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ABSTRACT  

Mass spectrometry imaging (MSI) is a multiplex methodology that has the 

capability to map molecular distributions within biological tissues via an 

unlabelled approach. The ability of MSI to detect a drug, its active metabolites 

and the molecular changes to treatment has demonstrated value for pre-clinical 

efficacy and toxicity studies in the pharmaceutical industry. Parallel to the 

developments in MSI, three-dimensional (3D) cell cultures have emerged as 

biologically relevant models for pre-clinical therapeutic research in part as an 

attempt to address the economic and societal issues of the use of animals in 

science. The combination of MSI with 3D cell culture models has previously been 

shown to provide an elegant method for small molecule drug analysis; however, 

with recent progress in the development of biopharmaceuticals there are 

increasing demands for advancements in this field. 

Within this thesis, a multimodal MSI approach to analyse a novel aggregated 3D 

cell culture model for the use in pre-clinical biopharmaceutical testing was 

developed. Firstly, three “aggregoid” models of cancer were established: two 

osteosarcoma (MG63 and SAOS-2) and a HCC827 lung adenocarcinoma. 

Multimodal MSI techniques: DESI, LA-ICP and IMC were employed for a detailed 

characterisation of the endogenous metabolite, protein and metal content within 

the tumour models. These methods determined molecular heterogeneity and 

identified the biological functions that contributed to the phenotypical proliferative 

and hypoxic microenvironments. Metabolic similarities between the 

osteosarcoma aggregoid models and clinical tissue was also observed.  

The use of multivariate statistics in combination with DESI-MSI analysis of the 

aggregoid models enabled mapping of metabolic responses to three biologic 

treatments and revealed potential mechanistic drug resistance. In addition, use 

of the multimodal MSI strategy was successful in the detection of a 

biopharmaceutical (cetuximab) within the HCC827 aggregoid. A bottom-up 

MALDI-MSI proteomics approach enabled the preliminary detection of cetuximab 

via its unique proteotypic peptides. A complementary targeted approach of metal-

labelled cetuximab detection by LA-ICP-MSI was also successfully employed.  
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Figure 2.6 The formation of a SAOS-2 spheroid aggregate over a 7-day period. 
Fluorescent images obtained by Hoechst 33342/PI staining to identify viable 
(blue) and necrotic (red) regions. Scale bar 1000 µm. ...................................... 66 

Figure 2.7 Spheroid aggregates of MG63, SAOS-2 and HCC827 at day 7. 
Fluorescent images obtained by Hoechst 33342/PI staining to identify viable 
(blue) and necrotic (red) regions. Scale bar 1000 µm. ...................................... 67 

Figure 2.8 SAOS-2 aggregoids embedded within a) HPMC & PVP; b) Gelatin; c) 
CMC after trimming the embedding mould to reach the tissue. Red arrows identify 
the aggregoid within each embedding media. ................................................... 70 

Figure 2.9 Histology staining of SAOS-2 aggregoid sections within embedding 
media. i) HPMC & PVP; ii) Gelatin; iii) CMC. a) Histology staining with Mayer’s 
haematoxylin (purple) to identify nuclear components and eosin (pink) to identify 
the cytoplasm. b) The same histology protocol with an initial fixation step by 4% 
PFA. Slight fissures identified in the sections due to the sectioning process. 
Gelatin surrounding aggregoids showed staining from eosin due to the collagen 
components present (ai, bi). Scale bar 100 µm, (ai) 200 µm. ........................... 71 

Figure 2.10 MALDI-MS profile of embedding media: a) HPMC & PVP, b) Gelatin, 
c) CMC. Embedding media profiled with 5 mg/mL α-CHCA (70% ACN 0.1% TFA, 
2.4 µL aniline). Mass spectra acquired in positive mode, m/z 100-2000. Spectra 
was processed by mMass and normalised to the highest peak (α-CHCA, m/z 
198.09) to obtain the relative intensity. ............................................................. 73 

Figure 2.11 DESI-MSI analysis of MG63 aggregoid sections on slides prepared 
and stored in different conditions. Lactate (m/z 89.023) distribution displays the 
delocalisation effects of each storage condition: a) Slides sealed in a slide box 
mailer at - 80°C. b) Slides desiccated with a nitrogen airflow immediately after 
thaw mounting sections, vacuum packed and stored at - 80°C. Red arrows and 
dotted circles outline the aggregoid section. Scale bar 1 mm. .......................... 75 

Figure 2.12 MALDI-MS lipid profile a) MG63 b) SAOS-2 and c) HCC827. Mass 
spectra acquired in positive mode; spectra display peaks within the mass range 
m/z 700-850. a) MG63 spectrum annotated with lipid species. Spectra was 
processed by mMass and normalised to the highest peak (α-CHCA, m/z 198.09) 
to obtain the relative intensity. b) SAOS-2 shows high α-CHCA peak at m/z 845.1 
increasing the intensity scale bar to r. int. 50%. ................................................ 77 

Figure 2.13 Relative intensities of lipid species PC 32:1 at m/z 732.5, PC 34:1 at 
m/z 760.6 and PC 36:4 at m/z 782.5. Biological replicates of each aggregoid were 
profiled (n=3). Each relative intensity was calculated from the most abundant α-
CHCA peak at m/z 198.09. A one-way ANOVA determined there were no 
significant differences between the aggregoid models for each m/z value (p > 
0.05). ................................................................................................................. 78 

Figure 2.14 MALDI-MS image of a HCC827 aggregoid section. a) spectral 
segmentation identifying two phenotypical regions: an outer and core. The areas 
were outlined on the m/z images to determine distribution of abundant lipid 
species b) m/z 732.6, c) m/z 760.6, d) m/z 782.6, e) m/z 810.6, f) m/z 826.6. 
Images were normalised using TIC. α-CHCA applied by spray-coat method. 
Scale bar 200 µm. ............................................................................................. 79 

Figure 2.15 MALDI-MS image of a HCC827 aggregoid section achieved through 
matrix sublimation. a) spectral segmentation identifying two regions. The areas 
were outlined on the m/z mages to determine distribution of abundant lipid 
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species b) m/z 782.6, c) m/z 810.6. Images normalised using TIC. Scale bar 200 
µm. d) Mean intensity of m/z images obtained through matrix spraying or 
sublimation. ....................................................................................................... 81 

Figure 3.1 Spatial segmentation of HCC827 aggregoid model from metabolite 
data. a) H&E stain of central aggregoid section. Black dotted lines were manually 
included to show estimate regions of different cellular morphology that 
corresponds similar to segmentation image. Scale bar 400 µm. b) Spatial 
segmentation of central aggregoid section identified three clustering regions that 
correspond to the hypoxia gradient: Core (blue cluster), intermediate/annual 
region (yellow cluster), and the outer region (red cluster)c) Realigned 3D 
construct of aggregoid displaying segmentation pattern throughout the model.90 

Figure 3.2 Average mean spectra of metabolites within the aggregoid regions 
extracted from SCiLS Lab software. a) Combined spectra of core, intermediate 
and outer region classified from bisecting k-means segmentation analysis. b) 
Core spectrum. c) Intermediate spectrum. d) Outer spectrum. Relative intensity 
of metabolites for each aggregoid region: e) Lactate, m/z 89.02440; f) Glutamine, 
m/z 145.06290; g) Citrate, m/z 191.01980; h) GSH, m/z 306.07650. ............... 93 

Figure 3.3 Distribution of metabolites regulating cancer growth and survival within 
the HCC827 aggregoid central section. Ion density maps of metabolites outlining 
the core and the outer area on the image. Mean intensity plotted on bar graph 
against the core and outer regions (n=1). Scale bar 200 µm. Intermediates of the 
glycolysis reaction: a) Pyruvate, m/z 87.00880; b) Lactate, m/z 89.02440. 
Glutaminolysis reaction: c) Glutamine, m/z 145.06190; d) Glutamate, m/z 
146.04590. TCA cycle: e) Citrate, m/z 191.01980 f) Malate, m/z 133.01430; g) 
Succinate, m/z 117.01940. ............................................................................... 95 

Figure 3.4 Mapping metabolites to biological pathways defined areas of tumour 
metabolism. The glycolysis reaction is highly expressed across the whole 
aggregoid section demonstrating the Warburg effect. Conversion of glutamine to 
glutamate is showing reduced expression in the core. The TCA intermediates 
present within the proliferative outer region. Intermediates acetyl-CoA, α-
ketoglutarate, succinyl-CoA, fumarate, and oxaloacetate were not observed. .. 96 

Figure 3.5 Fatty acid detection defines proliferative activity. Ion density maps of 
metabolites outlining the core and the outer area on the image. Mean intensity 
plotted on bar graph against the core and outer regions. Scale bar 200 µm. a) FA 
18:2, m/z 279.23280; b) FA 20:4, m/z 303.23300; c) GSH, m/z 306.07650. ..... 98 

Figure 3.6 IMC classification and spatial bisecting k-means segmentation using 
HALO™ software. a) Regions of core, outer and background were classified from 
the IMC image analysis of aggregoid. Classification of aggregoid in reference to 
Glut1 distribution which is localised within the core. b) Spatial segmentation of 
each protein marker to determine percentage positive cells. From top left to 
bottom right: Pan-CK, E-Cadherin, Glut1, Ki-67, TNC, pS6, γH2AX, pHH3, DNA.
 ........................................................................................................................ 100 

Figure 3.7 Representative IMC images of biological processes at subcellular 
detail in the HCC827 aggregoid model. Scale bar 100 µm. Percentage positive 
cells plotted on bar graph against the core and outer regions. a) DNA intercalator 
identified individual cells within the aggregoid section. Epithelial tumour markers: 
b) Pan-CK, c) E-Cadherin, and d) Tenascin C (TNC). Proliferation markers: e) Ki-
67 and f) pHH3. Hypoxia influenced markers: g) Glut1, h) pS6. DNA damage 
marker: i) γH2AX. ............................................................................................ 102 
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Figure 3.8 Structural organisation of biological processes for in-depth 
phenotyping of HCC827 aggregoid model. a) Optical image of aggregoid prior to 
staining with antibodies and image analysis. Scale bar 100 µm. Overlay of IMC 
markers displays representative images of b) Epithelial tumour markers: E-
cadherin, TNC; c) Proliferation and hypoxia: Ki-67 and Glut1; d) Overlay image 
combining ECM, proliferation, hypoxia and mitosis: E-cadherin, Ki-67, Glut1, 
pHH3. Scale bar 100 µm. ................................................................................ 104 

Figure 3.9 Elemental distributions within HCC827 aggregoid sections obtained 
using LA-ICP-MS. a) Optical image taken before acquisition; necrotic region 
outlined by red dotted line. Scale bar 50 µm. Elemental maps of b) 24Mg, c) 66Zn 
and d) 63Cu within the section of aggregoid. ................................................... 107 

Figure 4.1 Spatial segmentation of a HCC827, MG63 and SAOS-2 aggregoid 
from metabolite data by DESI-MSI. a) Spatial segmentation identified 
heterogeneous clustering phenotypes between aggregoid models. Segmentation 
of each sample was performed independently and therefore the coloured clusters 
do not correspond between samples. b) H&E stain of same aggregoid sections 
from each model. Black dotted line were manually included to highlight different 
phenotypical regions on the H&E stain that were similar to the segmentation 
clustering analysis. Scale bar 200 µm. ............................................................ 117 

Figure 4.2 PCA scores and loadings plot show separation of the MG63 and 
SAOS-2 aggregoid models from the HCC827 aggregoid model. Principal 
components, PC 1 (51.8%) and PC 2 (33.6%) (% = the amount of variability) 
showed the best separation between sample groups. The discriminatory m/z 
values of interest were distributed separately from the cluster of peaks. Samples 
were grouped with 95% confidence, HCC827 (red), MG63 (green), and SAOS-2 
(blue). .............................................................................................................. 119 

Figure 4.3 PLS-DA scores and loadings plot show variance between MG63 
aggregoid model and the SAOS-2 aggregoid model. Component 1 (69.6%) and 
component 2 (13.7%) showed the best separation between samples. The 
discriminatory m/z values of interest were distributed separately from the cluster 
of peaks. Samples were grouped with 95% confidence, MG63 (green) and SAOS-
2 (blue). ........................................................................................................... 120 

Figure 4.4 Distribution of metabolites detected in OS aggregoid models. Ion 
density maps of metabolites outlining the core and outer area on the image. Mean 
intensity plotted on bar graph against the SAOS-2, MG63 and HCC827 
aggregoids. Data is mean ± SD (n=3), one-way ANOVA with Tukey post hoc test  
* p < 0.05, ** p < 0.01, *** p < 0.001. Scale bar 200 µm. Peaks identified a) m/z 
572.480, Cer 34:1;O2 [M+Cl]-; b) m/z 885.549, PI 38:4. ................................. 123 

Figure 4.5 Spatial segmentation analysis of OS patient_826 tissue sample from 
metabolite data by DESI-MSI. a) spatial bisecting k-means segmentation of OS 
section highlighting heterogeneous clusters throughout tissue. Scale bar 600 µm. 
b) H&E of same OS tissue section after image analysis. Scale bar 600 µm. 
Magnification of ROIs: c) solid tumour (corresponding to the yellow cluster) with 
osteoid island (corresponding to the purple/blue clusters) at the right of the tissue; 
d) region of tumour and mineralised bone located to the left of tissue 
(corresponding to the yellow and sage green clusters); e) tumour and mineralised 
bone located at the top of the tissue (corresponding to the sage green cluster); f) 
Dense osteoid bone present focally (purple/blue cluster). Scale bar 300 µm. 125 

file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680432
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680432
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680432
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680432
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680432
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680432
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680432
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680433
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680433
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680433
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680433
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680434
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680435
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680435
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680435
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680435
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680435
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680435
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680435
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680436
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680436
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680436
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680436
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680436
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680436
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680437
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680437
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680437
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680437
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680437
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680437
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438
file:///C:/Users/lucye/Dropbox/Thesis/Corrections/Flint_2021_PhD%20Thesis_Amendments%20.docx%23_Toc79680438


vi 
 

Figure 4.6 Spatial segmentation analysis of OS patient_882 tissue sample from 
metabolite data by DESI-MSI. a) spatial bisecting k-means segmentation of OS 
section highlighting heterogeneous clusters throughout tissue. Scale bar 800 µm. 
b) H&E of same OS tissue section after image analysis. Scale bar 800 µm. 
Magnification of ROIs in H&E image: c) solid tumour (corresponding to the orange 
cluster) at the right of the tissue; d) region of medullary space with osteoid bone 
located focally (corresponding to the green and blue clusters); e) lamellar bone 
located at the left of the tissue (corresponding to the sage green cluster). Scale 
bar 200 µm. ..................................................................................................... 126 

Figure 4.7 PCA scores and loadings plot show separation of the OS aggregoid 
models from the OS human tissue samples. Principal components, PC 1 (48.6%) 
and PC 2 (22.4%) showed the best separation between sample groups. The 
discriminatory m/z values of interest were distributed separately from the cluster 
of peaks. Samples were grouped with 95% confidence, MG63 (green), and 
SAOS-2 (blue), OS patient_826 (red) and OS patient_882 (light blue). .......... 128 

Figure 4.8 Fatty acid detection within OS human tissue and OS aggregoid 
models. Ion density maps of metabolites in OS patient_826 and OS patient_882. 
Scale bar 500 µm and 800 µm, respectively. Ion density maps of aggregoid 
models outlining the core and outer area. Scale bar 200 µm. Peaks identified in 
human tissue a) m/z 279.234, FA 18:2; b) m/z 281.247, FA 18:1; c) m/z 303.231, 
FA 20:4. Peaks identified in OS models d) m/z 279.235, FA 18:2; e) m/z 281.248, 
FA 18:1; f) m/z 303.231, FA 20:4. ................................................................... 132 

Figure 4.9 Potential metastasis-related phospholipid species detected within OS 
human tissue and OS aggregoid models. Ion density maps of metabolites in OS 
patient_826 and OS patient_882. Scale bar 500 µm and 800 µm, respectively. 
Ion density maps of aggregoid models outlining the core and outer area. Scale 
bar 200 µm. Peaks identified in human tissue a) m/z 810.528, PS 38:4; b) m/z 
885.550, PI 38:4. Peaks identified in OS models d) m/z 810.530, PS 38:4; e) m/z 
885.549, PI 38:4. ............................................................................................. 134 

Figure 4.10 Ceramide species detected within OS human tissue and OS 
aggregoid models possibly identifies bone mineralisation. Ion density maps of 
metabolites in OS patient_826 and OS patient_882. Scale bar: 500 µm and 800 
µm, respectively. Ion density maps of aggregoid models outlining the core and 
outer area. Scale bar: 200 µm. Peaks identified is human tissue a) m/z 536.505, 
Cer 34:1;O2; b) m/z 572.484, Cer 34:1;O2 [M+Cl]-. Peaks identified in OS models 
c) m/z 536.504, Cer 34:1;O2; d) m/z 572.480, Cer 34:1;O2 [M+Cl]-. .............. 136 

Figure 4.11 Representative IMC images of protein marker distributions within the 
OS aggregoid models. Scale bar: 100 µm. DNA intercalator identified individual 
cells within the aggregoid sections. Protein markers vimentin and collagen 
expressed identified structural components within the aggregoid tissue. ........ 138 

Figure 4.12 Representative IMC images of protein marker distributions highlight 
different tumour microenvironment phenotypes within the OS aggregoid models. 
Scale bar: 100 µm. Protein markers expressed identified the proliferative and 
hypoxic regions via Ki-67 and Glut1, respectively. Markers in response to DNA 
damage, pNDRG1 and γH2AX. Proliferative and differentiating phenotypes 
observed by pS6 and pHH3 markers. ............................................................. 141 

Figure 4.13 Elemental compositions within the OS aggregoid models identified 
the tumour microenvironment regions. H&E stain of serial sections of same 
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aggregoid models imaged during LA-ICP-MSI analysis. Scale bar: 100 µm. 
Elemental maps of 24Mg, 66Zn and 63Cu. ......................................................... 144 

Figure 5.1 TRAIL signalling activates the intrinsic and extrinsic apoptotic 
signalling pathway. .......................................................................................... 152 

Figure 5.2 The EGFR signalling pathway promoting cell proliferation and growth 
is inhibited by cetuximab. ................................................................................ 154 

Figure 5.3 Apoptosis induction in osteosarcoma cell lines in response to TRAIL-
based therapy. a) Percentage apoptosis after 24 h treatment with TRAIL or anti-
DR5 in MG63 and SAOS-2 OS cell lines assessed by Hoechst 33342 and PI 
nuclear staining. Data is mean ± SD (n=3), one-way ANOVA with Tukey post hoc 
test * p < 0.05, ** p < 0.01, *** p < 0.001. b) Representative Hoechst 33342 and 
PI staining optical images of MG63 and SAOS-2 cells in response to TRAIL 0 
ng/mL and 200 ng/mL, anti-DR5 0 ng/mL and 1000 ng/mL. Condensed nuclei are 
characteristic of apoptosis and are shown as brighter-stained nuclei. ............ 159 

Figure 5.4 PCA scores and loadings plot show clear separation of control and 
TRAIL treated MG63 aggregoids. Principal components, PC 1 (40.1%) and PC 2 
(35.1%) showed the best separation between sample groups. The discriminatory 
m/z values of interest were distributed separately from the cluster of peaks. 
Samples were grouped with 95% confidence, control (red), 50 ng/mL TRAIL 
(blue) and 200 ng/mL TRAIL (green). ............................................................. 161 

Figure 5.5 PLS-DA scores and loadings plot show variance between control and 
200 ng/mL TRAIL treated MG63 aggregoids. Component 1 (44.9%) and 
component 2 (30.4%) showed the best separation between samples. The 
discriminatory m/z values of interest were distributed separately from the cluster 
of peaks. Samples were grouped with 95% confidence, control (red) and 200 
ng/mL TRAIL (green). ..................................................................................... 162 

Figure 5.6 MG63 TRAIL treated aggregoid images identified from multivariate 
analysis. a) H&E images of MG63 aggregoids control and 200 ng/mL TRAIL 
treated. Scale bar 200 µm. Ion density maps of metabolites outlining the outer 
(white) and core (red) regions of the aggregoid sections. Mean intensity plotted 
on bar graph against the control and 200 ng/mL treated samples (n=3), unpaired 
t-test * p < 0.05. Scale bar 200 µm. Peaks identified b) m/z 645.452, glycerol 1-
(9Z-octadecenoate) 2-tetradecanoate 3-phosphate; c) m/z 730.576, PC O-33:1; 
d) m/z 673.480, PA 34:1. ................................................................................ 165 

Figure 5.7 PCA scores and loadings plot show some separation of control and 
anti-DR5 treated MG63 aggregoids. Principal components, PC 2 (16.8%) and PC 
4 (3.5%) showed the best separation between sample groups. The discriminatory 
m/z values of interest were distributed separately from the cluster of peaks. 
Samples were grouped with 95% confidence, control (red), 200 ng/mL anti-DR5 
(blue) and 1000 ng/mL anti-DR5 (green). ....................................................... 167 

Figure 5.8 PLS-DA scores and loadings plot show variance between control and 
1000 ng/mL anti-DR5 treated MG63 aggregoids. Component 1 (17.7%) and 
component 2 (41.3%) showed the best separation between samples. The 
discriminatory m/z values of interest were distributed separately from the cluster 
of peaks. Samples were grouped with 95% confidence, control (red) and 1000 
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distributed separately from the cluster of peaks. Samples were grouped with 95% 
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CHAPTER 1. INTRODUCTION   
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1.1 Introduction 

The aim of pre-clinical studies is to determine the safety and efficacy of a drug 

before it is tested in humans at the clinical stage. The essential information 

obtained from drug development research includes the delivery and biological 

effect of a therapeutic, the cellular response to treatment, and its toxicity. 

Untargeted analytical techniques are highly desired for the bioanalysis of drugs. 

The current principal technique used in drug development is liquid 

chromatography (LC) coupled with tandem mass spectrometry (MS/MS) as it can 

offer a combination of high sensitivity and specificity for a dynamic range of 

analytes, in addition to the quantitative capabilities that are of considerable 

interest in the pharmaceutical industry (Rönquist-Nii & Edlund, 2005; Xu et al., 

2007; Punt et al., 2019). Whilst LC-MS/MS is of significant relevance in pre-

clinical studies, the measurement of a drug is typically achieved through the 

analysis of blood plasma or tissue homogenates. The limitation of analysing such 

biological samples is the loss of valuable spatial information. The ability to 

visualise endogenous and exogenous molecules within tissues can provide vital 

information of how a therapeutic penetrates, distributes, and metabolises, in 

addition to observing the biological responses to the treatment. The analysis of 

blood plasma or tissue homogenates is therefore an inaccurate representation of 

drug concentrations within organs or specific regions of tissues. 

Traditional methodologies employed in pharmaceutical research to spatially 

localise drugs and endogenous molecules within tissue samples or in vivo include 

immunofluorescence microscopy (Hess, Girirajan, & Mason, 2006), positron 

emission tomography (PET) (Piel, Vernaleken, & Rösch, 2014), magnetic 

resonance imaging (MRI) (Chen et al., 2015) or quantitative whole-body 

autoradiography (qWBA) (Solon & Kraus, 2001). A drawback of these 

techniques, however, is the targeted nature of the methods that requires prior 

knowledge about the analyte of interest for which fluorescent tags or radiolabels 

are needed, and thus the number of molecules that can be visualised 

simultaneously is restricted. In addition, the conjugation of probes onto drugs can 

affect their ability to reach its target or alter its biological effect, and therefore 

could misrepresent its true therapeutic nature (Liu et al., 2018). The analysis of 

drugs using probes has also limited use within human subjects and can add 
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complications when comparing between pre-clinical and clinical results (Krohn et 

al., 2007).  

On the other hand, mass spectrometry imaging (MSI) is an established analytical 

technique that has the capability to localise thousands of analytes simultaneously 

in an untargeted manner. MSI allows the visualisation of molecules in situ in two- 

and more recently three- dimensions without the use of labels or probes 

(Goodwin, Takats & Bunch, 2020). The benefits of MSI in drug development 

studies are the capabilities to detect the drug, its active metabolites and molecular 

changes in response to the treatment without prior knowledge (Swales et al., 

2019). It is also significant in terms of understanding the complex cellular 

environments within a biological sample through the detection of heterogeneous 

distributions of molecular species which can facilitate the identification of disease 

biomarkers (Buchberger et al., 2018). A diverse range of MSI techniques have 

demonstrated the ability to spatially resolve endogenous molecules including 

small molecules such as metabolites (Ly et al., 2015; Tucker et al., 2019), and 

lipids (Angel et al., 2012; Henderson et al., 2020), as well as larger molecules 

such as peptides (Guenther et al., 2011; Ly et al., 2019) and proteins (Stoeckli et 

al., 2001; Quanico et al., 2013), in addition to exogenous compounds and drugs 

in biological tissue (Trim et al., 2008; Nilssoni et al., 2015; Dexter et al., 2019). 

Recent developments have also expanded the capabilities of quantifying analytes 

of interest in situ (Vismeh et al., 2012; Pirman et al., 2013; Swales et al., 2018; 

Sammour et al., 2019; Handler et al., 2021). The continuous advancements of 

MSI, including the high sensitivity and specificity of analyte detection as well as 

the increasing spatial resolution, have rapidly progressed the technique in drug 

development and has gained a credible reputation within the pharmaceutical 

industry.  

1.2 Mass spectrometry imaging 

Imaging mass spectrometers are composed of three main components: an 

ionisation source which generates charged ions from the tissue sample; a mass 

analyser that separates the ions based on their mass to charge (m/z); and an ion 

detector that measures the relative abundance of the selected ions. The basic 

principle of MSI is the movement of the ionisation beam rastering across a tissue 

sample in the x, y direction. At each point across the tissue, chemical species are 
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ionised and desorbed, which are subsequently extracted into the mass 

spectrometer. The ions are then sorted by a mass analyser prior to a detector 

measuring the relevant abundance of the ions of interest. Software is used to 

reconstruct an image in which each pixel contains a mass spectrum that 

represents the ions detected from that specific point in the tissue. An image can 

be generated for any specific m/z value detected showing the distribution of that 

species and its relative abundance within the region of interest (ROI), similar to 

that of a heat map (Figure 1.1).  
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Figure 1.1 Basic principles of MSI. (Above image) The main components of an 

imaging mass spectrometer from the sample inlet to the ionisation source where 

ions are formed. The mass analyser separates the ions based on m/z values 

where they are measured by the detector and the data system generates the 

image from the measurable signal. (Below image) The fundamentals of MSI: an 

ionisation source rastering across a tissue section, producing ions which are 

detected by the mass spectrometer, generating a mass spectrum at each position 

of the tissue. Below figure from Porta Siegel et al., (2018). 
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The MSI workflow in pre-clinical research is generalised into sample preparation, 

data acquisition and data analysis. An overview of an undefined MSI workflow is 

shown in Figure 1.2, however following a specific workflow is determined by 

differing parameters. A major variant that effects the MSI workflow is the 

ionisation technique. Many different ionisation techniques have been developed 

and utilised in drug development and this has been previously reviewed (Swales 

et al., 2019; Xiao et al., 2020). Table 1.1 highlights some of the main ionisation 

modalities used in MSI and the attributes of the techniques that influence their 

use in different imaging applications. The aim of this introduction is to focus on 

the MSI workflows in relation to the four modalities used in this thesis, these 

include: matrix-assisted laser desorption ionisation (MALDI), desorption 

electrospray ionisation (DESI), laser ablation inductively coupled plasma (LA-

ICP) and imaging mass cytometry (IMC). The specific considerations of sample 

preparation for each technique used in this thesis are discussed in section 

1.2.2.1. 
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Figure 1.2 An overview of a generic MSI workflow showing the key steps involved from extracting the tumour biopsy to 

producing the final report. 
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Ionisation 
modality 

Conditions Ionisation 
source 

Formation 
of ions 

Matrix Mass 
range  

Spatial 
resolution 

Application area Reviewed 

Matrix-
assisted laser 
desorption 
ionisation 
(MALDI) 

Vacuum UV or IR 
laser beam  
(e.g., 
Nd:YAG at 
355 nm) 

Primary α-CHCA, 
DHB, 
DAN, 
9AA, SA 

< 100 kDa ~ 30 –  
100 µm 
< 10 µm 
reported 
(Smith et 
al., 2019)  

Metabolites 
Lipids 
Peptides  
Proteins 
Drug distribution 
and quantitation  

Prideaux, 
Staab, & 
Stoeckli, 
(2010); 
Schulz et 
al., (2019) 

Atmospheric 
pressure 
(AP)-MALDI 

Atmospheric UV laser  Primary α-CHCA, 
DHB, 
DAN, 
9AA, SA 

< 100 kDa 5 - 20 µm Metabolites  
Lipids 
Peptides 
Proteins 

Guenther 
et al., 
(2011); 
Hiraide et 
al., (2016) 

MALDI-2 Vacuum UV laser  Secondary 
(post-
ionisation) 

α-CHCA, 
DHB, 
norhar-
mane 
(NOR) 

< 100 kDa ~ 15 –  
100 µm 
 

Lipids 
Small molecule 
drugs 
Peptides 

Soltwisch 
et al., 
(2015); 
Ellis et al., 
(2017); 
Barré et 
al., (2019) 

Secondary 
ion mass 
spectrometry 
(SIMS) 

Vacuum Primary ion 
beam (e.g., 
Au+ or Bi+) 

Secondary N/A 
 

< 10 kDa 
 

 

 

 

  

< 10 µm DNA 
Metabolites 
Lipids 
Peptides 
Proteins  
Nanoparticles 
 
 

Van der 
Heide, 
(2014); 
Massonnet 
& Heeren, 
(2019) 
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Desorption 
electrospray 
ionisation 
(DESI) 

Ambient  Charged 
nebulising 
solvent (i.e., 
95% 
methanol 
v/v) 

Primary N/A < 2 kDa ~ 30 –  
100 µm 

Metabolites 
Lipids  
Drug distribution 
and quantitation 
Neurotransmitters 

Takáts, 
Wiseman, 
& Cooks, 
(2005); Wu 
et al., 
(2013); 
Xiao et al., 
(2020) 

Nano-DESI Ambient Charged 
nebulising 
solvent  

Primary N/A < 2 kDa ~ < 12 µm Metabolites 
Lipids  
Drug distribution 
and quantitation 

Roach, 
Laskin, & 
Laskin, 
(2010); Yin 
et al., 
(2019) 

Liquid 
extraction 
surface 
analysis 
(LESA) or 
liquid micro-
junction 
surface 
sampling 
probe (LMJ-
SSP) 

Ambient  Charged 
nebulising 
solvent via 
nano-
electrospray 
source 

Primary  N/A ~ 800 kDa 500 µm – 
1000 µm 

Metabolites 
Proteins 
Drug distribution 
and quantitation 

Van Berkel 
et al., 
(2008); 
Kertesz & 
Van 
Berkel, 
(2010); 
Swales et 
al., (2016) 



 

 
 

1
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Laser 
ablation 
inductively 
coupled 
plasma (LA-
ICP) 

Atmospheric Plasma   Primary  N/A 6-250 Da 
Metal 
isotopes 

5 - 200 µm Endogenous 
metals  
Metallodrugs 
Nanoparticles 

Becker, 
(2013) 

Imaging 
mass 
cytometry 
(IMC) 

Atmospheric  Plasma  Primary  N/A 75-209 Da 
Lanthanide 
metals 

< 1 µm Proteins and 
protein 
modifications 

Chang et 
al., (2017) 

Table 1.1 A comparison of the main MSI ionisation techniques. 
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1.2.1 Sample preparation 

Sample preparation is an important factor of the workflow as the collection and 

handling of a sample can have a significant influence on the quality of the data 

acquired. Robust sample preparation protocols have been established for 

application across MSI methods and have been previously reviewed (Goodwin, 

2012). The basic sample preparation workflow starts from the collection of a 

sample, such as a tumour biopsy from a patient or animal. The sample is then 

stabilised typically through snap freezing (i.e., in liquid nitrogen), which is then 

stored at - 80°C until use. In addition, the use of a fixative (e.g., formalin) in 

imaging studies has also been reported (Ly et al., 2019), although can limit the 

nature of the study to peptide detection. The purpose of stabilising tissue is to 

maintain the sample integrity and minimise degradation of molecules. Samples 

can be embedded using materials such as gelatin to assist handling of smaller 

fragile tissues or to decrease sample preparation time by embedding several 

samples in one mould. In the case of frozen samples, tissues are then 

cryosectioned at subfreezing temperatures (- 15 to - 25°C) typically at a thickness 

between 10-20 µm, with 12 µm a typical thickness used for MSI (Stoeckli et al., 

2001). Sections are thaw mounted onto compatible slides such as glass 

microscope slides or indium tin oxide (ITO) slides depending on the instrument 

used for analysis. Frozen tissue sections are then typically stored at - 80°C until 

use. Prior to analysis, slides are generally desiccated using freeze-dry techniques 

to remove moisture in order to minimise molecular degradation and 

delocalisation.  

1.2.2 Data acquisition  

1.2.2.1 Imaging modalities 

The ionisation method chosen for analysis can affect the imaging workflow by the 

requirement for additional sample processing steps. In this thesis, four ionisation 

techniques have been employed: MALDI, DESI, LA-ICP and its variant, IMC. The 

specific steps for the analysis of analytes by these methods are discussed. Figure 

1.3 describes the interfaces of each technique.   
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1.2.2.1.1  MALDI-MSI 

In this thesis, MALDI-MSI has been employed for the detection of abundant 

endogenous lipid species to assess the success of the experiment and 

exogenous biotherapeutics with the development of a bottom-up proteomics 

workflow. For the detection of lipids by MALDI, samples are prepared with matrix 

prior to acquisition, which is discussed later within this section. To detect protein-

originated peptides following a bottom-up proteomics approach however, 

additional sample preparation steps are necessary. Firstly, to enhance the 

detection of peptides samples can be washed with organic solvents such as 

ethanol and chloroform to remove salts and lipid species that cause ion 

suppression of peptide signal due to their high abundance in tissues. A variety of 

sample washing protocols have been assessed to increase the sensitivity of 

peptide imaging studies (Schwartz, Reyzer, & Caprioli, 2003; Lemaire et al., 

2006; Seeley et al., 2008). In a bottom-up proteomics workflow, proteins undergo 

enzymolysis to generate peptides by on-tissue digestion in a humid environment. 

Typically, an enzyme such as trypsin is used to cleave proteins into their 

constituent peptides at the lysine or arginine amino acid sites. The approach 

Figure 1.3 A schematic of the MALDI, DESI, LA-ICP and IMC interfaces. 

These ionisation modalities are the MSI platforms discussed in this thesis.  
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enables the identification of intact proteins (> 40 kDa) through the detection of 

proteotypic peptides of a lower mass range (< 4 kDa) which are more ionisable 

and therefore easier to measure. A comprehensive study comparing multiple on-

tissue digestion protocols with MALDI-MSI has been previously reported (Diehl 

et al., 2015). 

The detection of analytes including both lipids and peptides is highly dependent 

on the selected matrix that is applied to the sample. The MALDI matrix must be 

capable of absorbing the photon energy emitted by the UV light of the laser at an 

appropriate wavelength (i.e., 355 nm for a Nd:YAG laser) to promote the 

desorption and ionisation of analytes. The basic requirements for a matrix are to 

be stable under a vacuum, accept or donate a proton to the analytes during 

ionisation, have a similar solubility in solvents as the analytes and the ability to 

crystalise. Typical matrices used in MALDI-MSI experiments for the detection of 

lipids and peptides are α-cyano-4-hydroxycinnamic acid (α-CHCA) or 2,5-

dihydroxybenzoic acid (DHB) in positive mode. However, other matrices including 

9-aminoacridine (9AA) and 1,5-diaminoapthalene (DAN) have been used for the 

extraction of lipids in negative mode, in addition to sinapinic acid (SA) for the 

detection of proteins in positive mode. The solvent to dissolve the matrix can also 

have impact on analyte extraction. Typically, solvents such as acetonitrile, 

methanol or ethanol are mixed with small concentrations of an organic acid 

(commonly trifluoroacetic acid (TFA), 0.1-1% v/v) in water to dissolve both 

hydrophobic and water-soluble molecules in solution. The concentration of 

organic solvent and acid, in addition to the matrix concentration are generally 

optimised for different analytes of interest.  

The application of matrix is also an important parameter in MALDI-MSI analysis. 

It is fundamental that the matrix is applied homogenously to minimise variation in 

analyte signal across the sample. In addition, the crystal size of the matrix can 

have great influence on the spatial resolution of the image. The most conventional 

method of matrix deposition is by spray-coat, typically using commercial systems 

including HTX TM Sprayer™ or SunChrom’s SunCollect™ MALDI Sprayer. 

These automated systems have enabled a rapid and reproducible method of 

applying matrix (Djidja et al., 2010; Barré et al., 2019; Hermann et al., 2020). 

Alternatively, micro-spotting techniques, such as the Portrait™ 360 acoustic 

spotter, dispense picolitre volumes of matrix across the tissue in a predefined 
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array creating matrix spots 100-200 µm apart (Aerni, Cornett & Caproli, 2006). 

However, the micro-spotting method can hinder the spatial resolution capabilities 

of MSI analysis. Aside from these ‘wet’ matrix applications, ‘dry’ methods are also 

heavily employed in MALDI-MSI studies (Hankin, Barkely & Murphy, 2007; Angel 

et al., 2012; Handler et al., 2021). Sublimination offers a way of generating sub-

micron sized crystals applied homogenously across the tissue which gives the 

opportunity to generate images of high spatial resolution. The advantage of using 

a dry technique also minimises the possibility of analyte delocalisation which 

commonly occurs in the presence of a solvent in the matrix. The signal intensity 

of analytes by sublimination can be relatively low due to the lack of solvent which 

normally facilitates the extraction of analytes.  

After analysis, post-preparation of MALDI samples is possible due to the ‘soft’ 

ionisation nature of the technique. Most commonly, samples are prepared for 

histology staining after MSI analysis. An additional step of removing matrix using 

a solvent such as 100% ethanol prior to the staining process is required. The 

benefits of post-preparation such as histology staining the same section allows 

co-registration with the MALDI image to correlate molecular distributions with 

morphological ROIs.  

1.2.2.1.2  DESI-MSI 

The use of DESI in the MSI workflow generally requires relatively limited to no 

sample preparation, according to the application or the nature of the biological 

sample. Due to the ambient conditions of the technique, whole living tissue 

samples can be imaged directly, however DESI is generally restricted to flat and 

regular surfaces therefore in the case of animal organs or tissues, cryosections 

are still most commonly analysed. The use of DESI-MSI in this thesis was for the 

detection of metabolites in tissue cryosections which were analysed directly 

without sample preparation. Due to the use of a specific nebulising solvent (i.e., 

95% methanol/water, v/v) for the ionisation of analytes there is minimal 

destructive sampling. This is beneficial, since it permits further analysis by mass 

spectrometric methods such as MALDI-MSI and IMC, or other visualisation 

methods (i.e., histology) in order to obtain a greater amount of data that is 

complementary.  
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1.2.2.1.3  LA-ICP-MSI 

Similar to DESI, no additional sample preparation is required for LA-ICP-MSI 

analysis. Tissue sections can be analysed directly in the laser ablation chamber 

under atmospheric pressure. Using LA-ICP-MSI, the sample is near to fully 

ablated using a high energy 213 nm Nd:YAG laser and therefore post-preparation 

analysis of tissue sections is normally not possible. Typically, optical images of 

the sections are taken prior to analysis or serial sections are used for histological 

staining.  

1.2.2.1.4  IMC 

Analysing samples by IMC is a novel approach that requires tissue sections to 

undergo immunostaining with rare lanthanide metal-labelled antibodies prior to 

laser ablation. The detection of proteins and protein-modifications are achieved 

through measuring the relative abundance of the metal isotopes. Unlike the 

conventional MSI techniques that are commonly performed in an untargeted 

manner, IMC requires some prior knowledge of the protein content within the 

biological sample. Compared to traditional immunostaining methods, however, 

IMC has the capability to analyse up to 50 specific markers simultaneously within 

a single tissue section (Chang et al., 2017). A limitation of IMC is the added time 

needed to prepare the sample for analysis. Established protocols generally 

require two days due to the overnight incubation of the antibody cocktail on the 

tissues to ensure significant antibody binding to the protein targets. Though, due 

to the nature of the staining protocol, samples can be prepared in advance and 

left at room temperature for months before analysis. Therefore, bulk staining 

samples in earlier preparations can reduce the workflow time in future IMC 

analysis. IMC also fully ablates the tissue and therefore optical images prior to 

acquisition or staining of serial sections is used to correspond to IMC data.  

1.2.3 Data processing 

After imaging acquisition, data processing and analysis is the next fundamental 

part of the MSI workflow in order to generate the images and interrogate the data. 

The data generated from MSI experiments results in large data files that are 

typically > 10 GB in size for one image, with some nearing 100 GB. Analysing 

such complex files thus requires a multitude of image processing steps including 

data normalisation, baseline correction and spectral alignment before producing 
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a representative image of the peak of interest. Software packages typically 

generate an image based on the relative abundance of the analyte of interest by 

combining the spatial coordinates with the spectral data acquired. Data 

processing platforms have been developed by various instrument vendors. 

Previously the aim of using their specific software was to process the unique file 

type created by the vendor, however this created limitations on multimodal 

imaging workflows and hindered collaborative studies by being unable to share 

data across research groups. The MSI community have since introduced imzML 

as a common file format that can be used universally across most software 

packages, at least in the case for MALDI and DESI data (Römpp et al., 2010; 

Schramm et al., 2012). A review summarising the software tools that support the 

imzML file format currently used in MSI has been previously discussed (Russo et 

al., 2020).  

Developments in software packages have made them more versatile and they 

now contain additional data processing options to enable improved data mining. 

For example, the non-commercial software package SpectralAnalysis provides 

statistical capabilities such as multivariate analysis (MVA) (e.g., Principal 

component analysis (PCA) and partial-least squares (PLS)) which have allowed 

interpretation of complex datasets with the prospective of biomarker discovery 

and treatment assessment (Dexter et al., 2016; Race et al., 2016). In addition, 

specific quantitation software packages (e.g., msIQuant) have progressed the 

application of MSI in drug quantitation studies by providing a tool to calculate 

unknown amounts of an analyte through generating mean relative abundances 

of calibrants to produce calibration curves (Källback et al., 2016). A powerful MSI 

software tool, SCiLS™ Lab offers additional data processing capabilities that 

support untargeted data analysis including spectral spatial segmentation, 

discriminative receiving operating characteristics (ROC) analysis, 3D image 

construction and tissue classification of data sets based on training data allowing 

for further data mining than most software packages (Krasny et al., 2015; Mallah 

et al., 2018; Ly et al., 2019). The software also facilitates the option to import 

complementary optical images such as histological or immunofluorescent 

staining of the same or serial tissue section after analysis. This enables the MSI 

data to be co-registered with the data obtained from traditional visualisation 
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methods in order to differentiate and correlate analytes to heterogeneous regions 

within complex tissues. 

In the case of processing data obtained from LA-ICP-MSI and IMC 

instrumentation, common data analysis platforms used for MALDI or DESI cannot 

typically support their specific file types. Alternatively, the development of LA-

ICP-MSI specific software, such as Igor Pro Iolite Software, has been required, 

which specialises in time-resolved data reduction with the capabilities of baseline 

subtraction and normalisation to reference materials in addition to the ability to 

perform quantitative analysis (Paton et al., 2011). Nevertheless, advancements 

in software packages such as ProteoWizard (Chambers et al., 2012) have 

demonstrated an indispensable tool for converting LA-ICP-MSI Excel generated 

file types (xlsx) to the mzML format for the versatile use in most MSI processing 

programs. A review evaluating the software platforms used to analyse LA-ICP-

MSI data has been recently published (Weiskirchen et al., 2019). 

For vendor specific IMC data files (generated in the proprietary mcd format), 

producing the images is performed by the MCD Viewer software developed by 

Fluidigm®. This open-source platform allows for the visualisation of the protein 

markers to produce quality images for publication; however, it is limited to a 

viewing tool only. Alternatively, in-depth processing of IMC data requires 

specialist software that is typically commercialised and expensive. For example, 

advanced imaging software that was initially developed for histological analysis 

can also support the IMC raw data files. HALO® from Indica Laboratories enables 

single-cell segmentation allowing for tissue classification and quantification of 

positive staining within tissues, which can be performed on large data groups 

through training data sets.  

1.3 Pre-clinical disease models studied by MSI 

The use of animals in research has become prominent for drug development due 

to their complex biological environment within a whole organism that provides an 

advanced in vivo representation, modelling specific aspects of human diseases. 

Animals have been considered the ‘gold standard’ model system in some 

research for the evaluation of new therapeutic approaches in cancer and disease 

biology (Hooijmans, Leenaars & Ritskes-Hoitinga, 2010). The combination of MSI 

with animal models has been demonstrated in numerous drug studies (Chen et 
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al., 2008; Trim et al., 2008; Vismeh et al., 2012; Takai, Tanaka, & Saji, 2014; 

Swales et al., 2014), with the first MS images of pharmaceutical detection 

achieved in mouse tumour and rat brain tissues in 2003 by MALDI-MSI (Reyzer 

et al., 2003). For MALDI-MSI, robust methods of handling and preparing animal 

specimens have been established, from freezing and sectioning tissues to matrix 

application (Swales et al., 2018; Huizing et al., 2019; Dannhorn et al., 2020). 

Therefore, MALDI-MSI is highly validated for pharmaceutical analysis. 

Continuous developments in other MSI modalities, such as the detection of a 

wide molecular coverage from DESI-MSI, are also expanding the capabilities of 

pharmaceutical analysis (Dexter et al., 2019). The value of animal studies as an 

appropriate model to predict human responses has been challenged (Mignini & 

Khan, 2006). It is strongly argued that the failure of animal models to replicate 

human conditions contributes to the failure of the majority of therapeutics at 

clinical trials (Seok et al., 2013; Ugarte et al., 2018). Further challenges are also 

raised regarding the regulatory, economic, and societal issues with the use of 

animal models involved (Russo et al., 2018). 

Alternatively, a conventional technique routinely used for in vitro research is two-

dimensional (2D) cell cultures. The simplicity and low-cost maintenance of 

monolayer culture is an appealing strategy in biological studies to achieve 

reproducible high throughput analysis. The applications of SIMS-MSI with 2D cell 

cultures has been a leading approach to study pharmaceutical development 

(Passarelli et al., 2015; Vanbellingen et al., 2016). The submicron resolution and 

nanometre depth of the technique can enable a three-dimensional imaging 

capability to localise and quantify molecules at single-cell level (Gilmore, 2013). 

However, the sensitivity and matrix effects of SIMS have impacted its progression 

in drug efficacy and toxicity studies (Passarelli & Ewing, 2013). Advancements in 

the spatial resolution capabilities of MALDI, which can provide higher mass 

resolution across a larger mass range, has demonstrated the ability to profile 

individual cells of cancer cell lines (Schober et al., 2012; Zavalin et al., 2012). 

Though due to the low volume of material and small quantity of analytes in 2D 

cultures, the application in pharmaceutical analysis is limited (Comi et al., 2017). 

Alternatively, the recent developments in IMC has also improved the level of 

detail of detecting protein expressions at single-cell resolution in drug treated cell 

cultures (Bouzekri, Esch, & Ornatsky, 2019).  
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A major criticism of 2D cell cultures in pharmaceutical research, however, is the 

inability of monolayer cells to reproduce the complexity and heterogeneity of 

human tissues (Duval et al., 2017). Two-dimensional cell cultures form a 

monolayer growth, which can influence the interactions between cells and impact 

components such as the extracellular matrix (ECM) formation, cell signalling, and 

gene and protein expression that are all vital in drug analysis. The monolayer 

growth thus alters the function within cell cultures and can result in drug 

behaviours and responses that do not truly represent the outcome of the in vivo 

environment. Consequently, 2D cell culture experiments often cannot accurately 

predict drug reactions in a tissue environment, and therefore exhibit substantial 

limitations for such research (Kapałczyńska et al., 2018). 

There is high demand for alternative biological models that accurately replicate 

the in vivo environment and responds to the societal requirements to impact on 

the 3Rs – reduction, replacement and refinement – for the use of animal in 

research (Russo et al., 2018). Three-dimensional (3D) cell cultures are an 

advanced system that bridges the gap between 2D cultures and animal models, 

by having the cheap and high-throughput qualities from 2D cell cultures whilst 

providing the cellular and molecular complexity of animal models. Growing cells 

in 3D enhances the organisation and intricacy of cellular cultures so that they 

more closely mimic the in vivo microenvironment of primary tissues. These 3D 

models promote levels of cell differentiation and tissue organisation, which 

replicate typical tumour characteristics of gene and protein expression, nutrient 

diffusion, and cell-cell and cell-matrix interactions (Edmondson et al., 2014). A 

variety of 3D culture models have been developed to meet the biological 

requirements for specific research including drug analysis (Reynolds et al., 2017), 

patient-derived treatment (Huang et al., 2015), and biological crosstalk 

(Maschmeyer et al., 2015). These models include tumour spheroids, organoids, 

and microfluidic systems or 'organ-on-a-chip'. Each model varies in their levels of 

complexity and yet requires relatively low maintenance to achieve representative 

in vivo qualities. With the additional advantages of low cost and high throughput, 

the use of 3D models is appealing for early stage drug research and development 

prior to in vivo studies.  

Studies which combine MSI with 3D cell culture models are currently of 

considerable interest. Over the last decade, a significant amount of literature has 
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reported extensive applications in MSI analysis of 3D cultures for pre-clinical drug 

efficacy and toxicity research. The detection of endogenous molecules including 

metabolites, lipids and proteins have characterised the tumoral phenotypes of the 

3D models. Drug distribution studies have localised therapeutics and their active 

metabolites, in addition to the cellular response to treatment within specific 

substructural regions. In addition, developments in MSI have also demonstrated 

quantitative analysis of drugs in 3D cultures. The current literature in these areas 

is discussed in detail within this thesis and are summarised in Table 1.3.  

1.4 Application of MSI with 3D cell culture models  

1.4.1 Tumour spheroids 

Tumour spheroids have become invaluable tools for in vitro research due to their 

ability to replicate the important aspects of the in vivo microenvironment. First 

developed in 1971 by Robert Sutherland, these tumour models were initially 

formed to resemble cancer nodules seen in animal and human carcinomas 

(Sutherland, McCredie & Rodger, 1971). Spheroids blend the flexibility of cell 

culture systems with the ability to assume complex cellular architecture. They 

display a gradient of oxygen and nutrients that can be divided into three regions: 

a necrotic core, which experiences a high rate of apoptosis due to the extremely 

poor delivery of oxygen and nutrients; a non-proliferative region, where the cells 

display a state of dormancy as a result of hypoxia; and a proliferative edge with 

an abundant supply of nutrients, which accelerates tumour growth (Figure 1.4). 

These phenotypical microenvironments have a subsequent effect on the 

endogenous molecules within the spheroid and thus the distribution of such 

species can determine molecular processes significantly affected by hypoxic 

conditions, as depicted in Figure 1.5
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Figure 1.4 A basic diagram showing the phenotypical regions of a necrotic 

core, non-proliferative and a proliferative region within the tumour spheroid 

model.  
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Figure 1.5 Spheroid characteristics from the effects of oxygen and nutrient 

gradients. Combination of analytical images of spheroid sections obtained by 

different technologies including autoradiography, the TUNEL assay, 

bioluminescence imaging and probing with oxygen microelectrodes. These 

techniques enable the concentric arrangement of cell proliferation, viability, the 

microenvironment in tumour spheroids to be understood. Figure from 

Hirschhaeuser et al., 2010. 



 

23 
 

The creation of spheroids can be achieved by a variety of means, either as an 

independent culture or co-culture with different cell lines. Most conventionally, 

tumour spheroids are developed through the aggregation of cells from an 

independent culture via attachment prevention techniques. This is a simple 

method to produce highly reproducible spheroids relatively fast and at low costs 

which benefit high throughput drug analysis. Such methods include the use of 

attachment prevention surfaces such as commercial ultra-low attachment (ULA) 

plates or matrix coatings like agarose, or the suspension of cells within a droplet 

of liquid termed ‘hanging-drop’ (Timmins & Nielsen, 2007; Bartosh et al., 2010). 

In each technique, cells accumulate together and are forced to interact forming a 

single spheroid, otherwise known as a multicellular tumour spheroid (MCTS). 

Some cell lines, however, are unable to form robust spheroid cultures using these 

methods and different techniques can influence experimental outcome from the 

same cell line (Nagelkerke et al., 2013; Bresciani et al., 2019).  

Alternatively, the use of natural or synthetic scaffolds or culturing with embedding 

gels may be incorporated into the model. Such scaffolds can bring external ECM 

properties to facilitate the structure of a cellular environment and develop cell-

matrix interactions found in vivo. Typical materials used include basement 

membranes (i.e., Matrigel), collagen, alginate or cellulose, which are derived from 

natural ECM components (Ma et al., 2003; Fischbach et al., 2007). Synthetic 

materials such as biopolymer hydrogels can also be tailored to mimic a specific 

environment for different applications (Li, Yunfeng & Kumacheva, 2018). Using 

scaffolds allows a single-cell suspension to proliferate into isogenic spheroid 

populations to enable a more natural development of cultures that resemble in 

vivo properties. The development of spheroids in this manner, however, can be 

time consuming and the diameter of the cultures are generally smaller than 

MCTS, which with the spatial resolution capabilities of MSI could present 

challenges to generate an image with sufficient data points in order to observe 

the invaluable detail of the tissue. 
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Type of 

culture 

Cost Variability Complexity Throughput Ease of 

culture 

Extended 

incubation 

2D cell 

culture 

Low Low Low High Easy X 

Attachment 

prevention 

e.g., ULA or 

hanging 

drop 

Low- 

Medium 

Low Medium High Easy – 

Moderate 

~ 7 days 

Scaffold 

e.g., 

alginate or 

hydrogel 

Medium 

– High 

Medium – 

High 

High Low – 

Medium  

Easy – 

Moderate 

~ 14 days 

Table 1.2 Comparison of tumour spheroid types. (Adapted from Palubeckaite, 

2018). 

 

1.4.1.1 Characterisation of tumour spheroids by MSI 

The Hummon group were the first to publish work describing the combination of 

MSI with spheroids and have continued leading research utilising spheroid 

cultures with MSI for drug analysis. Their initial study used colon carcinoma 

MCTS from the HCT 116 cell line and adapted previous MALDI-MSI protocols for 

imaging tissue sections, to examine the protein distribution within spheroids (Li 

& Hummon, 2011). To assist the handling of tumour spheroids, the group 

embedded the samples within gelatin prior to flash freezing and cryosectioned 

tissues at a thickness of 10 µm. A protocol describing the workflow of tumour 

spheroids with MALDI-MSI was published by the group and included the 

development of the MCTS, sample handling, matrix application and data 

acquisition (Ahlf Wheatcraft, Liu, & Hummon, 2014). From the study, protein 

images of the sectioned spheroids were obtained in positive mode at a spatial 

resolution of 75 µm (~13 pixels across a typical MCTS). MALDI-MSI was able to 

detect species within specific regions of a spheroid; with the majority of peaks 

distributed across the section, and a specific unidentified peak at m/z 12,828 

localised predominantly within the central necrotic region. The individual peaks 

detected were not identified directly from the MSI data. For protein identification, 

the group employed an in-gel tryptic digest of the spheroids and identified 
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species, including Histone H4 and cytochrome c, by MALDI profiling and nanoLC-

MS/MS, correlating the m/z values to the MSI ion maps. The detection of protein 

species localised within specific regions of the spheroid identified phenotypic 

differences that corresponded to the tumour microenvironment, highlighting the 

hypoxic gradient. The initial MALDI-MSI study of MCTS therefore enabled an 

understanding of the heterogeneity of protein distributions within the model.  

The characterisation of tumour spheroid models has since been explored with 

MALDI techniques that provide higher mass accuracy and resolving power 

capabilities for more definitive identifications of molecular species. Hiraide et al., 

(2016) utilised AP-MALDI-MSI to characterise lipids throughout HCT 116 and 

DLD-1 MCTS. The group used an MS/MS imaging approach to identify m/z 885.5 

as an arachidonic acid containing phospholipid PI 38:4 specifically accumulated 

in the outer edge of the colorectal cancer models. It was suggested this 

phospholipid was associated with the migration of cancer cells, which thus 

identified the species as a potential biomarker for metastatic colorectal cancer. In 

addition, Tucker et al., (2019) employed Fourier-transform ion cyclotron 

resonance (FT-ICR)-MALDI-MSI for an untargeted approach to identify 

metabolites in MCF-7 breast cancer spheroids at 50 µm spatial resolution. The 

localisation of metabolites involved in the adenosine triphosphate (ATP) 

metabolism, which is fundamental for energy production, determined the oxygen 

gradient across the spheroid; correlating higher ATP levels with higher 

proliferative activity in the outer region compared to the central region. The group 

mapped the ion images of key metabolites to distinct biochemical processes 

including glycolysis and the hexosamine biosynthetic pathways to improve the 

understanding of the molecular microenvironment. 

In addition, similarities in metabolic signatures including the glutamine, fatty acid 

and phospholipid metabolism pathways were recently identified between KYSE-

30 oesophageal cancer spheroids and clinical patient tissue samples determined 

by MALDI-MSI at a greater spatial resolution (12 µm) (Zang et al., 2021). The 

corresponding detection of metabolites to in vivo demonstrated the spheroid 

model as an accurate representative of cancer metabolism. As demonstrated by 

these studies, characterising the spatial localisation of key endogenous 

molecules within spheroid models by MSI gives valuable opportunities to unravel 
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the cellular functions in tumours and can benefit the discovery of biomarkers for 

drug targeting to improve biological outcome.  

1.4.1.2 Analysis of therapeutics in tumour spheroids 

The combination of spheroids with MSI has further progressed for drug 

developmental research. Liu, Weaver, & Hummon (2013) investigated the 

efficacy of drug penetration by analysing the spatial distribution of irinotecan, an 

anticancer drug and topoisomerase I inhibitor, over a time-dependent course 

within HCT 116 colon carcinoma MCTS. Using MALDI-MSI irinotecan (m/z 587.3) 

was observed within the necrotic core only after 12 h of incubation. At 24 h, 

appreciably higher levels of the parent drug were observed within the central 

hypoxic region and necrotic core, and higher levels of irinotecan metabolites 

including the cytotoxic SN-38 (m/z 393.1) and SN-38 glucuronide (m/z 569.2) 

were located within the outer region. This study reported that a higher enzymatic 

activity localised in the proliferative outer layer of the MCTS. The data was 

validated by nanoLC-MS/MS; however quantitative analysis was not conducted. 

Rather, an additional study of a simpler and more accurate experimental method 

to analyse individual cells from spheroid cultures with spatial specificity by serial 

trypsinisation was published (Liu & Hummon, 2015). The group followed a novel 

method initially demonstrated by McMahon et al., (2012) of short trypsin 

treatments to sequentially remove cells from the outside of the spheroid in 

concentric radial layers and compared the process to like ‘peeling an onion’. The 

concentrations of irinotecan and SN-38 were detected by nanoLC-MS/MS in a 

time-dependent manner showing the movement of the parent drug from the outer 

region to the core over 72 h, as the cytotoxic metabolite was quantifiable after 12 

h and was more abundant in the outer and middle regions than the core at 72 h. 

Using a combination of advanced analytical techniques, the Hummon group 

therefore successfully demonstrated the quantification and localisation a parent 

drug and its metabolites, determining regions of metabolic activity within a 

spheroid model.  

A similar approach employing the ambient technique, single-probe MSI 

determined the influence of a series of time- and concentration-dependent 

irinotecan treatments on metabolite distributions in HCT 116 MCTS (Tian et al., 

2019). The group used advanced MVA methods to identify significant changes in 

metabolite abundances such as a significantly higher relative intensity of PC 32:1 
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(m/z 732.5) of the treated 3D cultures compared to the control, in addition to five 

times lower abundance of PC 34:2 (m/z 758.6) specifically in the inner region of 

the treated spheroids. These studies therefore demonstrated the analysis of 

therapeutically treated spheroids by different ionisable imaging modalities to 

study drug metabolism and cellular response.  

The Hummon group has further exploited the MSI-spheroid technique to study 

the penetration of a range of drugs including platinum-based (Liu & Hummon, 

2016), epigenetic-targeting (Lukowski, Weaver, & Hummon, 2017) and liposomal 

delivery (Feist et al., 2017). LaBonia et al., (2018) recently investigated the 

penetration of a combinational drug, FOLFIRI (folinic acid, 5-fluorouracil and 

irinotecan), within HCT 116 MCTS by an innovative 3D printed dosing platform to 

mimic the dynamic flow of chemotherapeutics used in vivo. Similar to the previous 

study, high levels of cytotoxic metabolites within the outer proliferative region 

were observed, as parent drugs, irinotecan and folinic acid, were localised within 

the necrotic core. Further analysis determined the proteomic changes to 

treatment with FOLFIRI by iTRAQ proteomic analysis acquired on a nano-ultra-

performance (UP)LC-MS/MS system. Tryptic peptides labelled with iTRAQ tags 

allowed for identification of proteins in addition to quantitative fold changes 

between treated and untreated samples; however, the spatial resolution within 

the MCTS by this method was lost. Nonetheless, the study provided evidence 

that MALDI-MSI can detect clinically approved combination therapeutics treated 

through a representative drug administration route and the active metabolites 

within the different regions of the spheroid, alongside detecting the proteomic 

response to treatment using complementary quantitative analysis. Not only does 

this further support the proposition that spheroids display differing metabolically 

active regions within the tumour microenvironments, but it also gives valuable 

insights into the cellular behaviour in response to drug treatment, which could 

help predict clinical outcome. 

Another demonstration of the diverse applications for drug distribution analysis 

within spheroid cultures is the evaluation of metal-based drugs by LA-ICP-MSI. 

Although the literature is limited, there has been some interest regarding the 

localisation of platinum-based drugs and hypoxia-responsive cobalt complexes 

(Theiner et al., 2017; O'Neill et al., 2017). For example, LA-ICP-MSI analysis of 

different platinum compounds, including satraplatin, detected heterogenous 
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distributions between HCT 116 colon carcinoma and CH1-PA-1 ovarian 

teratocarcinoma spheroid models (Theiner et al., 2016). The study demonstrated 

high sensitivity with achievable spatial resolution (10 µm laser spot size) for 

detecting platinum within the periphery and necrotic regions of the spheroid 

models.  

From small molecule chemotherapy to immunotherapy, the Hummon group 

studied HT 29 and DLD-1 colon cancer spheroid cultures to observe the 

distribution of the monoclonal antibody, cetuximab by MALDI-MSI. In order to 

achieve this a direct on-tissue reduction with dithiothreitol (DTT) followed by 

alkylation was developed by Liu et al., (2018). In this method, a protein is reduced 

to break the disulphide bonds and alkylated to prevent re-formation by modifying 

the cysteine residues. Cetuximab was detected using a signal arising from the 

light chain variable domain at m/z 23,412.5. The group observed a difference in 

the distribution of the light chain domain between the two spheroid models; at 72 

h cetuximab was primarily localised within the core of the HT 29 spheroids, 

whereas in the DLD-1 spheroids it was detected in the outer region. It was 

confirmed by immunofluorescent staining that this was due to the different 

expression levels of the antibody target, epidermal growth factor receptor (EGFR) 

in both cell lines. The light chain domain of cetuximab was also detected within 

colorectal-tumour organoids at 72 h; however, information about the distribution 

of the antibody within the organoid section was not given. In addition, the study 

examined the treatment response by detecting higher intensity signals of ATP 

(m/z 506.0) in the core of the HT 29 spheroids, indicating an increase in apoptosis 

in the presence of cetuximab. Overall, the study provided proof-of-concept that 

MALDI-MSI has the capabilities to detect the presence of a complex 

biopharmaceutical (~150 kDa) within an emerging 3D in vitro model, the tumour 

spheroid, and analyse the cellular response to treatment.  

1.4.1.3 Considerations of tumour spheroid analysis by MSI 

It is clear from the literature discussed in section 1.4.1 that the combination of 

spheroids with MSI is a powerful tool to investigate the biological behaviour of 

replicate in vitro tissues and study the efficacy of therapeutic drugs. Although 

there are a range of applications demonstrated, there are still gaps within the 

literature. MALDI-MSI has demonstrated great potential with tumour spheroids 

and is clearly the dominant technique (Table 1.3). However, employing other 
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imaging modalities could further expand the opportunities in drug analysis with 

tumour spheroids, such as by detecting a larger amount of metabolite information 

for biomarker identification or the detection of metal-based drugs as 

demonstrated by DESI and LA-ICP methods, respectively (Theiner et al., 2016; 

Robison et al., 2020).  

The main spheroid culture investigated by MSI has been MCTS of colon cancer 

cell lines. Although recent reports of MSI with other models of cancer (i.e., breast 

and ovarian cancer) have been published, there is still a need to expand the 

research for range of in vitro cancer models. This is primarily to demonstrate 

heterogeneity of spatially resolved molecules between cancer types and 

determine their independent response to treatment. Within this thesis, two cancer 

types have been studied: lung adenocarcinoma and osteosarcoma. Lung 

adenocarcinoma is one of the most common cancers effecting 1 in 15 people in 

the UK. The low patient outcome (< 15% at 5 years) has been linked to the 

aggressiveness of the cancer leading to inconsistent patient results and high 

resistance to therapeutics (Molinier et al., 2020). On the other hand, 

osteosarcoma is a rare bone disease more prevalent within adolescents, 

however the survival rate is relatively low at < 50% at 5 years (Stiller et al.,2018). 

This low rate is again due to a poor understanding of the cancer and thus there 

is a lack of an effective treatment. Both cancer types have an unmet clinical need, 

with many of the therapeutics that have initially passed the pre-clinical studies 

failing at the clinical stage. The development of representative 3D cultures of both 

cancer types therefore has the potential to progress research towards finding 

effective therapies. 

As previously mentioned, there are various types of spheroids models, such as 

those made within a biomimetic hydrogel scaffold, which act to recapitulate the 

behaviour of a native ECM giving an extra dimension to the spheroid model. A 

MSI experiment with these spheroid types could potentially provide additional 

information of drug behaviour and biological crosstalk within the ECM, which is 

essential for certain tissue types that grow within a filamentous structure in vivo. 

Furthermore, spheroids of co-cultured cell lines would provide an extra level of 

complexity and induce cell-cell interactions between different cellular phenotypes 

(i.e., epithelial and fibroblastic) and thus possibly give data of greater clinical 

relevance. 
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It is argued that spheroid cultures are unable to fully recapitulate the 

morphological, phenotypic and genetic heterogeneity of in vivo tumours (Liu et 

al., 2018). This is in-part due to the spherical shape they adopt, which does not 

necessarily capture the complex phenotypical structures observed in patient 

tumours, thus impacting how the drug behaves and penetrates the system. In 

addition to this, spheroids of certain cancer cell lines can be difficult to grow large 

in size (< 100 µm) and prove challenging for MSI to generate an image with 

sufficient raster spots to observe the sub structure, as well as the low quantity of 

material available to analyse (David et al., 2018). Although, continuous 

developments in MSI spatial and mass resolution are demonstrating achievable 

efforts to overcome this challenge. Nevertheless, it is an understandable 

requirement to use more advanced models that can be grown large enough to 

study the spatial distribution of molecules. Moreover, MSI analysis of tumour 

spheroids alongside clinical tissue has shown great impact for the application of 

3D cultures in pre-clinical research (Zang et al., 2021). The similarities in 

metabolic signatures between spheroids and in vivo tissue supports the 

development of a representative in vitro model of cancer. With the considerations 

of enhancing the tumour spheroid model, this thesis aimed to address an 

alternative method of culturing 3D spheroids by the use of a natural scaffold 

followed by aggregation in attempt to increase the complexity of the spheroid 

model for a closer representation of in vivo. A detailed explanation of the model 

is described in Chapter 2. 

1.4.2 Organoids 

Derived from patient stem cells or biopsies, organoids are small-scale constructs 

that adopt the morphological structures of in vivo tumours and organs. Like 

spheroids, these self-organised systems allow for the study of biological 

processes including cell behaviour, tissue repair and drug response. As 

organoids are derived from patients, these systems hold the potential to assist in 

the prediction of drug response in a personalised manner. The first reported 

organoid structure dates back to 1975 by Rheinwald & Green, who cultivated a 

living skin replacement from epidermal keratinocytes which was later used to treat 

burn patients (Rheinwald & Green, 1975). Although organoids first received 

interest back in the 1970s, within the last decade the 3D models have witnessed 

a revival. Since its first development, the human skin organoid has been 
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successfully commercialised by several businesses for experimental use. These 

include: a human reconstructed epidermis (HRE) and a 3D differentiated 

epidermis cultures derived from human keratinocytes known as EpiSkin (Episkin, 

Lyon, France) and EpiDerm (Mattek, Ashland, USA), as well as full thickness 

living skin equivalents (LSE) that is T-skin (Episkin, Lyon, France) and Labskin 

(Labskin U.K. Ltd, York, U.K.).  

The development of alternative organoid cultures have been used in a range of 

studies to investigate healthy and diseased organs or the behaviours of primary 

tumours to drug treatment. For example, Dye et al., (2015) generated lung 

organoids from human pluripotent stem cells and observed their remarkable 

similarities to human foetal lungs, thus stating it an excellent model for human 

lung development, maturation and disease studies. In addition, a study 

conducted by Crespo et al., (2017) developed colonic organoids to observe the 

blocking effects of a chemotherapeutic, geneticin in hyperproliferation, which has 

been associated with colon cancer in vivo.  

1.4.2.1 MSI analysis of LSE models 

The combination of human skin models and MALDI-MSI has been extensively 

utilised to study the drug absorption into the different layers of the skin. The 

benefits of using the skin models with MALDI-MSI analysis, is that the skin can 

be treated similarly to animal tissues in terms of sample preparation and imaging 

acquisition. The earliest work of the MALDI-MSI approach was conducted by 

Avery et al., (2011), who examined the absorption of an antidepressant drug, 

imipramine into a model of the human epidermis, ‘Straticell’. A considerable 

difference in the intensities of imipramine at 2 h and 8 h was observed, with higher 

signals of the drug in the epidermis at 8 h. No quantifiable data analysis was 

conducted to achieve a significant concentration; however, this is partly due to 

the lack of quantitative methodologies for MALDI-MSI data at the time the study 

was conducted. The study stated some data remained inconclusive and 

additional experimentation is required to determine biotransformation of the drug. 

Avery et al., (2011) however, clearly understood the potential capabilities of 

MALDI-MSI to determine drug penetration..  

Since this work, a comprehensive study has characterised the endogenous lipid 

content within the LSE model, Labskin, by MALDI-MSI detecting abundant 
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species including phosphatidylcholine (PC), sphingolipids (SM) and 

lysphosphatidylcholine (LPC) (Mitchell et al., 2015). Using MVA (PCA), changes 

in the lipid localisations of PC 32:1 (m/z 732.6) and PC 38:0 (m/z 759.6) over a 

time-dependent course were observed; from initial detection of the PC species 

solely within the epidermis to a homogenous distribution throughout the skin 

sections after 24 h. The changes in distribution were associated with cell 

differentiation in the dermis and epidermis of the skin model. The data obtained 

from this study was further used to determine the effects of a topical treatment in 

order to differentiate between the pharmacodynamic effects arising from the 

compounds and the normal processes of cellular differentiation in the LSE model. 

Mitchell et al., (2016) determined the lipid changes in response to emollient 

creams. Both emollient treatments were detectable by ions characteristic to each 

cream, in addition to the detection of endogenous lipid species previously 

observed within the Labskin model. After 24 h of treatment, differences in PC 

32:1 (m/z 732.6) and PC 36:1 (m/z 758.6) distributions were observed; both 

species were abundant solely within the epidermis of the untreated skin, 

compared to their distribution within  the dermis and throughout the treated skin. 

This was an interesting study to show the effects of treatment on the spatial 

localisation of lipid species and can be used to determine the metabolic changes 

in response to topical therapeutics, as well as the simultaneous detection of the 

emollients.  

A following study by Harvey et al., (2016) examined the absorption of the drug, 

acitretin in a psoriasis induced Labskin model. It was demonstrated by MALDI-

MSI acitretin penetrated the epidermis at 24 h then further infiltrated the dermal 

layer of the skin after 48 h. To confirm the location of the drug in the LSE model 

a sodiated sphingomyelin at m/z 725.4, which correlated to the epidermis, was 

detected. This time-dependent approach allowed for the evaluation of the drug’s 

penetration and stability properties within a living tissue. In this study, MALDI-MSI 

successfully demonstrated the capabilities of analysing drug delivery, whilst also 

identifying specific regions of a complex organoid skin equivalent model.  

The use of MSI to study skin has been further developed to achieve absolute 

quantification. A study conducted by Russo et al., (2018) developed a quantitative 

MSI (QMSI) approach to determine the amount of an antifungal agent, terbinafine 

hydrochloride within the epidermis of the Labskin model. The study optimised a 
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micro-spotting methodology to achieve precise and uniform analytical and 

internal standards at nanolitre volumes solely within the epidermal layer, in order 

to mimic the cell-type ionisation response in treated tissues. Increasing 

concentrations of the internal standard were successfully detected at m/z 148 by 

MALDI-MSI to generate a calibration curve. Signals from the ROIs observed from 

endogenous species that defined the epidermis (PC at m/z 184) and stratum 

corneum (m/z 264) were employed to ensure that the drug calibration signals 

extracted were true to the specified region. In addition, the study evaluated the 

performance of the penetration enhancer Dimethyl Isosorbide (DMI) added to the 

delivery formulation. QMSI detected an increase in concentration of terbinafine 

with an increase in percentage of DMI within the epidermis of the LSE. Validation 

analysis observed no statistical significance between the values from QMSI and 

the values from the ‘gold standard’ LC-MS/MS, thus proving MALDI-MSI as a 

powerful quantitative method. This study demonstrated the potential impact 

QMSI with tissue engineered models will have on drug development, as by 

determining the amount of drug present within a tissue, information of its 

pharmacological activity can be obtained.  

1.4.2.2 MS imaging of tumour organoids 

The combination of MSI with tumour organoids is a relatively new approach. The 

development of tumour organoids, also known as cancer tissue originating 

spheroids (CTOS), is a similar process to generating tumour spheroids. 

Generally, patient derived cells are cultured in hydrogels such as basement 

membrane extract (BME), which are made with native ECM components and 

growth factors. CTOS are similar in size to tumour spheroids, and therefore 

require embedding medium, such as gelatin, to assist sample handling prior to 

preparation for MSI analysis following conventional protocols. More conventional 

imaging techniques such as fluorescence microscopy have mainly been used to 

observe these tumour models (Shah, Heaster, & Skala, 2017). However, efforts 

using MSI strategies to analyse CTOS have been reported, either in combination 

with fluorescent microscopy to detect the penetration of small molecule drugs that 

are inherently non-fluorescent (Bergmann et al., 2018), or the development of 

sample preparation methods to improve high-throughput analysis (Johnson et al., 

2020).  
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Liu et al., (2018) reported the use of MALDI-MSI with patient derived colorectal 

tumour organoids to observe the drug distribution of irinotecan in a time-

dependant dosage. MALDI-MSI detected high intensities of irinotecan at m/z 

587.3 and its metabolites SN-38 (m/z 393.1) and SN-38 glucuronide (m/z 569.2) 

distributed heterogeneously within the CTOS at 24 h of dosage. It was stated that 

this was possibly due to the various cell types including ISCs, differentiated 

enterocytes, goblet cells, entero-endocrine cells and Paneth cells that form the 

organoid model, which could have metabolised irinotecan differently. Thus, it 

demonstrated the benefits of utilising organoids over single-cell type spheroids to 

understand the metabolism of therapeutics within a structure comprised of many 

cell-types. The study also employed a QMSI approach to determine the amount 

of irinotecan present in the CTOS compared to its metabolites at a higher dosage 

at 72 h, observing lower signal of SN-38 and indicating less conversion of the 

active metabolite from irinotecan. This approach proved a valuable insight in the 

capabilities of QMSI to determine drug efficacy and potential chemo-resistance 

in patient derived CTOS, which in turn could predict clinical outcome that is 

specific to the patient.  

1.4.2.3 Considerations of MSI organoid analysis  

Alternative organoid cultures that mimic in vivo tissues other than skin or 

colorectal tumours have yet to be studied by MSI. Various challenges of cell 

culturing or MSI ionisation may be within optimisation; however, there is progress 

towards the development of the MSI-organoid approach. For example, a study 

conducted by David et al., (2018) developed a method to study tumour explants 

of breast cancer xenografts. This was to overcome the issues of being unable to 

grow large enough breast cancer spheroids for spatial distributional analysis. The 

group developed xenografts in mice, to which the tumours were harvested and 

divided into explants of desired size and then treated in vitro. Following this, the 

tumours were embedded in gelatin and prepared following conventional protocols 

for MSI analysis. MALDI-MSI spatially localised the distribution of macrocyclic 

peptides and small molecule treatments including cyclosporin A and tamoxifen in 

the ex vivo mice organoids. Although the group utilised mouse tissue, the idea 

was to demonstrate the ability to extract biopsies and detect the uptake of 

therapeutics for a promising analytical method to examine patient specific 

treatment for prevalent diseases such as breast cancer.  
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The reported use of MSI techniques other than MALDI-MSI is limited for organoid 

cultures. This is most likely due to the analysis of organoids with MSI being a 

relatively new concept, especially in terms of CTOS. However, as the literature 

has demonstrated with the analysis of tumour spheroids, the ability to analyse 

organoids by other MS imaging techniques has potential. The growth of CTOS 

are typically reduced due to being primary cultures compared to the fast growth 

of MCTS from immortalised cell lines. The size of certain CTOS and the spatial 

capabilities of MSI may therefore limit spatial distribution studies. Though, in 

terms of larger cultures such as the LSE model similar approaches for the MSI 

analysis of animal tissues can be applied. Overall based on the current success, 

imaging complex organoid cultures has demonstrated the ability to spatially 

locate and quantify drugs. This emerging technique could be extremely valuable, 

and it will be interesting to see where organoid imaging can take drug 

developmental research further.  

Recent developments of cutting-edge technology have enabled further 

advancements with organoid cultures. Three-dimensional bioprinting enables 

automated fabrication of highly complex multicellular tissues by combining cells, 

growth factors, and biomimetic materials. This technology has revolutionised 

tissue engineering due to its versatile processing capabilities to recapitulate 

important structural features of functional organs, which in the long-term could be 

considered for transplantable tissue in regenerative medicine (Akizuki et al., 

2018). Bioprinting also has the potential to be used for personalised medicine for 

cancer treatment. For example, Zhao et al., (2012) constructed an in vitro cervical 

cancer model by the fabrication of HeLa cells with hydrogel-based materials, 

observing a significant difference in chemo-resistance to the anti-cancer drug, 

paclitaxel, compared to 2D cell culture. Evaluation of anti-cancer treatment using 

3D bioprinting is still a relatively new concept, in addition analysis by MSI has not 

been exploited so far. However, the potential to analyse more complex models of 

in vivo tissue is an exciting avenue for research and could in future be used as a 

valuable in vitro tool for pre-clinical drug development. 

1.4.3 Microfluidic systems 

Technically microfluidic systems mostly contain 2D cell cultures, the complex 

structure is designed to recreate the multiscale architecture and tissue-tissue 

interfaces that are crucial for organs and tissues to function. Otherwise known as 
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‘organ-on-a-chip’ the purpose of this system is not to build a whole living organ 

within a representative native environment, but rather to synthesise minimal 

functional units that recapitulate tissue and organ level processes. The benefits 

of using the microfluidic system facilitates the generation of microscale 

dimensions and volumes that are similar to those typically found in biological 

systems (Chiu et al., 2017). The microfluidic device can be designed in multiple 

ways depending on the complexity of the tissue that is modelled. The basic 

concept of the system is that the cells are plated within patterns on a chip that is 

coated with biocompatible materials such as polymer substrates. These materials 

allow for the passage of nutrients from the microchannels that provide a 

continuous flow of fluid. Unlike 2D cell cultures and 3D models, including 

spheroids and organoids, which are typically grown and treated sitting within a 

well of media. The continuous flow allows for the manipulation of the chemical 

gradients for cell survival and function over a long time period in addition to 

enabling treatment of drugs in a more representative manner such as 

recapitulating the oral or IV injection administration route. In more complex 

designs, numerous microchannels are connected by different porous membranes 

for different cell types. This constructs the interfaces between different tissue 

types to recreate a model of the human body. The many attributes of microfluidic 

systems identify this method of culture as one of the most advanced 3D tissue 

engineered models. 

1.4.3.1 MSI potential with microfluidic systems 

An extensive range of research has already utilised these microfluidic systems 

with mass spectrometry techniques in pharmacological studies. Santbergen et 

al., (2020) designed an on-line UPLC-MS technique coupled to a ‘gut-on-a-chip’ 

model fabricated with a co-culture of colonic adenocarcinoma cell lines, Caco-2 

and HT29-MTX. The dynamic system had switching valves to switch between the 

apical and basolateral sides of the in vitro model, allowing for permeability 

analysis of the oral drugs, verapamil and granisetron. Qualitative and quantitative 

analysis of the anti-cancer drug, genistein was demonstrated by Chen et al., 

(2012) developing a stable isotope labelling assisted microfluidic chip (SIL-chip)-

ESI-MS platform. The device cultivated MCF-7 breast cancer cells with the 

tumour growth inhibitor to study drug-induced apoptosis and cell metabolism, and 
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subsequently calculated the concentration of the eluting drug to determine 

genistein absorption.  

Typically, imaging organ-on-chip cultures is performed by either fluorescence or 

optical microscopy. Microfluidic devices may be amenable to MSI, however there 

is no literature to date that has utilised this approach. This simply could be due to 

the fact the microfluidic system is much more complex and lacks accessibility to 

image these cells. In addition, the sample size of the cultures in a microfluidic 

system is very small. This is a limitation for multiple reasons, including the inability 

to reproduce the spatial heterogeneity found in larger 3D models, such as tumour 

spheroids and organoids. In addition to the spatial resolution challenges of MSI; 

although, the developments in spatial resolution technology hold potential. 

Ambient MSI methods such as DESI or LESA may be better suited with 

microfluidic devices, as for MALDI required sample preparations and the laser 

desorption technique could impact the biological composition.  

An unconventional approach, however, has interfaced a microfluidic device with 

MALDI-MSI. Jo et al., (2007) stimulated neurons cultured onto a microfluidic 

system and collected the neuronal release on a functionalised surface that is 

compatible for direct MALDI-MSI analysis. An estimated amount of 

neuropeptides released including acidic peptide and α-BCP, was calculated by 

imaging the distance the peptides flowed through the measured channels of the 

functionalised surface. The group further adapted the MALDI-MSI method to 

achieve improved accuracy and precision (Zhong et al., 2012). This method 

utilised the abilities of MALDI-MSI to image the spatial distribution of the peptides 

as a measurement tool. Although the study did not directly analyse the spatial 

integrity of the neurons in culture, the group demonstrated the MSI method as a 

novel approach to examined biological behaviour.  

As demonstrated by the extensive range of studies, conducted to date, MSI has 

proven strength in the investigation of pharmacological activity in 3D cell culture 

models. With the expanding surge of microfluidic systems for the study of 

therapeutics and the biological response, it can be contemplated that there is a 

high possibility the MSI-microfluidics approach will be exploited within the 

foreseeable future. This is especially true when the recent advances in 

microfluidics to further enhance the complexity of the 3D culture systems are 

considered. For example, macrofluidic systems or ‘organoid-on-a-chip’ platforms 
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have been engineered to combine the complexity of microfluidic devices with ex 

vivo tissues, spheroids and organoids, rather than 2D cell cultures, to replicate 

the in vivo microenvironments for patient-derived cultures (Yu & Choudhury, 

2019). A similar concept of a macrofluidics system with spheroids was previously 

discussed, used as a 3D printed dosing platform device to treat HCT 116 MCTS 

with FOLFIRI (LaBonia et al., 2018). Alternatively, Spencer et al., (2020) reported 

the preliminary work of a developed macrofluidics device cultivating an ex vivo 

small intestine tissue on a Quasi Vivo 600 Liquid-Liquid Interphase in vitro system 

to model the GI tract and the oral-drug administration route. After treatment, the 

ex vivo tissue was removed from the fluidics system, snap frozen and cryo-

sectioned prior to preparing the sample with matrix by sublimation. MALDI-MSI 

analysis was able to detect regions of lymphatic tissue, known as Peyer’s patches 

(m/z 389), identifying substructures within the small intestine. The sodium adduct 

of the oral drug, atorvastatin (m/z 581) within the apical side of tissue after a 6 h 

incubation was localised outside of the Peyer’s patches and indicated an 

absorption by passive diffusion. Not only did this demonstrate advanced 

manipulation of ex vivo tissue, but it also allowed for even more accurate drug 

analysis than previously mentioned 3D models, such as spheroids or organoid 

cultures by MALDI-MSI. These advancements in 3D culture models can offer an 

ideal testing platform in drug developmental studies, which also hold potential to 

be exploited for analysis by MSI. 
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Paper Disease 3D Model 3D Method Ionisation Spatial 
Resolution 

Summary 

Li & 
Hummon, 
(2011) 

HCT 116 
colon 
carcinoma  

Spheroid Aggregation MALDI  75 µm Detected specific regional distributions 
of proteins across spheroids and 
highlighted a central necrotic region. 
Proteins Histone H4 and cytochrome c 
identified, validated by LC MS/MS. 

Liu et al., 
(2013) 

HCT 116 
colon 
carcinoma 

Spheroid Aggregation MALDI  75 µm Drug penetration of irinotecan mapped 
over a 72 h time-dependent course, 
moving from outer region of spheroid 
into the core. Detection of drug 
metabolites within spheroid validated 
by nanoLC-MS/MS.  

Ahlf et al., 
(2014) 

HCT 116 
colon 
carcinoma  

Spheroid Aggregation MALDI Not reported Combination of confocal Raman 
microscopy and MALDI-MSI to 
determine structure of spheroids by 
protein secretion and small molecules 
distribution. 

Ahlf 
Wheatcraft et 
al., (2014) 

HCT 116 
colon 
carcinoma  

Spheroid Aggregation MALDI  Not reported Spheroid-MSI workflow protocol. 
Includes the culture, preparation and 
analysis of spheroid samples by 
MALDI-MSI.   

Hiraide et al., 
(2016) 

HCT 116 & 
DLD-1 colon 
carcinoma  

Spheroid 
 

Aggregation 
followed by 
Cellmatrix 
type I-A 
scaffold gel 

AP-MALDI 5 µm (laser   
spot size) 

Tandem MS identified specific lipid 
species arachidonic acid containing PI 
38:4 within the outer region in spheroid 
culture. Phospholipid associated with 
metastatic behaviour.  

Liu & 
Hummon, 
(2016) 

HCT 116 
colon 
carcinoma 

Spheroid Aggregation MALDI  
 

75 µm Localisation of platinum-based drugs 
and their metabolites displayed 
heterogeneous distributions within 
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spheroids. On-tissue chemical 
derivatization. UPLC-MS/MS 
quantification.   

Theiner et al., 
(2016) 

HCT 116 
colon 
carcinoma & 
CH1-PA-1 
ovarian 
terato-
carcinoma 

Spheroid Aggregation LA-ICP-
MSI 

10 µm (laser 
spot size) 

Analysis of platinum-based compounds 
including satraplatin, showed 
heterogeneous distributions between 
the two spheroid models. Platinum was 
detected in the periphery and necrotic 
regions of spheroids. 

Lukowski et 
al., (2017) 

HCT 116 
colon 
carcinoma 

Spheroid Aggregation MALDI  75 µm Demonstrated doxorubicin-encased 
liposome delivery into spheroids. 
Detection of doxorubicin and active 
metabolites throughout spheroid at 72 
h.  

Feist et al., 
(2017) 

HCT 116 
colon 
carcinoma 

Spheroid Aggregation MALDI  75 µm Proteomic imaging of histone peptides 
and their post-translational 
modifications determined the response 
to epigenetic drug within serial sections 
of spheroids, generating samples from 
core, the mid and external areas. 

O'Neill et al., 
(2017) 

DLD-1 colon 
carcinoma 

Spheroid Aggregation  LA-ICP-
MSI 

25 µm (laser 
spot size) 

Multimodal analysis employing LA-ICP-
MSI and MRI to study hypoxia 
responsive cobalt complexes, detecting 
Co(II)TPAx in the core of the spheroid 
sections.  

Theiner et al., 
(2017) 

HCT 116 
Colon 
carcinoma 

Spheroid Aggregation LA-ICP-
MSI 

5 µm (laser 
spot size) 

Analysis of metal-based cancer drugs 
in spheroids determined hypoxic, non-
proliferative and proliferative regions 
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within the spheroid based on platinum 
and phosphorous ratios.  

LaBonia et 
al., (2018) 

HCT 116 
colon 
carcinoma 

Spheroid Aggregation MALDI 75 µm Proteomic changes from a dynamic 
flow dosing with FOLFIRI treatment 
investigated and quantified by iTRAQ 
analysis. Heterogeneous distribution of 
drugs and active metabolites 
throughout spheroid.  

Liu et al., 
(2018) 

HT-29 & 
DLD1 colon 
carcinoma 
Patient 
derived 
colorectal 
cancer  

Spheroid 
 
 

Tumour 
organoids 

Aggregation 
 
 

Aggregation 
with BME 
type 2  

MALDI 70 µm  On-tissue reduction and alkylation 
method to detect time-dependent 
penetration and distribution of 
monoclonal antibody, Cetuximab. 
Different localisations of immuno-drug 
determined between two cell lines. 
Detection in organoid cultures also 
demonstrated.  

Tucker et al., 
(2019) 

MCF-7 breast 
cancer 

Spheroid Aggregation FT-ICR 
MALDI 

50 µm Untargeted metabolite mapping in 
spheroids identified proliferative and 
hypoxic regions via ATP metabolism 
pathway. Ion images mapped onto 
biological pathways including 
glycolysis. 

Mittal et al., 
(2019) 

Patient 
derived 
ovarian 
cancer 

Spheroid Aggregation MALDI 50 µm On-tissue digestion workflow 
embedded spheroids in Matrigel prior 
to FFPE. Co-localised proteotypic 
peptides within the outer layer and 
necrotic region of spheroids.  

Machálková 
et al., (2019) 

HT-29 colon 
carcinoma 

Spheroid Aggregation MALDI 50 µm Multimodal co-registration of MALDI 
and IHC images of perifosine treated 
spheroids at 24 h. Lipid distributions in 
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MALDI analysis and protein 
expressions in IHC identified 
proliferative and hypoxic regions. 
Quantification of perifosine by LC-MS. 

Michálek et 
al., (2019) 

HT-29 colon 
carcinoma 

Spheroid Aggregation MALDI 50 µm Multimodal approach of spheroid 
analysis:  Perifosine drug detection by 
MALDI; Identification of proliferative 
and apoptotic cells by laser scanning 
confocal fluorescence microscopy 
(LSCM).  

Tian et al., 
(2019) 

HCT-116 
colon 
carcinoma 

Spheroid Aggregation Single-
probe  

Not reported Spatially resolved metabolic profiles in 
spheroids treated with irinotecan. MVA 
determined the drug effected 
abundances in metabolites in different 
regions of spheroids.  

Palubeckaitė 
et al., (2019) 

SAOS-2 
osteo-
sarcoma 

“Spheroid 
aggregate” 

Alginate 
scaffold 
followed by 
aggregation 

MALDI  
FTICR 
MALDI 

60 µm 
75 µm 

Local apoptotic and necrotic regions 
identified by metabolite distributions. 
Changes in metabolic activity in 
doxorubicin treated cultures and 
localisation of drug detected by FTICR. 

Xie et al., 
(2020) 

MDA-MB-231 
breast cancer 

Spheroid Aggregation MALDI 50 µm Metabolic changes in response to 
environmental contaminant BPS 
identified in phenotypic regions of 
spheroids associated with cancer 
proliferation. 

Robison et 
al., (2020) 

MDA-MB-231 
breast cancer 

Spheroid Aggregation DESI 50 µm Spatial mapping of lipids identified 
metastatic potential metabolites in the 
necrotic core of spheroids.  
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Flint et al., 
(2020) 

HCC827 lung 
adeno-
carcinoma 

“Aggregoid” Alginate 
scaffold 
followed by 
aggregation 

DESI 
IMC 
LA-ICP-
MSI 

30 µm 
1 µm 
6 µm (laser 
spot size) 

Characterization of a novel aggregated 
spheroid model by multimodal MSI 
techniques detecting metabolites, 
proteins and metals determined 
phenotypic regions of the tumour 
microenvironment. Identified 
proliferative outer region and hypoxic 
core of aggregoid and presented a 3D 
reconstruction. 

Zang et al., 
(2021) 

KYSE-30 
oesophageal 
cancer 

Spheroid Aggregation MALDI 12 µm Spatial resolved metabolomics defined 
phenotypic regions within spheroids, 
ion images mapped onto biological 
pathways. Similarities of metabolic 
signatures identified between clinical 
tissue and spheroids. 

Avery et al., 
(2011) 

Healthy 
human 
epidermal 
skin  

Skin organoid Straticell-
RHE-EPI-
001 
Reconstruct
-ed Human 
Epidermis 

MALDI 150 µm Demonstrated a MALDI-MSI method of 
an artificial skin model analysis by 
detection of imipramine absorption.  

Francese et 
al., (2013) 

Healthy LSE Skin organoid Evocutis 
“LabSkin” 

MALDI 50 µm The evaluation of curcumin as a matrix 
for MALDI across different applications, 
lung tissue, artificial skin and 
fingermark. Lipid imaging identified 
epidermis and dermis regions within 
the LSE. Detection of acitretin 
distribution within LSE.  
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Mitchell et al., 
(2015) 

Healthy LSE Skin organoid Evocutis 
“LabSkin” 

Evocutis 
“LabSkin” 

50 µm Characterisation of lipid changes in a 
time-dependent course by MALDI-MSI 
were associated with processes of 
cellular differentiation across the 
epidermis and dermis of the skin. 

Mitchell et al., 
(2016) 

Healthy LSE Skin organoid Evocutis 
“LabSkin” 

Evocutis 
“LabSkin” 

50 µm MALDI-MSI detected emollient creams 
within the skin model and determined 
changes in lipid distributions in 
response to treatment. The lipids that 
defined the epidermis in the untreated 
were localised throughout the treated 
skin sections.  

Harvey et al., 
(2016) 

Healthy and 
psoriatic LSE 

Skin organoid Innovenn 
“Labskin” 

MALDI 100 μm Absorption of acitretin within psoriatic 
LSE by MALDI-MSI determined a 
larger depth of penetration in psoriatic 
model compared to healthy LSE.  

Russo et al., 
(2018) 

Healthy LSE Skin organoid Innovenn 
“Labskin” 

MALDI 60 μm Quantitation of terbinafine 
hydrochloride absorption into 
epidermal region of LSE by MALDI-
MSI. Regions of LSE identified by 
detection of abundant lipid species. 
Penetration enhancer DMI increased 
the concentration of drug. Validated by 
LC-MS/MS.  

Bergmann et 
al., (2018) 

Blood-brain-
barrier (BBB) 
of endothelial 
cells, 

Tumour 
organoid 

Co-culture 
by low-
adhesion 
conditions 

MALDI Not reported Development of a BBB organoid 
platform for drug analysis by 
fluorescent microscopy and MALDI-
MSI. Analysis of BKM120 and 



 

 
 

4
5
 

pericytes and 
astrocytes 

dabrafenib permeability with BBB 
organoids.  

Liu et al., 
(2018) 

Colorectal 
cancer 

Tumour 
organoid 

Aggregation 
with Cultrex 
BME  

MALDI 35 μm  Heterogeneous distribution of 
irinotecan and its active metabolites 
within organoid cultures demonstrated 
metabolic variability in complex tissue 
samples.  

David et al., 
(2018) 

MCF-7 breast 
cancer 

Tumour 
organoid 

Mice 
xenograft 

MALDI Not reported Ex vivo method of visualising peptides 
and small molecules in breast cancer 
tumour explants as an alternative to 
spheroid cultures. Detection of small 
molecule drug (4-hydroxytamoxifen) 
and peptide drug (cyclosporin A) as 
proof-of-concept. 

Lewis et al., 
(2018) 

Healthy LSE Skin organoid Innovenn 
“Labskin” 

MALDI 75 μm Examined the skin barrier repair/wound 
healing process through identification 
of lipid biomarkers.  

Johnson et 
al., (2020) 

Pancreatic 
cancer 

Tumour 
organoid 

Patient 
biopsies 

MALDI  75 μm 
  

Method development of organoid 
cultures into gelatin microarrays for 
high-throughput MSI analysis. 
Organized array of organoids in the 
same z-axis for multi-sample imaging.  

Jo et al., 
(2007) 

Aplysia 
californica 
bag cell 
neurons 

Microfluidics 
system 

Cells coated 
onto a poly-
L-lysine 
coated area 
on surface 
of PDMS 

MALDI 100 μm to 
200 μm 

Characterised released neuropeptides 
from stimulated neurons by potassium 
chloride solution.  
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microfluidic 
device. 

Zhong et al., 
(2012) 

Aplysia 
californica 
bag cell 
neurons 

Microfluidics 
system 

Cells coated 
onto a poly-
L-lysine 
coated area 
on surface 
of PDMS 
microfluidic 
device. 

MALDI 100 μm to 
200 μm 

Quantification of released 
neuropeptides from stimulated neurons 
by potassium chloride solution. 
Measured the length of peptides 
released from the images. 

Spencer et 
al., (2020) 

Healthy small 
intestine 
tissue 

Macrofluidics 
system 

Quasi Vivo 
600 Liquid-
Liquid 
Interphase 
in vitro 
system 

MALDI Not reported Detection of metabolites identified 
substructures within small intestine 
tissue including the lymphatic tissue. 
Detection of atorvastatin sodium 
adduct within apical side of tissue 
demonstrating passive diffusion of 
drug. 

Table 1.3 A summary of the literature reporting the analysis of 3D cell culture models by MSI.
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1.5 Future perspectives 

MSI has demonstrated significant value for the use in pre-clinical drug efficacy 

and toxicity studies. Parallel to the developments in MSI, 3D cell culture models 

have established robust in vitro tools that accurately represent the 

microenvironments of biological tissues and disease in humans. The multiplex 

nature of MSI has enabled the analysis of a variety of 3D models including 

spheroid and organoid cultures across applications of tumour characterisation by 

the detection of metabolites, peptides and proteins. In addition, a plethora of 

studies have evaluated the distribution of drugs and their metabolites 

simultaneously in situ, with some including quantitative capacity (Table 1.3).  

Although an extensive amount of research on the combination of MSI with 3D 

models has been reported, there are still areas of development to be made. The 

research of 3D models by MSI techniques have been limited to specific cancer 

and disease types, for instance the spheroid model of colon carcinoma. 

Henceforth, to establish the combination of 3D models with MSI as a valuable 

pre-clinical tool it is necessary to broaden the topic areas to alternative cancer 

and disease types that are just as prevalent (e.g., lung adenocarcinoma and 

osteosarcoma). The conflicting views on 3D cultures accurately representing true 

in vivo structure and functionality clearly show the need for establishing more 

complex models that include molecular heterogeneity and essential structural 

components. This is to ensure an accurate prediction of drug outcome in vivo. 

Developments in the sample preparation workflow need to keep pace to allow 

accessibility of the 3D models for MSI analysis. Furthermore, the combination of 

3D cell culture models with MALDI has been the primary imaging platform. The 

use of alternative ionisation modalities can allow for the study of a wider range of 

molecular content, expanding the opportunities in pre-clinical drug analysis for a 

variety of drugs and endogenous molecules, including the spatial resolution 

capabilities that have potential for single-cell analysis.  

In addition, MSI analysis of therapeutics within not only 3D cultures but all tissues 

have predominately focussed on the evaluation of small molecule drugs. This is 

mainly due to the effectiveness of the compounds as a treatment. However, over 

recent years progress towards the developments of complex biopharmaceuticals 

that offer high efficacy treatments with few side effects have become one of the 

fastest growing sectors in the pharmaceutical industry. There is very limited 
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literature reporting the detection of biologics in situ by MSI techniques, with only 

two studies published to date (Ait-Belkacem et al., 2014; Liu et al., 2018). This is 

mainly due to the size and complexity of the therapeutic proteins which create 

issues of low ionisation and poor sensitivity that have hindered the development 

of an established MSI workflow. It is therefore a requirement for MSI methods to 

keep with the momentum of pharmaceutical development in order to maintain its 

reputation as a valuable tool in pre-clinical drug analysis.  

1.6 Aims and objectives of this project 

The aim of this project was to develop a multimodal MSI approach to analyse a 

3D cell culture model for pre-clinical biopharmaceutical testing. In order to 

achieve this the following objectives were investigated: 

• Develop a novel 3D cell culture model of two cancer types (lung 

adenocarcinoma and osteosarcoma) and optimise the sample 

preparation workflow for universal application across MSI modalities.  

• Apply a multimodal MSI approach to characterise the lung 

adenocarcinoma model for an in-depth understanding of the tumour 

microenvironment.  

• To use the multimodal MSI approach to characterise and compare the 3D 

osteosarcoma models and investigate their molecular relevance to clinical 

osteosarcoma patient samples.  

• Employ an untargeted DESI-MSI approach to determine the metabolic 

response to biopharmaceutical treatment in the 3D cell culture models. 

• Optimise a multimodal MSI strategy to detect a biopharmaceutical in the 

3D lung adenocarcinoma model.  
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CHAPTER 2. OPTIMISATION OF A 3D CELL 
CULTURE MODEL FOR MASS 
SPECTROMETRY ANALYSIS  
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2.1 Introduction 

As discussed in Chapter 1.4, the combination of MSI with 3D cell culture models 

is a promising tool in early stage drug development. The ability to study the 

distribution of a parent drug and its metabolites, whilst simultaneously measuring 

the cellular metabolism within an artificially created environment expands the 

possibilities for pre-clinical research (Russo et al., 2018).  

Spheroids are the most common 3D model of cancer studied by MSI, specifically 

MCTS in combination with MALDI imaging (Chapter 1.4.1). The spheroid model 

can mimic key tumour characteristics with regards to cellular morphology and 

metabolic activity that make it a valuable tool for evaluating drug toxicity. Hypoxia 

is of particular significance due to its effects on cellular function and drug activity, 

which can give rise to drug resistance (Donovan et al., 2010; Jing et al., 2019). 

In addition, the biological and physical barriers of the periphery, such as the active 

metabolism and lessened permeability, can also prevent the delivery of a drug 

(Soo-Hyun, Hyo-Jeong, & Crispin, 2011). The spheroid model also provides a 

cost-effective and versatile method of analysing the biological processes within 

the tumour environments, with added benefits of high throughput results. These 

qualities in combination with the spatial resolution capabilities and high-speed of 

acquisition of MALDI-MSI makes this method highly desirable for drug 

development studies. 

Recent publications  have criticised MCTS because of their lack of heterogeneity 

(Liu et al., 2018; Palubeckiatė et al., 2019). This is due to the way in which the 

spheroids are formed through aggregation techniques. Aside from the phenotypic 

differences of hypoxia and proliferation that spheroids exhibit, the 3D constructs 

are seen as predominately homogenous cultures. In comparison, in vivo tumours 

are highly complex tissues that are comprised of a variety of differentiated cells 

(e.g., stromal and immune cells) within a dynamic ECM and vascularised 

environment, rather than a singular mass of cancer cells (Fong et al., 2016). As 

tumour heterogeneity is a factor contributing to drug resistance, the homogeneity 

of MCTS can negatively impact true biological behaviour and lead to therapeutic 

failure further down the line. The paradigm of modelling cancer in vitro is therefore 

seeing a shift away from spheroid cultures towards more accurate pre-clinical 

models sourced from primary cells (i.e., tumour organoids) that consist of multiple 

cell types. MSI in particular, has demonstrated pharmacological benefits of 
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studying these cultures (Liu et al., 2018). The implementation of patient derived 

tumour organoids in experiments, however, is far more complex than the spheroid 

model with regards to the ethical implications, the lengthy culturing periods and 

added expenses.  

Alternatively, enhancing the complexity of the spheroid model is a more preferred 

method in drug development when aiming for high-throughput results. Such 

advancements involve the way in which the spheroid is cultured. For example, 

scaffold-based techniques provide an ECM structure to the cellular environment 

which more closely resembles the native cell-matrix interactions found in vivo. 

Scaffolds can also be adapted and tailored to mimic a specific environment for 

individual cell lines. In contrast to the aggregation method which cannot form 

robust spheroid cultures in a range of cell lines (Nagelkerke et al., 2013). 

Additionally, culturing within scaffold-based materials enforces the single cell 

suspension to proliferate in 3D, generating clonal populations through a more 

natural process. A recent study reported, 3D cell cultures promoted survival 

mechanisms in spheroid formation similar to in vivo. A marked increased levels 

of an oxidant defence transcription factor, NRF2 had significant effects on cellular 

proliferation and protection of cells within a hypoxic microenvironment (Takahashi 

et al., 2020). Thus, the results demonstrated the importance of cells proliferating 

in 3D rather than the aggregation method in order to create their own ECM 

components and promote gene expressions required for tumour survival.  

In terms of analysing such enhanced spheroid models by MSI, the literature has 

been limited to none. Potentially this is due to the ease of generating MCTS by 

the aggregation method. In addition, the size of the spheroid cultures within 

scaffolds can be limited (< 500 µm) and creates issues in terms of retrieving 

molecular information in spatial distribution studies (David et al., 2018). Some 

materials used to aid scaffold-based spheroids (e.g., PEG containing hydrogels) 

can also cause spectral interferences during analysis and therefore the choice of 

material needs careful consideration (Palubeckaite et al., 2018).  

With this in mind, a novel 3D culture model has been developed that addresses 

the limitations regarding the heterogeneity of spheroid models and their 

compatibility for quality MSI analysis. Palubeckaitė et al., (2019) generated a 

“spheroid aggregate” model through the aggregation of tumour spheres. The 

method combines the basis of using an alginate scaffold to generate isogenic 
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spheroids through proliferation, which are then isolated and aggregated together 

using an ultra-low attachment technique. The scaffold-based method of spheroid 

formation is clonal and creates multiple spheroids of different sizes and of genetic 

variability within a single alginate bead. The individual spheres are then 

aggregated to form a larger construct of cells of a diameter of ~ 1 mm. This is 

achieved by following a similar technique to the aggregation method utilising 

agarose coatings to prevent cells adhering to surface of well plates, enforcing the 

cells to aggregate together (Costa et al., 2014; Gong et al., 2015; Das et al., 

2017). Theoretically, the aggregation of the individual colonies creates areas 

within the spheroid aggregate that exhibit different genetic phenotypes. Thus, the 

3D model provides a more heterogeneous tissue than the typical spheroid model 

(Figure 2.1). The spheroid aggregate still displays the typical tumour 

microenvironment characteristics with proliferative and hypoxic regions 

demonstrating a viable 3D culture for pharmacological studies.  

 

  

Figure 2.1 Diagram depicting a comparison between the conventional 

MCTS model vs the spheroid aggregate model. MCTS formed through 

aggregation of a single cell suspension as the spheroid aggregate is generated 

through the aggregation of isolated, clonal spheroids. 
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MALDI-MSI analysis of the osteosarcoma (SAOS-2) spheroid aggregate showed 

that it was possible to detect endogenous metabolites within specific regional 

localisations (Palubeckaitė et al., 2019). The proof-of-principle study showed 

heterogenous distributions that co-localised unidentified metabolites exhibiting 

signals at m/z 281.3 within the periphery and m/z 403.1 in the necrotic core of the 

aggregate model. In addition, distributional changes of metabolites were 

observed in response to the chemotherapeutic, doxorubicin, as well as the 

detection of the drug as a protonated cation at m/z 544.2 within the SAOS-2 

aggregate. The study showed the combination of the spheroid aggregate model 

with MSI to be a promising method in studies of drug efficacy and toxicity. 

Although the model has shown to be suitable for metabolomics studies and 

chemotherapeutic applications, there is not enough evidence to demonstrate the 

full capabilities of this novel model across different MSI techniques and no data 

has yet been produced in the emerging field of biopharmaceutical applications. 

Therefore, further studies of the spheroid aggregate with MSI are of interest.  

2.2 Aims of chapter 

In the following chapter the aim was to culture additional novel 3D culture models 

using the methodology developed previously from Palubeckaitė et al., (2019). 

The objectives were to recreate the tumour microenvironment within three cancer 

cell line models, two osteosarcoma (MG63, SAOS-2) and one lung 

adenocarcinoma (HCC827) for the purpose of developing an in vitro tool in MSI 

applications for pre-clinical research in biopharmaceutical development. In order 

to conduct these experiments, optimisation of the sample preparation workflow 

for MS analysis of the 3D culture models was required. An investigation of sample 

handling and storage was performed in order to retain sample integrity and 

reduce analyte delocalisation of the 3D models. MALDI-MS profiling and imaging 

of the 3D models were employed to evaluate the technical parameters. 

2.3 Materials and methods 

2.3.1 Materials  

α-CHCA, DHB, alginic acid, aniline, calcium chloride (CaCl2), sodium 

carboxymethylcellulose (CMC), ethylenediaminetetraacetic acid (EDTA), eosin, 

gelatin, haematoxylin, phosphorus red, paraformaldehyde (PFA), 
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polyvinylpyrrolidone (PVP), propidium iodide (PI), sodium chloride (NaCl), 

sodium citrate, TFA and xylene substitute were purchased from Sigma-Aldrich 

(Gillingham, UK). Acetonitrile (ACN), ethanol (EtOH), Hoechst 33342 and 

methanol (MeOH) were purchased from Fisher Scientific (Loughborough, UK). 

Pertex mounting medium was obtained from Leica Microsystems (Milton Keynes, 

UK). Hydroxypropyl-methylcellulose (HPMC) was purchased from Alfa Aesar 

(Thermo Fisher Scientific, Heysham, UK).  

2.3.2 2D cell culture 

Epithelial HCC827 (lung adenocarcinoma) cell line was obtained from ATCC and 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Lonza Ltd, U.K.) 

supplemented with 10% foetal bovine serum (FBS) and 1% penicillin-

streptomycin (Lonza Ltd, U.K.). Osteosarcoma cell lines, MG63 and SAOS-2 cell 

lines were obtained from ATCC and were cultured in alpha modified Eagle’s 

medium (αMEM) supplemented with 10% FBS and 1% penicillin-streptomycin. 

All cell lines were maintained in a humid atmosphere at 37°C, 5% CO2 and grown 

to 80% confluence prior to use for 2D experiments and 3D culture. Confluent cell 

lines were passaged by trypsinisation, followed by centrifugation, and 

resuspension in fresh media. Cell lines were routinely tested for mycoplasma 

every few months. 

2.3.3 3D cell culture 

The aggregated 3D cell culture models were generated based on the method of 

Palubeckaitė et al., (2019) and is described below.  

2.3.3.1 Alginate culture 

Monolayer cells were suspended in 1.2% (w/v) alginic acid in 0.15 M NaCl at an 

approximate cell density of 1 x106 cells/mL. The cell density was determined by 

Trypan blue staining (Lonza Ltd, UK) and calculated on the Countess® 

Automated Cell Counter (Thermo Fisher Scientific, U.K.). The alginic acid solution 

containing cells was extruded out of a 20-gauge needle into 10 mL 0.2 M CaCl2 

to polymerise the alginate into beads. Beads were incubated at room temperature 

(RT) for approximately 2-3 min before they washed with 0.15 M NaCl twice before 

culturing in the appropriate media. All cell lines were initially cultured up to 21 

days to determine the optimum spheroid growth. From this a culture period of 11-
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14 days for each cell line was decided to yield spheroids of approximately 100 

µm. Beads were subjected to a media change every 72 h.  

2.3.3.2 Releasing spheroids from alginate beads 

Alginate beads were dissolved in an alginate buffer (55 mM sodium citrate, 30 

mM EDTA, 0.15M NaCl) for 10 min at 37°C after breaking up the beads in solution 

with a pipette. Approximately 30 beads were dissolved in 10 mL of buffer. The 

spheroid solution was gently centrifuged for 3 min at RT to form a pellet. The 

supernatant was removed, and the pellet was washed in the appropriate culture 

media twice, followed by centrifugation between each wash.  

2.3.3.3 Aggregoid formation 

To form tumour spheroid aggregates, the required amount of culture media was 

added to resuspend the spheroids so that there was approximately half of one 

alginate bead per well of a 1% agarose-coated 96-well plate. Spheroid 

aggregates were cultured for 7 days in the appropriate media to form aggregoids 

of an approximate diameter of 1 mm.  

2.3.3.4 Analysis of spheroid and aggregoid development 

Spheroid and aggregoid development were analysed by fluorescent staining with 

Hoechst 33342 and PI staining (10 µg/mL each) and incubated at 37°C for 30 

min. After incubation, the stain solution was replaced with fresh culture media for 

imaging analysis. Fluorescent images were obtained using either the Olympus 

IX81 Microscope (Southend-on-Sea, U.K.) where images were captured using 

Cell^F Multi-fluorescence and Imaging Software (Europa Science Ltd, 

Cambridge, U.K.), or the Cytation™ 5 Cell Imaging Multi-Mode Reader (BioTek, 

UK). 

2.3.4 Tissue processing 

2.3.4.1 Sample embedding  

To handle the aggregoid cultures a series of embedding media were tested, these 

included: (1) 10% gelatin; (2) 5% CMC; or (3) 7.5% HPMC and 2.5% PVP as 

described by Dannhorn et al., (2020). For the embedding procedure, media (1) 

and (2) were incubated at 50°C to form a liquid solution. Media (3) was pre-

conditioned on ice for 30 min before use. Prior to embedding, aggregoids were 

washed in PBS twice, carefully removing the media each time. Aggregoids were 
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carefully transferred from the well into embedding media coated moulds using a 

100 µL pipette tip, which the end was cut so that the tip had a larger diameter to 

ensure the aggregoid integrity was retained. Once the aggregoid was transferred 

to the media coated moulds, excess PBS was removed to the extent possible. 

Additional embedding media was coated over the aggregoid samples before flash 

freezing in liquid nitrogen for approximately 1-2 min. Fresh frozen samples were 

stored in - 80°C prior to sectioning.  

2.3.4.2 Sectioning 

Embedded tissues were cryosectioned on a CM1950 cryostat (Leica Biosystems, 

U.K.) set to a temperature of - 24°C for the cryochamber and - 20°C for the 

sample holder. Samples were mounted onto circular cork rings with a diameter ~ 

3 cm using H2O and left for 30 min to thermally equilibrate before sectioning. 

Sections were cut at 10 µm thickness, thaw mounted onto either positively 

charged X-tra® adhesive slides (Leica Biosystems, U.K.) or onto Indium-Tin 

oxide (ITO)-coated slides (Visiontek Systems Ltd, UK) dependant on the 

instrumentation used for analysis.  

2.3.4.3 Sample storage 

To ensure aggregoid samples are stabilised and to prevent degradation of 

endogenous molecules an experimental protocol established by Swales et al., 

(2018) for optimum sample storage and preparation was followed. Briefly, 

samples were desiccated with N2 immediately after the section was adhered onto 

the glass slide. Following this, samples were vacuum packed in plastic pouches 

and stored (- 80°C), and after left to air-dry before taking out of vacuum 

conditions. A comparison of this method with the conventional storage of slides 

not desiccated or vacuum packed and stored (- 80°C) is included in section 

2.4.2.3.  

2.3.5 Optimisation of mass spectrometry imaging 

2.3.5.1 Mass spectrometric profiling of aggregoid cultures 

Profiling of the aggregoid samples and embedding media was performed by 

spotting 0.5 µL of α-CHCA (5 mg/mL) in 70% ACN:0.1% TFA with equimolar 

amounts of aniline (2.4 uL aniline to 5 mg/mL α-CHCA) onto the tissues.  
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Mass spectra were manually acquired on a Waters MALDI HDMS Synapt G2 

mass spectrometer (Waters Corporation, U.K.) equipped with a Nd:YAG laser 

operated at 1 kHz. Instrument calibration was performed using phosphorus red 

before analysis. Spectra were acquired in positive mode, full scan sensitivity 

mode within a m/z range 100-2000 (resolution 10 000 FWHM) and a laser energy 

at 320 arbitrary units. Ion mobility function was not enabled. Data were acquired 

and converted to .txt file format using MassLynx™ software (Waters Corporation, 

UK) and analysed using mMass 3 open-source software (Strohalm et al., 2010). 

Peak picking settings were set at a signal to noise (S/N) threshold of 5, and the 

picking height was 100%. Both the absolute intensity threshold and the relative 

intensity threshold was set to 0 with baseline correction and smoothing applied. 

Identification of values were based on putative assignments using METLIN 

(http://metlin.scripps.edu), LIPID MAPS® 

(https://www.lipidmaps.org/tools/ms/LMSD_search_mass_options.php) and 

published literature.  

2.3.5.2 MALDI-MSI 

2.3.5.2.1  Matrix deposition 

All sample sections were removed from - 80°C and left to air-dry before removing 

from vacuum packaging to avoid delocalisation of the analyte and to preserve the 

integrity of the tissue. For the spray-coat method, matrix (5 mg/mL α-CHCA in 

70% ACN:0.1% TFA with equimolar amounts of aniline) was deposited onto the 

tissues using a SunCollect™ MALDI Sprayer (KR Analytical, Sandbach, UK). Ten 

layers of matrix were sprayed with a flow rate of 3 µL/min for the first layer then 

4 µL/min for the remaining layers with the sprayer nozzle positioned at a height 

of 38 mm.  

Matrix deposited by sublimation was achieved by evenly spreading 300 mg of α-

CHCA at the bottom of the Ace vacuum-sublimation apparatus (Sigma-Aldrich). 

Polylysine slides with aggregoid sections were attached to the flat top of the 

chamber using autoclave tap at either end of the slide. The flat top of the chamber 

was placed within the sublimation apparatus and sealed by vacuum at 2.5 x10-2 

Torr. The top was filled with ice-water. The apparatus was set to a temperature 

of 180°C prior to starting the sublimation process. The application of matrix was 

performed for approximately 20 mins, or until an amount of 0.2 mg/cm2 of α-

http://metlin.scripps.edu/
https://www.lipidmaps.org/tools/ms/LMSD_search_mass_options.php
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CHCA was achieved. This was calculated by weighing the slide before and after 

sublimation, calculating the difference (mg) and dividing by the area of the 

sublimed slide (cm2).  

2.3.5.2.2  Imaging acquisition 

Small molecule MALDI images were acquired using the Waters MALDI HDMS 

Synapt G2 mass spectrometer. Instrument calibration was performed using 

phosphorus red. Spectra were acquired in positive ion full scan sensitivity mode 

within a m/z range 100-1000 at a spatial resolution 40 µm and a laser energy set 

to 350 arbitrary units. Ion mobility function was not enabled. 

2.3.5.2.3  Data processing  

MALDI-MSI data were processed using the HDI 1.4 software tool (Waters 

Corporation, UK) to initially determine the quality of the data after acquisition. For 

more in-depth data processing, files were converted into imzML and ibd before 

being uploaded on to the SCiLS™ Lab MVS Version 2020a Core (Bruker 

Daltonics, Germany). Total ion count (TIC) normalisation was applied, the peak 

list was generated from the maximum 100 peaks per spectrum. The peak list was 

used for further data analysis including spatial segmentation and co-localisation 

of m/z images. The spatial segmentation method was performed by bisecting k-

means, with weak denoising and a correlation distance metric, working on all 

individual spectra.  

2.3.5.3 DESI-MSI 

Small molecule imaging was performed using a Q-Exactive mass spectrometer 

(Thermo Fisher Scientific Inc, Germany) operated in negative ion mode. No prior 

sample preparation was required to analyse the aggregoid cultures. The mass 

spectrometer was equipped with a custom-built automated DESI ion source. The 

mass resolution was set to 70,000 and mass spectra were collected in the mass 

range m/z 80-900 at a spatial resolution of 30 μm. The electrospray solvent was 

MeOH/water (95:5 v/v) set at a flow rate of 1 μL/min with nebulizing nitrogen used 

as gas at pressure of 2 bar. Imaging analysis was performed by combining 

individual horizontal line scans and converting into imzML format using the imzML 

converter V.1.1.4.5 (www.maldi-msi.org). The images were analysed by SCiLS 

Lab MVS Premium 3D Version 2020a (Bruker Daltonics, Germany) employing 

root mean square (RMS) normalization. 
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2.3.6 Histological analysis  

Aggregoid sections were stained with Mayer’s haematoxylin and eosin (H&E) 

solutions. After MALDI-MSI analysis, slides were washed with 100% EtOH to 

remove the presence of matrix. Sections were then rehydrated in 100% EtOH (3 

min) and 18 MΩ water (2 min) prior to staining with filtered haematoxylin (1 min). 

Tissues were then blued in running tap water (5 min) before submerging in 100% 

EtOH twice (3 min). Tissues were subsequently stained with eosin (1 min) prior 

to washing with 100% EtOH twice (3 min). Finally, tissues were submerged in 2 

changes of xylene substitute (5 min) and mounted using Pertex® mountant. For 

slides that were not used for MALDI-MSI analysis, sections were immediately 

stained with haematoxylin. An initial 4% PFA fixation step was included prior to 

the haematoxylin step for optimisation of one set of samples. Optical images were 

obtained using the Olympus BX60 microscope (Olympus, U.K.) and images 

captured using QImaging Micropublisher 5.0 RTV camera and Capture-Pro 8.0 

software (QImaging, Canada). 

2.4 Results and discussion 

2.4.1 Optimisation of an aggregated tumour spheroid model 

In this study, a novel aggregated tumour spheroid model was developed for 

multiple reasons: a) to form a larger tissue for mass spectrometry spatial 

distribution studies, and b) to create a more heterogeneous model than the 

conventional tumour spheroid suitable for early stage drug development studies. 

Three cell lines were cultured following a similar method to that described by 

Palubeckaitė et al., (2019). The cell lines included were two osteosarcoma (OS) 

cell lines, MG63 and SAOS-2, which have been previously shown to be robust 

spheroid aggregate models for the analysis by MALDI-MSI (Palubeckaite, 2018). 

Additionally, a HCC827 lung adenocarcinoma cell line was cultured following this 

protocol to further demonstrate the diversity of the 3D culture model across 

different cancer types. Initially, a single-cell suspension was cultured within an 

alginate bead over a period to examine the growth of spheroids scaffold, as 

previously demonstrated by Akeda et al., (2009) and Stock et al., (2016). 

Typically, the formation of clonal spheres takes a longer period compared to the 

aggregation method due to the development of the spheroid through single cell 

proliferation (Gencoglu et al., 2018). The formation of tumour spheres within the 
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alginate bead culture was therefore assessed over a 14-day period by Hoechst 

33342/PI fluorescent staining to determine the size of the colony and the 

development of a hypoxic core.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From day 2, images showed initial proliferation of single cells for each cell line. 

Noticeable formation of spheres, approximately 4-5 cells, were found within the 

MG63 cultures, indicating a faster rate of proliferation (Figure 2.3). By day 14, all 

three cell lines had grown a substantial amount of spheroids (~ 70%) per alginate 

bead. Both OS cell lines cultured spheroids, the majority of which had diameters 

of approximately 200 µm with the beginnings of a hypoxic/necrotic core (Figure 

2.3 and Figure 2.4).  

  

Figure 2.2 A whole alginate bead culture of SAOS-2 spheroids (day 11). 

Fluorescent image obtained by Hoechst 33342/PI staining to identify viable (blue) 

and necrotic (red) regions. Scale bar 1000 µm. 
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Figure 2.3 Spheroid development of MG63 OS cell line. Fluorescent images 

obtained by Hoechst 33342/PI staining to identify viable (blue) and necrotic (red) 

regions. Spheroid formation was observed within an alginate bead culture over 

14 day period. Scale bar 50 µm (day 2), 100 µm (day 7, 12 and 14). 
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Figure 2.4 Spheroid development of SAOS-2 OS cell line. Fluorescent images 

obtained by Hoechst 33342/PI staining to identify viable (blue) and necrotic (red) 

regions. Spheroid formation was observed within an alginate bead culture over 

14 day period. Scale bar 50 µm (day 2), 100 µm (day 7, 12 and 14). 
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The HCC827 spheroids at day 14 were smaller in diameter of around 100 µm, 

with a small indication of hypoxia (Figure 2.5). The larger and faster growth of the 

OS cell lines in comparison to the lung cell line is potentially due to the 

microenvironment from which the cells originated. OS cells were derived from low 

oxygenated regions within the human body, thus are accustomed to surviving in 

hypoxic conditions. The lung cells, however, were derived from high oxygenated 

areas therefore growing the cells in alginate, where there is a decreasing gradient 

of oxygen and nutrients towards the core of the bead, will impact the growth of 

the cells. Adapting the conditions of the alginate scaffold, in which the HCC827 

cell line were cultured, could help improve the growth rate of the cells. 

Nevertheless, HCC827 cells were successfully grown to spheroids with the 

majority at the optimum diameter (> 70 µm) for the generation of large enough 

spheroid aggregates (700 – 1000 µm diameter). It was therefore decided that the 

alginate method used for the two OS cell lines was applicable to the lung cell line 

also. 
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Figure 2.5 Spheroid development of HCC827 lung adenocarcinoma cell line. 

Fluorescent images obtained by Hoechst 33342/PI staining to identify viable 

(blue) and necrotic (red) regions. Spheroid formation was observed within an 

alginate bead culture over 14 day period. Scale bar 50 µm (day 2 and 7), 100 µm 

(day 12 and 14). 
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Following the method described by Palubeckaitė et al., (2019), the spheroids 

were aggregated using agarose coated wells. The ultra-low attachment technique 

provided a non-adherent surface, forcing the spheroids to form into a single 

cluster and initiate spheroid-spheroid interaction. By documenting the growth of 

the SAOS-2 aggregates over a 7-day period, the formation of a compact 

aggregate model could be observed (Figure 2.6). From day 2, the cultures were 

large in diameter (> 1 mm) with obvious gaps, this showing the initial formation of 

the tissue whereby the clonal spheroids are still individual masses beginning to 

interact with each other. Throughout the culturing period, more spheroid-spheroid 

interactions were being formed, the aggregates were smaller in diameter than 

day 2 but have developed into robust aggregate masses.  
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Figure 2.6 The formation of a SAOS-2 spheroid aggregate over a 7-day 

period. Fluorescent images obtained by Hoechst 33342/PI staining to identify 

viable (blue) and necrotic (red) regions. Scale bar 1000 µm. 
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Each cell line produced spheroid aggregates with large diameters of 

approximately > 700 µm displaying an outer area of viable cells and an inner 

necrotic region, likely due in part to hypoxia (Figure 2.7). A previous spheroid 

study reported that cultures over 500 µm begin to form a necrotic region (Däster 

et al., 2017). This is highly beneficial as the model provides areas of 

heterogeneity. As previously mentioned, there is correlation of hypoxia with 

chemoresistance due to depleted oxygen levels, and apoptotic and necrotic 

activity that impact the drug’s delivery and cellular uptake (Muz et al., 2015). In 

addition, the majority of chemotherapeutics are most active when cells are within 

their cell cycle, the lack of oxygen and thus the presence of non-proliferative cells 

can impact the cytotoxic activity of a drug. Therefore, the large area of hypoxia 

with necrotic activity within the spheroid aggregates is an ideal model for studying 

a drug’s behaviour and efficacy, screening drugs at the early stage of 

development.  

The morphology of the aggregates showed some irregularity across replicate 

cultures of the same cell line, possibly due to the different sizes of spheroids 

within the culture leading to randomised direction of growth. Although variance 

across cultures could be seen as a disadvantage in terms of the size of the 

phenotypic areas having an impact on drug efficacy results. Variance in 

morphology can also be seen as beneficial to study true tumour behaviour as 

cancer growth is exponential and irregular and does not lead to the formation of 

uniformed spheres (unlike the spheroid model). This variance leads to the need 

for biological repeats throughout analysis when studying drug behaviour and the 

cellular processes within the aggregate model. 

  

Figure 2.7 Spheroid aggregates of MG63, SAOS-2 and HCC827 at day 7. 

Fluorescent images obtained by Hoechst 33342/PI staining to identify viable 

(blue) and necrotic (red) regions. Scale bar 1000 µm. 
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During this study, the spheroid aggregate was re-termed an “aggregoid” from the 

basis of describing the model as the aggregation of spheroids, and therefore the 

3D model will be described as an aggregoid throughout the remainder of the 

thesis. 

2.4.2 Sample handling for MS analysis 

Maintaining the integrity of tissues is imperative for spatial distribution studies to 

preserve the localisation and abundance of molecules in biological samples. The 

aim is to retain the tissue as close to its native state in order to obtain a true 

representation of the chemical processes within the sample. The processes of 

the collection and handling of samples are the most important steps of the 

imaging workflow to achieve quality results during MSI analysis. Many protocols 

have been developed with the aim of being universally applicable across 

ionisation methods to allow for an in-depth evaluation of species within tissues 

(Goodwin, 2012). Components of sample collection and handling include the 

stabilisation, processing and storage of tissues.  

2.4.2.1 Sample stabilisation 

Commonly, tissues are immediately snap-frozen directly in liquid nitrogen or 

isopentane at point of collection as a method of stabilising the sample. Fresh 

frozen tissues can then be stored at - 80°C until use, for a typical period of up to 

a year before molecular degradation would impact the abundance of protein 

distribution (Schwartz et al., 2003; Lemaire et al., 2006). Alternatively, following 

suit from histological preparation, MSI analysis can also be performed on 

formalin-fixed paraffin-embedded (FFPE) samples (Djidja et al., 2017; Ly et al., 

2019). The fixation of tissues enables preservation of biological samples suitable 

for indefinite storage and aids the sectioning process by increasing the rigidity of 

tissues (Howat & Wilson, 2014). However, the analysis of FFPE tissues by MSI 

is limited to proteotypic peptides, with very little literature published on the 

detection of other species (Ly et al., 2016; Denti et al., 2020). This is due to 

additional sample preparation methods required including, deparaffinisation with 

numerous washing steps, which consequently impacts the presence of 

metabolites and lipids (Vos et al., 2019).  

For smaller, fragile tissues, such as tumour aggregoids, supportive materials 

have been employed for better sample handling prior to snap freezing, especially 
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when considering sectioning of tissues. MSI compatible materials that do not 

interfere with the analysis of compounds nor impact the morphological features 

of the tissue are essential. Optimal cutting temperature compound (OCT), 

traditionally used in histology, is universally known to cause severe polymeric 

interference which subsequently suppresses analyte detection and therefore it is 

avoided (Schwartz et al., 2003). Materials more suitable for MSI studies include 

gelatin (Gill et al., 2017), carboxymethylcellulose (CMC) (Potchoiba et al., 1995; 

Stoeckli et al., 2007) and poly[N-(2-hydroxypropyl) methacrylamide] (pHPMA) 

(Strohalm et al., 2011). With many imaging studies reporting gelatin as an 

acceptable embedding medium for 3D cell culture models (Ahlf Wheatcraft et al., 

2014; Liu & Hummon, 2015; Liu et al., 2018; Palubeckaitė et al., 2019). 

Additionally, a hydrogel composed of hydroxypropyl methylcellulose (HPMC) and 

polyvinylpyrrolidone (PVP) was recently developed. Dannhorn et al., (2020) 

demonstrated the compatibility of this new hydrogel matrix across MALDI, DESI 

and SIMS techniques.  

To determine the optimum conditions for embedding the aggregoid model, three 

embedding media: gelatin; CMC; and HPMC & PVP, were evaluated. During the 

embedding process, both gelatin and CMC required heating at 50°C for the media 

to be liquid prior to coating the moulds, whereas HPMC & PVP was pre-

conditioned on ice. The high temperature of the gelatin and CMC was of initial 

concern in terms of the effect on the cellular viability of the aggregoid, potentially 

increasing the risk of sample degradation and altering the morphology of the 

tissue. Although as previously mentioned, gelatin has been demonstrated a 

suitable embedding media in spheroid studies and may not have such an impact. 

All samples were frozen in liquid nitrogen immediately after the aggregoids were 

covered with the embedding media and stored at - 80°C to reduce the possible 

risk of sample degradation from the heated media temperatures.  

2.4.2.2 Sample processing 

In terms of sectioning the samples, gelatin provided some rigidity to the 

aggregoid, where sections appeared whole with little to no splintering or fracturing 

to the tissue. However, the ability to see the aggregoid within the gelatin was 

difficult due to their similarity in colour, which led to over sectioning some of the 

samples. The aggregoids embedded in CMC on the other hand were more easily 

identified. The media itself had a consistency of frozen water which impacted how 
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the sample was sectioned, causing fracturing to the aggregoid sections and 

therefore were more fragile when handling. The HPMC & PVP media however, 

provided some qualities of both gelatin and CMC. The aggregoid samples were 

easily located within the embedded mould and the sections maintained the 

sample integrity with minimal fracturing to the tissues.  

 

The morphology of the aggregoid sections within the different media was 

observed by histological staining (Figure 2.9). Slight fissures to the sections were 

observed, which most likely occurred during sectioning. From the gelatin and 

HPMC & PVP embedded aggregoids, the tissues appeared to be more cohesive 

in structure with less dense areas typically within the core. This was as expected 

as this is a region of necrosis, where some cell interactions are lost due to cell 

death. In comparison, the HPMC & PVP embedded samples showed the best 

preservation of the aggregoid tissue. The CMC embedded samples showed a lot 

of fracturing to the sections, which could be the result of the consistency of the 

media and the impact it had on sectioning. An additional step of fixing the tissues 

with PFA at the beginning of the histology stain was included to ensure the loss 

of tissue was not due to the staining process. The fixation step, however, showed 

very little impact on improving the preservation of the CMC embedded aggregoids 

(Figure 2.9b). Interestingly, the morphology around the outer region of the 

aggregoids in some samples embedded in gelatin and CMC showed obvious 

disturbance to cells, as the HPMC & PVP embedded aggregoids showed intact 

tissue. The impact on the tissue is potentially from the temperature of the media 

Figure 2.8 SAOS-2 aggregoids embedded within a) HPMC & PVP; b) Gelatin; 

c) CMC after trimming the embedding mould to reach the tissue. Red arrows 

identify the aggregoid within each embedding media. 
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during the embedding process. The subsequent effects of this could therefore 

affect the cellular viability around the edge of the model and could lead to 

inconsistency across samples. This was taken into consideration for MSI analysis 

of the aggregoids, when identifying phenotypic areas such as the outer 

proliferative region and how it could distort the results.  

 

  

Figure 2.9 Histology staining of SAOS-2 aggregoid sections within 

embedding media. i) HPMC & PVP; ii) Gelatin; iii) CMC. a) Histology staining 

with Mayer’s haematoxylin (purple) to identify nuclear components and eosin 

(pink) to identify the cytoplasm. b) The same histology protocol with an initial 

fixation step by 4% PFA. Slight fissures identified in the sections due to the 

sectioning process. Gelatin surrounding aggregoids showed staining from eosin 

due to the collagen components present (ai, bi). Scale bar 100 µm, (ai) 200 µm. 
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MALDI-MS profiling of each embedding media was performed to determine the 

molecular profile and identify any significant signals that may cause interferences 

with the sample. PEG containing media, such as OCT, typically show a series of 

signals within the range of 1100-2000 Da that can cause major ion suppression 

effects in proteomic analysis (Weston & Hummon, 2013). No polymeric-like 

signals were identified across the tested media within the targeted mass range 

for peptide species, or within the lower mass range for metabolites and lipids (m/z 

100-2000) (Figure 2.10). HPMC & PVP and CMC had similar molecular profiles, 

with no obvious peak differences. Gelatin, on the other hand, displayed a 

background of signals from approximately m/z 700 onwards. This potentially 

could have effects on detecting abundant species within the lipid and peptide 

mass range, however the relative intensity of the peaks is somewhat low. Overall, 

none of the embedding media showed significant peaks that could have impact 

on the detection of molecules with the aggregoid model. 

From the analysis of the embedding media, HPMC & PVP was found to be the 

most appropriate for use with the aggregoids. This was in terms of retaining the 

morphology of the tissue, but also the ease of handling samples. Additionally, 

with the reported compatibility of this media across different imaging technologies 

(Dannhorn et al., 2020), it was of added interest for the multimodal MSI objectives 

within this thesis.  
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Figure 2.10 MALDI-MS profile of embedding media: a) HPMC & PVP, b) 

Gelatin, c) CMC. Embedding media profiled with 5 mg/mL α-CHCA (70% ACN 

0.1% TFA, 2.4 µL aniline). Mass spectra acquired in positive mode, m/z 100-

2000. Spectra was processed by mMass and normalised to the highest peak (α-

CHCA, m/z 198.09) to obtain the relative intensity. 
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2.4.2.3 Storage of sections 

A brief investigation on the effect of storage conditions on sectioned aggregoid 

samples was also performed. It is common knowledge that storage of tissue 

sections on slides over a long period of time can have an effect on analyte stability 

and can lead to less-than-optimal results (Goodwin, 2012). Slides are typically 

stored at - 80°C to retain the life-like state of the tissue sections and have shown 

to have no significant degradation on lipids over a 7-month period (Dill et al., 

2011). However, storage of slides at this low temperature can present challenges 

for MSI as the tissue sections are vulnerable to excessive ice formation and 

condensation, leading to potential analyte delocalisation (Russo et al., 2020). 

Efforts to reduce this effect have resulted in methods of desiccation and freeze-

drying techniques to remove excessive moisture before sample preparation for 

MSI analysis (Sjövall, Johansson, & Lausmaa, 2006; Porta Siegel et al., 2018). 

The addition of these steps, however, can add time to the sample preparation 

workflow and is not completely effective. A study conducted by Swales et al., 

(2018) assessed the effects of molecular stability within tissue sections under 

different storage conditions. The study established a novel protocol of desiccating 

sections immediately after thaw mounting onto slides with a nitrogen airflow, then 

subsequently vacuum packing the slides prior to storage at - 80°C.  

A comparison of aggregoid slides stored using the conventional methodology, 

whereby slides are sealed in a slide box container at - 80°C, versus the 

methodology validated by Swales et al., (2018), was carried out. From the image 

analysis, significant delocalisation of the abundant metabolite lactate (m/z 

89.023) was observed in the conventional storage method (Figure 2.11a). High 

intensity levels of lactate were observed in the region immediately surrounding 

the aggregoid sections and with noticeable levels detected across the embedding 

media. The sections that were dried with a nitrogen airflow and vacuum packed 

before storage showed levels of lactate solely within the aggregoid sections, with 

some small artifact areas within the embedding media (Figure 2.11b). With the 

size of the aggregoid sections being considerably smaller than most tissue 

sections, such as animal organs or human biopsies, the delocalisation effects are 

amplified. Thus, after observing a significant difference in the spatial localisation 

of a key metabolite between the two storage methods, it was decided that the 
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method developed by Swales et al., (2018) was the optimum protocol to achieve 

quality aggregoid imaging analysis.  

  

Figure 2.11 DESI-MSI analysis of MG63 aggregoid sections on slides 

prepared and stored in different conditions. Lactate (m/z 89.023) distribution 

displays the delocalisation effects of each storage condition: a) Slides sealed in 

a slide box mailer at - 80°C. b) Slides desiccated with a nitrogen airflow 

immediately after thaw mounting sections, vacuum packed and stored at - 80°C. 

Red arrows and dotted circles outline the aggregoid section. Scale bar 1 mm. 
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2.4.3 MS analysis 

2.4.3.1 Direct lipid profiling and imaging of aggregoid sections 

using MALDI-MS 

Using the optimised sample handling protocol discussed in section 2.4.2, MS 

analysis of small molecule species was performed. The purpose of this was to 

demonstrate the compatibility of the aggregoid model with MS imaging by 

employing MALDI-MSI for the detection of abundant molecules. An assessment 

of ion suppression effects arising from the HPMC & PVP embedding media was 

performed. In addition, two matrix application methods for imaging were 

investigated for optimum analyte detection.  

Initially, each aggregoid model was profiled by MALDI-MS in positive ion mode. 

Sections from three biological replicates from each aggregoid model were 

analysed and spectra were acquired within the mass range m/z 100-2000. No 

signal interferences were identified from HPMC & PVP confirming the observation 

previously made when profiling the embedding media alone. Numerous peaks, 

specifically within the lipid range m/z 700-850, were identified within the 

aggregoid tissues (Figure 2.12). The most abundant lipid signals detected within 

each aggregoid model included phospholipid species, specifically of the 

phosphatidylcholine (PC) group, PC 32:1 at m/z 732.5, PC 34:1 at m/z 760.6, and 

PC 36:4 at m/z 782.5, identified through putative assignments. PC species are 

highly abundant in cancerous tissue due to their role in energy production and 

signalling for tumour progression (Cheng, Bhujwalla, & Glunde, 2016). It is 

therefore expected that the three aggregoid models of cancer have similar lipid 

profiles.  
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Figure 2.12 MALDI-MS lipid profile a) MG63 b) SAOS-2 and c) HCC827. Mass 

spectra acquired in positive mode; spectra display peaks within the mass range 

m/z 700-850. a) MG63 spectrum annotated with lipid species. Spectra was 

processed by mMass and normalised to the highest peak (α-CHCA, m/z 198.09) 

to obtain the relative intensity. b) SAOS-2 shows high α-CHCA peak at m/z 845.1 

increasing the intensity scale bar to r. int. 50%. 
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The intensity of the lipid signals varied across the aggregoid models. SAOS-2 

aggregoids showed a slightly lower intensity of PC 32:1, PC 34:1, and PC 36:4. 

However, there was no significant difference between the aggregoid models for 

each abundant peak (Figure 2.13).  

 

 

 

 

 

 

 

To determine the distribution of lipid species in the aggregoid models, MALDI-MS 

images were acquired. In order to obtain the images, α-CHCA was deposited 

onto the aggregoid sections using the spray-coat method by the SunCollect™ 

automated sprayer. This is a conventional method of matrix application for MSI 

studies that has been used and investigated for many tissue types (Djidja et al., 

2010; Patel et al., 2015; Huizing et al., 2019). Figure 2.14 shows MALDI-MS 

images of the distribution of lipid species within a HCC827 aggregoid section. 

Abundant lipid species previously identified by profiling were also detected within 

the aggregoid samples, MG63 and SAOS-2 (data not shown). The images were 

acquired at a spatial resolution of 40 µm to enable in-depth data processing of 

the aggregoid to determine phenotypic regions that potentially corresponded to 

the tumour microenvironment. By employing segmentation analysis using 

SCiLS™ Lab software (Bruker Daltonics), whereby similar spectral 

characteristics are grouped together into a segment and are classified into 

phenotypical regions within the tissue. From the segmentation analysis, two 

Figure 2.13 Relative intensities of lipid species PC 32:1 at m/z 732.5, PC 34:1 

at m/z 760.6 and PC 36:4 at m/z 782.5. Biological replicates of each aggregoid 

were profiled (n=3). Each relative intensity was calculated from the most 

abundant α-CHCA peak at m/z 198.09. A one-way ANOVA determined there 

were no significant differences between the aggregoid models for each m/z value 

(p > 0.05). 
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regions were identified: an outer region and an inner core. From the data of the 

fluorescent images of the aggregoid model in section 2.4.1, it can be assumed 

that these specific areas highlight the proliferative and hypoxic regions.  

 

By identifying the two regions within the aggregoid model, the distribution of lipid 

species could be associated to the outer proliferative region or inner hypoxic core 

(Figure 2.14a). Signals at m/z 732.6 (PC 32:1) and m/z 760.6 (PC 34:1) were 

distributed within the outer region of the aggregoid and therefore are assumed to 

be associated with cellular proliferation. A study analysing human breast cancer 

tissues by MALDI-MSI reported a positive correlation of the PC 32:1 signal with 

the proliferation cellular marker Ki-67 (Hosokawa et al., 2017). This is therefore 

in agreement with the distribution of PC 32:1 in the aggregoid section. In contrast, 

a peak at m/z 826.6 (PC 36:1) was distributed throughout the aggregoid. PC 36:1 

has been recognised as a hypoxia-regulated lipid in another MALDI-MSI breast 

cancer study (Jiang et al., 2015), which would explain its presence within the 

aggregoid core but not in the periphery. This initial imaging analysis demonstrates 

Figure 2.14 MALDI-MS image of a HCC827 aggregoid section. a) spectral 

segmentation identifying two phenotypical regions: an outer and core. The areas 

were outlined on the m/z images to determine distribution of abundant lipid 

species b) m/z 732.6, c) m/z 760.6, d) m/z 782.6, e) m/z 810.6, f) m/z 826.6. 

Images were normalised using TIC. α-CHCA applied by spray-coat method. 

Scale bar 200 µm. 
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that there are differences in lipid distributions across the tissue and allows two 

distinct regions of the tumour microenvironment to be identified.  

Interestingly, the detection of peaks m/z 782.6 (PC 36:4) and m/z 810.6 (PC 38:4) 

displayed analyte delocalisation into the area surrounding the aggregoid (Figure 

2.14d, e). It is possible that this occurred during the application of matrix via the 

spray-coat method. As the matrix requires a solvent for wetting the tissue during 

spraying, it can influence the migration and diffusion of analytes (Schwartz et al., 

2003). Optimisation of the SunCollect™ spraying parameters such as the flow 

rate, pressure, nozzle movement and height, may help minimise the 

delocalisation effects. As the diffusion was observed in selected species, it 

suggests it is due to the solubility of the analyte with the solvent opposed to the 

spraying parameters.  

Sublimation, an alternative method of matrix application, was evaluated in 

attempt to improve the spatial resolution and minimise delocalisation effects. This 

is a solvent-free matrix application therefore the migration of highly soluble 

molecules should be reduced and has been demonstrated as an efficient method 

for lipid analysis (Hankin, Barkley, & Murphy, 2007; Angel et al., 2012; Ly et al., 

2015). It was recognised in the literature that DHB was reported as the 

conventional matrix used in sublimation for the detection of lipid species. Profiling 

and imaging using DHB on the Synapt G2 mass spectrometer resulted in no 

signal of matrix or analytes (data not shown). Therefore α-CHCA was used to 

achieve analyte signal and for a comparison with the spray-coat method.  

The aggregoid images were acquired with the same parameters of the images of 

sections exposed to the spray-coat method. Figure 2.15 shows the MALDI-MS 

images of a HCC827 aggregoid section for the two analytes that displayed large 

delocalisation effects from the spray-coat matrix application. From the analysis of 

the images there was a significant reduction in analyte diffusion by the 

sublimation technique. However, the overall sensitivity of the lipid species was 

diminished, this was observed across all m/z values and in both MG63 and 

SAOS-2 aggregoid samples (data not shown). The lack of sensitivity also 

impacted determining the true localisation of analytes as background signal had 

similar intensities for the m/z values and could be identified as false signal within 

the aggregoid. This therefore is not ideal for distribution studies. By comparing 

the mean intensity of m/z values (n=1), sublimation detected lipid species at a 
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lower signal than the spraying method. This is most likely due to the solvent in 

the matrix required for the spray-coat method which assists the extraction of the 

analyte. It is important to note that the samples from the spray-coat method and 

sublimation cannot be directly compared as the analysis was performed on 

different sections on different days.  

 

An additional step of matrix recrystallisation after sublimation could be performed 

to increase the sensitivity of lipids. The recrystallisation step creates a solvent 

vapour that rehydrates the sublimed samples. Re-introducing a solvent, however, 

could increase analyte diffusion and the recrystallisation step may not have a 

significant effect on the analyte signal, as has been reported (O'Rourke et al., 

2015). Optimisation of this step would require an investigation of solvents and 

incubation times to achieve quality images.  

It was decided that despite the small amount of analyte delocalisation observed, 

the spray-coat method was still the most appropriate technique to detect 

Figure 2.15 MALDI-MS image of a HCC827 aggregoid section achieved 

through matrix sublimation. a) spectral segmentation identifying two regions. 

The areas were outlined on the m/z mages to determine distribution of abundant 

lipid species b) m/z 782.6, c) m/z 810.6. Images normalised using TIC. Scale bar 

200 µm. d) Mean intensity of m/z images obtained through matrix spraying or 

sublimation. 
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abundant lipid species within the 3D cultures. In addition, the ability to 

discriminate peaks within regions of the tumour microenvironment, demonstrated 

the capabilities of MALDI imaging with the aggregoid model. 

2.5 Concluding remarks 

In this chapter, establishment of a novel 3D cell culture in three models of cancer: 

MG63, SAOS-2 and HCC827 was described. The aggregoid model 

demonstrated phenotypic regions similar to the in vivo tumour microenvironment 

through live cell imaging and initial MALDI-MSI analysis. To achieve MS analysis 

and obtain quality images, sample handling techniques were evaluated. The use 

of HPMC & PVP embedding media showed the best preservation of the 

aggregoid tissues, created ease of handling for the imaging workflow and showed 

no spectral interferences. In addition, a new method of storing sectioned samples 

through desiccation and vacuum packaging of slides proved beneficial for 

reducing delocalisation of analytes within the aggregoids. Data obtained from two 

methods of matrix application demonstrated that the spray-coat method gave 

better sensitivity and enabled the detection of abundant lipid species within the 

aggregoid when compared to sublimation. Delocalisation effects were observed 

in some lipid images however, with the spatial resolution capabilities of MALDI-

MSI, it was still possible to discriminate species within the outer region and inner 

core of the aggregoid models.  
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CHAPTER 3. THE CHARACTERISATION OF AN 
AGGREGATED 3D CELL CULTURE 
MODEL BY MULTIMODAL MSI  
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3.1 Introduction 

The spatial localisation of a molecule can determine the interplay of biological 

functions and interactions within a tissue. This also enables a greater biological 

understanding of cellular phenotypes, their structural organisation, and 

relationship to the surrounding microenvironment. MSI has therefore had an 

influential impact on cancer research and drug development by providing 

information on the spatial localisation of biomarkers, therapeutics, their active 

metabolites, and cellular responses which have resulted in new patient 

treatments (Swales et al., 2019). 

Depending on the biological sample and the molecules of interest, different MSI 

techniques can be employed for optimum analysis. MALDI is the most widely 

used MSI technique across many applications due to its high spatial resolution 

and speed of acquisition. MALDI-MSI can detect a wide range of analytes in an 

untargeted manner including metabolites, lipids, peptides and proteins (Stoeckli 

et al., 2001; Weaver & Hummon, 2013; Buchberger et al., 2018). DESI-MSI has 

gained considerable attention in drug development studies particularly when 

used in combination with Orbitrap and QTOF type mass analysers for the 

generation of images with high mass specificity for metabolites and small 

molecule therapeutics in tissue samples (Chen et al., 2005; Guenther et al., 

2015). In addition, the minimal sample preparation requirement of this ambient 

ionisation methodology limits experimental variability and reduces the timescale 

of the project (Takats et al., 2004). The requirement for the analysis of trace 

elements or metal isotope distribution in tissues has also seen the development 

of LA-ICP-MSI (Pozebon et al., 2014; Hare et al., 2015), a technique that has 

been applied to the analysis of metal-containing therapeutics such as cisplatin 

(Theiner et al., 2016; Theiner et al., 2017). A major advancement in LA-ICP-MSI 

is the evolution of IMC, a novel multiplex method capable of tissue phenotyping, 

and imaging biological processes through the detection of proteins and protein 

modifications at a high spatial resolution (< 1 µm). IMC has demonstrated high-

dimensional single-cell analysis capabilities on numerous tissue types (Giesen et 

al., 2014; Chang et al., 2017), and directly visualised platinum-based therapeutics 

and the biological responses to treatment (Chang et al., 2016). Furthermore, 

studies have demonstrated the benefits of employing multimodal MSI for the 

extraction of complementary molecular information (Chughtai et al., 2012; 
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Veličković et al., 2018). By using different MSI techniques, a wider detection of a 

diverse range of analytes can be obtained within corresponding samples and 

therefore yield a better understanding of the biological processes that drive 

cellular metabolism. 

As discussed in detail in Chapter 1.4.1, advancements in MSI technology, 

especially the achievable spatial resolution, have enabled analysis of the 

pathophysiology in tumour spheroids. Applications of MALDI-MSI have 

characterised colon carcinoma and breast cancer spheroid models based on their 

endogenous metabolite and protein distributions (Li & Hummon, 2011; Hiraide et 

al., 2016; Tucker et al., 2019). More recently, MALDI-MSI detected similar 

tendencies in metabolic activity between KYSE-30 oesophageal cancer MCTS 

and clinical tissue samples (Zang et al., 2021). In addition, progress in the 

development of the ambient technique, single-probe MSI, was able to spatially 

resolve endogenous metabolites within colon carcinoma MCTS (Tian et al., 

2019). However, limited literature has been reported on the use of multimodal 

MSI techniques with spheroid models. With the aim of characterising the tumour 

aggregoids for the purpose of pre-clinical biopharmaceutical testing, the idea of 

employing multiple MSI modalities was an appealing approach and a novel 

method to obtain a greater amount of detail for an in-depth understanding of the 

tumour metabolism.  

In this study, the application of multimodal MSI was used to characterise the 

HCC827 lung adenocarcinoma aggregoid model. Lung adenocarcinoma is the 

most common subtype of non-small-cell lung cancer (NSCLC) and accounts for 

40% of all lung cancers (Coroller et al., 2015). NSCLC is an epithelial lung cancer 

that effects approximately 1 in 15 people in the UK. Although there have been 

considerable efforts in the development of effective therapeutic treatments, the 

patient outcome for lung adenocarcinoma is still significantly poor with < 15% 

survival rate at 5 years (Molinier et al., 2020). The reasons for this low survival 

rate are due to the aggressiveness of the primary cancer, its heterogeneity 

between patients and the high resistance to drugs, which have hindered the 

development of effective therapies. Therefore, it is necessary to develop accurate 

in vitro models that can closely represent the metabolic behaviour of lung 

adenocarcinoma. Some tumour spheroid models derived from lung cancer cell 

lines and primary patient cells have been utilised in previous therapeutics studies 
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through the analysis of PCR and immunostaining techniques (Endo et al., 2013; 

Ekert et al., 2014; Zhang et al., 2018). Specifically, spheroids of the EGFR mutant 

HCC827 cell line showed a promising tool for studying pharmaceutical response 

to small molecule therapeutics including gefitinib and erlotinib (Jacobi et al., 

2017). Nevertheless, there is a significant gap in the literature relating to the 

molecular profile of lung cancer spheroids by high performance MS techniques, 

let alone with MS imaging methods. Therefore, there is an opportunity to 

demonstrate the capabilities of MSI to analyse the HCC827 aggregoid model in 

an attempt to improve the understanding of lung adenocarcinoma based on the 

spatial information of a broad range of molecules.  

3.2 Aims of the chapter 

The following chapter reports the characterisation of a HCC827 lung 

adenocarcinoma aggregoid model using multiple MSI modalities: DESI, IMC and 

LA-ICP. The aim of this work was to demonstrate how the aggregoid model 

displays similar phenotypical characteristics to typical tumour spheroid cultures, 

and its potential as an in vitro research tool. The objective was to detect and 

identify specific molecular markers through the analysis of metabolites, proteins 

and protein modifications, and elemental compounds by the respective imaging 

platforms to define regions of proliferation and hypoxia, in addition to key 

biological processes that drive cancer metabolism in lung adenocarcinoma. 

Through obtaining a large amount of molecular information with a complementary 

nature, it was possible to determine an in-depth understanding of the biological 

processes within the novel tumour model.  

3.3 Materials and methods 

3.3.1 Materials 

Alginic acid, CaCl2, casein solution, DPX mountant, eosin, EDTA, EtOH, 

haematoxylin, PFA, PVP, sodium citrate, Triton™ X-100 and xylene substitute 

were purchased from Sigma-Aldrich (Gillingham, UK). HPMC was purchased 

from Alfa Aesar (Thermo Fisher Scientific, Heysham, UK). 
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3.3.2 3D culture growth  

Culturing of HCC827 lung adenocarcinoma aggregoids is described in Chapter 

2.3.3.  

3.3.3 Tissue preparation 

Aggregoids were prepared for imaging analysis based on the tissue embedding 

and processing protocol described in Chapter 2.3.4. Frozen aggregoids were 

sectioned at 10 μm thickness and thaw-mounted onto polylysine glass slides 

followed by immediate desiccation with N2 and subsequent vacuum packing for 

storage at - 80°C. 

3.3.4 Small molecule imaging 

3.3.4.1 DESI-MSI 

Small molecule imaging by DESI-MSI was performed on a Q-Exactive mass 

spectrometer (Thermo Fisher Inc, Germany) as described in Chapter 2.3.5.3. The 

images were collected in the mass range m/z 80-900 at a spatial resolution of 30 

µm and analysed by SCiLS Lab MVS Premium 3D Version 2020a (Bruker 

Daltonics, Germany) employing RMS normalization.  

3.3.4.2 Discriminatory analysis 

The aggregoid DESI-MSI data file was segregated into regional clusters by 

spatial segmentation processing by which the “core”, “intermediate” and “outer” 

regions were identified (SCiLS, Bruker Daltonics). Discrimination between the 

two regions was achieved by automatically finding m/z values by employing the 

ROC tool to calculate the area under the curve (AUC) value. The raw data file 

from the DESI-MSI was uploaded to METASPACE (https://metaspace2020.eu) 

for metabolite identification of the discriminated m/z values by employing the 

Human Metabolome Database (HMDB) (tolerance < 1 ppm). Metabolic pathways 

were assigned based on the KEGG database by importing identified m/z values 

into Pathos software (http://motif.gla.ac.uk/Pathos/). The ion abundances for the 

m/z values were generated into histograms for comparison between regions 

using GraphPad™ Prism® software (La Jolla, USA).  

https://metaspace2020.eu/
http://motif.gla.ac.uk/Pathos/
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3.3.5 Single-cell imaging 

3.3.5.1 IMC staining  

Tissues were fixed with 4% PFA for 10 min at RT. Prior to staining, tissues were 

permeabilised with 1x casein solution (v/v) containing 0.1% Triton™ X-100 (5 

min) at RT. Tissues were then incubated with blocking buffer (1x casein solution) 

for 30 min at RT. An antibody cocktail was made containing the appropriate 

dilutions for the antibodies. Tissues were incubated with the antibody cocktail 

overnight at 4˚C. DNA Ir-Intercalator (Fluidigm®) was diluted 1:400 and applied 

to tissues for 30 min at RT. Washes with PBS were performed three times 

between each step, with the last step washed in deionized water for 30 s. Slides 

were left to air dry until analysis.  

3.3.5.2 IMC analysis  

Images were acquired using the Hyperion Imaging System (Fluidigm®), 

rasterizing at 200 Hz and with the laser tuned to fully ablate the tissue without 

etching the glass. TIFF files of each acquisition were then exported for analysis 

in the HALO® image analysis platform (Indica Labs). Using a random forest 

machine learning Tissue Classifier module which was the sole segmentation 

process provided by HALO®, each image was segmented into the background 

and inner, core and outer area of each aggregoid. Using the Hiplex module, the 

DNA intercalator was used to first segment the nucleus of each cell, and a proxy 

for the cytoplasm of each cell defined in a 1 µm radius from the nucleus, before 

thresholds set to define positive cell staining for each marker. Percentage 

positivity of each cell was then defined within the inner and outer region of the 

aggregoid. 

3.3.6 LA-ICP-MS analysis  

Experiments were conducted using a NexION 350X ICPMS (Perkin Elmer, USA) 

coupled to an UP-213 LA system (New Wave Research, USA) with a frequency 

quintupled 213 nm Nd: YAG laser. Laser parameters were optimised to 6 μm spot 

size with, 25 μm/s scan speed, 0.07 Jcm-2 laser fluence, and 20 Hz repetition 

rate. The sample was ablated line by line with 6 μm raster spacing at 1.31 min 

acquisition time. For the ICP-MS instrument there was a direct flow with a rate of 

1.4 L/min. The following settings were used in standard mode with an 18 L/min 

plasma gas flow, 1.2 L/min auxiliary gas flow at 1600 W RF power. Isotopes 
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monitored included 24Mg, 66Zn and 63Cu and the instrument was controlled using 

Syngistix software. Data analysis was achieved using Iolite Software on Igor Pro 

(WaveMetrics, USA). 

3.3.7 Histological staining 

After DESI-MSI, aggregoid sections were stained using Mayer’s haematoxylin 

and eosin solutions following a different protocol reported in Chapter 2.3.6. 

Sections were fixed in 4% PFA (10 min) before staining with haematoxylin (1 

min). Tissues were rinsed in tap water before and after submerging in acid 

alcohol. Tissues were subsequently stained with eosin for 30 s prior to washing 

tap water, then subsequently washed in 3 x absolute EtOH (1 min). Finally, 

tissues were submerged in xylene substitute (1 min) twice and mounted using 

DPX mountant. Stained tissues were imaged with Aperio CS2 digital pathology 

scanner (Aperio Tech., Oxford, UK) at 40 x magnification and visualized with 

ImageScope software (Aperio Tech.). 

3.4 Results and discussion 

3.4.1 Metabolite imaging  

One major hallmark of cancer is an altered cellular metabolism to generate a 

sufficient energy source contributing to the initiation, growth, and maintenance of 

tumours (Hanahan & Weinberg, 2011). In the present study, the metabolic profile 

within the lung adenocarcinoma aggregoid model was investigated by employing 

a DESI Thermo Q-Exactive MSI to classify regions of a necrotic/hypoxic core and 

a viable outer area. Initial processing of the aggregoid images was conducted to 

spatially segment the data. These segments are then classified into regions which 

represent phenotypical features of a tissue. The aggregoid data was segmented 

into three main regions that depicted a gradient-like phenotype: a core 

(corresponding to the blue cluster), an annular zone (corresponding to the yellow 

cluster), and an outer region (corresponding to the red cluster) (Figure 3.1b, c). 

From the 2- and 3-dimensional images the clear discrimination of the regional 

clusters corresponded to the histology stain of the same section after MSI 

analysis (Figure 3.1a). From this, the spectra from each region were extracted to 

distinguish the distributions of key metabolites within the aggregoid. For the 

purpose of separating metabolites to distinct regions, the core and the outer 
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zones were the focus when observing the distribution of species, as the 

intermediate region was anticipated to be non-discriminatory.  

 

Figure 3.1 Spatial segmentation of HCC827 aggregoid model from 

metabolite data. a) H&E stain of central aggregoid section. Black dotted lines 

were manually included to show estimate regions of different cellular morphology 

that corresponds similar to segmentation image. Scale bar 400 µm. b) Spatial 

segmentation of central aggregoid section identified three clustering regions that 

correspond to the hypoxia gradient: Core (blue cluster), intermediate/annual 

region (yellow cluster), and the outer region (red cluster)c) Realigned 3D 

construct of aggregoid displaying segmentation pattern throughout the model. 
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Within the aggregoid model, key metabolites involved in cancer metabolism were 

identified with a mass error of < 0.5 ppm (Table 3.1). A major metabolic substrate 

that is regulated by the tumour microenvironment is lactate. Within the aggregoid, 

a high intensity of lactate (m/z 89.02440) was distributed throughout indicating 

the presence of glycolysis rather than oxidative phosphorylation (Figure 3.3b). An 

elevated expression of lactate in the core of the aggregoid implies the presence 

of hypoxia. In anaerobic conditions, the rate of glycolysis increases due to 

insufficient oxygen levels to promote tumour survival. In cancer cells, lactate is 

generated irrespective of the hypoxic or aerobic conditions to act as a primary 

metabolic fuel. An increase in the expression of lactate converted from glucose 

via the glycolysis reaction is thought to be the predominant pathway to promote 

tumour survival and growth rather than following oxidative metabolism, this is 

otherwise known as the Warburg effect (Warburg, 1956). It has also been recently 

hypothesised that the induced glycolysis reaction by cancer cells can also 

metabolically support adjacent cancer cells to further promote ATP production, 

increase proliferation and reduced cell death, also known as the reverse Warburg 

effect (Wilde et al., 2017). Hence, the high intensity levels observed in the 

aggregoid model could be explained.  

A similar distribution of a glycolysis intermediate, pyruvate (m/z 87.00880) was 

also observed (Figure 3.3a). The localisation of pyruvate across the aggregoid, 

with elevated levels in the core validates the assumption of an increased rate of 

glycolysis in response to hypoxia. A key protein associated with increased lactate 

production in low oxygen levels is hypoxia-inducible factor alpha (HIF-1α), which 

is stabilised in a hypoxic environment due to the lack of oxygen and therefore a 

direct marker of hypoxia. HIF-1α is responsible for regulating the expression of 

numerous genes under hypoxic conditions. Specifically, HIF-1α promotes the 

transportation of glucose into the cell by increasing the expression of the glucose 

transporter 1 (Glut1) (Hayashi et al., 2004). Additionally, HIF-1α promotes a high 

glycolysis rate by inducing both pyruvate dehydrogenase kinase (PDK) and 

lactate dehydrogenase A (LDH-A), to prevent the metabolism of pyruvate into 

acetyl-CoA to feed the tricarboxylic acid (TCA) cycle, and rather by favouring the 

conversion of lactate (Kim et al., 2006; Cui et al., 2017). 
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Compound 
Name 

m/z 
(measured) 

Mass 
error 
(ppm) 

AUC 

Pyruvate 87.00880 0.4 0.240 

Lactate 89.02440 0.2 0.138 

Succinate 117.01940 0.9 0.640 

Malate 133.01430 0.4 0.700 

Glutamine 145.06190 0.2 0.114 

Glutamate 146.04590 0.1 0.396 

Citrate 191.01980 0.4 0.903 

FA 18:2 279.23280 0.7 0.639 

FA 20:4 303.23300 0.2 0.564 

Glutathione 
(GSH) 

306.07650 0.1 0.991 

Table 3.1 Assignments and errors for [M-H]- adducts, and discriminatory 

analysis of metabolites between the core and outer from SCiLS Lab 

software. Mass accuracy of metabolites with the measured m/z values and 

calculated m/z values (< 2.5 ppm). AUC determined by ROC analysis, represents 

the discrimination power of m/z signal. A perfect discrimination would yield an 

AUC equal to 0 or 1. An AUC closer to 0.5 defines the m/z value less suitable as 

a univariate criterion. In this case an AUC equal to 0 discriminates the m/z value 

to the core, 1 to the outer. 
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Figure 3.2 Average mean spectra of metabolites within the aggregoid regions extracted from SCiLS Lab software. a) 

Combined spectra of core, intermediate and outer region classified from bisecting k-means segmentation analysis. b) Core spectrum. 

c) Intermediate spectrum. d) Outer spectrum. Relative intensity of metabolites for each aggregoid region: e) Lactate, m/z 89.02440; 

f) Glutamine, m/z 145.06290; g) Citrate, m/z 191.01980; h) GSH, m/z 306.07650. 
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The image analysis identified an increased distribution of glutamine (m/z 

145.06190) within the core of the aggregoid (Figure 3.3c). Glutamine is 

considered a major bioenergetic substrate that sources the TCA cycle by its 

metabolism to the intermediate α-ketoglutarate achieved by the glutaminolysis 

pathway (Fan et al., 2013). The TCA cycle is described as the epicentre of cell 

metabolism due to the extensive supply of metabolic substrates that are utilised 

for energy production (Martínez-Reyes & Chandel, 2020). The localisation of 

glutamine within the core suggests the cells within the hypoxic environment are 

substituting for the lack of pyruvate sourcing the TCA cycle. Interestingly, 

glutamate (m/z 146.04590), an intermediate of glutaminolysis, is distributed 

towards the outer region of the aggregoid (Figure 3.3d). The TCA cycle is heavily 

utilised by proliferating cells for growth, the suppression of glutamine conversion 

to glutamate in the core therefore implies the presence of necrosis. Several 

spheroid studies have reported that the increase in diameter decreases the cell 

viability due to the reduced levels of oxygen and nutrients, thus the spheroid 

eventually develops an inner necrotic core (Curcio et al., 2007; Grimes et al., 

2014). By examining the gene expression profiles, Däster et al., (2017) identified 

the development of a necrotic region in multicellular spheroids larger than 500 

µm. Since the diameter of the aggregoid model is ~ 1 mm the presence of an 

inner necrotic core is highly likely. Fluorescent staining of the aggregoid with 

propidium iodide, which only enters dead cells, confirms the presence of this 

necrotic region (Chapter 2.4.1, Figure 2.7) and additionally shows the large 

asymmetric hypoxic area opposed to the simple radial gradient in a typical 

spheroid model, which could explain the asymmetric metabolite distribution in 

Figure 3.3.  

In contrast, the distributions of the major TCA cycle intermediates citrate (m/z 

191.01980), malate (m/z 133.01430), and succinate (m/z 117.01940) were 

observed solely located with more annular features (Figure 3.3e-g), implying a 

surplus of oxygen and nutrients surrounding the aggregoid and the absence of 

cell proliferation in the core. By identifying the significant metabolites that drive 

cancer metabolism, it was possible to map the ion density images onto their 

corresponding pathways to associate the metabolic activity with specific regions 

of the aggregoid Figure 3.4. 
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Figure 3.3 Distribution of metabolites regulating cancer growth and survival within the HCC827 aggregoid central section. 

Ion density maps of metabolites outlining the core and the outer area on the image. Mean intensity plotted on bar graph against the 

core and outer regions (n=1). Scale bar 200 µm. Intermediates of the glycolysis reaction: a) Pyruvate, m/z 87.00880; b) Lactate, m/z 

89.02440. Glutaminolysis reaction: c) Glutamine, m/z 145.06190; d) Glutamate, m/z 146.04590. TCA cycle: e) Citrate, m/z 191.01980 

f) Malate, m/z 133.01430; g) Succinate, m/z 117.01940. 
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Figure 3.4 Mapping metabolites to biological pathways defined areas of tumour metabolism. The glycolysis reaction is highly 

expressed across the whole aggregoid section demonstrating the Warburg effect. Conversion of glutamine to glutamate is showing 

reduced expression in the core. The TCA intermediates present within the proliferative outer region. Intermediates acetyl-CoA, α-

ketoglutarate, succinyl-CoA, fumarate, and oxaloacetate were not observed. 
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Proliferating cancer cells utilise fatty acids as they have essential roles as 

structural components of the membrane matrix, secondary messengers for 

signalling pathways, and sources for energy production (Beloribi-Djefaflia, 

Vasseur, & Guillaumond, 2016). Here fatty acid distribution was imaged and 

identified within the aggregoid with a mass error ≤ 0.7 ppm (Table 3.1). The image 

analysis demonstrated the presence of two polyunsaturated fatty acids, FA 18:2 

e.g., linoleic acid at m/z 279.23280, and FA 20:4 e.g., arachidonic acid at m/z 

303.23300 within the proliferative region (Figure 3.5a, b). Linoleic acid is a 

polyunsaturated fatty acid which is converted to arachidonic acid, a major 

metabolite involved in cellular proliferation and survival in cancer cells from which 

prostaglandins are synthesised via the cyclooxygenase (COX) pathway (Ding, 

Tong, & Adrian, 2000; Borin et al., 2017). The accumulation of FA 20:4 

(arachidonic acid) within the outer region of the aggregoid coincides with the 

distribution within the proliferative region of patient cancer tissue-originated 

spheroids of colorectal cancer (Hiraide et al., 2016). It has also been reported 

that the metabolism of arachidonic acid is involved in the promotion of 

angiogenesis, cell invasion and metastasis by an alternative pathway, 

lipoxygenase (LOX) (Nie et al., 2003). However, MS/MS profiling is required to 

confirm the identity of these fatty acids.  

The metabolite glutathione (GSH) (m/z 306.07650) displayed a similar 

localisation to the fatty acids described with elevated levels surrounding the 

hotspot within the outer region (Figure 3.5c). GSH protects cells against reactive 

oxygen species (ROS), a normal product from cellular metabolism, through the 

oxidation of its sulfhydryl group to form glutathione disulphide (GSSG) 

(Armstrong et al., 2002). The co-localisation of GSH with the fatty acids suggests 

an area of high metabolic activity. Interestingly, there was a lack of GSH in the 

core of the aggregoid, which is heavily associated with oxidative stress (Figure 

3.5c). In hypoxia, the expression of antioxidant genes including genes involved 

in the glutathione biosynthesis are induced to allow cells to regulate ROS. 

However, it has been shown that in presence of excess ROS, GSH is depleted 

which leads to the activation of apoptosis and other forms of cell death such as 

necrosis and ferroptosis (Kipp et al., 2017). The presence of GSH (or the lack of) 

can therefore be a potential measure of oxidative stress within the aggregoid 

model. Defining heterogeneity within the in vitro aggregoid model allows further 
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understanding of a realistic tumour microenvironment and the true metabolic 

behaviour of an in vivo cancer, which  can then be utilised in applications of drug 

development.  

  

Figure 3.5 Fatty acid detection defines proliferative activity. Ion density maps 

of metabolites outlining the core and the outer area on the image. Mean intensity 

plotted on bar graph against the core and outer regions. Scale bar 200 µm. a) FA 

18:2, m/z 279.23280; b) FA 20:4, m/z 303.23300; c) GSH, m/z 306.07650. 
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3.4.2 Single cell tumour characterisation 

IMC is a novel, multiplex imaging platform capable of high-dimensional tissue 

phenotyping and the detection of signalling activities by the analysis of protein 

and protein modification markers at single-cell resolution (1 µm). The analysis of 

proteins within tissues can define essential cellular functions such as 

proliferation, metabolism, gene expression, organisation, and apoptosis 

(Downward, 2001). Modifications to such proteins can manipulate their spatial 

distribution, composition, and their function (Hoffman, Sniatynaski, & Kast, 2008), 

which can contribute to tumour progression. In the present study, IMC was 

employed for single-cell phenotyping of the HCC827 aggregoid model for an in-

depth characterisation of the tumour microenvironment. Proteomic markers 

relevant to lung adenocarcinoma were selected to identify key components of 

cellular organisations, functions, and signalling.  

Due to the complex heterogeneity of cancer tissues, morphological and structural 

components provide a navigational aid to determine the initial tissue organisation 

(Chang et al., 2017). In this study, such cellular elements included DNA and 

epithelial tumour markers. The DNA intercalator selected was a generic marker, 

selected to identify the size and shape of the nucleus in individual cells within the 

aggregoid (Figure 3.7a). This data was used to spatially segment the image to 

calculate the percentage positive cells for each marker (HALO®, Indica Labs) 

(Figure 3.6). 
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Tumour markers observed within the HCC827 aggregoid were epithelial cadherin 

(E-cadherin), and pan-cytokeratin (Pan-CK). The image analysis of both markers 

identified similar distributions with elevated expression levels within the outer 

region of the aggregoid (Figure 3.7b, c). In epithelial cells, E-cadherin and 

cytokeratin are responsible for mediating cell-cell adhesion and mechanical 

support via intermediate filaments, respectively. The absence of these markers 

within the core is possibly due to the breakdown of cell interactions as a result of 

necrosis. Simiantonaki et al., (2007) reported a similar correlation with cellular 

necrosis and a lack of E-cadherin distribution in the core of HT-29 colorectal 

carcinoma spheroids via immunohistochemistry. Interestingly, the expression of 

both E-cadherin and cytokeratin can determine epithelial-mesenchymal transition 

(EMT), a process which promotes tumour progression and metastasis. In EMT, 

both epithelial markers are either downregulated or lost coupled with gain of 

Figure 3.6 IMC classification and spatial bisecting k-means segmentation 

using HALO™ software. a) Regions of core, outer and background were 

classified from the IMC image analysis of aggregoid. Classification of aggregoid 

in reference to Glut1 distribution which is localised within the core. b) Spatial 

segmentation of each protein marker to determine percentage positive cells. 

From top left to bottom right: Pan-CK, E-Cadherin, Glut1, Ki-67, TNC, pS6, 

γH2AX, pHH3, DNA. 
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mesenchymal markers, N-cadherin and vimentin (Lamouille, Xu, & Derynck, 

2014). Studies have demonstrated that EMT signalling can be induced by HIF-

1α in tumour spheroids (Lehmann et al., 2017; Essid, Chambard, & Elgaaïed, 

2018). Unfortunately, N-cadherin was not a validated marker at the time the study 

was conducted, however, vimentin was included in the antibody panel, yet it was 

not detected within the aggregoid model. This suggests there is no mesenchymal 

phenotype present within the core and therefore the lack of E-cadherin is most 

likely due to necrosis. However, as necrosis and EMT have a crucial part in 

tumour progression, future tumour aggregoid analysis of other epithelial cancer 

types with IMC has potential for applications in drug development and resistance.  

Alternatively, Tenascin C (TNC) is an ECM marker considered an active 

component of cancer. Relatively high expression of the marker was localised 

within the necrotic core of the aggregoid (Figure 3.7d). TNC is thought to promote 

survival and invasion by regulating the expression of proangiogenic factors such 

as vascular endothelial growth factor (VEGF) modulated by HIF-1α (Wang et al., 

2018). Additionally, TNC has been associated with inducing EMT changes with 

the downregulation of E-cadherin (Takahashi et al., 2013). Thus, the TNC marker 

has an inverse correlation with the distribution of the E-cadherin marker (Figure 

3.8).  

To distinguish regions of the tumour microenvironment, and to complement the 

findings from the metabolite distributions, specific markers of proliferation and 

hypoxia were included. Ki-67 is a cellular marker, present in all stages of the cell 

cycle except for early G1 and G0 quiescent phases. The high expression of Ki-67 

present within the outer region of the aggregoid therefore implies an active 

proliferative zone (Figure 3.7e). In addition, phosphorylated Histone H3 (pHH3) 

marker was identified in only a few specific cells, yet still located primarily in the 

outer region of the aggregoid (Figure 3.7f). HH3 is a nuclear core protein, and 

when phosphorylated at serine-10, is specifically involved in mitotic chromatin 

condensation (Kim et al., 2017). Hence, the expression of pHH3 can identify cells 

undergoing mitosis. It can be concluded that the cells within the outer region of 

the aggregoid are highly proliferative implying a non-hypoxic area compared to 

the cells within the core, thus tightly corresponding to the distributions of the TCA 

cycle intermediates from the DESI-MSI analysis. 
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Figure 3.7 Representative IMC images of biological processes at subcellular detail in the HCC827 aggregoid model. Scale 

bar 100 µm. Percentage positive cells plotted on bar graph against the core and outer regions. a) DNA intercalator identified individual 

cells within the aggregoid section. Epithelial tumour markers: b) Pan-CK, c) E-Cadherin, and d) Tenascin C (TNC). Proliferation 

markers: e) Ki-67 and f) pHH3. Hypoxia influenced markers: g) Glut1, h) pS6. DNA damage marker: i) γH2AX. 
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On the other hand, Glut1 (glucose transporter 1) is a proxy hypoxia marker. 

Elevated levels of the marker were observed solely within the necrotic core of the 

aggregoid (Figure 3.7g). Glut1 is a hypoxia responsive gene, which is 

upregulated by HIF-1α to maintain an adequate energy supply in response to 

reduced oxidative phosphorylation (Ouiddir et al., 1999). High levels of Glut1 

complement the high lactate expression from the metabolite analysis, implying 

an increase in glucose transport into cells for lactate production via glycolysis. 

From the overlay image analysis, an inverse distribution of Ki-67 and Glut1 can 

distinguish the two major regions of the tumour microenvironment: proliferative 

outer, and hypoxic core (Figure 3.8). It is noted that some studies have 

challenged GLUT1 as a reliable marker for hypoxia (Sørensen et al., 2005) and 

therefore additional staining using pimonidazole, a routinely used hypoxia marker 

would be an appropriate validation method to confirm these findings. 

Phosphorylated S6 ribosomal protein (pS6), an active marker for mTOR 

signalling for cancer growth and metabolism associated with the PI3K/Akt/mTOR 

pathway, is also regulated by hypoxia. In contrast, the expression of pS6 was 

observed primarily within the outer region of the aggregoid, with high levels within 

specific cells (Figure 3.7h). In hypoxic conditions, the activity of the 

PI3K/Akt/mTOR pathway is reduced, negatively impacting on the pS6 expression 

(Schneider, Younis, & Gutkind, 2008). Both Glut1 and pS6 markers therefore 

identified metabolic signalling within the aggregoid that is affected by hypoxia.  

Alternatively, phosphorylated Histone H2AX (γH2AX) is a marker for DNA 

damage and stress and can be indicative of cellular apoptosis (Rogakou Emmy 

et al., 2000). This therefore explains the accumulation of γH2AX within the 

hypoxic core of the aggregoid (Figure 3.7i). From the image analysis however, 

high expression levels of γH2AX were also observed within the proliferative outer 

region (Figure 3.7i). Due to oxidative stress, induced by natural ROS from 

metabolic activity, proliferative cells are subjected to constant DNA damage 

(Tanaka et al., 2006). Therefore, the distribution of γH2AX throughout the 

aggregoid is supported. In future, γH2AX marker has potential to be used for the 

detection of cellular stress within the aggregoid, with elevated levels when subject 

to therapeutic treatment.  
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Figure 3.8 Structural organisation of biological processes for in-depth phenotyping of HCC827 aggregoid model. a) Optical 

image of aggregoid prior to staining with antibodies and image analysis. Scale bar 100 µm. Overlay of IMC markers displays 

representative images of b) Epithelial tumour markers: E-cadherin, TNC; c) Proliferation and hypoxia: Ki-67 and Glut1; d) Overlay 

image combining ECM, proliferation, hypoxia and mitosis: E-cadherin, Ki-67, Glut1, pHH3. Scale bar 100 µm. 
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This is the first report on the analysis of 3D cell culture models with IMC. The 

usage of IMC to characterize the HCC827 aggregoid model based on 

morphological and structural markers specific for epithelial tumour, growth and 

proliferation, and the hypoxia gradient of the tumour microenvironment has been 

demonstrated (Figure 3.8). Furthermore, with the single-cellular resolution 

capabilities of IMC it was possible to distinguish individual cells and the matrix 

surrounding based on the cellular localisation of such protein markers.  

3.4.3 Endogenous elemental analysis 

Deficiencies, defects, and accumulation of metal compounds within cells are 

known to be a hallmark of cancer and disease. Within tissues, metals have a 

heterogeneous distribution whereby high concentrations can be associated with 

high metabolic activity (Hare et al., 2015). Therefore, visualising the metal 

composition within a tissue can provide essential information to understanding 

their key functions in different environments, such as hypoxia or nutrient rich 

areas. The composition of abundant metal isotopes 24Mg, 66Zn and 63Cu were 

selected to analyse within the HCC827 aggregoid model. To measure the 

abundance of low mass range metal ions at high sensitivity LA-ICP-MSI was 

employed.  

In the cell, Mg and Zn are essential components to drive cell growth, division, and 

proliferation (Vernon, 1988; MacDonald, 2000). Observations from the LA-ICP-

MSI analysis localised both elements of high expression solely within the outer 

proliferative region of the aggregoid (Figure 3.9). Similar to Ki-67, Mg is involved 

in the cell cycle except for early G1 and G0 quiescent phases (Walker, 1986; Wolf 

& Trapani, 2008). The presence of Mg parallels with molecular control of cell 

proliferation and differentiation thus, the absence of Mg could be indicative of a 

non-proliferative region, or necrotic core. Zn on the other hand, has been directly 

linked to the proteasomal degradation of HIF-1α under normoxic conditions 

through the addition of excess Zn (Nardinocchi et al., 2010). Whether 

endogenous Zn has the same impact on HIF-1α is unclear, however it is possible 

that the absence of Zn within the aggregoid core is associated with the activation 

of HIF-1α in hypoxia; whereby Zn is possibly exported to the proliferative zone 

where high levels are required for metabolic activity.  
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In contrast, the Cu levels in the aggregoid were elevated within the necrotic core 

(Figure 3.9). Increasing evidence has linked Cu with HIF-1α via the hypoxia 

signalling pathway as a response to oxidative stress to regulate Cu-dependent 

genes (Wenke Feng et al., 2009; Wu, Zhang, & Kang, 2019). These include 

BNIP3, a cell death factor that induces necrosis (Sowter et al., 2001), and VEGF 

which stimulates angiogenesis (Büchler et al., 2003). Both of which are 

stimulating factors in hypoxia. In agreement with this, VEGF is also known to be 

regulated by TNC, which from the IMC analysis was also localised within the core 

of the aggregoid (Figure 3.9). In addition, HIF-1α accordingly promotes the 

upregulation of the Cu-efflux transporter, ATP7A (Zimnicka et al., 2014), which 

tightly regulates levels of free Cu ions to prevent the formation of ROS. Thus, 

elevated Cu concentrations could imply an active export of free Cu ions into the 

ECM, accumulating in a less dense area of the aggregoid. As necrotic cells are 

unregulated the core therefore becomes the source of metabolic debris. 
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Figure 3.9 Elemental distributions within HCC827 aggregoid sections obtained using LA-ICP-MS. a) Optical image taken before 

acquisition; necrotic region outlined by red dotted line. Scale bar 50 µm. Elemental maps of b) 24Mg, c) 66Zn and d) 63Cu within the 

section of aggregoid. 
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At present, there is only a limited amount of literature on the study of endogenous 

elemental compounds in 3D cultures by LA-ICP-MSI. Yet the analysis of tumour 

spheroids with this technique has had some interest regarding the localisation of 

platinum-based therapeutics and hypoxia-responsive drugs  (Theiner et al., 2016; 

O'Neill et al., 2017). Theiner et al., (2017) differentiated morphological 

characteristics of a necrotic core, quiescent zone, and proliferative outer region 

through the analysis of platinum accumulation within HCT116 colon cancer 

spheroids. However, the elemental compositions in this study are consistent with 

literature reported in studies employing X-ray fluorescence microscopy (XFM), an 

alternative analytical technique capable of elemental analysis at high sensitivity. 

Zhang et al., (2012) reported similar distributions of Zn and Cu within DLD-1 colon 

carcinoma spheroids implying the accumulation of such compounds highlight 

regions of a proliferative outer zone and a necrotic core, respectively. 

3.5 Concluding remarks 

Advanced molecular imaging techniques have been applied for an in-depth 

phenotyping of a novel aggregated tumour model. This is the first example of an 

IMC application with a 3D cell culture model. Combining the IMC data with 

molecular information from DESI- and LA-ICP- MSI, a detailed characterisation 

of the tumour microenvironment within the aggregoid was possible. Distinct 

regions of a necrotic core and a proliferative outer were distinguished by each 

method. The localisation of metabolites including lactate, glutamine and citrate 

within the aggregoid highlighted the metabolic activity in relation to hypoxia. 

Mapping the ion density images onto the central biological pathways enabled a 

clearer understanding of the metabolite behaviour within the tumour 

microenvironment. IMC enabled single-cell phenotyping of protein signalling 

activity. The protein expression complemented the metabolite data including the 

expression of the Glut1 with elevated lactate levels in the core. In addition, the 

endogenous elemental compositions of Mg, Zn and Cu corresponded to the 

protein information and further validated the presence of heterogenous regions 

within the aggregoid model . This study improved the understanding of the 

molecular activity within the HCC827 3D cell culture tumour microenvironment. 

Therefore, demonstrating MSI analysis of tumour aggregoids a potential 
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methodology for in vitro studies in biomedical research and pre-clinical 

pharmaceutical development.
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CHAPTER 4. CHARACTERISATION AND 
COMPARISON OF 
OSTEOSARCOMA AGGREGATED 
TUMOUR MODELS BY 
MULTIMODAL MSI  
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4.1 Introduction 

OS is the most common primary bone malignancy and largely effects adolescents 

and young adults, with 60% of patients under the age of 25. Bone sarcomas are 

classified as a rare type of cancer with OS having an estimated incidence of 

approximately 7 in 100,000 persons, with 30,000 new cases a year (Ferguson & 

Turner, 2018). Despite improvements in treatment therapies over the recent 

years, the survival rate of bone sarcomas has remained unchanged with < 50% 

at 5 years (Stiller et al., 2018). The aggressive tumoral behaviour of OS has 

challenged the development of an effective therapeutic treatment. Even with 

complete surgical resection of the primary tumour, approximately 90% of OS 

patients develop metastasis such as of the lung or breast (Ren et al., 2015). 

Hence, there is still a great need for studying the molecular activity within the 

sarcoma in order to understand the metastatic behaviour and improve treatment 

therapies.  

There are multiple cell models of OS described in vitro that express the specific 

genetic alterations of the sarcoma. The most common OS cell lines include the 

epithelial-like cells, SAOS-2 and the fibroblastic-like cells, MG63, both with a 

deficiency mutation in the tumour suppressor p53 gene. However, significant 

differences in the phenotypes of these cell lines have contributed to inconsistent 

results across studies. The SAOS-2 cells express a mature osteoblast phenotype 

with a high level of alkaline phosphatase (ALP) activity (Murray et al., 1987); a 

gene associated with bone mineralisation. In contrast, the MG63 cell line 

represent the immature osteoblast phenotype with low ALP activity and matrix 

differentiation potential (Scheven, Marshall, & Aspden, 2002).  

With differences in phenotypes, the expression of endogenous molecules would 

also be expected to vary, and thus impact the responses to treatment. Multiple 

studies have previously characterised the OS cell lines by DNA profiling and the 

expression of proteins through conventional methods, such as PCR analysis and 

immunostaining. For example, the detection of metastatic-related OS gene 

expressions, such as PHLDA1 enabled the categorisation of 18 OS cell lines from 

high to low metastatic potential, marking SAOS-2 and MG63 as relatively low 

metastatic cell lines (Ren et al., 2015). In addition, heterogenous expressions of 

ECM proteins such as collagen I and III, and MMP-9 were used to differentiated 

SAOS-2 cells from MG63 cells (Paukte et al., 2004). Untargeted LC-MS/MS 
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approaches have also been employed in metabolomics studies of both OS cell 

lines (Ren et al., 2017; Wright Muelas et al., 2020). The limitations of these 

studies, however, is the characterisation of the OS cell lines in 2D, which is not 

representative of in vivo behaviour. For instance, a significant change in the 

metabolite levels of lactate and alanine between 2D and 3D MG63 cultures was 

detected by high resolution nuclear magnetic resonance (NMR) (Santini et al., 

2004). Additionally, alterations in the proteome between monolayer and spheroid 

cultures of canine OS cells by differential gel electrophoresis (DIGE) MALDI-MS 

has also been reported (Gebhard et al., 2018). However, the characterisation of 

OS 3D culture models has still been limited to PCR analysis or immunostaining 

techniques, which leads to loss of spatial information and/or requires target-

specific analysis (Wang, Park, & Lin, 2009; Gebhard, Gabriel, & Walter, 2015; 

Bassi et al., 2020). 

In order to understand the wide molecular activity that drives OS and captures 

the heterogeneity of the tissue, a comprehensive analysis strategy is required. 

Palubeckaitė et al., (2019) previously defined apoptotic and necrotic regions 

within the SAOS-2 spheroid aggregate model by detecting heterogeneous 

distributions of endogenous metabolites using MALD-MSI. As described in 

Chapter 3, employing multimodal MSI techniques demonstrated how obtaining a 

large amount of molecular information with a complementary nature can enhance 

the understanding of the biological processes within a tissue. The detection of 

metabolites, proteins and metals determined the interplay between molecules 

and established key pathways that defined the HCC827 lung adenocarcinoma 

aggregoid model (Flint et al., 2020). A similar approach could therefore give a 

valuable insight into 3D tumour aggregoid models of OS, providing 

comprehensive information of biochemical pathways that influence the cancer 

pathogenesis. In addition to this, a recent paper demonstrated the combination 

of oesophageal cancer MCTS and clinical tissue with MALDI-MSI as an approach 

to determine the metabolic relevance of the models to in vivo (Zang et al., 2021). 

With that in mind, detailed molecular characterisation of in vitro OS models and 

clinical tissue would improve the understanding of cancer metabolism within the 

3D cultures and highlight biomarkers of patient outcome.  
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4.2 Aims of chapter 

In this chapter, multiple MSI modalities were employed to characterise two OS 

aggregoid models, MG63 and SAOS-2, for the purposes of developing a potential 

in vitro methodology for cancer research and drug development. Firstly, the 

metabolic profiles of the models were determined by DESI-MSI and compared 

against the established tumour microenvironment of the HCC827 lung 

adenocarcinoma aggregoid. An investigation into the relevance of the OS 

aggregoid models with clinical OS patient samples was then conducted to 

determine the similarities in the metabolite levels that influenced tumour 

behaviour and potentially detect metastatic activity. In addition, IMC and LA-ICP-

MSI were utilised to further establish the phenotypical characteristics of the 

tumour microenvironments of both aggregoid models through protein markers 

and metal compositions, respectively.  

4.3 Materials and methods 

4.3.1 Materials 

Alginic acid, CaCl2, casein solution, DPX mountant, eosin, EDTA, EtOH, 

haematoxylin, NaCl, PFA, PVP, sodium citrate, Triton™ X-100 and xylene 

substitute were purchased from Sigma-Aldrich (Gillingham, UK). HPMC was 

purchased from Alfa Aesar (Thermo Fisher Scientific, Heysham, UK). 

4.3.2 3D cell culture growth 

OS cell lines MG63 and SAOS-2 were cultured into 3D aggregated tumour 

models as described in Chapter 2.3.3.  

4.3.3 Sample handling 

Samples were prepared and processed following the protocol described in 

Chapter 2.3.4.  

4.3.4 Tissue sample collection and handling 

Two samples of human bone tissue biopsies which had been previously classified 

by conventional pathology as osteoblastic osteosarcoma were obtained from the 

Children’s Cancer and Leukemia Group Tissue Bank. The samples were 

provided following ethical approval of this study (Project Reference 2017 BS 06). 

Samples were snap frozen and cryosectioned on a CM1950 cryostat (Leica 
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Biosystems, U.K.). Sections were cut at 10 µm thickness and n=3 sections of 

each sample from different depths of the tissues were thaw mounted onto 

positively charged X-tra® adhesive slides (Leica Biosystems, U.K.).  

4.3.5 Small molecule analysis 

Metabolite and lipid images were obtained by DESI-MSI on a Thermo Fisher Q-

Exactive mass spectrometer (Thermo Fisher Inc, Germany) at 40 µm spatial 

resolution as reported in Chapter 2.3.5.3. The DESI-MSI data was analysed by 

SCiLS™ Lab MVS Premium 3D version 2020a (Bruker Daltonics, Germany) RMS 

normalization. Data was discriminated following as described in Chapter 3.3.4.2. 

Metabolites and biological pathways were identified by METASPACE 

(https://metaspace2020.eu). The peak list from each aggregoid section was 

exported into .csv files and grouped together. The data was then imported into 

MetaboAnalyst 5.0 (Xia et al., 2009) to conduct multivariate analysis. PCA and 

PLS-DA were performed on the selected sample groups for each aggregoid 

model. The samples were normalised by the median, before applying log 

transformation and Pareto scaling on the data. The data was displayed in scores 

plots with 95% confidence regions to determine variance between groups. 

Loadings plots displayed the m/z values that profiled specific groups. The ion 

abundances for the m/z values were generated into histograms for comparison 

between regions using GraphPad™ Prism® software (La Jolla, USA). 

4.3.6 Single-cell analysis 

Proteins and protein modifications were detected by IMC analysis as performed 

and described in Chapter 3.3.5. All samples were prepared for staining and 

incubated with a cocktail of antibodies specific for markers relevant to 

osteosarcoma overnight at 4°C. Images were acquired on the Hyperion Imaging 

System (Fluidigm®) with the laser tuned to fully ablate the tissue. The imaging 

data was analysed using the MCD Viewer v1.0.560.2 software (Fluidgim®). Due 

to unavailability of the HALO® image analysis software (Indica Labs) during this 

study, the images were not spatially segmented, and therefore the percentage 

positivity of markers could not be quantified.  

4.3.7 Elemental analysis 

Metals within the aggregoid samples were detected using the method based on 

the protocol described in Chapter 3.3.6. Laser parameters were optimised to 6 

https://metaspace2020.eu/
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μm spot size with, 25 μm/s scan speed, 0.07 Jcm-2 laser fluence, and 20 Hz 

repetition rate. Samples were ablated line by line with 6 μm raster spacing. 

Isotopes monitored were 24Mg, 66Zn and 63Cu and the instrument was controlled 

using Syngistix software. Data analysis was achieved using Iolite Software on 

Igor Pro (WaveMetrics, USA). 

4.3.8 Histology analysis 

Aggregoid samples were stained with Haematoxylin and eosin as reported in 

Chapter 3.3.7. 

4.4 Results and discussion 

4.4.1 Metabolite imaging 

4.4.1.1 Aggregoid phenotyping 

To determine the metabolic profiles of the two OS aggregoid models, a 

comparative analysis was performed by employing DESI-MSI. In this study, the 

metabolic activity within three biological replicates of the MG63 and SAOS-2 

aggregoid models were determined. Metabolite data of the lung adenocarcinoma 

model was also included as a reference to understand the phenotypes within the 

OS models.  

Initially, the data was spatially segmented to determine phenotypical regions 

within the aggregoid sections. From the segmentation analysis, different 

phenotypical regions in each model were observed (Figure 4.1). As reported in 

Chapter 3.4.1, the segmented image of the HCC827 aggregoid model comprised 

three regions: a distinctive inner core, an annular zone and an outer region, which 

were also observable in the histological image. The segmentation of the MG63 

model showed a similar pattern, where a core, two inner annular regions and a 

periphery were observable in the segmented MSI data. From the histology 

however, the MG63 model differed from the HCC827 aggregoid in that the cells 

were tightly compact throughout the section and although some condensing of 

DNA was observed, no significant apoptotic bodies were identified. This suggests 

that the core cluster within the MG63 aggregoid does not necessarily correspond 

to an obvious region of cellular stress due to hypoxia. Yet the segmentation 

analysis was still able to identify changes in metabolite activity effected by the 

lack of oxygen and nutrients towards the core of the aggregoid.  
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The SAOS-2 model showed significantly different features to the HCC827 and 

MG63 models in the segmentation analysis (Figure 4.1). Although a core was 

identified, the clustering pattern showed a lot of heterogeneity across the section, 

which was similar in each SAOS-2 sample (n = 3). Examination of the histological 

data indicated that a lot of fracturing was present. This has been noted across 

the SAOS-2 aggregoid samples throughout the experimental work conducted 

within this thesis and is potentially due to the nature of culturing the SAOS-2 cell 

line. A previous study reported a heterogenous capability to form 3D cultures 

between OS cell lines and noted that the SAOS-2 cells formed irregular 

spheroids, whereas the MG63 formed more spherical spheroids (Rimann et al., 

2014). Interestingly, from the histology data in the paper the SAOS-2 spheroids 

displayed a compact cellular distribution. However, the spheroids were 

significantly smaller (≤ 200 µm diameter) in comparison to the aggregoid model 

reported here (~ 1 mm diameter). The histology data in this study showed that a 

large area of apoptotic and necrotic activity within the SAOS-2 aggregoid was 

present. This is likely impacting the stability of the aggregoids. As this has been 

observed throughout the SAOS-2 samples, it is most likely due to the 

morphological nature of the cell line. Nevertheless, phenotypical regions within 

the SAOS-2 model were still observed and metabolite distributions were 

detected. 
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Figure 4.1 Spatial segmentation of a HCC827, MG63 and SAOS-2 aggregoid 

from metabolite data by DESI-MSI. a) Spatial segmentation identified 

heterogeneous clustering phenotypes between aggregoid models. Segmentation 

of each sample was performed independently and therefore the coloured clusters 

do not correspond between samples. b) H&E stain of same aggregoid sections 

from each model. Black dotted line were manually included to highlight different 

phenotypical regions on the H&E stain that were similar to the segmentation 

clustering analysis. Scale bar 200 µm. 
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PCA was conducted to determine the differences between the three aggregoid 

models. From the analysis, an obvious separation between the cell lines was 

observed with relatively tight 95% confidence grouping (Figure 4.2). The 

distribution of the OS models both located to the right of the scores plot and away 

from the HCC827 samples suggested more similarities in the metabolites 

compared to the lung model (Figure 4.2). However, from the PLS-DA, there was 

clear variance in separation on the scores plot from the detected metabolites 

between the MG63 and SAOS-2 aggregoid models (Figure 4.3). This is as 

expected, as the fibroblastic MG63 and epithelial SAOS-2 cell types will exhibit 

different metabolic behaviour. A summary of the key metabolites identified in the 

aggregoid models is reported in Table 4.1. Unfortunately, the metabolites 

involved in glycolysis and the TCA cycle, detected in the HCC827 aggregoid 

model in Chapter 3, were not detected in this study. This is likely due to the tuning 

of the DESI Thermo Fisher Q-Exactive mass spectrometer prior to acquisition 

which was performed externally by the AstraZeneca group. Due to time 

constraints, an additional image was not acquired. Nonetheless, a significant 

number of metabolites within the higher mass range including fatty acids and 

lipids were still detected and are discussed in this chapter. 
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Figure 4.2 PCA scores and loadings plot show separation of the MG63 and SAOS-2 aggregoid models from the HCC827 

aggregoid model. Principal components, PC 1 (51.8%) and PC 2 (33.6%) (% = the amount of variability) showed the best separation 

between sample groups. The discriminatory m/z values of interest were distributed separately from the cluster of peaks. Samples 

were grouped with 95% confidence, HCC827 (red), MG63 (green), and SAOS-2 (blue). 
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Figure 4.3 PLS-DA scores and loadings plot show variance between MG63 aggregoid model and the SAOS-2 aggregoid 

model. Component 1 (69.6%) and component 2 (13.7%) showed the best separation between samples. The discriminatory m/z values 

of interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, MG63 (green) and 

SAOS-2 (blue). 
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Metabolite m/z 
(measured) 

Accuracy 
(ppm error) 

Aggregoid 

FA 8:1;O2 173.082 0.0 OS: SAOS-2 * 
FA 9:1;O2 187.098 0.0 All 
FA 11:1;O 199.136 0.0 All 
FA 17:1 267.232 0.0 All: HCC827 * 

FA 18:5 273.186 1.0 All 
FA 18:3 277.217 -0.4 OS 

FA 18:2 279.235 6.3 All: OS 
FA 18:1 281.248 -0.4 All: HCC827 * 
FA 18:2;O 295.229 3.4 All: HCC827 * 
FA 20:5 301.218 0.0 All: MG63 * 

FA 20:4 303.231 -0.2 All: MG63 * 
FOH 27:0 395.427 3.3 MG63 * 
FA 20:4 457.371 5.0 SAOS-2 ** 
Cer 32:1;O2 508.474 1.1 SAOS-2 *** 
FAHFA 34:2;O 535.472 -0.9 All: HCC827 * 
Cer 34:1;O2 536.506 1.9 SAOS-2 *** 
Cer 32:1;O2 [M+Cl]- 544.449 -3.2 OS: SAOS-2 *** 

FAHFA 36:2;O 563.504 -1.0 All: HCC827 *** 
Cer 34:1;O2 [M+Cl]- 572.480 -2.2 OS: SAOS-2 *** 
PI 18:0 599.320 -0.2 MG63 * 
PE O-28:1 618.450 -1.0 SAOS-2 ** 
PE O-30:1 646.482 -0.3 SAOS-2 *** 
PE O-34:2 700.527 -2.1 OS: MG63 *** 
PE 34:1 716.524 0.1 OS: MG63 * 
PE O-36:6 720.498 1.1 MG63 ** 
PE O-36:2 728.562 2.5 OS *** 
PC O-33:1 730.577 1.7 OS: SAOS-2 * 
PS O-33:0 734.533 -1.2 MG63  
PC 33:2 742.540 1.4 MG63 ** 
PG 34:1 747.516 -3.0 OS: MG63 * 

PE O-38:5 750.544 -0.3 MG63 * 
PS 34:1 760.518 7.0 OS * 
PE O-38:6;O 764.526 2.7 MG63 ** 
PS 36:1 788.544 -0.4 OS: MG63 ** 
PS 38:4 810.530 1.3 MG63 ** 
PG 40:7 819.519 0.7 MG63 ** 
PS 40:6 834.523 -6.3 OS * 
PI 38:4 885.549 -0.9 OS: MG63 * 

Table 4.1 Assignments and errors for metabolites detected in specific 

aggregoid models. Metabolites were filtered by removal of isotope peaks and 

mass accuracy (< 7 ppm). Significant metabolite detection between tumour 

models was determined by mean intensities. Data is mean (n=3), one-way 

ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001.  
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For the observed metabolites, differences in the detection levels across the 

tumour aggregoid models were observed. In particular, ceramide species Cer 

32:1;O2, Cer 34:1;O2, and their chlorine adducts were significantly elevated in 

the SAOS-2 model (Table 4.1). From the image, the intensity of Cer 34:1;O2 

[M+Cl]- at m/z 572.480 was localised across the aggregoid with highest 

concentrations within the core (Figure 4.4a). Some detection was observed in the 

MG63 aggregoid, and even less so in the HCC827 model. Ceramides are 

primarily associated with tumour suppressor activity by triggering anti-

proliferative cellular processes such as apoptosis and autophagy (Galadari et al., 

2015). Activation of ceramides are typically induced by cellular stresses such as 

hypoxia or anti-cancer drug signalling (Haimovitz-Friedman, Kolesnick, & Fuks, 

1997; Li, Feifei & Zhang, 2016). Equally, ceramides have also been associated 

with cell differentiation and bone development. Hill & Tumber (2010) detected 

ceramides in osteoblasts and determined low levels promoted cellular 

proliferation, as high levels induced apoptosis to promote bone reformation. From 

the histology images (Figure 4.1), a large area of apoptotic bodies was identified 

in the SAOS-2 model. Thus, the heterogenous ceramide levels within the SAOS-

2 aggregoid could be an indicator of apoptotic activity within an inner hypoxic 

region and cellular differentiation in an outer proliferative zone. Though, as the 

ceramide detection within the apoptotic region of HCC827 aggregoids were 

significantly lower than the SAOS-2 model, it suggests ceramides are more 

associated with osteoblast-like cells. The discriminatory levels of ceramides 

between the OS models, however, implies these metabolites differentiate the 

mature osteoblast phenotype of the SAOS-2 model from the MG63 immature 

osteoblasts.  
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Within the MG63 aggregoid models, glycerophospholipid species, including PC, 

phosphatidylethanolamine (PE), phosphatidylserine (PS) and 

phosphatidylinositol (PI) were expressed considerably higher in comparison to 

the SAOS-2 and HCC827 models (Table 4.1). In highly proliferating cancer cells, 

phospholipid metabolism is altered to promote processes involved in the 

synthesis of signalling molecules, energy production and the formation of cellular 

membranes (Beloribi-Djefaflia et al., 2016). From the histology image (Figure 

4.1), the MG63 aggregoid displayed a high density of proliferative cells across 

the tissue and therefore could be reason for the higher detection of such 

phospholipids. In addition, the specific phospholipids have also been associated 

with aggressive properties of malignant cancer types (Luo et al., 2017). 

Metabolites PS 38:4 at m/z 810.530 and PI 38:4 at m/z 885.549 were significant 

within the MG63 aggregoids, with some detection in the SAOS-2 aggregoids. PI 

38:4 in particular was localised within the periphery of the MG63 aggregoid 

(Figure 4.4b). A previous study comparing the lipidomic profiles of low and high 

Figure 4.4 Distribution of metabolites detected in OS aggregoid models. Ion 

density maps of metabolites outlining the core and outer area on the image. Mean 

intensity plotted on bar graph against the SAOS-2, MG63 and HCC827 

aggregoids. Data is mean ± SD (n=3), one-way ANOVA with Tukey post hoc test  

* p < 0.05, ** p < 0.01, *** p < 0.001. Scale bar 200 µm. Peaks identified a) m/z 

572.480, Cer 34:1;O2 [M+Cl]-; b) m/z 885.549, PI 38:4. 
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metastatic breast cancer cell lines reported both PS 38:4 and PI 38:4 were 

markedly greater in the high metastatic cell type (Kim et al., 2016). The presence 

of these lipids could suggest the MG63 aggregoid is exhibiting an aggressive 

tumoral behaviour, that is if the phospholipids have the same metastatic-

promoting effects in OS as they do in breast cancer.  

4.4.1.2 Characterisation of OS aggregoid models to OS human 

tissue 

Initially, the MSI data of the OS human tissue samples was spatially segmented 

to classify the clusters with specific phenotypic regions. The spatial segmentation 

analysis showed complex clustering patterns within all tissue sections in 

comparison to the aggregoid models. This is due to the heterogeneity of the 

tissues comprising many cell types that form the tumorous tissue in addition to 

bone and cartilage. Figure 4.5a shows the spatial segmentation of a tissue 

section from OS patient_826 imaged by DESI-MSI and the histology stain after 

analysis (whole H&E image Figure 4.5b and enlarged regions Figure 4.5c-f). It 

was stated from the external pathology report, the sample had cancerous tumour 

regions identified throughout the tissue including the osteoid bone which was 

formed by tumour cells. Therefore, detection of different tumorous phenotypes 

throughout the whole tissue section was expected. From the segmentation 

analysis, a solid tumour region (yellow cluster) with an osteoid bone island 

(purple/blue clusters) was identified on the right of the tissue (Figure 4.5c). 

Similarities to this yellow tumour cluster were also detected throughout the 

sample (Figure 4.5d). A large area of mineralised bone within tumorous tissue 

was also detected and determined by the sage green cluster (Figure 4.5d, e). In 

addition, a significant area of dense osteoid bone with a filagree pattern was 

focally present and outlined by purple/blue clusters (Figure 4.5f).  
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Figure 4.6 shows the spatial segmentation analysis of a tissue section from OS 

patient_882 and the histological image. From the pathology report, typical 

osteoblastic osteosarcoma phenotypes were detected. Regions of lamellar bone 

were identified, the medullary space contained various cell types with irregular 

nuclei, and osteoid production by atypical mitotic cells was determined. From the 

DESI data, the different phenotypes could be identified by the segmentation 

analysis. A large region of solid tumour was identified on the right of the tissue 

(orange cluster) (corresponding enlarged H&E image Figure 4.6c). The medullary 

space (blue cluster) with osteoid regions (green cluster) was localised within the 

focal region of the tissue (corresponding enlarged H&E image Figure 4.6d). A 

region of lamellar bone (sage green) and a large area of osteoid formation were 

localised within the left of the tissue (corresponding enlarged H&E image Figure 

4.6e). It is noted that the segmentation analysis was performed independently for 

Figure 4.5 Spatial segmentation analysis of OS patient_826 tissue sample 

from metabolite data by DESI-MSI. a) spatial bisecting k-means segmentation 

of OS section highlighting heterogeneous clusters throughout tissue. Scale bar 

600 µm. b) H&E of same OS tissue section after image analysis. Scale bar 600 

µm. Magnification of ROIs: c) solid tumour (corresponding to the yellow cluster) 

with osteoid island (corresponding to the purple/blue clusters) at the right of the 

tissue; d) region of tumour and mineralised bone located to the left of tissue 

(corresponding to the yellow and sage green clusters); e) tumour and mineralised 

bone located at the top of the tissue (corresponding to the sage green cluster); f) 

Dense osteoid bone present focally (purple/blue cluster). Scale bar 300 µm. 
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each patient sample and therefore the colour clusters do not correspond between 

groups. 

  

Figure 4.6 Spatial segmentation analysis of OS patient_882 tissue sample 

from metabolite data by DESI-MSI. a) spatial bisecting k-means segmentation 

of OS section highlighting heterogeneous clusters throughout tissue. Scale bar 

800 µm. b) H&E of same OS tissue section after image analysis. Scale bar 800 

µm. Magnification of ROIs in H&E image: c) solid tumour (corresponding to the 

orange cluster) at the right of the tissue; d) region of medullary space with osteoid 

bone located focally (corresponding to the green and blue clusters); e) lamellar 

bone located at the left of the tissue (corresponding to the sage green cluster). 

Scale bar 200 µm. 



 

127 
 

PCA was performed to determine the similarities and variances between the two 

OS aggregoid models with the two OS human tissue samples. It is stressed that 

the aggregoid data was acquired independently from the patient samples. 

Therefore, an indirect comparison of the samples from two individual imaging 

data sets has been performed in this study and thus the results are of a 

preliminary nature only. From the PCA scores plot, a clear separation of the 

aggregoid models from the OS human tissue samples was observed (Figure 4.7). 

As the human tissue is comprised of many heterogeneous regions and contains 

different cell types it was expected to have variance from the single-cell type 

aggregoid models. In addition, slight separation of the 95% confidence grouping 

of the two patient samples is also likely due to the heterogeneity between the 

tumour tissues. The MG63 aggregoid samples were relatively widely distributed 

which suggests some variability within the group. For each remaining sample type 

however, tight clustering between the samples was observed. A summary of the 

key metabolites within the OS patient samples and the OS aggregoid models is 

reported in Table 4.2. The significant metabolites detected within the samples 

highlighted the similarities that exist between the OS aggregoid models and the 

OS human tissue.  
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Figure 4.7 PCA scores and loadings plot show separation of the OS aggregoid models from the OS human tissue samples. 

Principal components, PC 1 (48.6%) and PC 2 (22.4%) showed the best separation between sample groups. The discriminatory m/z 

values of interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, MG63 (green), 

and SAOS-2 (blue), OS patient_826 (red) and OS patient_882 (light blue). 
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Metabolite Osteosarcoma Tissue Aggregoid 

m/z 
(measured) 

Accuracy (ppm 
error)  

Patient 
sample 

m/z 
(measured) 

Accuracy (ppm 
error) 

Aggregoid 
model 

FA 9:1;O2 187.096 0.0 OS_882 *** 187.098 0.0 Both 

FA 11:1;O 199.135 0.0 OS_882 ** 199.136 0.0 Both 

Phenol lipid 235.171 1.0 Both 235.169 -4.7 Both 

FA 16:1 253.218 3.4 Both 253.216 -5.7 Both 

FA 17:1 267.235 0.0 Both 267.232 0.0 Both 

FA 18:3 277.216 0.0 Both 277.217 -0.4 Both 

FA 18:2 279.234 2.4 Both 279.235 6.3 Both 

FA 18:1 281.247 -0.4 Both 281.248 -0.4 Both 

FA 18:2;O 295.229 2.9 OS_882 * 295.229 3.4 MG63 * 

FA 18:1;O 297.242 -6.0 Both 297.242 -5.9 MG63 * 

FA 20:5 301.218 0.3 OS_826 * 301.218 0.0 MG63 * 

FA 20:4 303.231 0.2 OS_826 ** 303.231 -0.2 Both 

FA 18:2;O2 311.224 3.5 OS_882 * 311.223 0.7 Both 

Cer 32:1;O2 508.474 0.7 OS_826 ** 508.474 1.1 SAOS-2 *** 

LPA(24:1) 519.345 -0.6 OS_882 * 519.345 -1.1 SAOS-2 * 

FAHFA 34:2;O 535.473 1.1 Both 535.472 -0.9 Both 

Cer 34:1;O2 536.505 0.0 OS_826 *** 536.506 1.9 SAOS-2 *** 

Cer 32:1;O2 [M+Cl]- 544.451 0.6 OS_826 ** 544.448 -3.2 SAOS-2 *** 

FAHFA 36:2;O 563.505 0.1 Both 563.504 -1.0 Both 

FAHFA 36:1;O 565.522 4.2 Both 565.522 2.9 Both 

Cer 34:1;O2 [M+Cl]- 572.484 4.2 OS_826 *** 572.480 -2.2 SAOS-2 *** 

PE O-28:1 618.451 1.6 OS_826 ** 618.450 -1.0 SAOS-2 ** 

PE O-30:1 646.613 -2.1 OS_826 *** 646.615 1.0 Both 

Cer 40:1;O2 [M+Cl]- 656.578 3.5 OS_826 ** 656.576 0.2 Both 

PA 36:3 701.514 3.0 Both 701.511 -1.0 Both 
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PE 34:1 716.524 0.3 OS_826 * 716.524 0.1 MG63 * 

PE O-36:2 728.560 -0.4 OS_826 * 728.562 2.5 Both 

PC O-33:1 730.575 -0.8 Both 730.577 1.7 SAOS-2 * 

PC 33:2 742.539 0.1 OS_826 * 742.540 1.4 MG63 * 

PG 34:1 747.517 -1.1 OS_826 ** 747.516 -3.0 MG63 * 

PE O-38:5 750.542 -2.6 OS_826 * 750.544 -0.3 MG63 * 

PE O-38:6;O 764.524 0.4 OS_826 * 764.526 2.7 MG63 ** 

PS 36:1 788.544 -1.3 OS_826 ** 788.544 -0.4 MG63 ** 

PS 38:4 810.528 -1.5 OS_826 * 810.530 1.3 MG63 ** 

PS 40:4 838.559 -1.3 OS_826 ** 838.562 2.2 Both 

PI 38:4 885.550 0.5 OS_826 ** 885.549 -0.9 MG63 * 

Table 4.2 Assignments and errors for metabolites detected in both the OS human tissue samples and OS aggregoid models, 

MG63 and SAOS-2. Metabolites were filtered by removal of isotope peaks and mass accuracy (< 7 ppm). Significant metabolite 

detection between tumour models was determined by mean intensities. Data is mean (n=3), unpaired t test * p < 0.05, ** p < 0.01, *** 

p < 0.001. 
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The major similarities between the OS human tissue samples and the OS 

aggregoid models was the detection of fatty acid species, specifically related to 

the arachidonic metabolism pathway. Figure 4.8a-c shows FA 18:2, e.g., linoleic 

acid at m/z 279.234, FA 18:1, e.g., oleic acid at m/z 281.247 and FA 20:4, e.g., 

arachidonic acid at m/z 303.231 within the OS human tissues. Mean intensities 

for each metabolite detected in the OS patient tissues and OS aggregoid models 

are shown in Appendix Figure A.1. The localisations of the metabolites were 

concentrated within the solid tumour regions of the OS human tissues and 

distributed throughout the similar tumorous areas as identified by the clustering 

analysis. These species were also identified at high levels in SAOS-2 and MG63 

aggregoid models (Figure 4.8e-f). Within the SAOS-2 model, the metabolites 

were distributed more within the periphery, compared to the MG63 model where 

the species were heavily distributed throughout the section. As discussed in 

Chapter 3, FA 18:1 and FA 20:4 were detected within the proliferation region of 

the HCC827 aggregoid model. The arachidonic acid metabolism has been 

associated with cellular proliferation and differentiation and the promotion of 

cancer growth and survival via the COX pathway (Ding et al., 2000; Borin et al., 

2017). This correlates with the observations made in the OS aggregoid models, 

where proliferative cells were localised within the outer region of the SAOS-2 

model, whereas from the histology of the MG63 model, proliferative cells were 

localised throughout the aggregoid. Therefore, this suggests that the localisation 

of the fatty acids within the OS human tissue samples are an indication of highly 

proliferative activity within the solid tumour regions.  
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Figure 4.8 Fatty acid detection within OS human tissue and OS aggregoid models. Ion density maps of metabolites in OS 

patient_826 and OS patient_882. Scale bar 500 µm and 800 µm, respectively. Ion density maps of aggregoid models outlining the 

core and outer area. Scale bar 200 µm. Peaks identified in human tissue a) m/z 279.234, FA 18:2; b) m/z 281.247, FA 18:1; c) m/z 

303.231, FA 20:4. Peaks identified in OS models d) m/z 279.235, FA 18:2; e) m/z 281.248, FA 18:1; f) m/z 303.231, FA 20:4.  
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Interestingly, the two aggregoid models follow a similar detection pattern of a 

lower FA 18:2 signal and elevated levels of FA 20:4 as OS patient_826. In 

contrast, OS patient_882 had higher intensities of FA 18:2. It has been reported 

that the metabolism of arachidonic acid is involved in the promotion of 

angiogenesis, cell invasion and metastasis by the LOX pathway (Nie et al., 2003). 

From the pathology reports, a case of metastasis was reported from OS 

patient_826 and not in OS patient_882. The observation of an upregulation of FA 

20:4, e.g., arachidonic acid, suggests the detection of a possible marker for 

metastatic potential, primarily within the solid tumour regions of OS patient_826 

tissues. In contrast, a higher detection of FA 18:2 within OS patient_882 tissues 

indicates a slower metabolism to FA 20:4, and thus could identify a lower 

metastatic potential. The similar detection levels of the fatty acids within the OS 

aggregoids to the metastatic patient tissue therefore implies the tissue models 

could be exhibiting metastatic-like behaviour. In addition, the elevated levels of 

FA 20:4 within the MG63 aggregoid further suggests the cell type forms a higher 

metastatic tumour model compared to the SAOS-2 aggregoid.  

To further analyse metabolites associated with metastatic potential within the 

aggregoid models, phospholipids PS 38:4 at m/z 810.528 and PI 34:4 at m/z 

885.550, as discussed in section 4.4.1.1, were also detected significantly higher 

within the metastatic OS patient_826 tissues (Appendix Figure A.2). The 

localisations of both species were observed within the large tumorous regions 

identified by the yellow and sage green cluster of OS patient_826, as low 

amounts of m/z 810.528 and m/z 885.550 were distributed in the orange tumour 

cluster of OS patient_882 (Figure 4.9a, b). These specific metabolites could 

therefore correlate to high metastatic activity within osteosarcoma, as previously 

observed in highly metastatic breast cancer cell lines (Kim et al., 2016). This 

supports the idea of the MG63 aggregoid model displaying a metastatic 

phenotype and demonstrates similarities to the OS patient_826 human tissue. 

On the other hand, the SAOS-2 samples expressed a lower signal for both 

phospholipid species and therefore suggests comparisons to a lower metastatic 

grade OS tissue, such as OS patient_882. 
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Figure 4.9 Potential metastasis-related phospholipid species detected within OS human tissue and OS aggregoid models. 

Ion density maps of metabolites in OS patient_826 and OS patient_882. Scale bar 500 µm and 800 µm, respectively. Ion density 

maps of aggregoid models outlining the core and outer area. Scale bar 200 µm. Peaks identified in human tissue a) m/z 810.528, PS 

38:4; b) m/z 885.550, PI 38:4. Peaks identified in OS models d) m/z 810.530, PS 38:4; e) m/z 885.549, PI 38:4. 
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Conversely, the ceramide species that defined the SAOS-2 aggregoid model 

were significantly expressed within the metastatic OS patient_826 tissues. Cer 

34:1;O2 at m/z 536.505 and its chlorine adduct at m/z 572.484 [M+Cl]- were 

localised within the tumorous regions that corresponded mainly to the sage green 

cluster of OS patient_826 (Figure 4.10 and Appendix Figure A.3). As discussed, 

the segmentation analysis highlighted this ROI with tumorous tissue and 

mineralised bone. The elevated ceramide levels within this region could be 

indicative of cellular differentiation and osteoid formation within the human 

tissues (Hill & Tumber, 2010). The comparison to the SAOS-2 aggregoid thus 

suggests the model exhibits similarities to regions in the OS tissue that express 

the mature differentiating osteoblast phenotype that mediates bone 

mineralisation. This contrasts with the MG63 model, which is determined as an 

immature osteoblast phenotype which could be the reason that it the lack of 

ceramide detection. Considering the differences in metabolic activity between the 

two OS aggregoid models and the processes within OS human tissue, it 

demonstrates how the 3D models can correspond to different phenotypes within 

the same tumour. This is significant in terms of drug development, as both models 

can be used to predict the cellular response within heterogeneous tissue. 
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Figure 4.10 Ceramide species detected within OS human tissue and OS aggregoid models possibly identifies bone 

mineralisation. Ion density maps of metabolites in OS patient_826 and OS patient_882. Scale bar: 500 µm and 800 µm, respectively. 

Ion density maps of aggregoid models outlining the core and outer area. Scale bar: 200 µm. Peaks identified is human tissue a) m/z 

536.505, Cer 34:1;O2; b) m/z 572.484, Cer 34:1;O2 [M+Cl]-. Peaks identified in OS models c) m/z 536.504, Cer 34:1;O2; d) m/z 

572.480, Cer 34:1;O2 [M+Cl]-. 
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4.4.2 Protein localisations 

To define the individual cellular organisation and tumour activity within the OS 

aggregoid models, IMC analysis was employed to detect protein and protein 

modification markers at 1 µm spatial resolution. Proteomic markers relevant to 

osteosarcoma were selected to identify structural and functional components that 

influence cancer metabolism.  

A generic marker for DNA was used initially to determine the tissue organisation 

by identifying the nucleus in individual cells within the OS aggregoid models 

(Figure 4.11). From the DNA expression, differences between the MG63 and 

SAOS-2 sections can be immediately defined. Within the MG63 model, the DNA 

marker showed whole nuclei expressed homogenously throughout the section. 

When compared to the SAOS-2 model, a more heterogenous pattern was 

observed whereby the outer region of the aggregoid showed whole nuclei, as in 

the core the DNA was more condensed. This is a known indicator of nuclear 

disassembly and apoptotic bodies (Toné et al., 2007), and implies a prevalent 

necrotic region within the SAOS-2 aggregoid compared to the MG63. This 

observation was consistent across OS aggregoid samples imaged with IMC and 

agreed with the metabolite data in section 4.4.1.1.  
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Figure 4.11 Representative IMC images of protein marker distributions within the OS aggregoid models. Scale bar: 100 µm. 

DNA intercalator identified individual cells within the aggregoid sections. Protein markers vimentin and collagen expressed identified 

structural components within the aggregoid tissue.  
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The differences between the two OS models are further confirmed by the 

expression of tumour markers, vimentin and collagen. Both structural 

components show similar co-localisations within the aggregoid sections (Figure 

4.11). A homogeneous distribution of vimentin and collagen was detected 

throughout the MG63 aggregoid. As within the SAOS-2 aggregoid, the protein 

markers were prominently expressed within the outer region. Vimentin is known 

as a fibroblastic intermediate filament and a mesenchymal cell marker in 

differentiated cell types (Gebhard et al., 2015). A higher expression of vimentin 

across the MG63 aggregoid compared to the lower expression in the periphery 

of the SAOS-2 aggregoid could be highlighting the differentiating mesenchymal 

cells within the models. In addition, an increase in vimentin has been associated 

with the overexpression of cyclooxygenase enzyme, COX-2 in MG63 cells 

(Zhang et al., 2019). COX-2 is involved in the metabolism of arachidonic acid and 

promotes angiogenesis and migration. Therefore, the vimentin expression 

complements the metabolite data in section 4.4.1.2, where significantly high 

levels of FA 20:4 i.e., arachidonic acid was localised across the MG63 

aggregoids, and only observed in the periphery of the SAOS-2 aggregoids.  

The localisation of collagen suggests a similar expression as vimentin. Collagen 

is an important protein in bone when it is mineralised. The more differentiated the 

OS cells, the more collagen that is produced. Therefore, the levels of collagen 

could associate with tumour invasion by the nature of the differentiation status of 

the cells. The localisation of collagen within the periphery of the SAOS-2 

aggregoid indicates an area of differentiation within the outer region, as the 

expression across the MG63 aggregoid suggests differentiated cells are present 

throughout (Figure 4.11). Without quantifying the percentage positivity of 

markers, differences in collagen expression levels between the two OS models 

cannot be determined by the images. One study reported a higher production of 

collagen type I in SAOS-2 cells in comparison to MG63 cells (Baumann & Hennet, 

2016). The expression of collagen I has also been associated with ALP activity 

during bone mineralisation (Collin et al., 1992), an activity that has been detected 

high in SAOS-2 cells (Murray et al., 1987). In contrast, MG63 cells were reported 

to express higher levels of collagen III than collagen I (Jukkola et al., 1993). 

Unfortunately, the marker used in this study detected all types of collagen, and 

therefore the specific type expressed in the aggregoid models was not 
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determined. However, the presence of different collagen types could also 

influence the heterogeneity between the models.  

Interestingly, the markers that defined the distinctive proliferative outer region and 

hypoxic core phenotypes within the lung adenocarcinoma aggregoid (Chapter 3, 

Figure 3.8), are expressed differently between the two OS models. Similar to the 

HCC827 aggregoid, the SAOS-2 model showed the hypoxia marker, Glut1 

localised within centre of the tissue surrounded by an annular expression of the 

proliferative marker, Ki-67 (Figure 4.12). The data appears to agree with the 

presence of cellular proliferation and differentiation within the periphery of the 

SAOS-2 model and identifies the core as a region of hypoxia. In the MG63 

aggregoid however, a highly intense distribution of Glut1 with an expression of 

Ki-67 were both detected across the tissue (Figure 4.12). The purpose of Glut1 

is to provide energy through the transport of glucose into cells that is converted 

into lactate for cancer to grow and survive in a severe microenvironment, such 

as hypoxia (Schneider et al., 2008). High levels of Glut1 are therefore heavily 

associated with hypoxic tumours and has been correlated with metastatic 

outcome in some patients (Airley et al., 2001). In OS, it was reported that the 

Glut1 gene is overexpressed in correlation with HIF-1α to promote tumour 

progression and is predictive of drug resistance and poor outcome in patients 

(Yang et al., 2007). A higher Glut1 expression in MG63 cells compared to SAOS-

2 cells has been previously reported (Cifuentes et al., 2011), and a knockdown 

of the Glut1 gene showed inhibition of MG63 cell growth (Jian et al., 2015). From 

the imaging data, the expression of Glut1 across the MG63 aggregoid suggests 

the gene is constantly switched on in all cells, regardless of the 

microenvironment. This in turn implies there is a constant stability of HIF-1α, 

consistent with a hypoxic environment but irrespective of oxygen levels in the 

MG63 model. This could give an indication of an aggressive hypoxic tumour 

model. This is supported by the Ki-67 expression across the MG63 aggregoid, 

whereby the cells are able to proliferate under severe hypoxic conditions due to 

high glucose concentrations imported by the overexpressed Glut1.  
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Figure 4.12 Representative IMC images of protein marker distributions highlight different tumour microenvironment 

phenotypes within the OS aggregoid models. Scale bar: 100 µm. Protein markers expressed identified the proliferative and hypoxic 

regions via Ki-67 and Glut1, respectively. Markers in response to DNA damage, pNDRG1 and γH2AX. Proliferative and differentiating 

phenotypes observed by pS6 and pHH3 markers.  
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The marker for phosphorylated N-myc downregulated gene 1 (pNDRG1) showed 

significant differences between the two OS models, with high expression in the 

MG63 aggregoid and no expression in the SAOS-2 aggregoid (Figure 4.12). 

NDRG1 is a stress responsive gene that can have both oncogenic and tumour 

suppressor roles involved in cellular differentiation, tumour progression and 

metastasis, hypoxia and DNA damage response (Taketomi et al., 2003; Sun et 

al., 2013; Wang et al., 2013). It was reported an upregulation of NDRG1 was 

linked to an increase in hypoxia and HIF-1α expression (Cangul, 2004). This 

could therefore explain the co-localisation of pNDRG1 with Glut1 in the MG63 

aggregoid, however no detection was observed in the core of the SAOS-2 

aggregoid. Interestingly, Matsugaki et al., (2010) reported the detection of 

pNDRG1 in the SAOS-2 cell line, however at significantly lower levels than in the 

MG63 cells. It was thought the decrease in pNDRG1 in the SAOS-2 cells was 

due to the differentiation state of the cells and the increased invasion potential. 

The group, however, noted the detection of pNDRG1 had no effect on the 

invasive properties of MG63 cells and therefore the role of pNDRG1 between the 

OS cell lines could be due to the differences in differentiation and cell phenotypes. 

In this study, growing the cells in 3D could have downregulated the NDRG1 gene, 

hence no detection of the protein marker, without comparing the expression to 

2D cells this cannot be confirmed.  

The expression of phosphorylated S6 ribosomal protein (pS6) and Histone H3 

(pHH3) markers further confirm differences in the proliferation and differentiation 

activity between the two OS models. In the SAOS-2 aggregoid higher expression 

of pS6 and pHH3 were localised within the outer region, yet the limited expression 

within the MG63 aggregoid was randomly distributed (Figure 4.12). As previously 

discussed in Chapter 3.4.2, pS6 is an active marker for mTOR signalling which 

induces cancer growth and is downregulated in the presence of hypoxia 

(Schneider et al., 2008). A low expression of the pS6 marker in the MG63 cells is 

therefore likely associated with the high levels of the Glut1 marker. The reverse 

expression of these markers is observed in the SAOS-2 model. This is a similar 

explanation for the pHH3 marker expression which identifies cells undergoing 

mitosis (Kim et al., 2017).  
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4.4.3 Elemental compositions 

The elemental analysis of the two OS aggregoid models conducted by LA-ICP-

MSI, shows the typical tumour spheroid microenvironment phenotypes of an 

outer annular rim and inner core. However, there are slight differences between 

the metal distributions within the aggregoids. Firstly, Mg was highly expressed 

over a large area within the MG63 aggregoid compared to the SAOS-2 aggregoid, 

which was localised in a thin outer rim (Figure 4.13). From the discussion in 

Chapter 3.4.3, Mg is a component utilised in the cell cycle and is an indicator of 

an active energy metabolism suggesting an area of  proliferation (Wolf & Trapani, 

2008). From the IMC data, the Ki-67 proliferation marker showed the MG63 

model expressed proliferative cells across the tissue, as the SAOS-2 model 

displayed a distinctive outer proliferative region. The elemental composition of 

Mg therefore correlates with the Ki-67 expression. In addition to this, it has been 

reported that Mg ions can promote the differentiation of mesenchymal stem cells 

to induce growth (Onder et al., 2018; Qi et al., 2021). The elevated levels within 

the aggregoids could therefore be indicative of the matrix differentiation process 

in the mesenchymal cells across the tissue. 
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Figure 4.13 Elemental compositions within the OS aggregoid models identified the tumour microenvironment regions. H&E 

stain of serial sections of same aggregoid models imaged during LA-ICP-MSI analysis. Scale bar: 100 µm. Elemental maps of 24Mg, 

66Zn and 63Cu.  
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The co-localisation of Zn with Mg correlates with the areas of proliferation in the 

two OS models (Figure 4.13). From Chapter 3.4.3, it was suggested that the 

absence of Zn in the core of the HCC827 aggregoid could be associated with the 

activation of HIF-1α in hypoxia; as excess Zn was shown to induce proteasomal 

degradation of HIF-1α (Nardinocchi et al., 2010). This theory coincides with the 

proliferative and hypoxic phenotype of the SAOS-2 model. The high Glut1 

expression across the whole MG63 aggregoid would however disprove this, as 

elevated levels of Zn activity were detected. Alternatively, Zn has been linked to 

vimentin production, whereby the ions influence the assembly of vimentin in 

tissues (Monico et al., 2021). Zn could be highlighting the formation of the 

structural component within the tissues due to the similar distributions of Zn and 

vimentin in the MG63 and SAOS-2 models. This would also correlate to the 

association of Mg with matrix differentiation in the mesenchymal cells.  

In comparison, the Cu was localised more within the centre of both OS aggregoid 

models (Figure 4.13). As discussed in Chapter 3.4.3, the detection of Cu ions 

within the core of the aggregoid model could be due to an upregulation of Cu-

efflux transporter, ATP7A induced by the activation of HIF-1α (Zimnicka et al., 

2014). A large area of Cu was detected within the SAOS-2 model, this is likely 

due to the large hypoxic region as observed in the H&E stain of the serial section, 

and in the Glut1 expression in the biological replicate from the IMC data. As for 

the MG63 H&E stain, it does show a small region of cells within the core that 

could be experiencing cellular damage, however apoptotic bodies were not 

present. This would suggest the MG63 aggregoid core is a less dense area due 

to the natural gradient of nutrients and oxygen and hence this is why Cu is 

accumulating within this region.  

4.5 Concluding remarks 

In this chapter, a multimodal imaging methodology was employed to characterise 

two models of osteosarcoma. Firstly, in-depth phenotyping of the metabolite 

activity within the two OS aggregoid models was achieved. A comparison of the 

metabolite data with OS human tissue samples revealed relevant fatty acid and 

phospholipid markers. Although, annotations of these species require MS/MS 

analysis for confident identification of the metabolites. From the putative 

assignments however, it was suggested that the MG63 aggregoids displayed an 
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aggressive tumour model that exhibited metastatic-like potential. Alternatively, 

the SAOS-2 aggregoids are more mature osteoblast-like phenotype that 

expressed characteristics of cellular differentiation and bone development. It was 

determined the two OS aggregoid models shared similarities of metabolic 

behaviour with different regions of OS human tissues, specifically of the higher 

metastatic grade. This is significant in terms of therapeutic research and 

development to target against aggressive in vivo OS tumours.  

In addition, employing IMC showed significant differences in the distribution of 

protein markers within the OS aggregoid models. The SAOS-2 aggregoid 

displayed a typical tumour microenvironment with an inner hypoxic core (Glut1 

marker) and an outer proliferative region (Ki-67 marker). Interestingly, the MG63 

aggregoid protein expression distributions did not show the presence of such 

distinct regions. Furthermore, the elemental compositions within the aggregoid 

models corresponded to the protein distributions of proliferative activity and 

formation of structural components. The complementary nature of both the IMC 

and LA-ICP-MSI data validated the heterogeneity of metabolite distributions 

between the 3D models.  

Overall, multimodal MSI determined the unique characteristics of two OS 

aggregoid models and improved the understanding of complex tumour 

microenvironments. MSI analysis of aggregoid models demonstrated a potential 

methodology to facilitate applications of cancer research and drug development 

for improved patient outcome. 
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CHAPTER 5. AN MSI STRATEGY TO DETERMINE 
THE CELLULAR RESPONSE TO 
BIOPHARMACEUTICAL 
TREATMENT   
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5.1 Introduction 

An important part of pharmaceutical research and development is the 

determination of the maximum response achieved from treatment. Evaluating the 

cellular response during early pre-clinical drug development can later benefit the 

amount of therapeutics that pass the clinical stage. By studying the changes in 

levels of endogenous molecules and relating these to biochemical pathways, the 

efficacy of a drug and therapeutic resistance can be established.  

Metabolomics is an area of increasing importance studied to determine drug 

action, variation in drug response and disease pathology (Kaddurah-Daouk, 

Kristal, & Weinshilboum, 2008). Metabolites are highly responsive molecules that 

interplay with gene and protein expression, and their surrounding environment. 

Changes to the cellular metabolism are therefore more detectable within the 

metabolome compared to the genome and proteome. Metabolites are also easier 

to detect within complex matrices due to their smaller molecular weight and size 

allowing for better ionisation. Small molecules and lipids are major components 

that drive cancer metabolism to promote tumour survival and growth (Hanahan & 

Weinberg, 2011). Alterations in metabolite compositions within tissues can 

therefore be markers of specific diseases and cancer types. In addition, 

metabolites serve as cofactors and signalling substrates for a multitude of 

proteins in numerous biological pathways that effect disease development. The 

analysis of metabolites within tissues can therefore give insight to the proteomic 

activity and highlight key biological pathways that are influenced by a therapeutic 

signal.  

The study of metabolomics utilises analytical techniques which allow the 

simultaneous detection and quantitation of thousands of molecules within 

complex biological matrices. Robust techniques employed in metabolomics 

include gas chromatography mass spectrometry (GC-MS) (Fiehn, 2016), NMR 

(Zhang, Hatzakis, & Patterson, 2016), capillary electrophoresis mass 

spectrometry (CE-MS) (García et al., 2017) and FT-ICR-MS (Brown, Kruppa, & 

Dasseux, 2005). LC-MS/MS is the primary method used in metabolic studies due 

to its capabilities to detect most compounds over a wide mass range (Li et al., 

2012; Lu et al., 2019; Wang et al., 2020). This technique allows for the separation 

of compounds with different polarities to analyse large metabolic profiles with high 

sensitivity and selectivity.  
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Metabolomics studies of biological tissues are conventionally conducted using 

cell lysates or plasma samples. Preparing samples in this way involves the 

breakdown of tissues through homogenisation, which inevitably results in the loss 

of spatial information. The localisation of endogenous metabolites within tissues 

is valued data as the detection of heterogeneous distributions can improve the 

understanding of specific metabolic activity within different phenotypic regions of 

an organism. In addition, the spatially resolved metabolites can highlight areas of 

therapeutic response and drug metabolism.  

MSI, with high sensitivity and wide molecular coverage, can simultaneously 

detect multiple metabolites within tissues whilst maintaining its morphology. 

MALDI-MSI is the most used technique applied to metabolomics studies of 

disease characterisation and drug effects (Irie et al., 2014; Swales et al., 2018; 

Rzagalinski et al., 2019). The study of metabolomics by MALDI-MSI has been 

extended to understand the pathophysiology of 3D cell cultures (Tucker et al., 

2019; Zang et al., 2021). Additionally, the detection of drug metabolism and drug-

induced metabolic changes within phenotypic regions of 3D models has also 

been demonstrated (Liu et al., 2013; Palubeckaitė et al., 2019). The use of 

MALDI-MSI in metabolomics studies has its limitations, however. The main 

challenge of MALDI is the addition of the required matrix, which can restrict the 

amount of lipid species detected within a single acquisition and potentially mask 

important small molecule signals by ion suppression effects (Holzlechner, 

Eugenin, & Prideaux, 2019). In addition, the application of matrix can directly 

affect the spatial resolution and sensitivity capabilities, as well as impacting the 

reproducibility of the application (Goodwin, 2012).  

Ambient MSI techniques, including DESI and LESA, have increased in popularity 

for the study of metabolomics in cancer and treatment response (Eikel et al., 

2011; Lamont et al., 2018; Dexter et al., 2019; Henderson et al., 2020). This is 

due to limited sample preparation that allows for rapid and direct analysis of 

various biological sample types. In addition, DESI-MSI, similar to LC-MS/MS, has 

a broader metabolite coverage due to the use of electrospray ionisation, and can 

also potentially generate multiply charged ions. This, therefore, provides an 

alternative imaging platform to analyse a wider range of compounds that is not 

possible with MALDI due to matrix-related interferences.  
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Current literature reporting metabolomic analysis of drug treatments in 3D cell 

culture models by ambient MSI techniques is limited. One study to date employed 

single-probe MSI to determine changes in metabolite distributions within 

irinotecan treated colon carcinoma spheroids (Tian et al., 2019). In addition to 

this, there is a lack of literature reporting the metabolic responses to biologic 

treatment within tissues. This is likely due to the preference of analysing effective 

small molecule drugs that produce a rapid metabolic response; as well as the 

ability to detect the distribution of the compound and its metabolites 

simultaneously. The size and complexity of biopharmaceuticals, however, limits 

the application of ambient techniques for drug detection. Although, MALDI-MSI 

has demonstrated capabilities of detecting cetuximab in colon carcinoma MCTS 

and determined the change in ATP expression by targeted analysis (Liu et al., 

2018).  

It is therefore clear there is a gap in research for studying a wide metabolomic 

response to biopharmaceuticals in 3D cell culture models. As demonstrated in 

Chapter 3 and Chapter 4, DESI-MSI analysis of the three aggregoid models 

provided a vital insight into the metabolic activity that drives their specific tumour 

microenvironment (Flint et al., 2020). Therefore, using the same approach it could 

be possible to map changes in the metabolite distributions and identify key 

biological pathways activated in response to biopharmaceutical treatment.  

5.1.1 Biologics of interest 

5.1.1.1 Tumour necrosis factor-related apoptosis-inducing 

ligand (TRAIL)-based therapies 

TRAIL is a member of the tumour necrosis factor (TNF) family of ligands that is 

an attractive anti-tumour agent due to its capability to extrinsically induce 

apoptosis through the engagement of its death receptors. TRAIL-based therapies 

can selectively target tumour cells, rather than normal cells, and are currently in 

the clinical stages of the drug development process against many cancers. 

Apoptosis by TRAIL signalling is stimulated by the activation of the caspase 

cascade through the binding of death receptors, DR4 and DR5 (Pitti et al., 1996) 

(Figure 5.1). Once bound, the apoptosis pathway is initiated via the activation of 

the carboxyl terminal death domain (DD). The ligand binding promotes receptor 

oligomerisation and recruitment of adapter protein, fas-associated protein with 
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death domain (FADD). Procaspase-8 and -10 are then recruited to form the death 

inducing signalling complex (DISC). During the formation of DISC, caspase-8 and 

-10 are cleaved and activated. From this signal, two types of cell death are 

stimulated: extrinsic and intrinsic pathways. The cell death extrinsic pathway 

follows onto the cleavage and activation of caspase-3, this in turn activates death 

inducing substrates and initiates apoptosis.  

Subsequently, caspase-8 can induce the cell death intrinsic pathway, which 

typically triggers apoptosis in response to DNA damage, cell cycle checkpoint 

defects, hypoxia or other severe cellular stresses. In the intrinsic pathway, 

caspase-8 cleaves the proapoptotic Bcl-2 family member, Bid, forming truncated 

Bid (tBid). The translocation of tBid to the mitochondria targets anti-apoptotic Bcl-

2 family members and promotes mitochondrial outer membrane permeabilization 

(MOMP) through release of Bax from anti-apoptotic Bcl-2 members and results 

in the release of cytochrome c into the cytosol. Following this, the binding of 

cytochrome c with APAF-1 adapter forms the apoptosome, which stimulates the 

apoptosis-initiating protease, capsase-9. This in turn, activates the cleavage of 

caspase-3 and other ‘executioner’ proteases such as caspases -6 and -7. In 

addition, the apoptogenic factor, DIABLO is also released during MOMP, and 

blocks protein inhibitors of apoptosis (IAP) such as cIAP1, cIAP2 and XIAP. The 

mechanistic link between extrinsic and intrinsic stimulation of cell death pathways 

is thought to amplify the apoptotic signal when TRAIL binds to its surface 

receptors (Fulda et al., 2001). 
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Despite the effective signalling of both extrinsic and intrinsic apoptotic pathways, 

TRAIL-based therapies have still failed in clinical trials due to resistance in 

specific cancer types (Fuchs et al., 2013; Reck et al., 2013). One possible reason 

for this is the presence of decoy receptors (DcR1 and DcR2), which can inhibit 

death inducing signalling when TRAIL binds (Pan et al., 1997). Therapeutic 

monoclonal antibodies (mAb) that are specific to DR4 and DR5 have been shown 

to bypass decoy receptors and induce apoptosis in cells insensitive to TRAIL 

(Locklin et al., 2007). Conversely, engagement of death receptors can activate 

cell survival pathways. For instance, the TRAIL-induced anti-apoptotic factor, 

nuclear factor kappa B (NF-kB) has been shown to stimulate cellular proliferation 

and tumour promoting cytokines (Khanbolooki et al., 2006). In addition, excessive 

stimulation of the PI3K/Akt/mTOR proliferation pathway by oncogenes and 

growth factors has shown to affect TRAIL sensitivity (Xu et al., 2010).  

TRAIL-based therapies as independent treatment or in combination with 

chemotherapeutics have been considered promising for OS treatment based on 

evidence from both in vitro and animal experiments (Hotta et al., 2003; Suzuki et 

al., 2003; Picarda et al., 2010). However, differences in sensitivity to TRAIL and 

Figure 5.1 TRAIL signalling activates the intrinsic and extrinsic apoptotic 

signalling pathway. 
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agonistic mAb against the death receptors have been shown across OS cell lines 

(Locklin et al., 2007; Phillips et al., 2019). Literature reporting the effects of TRAIL 

treatment on 3D models of OS is limited. Therefore, it would be interesting to 

determine metabolite abundances in the OS aggregoids treated with TRAIL-

based therapies and associate if the models exhibit pro-apoptotic or drug 

resistant responses.  

5.1.1.2 Cetuximab  

Cetuximab, otherwise known by its trade name Erbitux®, is an antagonistic mAb 

that selectively targets the epidermal growth factor receptor (EGFR). The 

immunotherapeutic has been FDA-approved for the use in treatment for 

oncogene EGFR addicted cancers including colorectal and head and neck 

(Goldberg & Kirkpatrick, 2005; Mehra, Cohen, & Burtness, 2008). Cetuximab is 

a recombinant chimeric human/mouse IgG1 monoclonal antibody generally used 

for personalised medicine. The mechanism of action is a competitive activity 

against ligands, such as the EGF and transforming growth factor-α (TGF-α) to 

bind to the EGFR and inhibit signalling.  

The EGFR pathway (Figure 5.2) is an important process for cellular proliferation 

and growth and is overexpressed in cancers, such as NSCLC (Merrick et al., 

2006). The EGFR is a tyrosine kinase receptor that is phosphorylated when 

ligand bound. This in turn can activate multiple pathways such as the 

PI3K/Akt/mTOR pathway to promote cell cycle progression (Freudlsperger et al., 

2011). A critically important pathway activated by EGFR signalling is the 

Ras/Raf/MAPK pathway (Scaltriti & Baselga, 2006). Once the EGFR is 

phosphorylated through ligand binding, adapter proteins Grb2 and SOS bind 

directly onto the docking site of the receptor in the cytosol. This in turn leads to 

the modification of SOS to allow the binding of GTP to Ras. This process 

activates the Raf kinase that leads to the phosphorylation of mitogen-activate 

protein kinases (MAPK), MEK and ERK1/2. Consequently, MAPKs are then 

imported into the nucleus where they phosphorylate specific transcription factors 

that drive the cell cycle, such as increasing the production of cyclin D, which 

drives cells out of G1 phase into DNA synthesis.  
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Cancers that are resistance to cetuximab treatment are considered to have 

genetic mutations in the signalling proteins of the Ras/Raf/MAPK pathway 

(Brand, Iida, & Wheeler, 2011). This means that even with the inhibition of the 

EGFR by cetuximab, the downstream proteins continue to signal for cellular 

proliferation. Despite the amplification of the EGFR gene in lung cancers, due to 

the highly mutated oncogene, K-Ras that leads to the overexpression of Ras, 

FDA-approval for cetuximab as an independent treatment was removed 

(Massarelli et al., 2007; Sgambato et al., 2014). Nonetheless, literature have still 

reported the success of cetuximab inhibiting proliferative activity in lung cancer, 

specifically in combination with therapeutic inhibitors that target signalling 

proteins downstream the EGFR pathways (Kurai et al., 2007; Steiner et al., 2007; 

Hasegawa et al., 2019). With that in mind, by studying the metabolic changes it 

could be possible to determine a potential cellular response within the HCC827 

aggregoid model treated with cetuximab.  

Figure 5.2 The EGFR signalling pathway promoting cell proliferation and 

growth is inhibited by cetuximab. 
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5.2 Aims of chapter 

In this study, an untargeted DESI-MSI approach was employed to observe the 

metabolome responses to three biologic treatments in the aggregoid models. The 

osteosarcoma aggregoids, MG63 and SAOS-2, were treated with TRAIL-based 

therapies, TRAIL and agonistic anti-Death Receptor 5 mAb (anti-DR5). The 

HCC827 lung adenocarcinoma aggregoid model was treated with antagonistic 

anti-EGFR mAb, cetuximab.  

A multivariate statistical analysis approach was used to highlight specific 

metabolites of interest. PCA was used as an unsupervised method to identify 

variables with the most data variance and find potential outliers within treatment 

groups. PLS-DA was used for a supervised approach to identify differences 

between the control and the highest concentration treated groups for each 

biologic treatment.  

5.3 Materials and methods 

5.3.1 Materials 

Recombinant Human sTRAIL/Apo2L (TRAIL) was purchased from PeproTech 

EC Ltd (London, UK). Human TRAIL R2/TNFRSF10B Antibody (anti-DR5) was 

purchased from R&D Systems (Abingdon, UK). Cetuximab (Erbitux®) was 

purchased from Merck (Darmstadt, Germany). 

5.3.2 Cell culture 

5.3.2.1 2D cell culture biologic treatment 

Initial cell culture conditions for MG63 and SAOS-2 are reported in Chapter 2.3.2.  

Once confluent, cells were prepared for 2D experiments. Both cell lines were 

trypsinised and plated into 96-well plates at 5x104 cells/mL and cultured for 24 h 

before treatment. Each cell line was treated in triplicate with either TRAIL at 

concentrations: 0 ng/mL, 50 ng/mL, 200 ng/mL; or anti-DR5 at concentrations: 0 

ng/mL, 200 ng/mL, 1 µg/mL. Drug solutions were made up with DMEM 

supplemented with 10% FBS and 1% penicillin-streptomycin (Lonza Ltd, UK). 

Cells were cultured with treatment for 24 h before analysis. Cells were visualised 

with Hoechst 33342 and PI staining (10 µg/mL) using an Olympus IX81 

microscope. Images were captured using Cell^F software. 
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5.3.2.2 3D cell culture biologic treatment 

Aggregoids were cultured following the protocol described in Chapter 2.3.3. For 

the experiment, MG63 and SAOS-2 aggregoids were treated with TRAIL at 

concentrations: 0 ng/mL, 50 ng/mL, 200 ng/mL; or anti-DR5 at concentrations: 0 

ng/mL, 200 ng/mL, 1 µg/mL. HCC827 aggregoids were treated with Cetuximab 

concentrations: 0 µg/mL, 5 µg/mL, 150 µg/mL and 1000 µg/mL. Drug solutions 

were made up with DMEM supplemented with 10% FBS and 1% penicillin-

streptomycin (Lonza Ltd, UK). Samples were incubated for 24 h before 

harvesting.  

HCC827 aggregoids were visualised in brightfield. Images were taken at 0 h and 

24 h using a Cytation™ 5 Cell Imaging Multi-Mode Reader (BioTek, UK). The four 

cetuximab concentrations were imaged (n=2), and the diameter of each 

aggregoid sample was measured in triplicate. 

5.3.3 Sample handling 

Aggregoids were processed following the optimised method reported in Chapter 

2.3.4.  

5.3.4 Metabolite imaging 

5.3.4.1 DESI-MSI analysis 

Metabolite detection was performed on a Q-Exactive mass spectrometer 

(Thermo Fisher Inc, Germany) as described in Chapter 2.3.5.3. The images were 

collected in the mass range m/z 80-900 at a spatial resolution 40 µm and 

analysed by SCiLS Lab MVS Premium 3D Version 2020a (Bruker Daltonics, 

Germany) employing RMS normalization.  

5.3.4.2 Discriminatory analysis 

Data was processed following a similar method to that described in Chapter 

3.3.4.2. ROIs containing the whole aggregoid sections were determined (SCiLS, 

Bruker Daltonics). The raw data file from the DESI-MSI were uploaded to 

METASPACE (https://metaspace2020.eu) for metabolite identification of the 

discriminated m/z values by employing HMDB and LIPIDMAPS®. The resulting 

peak list from each aggregoid section was exported into .csv files and grouped 

together by treatment conditions. The data was then imported into MetaboAnalyst 

5.0 (Xia et al., 2009) to conduct MVA following the method described in Chapter 

https://metaspace2020.eu/
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4.3.5. PCA and PLS-DA were performed on the selected treatment groups for 

each aggregoid model. Peaks of interest from the loadings plots were 

corresponded to the m/z images. To determine discriminatory peaks, ROC 

analysis was performed to determine the AUC. Statistical analysis on the mean 

intensities of each sample group was performed using a parametric unpaired t-

test, p < 0.05.   

5.3.5 Histological analysis 

Aggregoid samples were stained with Haematoxylin and eosin solutions as 

following method described in Chapter 3.3.7. 

5.4 Results and discussion 

5.4.1 Osteosarcoma treatment response 

5.4.1.1 Sensitivity to TRAIL-based therapy  

Initial assessment to determine the sensitivity of osteosarcoma cell lines, MG63 

and SAOS-2 to TRAIL and anti-DR5 treatment was determined by Hoechst 33342 

and PI nuclear staining. The percentage of apoptosis for each cell line was 

calculated (Figure 5.3). Monolayer cultures of MG63 showed a relatively high 

sensitivity to both biologic treatments. An induction of apoptosis was observed in 

> 50% of MG63 cells with 50 ng/mL TRAIL treatment. The sensitivity was reduced 

in response to anti-DR5 treatment with ~ 30% of MG63 cells displaying apoptotic 

activity at 200 ng/mL. It was, however, still significant in terms of observing a 

cellular reaction to the biologic treatment. The sensitivity of SAOS-2 to both 

TRAIL and anti-DR5 treatment was reduced in comparison. Less than 15% of 

cells displayed an induction of apoptosis with 50 ng/mL TRAIL treatment, as < 

10% was observed in response to the highest concentration, 1000 ng/mL anti-

DR5.  

A similar pattern of sensitivity to TRAIL and anti-DR5 treatment was recently 

reported, whereby apoptotic activity was heightened in MG63 cells in comparison 

to SAOS-2 cells (Phillips et al., 2019). This is likely due to an increased resistance 

to treatment in the SAOS-2 cell line. A number of publications have reported 

possible mechanisms of resistance in OS cell lines, including the expression of 

decoy receptors (DcR1 and DcR2) and osteoprotegerin (OPG), or activation of 

cellular proliferation via PI3K/Akt/mTOR pathway (Locklin et al., 2007; Perry et 
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al., 2014). Based on this knowledge, the metabolic profiles of the OS aggregoid 

models treated with TRAIL and anti-DR5 were investigated to determine the 

detection of treatment response and resistance.   
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Figure 5.3 Apoptosis induction in osteosarcoma cell lines in response to 

TRAIL-based therapy. a) Percentage apoptosis after 24 h treatment with TRAIL 

or anti-DR5 in MG63 and SAOS-2 OS cell lines assessed by Hoechst 33342 and 

PI nuclear staining. Data is mean ± SD (n=3), one-way ANOVA with Tukey post 

hoc test * p < 0.05, ** p < 0.01, *** p < 0.001. b) Representative Hoechst 33342 

and PI staining optical images of MG63 and SAOS-2 cells in response to TRAIL 

0 ng/mL and 200 ng/mL, anti-DR5 0 ng/mL and 1000 ng/mL. Condensed nuclei 

are characteristic of apoptosis and are shown as brighter-stained nuclei. 
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5.4.1.2 Metabolic activity in response to TRAIL-based therapy  

Based on the 2D experiment and the responses of the OS cell lines (MG63 and 

SAOS-2) on TRAIL-based therapies, the same doses were used to treat the OS 

aggregoid models. The metabolic response in the 3D models to TRAIL and anti-

DR5 treatments were detected by DESI-MSI, and the H&E stains of the same 

section were used to determine the presence of apoptotic cellular morphology.  

5.4.1.2.1  MG63 in response to TRAIL treatment  

From the data of TRAIL-treated MG63 aggregoids, the PCA displayed significant 

variance of the 200 ng/mL samples from the control and 50 ng/mL treated groups, 

implying there is clear discrimination of m/z values towards the highest 

concentration of TRAIL treated aggregoids (Figure 5.4). The PLS-DA plot further 

demonstrates separation of the control samples from the 200 ng/mL treated 

samples (Figure 5.5). The 200 ng/mL samples were also closely clustered 

together within their group suggesting there is a strong similarity between the 

biological replicates. From the PLS-DA loadings plot, several m/z values 

identified in the right region of the plot correlated to specific lipid species that were 

more prevalent within the control group than the treated group. A summary of the 

main discriminatory metabolites detected are discussed and reported in Table 

5.1.  
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Figure 5.4 PCA scores and loadings plot show clear separation of control and TRAIL treated MG63 aggregoids. Principal 

components, PC 1 (40.1%) and PC 2 (35.1%) showed the best separation between sample groups. The discriminatory m/z values of 

interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red), 50 ng/mL 

TRAIL (blue) and 200 ng/mL TRAIL (green). 
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Figure 5.5 PLS-DA scores and loadings plot show variance between control and 200 ng/mL TRAIL treated MG63 aggregoids. 

Component 1 (44.9%) and component 2 (30.4%) showed the best separation between samples. The discriminatory m/z values of 

interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red) and 200 

ng/mL TRAIL (green). 
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A particular mass localised in the periphery of the MG63 control samples at m/z 

645.452 (AUC = 0.604) was identified as glycerol 1-(9Z-octadecenoate) 2-

tetradecanoate 3-phosphate, a glycerophospholipid (Figure 5.6b). 

Glycerophospholipids are continuously synthesised by highly proliferating cancer 

cells for membrane production, in addition to being used for energy through lipid 

modifications of proteins (Dolce et al., 2011). Hence, this could explain the 

localisation of the metabolite in the outer proliferation region of the untreated 

aggregoids. A decrease in the metabolite in the TRAIL treated samples suggests 

a change in the glycerophospholipid metabolism. This is potentially due to a 

reduction in proliferation as a result of TRAIL treatment, which is known to inhibit 

cellular proliferation and stimulate apoptosis. This metabolite is also a product of 

1,2-diacylglycerol-3-phosphate (DAG). DAG is a lipid species involved in inducing 

cellular proliferation through activation of protein kinase C (PKC) signalling (Black 

& Black, 2013). Therefore, a depletion of the DAG product could further indicate 

a reduced proliferation rate in the treated samples.  

A high expression of m/z 730.576 within the core of the MG63 TRAIL treated 

samples (AUC = 0.247) was identified as PC O-33:1 (Figure 5.6c). PC is an 

abundant phospholipid in tissues, however a number of studies have reported 

that PC can inhibit growth and induce apoptosis through the assistance of death 

ligands, such as the TNF-α (Sakakima, Hayakawa, & Nakao, 2009; Li et al., 

2011). Elevated levels of PC O-33:1 in the treated samples could therefore be 

associated with apoptotic signalling induced by TRAIL. A contradictory report 

however, observed a depletion of specific PC species within HeLa and Jurkat cell 

lines treated with TRAIL due to the activation of PC-degrading enzymes (Sandra 

et al., 2005). Comparing this finding to our results could suggest a signature of 

TRAIL resistance, and the high levels of PC might only be an indication of high 

apoptotic activity within the hypoxic region of the aggregoids. From the H&E 

stains, condensed DNA with potential apoptotic and necrotic cells were detected 

in all three 200 ng/mL treated samples. The control group consisted of cells with 

normal morphology with some cells condensed in the section displayed in Figure 

5.6a, however no apoptosis was detected. The significant increase of the PC 

metabolite across the treated group therefore could imply a signal response to 

treatment rather than an activity stimulated by the tumour microenvironment.  
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In addition, a phosphatidic acid (PA) at m/z 673.480 (PA 34:1) was also localised 

within the outer region of the MG63 control samples (AUC = 0.645) (Figure 5.6d). 

PA lipid species are known to be responsible in the progression of cancer by 

stabilising mTOR to suppress apoptotic activity via the PI3K/Akt/mTOR pathway 

(Foster, 2009). This again explains the localisation of the PA species within the 

outer proliferative region of the aggregoids. A decrease in PA 34:1 in the treated 

samples could further indicate a signature of response in the MG63 aggregoids 

to TRAIL treatment, showing a reduced rate of proliferation. 
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Figure 5.6 MG63 TRAIL treated aggregoid images identified from 

multivariate analysis. a) H&E images of MG63 aggregoids control and 200 

ng/mL TRAIL treated. Scale bar 200 µm. Ion density maps of metabolites outlining 

the outer (white) and core (red) regions of the aggregoid sections. Mean intensity 

plotted on bar graph against the control and 200 ng/mL treated samples (n=3), 

unpaired t-test * p < 0.05. Scale bar 200 µm. Peaks identified b) m/z 645.452, 

glycerol 1-(9Z-octadecenoate) 2-tetradecanoate 3-phosphate; c) m/z 730.576, 

PC O-33:1; d) m/z 673.480, PA 34:1. 
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5.4.1.2.2  MG63 in response to anti-DR5 treatment  

The PCA of the MG63 aggregoid samples treated with anti-DR5 showed less 

discrimination between the control and the treated groups in comparison to the 

TRAIL treated aggregoids (Figure 5.7). The 95% confidence grouping of 200 

ng/mL treated samples showed overlay between the control and the 1000 ng/mL 

treated samples. This is potentially due to the lower sensitivity of MG63 to the 

anti-DR5 treatment which only targets DR5, as TRAIL targets both DR4 and DR5  

(Locklin et al., 2007). The PLS-DA however, showed slight variance of the 95% 

grouping between the control and the 1000 ng/mL samples (Figure 5.8). Though, 

from the PLS-DA scores plot, the samples for each treatment group were fairly 

distributed from one another suggesting some variability of the aggregoids within 

the groups. By looking at the imaging data for the differing peaks from the PLS-

DA loadings plot and the ROC analysis results, little discrimination of the peaks 

of interest between groups was observed, this mainly due to variation of the 

metabolite expressions between samples. Therefore, either a limited response to 

anti-DR5 was detected or too much variation between samples has impacted the 

results. The potential metabolic markers of anti-DR5 response are discussed and 

summarised in Table 5.1.  
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Figure 5.7 PCA scores and loadings plot show some separation of control and anti-DR5 treated MG63 aggregoids. Principal 

components, PC 2 (16.8%) and PC 4 (3.5%) showed the best separation between sample groups. The discriminatory m/z values of 

interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red), 200 ng/mL 

anti-DR5 (blue) and 1000 ng/mL anti-DR5 (green). 
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Figure 5.8 PLS-DA scores and loadings plot show variance between control and 1000 ng/mL anti-DR5 treated MG63 

aggregoids. Component 1 (17.7%) and component 2 (41.3%) showed the best separation between samples. The discriminatory m/z 

values of interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red) 

and 1000 ng/mL anti-DR5 (green). 
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The PC O-33:1 expression, as detected in the MG63 aggregoids treated with 

TRAIL, was observed in the data of the MG63 aggregoids treated with anti-DR5. 

The m/z value at 730.576 was separated slightly from the peak clusters on the 

PLS-DA loadings plot suggesting potential discrimination towards a specific 

sample group. From the imaging data, slightly higher levels of PC O-33:1 were 

detected in the control samples (AUC = 0.567), although was not significant 

(Figure 5.9b). This observation was contradictory to the elevated PC O-33:1 

levels in the MG63 TRAIL treated samples. As previously discussed, PC species 

have been linked with apoptotic behaviour in response to death receptor 

activation (Sakakima et al., 2009; Li et al., 2011), and thus a potential increase in 

the metabolite could be expected if the MG63 aggregoids were highly sensitive 

to anti-DR5. In contrast, the similar levels of PC O-33:1 between the control and 

treated samples would suggest a lack of apoptotic response to anti-DR5. From 

the images, the localisation of the PC species within the core of the aggregoid 

samples is therefore more likely an indicator of cellular response to hypoxia.  

On the other hand, metabolite PE P-16:0 at m/z 436.280 was localised across 

the aggregoids and expressed higher in the treated samples (AUC = 0.462) 

(Figure 5.9c). PE species, like PS species, are well-known lipids that are actively 

exposed on the outer membrane of cells during the early stages of apoptosis 

(Emoto et al., 1997). However, due to the spatial resolution of the aggregoid 

cross-section image, the presence of the PE species on the outer membranes of 

the cells cannot be determined. The presence of the PE species could therefore  

be due to the normal abundance within tissues. By observing the histology stains, 

a lack of apoptotic bodies were identified across the treated aggregoid samples, 

even if some DNA condensing was present (Figure 5.9a). As H&E stained images 

provide information on the tissue morphology, it is possible early apoptotic 

changes were detected from the metabolite data. Due to the overall limited 

response and the variability between samples however, the MG63 aggregoid 

response to anti-DR5 cannot be determined. Thus, in order to establish the effect 

of anti-DR5 on the MG63 model further analysis is necessary.  
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Figure 5.9 MG63 anti-DR5 treated aggregoid images identified from 

multivariate analysis. a) H&E images of MG63 aggregoids control and 1000 

ng/mL TRAIL treated. Scale bar 200 µm. Ion density maps of metabolites 

outlining the outer (white) and core (red) regions of the aggregoid sections. Mean 

intensity plotted on bar graph against the control and 1000 ng/mL treated 

samples (n=3). Scale bar 200 µm. Peaks identified b) m/z 730.576, PC O-33:1; 

c) m/z 436.280, PE P-16:0. 
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5.4.1.2.3  SAOS-2 in response to TRAIL treatment 

Both the PCA and PLS-DA of the SAOS-2 samples treated with TRAIL showed 

little variance between the control and the treated groups (Figure 5.10 and Figure 

5.11). This is most likely due to the limited sensitivity of SAOS-2 to TRAIL-based 

therapies as demonstrated from the 2D experiment results. However, the 

samples of each group were relatively distributed throughout the scores plots and 

the imaging data observed variability between samples for specific m/z values. It 

was considered that potential sample outliers influenced the multivariate analysis 

as slight separation was observed between the control and 200 ng/mL treated 

samples in the PLS-DA scores plot (Figure 5.11). Nonetheless, by comparing 

ROC analysis some discriminatory m/z values were identified (Table 5.1), which 

suggested the presence of metabolic activity in response to treatment.  
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Figure 5.10 PCA scores and loadings plot of control and TRAIL treated SAOS-2 aggregoids. Principal components, PC 2 (26%) 

and PC 4 (5.5%) showed the most separation between samples. The discriminatory m/z values of interest were distributed separately 

from the cluster of peaks. Samples were grouped with 95% confidence, control (red), 50 ng/mL TRAIL (blue) and 200 ng/mL TRAIL 

(green). 
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Figure 5.11 PLS-DA scores and loadings plot show some variance between control and 200 ng/mL TRAIL treated SAOS-2 

aggregoids. Component 1 (44.7%) and component 2 (32.7%) showed the best separation between samples. The discriminatory m/z 

values of interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red) 

and 200 ng/mL TRAIL (green). 
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Glutamate (m/z 146.046) was detected at lower levels within the SAOS-2 200 

ng/mL treated samples (AUC = 0.652) (Figure 5.12b). As previously discussed 

(Chapter 3.4.1), cancer cells are relatively dependent on glutamate for tumour 

metabolism and proliferation. Glutamate is converted from glutamine within the 

mitochondria, which is either fed into the TCA cycle for proliferation (Martínez-

Reyes & Chandel, 2020) or used as an intermediate to produce GSH for ROS 

regulation (Sappington et al., 2016). As the images showed no differences in the 

GSH levels across samples (data not shown), it suggests that the reduced 

glutamate expression within the treated group could be due to a decrease in the 

rate of proliferation. The downstream effects of apoptotic signalling that induces 

MOMP and cell death would in theory have less need for glutamate.  

Elevated levels of ceramide species at m/z 508.474 (Cer 32:1;O2) and m/z 

536.506 (Cer 34:1;O2) were detected in the treated samples (AUC = 0.314; AUC 

= 0.310, respectively) (Figure 5.12c, d). As discussed previously, ceramides are 

well known secondary messengers that activate the apoptotic cascade, 

particularly stimulated through environmental stresses such as hypoxia 

(Haimovitz-Friedman et al., 1997; Mullen & Obeid, 2012). From Chapter 4.4.1.2, 

high levels of ceramide species were detected within the SAOS-2 aggregoids, 

which correlated to the large hypoxia region within the models and also potentially 

detected metabolic activity associated with bone mineralisation in the OS clinical 

tissues. Therefore, it is interesting that the treated samples have a higher 

expression of the ceramide species compared to the control. Nevertheless, an 

accumulation of ceramides has also been linked to TNF-α induced apoptosis and 

is thought to assist cell death through the inhibition of the PI3K/Akt/mTOR 

pathway (Nam, Amoscato, & Lee, 2002; Gupta & Gollapudi, 2006). From the 

histology images (Figure 5.12a), all samples showed large regions of prevalent 

apoptotic cells in the tissue sections as was commonly observed within all SAOS-

2 samples throughout the experimental work in thesis, previously explained in 

section 4.4.1.1. Therefore, it was challenging to determine the presence of an 

apoptotic response solely in relation to TRAIL treatment from the histology 

images. In order to understand  the metabolite data, further experimental analysis 

with additional biological replicates would be required to improve the DESI data. 

In addition, alternative staining techniques could target the extrinsic apoptotic 
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pathway in an attempt to differentiate apoptotic bodies created from an external 

stimulus such as TRAIL or staining for TRAIL itself.  
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Figure 5.12 SAOS-2 TRAIL treated aggregoid images identified from 

multivariate analysis. a) H&E images of SAOS-2 aggregoids control and 200 

ng/mL TRAIL treated. Scale bar 200 µm. Ion density maps of metabolites 

outlining the outer (white) and core (red) regions of the aggregoid sections. Mean 

intensity plotted on bar graph against the control and 200 ng/mL treated samples 

(n=3), unpaired t-test * p < 0.05. Scale bar 200 µm. Peaks identified b) m/z 

146.046, glutamate; c) m/z 508.474, Cer 32:1;O2; d) m/z 536.506, Cer 34:1;O2.  
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5.4.1.2.4  SAOS-2 in response to anti-DR5 treatment 

The PCA data of the anti-DR5 treated SAOS-2 samples showed little separation 

between the control and the treated groups (Figure 5.13). The loadings plot 

shows the m/z values closely clustered together suggesting there is little 

discrimination of the peaks. Separation between the groups was not expected for 

the anti-DR5 treated samples due to the low sensitivity of SAOS-2 cells in the 2D 

experiment. The PLS-DA plot, however, did display some variance between the 

control and the 1000 ng/mL treated samples allowing the identification of some 

discriminatory m/z values (Figure 5.14). The samples within the 95% confidence, 

however, were distributed widely for both groups. From the imaging data, 

variability between samples was observed and the ROC analysis of the peaks of 

interest showed little discrimination between groups. Therefore, it suggests again 

either a lack of metabolic shift within the SAOS-2 aggregoids in response to anti-

DR5, or large variability between samples. Nevertheless, some identifications of 

potential metabolites of interest were determined and summarised in Table 5.1.  
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Figure 5.13 PCA scores and loadings plot of control and anti-DR5 treated SAOS-2 aggregoids. Principal components, PC 1 

(43.3%) and PC 2 (19.8%) showed the best separation between samples. The discriminatory m/z values of interest were distributed 

separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red), 200 ng/mL anti-DR5 (blue) and 1000 

ng/mL anti-DR5 (green). 
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Figure 5.14 PLS-DA scores and loadings plot show some variance between control and 1000 ng/mL anti-DR5 treated SAOS-

2 aggregoids. Component 1 (47.7%) and component 2 (16.4%) showed the best separation between samples. The discriminatory 

m/z values of interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red) 

and 1000 ng/mL anti-DR5 (green). 
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Among the peaks of interest, a furan fatty acid (FA 20:3;O) and a product of the 

linoleic acid metabolism was identified within the periphery of the SAOS-2 

aggregoid models at m/z 321.244 (Figure 5.15b). Although present in both 

groups, elevated levels were observed within the control samples (AUC = 0.604). 

As previously discussed (Chapter 3.4.1), fatty acids support cancer proliferation 

and confirmed the presence of cell growth within the outer region of the 

aggregoid. Linoleic acid in particular, has been associated with tumorigenesis via 

its metabolism to arachidonic acid, which is involved in the LOX pathway to 

promote angiogenesis and tumour survival (Ding et al., 2000; Hanna & Hafez, 

2018). Both fatty acids were detected a high intensity in the SAOS-2 aggregoid 

model in Chapter 4.4.1.2. From this data, slightly reduced levels of FA 18:2 

(linoleic acid, m/z 279.232) (Figure 5.15c) and FA 20:4 (arachidonic acid, m/z 

303.232) (data not shown) were observed within the treated samples (AUC = 

0.598; AUC = 0.571, respectively), although no significant changes from the 

control samples were determined. A decrease in FA 20:3;O could therefore 

suggest the active metabolism of linoleic acid has been reduced. This implies a 

lower rate in proliferation within the treated samples, potentially as a response to 

anti-DR5.  

In addition, m/z 835.534 was identified as PI 34:1 and detected higher within the 

control samples in comparison to the treated groups (AUC = 0.604) (Figure 

5.15d). PI species are involved in multiple signalling pathways, including its 

phosphorylation to form phosphatidylinositol-(4,5)-bisphosphate (PIP2). PIP2 

can be hydrolysed by phospholipase C (PLC) to form two secondary messengers, 

inositol triphosphate (IP3) and also DAG, which is used to activate PKC (Gamper 

& Shapiro, 2007). As previously mentioned, PKC signalling can promote cellular 

proliferation (Black & Black, 2013). However, PKC can also be responsible for 

promoting apoptosis through activation of an alternative isoform and thus it 

depends on the cellular signal (Zhu, Tsuji, & Chen, 2010). On the other hand, 

PIP2 can be further phosphorylated by phosphoinositide 3-kinase (PI3K) to PIP3. 

This process is heavily involved in tumour survival and growth as it initiates the 

PI3K/Akt/mTOR signalling pathway (Chalhoub & Baker, 2009). Therefore, a 

depletion of the PI molecule could imply the synthesis of PIP2. This can either 

produce a positive response to anti-DR5 through PKC-induced apoptosis or 

indicate resistance to treatment via growth-stimulating pathways. Unfortunately, 
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neither PIP2 nor PIP3 were detected within the imaging data so these findings 

cannot be further supported. Considering the role of the furan fatty acids, which 

were also depleted in the treated samples, a decrease in proliferative activity is 

implied. However, due to no significant changes in both metabolites and the high 

apoptotic activity across all samples within the histology stain analysis (Figure 

5.15a), no definitive conclusions can be made.  
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Figure 5.15 SAOS-2 anti-DR5 treated aggregoid images identified from 

multivariate analysis. a) H&E images of SAOS-2 aggregoids control and 1000 

ng/mL TRAIL treated. Scale bar 200 µm. Ion density maps of metabolites 

outlining the outer (white) and core (red) regions of the aggregoid sections. Mean 

intensity plotted on bar graph against the control and 1000 ng/mL treated 

samples (n=3). Scale bar 200 µm. Peaks identified b) m/z 321.244, FA 20:3;O; 

c) m/z 279.233, FA 18:2; d) m/z 835.534, PI 34:1. 
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5.4.2 Lung adenocarcinoma treatment response 

5.4.2.1 Cetuximab sensitivity 

To determine the HCC827 response to cetuximab treatment, the growth of the 

aggregoid samples were analysed by measuring the diameter of each aggregoid 

at 0 h and 24 h. From the data, no significant changes were observed among the 

treatments between the two time points (Figure 5.16). The HCC827 cell line was 

reported to be highly sensitive to cetuximab treatment (Amann et al., 2005; 

Mukohara et al., 2005). It was suggested this was due to an amplification of the 

EGFR gene in the cell line, resulting in the receptor protein being highly 

expressed and therefore treatment with cetuximab (which targets EGFR) resulted 

in a considerable inhibition of cell growth (Amann et al., 2005). However, the 

analysis of the effects of cetuximab treatment in these reports was carried out 

after a 72 h incubation on monolayer cells and therefore the experiment in this 

study is not comparable. Unfortunately, due to experimental time constraints of a 

3-day laboratory rota as a result of covid-19, a 72 h incubation was unachievable 

in this study. Nonetheless, the metabolic profiles of the HCC827 aggregoid 

models treated with cetuximab after 24 h were investigated to determine if an 

initial treatment response could be detected.  

 

  

Figure 5.16 Growth of HCC827 aggregoids treated with cetuximab after 24 

h. Data is mean length (n=3) of each aggregoid ± SD (n=2).  
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5.4.2.2 HCC827 metabolic activity in response to cetuximab  

The PCA data from the HCC827 aggregoid samples treated with four 

concentrations of cetuximab, displayed minor separation of treatment groups 

(Figure 5.17). Overlay of the 5 µg/mL and 150 µg/mL treated samples was 

observed with 95% confidence grouping. The 1000 µg/mL samples, however, 

were closely clustered together suggesting a strong similarity between the 

aggregoid replicates. The PLS-DA scores plot of the control and the 1000 µg/mL 

treated samples showed clear variance between treatment groups (Figure 5.18). 

However, the control samples were dispersed suggesting some variance within 

the group. From the loadings plot, a few peaks of interest were identified from the 

images which are discussed and summarised in Table 5.1, however the ROC 

analysis showed low discrimination between groups. The low variance is likely 

due to the incubation period of the cetuximab treatment. With a longer treatment 

incubation, such as 72 h, a better metabolic response may have been detected.    
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Figure 5.17 PCA scores and loadings plot of cetuximab treated HCC827 aggregoids. Principal components, PC 2 (17.9%) and 

PC 4 (5%) showed the best separation between samples. The discriminatory m/z values of interest were distributed separately from 

the cluster of peaks. Samples were grouped with 95% confidence, control (red), 5 µg/mL (blue), 150 µg/mL (green) and 1000 µg/mL 

(magenta) cetuximab. 
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Figure 5.18 PLS-DA scores and loadings plot show variance between control and 1000 µg/mL cetuximab treated HCC827 

aggregoids. Components, PC 1 (31.8%) and PC 2 (48.6%) showed the best separation between samples. The discriminatory m/z 

values of interest were distributed separately from the cluster of peaks. Samples were grouped with 95% confidence, control (red) 

and 1000 µg/mL (magenta) cetuximab. 
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Two peaks identified as lysophospholipid (LPL) species, LysoPE 18:1 at m/z 

478.294 and LysoPC 15:0 at m/z 480.311, were expressed in the HCC827 

cetuximab 1000 µg/mL treated samples (AUC = 0.430; AUC = 0.480) (Figure 

5.19b, c). Interestingly, an upregulation of LPLs has been reported to stimulate 

the induction of apoptosis. It is thought that LysoPC in particular, induces 

apoptotic signalling through a p38-MAPK-dependent pathway, which inhibits 

extracellular signal-regulated kinases (ERK) in the EGFR stimulated 

Ras/Raf/MAPK pathway (Takahashi et al., 2002). Therefore, the increase of 

LysoPC and potentially LysoPE could be due to a response to cetuximab 

treatment, inhibiting EGFR signalling. On the contrary, LPL expression has also 

been associated with tumour growth through stimulation of the same 

Ras/Raf/MAPK pathway (Kamphorst et al., 2013). This would explain the 

localisation of the metabolites within the outer proliferative region of the HCC827 

aggregoids and potentially an upregulation in LPLs is a signature of drug 

resistance due to a mutation in the Ras/Raf/MAPK pathway. By observing the 

histology images, a typical necrotic centre was determined however, no apoptotic 

bodies were identified within the periphery of the three treated aggregoids, similar 

to the control samples (Figure 5.19a). Therefore, the LPL expression is more 

likely associated with cellular proliferation, though as H&E staining can only 

determine morphology it is still a possibility that the metabolite data has detected 

early stage apoptotic signalling. With that in mind, if LPLs induced apoptosis their 

detection within the clear necrotic/apoptotic core would have also been expected.  

In contrast, a sterol lipid species ST 27:3;O4 at m/z 429.302 was detected higher 

in the controls samples compared to the treated (AUC = 0.619) (Figure 5.19d). 

Cancer cells depend highly on sterols for active signalling and growth via the 

biosynthesis of cholesterol. High activity of oncogenic receptors, such as the 

EGFR, have been shown to accelerate sterol uptake as they are heavily involved 

in the EGFR pathway (Gabitova, Gorin, & Astsaturov, 2014; Gabitova et al., 

2015). More specifically, a high sterol activity has been reported in lung cancer 

cell lines (Howell et al., 2020). It has been further shown that a depletion in 

specific sterols sensitised highly resistance cancer cells to the EGFR inhibitor, 

cetuximab (Sukhanova et al., 2013). With a decrease of the sterol molecule in 

the treated samples, it suggests an associated signalling with EGFR pathway 

inhibition through the binding of cetuximab. This would coincide with the 
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increased LPL expression within the treated samples as a positive response to 

treatment. However, due to the overall limited response and slight variation 

between samples it is absolute that further investigations of the HCC827 

response to cetuximab treatment are conducted. Nonetheless, identifying 

changes in specific metabolites in response to cetuximab treatment enabled the 

discovery of potential biological markers that could be used in future for a targeted 

approach either by further MSI experiments or the addition of higher accuracy 

techniques including LC-MS/MS.  
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Figure 5.19 Cetuximab treated HCC827 aggregoid images identified from 

multivariate analysis. a) H&E images of HCC827 aggregoids control and 1000 

µg/mL TRAIL treated. Scale bar 200 µm. Ion density maps of metabolites 

outlining the outer (white) and core (red) regions of the aggregoid sections. Mean 

intensity plotted on bar graph against the control and 1000 µg/mL treated 

samples (n=3), unpaired t-test ** p < 0.01. Scale bar 200 µm. Peaks identified a) 

m/z 478.294, LysoPE 18:1; b) m/z 480.311, LysoPC 15:0; c) m/z 429.303, ST 

27:3;O4.  
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5.4.3 Summary of metabolites detected in response to 

biological treatment 

 

Aggregoid Treatment Metabolite m/z 
(measured) 

Accuracy 
(ppm 
error) 

Up/down 
regulated 

MG63 TRAIL 

Glycerol 1-(9Z-
octadecenoate) 2-
tetradecanoate 3-
phosphate 

645.452 3.7        ↓ * 

PC O-33:1 730.576 0.2        ↑ * 

PA 34:1 673.480 -1.8        ↓ * 

MG63 Anti-DR5 
PC O-33:1 730.576 1.1        ↓ 

PE P-16:0 436.280 -6.9        ↑ 

SAOS-2 TRAIL 

Glutamate 146.046 0.5        ↓ 

Cer 32:1;O2 508.474 1.7        ↑ 

Cer 34:1;O2 536.506 2.0        ↑ * 

SAOS-2 Anti-DR5 

FA 20:3;O 321.244 2.9        ↓ 

FA 18:2 279.233 -5.9        ↓ 

FA 20:4 303.232 -3.1        ↓ 

PI 34:1 835.534 -0.6        ↓ 

HCC827 Cetuximab 

LPE 18:1 478.294 1.1        ↑ ** 

LPC 15:0 480.311 3.3        ↑ 

ST 27:3;O4 429.302 2.1        ↓ 

Table 5.1 A summary of metabolite changes detected in aggregoid models 

in response to biologic treatments. Mass accuracy < 7 ppm. Data is mean 

(n=3), unpaired t-test * p < 0.05, ** p < 0.01. 

 

5.4.4 Possible biologic resistance in 3D cultures 

Overall, the data suggests a limited metabolic response was detected within the 

three aggregoid models of cancer treated with biologics. For the MG63 aggregoid 

cultures, the response to TRAIL in comparison to anti-DR5 was similar to the data 

from the 2D experiment. A difference between TRAIL and the DR5 specific mAb 

could be due to the targeting of both death receptors (DR4 and DR5), which is 

more likely to stimulate an apoptotic response opposed to targeting DR5 only. 

The lack of metabolic response in the SAOS-2 aggregoid cultures on the other 

hand, was expected due to the limited sensitivity observed in the 2D experimental 
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data. A reason for the possible TRAIL-based therapy resistance in SAOS-2 has 

been reportedly due to the lack of TRAIL receptors on the cell surface of SAOS-

2 cells (Locklin et al., 2007), however Phillips et al., (2019) showed that they do 

respond to TRAIL and anti-DR5 if treated with a TRAIL-sensitiser. Differences of 

TRAIL response between 2D to 3D cell cultures have previously been observed 

in breast cancer cells (Chandrasekaran et al., 2014), in addition to prostate 

cancer cell lines, whereby a decrease in the expression of DR4 and DR5 was 

observed in spheroids (Grayson et al., 2021). In the case of the HCC827 

aggregoids treated with cetuximab, a limited response could simply be due to the 

incubation time of treatment. However, with the knowledge of cetuximab 

resistance in lung cancers, the efficacy of the antagonistic mAb could be affected 

by mutations downstream of the EGFR signalling pathways, such as the 

overexpression of Ras (Scaltriti & Baselga, 2006).  

A major explanation to drug resistance is the presence of cancer stem cells 

(CSCs) within 3D cultures. Numerous studies have identified CSCs influencing 

key signalling pathways via self-renewal, quiescence, EMT and genetic 

modifications contributing to resistance against therapeutics (Prieto-Villa et al., 

2017; Phi et al., 2018). It is therefore highly likely that the presence of CSCs are 

playing an important role in the lack of metabolic response to biologic treatment 

of the aggregoid models. More specifically, evidence of resistance to a specific 

programmed cell death, known as anoikis has been established when monolayer 

cells are grown in 3D cultures. Anoikis is the induction of apoptosis in cells 

through both extrinsic and intrinsic pathways upon loss of attachment to the ECM 

(Frisch & Francis, 1994). The development of resistance to anoikis is essential 

for cancer cells to metastasise as they purposely detach from their ECM 

(Simpson, Anyiwe, & Schimmer, 2008). Such resistance has been directly linked 

to the expression of the phosphorylated tyrosine kinase Src (pSrc). The 

expression of pSrc correlated with E-cadherin expression in anoikis resistant 

spheroid cultures of lung adenocarcinoma, including the HCC827 cell line, and 

shown in intralymphatic lung adenocarcinoma patient tissues (Sakuma et al., 

2010). pSrc activity has also been associated with mediating the PI3K/Akt/mTOR 

pathway to promote anoikis resistance in SAOS-2 cells (Díaz-Montero, Wygant, 

& McIntyre, 2006). It is thought that such resistance to anoikis cell death can have 

a subsequent resistance to all apoptotic stimuli due to the alteration of the 
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apoptotic pathways, and thus leads to a resistance to apoptotic-inducing 

therapeutics (Kim et al., 2012). Through the method of culturing the aggregoid 

models, cells are initially grown into spheroids from a single cell with no 

endogenous ECM, only alginate as a scaffold which is biologically inert. It is 

therefore possible this method has selected pSrc positive cells that have survived 

anoikis to form the aggregoid models and are thus consequently resistant to 

multiple forms of cell death, such as TRAIL signalling. A suitable method to test  

and determine anoikis resistance would be to treat the aggregoid models with Src 

inhibitors. Previous experiments have demonstrated success of reprogramming 

apoptosis with Src inhibitors, such as dasatinib (Johnson et al., 2005; Araujo & 

Logothetis, 2010), and have shown dual inhibition of cancer growth in 

combination therapy, such as with cetuximab (Parseghian et al., 2017).  

Alternatively, a lack of metabolic response to treatment could also be due to the 

inefficiency of drug delivery within the aggregoid model. If a drug cannot 

penetrate through the tissue to its target or the amount of drug present is 

insufficient to cause a cellular effect, the efficacy of the drug is diminished. 

Therefore, a direct assessment of the biologic distribution within the aggregoid 

models could complement the metabolomics data to give a better understanding 

of the efficacy of the biopharmaceuticals. The development of a robust MSI 

strategy to detect cetuximab within the HCC827 aggregoid model is discussed in 

Chapter 6.  

5.5 Concluding remarks 

In this chapter, an unsupervised MVA in combination with DESI-MSI approach 

was employed to detect changes in the metabolome of the aggregoid models in 

response to biopharmaceutical treatment. The data from the two OS aggregoid 

models, suggested possible detection of metabolite changes in response to 

TRAIL-based therapy, specifically for the MG63 aggregoids treated with TRAIL. 

This was the same from the data of the cetuximab treated HCC827 lung 

adenocarcinoma aggregoids, where some changes in metabolites suggested a 

lower rate of proliferation through inhibition of EGFR signalling. Although, the 

overall limited response across the aggregoid models suggested possible drug-

resistance. Therefore, further analysis is necessary to validate these findings and 
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determine if there is such resistance, whether it is due to a mechanistic or delivery 

issue.  

On a technical note, no definitive conclusions on the annotations of each 

metabolite or the biological pathways discussed can be made at this point of the 

study. To support the findings, MS/MS profiling of each peak would be required 

to confirm the identities. Furthermore, employing LC-MS/MS analysis with 

additional biological replicates will allow for better sensitivity and accuracy of 

results to further support the validation of this method. It is clear that there is 

variation between aggregoid samples of the same model, therefore analysis of 

additional replicates would also be heavily suggested to decrease group 

variability and improve discrimination of metabolites. Nevertheless, significant 

changes in metabolite activity within treated aggregoids were detected and 

potential biomarkers have been identified, which could assist future aggregoid 

treatment research in a more targeted approach. Overall, the method to 

determine biologic response still requires optimisation, however, the preliminary 

work in this study demonstrates a potential strategy for analysing the efficacy of 

biologic treatment by the metabolome response in 3D cell culture models. 
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CHAPTER 6. OPTIMISATION OF STRATEGIES 
FOR MSI DETECTION OF A 
BIOPHARMACEUTICAL IN AN 
AGGREGATED 3D CELL CULTURE 
MODEL   
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6.1 Introduction 

During the development of a pharmaceutical, it is necessary to study the delivery 

of the drug to understand its efficacy and toxicity. The quantitative measurement 

of a drug within tissue can provide essential information of its concentration and 

facilitate studies of its metabolism and the biological outcome. The direct 

assessment of drug distribution within tissues is technically challenging. Most 

methods have relied solely on the quantification of therapeutics in plasma or 

tissue homogenates by LC-MS/MS (Rönquist-Nii & Edlund, 2005; Punt et al., 

2019). As previously discussed, however, drug plasma concentrations do not 

provide an accurate representation of therapeutic levels in specific organs, and 

the homogenisation of tissues loses all spatial information.  

Alternatively, the development of imaging techniques has promoted effective 

methods in research to which a drug’s penetration and distribution can be 

assessed in vivo. Traditionally, the visualisation of compounds in tissues has 

been achieved using imaging techniques such as fluorescence microscopy 

(Hermsmeier et al., 2018), PET (Piel et al., 2014) and qWBA (Solon & Kraus, 

2001). Such methodologies, however, are time consuming and costly. In addition, 

these techniques are targeted approaches which require the addition of 

fluorescent tags or radiolabels. These changes to the starting molecule can have 

a possible effect on therapeutic pathways or alter biological compositions, which 

can misrepresent the true distribution behaviour of the drug.   

On the other hand, MSI techniques have the capabilities of detecting the 

localisation of  therapeutics within a biological sample, without the use of labels. 

For that reason, MSI has emerged within pharmaceutical research and 

development as a valuable technique for drug efficacy and toxicity studies. 

Although many MSI techniques including DESI and LESA have demonstrated 

high capacity for drug distributional studies (Swales et al., 2016; Dexter et al., 

2019), MALDI is the most predominantly used platform. The continuous 

advancements in spatial resolution, speed of acquisition and high-performance 

mass analysers with MALDI-MSI  further the capabilities in pharmaceutical 

research (Swales et al., 2019). The MALDI-MSI application has also had a 

significant impact on 3D cell culture models for assessing drug efficacy with great 

molecular detail, as previously discussed (Chapter 1.4).  
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Small molecule drugs have dominated the literature for MALDI-MSI applications 

in early stage drug development (Nilsson et al., 2015; Aikawa et al., 2016; Taylor, 

Dexter, & Bunch, 2018; Russo et al., 2018; Handler et al., 2021). Small molecule 

drugs are highly effective  compounds as a treatment and have the ability to be 

administered by a variety of routes. Small molecules are also more readily 

ionisable compounds which are highly detectable during MALDI analysis. 

Although, current pharmaceutical applications are edging towards DESI due to 

the greater coverage in the detection of metabolites than MALDI, which is limited 

by matrix choice. In addition, DESI ionisation techniques are often coupled to 

mass analysers, such as orbitraps , for increased sensitivity and mass accuracy.  

Over the recent years, biopharmaceuticals have received considerable attention, 

becoming one of the fastest growing sectors within the pharmaceutical industry. 

The rapid growth of biopharmaceuticals has thus challenged MSI to progress 

their detection with the same momentum. Due to its range of mass detection and 

resolution, MALDI is the superior ionisation technique for the detection of proteins 

(Hermann et al., 2020). However, the detection of complex biologics ~ 40–150 

kDa, presents issues associated with low ionisation efficiencies leading to poor 

sensitivity.  

Attempts to detect biopharmaceuticals by MALDI-MSI have been previously 

reported, although the literature is limited. Ait-Belkacem et al., (2014) exploited 

an in-source decay (ISD) top-down fragmentation approach to detect the 

monoclonal therapeutics, bevacizumab and palivizumab within the brain. The ISD 

technique has no limitation on mass range due to its ability to rapidly fragment 

proteins, therefore proved beneficial for biologic detection. However, limitations 

of in-source fragmentation include the lack of precursor ion selection and the low 

ion yield of fragments, which consequently creates issues in the accurate 

detection of biologic-specific peaks. The study, however, reported the use of a 

second fragmentation known as T3-sequencing, similar to MS/MS analysis, to 

assist the identification of specific peaks by determining the amino acid 

sequence.   

Alternatively, Liu et al., (2018) described a novel approach of an on-tissue 

reduction and alkylation for the detection of cetuximab in tumour spheroids and 

organoids. Reduction and alkylation are used to unfold structures by breaking 

and stabilising the disulphide bonds of proteins, this technique is typically used 
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prior to an in-solution or gel protein digestion. The use as an on-tissue approach 

in imaging studies has a limited amount of literature reporting this technique 

(Green‐Mitchell et al., 2011). In the biologic study, the method was used to 

separate the heavy and light chains of the antibody for the detection of cetuximab 

at a smaller mass range (from 150 kDa to ~ 20–50 kDa) (Liu et al., 2018). 

Limitations of this practice can however result in low fragmentation efficiencies, 

which can impact the ability to accurately isolate the ion of interest from 

considerable signal of endogenous species. Initial profiling of the reduced mAb 

prior to imaging is also necessary to correctly identify the biologic.  

A significant lack of publications in biopharmaceutical detection by MALDI 

imaging demonstrates the need for further method development. An alternative 

approach that has had extensive success in the detection of endogenous proteins 

by MALDI-MSI is an on-tissue bottom-up proteomics strategy (Lemaire et al., 

2007; Djidja et al., 2009; Stauber et al., 2010; Cole et al., 2011). Bottom-up 

proteomics is a technique whereby proteins are digested in situ using specific 

enzymes, mainly trypsin, into smaller peptide fragments. These fragments are of 

a lower molecular weight and are more readily ionisable, allowing for the 

identification of proteins within a tissue. 

A bottom-up proteomics approach has been previously demonstrated to be an 

accurate method to detect biologics in complex matrices such as plasma and 

tissue by direct LC-MS/MS analysis (Osaki, Tabata, & Oe, 2017; Shibata et al., 

2017). The LC-MS/MS method allowed for the identification of peptides derived 

from the variable chains of a mAb. The detection of such peptides also identified 

complementarity-determining regions (CDRs); these are hypervariable regions 

that are unique to the immunoglobulin gene sequence. The CDRs can be used 

as surrogate peptides to validate the identification of the therapeutic. Considering 

that the detection of a biologic was achievable following this proteomics method, 

an on-tissue imaging approach seems possible.  

Currently, there is not a gold-standard on-tissue digestion protocol that has been 

established. This is in part due to the difficultly in developing one method that fits 

all sample types (Martin-Lorenzo et al., 2014). Various papers have reported an 

“optimum methodology” for the detection of proteotypic peptides in biological 

tissues. An extensive review discussing existing on-tissue digestion methodology 
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from sample preparation and instrumentation to the identification and validation 

approaches has been published (Cillero-Pastor & Heeren, 2014).  

Sample preparation is an important parameter in the proteomics workflow that 

not only influences the peptide yield, but can have a significant effect on the 

accuracy, sensitivity and reproducibility of the imaging data (Diehl et al., 2015; 

Hermann et al., 2020). In peptide MALDI-MSI experiments, sample preparation 

techniques include washing conditions, enzymatic digestion and matrix coating. 

A plethora of peptide imaging studies have followed a strategic approach to 

assess and optimise sample preparation parameters specific for their sample of 

interest (Lemaire et al., 2006; Seeley et al., 2008; Diehl et al., 2015; Patel et al., 

2015; Hermann et al., 2020). Yet, the outcome of each report differs and cannot 

be comparable due to a multitude of variables, including the analysis of different 

samples. It is therefore a necessary requirement to optimise various techniques 

for specific sample types and analytes of interest, such as in the case of detecting 

of a biopharmaceutical within the aggregoid model.  

Alternatively, considering the principles of the IMC technique and following the 

successful application to analyse the aggregoid models (Chapter 3.4.2 and 

Chapter 4.4.2), a similar experimental approach could be designed for the 

detection of a biopharmaceutical; however, this is not a label-free method. The 

concept of IMC is to detect proteins and protein modifications by target specific 

antibodies that are tagged with a rare species of lanthanide metals exogenous to 

biological tissue. With that in mind, mAbs target a specific protein of interest. If 

the antibody is tagged prior to treatment, the distribution of the biologic could in 

theory be determined by imaging analysis. Van Acker et al., (2019) reported a 

similar approach in which the group tagged cetuximab with a lanthanide (165Ho) 

to detect the EGFR in 2D breast cancer cells by LA-ICP-MSI.  

As previously reported (Chapter 3.4.3 and 4.4.3) LA-ICP-MSI is sensitive 

technique for the detection of endogenous metal isotopes at high spatial 

resolution within the aggregoid model (Flint et al., 2020). Using LA-ICP-MSI, it 

would be possible to detect a metal-conjugated biologic simultaneously with 

endogenous elements to understand the distribution of the drug and the 

metabolic responses, without the use of additional labels for the metal isotopes.  
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6.2 Aims of chapter 

In the following chapter, the aim was to employ a systematic approach to develop 

multimodal MSI strategies in which to detect the monoclonal antibody, cetuximab 

within the HCC827 aggregoid model.  

Firstly, a bottom-up MALDI-MSI proteomics method was developed. Sample 

preparation parameters were optimised by the detection of endogenous proteins 

within the aggregoid model. The parameters evaluated included: trypsin solvent 

concentration and solvent composition, tissue washing methods, incubation 

conditions, and trypsin deposition. The optimised procedure was then employed 

to detect cetuximab based on its proteotypic peptides within the aggregoid model.  

A second method of cetuximab detection by LA-ICP-MSI was also developed. 

Here, the approach used was to tag cetuximab with a rare lanthanide metal 

exogenous to the aggregoid tissue. The validation of tagging cetuximab was 

evaluated through LA-ICP-MS profiling. Following this, treatment of the aggregoid 

model with the tagged drug at therapeutic levels was evaluated by imaging 

analysis.  

6.3 Materials and methods 

6.3.1 Materials  

α-CHCA, DHB, alginic acid, ammonium bicarbonate (NH5CO2), aniline, 

phosphorus red, potassium sulphate (K2SO4), and TFA were purchased from 

Sigma-Aldrich (Gillingham, UK). ACN, acetone (AcOH), Bond breaker neutral pH 

TCEP, chloroform (CHCl3), EtOH, MeOH and isopropanol (IPA) were purchased 

from ThermoFisher Scientific (Loughborough, UK). Sequence grade modified 

trypsin (20 µg lyophilised) was purchased from Promega (Southampton, UK). 

RapiGest™ (1 mg lyophilised) was purchased from Waters (Manchester, UK). 

151Eu MaxPar® antibody labelling kit was purchased from Fluidigm® 

(Cambourne, UK). Antibody stabiliser PBS was purchased from Bioaxxess 

(Gloucestershire, UK).  

6.3.2 151Eu antibody labelling protocol 

Cetuximab was labelled with 151Eu following the MaxPar® antibody labelling kit 

protocol (Fluidigm®, UK). Briefly, the MaxPar® X8 polymer was preloaded with 

the 151Eu lanthanide metal solution (approximately equimolar ratio) and incubated 
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at 37°C. The protein concentration of Cetuximab was determined using the 

Nanodrop™ (ThermoFisher Scientific, UK) prior to reducing the antibody with 

TCEP at 37°C. The lanthanide-loaded polymer and the reduced antibody were 

purified using buffers provided by the labelling kit. Following this, the antibody 

was conjugated with the lanthanide-loaded polymer incubated at 37°C. The 

metal-conjugated antibody was washed with the provided buffer x3 before 

determining the yield of protein using the Nanodrop™. The antibody stabilising 

PBS buffer was added to obtain a final concentration of 0.5 mg/mL.  

To validate the 151Eu conjugation with cetuximab, a staining protocol similar to 

the IMC staining protocol described in Chapter 3.3.5.1 was followed. Briefly, 

aggregoid sections were fixed with 4% PFA (10 min) at RT. Prior to staining, 

tissues were permeabilized with 1x casein solution containing 0.1% Triton™ X-

100 for 5 min at RT. Tissues were then incubated with blocking buffer (1x casein 

solution) for 30 min at RT. The conjugated antibody was made at different 

concentrations: 1:50, 1:100 and 1:200, with a control. Tissues were incubated 

with the conjugated antibody overnight at 4˚C. Washes with PBS were performed 

x3 between each step, with the last step washed in deionized water for 30 s. 

Slides were left to air-dry until analysis. 

6.3.3 Cell culture 

6.3.3.1 A cell plug for workflow optimisation 

A cell pellet/plug was created for the purpose of optimising different parameters 

of the bottom-up proteomics workflow. Two T-175 flasks of HCC827 cell line were 

cultured in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin 

(Lonza Ltd, UK) until 80% confluent. Cells were trypsinised, combined and 

centrifuged to create a non-homogenised cell pellet. The cell pellet was washed 

in PBS twice, centrifuging between each wash before flash freezing the pellet 

with the falcon tube in liquid nitrogen for approximately 1-2 min. Embedding 

media, 7.5% HPMC and 2.5% PVP, was coated within a mould. The cell pellet 

was slightly warmed to remove from the falcon, transferred into the mould and 

covered with additional HPMC & PVP. The cell plug was flash frozen in liquid 

nitrogen for 1-2 min and stored at - 80°C prior to sectioning. The cell plug was 

cryosectioned at 10 µm thickness and thaw mounted onto positively charged X-
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tra® adhesive slides, desiccated and vacuum packed before storing at - 80°C 

until use.  

6.3.3.2 3D culture growth and drug treatment  

HCC827 lung adenocarcinoma aggregoids were cultured following the protocol 

described in Chapter 2.3.3.  

For the bottom-up MALDI-MSI proteomics experiment, aggregoids were treated 

with Cetuximab concentrations: 0 µg/mL and 150 µg/mL. Drug solutions were 

made up with DMEM supplemented with 10% FBS and 1% penicillin-

streptomycin (Lonza Ltd, UK). Samples were incubated for 24 h before 

harvesting.  

For the LA-ICP-MSI metal detection experiment, aggregoids were treated with 0 

µg/mL and 5 µg/mL 151Eu-Cetuximab. Drug solutions were made up with DMEM 

supplemented with 10% FBS and 1% penicillin-streptomycin (Lonza Ltd, UK). 

Samples were incubated for 24 h before harvesting.  

Aggregoids were processed following the optimised method reported in Chapter 

2.3.4. Samples were sectioned at a thickness of 10 µm and thaw mounted onto 

either positively charged X-tra® adhesive slides or ITO-coated slides (Visiontek 

Systems Ltd, UK) dependant on the instrumentation used for analysis. Each 

section was desiccated, and slides were vacuum packed and stored at - 80°C 

until use.  

6.3.4 Bottom-up MALDI-MSI proteomic workflow  

6.3.4.1 In-solution digest  

Firstly, varying solutions of trypsin were investigated for optimum digestion. 

Sequence grade modified trypsin (20 µg) was made up in either 25 mM or 50 mM 

NH4HCO3 and with 0.1% added or 0.1% final concentration of RapiGest™ (RG). 

The solutions were as follows: (1) 25 mM NH4HCO3 with 0.1% RG final; (2) 50 

mM NH4HCO3 with 0.1% RG final; (3) 25 mM NH4HCO3 with 0.1% RG added; (4) 

50 mM NH4HCO3with 0.1% RG added. The combinations of trypsin solution are 

shown in Table 6.1. Cetuximab (5 mg/mL) was digested with each trypsin solution 

and incubated for 1 h at 37°C. Solutions were placed on ice to stop the reaction. 

Sample clean-up was performed using C18 Milipore® Ziptips where digests were 

desalted and concentrated using the following procedure: 100% ACN wetting 
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solution (x2), 0.1% TFA equilibrium solution (x2), sample perfusion (x10), 0.1% 

TFA wash solution (x2), and 70% ACN:0.1% TFA elution buffer perfusion (x10). 

Digests were profiled using 5 mg/mL α-CHCA (70% ACN:0.1% TFA with 

equimolar amounts of aniline). Samples were manually spotted (0.5 µL) n=3 onto 

a MALDI target plate. Matrix (0.5 µL) was mixed with each spot on the target plate 

and allowed to dry at RT prior to analysis.  

To determine the peptide mass fingerprint of cetuximab an in-solution digest was 

performed. Limit of detection of cetuximab peptides was performed by tryptic 

digestion of solutions ranging from 1 µg/mL to 5 mg/mL. Solutions were mixed 

1:1 (v/v) with 0.2% RapiGest™ (0.1% final volume) and incubated at 37°C for 20 

min prior to digesting the samples 1:25 (trypsin:protein, v/v) with optimum trypsin. 

The solutions were incubated for 1 h at 37°C. The digest was stopped on ice, and 

solutions were cleaned up using C18 Milipore® Ziptips. Digests (n=3) were 

profiled using 5 mg/mL α-CHCA.  

6.3.4.2 Sample washing  

Prior to washing, 0.5 µL of cetuximab (5 mg/mL) was spotted in one ROI onto 

each cell plug section and left to air-dry. Three washing protocols were assessed: 

(1) EtOH; (2) IPA; (3) Carnoy’s fluid. A no wash was also included to compare 

the effects of the washes on the signal intensity of the acquired mass 

spectrometric data. Washes (1) and (2) were similar procedures whereby 

samples were washed subsequently in 70% and 95% ice-cold solvent for 45 s 

each. For the Carnoy’s fluid (3) the sample was washed in 70%, 100% EtOH for 

30 s, followed by 2 min wash in Carnoy’s fluid (EtOH: CHCl3: AcOH, 6:3:1 parts 

respectively), then 100% EtOH, H2O, and 100% EtOH for 30 s. Slides were left 

to air-dry after each wash procedure. The washing conditions are shown in Table 

6.1. Trypsin was spotted in three ROIs of each cell plug, including the cetuximab 

ROI, prior to incubation. α-CHCA was spotted on each region before to MALDI 

analysis.  

6.3.4.3 Digestion incubation 

The effect of incubation methods of the digested cell plug tissue sections on the 

signal intensity of the acquired mass spectrometric data was examined. Cell plug 

sections were spotted in one ROI with cetuximab (5 mg/mL), and then in three 

ROIs with trypsin. Three methods of incubation were investigated, and incubation 
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chambers were prepared as follows: (1) 50% H2O: 50% MeOH within a silicone 

sealed container to ensure an air-tight environment; (2) Saturated K2SO4 within 

a silicon sealed container; (3) Wet paper within a tip box and sealed using 

parafilm. Each chamber was incubated at 37°C for 3 h. Incubation conditions are 

displayed in Table 6.1. Afterward, samples were spotted with 5 mg/mL α-CHCA 

prior to MALDI analysis.  

6.3.4.4 Trypsin application for MSI analysis 

Trypsin deposition onto aggregoid sections for the detection and localisation of 

proteotypic peptides was assessed by two methods. To assess the efficiency of 

the tryptic digestion protocol, rat brain sections (10 µm thickness) were included 

in the analysis. The two methods evaluated were spray-coat and micro-spotting. 

The spray-coat method conducted by the automated matrix TM Sprayer™ (HTX 

Technologies, USA). Trypsin was deposited onto tissue sections in 8 passes at 

a flow rate 0.06 mL/min using a nitrogen air pressure of 10 psi. The nozzle was 

set to a height of 40 mm and a temperature at 30°C. The micro-spotting technique 

was conducted using a BioSpot® TS Microarray (BioFluidiX Technologies, 

Germany). Trypsin was spotted at a volume of 50 nL, the droplet size was 

calibrated at a 0.2% variance. Trypsin deposition methods are reviewed in Table 

6.1. Slides were digested in the optimum incubation chamber at 37°C for 3 h. 

Afterward, 37.5 mg/mL DHB matrix (50% MeOH: 0.1% TFA) was applied to the 

slides using a TM Sprayer in 8 passes. The nozzle height was 40 mm and 

temperature was set to 75°C with a backup flow of 50% MeOH: H2O. The flow 

rate was 0.08 mL/min and nebulised with nitrogen at 10 psi.  
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Optimised 
Parameters 

Optimal  Analysis 

Trypsin 
solution 

(1)  25 mM NH4HCO3; 0.1% (final) 
RapiGest™ 

(2)  50 mM NH4HCO3; 0.1% (final) 
RapiGest™ 

(3)  25 mM NH4HCO3; 0.1% (added) 
RapiGest™ 

(4)  50 mM NH4HCO3; 0.1% (added) 
RapiGest™ 

MALDI MS 
Profiling; α-
CHCA 

Washing 
conditions 

(1)  70% EtOH, 95% EtOH; 45 s 
(2)  70% IPA, 95% IPA; 45 s 
(3)  70% EtOH, 100% EtOH; 30s. Carnoy’s 

fluid (EtOH:CHCl3:AcOH, 6:3:1); 2 min. 
100% EtOH, dH20, 100% EtOH; 30 s.  

MALDI MS 
Profiling; α-
CHCA 

Digestion 
incubation 

(1)  50% H
2
O: 50% MeOH; silicon sealed 

container; 3 h 
(2)  Saturated K2SO4; silicon sealed 

container; 3 h 
(3)  Wet paper: tip box sealed with parafilm; 

3 h 

MALDI MS 
Profiling; α-
CHCA 

Trypsin 
application 

(1)  Spray-coat; HTX TM Sprayer™ 
(2)  Micro-spotting; BioSpot® TS Microarray 

MALDI MS 
Imaging; DHB 

Table 6.1 An overview of the assessed parameters and conditions for the 

development of a bottom-up proteomics workflow by MALDI-MSI. 
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6.3.5 Instrumentation  

6.3.5.1 MALDI analysis 

6.3.5.1.1  MALDI-MS profiling  

The MALDI-MS profiling spectra were acquired in positive mode using a Waters 

MALDI HDMS Synapt™ G2 mass spectrometer (Waters Corporation, UK), 

equipped with a Nd:YAG laser operated at 1 kHz. Instrument calibration was 

performed using phosphorus red. Spectra were acquired in full scan sensitivity 

mode within a m/z range 600-2500 at a resolution 10 000 FWHM. The laser 

energy was set to 350 arbitrary units. The ion mobility function was enabled to 

improve the separation of peaks.  

MALDI-MS profiling data were converted to .txt file format using MassLynx™ 

software (Waters Corporation, UK) and analysed using mMass 3 open-source 

software (Strohalm et al., 2010). Peak picking settings were set at a S/N threshold 

of 5 (unless stated in text), and the picking height was 100%. Both the absolute 

and relative intensity thresholds were set to 0 with baseline correction and 

smoothing applied. Amino acid sequences of abundant proteins were compiled 

into a library on mMass. Each sequence was in silico digested and matched 

against each mass spectra to annotate peaks. Identification of values were 

validated by using the PeptideMass tool from ExPASy:SIB bioinformatics 

resource portal (Artimo et al., 2012). An in silico digest of specific protein 

sequences were cleaved and masses of generated peptides were computed.  

6.3.5.1.2  MALDI-MSI 

Initial sample preparation methods were evaluated using a MALDI rapifleX 

Tissuetyper (Bruker Daltonics, Germany) equipped with a 10 kHz Smartbeam 3D 

Nd:YAG laser. Images were acquired in positive ion-reflectron mode over a mass 

range of m/z 600-2500. Instrument calibration was performed using phosphorus 

red. Imaging data was collected at a spatial resolution of 20 µm, and 500 laser 

shots were summed per raster position.  

MALDI-MSI data were initially processed using FlexImaging 5.0 software (Bruker 

Daltonics, Germany) to determine the quality of the data after acquisition. In-

depth data processing was achieved using the SCiLS™ Lab MVS Version 2020a 

Core (Bruker Daltonics, Germany). Data was normalised to TIC and the peak list 
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was generated from the maximum 100 peaks per spectrum. Discrimination 

between samples was achieved by employing the ROC tool in SCiLS™ to 

calculate the AUC value.  

6.3.5.2 LA-ICP-MSI analysis  

Analysis of the metal tagged protein was performed following a similar method 

described in Chapter 3.3.6. Laser parameters were optimised to 6 μm spot size 

with laser power 46%, 25 μm/s scan speed, 0.07 Jcm-2 laser fluence, and 20 Hz 

repetition rate. Samples were ablated line by line with 6 μm raster spacing. 

Isotopes monitored included 24Mg, 66Zn, 63Cu and 151Eu. The instrument was 

controlled using Syngistix software. Data analysis was achieved using Iolite 

Software on Igor Pro (WaveMetrics, USA). 

6.4 Results and discussion 

6.4.1 A bottom-up MALDI-MSI proteomics strategy 

6.4.1.1 Tryptic digestion 

6.4.1.1.1  Optimisation of trypsin solution  

First, the effect of an in-solution trypsinisation of cetuximab was investigated. 

Four combinations of trypsin solutions including concentrations of buffer, 

NH4HCO3, and surfactant, RapiGest™, were evaluated. The absolute intensity 

was determined by the most abundant peak m/z 1677.8, and the relative intensity 

calculated against the α-CHCA peak m/z 861.0 (Figure 6.1). 
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NH4HCO3 is commonly used as a trypsin buffer. The slightly alkaline pH 7.7 is 

close to the optimum pH 8 for trypsin digestion to achieve optimum reaction (Link 

& LaBaer, 2011). Various publications have reported different concentrations of 

NH4HCO3 with trypsin ranging from 20 mM – 100 mM with successful peptide 

detection in situ (Ren et al., 2009; Cole et al., 2011; Ly et al., 2019). From 

observing the absolute and relative intensity in this experiment there was no 

difference between 25 mM and 50 mM, when comparing 0.1% (added) 

RapiGest™.  

Alternatively, the addition of 0.1% (final) RapiGest™ showed an increase in 

intensity for NH4HCO3 concentrations, particularly for the 25 mM solution. The 

optimum concentration of RapiGest™ therefore had an impact on the 

performance of trypsinisation. The purpose of a surfactant, or detergent, is to 

unfold the protein for more accessible enzymatic cleavage and effective 

solubilisation to increase the number of peptides and their intensity during 

analysis. RapiGest™ was used based on comparative studies that reported 

better performance to other detergents for in-solution digestions (Chen et al., 

Figure 6.1 The absolute and relative intensity of the most abundant 

cetuximab peak m/z 1677.8 with several trypsin solvent solutions. For the 

relative intensity, m/z 1677.8 was normalised with the α-CHCA peak m/z 861.0. 

Data is mean (n=3) ± SD, statistical significance determined by one-way ANOVA 

with Tukey post hoc test * p < 0.05, ** p < 0.01. 
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2007; Chen et al., 2008). Other typical surfactants include Octyl ß-D-

glucopyranoside (OcGlu) and N-Octanoyl-N-methylglucamin (MEGA-8) which 

have been incorporated within in-solution and in situ digestion protocols (Djidja 

et al., 2009; Patel et al., 2015). The addition of RapiGest™ for in situ digestion, 

however, has limited literature with two studies reporting preliminary data profiling 

and imaging an ungroomed fingermark (Patel et al., 2015; Deininger et al., 2016).  

Overall, a statistically significant difference in the relative intensity was observed 

from trypsin solution containing 25 mM NH4HCO3 with a 0.1% (final) RapiGest™ 

compared to the other trypsin solutions. It was therefore decided this solvent 

combination was the optimum for effective tryptic digestions.  

6.4.1.1.2  Cetuximab peptide mass fingerprint  

The tryptic peptide profile of cetuximab was determined to analyse and select 

specific peaks for the identification of the therapeutic within the aggregoid model. 

An in silico digest of cetuximab was used to assign the peaks within the acquired 

spectra. Table 6.2 reports the cetuximab peptides detected within the spectra, 

highlighting the variable chain location and the m/z values. Variable light chain 

(VL) peptides 49-YASESISGIPSR at m/z 1266.6 and 24-ASQSIGTNIHWYQQR 

at m/z 1788.8 were identified as signature peptides containing CDRs. These 

corresponded to existing literature (Li et al., 2005; Shibata et al., 2017) and were 

confirmed following the Kabat definition of CDR identification (Wu & Kabat, 1970; 

Kabat, Wu, & Bilofsky, 1977). These are unique sequences in the variable chains 

of cetuximab and therefore can be used as surrogate peptides for identification 

in situ. The CDR variable heavy chain (VH) peptide 44-

GLEWLGVIWSGGNTDYNTPFTSR at m/z 2570.2 was also identified although at 

relatively low intensity. 
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Peptide 
m/z 

Mass 
error 
(ppm) 

Peptide sequence Chain 

755.4075 -1.5 SQVFFK VH 

835.4327 -1.8 DTLMISR VH 

838.5020 -1.5 ALPAPIEK VH 

1186.6509 3.6 GPSVFPLAPSSK VH 

1266.6439 9.0 YASESISGIPSR VL 

1677.8173 9.1 FNWYVDGVEVHNAK VH 

1788.8828 2.9 ASQSIGTNIHWYQQR VL 

1808.0089 1.3 VVSVLTVLHQDWLNGK VH 

1924.0779 1.5 DILLTQSPVILSVSPGER VL 

2082.9888 -8.2 TPEVTCVVVDVSHEDPEVK VH 

2570.2251 2.3 GLEWLGVIWSGGNTDYNTPFTSR VH 

Table 6.2 List of cetuximab tryptic peptides identified after in solution 

digestion by MALDI-MS analysis. Observed m/z values in positive ion mode, 

the mass error (ppm) and the variable chain are included. Underlined sequences 

highlight the CDRs. CDRs were determined following the Kabat definition. 

 

A VH peptide 277-FNWYVDGVEVHNAK at m/z 1677.8 was observed as the 

most abundant peak present in the peptide mass fingerprint of cetuximab. The 

peak was validated by MS/MS analysis to confirm the sequence of the peak. 

Figure 6.2 displays the MS/MS spectra of m/z 1677.8 highlighting the y-ions of 

the sequence. A fragment ion calculator (Systems Biology) was used to identify 

a-, b-, y-, and z-ions and confirm the de novo sequencing.  
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A range of cetuximab concentrations from 1 µg/mL to 5 mg/mL were digested to 

determine the limit of detection. The lowest concentration of cetuximab peptides 

detected was 5 µg/mL with a S/N of 3. The number of peptides detected, and 

their intensities were significantly reduced in comparison to 5 mg/mL, as 

expected. The VH m/z 1788.8 was the only CDR containing peptide identified 

(S/N 3) at this low concentration. Figure 6.3 displays spectra from the highest and 

lowest detected cetuximab peptides. Some peptides including m/z 1266.6 and 

m/z 1677.8 were detected within the lowest concentration, although at a S/N < 3.  

  

Figure 6.2 MALDI-MS/MS spectrum of the 5 mg/mL cetuximab tryptic 

peptide m/z 1677.8.  
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6.4.1.1.3  In situ peptide mass fingerprint  

Direct profiling of a HCC827 cell plug was performed to investigate the protein 

expression within the aggregoid samples. As the cell plug is created through the 

growth of HCC827 cell line, the protein profile would be similar to the aggregoid. 

This was achieved by following a standardised protocol for on-tissue tryptic 

digestion, prior to optimising a protocol for aggregoid peptide imaging analysis.  

Spectra were obtained within the peptide mass range of m/z 600-2500 and 

identification of peaks were made by putative assignments. Table 6.3 reports 

some of the detected peptides within the cell plug. Signals at m/z 944.5 (Histone 

H2A), m/z 1032.6 (Histone H3), m/z 1198.7 (actin) and m/z 1325.7 (Histone H4) 

were identified. These abundant peaks have been previously detected in tissues 

by MALDI-MSI (Djidja et al., 2009; Cole et al., 2011). It was therefore decided 

these peaks would be used for reference through the study for the evaluation of 

the bottom-up proteomics workflow conditions.  

Figure 6.3 Peptide mass fingerprint of cetuximab by MALDI-MS. a) 5 mg/mL 

b) 5 µg/mL. S/N values (red) included for each detected peak in both spectra. 

Spectra display peaks within mass range 600-2000 Da.  
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Table 6.3 List including some of the observed peptides after in situ digestion and MALDI-MS analysis. Observed m/z values 

in positive ion mode, the mass error (ppm) and the protein function are included.

Protein Peptide m/z Mass error 
(ppm) 

Peptide sequence  Protein function 

Actin 1198.7123 5.7 AVFPSIVGRPR Cell mobility 

Cathepsin D 1601.8241 -5.1 LVDQNIFSFYLSR Protease 

GRP 78  1934.0120 -0.6 DNHLLGTFDLTGIPPAPR 
Protein folding and quality control 
(HSP 70) 

Histone H1 1438.7356 7.6 YSDMIVAAIQAEK Condensation of nucleosome 

Histone H2A 944.5358 4.9 AGLQFPVGR Nuclear component 

Histone H2B 816.4573 -0.1 EIQTAVR Nuclear component 

Histone H3 1032.6000 4.9 YRPGTVALR Nuclear component 

Histone H4 1325.7540 0.3 DNIQGITKPAIR Nuclear component 

HSP 70 1020.5420 -5.2 YLEAGAAGLR Molecular chaperone 

HSP 90 1513.7789 -4.4 SLSNDWEDHLAVK Molecular chaperone 

Lactate 
dehydrogenase B 

959.5558 3.9 GLTSVINQK Synthesis of lactate from pyruvate 

Stathmin  1074.5730 4.9 DLSLEEIQK Regulation of microtubule filaments 

Vimentin 1121.5746 -8.1 EYQDLLNVK Intermediate filaments 
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6.4.1.2 Optimisation of an in situ bottom-up proteomic workflow 

6.4.1.2.1  Washing protocol 

Washing samples prior to trypsin application is a technique commonly used in 

peptide imaging experiments to remove lipids and salts from the tissue. The 

washing step improves peptide coverage by increasing the ion yields and the 

number of signals within the spectra.  

Several washing procedures include combinations of organic solvents that 

extract small molecules and lipids from tissues. The most common method is 

increasing concentrations of EtOH (70%-100%) that has been demonstrated to 

significantly improve the signal intensity within the peptide mass range (Schwartz 

et al., 2003; Taban et al., 2007; Goodwin et al., 2008). EtOH wash also improves 

the preservation of tissues, as it is a conventional method for fixing samples for 

staining analysis. Solvents including IPA, MeOH, AcOH and CHCl3 have also 

been used in washing protocols. A comprehensive study conducted by Seeley et 

al., (2008) evaluated these washing solvents to reveal IPA as the most effective 

solvent in terms of the MS signal of proteins and preservation of tissues. 

Alternatively, a combination of EtOH, CHCl3 and AcOH, also known as Carnoy’s 

fluid, used extensively in histology for tissue fixation, has been introduced into 

peptide imaging experiments. A recent study by Yang & Caprioli, (2011) 

developed a new washing protocol incorporating Carnoy’s fluid that significantly 

improved the sensitivity of protein analysis in comparison to EtOH.  

In this study, three washing protocols were evaluated, EtOH, IPA and Carnoy’s 

fluid, for the peptide analysis in cell plug sections. Figure 6.4 shows the use of 

IPA as a wash was better in terms of the relative intensity of the peptide reference 

peaks m/z 944.5, m/z 1032.6 and m/z 1198.7. The use of EtOH however gave 

rise to a slightly reduced relative signal but a better absolute intensity for the 

peptides. No major statistical significance was observed between the three 

washes.  
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Figure 6.5 displays the spectra observed following the three washing protocols, 

including a no wash control. By observing the spectra, peaks within the lipid mass 

range (m/z 700-850) were still present within samples washed with IPA, although 

at reduced levels when compared to the control. The EtOH wash also showed 

this effect on the mass spectra, with a further reduction in the lipid signal in 

comparison to IPA. The Carnoy’s fluid was the most successful in terms of 

diminishing the lipid intensity. This is most likely due to the addition of CHCl3, 

which was demonstrated as an efficient lipid reduction method for protein analysis 

with MALDI-MSI (Lemaire et al., 2006). In this study however, the Carnoy’s fluid 

was not the most effective method to achieve a good peptide signal. From this 

conclusion, the EtOH wash was used for further experiments based on the 

absolute and relative sensitivity to detect peptide peaks, whilst suppressing a 

considerable lipid signal in comparison to IPA.  

Figure 6.4 The absolute and relative intensities of the tryptic peptide 

reference peaks (m/z 944.5, m/z 1032.6, m/z 1198.7 and m/z 1325.7) with 

different wash protocols (EtOH, IPA and Carnoy’s fluid). For the relative 

intensity, m/z values were normalised with the α-CHCA peak m/z 861.0. Data is 

mean (n=3) ± SD, statistical significance determined by one-way ANOVA with 

Tukey post hoc test * p < 0.05.  
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6.4.1.2.2  Incubation methods 

To maintain optimum enzymatic activity over a long period of time, on-tissue 

digestion protocols incubate samples within a humidity chamber typically at 37°C. 

Achieving a stable humidity at a high percentage (90-99%) is important to 

improve the quality of the digest (Ly et al., 2019). Having an environment ≥ 100% 

humidity, otherwise known as supersaturation, can subsequently lead to 

condensation, compromising the digest and in turn increasing the risk of analyte 

delocalisation in imaging studies.  

In this study, three methods of producing a humid environment were evaluated. 

Firstly, 50% H2O: 50% MeOH (MeOH) within a sealed container is a common 

solution used previously in a range of peptide tissue imaging studies (Cole et al., 

2011; Patel et al., 2015; Deininger et al., 2016). In addition, the use of wet tissue 

paper with H2O in an empty tip rack was also included due to its success of 

peptide detection in pig lung tissues by MSI (Do et al., 2020). Alternatively, a 

Figure 6.5 The effect of washing protocols on the mass spectra by direct 

MALDI-MS analysis. Annotations of lipid species PC 34:4, m/z 760.6 and PC 

36:4, m/z 782.8; α-CHCA peak, m/z 861.1; tryptic peptide species Histone H2A, 

m/z 944.5, Histone H3, m/z 1032.6, Actin, m/z 1198.7 and Histone H4, m/z 

1325.8.   
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more recent paper stated the benefit of using saturated K2SO4 solution as a 

method for stable humidity at 96% for quality peptide analysis in clinical tissue 

microarrays (Ly et al., 2019).  

 

By observing the absolute and relative intensity of the reference peaks, MeOH 

was a superior incubation method for increasing the sensitivity for peptide 

detection (Figure 6.6). Interestingly, the Histone H4 m/z 1325.7 peak had a 

relatively low intensity and could not be detected in all three ROIs of the cell plugs 

incubated by methods of K2SO4 and wet paper. The enzymatic activity during 

these incubation conditions was therefore impacted, most likely due to an 

unstable humidity.   

6.4.1.2.3 Trypsin application  

6.4.1.2.3.1 Spray-coat 

Trypsin deposition is conventionally performed using a spray-coat technique to 

achieve a homogenous layer of enzyme over the tissue. Automated spraying 

systems are a preferred method over manual application to gain better 

reproducibility. Here, trypsin was applied using the TM-sprayer following the 

technical note #27 from HTX Technologies. In addition to the aggregoid sections, 

a section of rat brain tissue was included to determine the performance of the 

trypsin digestion. Two sets of samples were adhered onto one slide. One half of 

Figure 6.6 The absolute and relative intensities of the tryptic peptide 

reference peaks with different incubation methods: MeOH, K2SO4 and wet 

paper). For the relative intensity, m/z values (m/z 944.5, m/z 1032.6, m/z 1198.7 

and m/z 1325.7) were normalised with the α-CHCA peak m/z 861.0. Data is mean 

(n=3) ± SD, statistical significance determined by one-way ANOVA with Tukey 

post hoc test * p < 0.05, ** p < 0.01. 
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the slide was prepared for digestion following the optimised washed protocol with 

EtOH, before depositing the trypsin solution.  

Figure 6.7 shows the ion density maps for three of the reference peptides, m/z 

944 (Histone H2A), m/z 1032 (Histone H3) and m/z 1198 (actin). From the data, 

the detection of peptides within the aggregoid section has poor sensitivity 

compared to the images from the rat brain section where detail of the cerebellum 

can be identified with high signal. Some peptide signal can be observed within 

the aggregoid region, although no specific detail on the localisation of these 

peaks can be determined, with potential delocalisation observed. The data 

suggests that the trypsin digestion was partly successful as these peaks were not 

detectable within the non-digested samples. The lack of sensitivity for peptides 

within the aggregoid sections implies the activity of the digestion was poor, or 

weak analyte extraction from the matrix. However, as the data from the rat brain 

displayed highly intense peptide images, it suggests specific issues with the 

technique for the aggregoid tissues.  
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By studying the data further, some residual lipid peaks could be identified in the 

digested samples. A lot of delocalisation of lipid signals was observed within the 

aggregoid sections compared to the non-digested samples (Figure 6.8), this 

could be due to lipid migration as a result of the washing procedure. Although, 

another possible reason could be the high pressure and flow rate at which the 

trypsin was deposited onto the tissues, leading to molecular migration. It has also 

been reported that the combination of DHB matrix with TFA can cause significant 

hydrolysis of phospholipids (Schiller et al., 2003), which could be a contributing 

factor. Since the non-digested samples showed no delocalisation, it suggests 

such effect is from the application of trypsin, and a could be reason for the lack 

of peptide signal.  

 

Figure 6.7 MALDI-MS images of tryptic peptides in an aggregoid section 

and rat brain section. Images of a) Histone H2A, b) Histone H3 and c) actin. 

Digestion achieved by trypsin spray-coat application. The left and middle panel 

of images have an altered intensity scale for the detection of peptide signals in 

the aggregoid section. The right panel displays the rat brain images at a normal 

intensity scale. Images were normalised using TIC. Scale bar 200 µm 

(aggregoid), 400 µm (rat brain cerebellum). 



 

219 
 

An additional note, the analyte migration was only detected within the digested 

aggregoid sections and not in the digested rat brain section. This may be due to 

a delocalisation effect within tissue sections of a smaller size being more visible 

because it is off-tissue. An aggregoid sample is ~ 1 mm in diameter compared to 

larger tissues such as a rat brain section of ~ 20 mm in length.  

 

The spray technique requires further optimisation to increase the sensitivity of 

peptide detection within the aggregoid model. Reducing the pressure and flow 

rate would be the initial parameters to test for minimised analyte diffusion. 

Experimental work with the SunCollect™ sprayer, which allows for lower flow rate 

capabilities, has been performed. The detection of peptides at an increased 

intensity has been unsuccessful (data not shown). This data, however, cannot be 

compared to the data obtained by application of trypsin using the TM-sprayer due 

to different MALDI-MSI instrumentation used for analysis.  

An alternative choice of matrix could also improve the sensitivity for peptide 

detection. The data reported was acquired with DHB as a matrix. Although DHB 

has previously demonstrated success in the detection of peptides for example in 

a mouse brain section (Schober et al., 2012); α-CHCA is a more common matrix 

for peptide detection (< 2500 Da) and has demonstrated an effective matrix to 

extract peptide peaks during the optimisation of sample preparation in this study.  

Figure 6.8 MALDI-MS images of lipid peak m/z 810 in a digested and non-

digested aggregoid section. Digestion achieved by trypsin spray-coat 

application. Images were normalised using TIC. Scale bar 200 µm.  
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6.4.1.2.3.2 Micro-spotting 

An alternative method of trypsin application is micro-spotting, this method allows 

for the deposition of trypsin within specific ROIs at nanolitre volumes. In this 

experiment, trypsin was deposited using a BioSpot® TS Microarray at 50 nL. The 

volume of the droplet was sufficient to cover a whole aggregoid section, as only 

specific spots of the rat brain were covered.  

Figure 6.9 shows the detection of reference peptide peaks m/z 944, m/z 1032, 

m/z 1198 and m/z 1325 within the aggregoid sections at a relatively high intensity 

compared to the data obtained from the spray-coat technique. However, the 

spatial information using the micro-spotting technique has been impacted. Some 

images contained “water ring” marks where the droplet was deposited and 

displayed delocalisation of peptide signals. This is a major drawback; this means 

it is not a suitable method for spatial distribution studies as the localisation of 

analytes of interest cannot be determined.  
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Although the detection of peptides was achievable, further optimisation is 

required to retain the spatial information. Automated micro-spotting systems such 

as the Portrait™ 360 and CHIP-1000 have been reported as successful methods 

for peptide imaging studies (Djidja et al., 2009; Cole et al., 2011; Quanico et al., 

2013). These systems allow the deposition of droplets of trypsin at picolitre 

volumes within a predefined array size (~ 200 µm), which would be suitable for 

the size of the aggregoid model. Numerous concentrated areas of enzymatic 

digestion across the aggregoid tissue would allow for better detail whilst obtaining 

a relative peptide signal. Some experimental work, performed on the Portrait™ 

360, detected a small number of peptides including m/z 1032 and m/z 1198 within 

the aggregoid model acquired using a different MALDI-MSI instrumentation (data 

not shown). The reproducibility of using the Portrait™ 360 for peptide detection 

in this study however was not satisfactory, although the capabilities of achieving 

Figure 6.9 MALDI-MS images of tryptic peptides in an aggregoid section by 

micro-spotting trypsin application. Images of a) Histone H2A, b) Histone H3, 

c) actin and d) Histone H4. Images were normalised using TIC. Scale bar 200 

µm.  
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numerous enzymatic reactions for better spatial resolution demonstrates it is a 

promising technique for this specific application.  

6.4.1.3 Preliminary detection of cetuximab within the aggregoid 

model 

The purpose of this chapter was to develop an analytical method which could be 

employed to determine the localisation of a biopharmaceutical within the tumour 

aggregoid. Following the optimisation of the bottom-up proteomics workflow 

described, the micro-spotting technique was further utilised for the detection of 

cetuximab within the aggregoid model. The objective was to initially detect signal 

of cetuximab surrogate peptides within the aggregoid at the expense of the spatial 

information. This was primarily to establish the capabilities of detecting cetuximab 

in situ by MALDI-MSI.  

In this experiment, the optimised protocol was as follows: slides were initially 

washed with increasing concentrations of EtOH. Control and treated cetuximab 

(150 µg/mL) HCC827 aggregoid sections were spotted with 50 nL trypsin (20 

µg/mL in 25 mM NH4HCO3 with a 0.1% (final) RapiGest™). The sample was 

incubated within a 50% H2O:50% MeOH humid environment at 37°C for 3 h 

before applying DHB matrix.  
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Figure 6.10 shows ion images of three surrogate cetuximab peaks m/z 1266 

(CDR L1), m/z 1788 (CDR L2) and m/z 1924 within the aggregoid model. The 

detection of cetuximab peaks were confirmed with signal intensity present in the 

spotted cetuximab standard ROI. The intensities of each peak is low therefore 

optimisation is required to improve the sensitivity of detection. Further analysis 

using ROC to discriminate the m/z values between the control and treated 

samples was performed. For the three surrogate peaks, the AUC value from ROC 

Figure 6.10 MALDI-MS images of cetuximab tryptic peptides in an 

aggregoid section. Surrogate peptides a) m/z 1266 (CDR L1), b) m/z 1788 

(CDR L2) and c) m/z 1924. Images were normalised using TIC. Scale bar 200 

µm. Box plot graphs displaying the medium signal intensity of each m/z value 

between the control and 150 µg/mL treated. 
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analysis was > 0.9 which defined the peaks as a variate in the treated sample 

and not in the control. This is promising in terms of the detection of unique 

cetuximab peptides containing the CDR sequence within the aggregoid model. 

However, the localisation of cetuximab within the aggregoid model cannot be 

determined due to the method of trypsin application.  

An important note in this study is that the data reported are preliminary results. 

Only one set of samples was analysed due to experimental error during sample 

handling, in addition to the time constraints of instrument availability to conduct 

this experiment. Therefore, no definitive conclusions on the detection of 

cetuximab within the aggregoid model can be made. To validate the method, 

additional replicates are necessary; to determine biological variation and to define 

the expression levels of the cetuximab peaks more precisely. MS/MS profiling of 

the detected peaks could also be performed to confirm the identification of the 

surrogate peptides. Furthermore, analysis by LC-MS/MS for accurate detection 

of the reference peptides at high sensitivity should be employed to validate 

cetuximab detection within the aggregoids by MALDI-MSI, in addition to acquiring 

data for quantitative measurement. 
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6.4.2 LA-ICP-MSI detection of cetuximab by metal conjugation  

6.4.2.1 Validation of metal-conjugated cetuximab 

Prior to aggregoid treatment with 151Eu-cetuximab, LA-ICP-MS profiling 

experiments were conducted to confirm the presence of the 151Eu and validate 

the metal-conjugation with cetuximab. Initially, the detection of 151Eu was 

determined by acquiring three line patterns through a 0.5 µL spot of the 

conjugated antibody solution on a glass slide. Figure 6.11 shows the 151Eu 

intensity of each line as the laser acquires through the spot, confirming the 

presence of the metal within the solution.  

 

 

 

 

 

 

 

 

 

 

 

To determine if the metal successfully conjugated to cetuximab, a staining 

protocol was employed. Four dilutions (control, 1:200, 1:100 and 1:50) of the 

151Eu-cetuximab solution were incubated onto sections of an aggregoid. 

Following this, five line patterns were acquired across each section. Figure 6.12 

shows an increase in intensity with an increase of 151Eu-cetuximab concentration 

within the aggregoid sections. A slight detection of 151Eu within the control was 

due to signal interferences, therefore the data was normalised against the control. 

The presence of 151Eu within the tissue sections was validated with the 

simultaneous detection of endogenous metals, 24Mg, 66Zn and 63Cu (data not 

Figure 6.11 LA-ICP-MS profile of the 151Eu-cetuximab solution. Three 

acquired 151Eu intensity profiles through a spot of 151Eu-cetuximab. Line patterns 

were extended approximately 40 s before and after the spotted solution. 
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shown). The detection of 151Eu in the stained aggregoid sections therefore 

suggests the metal has conjugated to cetuximab; the antibody has bound to its 

EGFR target within the aggregoid and has been detected by its 151Eu label. Any 

excess 151Eu in the solution was expected to have been washed off during the 

staining procedure.  

 

6.4.2.2 Localisation of 151Eu-cetuximab within the aggregoid 

model 

To determine the localisation and distribution of cetuximab within the aggregoid 

model, the main experiment was to image aggregoid samples treated with 

therapeutic levels of 151Eu-cetuximab in culture by LA-ICP-MSI. The composition 

of endogenous metals, 24Mg, 66Zn and 63Cu were selected to identify the 

phenotypical regions of the HCC827 aggregoid model, as previously 

demonstrated in Chapter 3.4.3 (Flint et al., 2020).  

Figure 6.13 demonstrates the successful detection of 151Eu signal within the 

treated aggregoid; no signal was observed in the corresponding control sample. 

The distribution of 151Eu was localised at a higher signal intensity within the core 

of the treated aggregoid, suggesting this is where cetuximab is localised. This 

was validated through the contrast in distribution of 24Mg and 66Zn, which are both 

Figure 6.12 The absolute and normalised intensity of 151Eu-cetuximab 

stained aggregoid sections. Average intensity of five acquisitions per tissue 

section. 151Eu-cetuximab dilutions: control, 1:200, 1:100 and 1:50. Data is mean 

(n=3) ± SD, statistical significance determined by one-way ANOVA with Tukey 

post hoc test * p < 0.05, ** p < 0.01, *** p < 0.001. 
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highly expressed within the outer proliferative region. The detection of 151Eu-

cetuximab within the core implies the drug efficiently diffused through peripheral 

regions of tissue, as lower levels of 151Eu can be observed within the surrounding 

areas.  

Conversely, another possible reason of the heterogenous distribution of 151Eu-

cetuximab is due to the expression of the EGFR within the aggregoid model. Liu 

et al., (2018) reported that the EGFR expression was distributed differently 

between two spheroid models of colon cancer (in the core of the HT 29 and in 

the periphery of DLD-1 MCTS), and therefore the localisation of cetuximab also 

differed. This suggests that the HCC827 aggregoid model highly expresses the 

EGFR within its core compared to the outer region. The EGFR has also been 

associated with hypoxia. In NSCLC, an increase in hypoxia is thought to induce 

the expression of the EGFR transmembrane protein in order to stimulate the 

expression of HIF-1α for tumour survival (Swinson & O'Byrne, 2006). 

Interestingly, a recent study reported hypoxia sensitises cancer cells to EGFR 

inhibitors (Mamo et al., 2020). Therefore, the detection of cetuximab in the core 

of the aggregoid may correlate with a positive cellular response from 

metabolomics results (Chapter 5.4.2.2). Staining for the EGFR, by 

immunofluorescence or IMC, would be carried out in further work in order to 

determine its presence and confirm the co-localisation of the 151Eu-cetuximab 

within the aggregoid model.  
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Figure 6.13 The detection of 151Eu-cetuximab within a HCC827 aggregoid by LA-ICP-MSI after 24 h. Optical images of control 

and treated aggregoid sections. Scale bar 200 µm. Elemental distributions of 24Mg, 66Zn, 63Cu and 151Eu, intensity recorded in counts 

per second (cps). Slight fissures can be observed in tissues formed during sectioning. 
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6.5 Concluding remarks 

In this chapter, two MSI strategies were developed for the detection of a 

biopharmaceutical, cetuximab, within the HCC827 aggregoid model.  

Firstly, for a bottom-up MALDI-MSI proteomics method, a number of different 

workflow parameters were assessed. An optimised protocol was developed for 

the analysis of tryptic peptides within an aggregoid model by MALDI-MSI. 

Methods tested included buffer and surfactant concentrations for a suitable 

trypsin solution, washing solvents, incubation techniques and methods of on-

tissue trypsin application.  

From the data, a trypsin solution containing 25 mM NH4HCO3 with 0.1% (final) 

RapiGest™ showed a significantly higher intensity of peptide signals. Washing 

slides with increasing concentrations of EtOH reduced the presence of lipids 

within the spectra and subsequently amplified the peptide intensity. Furthermore, 

the use of 50% H2O: 50% MeOH created an ideal humid environment to maintain 

efficient trypsin activity.  

Both the spray-coat and micro-spotting methods of trypsin application require 

further optimisation to improve the sensitivity of the method and improve the 

detection of peptides. The use of alternative automated devices are likely more 

suitable for trypsin application in order to retain the spatial information within the 

aggregoid model (necessary for analyte localisation).  

Following the current optimised protocol, preliminary work in the detection of 

cetuximab within the aggregoid model by MALDI-MSI was achieved. Additional 

experimental work is necessary for the validation of the method to ensure the 

reproducibility of the data, as well as improving the spatial capabilities of the 

sample preparation. Nonetheless, there has been progress towards the 

development of a robust proteomic imaging strategy for applications studying 

biopharmaceutical efficacy. 

The second imaging approach by LA-ICP-MS was successful in the detection of 

cetuximab by a metal labelling technique. 151Eu-cetuximab was localised 

primarily within the core of the aggregoid which demonstrated significance for 

determining drug delivery. 
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A comparison of the two methods developed in this study would indicate that the 

detection of a metal-labelled drug allows for a more sensitive approach to detect 

a biopharmaceutical within the 3D model. Though, this conflicts with the purpose 

of using label-free MSI techniques for drug detection in pre-clinical studies. The 

more favourable approach would be the bottom-up MALDI-MSI proteomics 

method due to the capabilities of detecting the biologic closer to its natural 

behaviour. In addition, MALDI-MSI allows for the simultaneous detection of the 

proteomic response to the treatment. The lack of a standardised protocol 

however, has hindered its ability for biopharmaceutical applications thus far.  

Overall, using multimodal MSI techniques it was possible to detect and visualise 

cetuximab within the aggregoid model. This demonstrates great potential for 

applications in early stage biopharmaceutical development and assessing drug 

efficacy and toxicity.  
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CHAPTER 7. CONCLUSIONS AND FUTURE 
WORK  
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7.1 Overview 

The analysis of 3D cell culture models by MSI has revolutionised pre-clinical drug 

testing. In particular, tumour spheroids have been demonstrated to have value 

for studying cancer metabolism and drug pharmacology in many MSI 

applications. Tumour spheroids offer a more accurate representation of the 

tumour microenvironment compared to 2D cultures, they can be produced for 

high throughput drug analysis without ethical implications, and they represent a 

valid attempt to respond to the societal requirements to implement the 3Rs – 

reduction, replacement and refinement – for the use of animals in such research. 

Whilst extensive applications of MSI in combination with tumour spheroids 

existed when this research started, there were still significant areas yet to be 

explored. Firstly, to address the conflicting arguments of whether the tumour 

spheroid model fully replicates the complex morphological, phenotypic and 

genetic characteristics of in vivo tumours, continuous advancements in model 

development is required to ensure that pharmaceutical analyses conducted using 

them is relevant to the in vivo situation. The work presented in this thesis aimed 

to address conflicting issues of tumour spheroids through the development a 

novel aggregated tumour spheroid model, termed as an aggregoid, in order to 

create higher levels of molecular heterogeneity. Following from this, it was 

important to examine the cellular metabolism that drives cancer growth within 

these 3D cultures in order to understand and highlight additional biomarkers that 

could facilitate the prediction of drug behaviour. The use of multimodal MSI 

techniques has previously been demonstrated as a methodology for extracting 

large amounts of molecular information with a complementary nature. Multimodal 

MSI was therefore employed in this study to enable an in-depth characterisation 

of the aggregoid models. In addition, a multimodal MSI strategy in combination 

with the aggregoid model was developed for the use as a pre-clinical in vitro tool 

for biopharmaceutical testing in order to address the increasing demands for 

advancements in this field in pharmaceutical industry.  

7.2 Aggregoid optimisation for MSI analysis  

The development of three aggregoid models of cancer was achieved, two 

osteosarcoma models: one from the epithelial-like cell line SAOS-2 and one from 

the fibroblast-like cell line MG63; and a HCC827 lung adenocarcinoma model. 
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The purpose of developing a novel 3D culture model was to enhance the 

molecular heterogeneity to establish a more accurate representation of in vivo. 

The method in which the aggregoid models were cultured allowed for the 

development of single-cell populations to grow into individual spheroid colonies 

of different sizes and genetic variability. Therefore, once aggregated together, 

they created a tissue comprised of clonal spheroids that exhibit different genetic 

phenotypes which are easier to detect and interpret than a heterogeneous single 

cell within an conventional MCTS model. It is suggested aggregoid model 

represents the tumour microenvironment by displaying phenotypical regions of a 

hypoxic/necrotic core and a proliferative outer region developed through the 

gradient of oxygen and nutrients. The expression of these tumour environments 

was an important attribute in order to the study a drug’s behaviour and efficacy in 

heterogenous regions of the in vitro model.   

In order to efficiently analyse the aggregoid model, it was a requirement to 

optimise sample handling methods for universal application across MSI 

techniques. The use of an embedding media, HPMC & PVP, enabled 

preservation of the aggregoid tissues and created ease of handling samples 

throughout the imaging workflow. The addition of immediate desiccation of tissue 

sections followed by vacuum packing samples prior to storage effectively 

minimised delocalisation effects of analytes within the aggregoids allowing for 

quality imaging analysis. The spray-coat application of matrix gave a better 

sensitivity for the detection of lipid species in heterogenous distributions that 

corresponded to the hypoxic core and outer proliferative zone. Further 

investigations to improve the quality of the images and reduced delocalisation of 

lipids during matrix deposition is still required, such as optimising the spraying 

parameters and solvent concentrations, or an investigation of a recrystallisation 

step following from matrix application by sublimation.  

7.3 Multimodal MSI: Characterisation of a lung adenocarcinoma 

aggregoid 

The use of different MSI techniques enabled an in-depth characterisation of the 

tumour microenvironment within the lung adenocarcinoma model, allowing 

detailed molecular phenotyping based on the endogenous metabolite, protein 

and metal content. An untargeted DESI-MSI method highlighted the metabolic 
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activity of central biological pathways including the TCA cycle and glycolysis in 

relation to proliferative activity and the hypoxic core. The first application of IMC 

with a 3D cell culture was reported which enabled single-cell phenotyping of 

proteins and protein modifications including the detection of Glut1 expression 

which highlighted the hypoxic core and corresponded to the lactate distribution. 

The use of LA-ICP-MSI detected endogenous metals including Mg, Zn and Cu 

and complemented the DESI and IMC data. As this was an initial study, additional 

biological replicates and technical repeats imaging different slides of the same 

samples are now required to validate this methodology of characterising the 

aggregoid model. Nevertheless, this work still improved the understanding of the 

molecular activity that influences the tumour microenvironment. Following on 

from this study, further data processing of the untargeted DESI-MSI data could 

be performed to highlight all detected metabolites within the lung model to obtain 

a larger metabolic prolife.  

7.4 Multimodal MSI: Comparison of OS aggregoid models to 

sarcoma tissue 

It is important to ensure that any 3D cell culture model aimed to be used in pre-

clinical drug analysis exhibits similar molecular characteristics to in vivo tumours. 

A comparison between the two OS models and clinical OS patient tissue was 

performed using an untargeted DESI-MSI approach. In these experiments 

metabolic similarities were observed. MG63 exhibited metastatic-like potential 

due  to the detection of fatty acid and phospholipid species that were also 

detected at high concentrations in the metastatic patient tissue. SAOS-2, on the 

other hand, showed potential characteristics of cellular differentiation and bone 

development, which were identified within specific regions of bone mineralisation 

in the OS patient tissue. To validate these findings further work involving direct 

imaging analysis of the aggregoid models and OS patient tissue within the same 

acquisition is essential. In addition, imaging MS/MS analysis and/or LC-MS/MS 

is required for confident identification of metabolite species detected in this study.  

The IMC and LA-ICP-MSI techniques were also employed to enhance the 

characterisation of the models and showed heterogeneity in the expression of 

proteins and metal compositions. The SAOS-2 model displayed the typical outer 

proliferative region (Ki-67) within an inner hypoxic core (Glut1), similar to the lung 
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adenocarcinoma model, as the MG63 model did not show the presence of such 

distinct regions. The phenotypical differences demonstrated the need for 

characterising the aggregoids by multimodal imaging techniques to validate the 

unique molecular distributions across OS tumour models and to understand how 

these differences could influence drug behaviour.  

7.5 Aggregoid response to biopharmaceutical treatment  

To establish the use of the aggregoid model as a pre-clinical tool for 

biopharmaceutical testing by MSI, the metabolic response to biologic treatment 

in each model was studied using DESI-MSI. The use of multivariate statistics 

(PCA and PLS-DA) allowed for the identification of potential biomarkers that 

showed changes in detection levels in response to treatment. However, the 

overall response of the aggregoids was limited suggesting a potential drug 

resistance. As this limited response was observed across all three models it 

suggested that the potential resistance is due to the method in which the 

aggregoids are cultured. Increasing evidence has showed the development of 

spheroid cultures promoted resistance to cell death via anoikis, which leads to 

alterations in the apoptotic extrinsic and intrinsic pathways and thus subsequently 

leads to the resistance to drug-induced cell death such as treatment with TRAIL-

based therapies or Cetuximab. Future work would investigate this mechanism of 

resistance through the treatment of specific inhibitors that re-establish anoikis s 

and to use inhibitors in combination with biologic therapies to determine the 

metabolic response.  

Following the untargeted DESI-MSI approach, LC-MS/MS is a necessary 

requirement for the confident identification of metabolites detected and to validate 

the method as a suitable pre-clinical biopharmaceutical analysis tool. In addition, 

due to the variability between aggregoid samples it is essential to include more 

biological replicates to improve the discrimination of metabolites. The overall 

study however still demonstrated a potential strategy for the analysis of biologic 

treatment in the aggregoid model by MSI from the detection of significant 

metabolic changes in the preliminary data.  
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7.6 Development of a multimodal MSI strategy for 

biopharmaceutical detection 

A lack of metabolic response to treatment could be due to the inefficiency of drug 

delivery within the aggregoid model. In an attempt to understand the potential 

drug resistance within the aggregoid model, a MSI strategy to detect the 

biopharmaceutical, cetuximab within the lung adenocarcinoma model was 

developed. The ability to detect a drug within tissues by imaging techniques 

allows for the direct assessment of how a therapeutic penetrates, distributes and 

metabolises and is thus essential for early stage pre-clinical drug analysis.  

In chapter 6, two MSI techniques were developed. Firstly, a bottom-up MALDI-

MSI proteomics strategy was used to detect cetuximab’s constituent proteotypic 

peptides that contained unique CDRs for valid identification. This approach 

involved the optimisation of trypsin solution, sample washing, incubation 

techniques, and methods of trypsin application. Further investigations in the 

trypsin deposition is required in order to improve the sensitivity of peptide 

detection whilst retaining the spatial information. However, by using the micro-

spotting technique preliminary data showed small amounts of cetuximab peptides 

were detected within the lung adenocarcinoma aggregoid model at the expense 

of spatially localising the therapeutic. Additional experimental work is required to 

ensure reproducibility of the method with the aim of utilising this approach for a 

quantitative application in future analysis.  

The second method of biologic detection employed a targeted approach based 

on the principles of IMC using metal-tagged antibodies for the detection of 

proteins. In this study, cetuximab was tagged with 151Eu which was then used to 

treat the aggregoids in culture. Following the standard LA-ICP-MSI workflow, the 

detection of 151Eu-cetuximab localised within the core of the HCC827 aggregoid 

model was achieved. Although this method conflicts with the purpose of using a 

label-free MSI approach for drug detection, it is an example of the use of 

multimodal imaging techniques to validate and complement data of the MALDI-

MSI method which lacks a current standardised protocol for proteotypic peptide 

detection. The detection of cetuximab within the HCC827 aggregoid model also 

suggests that the potential drug resistance observed from the metabolomics 

study is not related to a delivery issue, although further investigations into the 
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detection of TRAIL-based therapies within the OS aggregoid models would be 

required to confirm this.  

7.7 Final conclusions 

The aim of this thesis was to develop a multimodal MSI approach to analyse a 

novel aggregated tumour model for applications in pre-clinical biopharmaceutical 

testing. The work reported here shows the culture and development of the 

aggregoid model for the universal use across various MSI techniques. It 

demonstrated the importance of characterising the wide molecular content within 

the tissues for knowledge of the biological processes that drive their unique 

cancer metabolism. The combination of multimodal MSI with the aggregoid model 

showed capacity of spatially resolving metabolite changes in response to biologic 

treatment, in addition to the detection of a biopharmaceutical through the 

development of novel methods that could be used to understand biologic efficacy 

and toxicity. 
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APPENDIX I 
 

Figure A.1. Mean intensity plotted on bar graph of fatty acid detection within OS 

human tissue and OS aggregoid models. Data is mean ± SD (n=3), unpaired t-

test * p < 0.05, ** p < 0.01. Peaks identified in human tissue a) m/z 279.234, FA 

18:2; b) m/z 281.247, FA 18:1; c) m/z 303.231, FA 20:4. Peaks identified in OS 

models d) m/z 279.235, FA 18:2; e) m/z 281.248, FA 18:1; f) m/z 303.231, FA 

20:4. 
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Figure A.2. Mean intensity plotted on bar graph of metastasis-related 

phospholipid species within OS human tissue and OS aggregoid models. Data is 

mean ± SD (n=3), unpaired t-test * p < 0.05, ** p < 0.01. Peaks identified in human 

tissue a) m/z 810.528, PS 38:4; b) m/z 885.550, PI 38:4. Peaks identified in OS 

models d) m/z 810.530, PS 38:4; e) m/z 885.549, PI 38:4. 
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Figure A.3. Mean intensity plotted on bar graph of ceramide species detected 

within OS human tissue and OS aggregoid models. Data is mean ± SD (n=3), 

unpaired t-test * p < 0.05, ** p < 0.01, *** p < 0.001. Peaks identified is human 

tissue a) m/z 536.505, Cer 34:1;O2; b) m/z 572.484, Cer 34:1;O2 [M+Cl]-. Peaks 

identified in OS models c) m/z 536.504, Cer 34:1;O2; d) m/z 572.480, Cer 

34:1;O2 [M+Cl]-. 
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A cross-platform software environment for precise analysis of mass spectrometric 

data. Analytical Chemistry, 82(11), 4648-4651. doi:10.1021/ac100818g 

Strohalm, M., Strohalm, J., Kaftan, F., Krásný, L., Volný, M., Novák, P., Ulbrich, 
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