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ABSTRACT: Lagos, Nigeria, is rapidly urbanizing and is one of the fastest-growing cities in the world, with a population

that is increasing at almost 500 000 people per year. Yet the impacts on Lagos’s local climate via its urban heat island (UHI)

have not been well explored. Considering that the tropics already have year-round high temperatures and humidity, small

changes are very likely to tip these regions over heat-health thresholds. Using a well-established model, but with an

extended investigation of uncertainty, we explore the impact of Lagos’s recent urbanization on its UHI. Following a

multiphysics evaluation, our simulations, against the background of an unusually warm period in February 2016 (during

which temperatures regularly exceeded 368C), show a 0.448C ensemble-time-mean increase in nighttime UHI intensity

between 1984 and 2016. The true scale of the impact is seen spatially as the area over which ensemble-time-mean UHIs

exceed 18C was found to increase steeply from 254 km2 in 1984 to 1572 km2 in 2016. The rate of warming within Lagos will

undoubtedly have a high impact because of the size of the population (121 million) already at risk from excess heat.

Significant warming and modifications to atmospheric boundary layer heights are also found in rural areas downwind,

directly caused by the city. However, there is limited long-term climate monitoring in Lagos or many similarly expanding

cities, particularly in the tropics. As such, our modeling can only be an indication of this impact of urbanization, and we

highlight the urgent need to deploy instrumentation.
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1. Introduction

At the current global rate, 2.5 billion more people will live in

urban areas by 2050 (United Nations 2015). Ninety percent of

this increase is expected to occur in Africa and Asia, whose

tropical populations’ exposure to excess heat is significantly

underestimated; with year-round high temperatures and hu-

midity, small changes to climate in the tropics are likely to tip

these regions over heat-health thresholds (Mora et al. 2017).

Lagos, Nigeria, the focus of this paper, is one of many examples

in the tropics where the rate of urbanization far exceeds global

averages. Located in West Africa on the Gulf of Guinea and

within a tropical savanna climate (pronounced wet and dry

seasons), its growth is being driven by its port, oil exploration,

large-scale infrastructure developments and high rural–urban

migration rates (Opoko and Oluwatayo 2014). Already

Lagos’s population has risen from 1.4 million in 1970 to 12.6

million in 2014 with a current growth rate of 3.5% (United

Nations 2015). Some end-of-century projections put Lagos’s

population close to 100 million (Hoornweg and Pope 2017).

Yet, insufficient observations in Nigeria means under-

standing environmental risks is challenging (Alens 2014).

Inadvertent effects of large, rapid urbanization are well

documented globally and include loss of vegetation and eco-

systems (Grimm et al. 2008; Seto et al. 2012; Ajibola et al. 2012;

Obiefuna et al. 2013), degradation of water (Ouyang et al.

2006;McGrane 2016) and air quality (Han et al. 2016), flooding

(Adeloye and Rustum 2011), and modification of the local

climate (Kalnay and Cai 2003). Socially, impacts include

housing shortages, poverty, and poor living conditions (Opoko

andOluwatayo 2014; Jiboye andOgunshakin 2011). While one

of the primary impacts of urbanization, the urban heat island

(UHI) effect, has been extensively documented in tropical

areas of Asia and South America (Roth 2007; Santamouris

2015), little research has been conducted in Lagos or many

similarly expanding cities in Africa.

UHIs are caused by human-driven changes to the physical

processes responsible for exchange of energy and momentum

between the surface and atmosphere. UHI intensities (UHII)

for air temperatures are largest at night under clear, calm

conditions (Oke 1982; Morris et al. 2001) and are a function of

city form and size (Oke 1973). UHIs have been shown to

increase air temperatures in tropical environments by an

average maximum of 38C, and on occasions in excess of 88C
(Santamouris 2015). In tropical regions, UHIIs are generally

lower than comparably sized temperate cities and experience
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UHII variation between seasons, with larger urban–rural

temperature differences usually found in the dry seasons

(Roth 2007; Santamouris 2015). The UHII of a city may

increase over time due to urbanization (Grossman-Clarke et al.

2010), climate change, or a combination (Wilby 2008; McCarthy

et al. 2010; Zhao et al. 2014). The UHI is also dynamic and

warmth from a city can be advected several kilometers down-

wind (Bassett et al. 2016).

While UHIs may benefit societies in cool climates (e.g., re-

ducing heating demands (Azevedo et al. 2016), in hot climates

the UHI may cause exceedances of heat-health risk thresholds

and even mortality (Mora et al. 2017; Heaviside et al. 2017).

These impacts become particularly prevalent when heat waves

and the UHI effect are combined (Li and Bou-Zeid 2013). For

instance, one estimate suggested that the UHI was responsible

for half the excess mortality in some regions during the 2003

European heat wave (Heaviside et al. 2016).

Despite an awareness of these health risks, and often being

most at risk from environmental change impacts, a lack of

observations and technology barriers in developing coun-

tries mean there are comparably fewer UHI studies, par-

ticularly in Africa. For example, a Web of Knowledge

(https://wok.mimas.ac.uk/) search (on 30 October 2019) for

the terms ‘‘urban heat island,’’ yields 6691 results, whereas

refining for ‘‘Nigeria’’ reduces this to only 19. Of studies spe-

cific to Lagos, the majority use remote sensing techniques to

quantify surface, not air temperatures (e.g., Simwanda et al.

2019; Dissanayake et al. 2019; Ayanlade and Jegede 2015). We

found only a single UHI monitoring study that had deployed

air temperature observations (Ojeh et al. 2016). While this

study reported a large UHI of up to 78C in Lagos, it was unable

to show spatial variability, and the temporal length of the

monitoring was too short to show any UHII growth due to

urbanization.

Given its vulnerability to small changes in climate and pro-

jected rate of urbanization, there is therefore an urgent need to

understand Lagos’s UHI growth. We choose to use the re-

gional climate Weather Research and Forecasting (WRF)

Model (Skamarock et al. 2008) to simulate the urbanization

effect on local climate in Lagos due to its ability to reproduce

spatial and temporal UHI patterns that have been extensively

evaluated globally (e.g., Miao et al. 2009; Grossman-Clarke

et al. 2010; Chen et al. 2014), and more specifically in tropical

environments (e.g., Morris et al. 2017; Doan and Kusaka 2018;

Li et al. 2013). Through modeling we hope not only highlight

the scale of Lagos’s UHI growth but also draw urgent attention

to the lack of long-term UHI observations in Lagos and simi-

larly expanding cities.

2. Methods

a. Mapping Lagos’s urbanization

Three clear-sky Landsat satellite images were taken from

Landsat 5 (18 December 1984), Landsat 7 (6 February 2000),

andLandsat 8 (26December 2016) (data available from https://

earthexplorer.usgs.gov/), chosen based on available Landsat

images, that is, limited by cloud cover. The following steps

were taken to process the satellite images for use in the WRF

Model. (i) Visual analysis was conducted on the red band

of each image (and compared with visible satellite images

from Google Maps) to identify the approximate wavelength

ranges corresponding to urban and rural areas. The R package

‘‘segmented’’ (https://cran.r-project.org/web/packages/segmented/

segmented.pdf) was then used to determine the breakpoint

between these groupings for each image. An example of this

approach is provided in Fig. 1a. (ii) The normalized difference

vegetation index (NDVI) was calculated within the urban

areas for each image,

NDVI5
(NIR2 red)

(NIR1 red)
,

where NIR and ‘‘red’’ are the respective spectral reflectances

in the near-infrared and red visible wavelengths. Because

vegetation strongly absorbs visible wavelengths but reflects

near-infrared wavelengths, NDVI effectively provides a di-

mensionless value of ‘‘greenness.’’ The inverse of this can

therefore be used as a proxy for urban intensity. (iii) Visual

checks were conducted to remove erroneous urban classifica-

tions; for example, sand exhibited similar spectral character-

istics to urban. (iv) The resulting NDVI values for each image

were normalized, and checks were made between each period,

that is, an area categorized as vegetation in 2016would unlikely

be urban in 1984. (v) Comparisons were made between our

2016 NDVI image and a 2014 Global Human Settlement

(GHS; https://ghsl.jrc.ec.europa.eu/index.php) classification,

shown in Fig. 1b. Both methods produce very similar urban

extents. However, we argue that our method is improved over

the GHS because we have more differentiation within the ur-

ban areas, whereas the GHS is skewed toward 0% or 100%

urban, and GHS is known to contain erroneous classifications

in arid environments (Pesaresi et al. 2016). In our study area,

GHS classifies some beaches as urban (cf. the bottom of each

domain in Fig. 1b). We appreciate that GHS is a global clas-

sification and small-scale corrections may not be feasible. (vi)

Nonurban areas were populated with vegetation categories

from the defaultWRF land use (Moderate Resolution Imaging

Spectroradiometer). Although the method is subjective, urban

NDVI values were split into three WRF urban land-use cate-

gories (low-density residential, high-density residential, and

industrial and commercial) on the basis of equal size groupings

for 2016, and these same threshold values (0–0.46, 0.46–0.57,

and 0.57–1) were used for 1984 and 2000. (vii) After creating

three urbanization cases, simply referred to as 1984, 2000, and

2016, a final nonurban case (NOURB) was generated. Here all

urban land use was replaced with theWRF vegetation category

‘‘cropland/natural vegetation mosaic.’’

The resulting urban land-use cases are presented in Fig. 2.

We recognize some limitations in our land-use classifications:

(i) the land-use was based on images from different satellites

(Landsat 5, Landsat 7, and Landsat 8), meaning subtle differ-

ences in wavelength bands may alter the classifications; (ii) for

the NOURB case the urban land use was replaced with a single

vegetation category, meaning rural homogeneity may incor-

rectly be presumed; and (iii) we apportion regions into three
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urban categories when in reality more urban configurations

will exist.

b. WRF configuration and evaluation

WRF, version 3.9.1.1 (Skamarock et al. 2008), was config-

ured using four two-way nested domains with increasing res-

olution (Fig. 3a). The domains had west–east and south–north

sizes of 112, 112, 112, and 151 grid cells at 27-, 9-, 3-, and 1-km

resolution, respectively. The outer model domain covered a

large region of West Africa, allowing WRF to internally gen-

erate realistic weather conditions. The use of nests enables

increased model resolution over the study area without sig-

nificantly increasing computational time.

February 2016 was chosen for our analyses because it

represented a dry and unusually warm period for Lagos. The

city lies within the Köppen classification tropical savanna, with

pronounced wet (April–October) and dry (November–March)

seasons. Average maximum temperatures range between 298
(wet season) and 348C (dry season), with annual mean pre-

cipitation of 1700mm (Ojeh et al. 2016). From reviews of

tropical UHIs (Roth 2007; Santamouris 2015), dry seasons

typically have the largest UHIIs and thus would pose the most

heat-based health risk to Lagos. However, because tropical

environments experience seasonality inUHIIs, our results may

differ in Lagos’s wet season for which further exploration

is needed.

FIG. 1. (a) Example use of breakpoint analysis to determine the red-band values corresponding to rural or urban for

the 2016 case. (b) Comparison between the 2016 NDVI image and a 2014 GHS classification.
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Initial and boundary conditions were provided by using

NCEP Final Operational Model Global Tropospheric

Analyses data at 18 horizontal and six-hourly temporal reso-

lution (NOAA/NCEP 2000). To represent the physical urban

processes in Lagos, the Single-Layer Urban Canopy Model

(SLUCM)was used (Kusaka et al. 2001). Of the urban schemes

coupled to WRF, SLUCM represents medium complexity and

is used globally inWRF-urban studies (e.g., Kusaka et al. 2012;

FIG. 2. For (a) 1984, (b) 2000, and (c) 2016, (top) histograms using the inverse NDVI as a proxy for the rapid urbanization for the three

cases, (middle) as in the top row but shown spatially, and (bottom) WRF inner domain land use in Lagos. The red cross in the 2016 land-

use case denotes the location of the Lagos Airport observations.

FIG. 3. (a) WRF Model nests extending horizontally 112, 112, 112, and 151 grid cells, at 27-, 9-, 3-, and 1-km

resolution, respectively. (b) Topography inside the innermost domain D04.
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Li et al. 2013; Loridan et al. 2013; Chen et al. 2014; Doan and

Kusaka 2016). The SLUCM contains a two-dimensional urban

street canyon with heat fluxes calculated for each surface

(roofs, walls, and roads) and their interaction within the street

canyons (building shadowing, reflecting, and trapping).

Building-morphology parameters (used by SLUCM) more

closely aligned to Lagos (Jackson et al. 2010) were used.

Despite a citywide anthropogenic heat flux estimated for Lagos

(Sailor et al. 2015), because of a lack of spatial and diurnal

anthropogenic data, values were kept as default. These were

20, 50, and 90Wm22 for the three urban categories, with a

diurnal weighting corresponding to morning and afternoon

rush-hour times. Moving through time, we are only able to

account for anthropogenic heat changes through areas be-

coming more urbanized (represented by the NDVI) and

therefore modeled in a different urban land-use class. The

model time step was set at 90 s.

WRF contains an extensive set of physics options repre-

senting processes such as cloud ice nucleation. However, a

configuration ‘‘rule’’ does not exist for different WRF appli-

cations and locations. We chose to conduct a multiphysics

evaluation to find a WRF configuration suitable for Lagos

using a combination of options: two boundary layer options,

MYJ (Janjić 1994) and BouLac (Bougeault and Lacarrere

1989); two cloud microphysics options, Thompson (Thompson

et al. 2008) andWSM3 (Hong et al. 2004); and three shortwave

radiation physics options, RRTMG (Iacono et al. 2008),

Goddard (Chou and Suarez 1999), and Dudhia (Dudhia 1989).

Note that this is not an exhaustive list of physics options but

rather is a small subset that was chosen on the basis of selec-

tions made in previous WRF-urban studies (Loridan et al.

2013). We performed an additional control run to compare the

default model land use with our satellite-derived land use.

These 14 configurations are listed in Table 1. Each simulation

was principally compared with meteorological records at

Lagos Murtala Muhammed Airport (hereinafter referred to as

Lagos Airport; latitude 6.578N, longitude 3.328E, and elevation

41m). The Lagos Airport station data were available from the

NOAA Integrated Surface Database (https://www.ncdc.noaa.gov/

isd) and form part of a growing observation network by the

NigerianMeteorological Agency (Hussaini and Yakubu 2019).

Note that the comparison is affected by the different spatial

scales captured by the model and point observations. The

evaluation covers the same period as the one on which we

conducted our analysis in February 2016.

Overall, the multiphysics runs for 2-m air temperature

showed good agreement with the observations (see top row of

Fig. 4a). However, all runs underpredict peak daytime tem-

peratures, by up to 5.188C on occasion. We also find consid-

erable variability [standard deviation (std dev) of 0.598C]
between the different physics configurations, as seen in the top

row of Fig. 4b.

For wind speeds, there is no information on the height at

which the observations are taken. A comparison assuming a

10-m mast shows a large model overestimation. However,

if modeled wind speeds are reduced to a 3-m height using the

following wind profile power law,

V

V
r

5

�
Z

Z
r

�a

,

where V is wind speed, Z is height, and the exponent a is set

for a city at 0.32 (Cook 1997), we find good agreement between

observed and predicted values (see bottom row of Fig. 4a).

Note that values of zero for wind speed are removed, with the

assumption being that these are likely due to the anemometer

stall speed. Similar to temperature, considerable variability is

found between the multiphysics runs (std dev of 0.49m s21).

The distributions of wind speeds between multiphysics con-

figurations are provided in the bottom row of Fig. 4b.

The root-mean-square error (RMSE), a commonly used

statistical measure for model comparison, is chosen to evaluate

eachmultiphysics run. TheRMSE results are shown in Table 1.

Here, model runA used defaultWRF land use and parameters,

TABLE 1.WRFmultiphysics options and RMSE evaluation at Lagos Airport. Model run A used defaultWRF land use and parameters,

run B used updated land use, and run C used updated land use and parameters. Model runs D–N use the updated land use and parameter

configuration from run C.

Boundary layer Microphysics Shortwave radiation RMSE

Model run MYJ BouLac Thompson WSM3 Dudhia Goddard RRTMG Temperature Wind speed

A x x x 1.57 0.99

B x x x 1.34 1.04

C x x x 1.07 0.99

D x x x 1.00 1.46

E x x x 1.07 1.01

F x x x 1.02 1.53

G x x x 1.57 0.91

H x x x 1.15 1.26

I x x x 1.08 0.99

J x x x 0.99 1.47

K x x x 1.08 1.01

L x x x 1.00 1.51

M x x x 1.59 0.91

N x x x 1.16 1.25
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run B used updated land use (detailed in section 2a), and run C

used updated land use and more specific urban parameters

from Jackson et al. (2010). Model run C, with updated land use

and parameters, was then used as a basis for the remaining

multiphysics evaluation runs (D–N). The RMSE results show a

0.28C reduction through implementing updated land use (see

model run A vs B in Table 1) and 0.58C reduction by using both

updated land use and parameters (see model run A vs C in

Table 1). Considering that the default WRF land use is out-

dated (derived from 2001 MODIS satellite imagery), and that

Lagos is rapidly expanding, these results are not surprising.

For each multiphysics combination, nighttime RMSE for

temperature was lower across the board than during daytime.

While we should not ignore daytime performance, modeling

nighttime temperatures with low error is important for this

study because the UHI is predominantly a nighttime phe-

nomenon. We note that the physics combinations that created

the lowest RMSE for temperature did not always perform as

well for wind (see Table 1). To take the best configuration

forwards into the Lagos ensemble, to account for internal

model variability (detailed in the following section), the

RMSE results were normalized for temperature and wind

speed, with the resulting normalized RMSE values totaled

for each variable. We then took the model with the lowest

total normalized RMSE as the best all-rounder. Wind per-

formance was taken into equal consideration because of its

modulating influence on the UHI intensity. Coincidently,

the best multiphysics option was the default configuration,

albeit with updated land use and parameters. While we were

able to improve the model performance at Lagos Airport,

we acknowledge that limited data means evaluation was

only possible for a small portion of the model.

Additional model checks were made at a station outside

of Lagos, Ijebu-Ode (latitude 6.838N, longitude 3.938E, and

elevation 77 m). Note that data were only available every

3–6 h; February 2016 contained 123 data points as com-

pared with 654 at Lagos Airport. For the final WRF con-

figuration, RMSE for air temperature was 28C and for wind

speed was 1.3 m s21 at Ijebu-Ode. Higher RMSE when

compared with the Lagos Airport station is likely due to

two contributing factors: (i) the model land-use specifica-

tion at Ijebu-Ode being rural whereas it is actually low-

density urban (this inaccuracy is due to our updated

satellite-derived land use being created only for Lagos, i.e.,

excluding Ijebu-Ode) and/or (ii) the location of the station

at the edge of the inner model domain, meaning it may not

FIG. 4. Multiphysics evaluation results for (a1) temperature and (a2) wind speed. The solid lines are themodeled results, and the dashed

linewith points is the observations at LagosAirport. In each plot, the solid red line is themodel configuration that we take forward into the

IMV ensemble. Also shown are the distributions from the multiphysics runs for (b1) temperature and (b2) wind speed.
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be completely in equilibrium because of smoothing pro-

cesses to the parent domain.

c. Ensemble configuration

Internal model variability may cause differences in results

due to nonlinear processes within regional climate models

(Laux et al. 2017; Lucas-Picher et al. 2008; Bassett et al. 2020).

Therefore, we need to be confident that any warming in our

results due to urbanization exceeds effects caused by internal

model variability (IMV). Based on previous research to the

number of ensemble members to capture the majority of IMV

(Bassett et al. 2020), we created a 35-member ensemble for

each of the land-use cases detailed above. All members were

run on a local high-performance computer, although we are

additionally exploring the benefits of cloud-computing tech-

nology to facilitate future access to models like WRF and in-

crease processing power (Simm et al. 2018).

The ensemblememberswere started at 42-h intervals covering a

2-month period (1 December 2015–31 January 2016). Aside from

start time, eachmember used identical boundary conditions during

the analysis period.Once all members were running, we continued

the simulations for a 1-month analysis period (1 February 2016–

29 February 2016) using the same boundary conditions for each

member in each case. Figure 5 shows an example of the impacts of

IMV, that is, the range in predicted temperatures, at the grid cell

located over Lagos Airport.

d. Analysis methods

The UHII is derived as the difference in temperature be-

tween each urban (1984, 2000, and 2016) case and the NOURB

case for 2-m modeled air temperatures. To show the signifi-

cance of the UHII response due to urbanization, we take a

similar approach to Laux et al. (2017) and calculate the signal-

to-noise ratio (SNR)—that is, the size of the response to ur-

banization relative to the internal model variability:

SNR5
etmA2 etmB

std devA 1 std devB
,

where etm is the ensemble time mean and std dev is the stan-

dard deviation for a given case A and the preceding case B

(e.g., 1984 2 NOURB).

3. Results and discussion

a. Lagos urbanization and heat island growth

The intense urbanization between 1984 and 2016 is shown in

Fig. 2. The growth of Lagos during this period was largely

constrained to a northeast direction by the adjacent natural

features: the Gulf of Guinea, Lagos Lagoon, and surrounding

wetlands. Within the study domain (151 km wide) we find the

land surface covered by urban regions to increase from 720 km2

in 1984 to 1009 km2 and 2053 km2 in 2000 and 2016, respec-

tively. While this rate of expansion is faster than an earlier

estimate of Lagos’s city expansion (Barredo and Demicheli

2003), it is not uncommon for a megacity, and similar expan-

sion rates have been found for Delhi (Mohan et al. 2011)

Mumbai (Moghadam andHelbich 2013) in India and Shanghai,

China (Yin et al. 2011).

Figure 6a shows the resulting urbanization-induced warm-

ing. Within the urban outlines for each case (1984, 2000, and

2016), a nocturnal (based on daily sunrise and sunset times)

spatial etm UHII of 0.838 (std dev of 0.628C), 1.048 (std dev of

0.718C), and 1.278C (std dev of 0.788C) were modeled, re-

spectively (all results are presented in this order from here on).

The standard deviation values in parentheses are the combined

spatial, temporal, and ensemble distribution for Lagos’s UHI;

this distribution is shown in Fig. 7. At an hourly time resolu-

tion, the ensemble-mean nocturnal UHII peaks at 3.198, 3.678,

and 4.138C, respectively. In Fig. 6c we show a nocturnal UHI

transect through the city, from the southwest to northeast for

each case to further emphasize these impacts of urbanization.

We clearly see both Lagos’s sizable warming, particularly

moving from 1984 to 2016 in regions of urban growth, as well as

the advected warmth from the city to rural regions, for exam-

ple, around cell 100, and as detailed below.

In addition, we find that Lagos exhibits a slight urban cool

island (UCI) during the day (see distributions in Fig. 7a).

The magnitude of this UCI is significantly less than the

nocturnal UHI, and unlike the nocturnal UHI we do not find

much difference between daytime UCI intensities. Daytime

spatial etm UCIs inside Lagos’s urban limits for each case

are 20.268 (std dev of 0.668C), 20.248 (std dev of 0.708C),

and 20.228C (std dev of 0.768C). UCIs may form because of

FIG. 5. (a) Temperature range between all ensemble members at Lagos Airport for the 2016 (red shading) and NOURB (blue shading)

cases. (b) Boxplot showing the IMV spread at Lagos Airport for all cases during the time period shown in (a). The whiskers denote the

maximum and minimum range.
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differences between urban and rural boundary layer heights

in the morning, that is, shallower rural boundary layers

warm quicker (Theeuwes et al. 2015). Considering that the

UHI is predominantly a nighttime feature and is significantly

more pronounced than the UCI, hereinafter the focus is on

nighttime only.

Although Lagos’s spatial etm UHII intensification of 0.448C
across a 32-yr period appears to be modest, this is (i) larger

FIG. 6. (a) Nocturnal etm UHII. Arrows are the etm 10-m wind speed and direction.

The dash-outlined blue box represents where urban heat advection is quantified. The arrows

are mean wind direction and speed (maximum of 6.02m s21 at night). (b) Standard deviation

of the ensemblemembers only (i.e., not diurnal variation). (c) Nocturnal southwest–northeast

transect across the path shown by the dotted blue line in (a). The shading represents 61

standard deviation of the ensemble along the transect [in (b)]. The solid lines represent urban

land use, and dashed lines represent nonurban land use.
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than the observed climate change magnitude of approximately

0.128C decade21 (NOAA/NCEI 2019) and (ii) covers a rapidly

growing area. In 1984, we simulate an area of 254 km2 where

spatial etm UHIIs exceed 18C, expanding to 522 km2 in 2000,

and to 1572 km2 in 2016. Similarly, areas of UHII exceeding

28C rise from 6 to 45 and then to 186 km2. We also note the

maximum gridcell etm nocturnal UHII values of 2.288, 2.498,
and 2.78C in urban regions downwind of the city center, caused

by a process known as urban heat advection (Bassett et al.

2016; Bohnenstengel et al. 2011). The analysis period in

February 2016 contains a dominant southwesterly wind direc-

tion, reflected in the location of maximum UHIIs.

Our results also show that warmth from Lagos is advected

far outside the city limits; see northeast sectors in Fig. 6a and

the transect in Fig. 6c. Extending approximately the length

scale of the city for each case, this phenomenon is rarely con-

sidered in UHI impact studies. For simplicity we overlay a

square on the northeast sector of the domain (see dashed

outline in Fig. 6a). Here the etm nocturnal rural warming

(excluding urban and water bodies) is 0.108C (std dev of

0.358C), 0.158C (std dev of 0.408C), and 0.398C (std dev of

0.518C). The maximum warming due to advection from the

city occurs in grid cells directly adjacent to the city with an

etm up to 1.838C. We find that the rural-only area impacted

by warmth from Lagos that exceeds an etm value of 0.58C
expands from 183 km2 in 1984 to 399 km2 in 2000 and to

1558 km2 in 2016.

The ensemble-only UHII variability is shown in Fig. 6b.

Here the standard deviation within each urban outline is

0.238C, 0.238, and 0.248C for the three cases. Spatially, levels of

variability change across the modeled domain, and spatial

differences in internal model variability have also been re-

ported for simulations of other regions (Jerez et al. 2013). We

find the lowest variability over the oceans, and generally lower

values across the urban areas when compared with rural areas.

We also note an association between the ensemble variability

and topography features within the domain (see Fig. 3b).

Because the focus of our study is the warming resulting from

rapid urbanization, we do not attempt to disentangle causes for

spatial internal model variability. However, we suggest that in

addition to topography these could be a function of land-use

type and distance from domain boundaries. Further, to un-

certainty caused by internal model variability, our simulations

also contain unquantifiable structural uncertainty due to a lack

of observations for evaluation.

The statistical significance of the results is shown in Fig. 8.

Here the expansion of the city is seen through areas of high

SNR values in each case. Although there is large expansion of

urban land use moving from 2000 to 2016, we see lower SNR

values compared to moving between the NOURB and 1984

cases. This is due to new areas of urban growth situated in areas

already warmed by urban heat advection from the previous

case, meaning that the signal is less pronounced. The signifi-

cance of Lagos’s urbanization is additionally checked by per-

forming an unpaired t test at each grid cell, and Fig. 8 indicates

FIG. 7. (a) Daytime and (b) nighttime UHII box plots containing

all spatial, temporal, and ensemble values within the 1984, 2000,

and 2016 urban outlines. Whiskers are 1.5 3 interquartile range.

FIG. 8. SNR comparing each urban case with the preceding case.

The black dots indicate where the differences are significant at the

1% level (two tailed t test, adjusted to account for the false dis-

covery rate).
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where p , 0.01, adjusted to account for false discovery rates

since we are examining multiple grid cells (Benjamini and

Hochberg 1995). Grid cells that have significant differences in

means between each successive case correspond to areas of

higher SNR. We infer from both tests that the impact of

Lagos’s urbanization exceeds any model IMV.

b. Secondary impacts of the UHI in Lagos

While temperature is the most noticeable impact of rapid

urbanization, small perturbations caused by Lagos’s UHI are

found in other simulated meteorological variables, particularly

surface-level winds and boundary layer heights (depth of the

bottom layer of the atmosphere).

At night, mostly increased wind speeds are found, particu-

larly in the city center and areas downwind of the city. Areas of

decreased wind speeds, however, are found to the north and

west areas in the city for each case (see Fig. 9a). We find

maximum etm wind speed increases of 1.32, 1.72, and

1.95 m s21 for 1984, 2000, and 2016. We also note from

Fig. 9a that increased wind speeds are not constrained to the

city and are also found in areas immediately downwind of the

city, similar to areas of advected urban heat shown earlier. For

the daytime case we find a similar spatial pattern to the

nighttime, except no changes in wind speed are present in areas

of nighttime increases, and larger reductions in wind speed are

found in areas also containing nighttime decreases. Overall, we

find a daytime mean wind speed reduction of approximately

1m s21 (std dev of 1m s21) within the urban outline for each

case. Actual wind speeds for each case are provided in Fig. S1

in the online supplemental material. Similar to the internal

FIG. 9. Etm wind speed differences between each urban (1984, 2000, and 2016) case and the NOURB case for

(a) night and (b) day.
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model variability for the UHII, differences between ensemble

members for wind speeds differences exist. We find a wind

speed difference standard deviation of approximately 0.4m s21

at night and 0.55m s21 during the day in each urban case. We

also generally see lower variability for wind over urban areas.

Spatial variability maps for wind are provided in Fig. S2 in the

online supplemental material; in Fig. S2 it is seen that, during

the day, higher variability in the top regions of the domain is

particularly notable.

Increased drag from urban buildings explains slower wind

speeds found during the day and in certain areas at night.

Increased wind speeds at night found in the city center and

downwind areas in all cases may be explained by UHI-induced

temperature and pressure gradients (Haeger-Eugensson and

Holmer 1999;Wang and Li 2016; Droste et al. 2018). Effectively,

rising warm air fromLagos leaves an area of lower pressure that

drives inward flows, with this phenomenon overcoming any

friction-related wind speed decreases. The relationship between

mean wind speed andUHII for the 2016 case is shown in Fig. 10,

where an increase in UHII is found with increasing wind speed

(correlation coefficient r 5 0.28; significance level p , 0.01).

Albeit weak, this relationship is contradictory to the pattern

usually found where UHIs are modulated by wind, with lower

speeds resulting in higher UHIIs due to less turbulent mixing

(Morris et al. 2001). Aside from a daily wind speed pattern (see

wind time series on the bottom row of Fig. 4a), wind shows little

variability between each day of the analysis period; therefore,

there is not enough nighttime variation in the modeled wind

speed data to find the typical UHI wind speed relationship.

Instead Fig. 10 shows that the UHI is enhancing wind speeds.

This relationship may have a self-regulating effect on the UHI

that warrants further investigation, that is, increased advection

of cooler rural air to the city.

UHIs are known to increase boundary layer heights at night

due to increased levels of heat propagating vertically (Pal et al.

2012). Relative to the NOURB case boundary layer height of

approximately 370m, we find etm height increases of 86 (std

dev of 143m), 104 (std dev of 151m), and 125m (std dev of

161m) at night over the city (Fig. 11a). During the day we find

slight height reductions (Fig. 11b). Boundary layer heights for

each case and the standard deviation created by the ensemble

are provided in Figs. S3 and S4, respectively, in the online

supplemental material. At night, the largest height increases

are found in the northeast sectors of the city (similar to the

UHI pattern discussed above), and extend into the immedi-

ately adjacent downwind rural areas, up to ;5 km for the

2016 case.

A transition to reduced boundary layer heights are modeled

downwind of areas of increased boundary layer heights (see

area northeast of Lagos in Fig. 11a). Boundary layer height

reductions extend to approximately the length scale of the city

and are not present at upwind locations nor are they as large as

the increases in heights over the city. Downwind reductions in

boundary layer heights are also present in the daytime cases,

although there is less spatial consistency to the pattern. To

quantify the downwind boundary layer height reduction, we

crop the domain to the northeast sector, with nonurban land

use only. Furthermore a 5 3 5 gridcell buffer was removed

northeast of any urban grid cell to account for the transition

from increased to decreased heights. Within the northeast

sector of the domain, the overall etm reduction in boundary

layer heights of 9 (std dev of 127m), 16 (std dev of 133m), and

22m (std dev of 141m) are found. SNR values for the boundary

layer height reduction and t test comparing NOURB to 2016

are provided in Fig. 12. Although the SNR values are lower

than found for UHII and mean boundary layer reductions

appear small, they occur over a downwind area of approxi-

mately 3000 km2, or larger considering the effect extends to the

domain edge. Cautiously, while we note this feature in our

results, modeled boundary layer heights are sensitive to the

choice of boundary layer schemes (Kim et al. 2013). Although

reduced boundary layer heights downwind would be difficult to

observe because of a lack of downwind vertical observations

from cities, this feature has been theorized to be caused by the

outflow of warm urban air (in an urban plume) thus sup-

pressing downwind boundary layer heights (Barlow 2014). This

theory is supported by idealized modeling (Zhang et al. 2014).

4. Conclusions

Lagos is one of the fastest-growing cities in the world, tri-

pling in size over 1984–2016. This has social and environmental

impacts, yet excess heat caused by the urban heat island effect

has not been well explored in the Global South, reflecting a

broader paucity of environmental measurement and modeling

studies. Due to sparse data availability, we explored UHI ef-

fects in Lagos using an ensemble approach with the WRF nu-

merical model. Overall, our results indicate that (i) the area

influenced by the UHI effect is increasing steeply, (ii) within

Lagos’s urban outline the UHI intensity (UHII) is increasing,

and (iii) rural areas downwind are being warmed by the city.

Although we accounted for internal model variability, model

evaluation was only possible at a single location owing to

limited observations in the region. Although we are confident

FIG. 10. Relationship between the hourly nighttime ensemble

spatial mean wind speed and UHI within the 2016 urban outline.
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in the sign of our results, the precise effects of urbanization in

Lagos may not be fully realized.

Nighttime ensemble-time-mean (etm) UHII increased 0.448C
between 1984 and 2016 using a fixed, monthlong set of meteoro-

logical conditions for each case. At an hourly scale, maximum

modeled UHII values increased between 1984 and 2016 by 0.948
to 4.138C. The true scale of the impact is seen spatially, where the

area in which etm UHIIs exceed 18C was found to steeply in-

crease. The largest UHIIs were found to the northwest of the city

for each case, caused by a dominant southwesterly wind that also

advected the city’s warmth into downwind rural areas. While in-

creased nighttime temperatures are most commonly associated

with urbanization, we also found modification to boundary layer

heights and surface-level winds. Of particular interest was the

decreased boundary layer heights downwind of Lagos. Although

small in magnitude compared to daytime boundary layer height

increases over the city, this has potential implications for rural

communities near Lagos, for example, potential worsening of air

quality due to the shallower mixing layer.

Despite accounting for internal model variability by using a

WRF ensemble, our approach is limited by a lack of data for

configuration and evaluation (although a favorable compari-

son against temperature and wind observations at Lagos

Airport was found). To illustrate the UHI under more extreme

conditions, our simulations were conducted against a back-

ground of an unusually warm recent period, yet the UHII will

be sensitive to the prevailing meteorology. Our results repre-

sent Lagos’s dry season only and further exploration is needed

to map seasonal changes in UHI intensities. Notwithstanding,

the modeling results in this paper suggest a significant,

FIG. 11. Etm boundary layer height differences between each urban and the NOURB case for (a) day and (b) night.
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urbanization-driven warming of Lagos’s local climate of

0.158C decade21, 25% faster than climate change, which is

happening in addition.

With temperatures projected to increase in this region for all

future climate scenarios (IPCC 2013), combined with this rapid

UHI growth, there is a clear need to better understand the

future heat of cities like Lagos, to better inform their adapta-

tion and mitigation needs. However, despite efforts to increase

observational capacity in Nigeria (Hussaini and Yakubu 2019),

the paucity in observational data remains a challenge.We hope

that these results may be used to support local studies on the

changing environment and help prioritize new observations

in a rapidly warming area that is already home to tens of mil-

lions of people and that may triple in size again by the end of

this century.
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