation.

Symposia Proceedings (Cat. no. 00CH37065), , 2 971-976.

De Berg, M., Van Kreveld, M., Overmars, M., & Schwarzkopf, O. (1997).

Computational geometry. Computational geometry (pp. 1-17) Springer.

Dongbin, Z., & Jianqiang, Y. (2006). Robot planning with ant colony

optimization algorithms. Paper presented at the 2006 Chinese Control

Conference, 1460-1465.

Douthwaite, J. A., Zhao, S., & Mihaylova, L. S. (2018). A comparative study of

velocity obstacle approaches for multi-agent systems. Paper presented at the

2018 UKACC 12th International Conference on Control (CONTROL), 289-

294.

Engedy, I., & Horváth, G. (2009). Artificial neural network based mobile robot

navigation. Paper presented at the 2009 IEEE International Symposium on

Intelligent Signal Processing, 241-246.

Fitch, R., Butler, Z., & Rus, D. (2003). Reconfiguration planning for

heterogeneous self-reconfiguring robots. Paper presented at the Proceedings

2003 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2003)(Cat. no. 03CH37453), , 3 2460-2467.

Fortune, S. (1987). A sweepline algorithm for voronoi diagrams. Algorithmica,

2(1), 153-174.

97

Garrido, S., & Moreno, L. (2015). Mobile robot path planning using voronoi

diagram and fast marching. Robotics, automation, and control in industrial

and service settings (pp. 92-108) IGI Global.

Garrido, S., Moreno, L., Abderrahim, M., & Blanco, D. (2009). Robot

navigation using tube skeletons and fast marching. Paper presented at the

2009 International Conference on Advanced Robotics, 1-7.

Garrido, S., Moreno, L., Blanco, D., & Jurewicz, P. (2011). Path planning for

mobile robot navigation using voronoi diagram and fast marching.

Int.J.Robot.Autom, 2(1), 42-64.

Gayle, R., Sud, A., Lin, M. C., & Manocha, D. (2007). Reactive deformation

roadmaps: Motion planning of multiple robots in dynamic environments.

Paper presented at the 2007 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 3777-3783.

Ge, S. S., & Cui, Y. J. (2000). New potential functions for mobile robot path

planning. IEEE Transactions on Robotics and Automation, 16(5), 615-620.

Geiger, B., Kiraly, A. P., Naidich, D. P., & Novak, C. L. (2010). No title.

System and Method for Endoscopic Path Planning,

Guo, N., Li, C., Gao, T., Liu, G., Li, Y., & Wang, D. (2021). A fusion method

of local path planning for mobile robots based on LSTM neural network and

reinforcement learning. Mathematical Problems in Engineering, 2021

98

Habib, N., Purwanto, D., & Soeprijanto, A. (2016). Mobile robot motion

planning by point to point based on modified ant colony optimization and

voronoi diagram. Paper presented at the 2016 International Seminar on

Intelligent Technology and its Applications (ISITIA), 613-618.

Han, L., & Amato, N. M. (2001). A kinematics-based probabilistic roadmap

method for closed chain systems: Li han, texas A nancy M. amato, texas A.

Algorithmic and computational robotics (pp. 243-251) AK Peters/CRC

Press.

Han, W., Baek, S., & Kuc, T. (1997). Genetic algorithm based path planning

and dynamic obstacle avoidance of mobile robots. Paper presented at the

1997 IEEE International Conference on Systems, Man, and Cybernetics.

Computational Cybernetics and Simulation, , 3 2747-2751.

Hsu, D., Kindel, R., Latombe, J., & Rock, S. (2002). Randomized kinodynamic

motion planning with moving obstacles. The International Journal of

Robotics Research, 21(3), 233-255. doi:10.1177/027836402320556421

Ji, X., & Xiao, J. (2001). Planning motions compliant to complex contact states.

The International Journal of Robotics Research, 20(6), 446-465.

Khaksar, W., Hong, T. S., Khaksar, M., & Motlagh, O. R. E. (2012). Sampling-

based tabu search approach for online path planning. Advanced Robotics,

26(8-9), 1013-1034. doi:10.1163/156855312X632166

99

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile

robots. Autonomous robot vehicles (pp. 396-404) Springer.

Krogh, B., & Thorpe, C. (1986). Integrated path planning and dynamic steering

control for autonomous vehicles. Paper presented at the Proceedings. 1986

IEEE International Conference on Robotics and Automation, , 3 1664-1669.

Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. (2013). Human-aware robot

navigation: A survey. Robotics and Autonomous Systems, 61(12), 1726-

1743.

Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2001). Motion

planning for humanoid robots under obstacle and dynamic balance

constraints. Paper presented at the Proceedings 2001 ICRA. IEEE

International Conference on Robotics and Automation (Cat. no.

01CH37164), , 1 692-698.

Lamini, C., Benhlima, S., & Elbekri, A. (2018). Genetic algorithm based

approach for autonomous mobile robot path planning. Procedia Computer

Science, 127, 180-189.

Lamiraux, F., & Bonnafous, D. (2002). Reactive trajectory deformation for

nonholonomic systems: Application to mobile robots. Paper presented at the

Proceedings 2002 IEEE International Conference on Robotics and

Automation (Cat. no. 02CH37292), , 3 3099-3104.

100

Lamiraux, F., & Kavraki, L. E. (2001). Planning paths for elastic objects under

manipulation constraints. The International Journal of Robotics Research,

20(3), 188-208.

Li, Y., Dong, T., Bikdash, M., & Song, Y. (2005). Path planning for unmanned

vehicles using ant colony optimization on a dynamic voronoi diagram.

Paper presented at the Ic-Ai, 716-721.

Liu, X., Li, Y., Zhang, J., Zheng, J., & Yang, C. (2019). Self-adaptive dynamic

obstacle avoidance and path planning for USV under complex maritime

environment. IEEE Access, 7, 114945-114954.

Lozano-Perez, T. (1987). A simple motion-planning algorithm for general robot

manipulators. IEEE Journal on Robotics and Automation, 3(3), 224-238.

Lozano-Perez, T. (1990). Spatial planning: A configuration space approach.

Autonomous robot vehicles (pp. 259-271) Springer.

Lv, N., & Feng, Z. (2006). Numerical potential field and ant colony

optimization based path planning in dynamic environment. Paper presented

at the 2006 6th World Congress on Intelligent Control and Automation, , 2

8966-8970.

Mac, T. T., Copot, C., Tran, D. T., & De Keyser, R. (2016). Heuristic

approaches in robot path planning: A survey. Robotics and Autonomous

Systems, 86, 13-28.

101

Magid, E., & Rivlin, E. (2004). CautiousBug: A competitive algorithm for

sensory-based robot navigation. Paper presented at the 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS)(IEEE

Cat. no. 04CH37566), , 3 2757-2762.

Mahajan, P. B., & Marbate, P. (2013). Literature review on path planning in

dynamic environment. International Journal of Computer Science and

Network, 2(1), 115-118.

Mahkovic, R., & Slivnik, T. (1998). Generalized local voronoi diagram of

visible region. Paper presented at the Proceedings. 1998 IEEE International

Conference on Robotics and Automation (Cat. no. 98CH36146), , 1 349-

355.

Manousakis, K., McAuley, T., Morera, R., & Baras, J. (2005). Using multi-

objective domain optimization for routing in hierarchical networks. Paper

presented at the 2005 International Conference on Wireless Networks,

Communications and Mobile Computing, , 2 1460-1465.

Masehian, E., & Amin‐Naseri, M. R. (2004). A voronoi diagram‐visibility

graph‐potential field compound algorithm for robot path planning. Journal

of Robotic Systems, 21(6), 275-300.

Masehian, E., & Sedighizadeh, D. (2007). Classic and heuristic approaches in

robot motion planning-a chronological review. World Academy of Science,

Engineering and Technology, 23(5), 101-106.

102

Mitchell, J. S. (1988). An algorithmic approach to some problems in terrain

navigation. Artificial Intelligence, 37(1-3), 171-201.

Mohamad, M. M., Taylor, N. K., & Dunnigan, M. W. (2006). Articulated robot

motion planning using ant colony optimisation. Paper presented at the 2006

3rd International IEEE Conference Intelligent Systems, 690-695.

Nagatani, K., Choset, H., & Thrun, S. (1998). Towards exact localization

without explicit localization with the generalized voronoi graph. Paper

presented at the Proceedings. 1998 IEEE International Conference on

Robotics and Automation (Cat. no. 98CH36146), , 1 342-348.

Nanda, S. K., Dash, A. K., Acharya, S., & Moharana, A. (2010). Application of

robotics in mining industry: A critical review. The Indian Mining &

Engineering Journal, 8, 108-112.

NGAH, W., Buniyamin, N., & Mohamad, Z. (2010). Point to point sensor based

path planning algorithm for autonomous mobile robots. Paper presented at

the Proceedings of the 9th WSEAS International Conference on System

Science and Simulation in Engineering, 186-191.

Nguyen, H. T., & Le, H. X. (2016). Path planning and obstacle avoidance

approaches for mobile robot. arXiv Preprint arXiv:1609.01935,

Nieuwenhuisen, D., Kamphuis, A., Mooijekind, M., & Overmars, M. H. (2004).

Automatic construction of roadmaps for path planning in games. Paper

103

presented at the International Conference on Computer Games: Artificial

Intelligence, Design and Education, 285-292.

Niu, H., Lu, Y., Savvaris, A., & Tsourdos, A. (2018). An energy-efficient path

planning algorithm for unmanned surface vehicles. Ocean Engineering,

161, 308-321.

ó'Dúnlaing, C., Sharir, M., & Yap, C. K. (1983). Retraction: A new approach to

motion-planning. Paper presented at the Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing, 207-220.

Ó'Dúnlaing, C., & Yap, C. K. (1985). A “retraction” method for planning the

motion of a disc. Journal of Algorithms, 6(1), 104-111.

Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2009). Spatial tessellations:

Concepts and applications of voronoi diagrams John Wiley & Sons.

Pathak, M. J., Patel, R. L., & Rami, S. P. (2018). Comparative analysis of

search algorithms. International Journal of Computer Applications,

179(50), 40-43.

Patle, B. K., Pandey, A., Parhi, D., & Jagadeesh, A. (2019). A review: On path

planning strategies for navigation of mobile robot. Defence Technology,

15(4), 582-606.

Pearson, J. R., & Beran, T. N. (2018). The future is now: Using humanoid

robots in child life practice.

104

Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., & Lane, D. (2007).

Path planning for autonomous underwater vehicles. IEEE Transactions on

Robotics, 23(2), 331-341.

Rashid, R., Perumal, N., Elamvazuthi, I., Tageldeen, M. K., Khan, M. A., &

Parasuraman, S. (2016). Mobile robot path planning using ant colony

optimization. Paper presented at the 2016 2nd IEEE International

Symposium on Robotics and Manufacturing Automation (ROMA), 1-6.

Sabudin, E. N., Omar, R., & Che Ku Melor, C. (2016). Potential field methods

and their inherent approaches for path planning. ARPN Journal of

Engineering and Applied Sciences, 11(18), 10801-10805.

Saffiotti, A. (1997). The uses of fuzzy logic in autonomous robot navigation.

Soft Computing, 1(4), 180-197.

Sankaranarayanan, A., & Vidyasagar, M. (1990). A new path planning

algorithm for moving a point object amidst unknown obstacles in a plane.

Paper presented at the Proceedings., IEEE International Conference on

Robotics and Automation, 1930-1936.

Sariff, N., & Buniyamin, N. (2006). An overview of autonomous mobile robot

path planning algorithms. Paper presented at the 2006 4th Student

Conference on Research and Development, 183-188.

105

Saska, M., Macas, M., Preucil, L., & Lhotska, L. (2006). Robot path planning

using particle swarm optimization of ferguson splines. Paper presented at

the 2006 IEEE Conference on Emerging Technologies and Factory

Automation, 833-839.

Schneider, F. E., & Wildermuth, D. (2017). Using robots for firefighters and

first responders: Scenario specification and exemplary system description.

Paper presented at the 2017 18th International Carpathian Control

Conference (ICCC), 216-221.

Šeda, M. (2007). Roadmap methods vs. cell decomposition in robot motion

planning. Paper presented at the Proceedings of the 6th WSEAS

International Conference on Signal Processing, Robotics and Automation,

127-132.

Tarbutton, J. A., Kurfess, T. R., & Tucker, T. M. (2010). Graphics based path

planning for multi-axis machine tools. Computer-Aided Design and

Applications, 7(6), 835-845.

Williams, S. B., Pizarro, O., Mahon, I., & Johnson-Roberson, M. (2009).

Simultaneous localisation and mapping and dense stereoscopic seafloor

reconstruction using an AUV. Paper presented at the Experimental

Robotics, 407-416.

Wilmarth, S. A., Amato, N. M., & Stiller, P. F. (1999). MAPRM: A

probabilistic roadmap planner with sampling on the medial axis of the free

106

space. Paper presented at the Proceedings 1999 IEEE International

Conference on Robotics and Automation (Cat. no. 99CH36288C), , 2 1024-

1031.

Yoshida, E., & Kanehiro, F. (2011). Reactive robot motion using path

replanning and deformation. Paper presented at the 2011 IEEE International

Conference on Robotics and Automation, 5456-5462.

Yu, J., Su, Y., & Liao, Y. (2020). The path planning of mobile robot by neural

networks and hierarchical reinforcement learning. Frontiers in

Neurorobotics, 14

Zavershynskyi, M., & Papadopoulou, E. (2013). A sweepline algorithm for

higher order voronoi diagrams. Paper presented at the 2013 10th

International Symposium on Voronoi Diagrams in Science and

Engineering, 16-22.

Zhang, Q., Sun, J., Xiao, G., & Tsang, E. (2007). Evolutionary algorithms

refining a heuristic: A hybrid method for shared-path protections in WDM

networks under SRLG constraints. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 37(1), 51-61.

taiwannews.com.tw

https://th.bing.com

https://www.thejakartapost.com/life/2018/06/28/end-of-the-line-for-

asimojapans-famed-robot.html

https://miro.medium.com/max/450/1*podzvpWd_ApSOo-SaYGw3w.jpeg

107

https://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Delaunay_Voron

oi.svg/200px-Delaunay_Voronoi.svg.png

https://media.springernature.com/full/springer-

static/image/art%3A10.1007%2Fs42154-019-00081

https://image.slidesharecdn.com/visibilitygraphs-/visibility-graphs

108

Appendix A (MATLAB Code)

Main Program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Code and Documentation

% By Tajudeen Adeleke Badmos

% PhD MERI Path planning for mobile robot

% Sheffield Hallam University

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Clear the data and Figure opened, then call function ‘Main’

clear:

clc

main

%% MAIN MATLAB code for main.fig
function varargout = main(varargin)
% Begin initialization code
gui_Singleton = 1:
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @main_OpeningFcn, ...
 'gui_OutputFcn', @main_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []):
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1}):
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}):
else
 gui_mainfcn(gui_State, varargin{:}):
end

end
% End initialization code

% --- Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to Figure
% eventdata reserved - to be defined in a future version of MATLAB

109

% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to main (see VARARGIN)

 [handles] = initialize(handles):

 % Choose default command line output for main
 handles.output = hObject:

 % Update handles structure
 guidata(hObject, handles):

 % UIWAIT makes main wait for user response (see UIRESUME)
 % uiwait(handles.Figure1):
end

% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
 % varargout cell array for returning output args (see VARARGOUT):
 % hObject handle to Figure
 % eventdata reserved - to be defined in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)

 % Get default command line output from handles structure
 varargout{1} = handles.output:
end

% --- Executes on button press in pushbuttonDrawObstacle.
function pushbuttonDrawObstacle_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonDrawObstacle (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 handles = drawObstacle(handles):

 if handles.Num_Object > 1
 %
 set(handles.pushbuttonVoronoiPath, 'Enable', 'on'):
 %set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'):
 end

 % Save the handles structure.
 guidata(hObject,handles)
end

% --- Executes on button press in pushbuttonDrawRobot.
function pushbuttonDrawRobot_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonDrawRobot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 handles = drawRobot(handles):

 %
 if ~isempty(handles.Robot) && ~isempty(handles.Goal) &&

~isempty(handles.Edge_X1)
 set(handles.pushbuttonRobotFinalPath, 'Enable', 'on'):
 end
% Save the handles structure.
 guidata(hObject,handles)
end

110

% --- Executes on button press in pushbuttonDrawGoal.
function pushbuttonDrawGoal_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonDrawGoal (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 handles = drawGoal(handles):

 %
 if ~isempty(handles.Robot) && ~isempty(handles.Goal) &&

~isempty(handles.Edge_X1)
 set(handles.pushbuttonRobotFinalPath, 'Enable', 'on'):
 end
 % Save the handles structure.
 guidata(hObject,handles)
end

% --- Executes on button press in pushbuttonVoronoiPath.
function pushbuttonVoronoiPath_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonVoronoiPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 X = ('MenuStart: Voronoi '):
 disp(X):
 tstart = tic:

 % create point obstacles at the edges
 [handles]= createObstaclePoints(handles):
 [handles]= drawVoronoi(handles):

 X = ['MenuEnd: Voronoi time= ', num2str(toc(tstart))]:
 disp(X):

 set(handles.pushbuttonDrawRobot, 'Enable', 'on'):
 set(handles.pushbuttonDrawGoal, 'Enable', 'on'):
 %
 if ~isempty(handles.Robot) && ~isempty(handles.Goal) &&

~isempty(handles.Edge_X1)
 set(handles.pushbuttonRobotFinalPath, 'Enable', 'on'):
 end

 set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'on'):
 set(handles.pushbuttonShowEpsilon, 'Enable', 'on'):

 handles.radiobuttonLastObstacle.Value = 0:
 set(handles.radiobuttonLastObstacle, 'Enable', 'off'):
 handles.radiobuttonScreen.Value = 1:

 % Save the handles structure.
 guidata(hObject,handles)
end

% --- Executes on button press in pushbuttonRobotFinalPath.
function pushbuttonRobotFinalPath_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonRobotFinalPath (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 X = ('MenuStart: Robot Final Path '):

111

 disp(X):
 tstart = tic:

 handles = drawRobotFinalPath(handles):

 X = ['MenuEnd: Robot Final Path time= ', num2str(toc(tstart))]:
 disp(X):
 %
 if ~isempty(handles.Path)
 set(handles.pushbuttonBoundaryRobot, 'Enable', 'on'):
 end

 % Save the handles structure.
 guidata(hObject,handles)
end

% --- Executes on button press in pushbuttonBoundaryRobot.
function pushbuttonBoundaryRobot_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonBoundaryRobot (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% hObject handle to pushbuttonDrawGoal (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 handles = addBoundaryRobot(handles):

 % Save the handles structure.
 guidata(hObject,handles)
end

% --- Executes on button press in pushbuttonReset.
function pushbuttonReset_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonReset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 if handles.radiobuttonLastObstacle.Value == 1
 handles = removeObstacle(handles):
 else
 handles = resetWorkspace(handles):
 end

 if handles.Num_Object < 2
 %
 set(handles.pushbuttonVoronoiPath, 'Enable', 'off'):
 %set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'):
 end

 % Save the handles structure.
 guidata(hObject,handles)
end

% --- Executes on button press in pushbuttonMoveFirstObstacle.
function pushbuttonMoveFirstObstacle_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonMoveFirstObstacle (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Save the handles structure.

112

 set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'off'):

 X = ('MenuStart: Move First Obstacle'):
 disp(X):
 tstart = tic:

 handles = movingFirstObstacle(handles):

 X = ['MenuEnd: Move First Obstacle time= ', num2str(toc(tstart))]:
 disp(X):

 %
 set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'on'):

 guidata(hObject,handles)

end

% --- Executes on button press in pushbuttonWriteSimulationData.
function pushbuttonWriteSimulationData_Callback(hObject, eventdata,

handles)
% hObject handle to pushbuttonWriteSimulationData (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% T_Edges = table(handles.Edge_X1', handles.Edge_Y1', handles.Edge_X2',

handles.Edge_Y2', 'VariableNames',{'X1','Y1','X2','Y2'}):
% writetable(T_Edges, 'T_Edges.xlsx')

 Vertex_Cord = table(handles.Vertex_Cord(:,1), handles.Vertex_Cord(:,1),

'VariableNames',{'X','Y'}):
 writetable(Vertex_Cord, '_Vertex_Cord.xlsx')

 %calculate voronoi path distance
 handles.VoronoiPath_distance = 0:
 for i=1:size(handles.VoronoiPath,1)
 a = handles.VoronoiPath(i,1:2):
 b = handles.VoronoiPath(i,3:4):
 d = norm(b-a):
 handles.VoronoiPath_distance = handles.VoronoiPath_distance + d:
 end
 TVoronoiPath =

table(handles.VoronoiPath(:,1),handles.VoronoiPath(:,2),handles.VoronoiPath

(:,3),handles.VoronoiPath(:,4),'VariableNames',{'X1','Y1','X2','Y2'}):
 writetable(TVoronoiPath, '_VoronoiPath.xlsx')

 %calculate robot path distance
 handles.RobotPath_distance = 0:
 for i=1:size(handles.RobotPath,1)
 a = handles.RobotPath(i,1:2):
 b = handles.RobotPath(i,3:4):
 d = norm(b-a):
 handles.RobotPath_distance = handles.RobotPath_distance + d:
 end

 TRobotPath =

table(handles.RobotPath(:,1),handles.RobotPath(:,2),handles.RobotPath(:,3),

handles.RobotPath(:,4),'VariableNames',{'X1','Y1','X2','Y2'}):
 writetable(TRobotPath, '_RobotPath.xlsx')

 %

113

 Edges_N = size(handles.VoronoiPath,1):
 Vertex_N = size(handles.Vertex_Cord,1):
 Robot_N = size(handles.RobotPath,1):
 T = table(handles.Epsilon, Vertex_N, Edges_N,

handles.VoronoiPath_distance, Robot_N, handles.RobotPath_distance, ...
 'VariableNames',{'Epsilon', 'Vertex_No','Edgdes_No',

'VoronoiPath_D', 'Robot_Edges_No', 'RobotPath_D'}):
 writetable(T, '_Summary.xlsx')

end

% --- Executes on button press in pushbuttonShowEpsilon.
function pushbuttonShowEpsilon_Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonShowEpsilon (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 plot(handles.X_Total_points, handles.Y_Total_points, 'r.'):
 plot(handles.Voro_Vertex(:,1), handles.Voro_Vertex(:,2), 'r.'):
end

%% Initializing

function [handles] = initialize(handles)

 handles.W = [0 100 0 100]:
 handles.D = 2:
 axis(handles.W):
 handles.i = 0:
 handles.Cx = 0:
 handles.Cy = 1:
 handles.xstep = 2:
 handles.ystep = 2:

 handles.X1 = []:
 handles.X1{1} = []:

 handles.Poly = []:
 handles.Poly{1} = []:
 handles.PPoly = []:
 handles.PPoly{1} = []:
 handles.showCircleRegion = 0:
 handles.PolyCircle = []:
 handles.PolyCircle{1} = []:
 handles.PPolyC = []:
 handles.PPolyC{1} =[]:

 handles.Epsilon = 1:
 handles.Num_Object=0:

 handles.isBoundary = 0:

 handles.Robot = []:
 handles.Goal = []:
 handles.DynObstacle = []:

114

 handles.AllowMultipleRobot = 0:
 handles.AllowMultipleGoal = 0:
 handles.AllowMultipleDynObstacle = 0:

 %Total points
 handles.X_Total_points = 0:
 handles.Y_Total_points = 0:
 handles.All_cells_Number = 0:
 handles.Cell_start = 1:

 %
 handles.Voro_Vertex = []:
 handles.Voro_Cell = []:
 handles.Temp_Edge = []:
 handles.Path = []:
 handles.Vertex_Cord = []:

 handles.Edge_X1 = []:
 handles.Edge_X2 = []:
 handles.Edge_Y1 = []:
 handles.Edge_Y2 = []:

 handles.VoronoiPath = []:
 handles.RobotPath = []:
 handles.VoronoiPath_distance = 0:
 handles.RobotPath_distance = 0:
 %
 hold on:

 %
 set(handles.pushbuttonDrawRobot, 'Enable', 'on'):
 set(handles.pushbuttonDrawGoal, 'Enable', 'on'):
 set(handles.pushbuttonVoronoiPath, 'Enable', 'off'):
 set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'):
 set(handles.pushbuttonBoundaryRobot, 'Enable', 'off'):

 set(handles.pushbuttonMoveFirstObstacle, 'Enable', 'off'):
 set(handles.pushbuttonShowEpsilon, 'Enable', 'off'):

 %
 handles.radiobuttonLastObstacle.Value = 1:
 set(handles.radiobuttonLastObstacle, 'Enable', 'on'):
 handles.radiobuttonScreen.Value = 0:

end

%% Drawing Obstacles

function [handles] = drawObstacle(handles)
%DRAW_OBSTACLE Summary of this function goes here
% Detailed explanation goes here
 % get points
 p = 1:
 x=[]:
 y=[]:
 button = 1:
 while button == 1
 [px, py, button] = ginput(1):
 if button == 1 && p < 31

115

 x(p)=px: %point(1,1):
 y(p)=py: %point(1,2):
 if p > 1
 line([x(p-1), x(p)], [y(p-1), y(p)], 'Color', 'blue'):
 end
 p = p+1:
 else
 k=0:
 end
 end

 [x,y]=fixPoints(x,y):

 % patch(x,y,'b'):
 [handles] = getPoints(handles,[x',y'],1):
end

%% Drawing Robot (point)

function [handles] = drawRobot(handles)
%DRAW_ROBOT Summary of this function goes here
% Detailed explanation goes here
 if isempty(handles.Robot) || handles.AllowMultipleRobot == 1
 %
 %Code for taking handles.Robot and End point as input
 handles.Robot = ginput(1):
 plot(handles.Robot(1),handles.Robot(2),'--

go','MarkerSize',10,'MarkerFaceColor','g'):
 % drawnow:
 end
end

%% Drawing the goal

function [handles] = drawGoal(handles)
%DRAW_GOAL Summary of this function goes here
% Detailed explanation goes here
 if isempty(handles.Goal) || handles.AllowMultipleGoal == 1
 handles.Goal = ginput(1):
 plot(handles.Goal(1),handles.Goal(2),'--

ro','MarkerSize',10,'MarkerFaceColor','r'):
 %drawnow:
 end
end

%% Drawing the Voronoi Diagram

function [handles]= drawVoronoi(handles)
%DRAWVORONOI Summary of this function goes here
% Detailed explanation goes here
%set(handles.pushbuttonRobotFinalPath, 'Enable', 'off'):
 % timetimer
 tstart = tic:

 % handles.Num_Object=length(handles.X1):

116

 handles.Num_Object = handles.i:

 %Getting Parameters of Voronoi Diagram
 [handles.Voro_Vertex, handles.Voro_Cell] =

voronoin([handles.X_Total_points' handles.Y_Total_points']):

 k=1:
 temp=0:
 for i=1:length(handles.All_cells_Number)
 L=length(handles.Voro_Cell{i}):
 for j=1:L
 a=handles.Voro_Cell{i}(j):
 if(j==L)
 b=handles.Voro_Cell{i}(1):
 else
 b=handles.Voro_Cell{i}(j+1):
 end
 for l=1:handles.Num_Object
 if(temp==1)
 temp=0:
 break:
 end
 if (l==handles.All_cells_Number(i))
 continue:
 end
 for m=handles.Cell_start(l):handles.Cell_start(l+1)-1
 if((~isempty(find(handles.Voro_Cell{m}==a, 1))) &&

(~isempty(find(handles.Voro_Cell{m}==b, 1))))
 handles.Temp_Edge(k,:)=[a b]:
 k=k+1:
 temp=1:
 break:
 end
 end
 end
 end
 end

 handles.Temp_Edge=unique(handles.Temp_Edge,'rows'):

 for i=1:length(handles.Temp_Edge)
 handles.Edge_X1(i)=handles.Voro_Vertex(handles.Temp_Edge(i,1),1):
 handles.Edge_X2(i)=handles.Voro_Vertex(handles.Temp_Edge(i,2),1):
 handles.Edge_Y1(i)=handles.Voro_Vertex(handles.Temp_Edge(i,1),2):
 handles.Edge_Y2(i)=handles.Voro_Vertex(handles.Temp_Edge(i,2),2):
 end

 % draw voronoi
 [g1, g2] = inObstacle(handles):
 for i=1:length(g1)
 handles.Edge_X1(i)= g1(i,1):
 handles.Edge_X2(i)= g2(i,1):
 handles.Edge_Y1(i)= g1(i,2):
 handles.Edge_Y2(i)= g2(i,2):
 plot([handles.Edge_X1(i) handles.Edge_X2(i)],[handles.Edge_Y1(i)

handles.Edge_Y2(i)],'color','g','LineWidth',2):

 handles.VoronoiPath(i,:) = [[handles.Edge_X1(i)

handles.Edge_Y1(i)],[handles.Edge_X2(i) handles.Edge_Y2(i)]]:
 end

 X = ['Voronoi time ', num2str(toc(tstart))]:
 disp(X):

117

end

%% Drawing the Collision free path for robot

function [handles] = drawRobotFinalPath(handles)
%DRAWROBOTFINALPATH Summary of this function goes here
% Detailed explanation goes here
 tstart =tic:

 Vertex = unique(handles.Temp_Edge):
 N = length(Vertex):
 M = length(handles.Temp_Edge):

 for i=1:N
 handles.Vertex_Cord(i,:)= handles.Voro_Vertex(Vertex(i),:):
 Robot_distance(i)= norm(handles.Robot-handles.Vertex_Cord(i,:)):
 Goal_distance(i)= norm(handles.Goal-handles.Vertex_Cord(i,:)):
 end

 Voro_Graph = inf*ones(N):

 %Figure:
% axis([0 100 0 100]):
% hold on:

 for i = 1:M
 a= find(Vertex==handles.Temp_Edge(i,1)):
 b= find(Vertex==handles.Temp_Edge(i,2)):
 Distance = norm(handles.Vertex_Cord(a,:)-handles.Vertex_Cord(b,:)):
 Voro_Graph(a,b)=Distance:
 Voro_Graph(b,a)=Distance:
 end

 [~, Index_Robot]= min(Robot_distance):
 [~, Index_Goal]= min(Goal_distance):

 [handles.Path totalCost] = dijkstra(Voro_Graph,Index_Robot,Index_Goal):

 k = 0:
 % draw final path
 x=[handles.Robot(1) handles.Vertex_Cord(handles.Path(1),1)]:
 y=[handles.Robot(2) handles.Vertex_Cord(handles.Path(1),2)]:
 k=k+1:
 handles.RobotPath(k,:) = [[x(1) y(1)],[x(2) y(2)]]:
 plot(x,y,'-','color','m','LineWidth',3):
 drawnow:

 for i=1:length(handles.Path)-1
 x=[handles.Vertex_Cord(handles.Path(i),1)

handles.Vertex_Cord(handles.Path(i+1),1)]:
 y=[handles.Vertex_Cord(handles.Path(i),2)

handles.Vertex_Cord(handles.Path(i+1),2)]:
 plot(x,y,'-','color','m','LineWidth',3):
 k=k+1:
 handles.RobotPath(k,:) = [[x(1) y(1)],[x(2) y(2)]]:
 drawnow:
 hold on:
 end

 x=[handles.Vertex_Cord(handles.Path(i),1) handles.Goal(1)]:

118

 y=[handles.Vertex_Cord(handles.Path(i),2) handles.Goal(2)]:
 plot(x,y,'-','color','m','LineWidth',3):
 k=k+1:
 handles.RobotPath(k,:) = [[x(1) y(1)],[x(2) y(2)]]:
 drawnow:

 X = ['Robot final path time ', num2str(toc(tstart))]:
 disp(X):

end

%% Moving Obstacle

function [handles] = movingFirstObstacle(handles)
%MOVINGFIRSTOBSTACLE Summary of this function goes here
% Detailed explanation goes here
 % get an obstacle
 tstart = tic:

 p = 1:
 poly1 = handles.Poly{p}:
 h1 = handles.PPoly{p}:

 % up
 x = handles.Cx:
 y = handles.Cy:
% handles.xstep=2:
% handles.ystep=2:

 moves =1:
 for k=1:moves
 x = x + handles.xstep:
 y = y + handles.ystep:

 poly1m = translate(poly1,x,y):

 [handles, poly1m, h1] = redrawObstacle(handles, h1, poly1m, p):

 inOO = 0:

 % check if intercept with obstacles
 for i=1:handles.Num_Object-1
 if p ~= i
 poly2 = handles.Poly{i}:
 % check if in or out
 [inF, inP, out] = collides(poly1m, poly2):
 if out
 polyB = handles.Poly{handles.Num_Object}:
 [inF2, inP2, out2] = collides(poly1m, polyB):
 if inF2
 %[handles, poly1, h1]=

moveObstacleAndRedraw(handles, h1, poly1m, p):
 inOO=0:
 else
 inOO =1:
 [poly1m,handles.xstep,handles.ystep] =

obstacleCollision(poly1m,x,y,handles.xstep,handles.ystep):
 break:
 end
 else
 inOO =1:

119

 [poly1m,handles.xstep,handles.ystep] =

obstacleCollision(poly1m,x,y,handles.xstep,handles.ystep):
 break:
 end
 end
 end

% if inOO == 0
 [handles, poly1, h1]= moveObstacleAndRedraw(handles, h1,

poly1m, p):
% end
 if inOO == 1
 handles.xstep = handles.xstep * -1:
 handles.ystep = handles.ystep * -1:
 end
 end
 %
 handles.PPoly{p} = h1:
 handles.Poly{p} = poly1:

 X = ['Move First Obstacle time ', num2str(toc(tstart))]:
 disp(X):

end

function [poly1,xstep,ystep] = obstacleCollision(poly1,x,y,xstep,ystep)
 poly1 = translate(poly1,(x.*-2),(y.*-2)):
% [x1,y1]= changeDirection(x,y):
% xstep = xstep * x1:
% ystep = ystep * y1:

end

function [handles, poly1, h1] = redrawObstacle(handles, h1, poly1m, p)
 delete(h1):

 % move
 poly1 = poly1m:

 %
 if length(handles.PolyCircle) < p || isempty(handles.PolyCircle{p})
 h1 = plot(poly1):
 else

 points = poly1.Vertices:
 [cx, cy]= getCirclePoints(points):
 handles.PolyCircle{p} = polyshape(cx,cy):

 if handles.showCircleRegion == 1
 delete(handles.PPolyC{p}):
 handles.PPolyC{p} = plot(poly1):
 end

 h1 = plot(handles.PolyCircle{p}):
 end

 hold on
 drawnow
end

120

function [handles, poly1, h1]= moveObstacleAndRedraw(handles, h1, poly1m,

p)
 [handles, poly1, h1] = redrawObstacle(handles, h1, poly1m, p):

 % redraw voronoi
 [handles]=redraw_voronoi(handles, poly1, p):

 %redraw final path
 [handles]=redrawRobotFinalPath(handles):
end

function [handles]= redraw_voronoi(handles, poly1, p)
 hVor = findobj('type','Line','color','g','LineWidth',2):

 handles.X1{p} = []:
 handles.Poly{p} = poly1:
 handles.X1{p} = poly1.Vertices:

 % initialize for new voronoi

 %Total points

 handles.X_Total_points = 0:
 handles.Y_Total_points = 0:
 handles.All_cells_Number = 0:
 handles.Cell_start = 1:

 %
 handles.Voro_Vertex = []:
 handles.Voro_Cell = []:
 handles.Temp_Edge = []:
 handles.Path = []:

 handles.Edge_X1 = []:
 handles.Edge_X2 = []:
 handles.Edge_Y1 = []:
 handles.Edge_Y2 = []:

 for obs_i=1:handles.Num_Object
 [handles]= setObstaclePoints(handles, obs_i):
 end

 [handles]= drawVoronoi(handles):

 %pause(2):
 for h=1:length(hVor)
 delete(hVor(h))
 end

% drawnow()
% hold on
end

function [handles] = redrawRobotFinalPath(handles)
 hVor = findobj('type','Line','color','m','LineWidth',3):

% [handles] = drawRobotFinalPath(handles):

 for h=1:length(hVor)
 delete(hVor(h))
 end

121

 [handles] = drawRobotFinalPath(handles):

 drawnow
 hold on
end

%% Reset workspace

function [handles] = resetWorkspace(handles)
%RESETWORKSPACE Summary of this function goes here
% Detailed explanation goes here
 hold off
 cla(handles.axesMap):

 [handles] = initialize(handles):
end

122

Appendix B: How to use the GUI

We have made some screenshots below from our proposed algorithm on how to

use the GUI for computing the GVD.

When the program starts, a window pops up as in fig.4.20

Figure 7. 1 GUI window

Push the “Draw Obstacle” to draw the obstacle whilst using the left mouse button

to set the vertices of each obstacle in the workspace (the white space in the GUI),

and using the right mouse button to end the process. Also, do the same procedure

to draw the robot and to draw the goal by clicking the pushbutton “Draw Robot”

and “Draw Goal” respectively. To compute the GVD, click on the pushbutton

“Voronoi Path”.

To generate the shortest collision-free path, click the pushbutton “Robot Final

Path”, then the path is shown from the robot to the goal. The pushbutton “Add

Boundary Robot” can be used to describe the motion of a robot or an obstacle

coming towards the configuration from a different configuration. The pushbutton

“Reset” to start another set application on the GUI. To show the motion of a

moving obstacle, push the button “Move First Obstacle” and lastly, the

pushbutton “Write Simulation Data” is to generate some data on an excel sheet.

123

Figure 7.2 Using GUI buttons

Figure 7.3 GUI buttons for “Add Boundary Robot”

Goal

Obstacle

Shortest

path

124

Appendix C: Description of the Matlab Files

1. startUp

a. clears the environment variables for a clean start

b. calls the main program

2. main

a. Creates the GUI

b. Calls the initialize function.

c. Open/display the GUI

d. Controls and handles the GUI events, such as when buttons (Draw

Obstacle) are clicked.

e. Can call the following functions when their buttons are enabled

i. drawObstacle

ii. drawVoronoi

iii. drawRobot

iv. drawGoal

v. drawRobotFinalPath

vi. addBoundaryRobot

vii. resetWorkspace

viii. movingFirstObstacle

3. Initialize

a. Initializes the GUI and program global variables

b. Set Epsilon to determine point obstacle size

c. Enables and disables GUI controls

d. Disabled all buttons except the Draw Obstacle, Draw Goal and Draw

Robot

4. drawObstacle

a. Use to add one obstacle to the workspace.

b. Click on the |Draw Obstacle| button.

c. Obstacles are drawn using the mouse left click on the workspace.

125

d. Mouse right-click ends obstacle drawing and connect the last point

to the first point to form a solid polygon shape. For example to draw

a rectangle left-click the four (4) points and end with a right-click to

close the shape.

e. Repeat the above step to add more obstacles to the workspace.

f. Calls fixPoints functions

g. Calls getPoints functions

h. After adding more than one obstacle to the workspace, the button

command to draw Voronoi is enabled.

5. fixPoints

a. makes sure the points are not too smooth. Smooth point prevents

epsilon division of edges.

6. getPoints

a. Removes the obstacle drawing cursor lines.

b. Draw the obstacle shape and fill it with a solid colour.

c. Calls the setObstaclePoints function

7. setObstaclePoints

a. Convert the obstacle edges to point obstacles using the Epsilon with

the default value of 1.

b. Stores the points with other obstacles points.

8. drawVoronoi

a. Draws the boundary obstacle if not drawn already.

b. Call the MATLAB in-built voronoin function with all the point

obstacles.

c. Store the return value of voronoin, possible Voronoi vertices and

cells for the point obstacles.

d. Find the valid Voronoi diagram for each obstacle polygon from the

obstacles points that areVoronoi vertices.

e. Call inObstacle function to fix missing edges.

f. Draws connecting edges of the Voronoi in green colour.

126

g. Enable the |Draw Robot|, |Draw Goal| and |Move First Obstacle|

h. Enable the |Robot Final Path| if Robot, Goal and Voronoi are in

place.

9. inObstacle

a. Removes all connecting Voronoi points in obstacles.

b. Find unique connecting edges representing the Voronoi of the

obstacles on the workspace.

10. drawRobot

a. Use to draw the robot on the Workspace

b. Click on the |Draw Robot| to add the robot to the Workspace.

c. Click anywhere on the workspace using the left mouse button.

d. A point dot of green colour will be added to the Workspace.

e. Only one robot is allowed

f. Enable the |Robot Final Path| if Robot, Goal and Voronoi are in

place.

11. drawGoal

a. Use to draw the goal or target on the Workspace

b. Click on the |Draw Goal| to add the goal to the workspace.

c. Click anywhere on the workspace using the left mouse button.

d. A point dot of red colour will be added to the workspace.

e. Only one goal (destination) allowed.

f. Enable the |Robot Final Path| if Robot, Goal and Voronoi are in

place.

12. drawRobotFinalPath

a. Use to calculate and draw the shortest feasible distance between

robot and goal.

b. Calculate distance between each vertex and Robot, dRi

c. Calculate distance between each vertex and Goal, dGi

d. Calculate distance between each vertex to each other, dVi and stored

in a square matrix.

127

e. Find the minimum distance dRi, dGi

f. Call a utility function Dijkstra to get the shortest path, using all the

values of dVi and the minimum values of dRi and dGi.

g. Draws the shortest distance or path in magenta colour.

h. Enable the |Add Boundary Robot| button.

13. addBoundaryRobot

a. Use to calculate and draw the shortest distance from the boundary

robot and the goal parallel to the boundary.

b. Click on the |Add Boundary Robot| button.

c. Click anywhere on the workspace outside the boundary of the

Voronoi Diagram.

d. Add a new Robot.

e. Calculate distance between each vertex and Robot, dR2i

f. Calculate distance between each vertex and Goal, dGi

g. Get the boundary vertices.

h. Calculate distance between each boundary vertex to each other, dVi

and stored in a square matrix.

i. Find the minimum distance dR2i, dGi

j. Call a utility function Dijkstra to get the shortest path, using all the

values of dVi and the minimum values of dR2i and dGi.

k. Compute a parallel path to the shortest distance.

l. Draws the parallel shortest distance or path in red colour

m.

14. resetWorkspace

a. Use to rest the workspace to the initial state.

b. Click on the |Reset| button.

c. All the variables are cleared and reinitialized.

15. movingFirstObstacle

a. Use to calculate and redraw the Voronoi path when the first obstacle

becomes dynamic.

128

b. Click on the | Move First Obstacle | button.

c. Disable the | Move First Obstacle | button.

d. Set the step value for the x and y direction distance, mstep.

e. Set the number of steps the first obstacle will take before stopping,

default = 10.

f. Get the first obstacle polygon.

g. Move the obstacle in a new x and y-direction

h. Check if the new position intercepts any other obstacle

i. And if Yes and if the minimum distance between the robot and the

obstacle is less than the repulsive distance

j. Then apply deformation

k. If a new path found

l. Delete the old position and redraw at a new position.

m. And change direction and move in the new direction.

n. Repeat “step f” to i, for the default number of steps.

