
Search and restore: a study of cooperative multi-robot systems

HAIRE, Matthew Samuel

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/29235/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/29235/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Search and Restore: A Study of Cooperative Multi-robot Systems

Matthew Samuel Haire

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University

for the degree of Doctor of Philosophy

March 2021

1

I hereby declare that:

[1] I have not been enrolled for another award of the University, or other academic or

professional organisation, whilst undertaking my research degree.

[2] None of the material contained in the thesis has been used in any other submission

for an academic award.

[3] I am aware of and understand the University's policy on plagiarism and certify that

this thesis is my own work. The use of all published or other sources of material

consulted have been properly and fully acknowledged.

[4] The work undertaken towards the thesis has been conducted in accordance with

the SHU Principles of Integrity in Research and the SHU Research Ethics Policy.

[5] The word count of the thesis is 47000.

Name Matthew Samuel Haire

Date March 2021

Award PhD

Faculty The Department of Engineering and Mathematics

Director(s) of Studies Dr. Xu Xu

2

Dedication
To Xu, my trusted mentor and friend, it is not an exaggeration to admit that I could not

have done this without you. There were many times during this journey where I

believed I would not make it but your dedication, wisdom and kindness continuously

inspired me to never give up. I will never forget what you have done for me and I am

eternally grateful.

To Kat, my beloved Fiancée, everyday I’m thankful you came into my life. I cannot

express in words how much your support and love has helped me over the years. You

were there for me even in the darkest of times and without you I don’t know if I would

have ever achieved this long held dream. Thank you for staying by my side, I love you

now and always.

To my mother and father, thank you for believing in me and supporting me through all

of this. Whenever I was unsure or troubled I knew you would always be there to help

me. You always believed I could do it, even when I didn’t believe in myself. It’s been a

long journey but I finally made it and I hope I did you proud!

Finally, to everyone who helped me along this path including my dedicated second and

third supervisors Lyuba and Hongwei, my study partner Alexander, and my best friend

David-Jeremy; your support means so much to me and I am without a doubt a better

scholar and individual for your advice and friendship. You are all prime examples of

how if we work together, anything is possible. Thank you!

3

Abstract
Swarm intelligence is the study of natural biological systems with the ability to

transform simple local interactions into complex global behaviours. Swarm robotics

takes these principles and applies them to multi-robot systems with the aim of

achieving the same level of complex behaviour which can result in more robust,

scalable and flexible robotic solutions than singular robot systems. This research

concerns how cooperative multi-robot systems can be utilised to solve real world

challenges and outperform existing techniques.

The majority of this research is focused around an emergency ship hull repair scenario

where a ship has taken damage and sea water is flowing into the hull, decreasing the

stability of the ship. A bespoke team of simulated robots using novel algorithms enable

the robots to perform a coordinated ship hull inspection, allowing the robots to locate

the damage faster than a similarly sized uncoordinated team of robots. Following this

investigation, a method is presented by which the same team of robots can use self-

assembly to form a structure, using their own bodies as material, to cover and repair

the hole in the ship hull, halting the ingress of sea water.

The results from a collaborative nature-inspired scenario are also presented in which a

swarm of simple robots are tasked with foraging within an initially unexplored

bounded arena. Many of the behaviours implemented in swarm robotics are inspired

by biological swarms including their goals such as optimal distribution within

environments. In this scenario, there are multiple items of varying quality which can be

collected from different sources in the area to be returned to a central depot. The aim

of this study is to imbue the robot swarm with a behaviour that will allow them to

achieve the most optimal foraging strategy similar to those observed in more complex

biological systems such as ants. The author’s main contribution to this study is the

implementation of an obstacle avoidance behaviour which allows the swarm of robots

to behave more similarly to systems of higher complexity.

4

Table of Contents
Search and Restore: A Study of Cooperative Multi-robot Systems .. 0

Chapter 1. Introduction .. 7

Section 1.1 Background .. 7

Section 1.2 Importance of the research ... 7

Section 1.3 Motivation .. 8

Section 1.4 Research challenges ... 9

Section 1.5 Outline of Thesis .. 10

Section 1.6 Main Contributions .. 12

Chapter 2. Literature Review ... 13

Section 2.1 Main Principles ... 13

Section 2.2 Historical Developments of Swarm Robotics ... 15

Section 2.3 Behaviour Based Robotics .. 19

Section 2.4 Multi-Robot Models ... 23

Section 2.5 Exploration ... 26

Section 2.5.1 Dispersion and Pattern Formation .. 27

Section 2.5.2 Coordinated Motion/Flocking ... 32

Section 2.5.3 Localization and Mapping ... 36

Section 2.6 Self-Assembly ... 40

Section 2.6.1 Aggregation ... 40

Section 2.6.2 Self-Assembly .. 42

Section 2.7 Foraging .. 46

Section 2.8 Summary .. 51

Chapter 3. Ship Hull Inspection: Complete Area Coverage Algorithm 53

Section 3.1 Emergency Ship Hull Repair ... 54

Section 3.1.1 Background ... 54

Section 3.1.2 General ESHR method ... 55

Section 3.2 Simulated Robot Morphology .. 59

Section 3.2.1 Robot Specification ... 59

Section 3.2.2 Simulated Robot Design .. 62

Section 3.3 Ship Hull Inspection Methodology ... 69

Section 3.4 Experiment Setup ... 75

Section 3.5 Results .. 80

Section 3.5.1 Ideal Conditions... 80

Section 3.5.2 Noisy Sensor Measurements .. 81

5

Section 3.5.3 Partial Population Failure .. 84

Section 3.5.4 Effect of Ship Size on Results .. 86

Section 3.6 Discussion ... 86

Chapter 4. Ship Hull Repair: Self-Assembly Algorithms .. 90

Section 4.1 Simulated Robot Morphology .. 91

Section 4.1.1 Robot Specification ... 91

Section 4.1.2 Simulated Robot Design .. 93

Section 4.2 Methodology .. 96

Section 4.3 Experimental setup .. 106

Section 4.3.1 Robot Congestion Setup.. 109

Section 4.3.2 Obstacle Avoidance Setup... 110

Section 4.4 Results .. 112

Section 4.4.1 Robot Congestion Results ... 113

Section 4.4.2 Obstacle Avoidance Results .. 118

Section 4.5 Discussion ... 124

Chapter 5. Collective Foraging Using Nature Inspired Swarm Robots 129

Section 5.1 Problem Definition and Robot Morphology .. 130

Section 5.1.1 Kilobots .. 131

Section 5.1.2 Augmented Reality Kilobots (ARK) .. 133

Section 5.1.3 Stigmergic Communication and Wall Avoidance .. 135

Section 5.2 Methodology .. 137

Section 5.2.1 Individual Behaviour ... 138

Section 5.3 Experimental Setup and Model Prediction .. 143

Section 5.3.1 Model of Optimal Resource Collection ... 143

5.3.2 Equal Distances and Varying Qualities ... 145

5.3.3 Equal Qualities and Varying Distances ... 147

Section 5.4 Results .. 149

Section 5.4.1 Tuneable and Adaptive Swarm Response ... 150

Section 5.5 Discussion ... 156

Chapter 6. Conclusions and Future Work .. 158

Section 6.1 Main conclusions .. 158

Section 6.1.1 Ship Hull Inspection: Complete Area Coverage .. 159

Section 6.1.2 Ship Hull Repair: Aggregation and Self-Assembly 160

Section 6.1.3 Nature Inspired Swarms: Foraging and Obstacle Avoidance 162

Section 6.2 Future Work ... 163

6

Section 6.2.1 Complete Emergency Ship Hull Repair .. 163

Section 6.2.2 Robot Avoidance in Foraging Swarm Robots .. 164

References .. 166

Appendix A: Ship Hull Inspection Webots Simulation Code ... 182

SHIR_A1_ROB_PPF.c ... 182

SHIR_A2_CON.c ... 187

Appendix B: Ship Hull Repair Netlogo Simulation Code ... 192

ESHR SA Experiment 1 .. 192

ESHR SA Experiment 2 .. 199

Appendix C: Additional Results from Ship Hull Repair Experiments 209

Breach Diameter 0.2m (No Obstacles) ... 209

Breach Diameter 0.6m (No Obstacles) ... 212

Obstacle Diameter 0.2m (Breach Diameter 0.4m) ... 214

Obstacle Diameter 0.6m (Breach Diameter 0.4m) ... 217

Appendix D: Publications and Research Outputs .. 220

Conference Papers .. 220

Journal Papers ... 220

Posters .. 220

7

Chapter 1. Introduction

Section 1.1 Background

Swarm intelligence is the study of natural biological systems with the ability to

transform simple local interactions into complex global behaviours. Swarm robotics

takes these principles and applies them to multi-robot systems with the aim of

achieving the same level of complex behaviour which can result in more robust,

scalable and flexible robotic solutions than singular robot systems. The key to

overcoming individual shortcomings in multi-agent systems is communication. Isolated

individuals only have access to their immediate surrounds which reduces the

information available to them and limits their ability to make informed decisions. By

communicating with others, these limits are removed and the extent of their

knowledge is no longer restricted to their individual reach, but to the reach of the

collective. Inter robot communication creates opportunities for individuals to

collaborate, enabling them to achieve tasks they would be incapable of performing

alone, and increasing the speed at which achievable tasks can be completed. This

research demonstrates these principles by showing how cooperative multi-robot

systems can be utilised to solve real world challenges and outperform existing

techniques.

Section 1.2 Importance of the research

Researchers have begun to recognise the power of swarm intelligence and the

solutions it could provide if appropriately applied to multi-robot systems from the

early 2000s to the present day. Solutions which rely on a single highly complex robot

may be capable of performing a variety of tasks simple robots would be unable to

achieve themselves, however this comes with a number of drawbacks, prime among

these being poor scalability and the infamous single point of failure (SPOF). When

aspects of a problem grow (such as the size of an environment to be monitored or

explored) it becomes more difficult for a single robot system to scale its solution,

reducing efficiency and increasing the time taken to complete tasks. Should a single

robot break or malfunction the entire system must come to a halt until repairs have

been completed.

8

Cooperative multi-robot systems offer a viable alternative to the conventional single-

robot solution which can overcome both of these issues. Multi-robot systems

experience less reduction in performance when scaling their approach to a growing

problem thanks to the ability to easily add more robots and expand the system’s

reach. If a single robot breaks or malfunctions in a multi-robot system the team can

still continue to function, albeit at a reduced efficiency, removing the SPOF associated

with single robot solutions. When designed correctly, multi-robot systems are even

capable of changing their collective approach to match changing problems such as

navigating dynamic environments.

It stands to show that cooperative multi-robot systems may offer many advantages

compared to more complex individual robots, but this is highly dependent on the

behaviours built into each robot. Robots which are incapable of communicating or

coordinating with other robots do not offer the benefits of multi-robot systems as

listed above. As such, the subject of how to design individual robot behaviours which

result in desired complex global behaviours is of paramount importance to the field of

swarm robotics research. This thesis presents three novel demonstrations of how

individual robot behaviour and communication are leveraged to create complex global

behaviours applied to an entirely new approach to emergency ship hull repair, and

nature inspired foraging scenarios. This research on multi-robot systems performing

emergency ship hull repair is a first of its kind study and is the most significant

contribution to knowledge. All of the studies serve as new examples of how

cooperative multi-robot systems may be applied to address real-world problems and

showcase the possibilities of swarm robotics.

Section 1.3 Motivation

The motivation behind pursuing this research came from the author’s interest applying

robots to efficiently solve real world problems that are deemed hazardous to human

life. During the author’s time in the British Royal Fleet Auxiliary, he was instructed on

conventional methods of emergency ship hull repair and the importance of regaining

ship stability quickly. The task of emergency ship hull repair is entrusted to human

crew members, but being a dangerous and time constrained procedure it increases the

risk of injury to the crew. It was during the author’s research into swarm robotics when

a method of delegating the emergency ship hull repair procedure to a multi-robot

9

system was first formed. Using robots to autonomously repair ship hull damage would

reduce the risk to human life by removing them from the situation and allowing them

to focus on other tasks. Studying at Sheffield Hallam University allowed the author to

learn from some of the most respected swarm robotics researchers while undertaking

his research. This exchange of knowledge and tutelage increased the author’s

knowledge of cooperative multi-robot systems such that he began consider how this

technology could be applied to solve other issues beyond ship hull repair. This interest

encouraged the author to participate in a joint research project with another team of

swarm robot researchers at the University of Sheffield and the collaboration resulted

in a comprehensive study on designing optimal foraging behaviours in multi-robot

systems, which served to expand the author’s knowledge of open issues in swarm

robotics, but also how current swarm robots could be applied to solve other real-world

problems.

Section 1.4 Research challenges

There are several open issues in the field of swarm robotics yet to be full addressed

which had to be taken into consideration when proceeding with the studies. One of

the more significant issues to address is the lack of a general design pattern for swarm

robot systems – how to achieve any desired global behaviour from the design of

individual robot behaviours and vice versa. While some progress has been made

towards realising formal design patterns for some specific global behaviour, a general

design pattern has not yet been formulated. Furthermore, many existing design

patterns are highly dependent on the robots physical morphology which makes them

difficult to implement on multi-robot systems using different robots from the example.

Without a general design pattern, the author had to utilise the latest body of research

when designing the individual robot behaviours to create the desired global

behaviours for the studies.

This research presented a number of additional challenges for the author to overcome.

The ship hull repair scenario made use of bespoke simulated autonomous underwater

robots, whose design was based on existing technologies which had been

demonstrated in other underwater robots. There is a variety of open-source and

proprietary robot simulators available for carrying out experiments but few of these

have been optimised for swarm robotics research. The simulators which are better

10

designed to run multi-robot simulations also vary in their ability to model different

environments such as air, ground, and water. Of the fraction of simulators suitable for

multi-robot systems, only a very small portion of these can simulate fluids

appropriately. This presented a challenge to the researchers in choosing a suitable

simulator to carry out the ship hull repair experiments while minimising the reality

gap.

Section 1.5 Outline of Thesis

The research is separated into six chapters. Chapter 1 opens with a brief introduction

to the subject of artificial swarm intelligence, the main subjects explored within this

thesis, and the significance of the research. This is followed by an explanation of the

author’s interest in pursuing cooperative multi-robot systems research and a

discussion of how the author addresses the more prominent open issues and

challenges in swarm robotics through these studies. The Chapter concludes with this

outline of how the paper will proceed, providing a summary of the contents contained

in the main body of the thesis.

Chapter 2 provides a comprehensive review of the historical developments of swarm

robotics and multi-robot systems from their inception to the present day. Included are

key publications which established the theories and methodologies found to be most

relevant to the studies performed in this thesis such as: the main principles of swarm

robotics, historical developments, behaviour-based robotics, multi-robot modelling,

pattern-formation, coordinated motion, localisation and mapping, multi-robot

exploration, aggregation, modularity, self-assembly, and foraging behaviours. The

methodologies present in each subsequent chapter are linked to this literature review,

to show how the approach was informed by established swarm robot methods and

theories. The final section identifies gaps in existing research and indicates how the

studies in this thesis contribute to bridging these gaps.

Chapter 3 is an extension of the published work by Haire, et al. (2019a) and presents

the emergency ship hull repair scenario and proposes solutions which use a group of

cooperative autonomous underwater robots to perform inspection. The methodology

for the ship hull inspection is explained in-depth and is followed by a presentation,

analysis and discussion of the results from the experiments. The morphology of the

11

individual robots and their design is discussed along with the simulated environment.

The chapter concludes with a detailed discussion of the results and their implications

on future experiments concerning emergency ship hull repair and complete area

coverage (CAC) algorithms applied to swarm robot systems.

Chapter 4 is an extension of the published work by Haire, et al. (2019b) and presents

the next stage of the emergency ship hull repair process, providing an in-depth

explanation of the methodology used for the swarm robots performing self-assembly.

Differences in robot morphology from those used in Chapter 5 are identified here

along with the simulated environment used to carry out experiments. The chapter

proceeds to discuss the experimental setup, presenting the results of the experiments,

and concludes with a discussion of the implications of the findings on future

experiments concerning emergency ship hull repair and self-assembly algorithms

applied to swarms of homogeneous modular robots.

Chapter 5 is an extension of the published work by Talamali, et al. (2020) to which the

author of this thesis contributed. The chapter discusses how nature-inspired swarm

robot systems can be applied to solve foraging scenarios and obstacle-avoidance tasks,

and then delves into the methodologies used in the experiments. The study examines

swarm-size dependant foraging strategies, how these influence the performance of a

swarm of robots, and how the author’s implementation of obstacle avoidance

benefited this collaborative study. The chapter concludes with a discussion of the

implications of these studies, and how they impact the field of swarm robots and will

influence future studies of the subject.

Chapter 6 is the final chapter which provides a succinct conclusion for each of the

studies presented in the thesis. Each of the studies provides a contribution to the

existing knowledge of swarm robotics research and these are identified here. The

chapter ends by proposing a collection of recommended future studies that could

further advance the field of swarm robotics with respect to the studies presented

within this thesis. All references are provided in the section following this along with

appendices containing relevant code, supplemental figures, tables and graphs.

12

Section 1.6 Main Contributions

The research presented within this thesis contains three novel contributions to the

field of cooperative multi-robot systems. Chapter 3 presents an application that utilises

theories of cooperative multi-robot exploration and communication to create a

complete area coverage search method for a swarm of robots tasked with inspecting a

damaged ship hull. The cooperative search algorithm was proven in simulation to be

more effective at achieving complete area coverage in less time than the same multi-

robot system using an uncoordinated search algorithm. Additionally, the chapter

presents a simulated robot sensor arrangement that would allow robots to maintain a

set distance from a 3D object, allowing them to treat their environment more akin to a

2D plane, which allows for simpler implementations of the search algorithm.

Chapter 4 expands on the scenario presented in Chapter 3 with respect to autonomous

ship hull repair using a swarm of robots. The main contribution of this research is a

method of self-assembly that would allow modular robots to form a repair patch

capable of coving a hole in a ship hull. In addition, the results from the experiments

informed an improved self-assembly approach which suggests a method of enhancing

the initial approach by controlling the angle of approach the robots use when

navigating their way to the damage, or by allowing more than one assembly location

for the repair patch.

The main contribution of chapter 5 is the implementation of obstacle avoidance

behaviour with low computational overhead on a large swarm of robots tasked with

collective foraging in environments. The swarm of robots are able to tune their

responses to their environment to create the best distribution of agents balancing

quality of items to collect against the distance required to retrieve them. The obstacle

avoidance behaviour solved a major issue of physical robots becoming stuck against

the walls of their bounded arena and other robots, which improved the performance

of the swarm, and created a system more capable of emulating the collective foraging

behaviours observed in biological swarm such as ants.

13

Chapter 2. Literature Review

Section 2.1 Main Principles

Swarm intelligence is considered the study of natural biological systems with the ability

to transform simple local interactions into complex global behaviours, such as bees

working together to build nests, ants exploring environments and foraging for food, or

the pattern formation in schools of fish evading predators (Bonabeau, Dorigo, and

Theraulaz, 1999; Camazine, Deneubourg, Franks, Sneyd, Theraulaz, and Bonabeau,

2003). Swarm robotics takes these same principles and applies them to multi-robot

systems with the aim of achieving the same level of complex global behaviour from

simple local robotic interactions, which can result in more robust, scalable and flexible

robotic solutions (Beni, 2005; Şahin, 2005). The first definition of the term swarm

robotics, which is still regarded as the most complete description of the discipline

(Barca and Sekercioglu, 2013; Brambilla, Ferrante, Birattari, and Dorigo, 2013; Navarro

and Matía, 2013; Bayindir, 2016; Nedjah and Junior, 2019), was proposed by Şahin

(2005) in his seminal paper ‘Swarm Robotics: From Sources of Inspiration to Domains

of Application’:

“Swarm robotics is the study of how a large number of relatively simple

physically embodied agents can be designed such that a desired collective

behaviour emerges from the local interactions among agents and between the

agents and the environment.”

Following this definition, Şahin (2005) identified the main principles of swarm robot

systems with a focus on three desired properties: robustness, flexibility, and scalability.

Robustness is the ability of a system to continue to function, albeit at lower

performance, when a portion of the system fails or in the presence of disturbances in

the environment. Scalability is the ability of a system to increase and decrease the

number of individuals of the group and continue to function using only the same local

interaction rules. Flexibility is the ability of a system to adapt and address changing

demands such that the system can reconfigure its group members or approach to

address various tasks.

These are the main aspects of a swarm robot system, but in order to further

distinguish them from other closely related subjects and more general multi-robot

14

systems, Şahin (2005) identified additional sets of criteria: The individuals that make

up the swarm should be autonomous – they should possess physical embodiment with

the ability to interact with the environment. Studies of social insects (Camazine et al.,

2003) showed that natural systems are able to achieve robust, flexible and scalable

behaviours without the need for a centralised control; these same attributes are

desired for swarm robot systems and so designers should make effort to ensure their

systems are also decentralised. The abilities of the system should involve coordination

of large numbers of robots, or at least smaller numbers of individuals with the ability

to scale to higher population sizes without the need to change the simple local rules of

interaction. The individuals that make up the group should be homogeneous with no

variance between robots – heterogeneous groups of robots with predefined roles and

different rules of interaction are less scalable and robust than homogeneous groups

and as such rarely meet the criteria to qualify as a swarm system. The individual robots

should be relatively simple compared to the task at hand, such that an individual

would be incapable of carrying out the task by itself, or completes the task much less

efficiently than a group of individuals would. Finally, the robots used to make up these

systems should only need to utilise limited sensing and local communication for the

swarm to achieve its desired behaviour. This form or distributed coordination removes

the need for global communication methods that would likely hinder the scalability of

swarm.

These definitions were initially intended as a means to determine to what degree the

term swarm robotics might apply to a given multi-robot system, but had since evolved

to serve as the corner stones for defining most swarm robot systems in use today.

Most importantly, true swarm robot systems today are described as multi-robot

systems which are capable of generating complex global behaviours from simple local

interaction; these are systems which are capable of performing more than the mere

sum of its individual parts. In the following section, the origin of the research of swarm

robotics is discussed with insights into how the subject was originally formed from

fusions of the studies of multi-robot systems and collective intelligence observed in

nature.

15

Section 2.2 Historical Developments of Swarm Robotics

Swarm robotics is a relatively new area of research, but its founding extends back to

the early 1980s when researchers were using cellular automata to model and replicate

the patterns and behaviours observed in nature (Wolfram, 1983). Wolfram’s studies of

self-organisation and the ability of cellular automata to produce complex patterns

from simple rules sparked the imagination of scientist giving new momentum to the

study of how such natural complex behaviours may be replicated in artificial systems.

In the late 1980s concepts and studies of multi-robot systems with the ability to self-

organise began to emerge and a new term to describe them; cellular robots (Fukuda

and Nakagawa, 1988; Beni, 1988). This term was intended to indicate how these

groups of simple robots could behave like the cells of an organism, assembling to form

more complex structures. The term swarm intelligence began being used by Beni

(1988), Beni and Wang (1989; 1991), and Hackwood and Beni (1991; 1992) to describe

the ability of these cellular robot systems to generate patterns and complexity through

simple local interactions. However, research into biological systems displaying

collective intelligence such as insect colonies by Pratte, Gervet, and Theraulaz (1990)

was also being conducted at the same time, and the crossover between the disciplines

quickly became apparent. These biologists found that the concepts of swarm

intelligence could be used to describe the behaviours they had been observing in

nature. After all, the systems they were describing were also decentralised,

homogeneous and made up of large groups of relatively simple individuals, but

capable of displaying complex behaviours.

Biologists and roboticists alike began utilising the concepts of swarm intelligence in

their research to find new ways of understanding how natural systems functioned and

how these discoveries could be applied to artificial systems to generate complex

behaviours (Kube and Zhang, 1993; Balch and Arkin, 1994; Dorigo, Maniezzo, and

Colorni, 1996; Bonabeau, Theraulaz, Deneubourg, Aron, and Camazine, 1997; Balch

and Arkin, 1998; Arkin, 1998). It soon became apparent that the term swarm

intelligence could be used to describe both the behaviours of natural and artificial

systems, and by the late 1990s the definition was extended to include attempts to

design algorithms or distributed problem-solving devices inspired by the collective

behaviour of social insect colonies and other animal societies (Bonabeau et al., 1999).

16

In the early 2000s it had been revealed that social insects indeed functioned without

centralized coordination and yet their interactions and behaviours formed a natural

system that was robust, flexible and scalable (Camazine et al., 2003) – properties

considered desirable for distributed multi-robot systems. This helped solidify the idea

that artificial systems with these properties could be developed if behaviours from

natural systems could be replicated, which boosted research into reproducing the

behaviours observed in ants, bees, fish, and birds in multi-robot systems. By this point

in time, there were a variety of terms being used to describe these kinds of multi-robot

systems such as the earlier mentioned cellular robotics, robot colonies, distributed

robotics, and collective robotics (Kube et al., 1993; Arkin and Bekey, 1997; Martinoli,

1999). With no universal terminology yet in place Sahin (2005) sought to establish the

term swarm robotics as the title of this disciple, distinguishing the subject from general

multi-robot systems. He provided the first definition and listed the three main

principles of robustness, flexibility, and scalability – which are still recognised as the

defining points of swarm robot systems today (Nedjah et al., 2019).

There were a variety of suggested applications of swarm intelligence prior to Sahin’s

definition of swarm robotics, but by the mid-2000s some of the more sought-after

domains of application had become clearer. These domains included: tasks that

covered a region, such as space exploration (Burgard, Moors, Stachniss, and Schneider,

2005), environmental monitoring (Dhariwal, Sukhatme, and Requicha, 2004),

surveillance (Solomon, 2004), or hazard detection (Zarzhitsky, Spears, and Spears,

2005); tasks considered too dangerous for humans, such as robot mine detection

(Kumar and Sahin, 2003); tasks that may scale up or down in time, such as

containment of oil spills (Kakalis and Ventikos, 2008); and tasks where redundancy is a

benefit, such as forming dynamic communication networks in disaster scenarios

(Witkowski, El-Habbal, Herbrechtsmeier, Tanoto, Penders, Alboul, and Gazi, 2008).

The subject area of swarm robotics only continued to grow with researchers tackling a

plethora of problems with the aim of one day realising many of the suggested

applications of this new technology. Along with the advances came a number of

taxonomies on the subject of swarm robotics each identifying the most prominent

problems being tackled by researchers and categorising them into various subject

areas. Of the variety of suggested classifications of the subject, Brambilla et al. and

17

Bayindir’s taxonomies are currently the most accepted in the literature (Nedjah et al.,

2019). Brambilla divided the works of swarm robotics into the two classes of methods

and collective behaviours as shown in Table 2.1. While Bayindir divided the subject

into the five main axis of modelling, behaviour, design, communication, analytical

studies, and problems shown in Table 2.2.

Table 2.1 Brambilla et al.’s (2013) taxonomy of swarm robotics research

Methods

Design methods
Behaviour-based design methods

Automatic design methods

Analysis methods

Microscopic models

Macroscopic models

Real-robot analysis

Collective

behaviours

Spatially-organising

behaviours

Aggregation

Pattern formation

Chain formation

Self-assembly and morphogenesis

Object clustering and assembling

Navigation behaviours

Collective exploration

Coordinated motion

Collective transport

Collective decision-making
Consensus achievement

Task allocation

Other collective

behaviours

18

Table 2.2 Bayindir’s (2016) taxonomy of swarm robotics research.

Modelling

Sensor-based

Microscopic

Macroscopic

Cellular Automata

Behaviour design

Nonadaptive

Learning Reinforcment Learning

Evolution

Communication
Interaction via Sensing

Interaction via Communication

Analytical Studies

Problems

Pattern Formation

Aggregation

Chain Formation

Self-assembly

Coordinated Movement

Hole Avoidance

Foraging

Self-Deployment

Both Brambilla et al. and Bayindir’s taxonomies can be used to identify which subjects

a study belongs to and help identify how it may relate to other research categories. For

instance, in this thesis the following subjects could be categorised according to

Brambilla as follows: Complete area coverage algorithms using a swarm of robots in

Chapter 4 can be categorised as collective behaviours, navigation behaviours or

spatially-organizing behaviours, collective exploration, coordinated motion, and chain

formation. Self-assembly using a swarm of robots in Chapter 5 can be categorised as

collective behaviours, spatially-organizing behaviours, aggregation, self-assembly and

morphogenesis, collective decision-making, and consensus achievement. Foraging with

obstacle avoidance in Chapter 6 can be categorised under methods, analysis methods,

and real robot analysis. It could also be categorised under collective behaviours,

19

collective decision making, task allocation, or navigation behaviours and collective

exploration.

The following sections and studies within were mainly selected according to the

catagories outlined in Brambilla and Bayindri’s taxonomies, but only lists those that are

most applicable to the subsequent research presented in Chapters 3, 4, and 5 of this

thesis. They include discussions of the most prominent studies that have contributed

to the advancment of swarm robotics, the methods and approaches that have

emerged, and identifies the papers that have had a significat influence on this thesis

and helped inform the design process for each robot system.

Section 2.3 Behaviour Based Robotics

The most widely used approach to designing robots with artificial intelligence (AI),

prior to the mid-1980s, used what became known as the symbolic system, where

robots used symbols to represent the world around them and perform mathematical

functions to solve various scenarios (Feldman, and Sproull, 1977). This approach to AI

saw many successes in solving problems encountered by robots, but as the scenarios

to solve became more complex, the computation needed to obtain solutions became

increasingly expensive. To solve this dilemma, a new approach to achieving robotic

solutions was proposed: behaviour-based robotics (Brooks, 1986; 1990). The symbolic

system approach to AI relied heavily on high-level cognitive processes such as

representation and reasoning to achieve desired robot behaviours, but in the

behaviour-based approach the perceptions of the robots were directly coupled with

actions resulting in solutions that were much less computationally expensive - the key

to this is in how the task to be performed is decomposed into subtasks. In the symbolic

system approach the control system of the robot is divided into separate modules to

find solutions via a process of functional decomposition, where the problem is split

into series of sequential processes such as perception, modelling, planning, and

execution as shown in Fig.2.3.1. Conversely, behaviour-based robot control systems

develop solutions using behavioural decomposition, where the solution is represented

as separate independent processes running simultaneously following the subsumption

architecture as shown in Fig.2.3.2.

20

Fig.2.3.1 Functional decomposition of a desired robot task, adapted from Brooks

(1986).

Fig.2.3.2 Behavioural decomposition of a desired robot task, adapted from Brooks

(1986).

Contrary to the sequential function blocks of the symbolic system, behaviour-based

architectures are typically represented as stacks of parallel concurrent behaviours. One

of the first methods of dictating how the layers interact is known as subsumption

architecture (Brooks, 1986), called such due to the way it subsumes lower levels of

behaviour. In subsumption architecture the bottom layers deal with the most crucial

behaviours to the robot’s survival such as obstacle avoidance and the top levels

control more complex processes such as object recognition, localization or mapping.

These systems are designed with a bottom-up approach, starting with the simplest

most essential behaviours and only adding higher behaviour once the lower-level

behaviours have been tested, refined, and proven functional and robust. Although

higher level behaviours can rely on the functioning of lower-level behaviours, they do

not explicitly use the lower levels as subroutines, only as a set of existing competences.

Subsumption is one of the better documented methods of coordinating the different

levels but there are alternative methods of showing how the different levels of

21

behaviours correspond to one another which are compared in Arkin’s (1998) review of

behaviour-based robotics.

When subsumption architecture was first proposed, Arkin (1989) authored an

alternative approach to behaviour-based robotics using the concept of motor schema.

Motor schema theory is a method that is able to describe the behaviour of agents

using a higher level of abstraction and representing them as modules. There are a

number of definitions of schema which depend on the area of application but for the

purpose of encoding robotic behaviours, Arkin (1998) defined schema as follows:

“A schema is the basic unit of behaviour from which complex actions can be

constructed; it consists of the knowledge of how to act or perceive as well as

the computational process by which it is enacted.”

Much like other behaviour-based methods, motor schema demonstrated advantages

over the symbolic system approach to the design of control systems for autonomous

robots. In motor schema the modules that represent different behaviours execute

concurrently and all of the responses formed by the modules are represented as

vectors using potential fields. Unlike subsumption architecture, coordination between

the modules is achieved using vector addition and there is no pre-defined hierarchy for

this cooperation. However, the biggest distinction between the approaches is the

inclusion of a second layer between the schema and the output of the motors, where

the information generated in each schema is fused to form a single resultant action.

This is best illustrated by Arkin (1989) in Fig.2.3.3 where he applied motor schema

theory to solve robot navigation with his perception-action schema. This method

results in extremely fast computation since only a single vector is required to be

computed at the robot’s current location.

22

Fig.2.3.3 Motor schema theory applied to robot navigation; perception-action schema

relationship, adapted from Arkin (1998).

Floreano and Mattiussi (2008) provided a good summary of the main benefits and

drawbacks of the symbolic system design and behaviour-based design. The symbolic

approach to design excels at producing robotic systems that are precise, controllable,

and predictable – qualities well suited to domain applications such as surgical robotics

or assembly line machines. The main drawback of this approach is its failure to cope

well with noise and uncertainty, which are commonly encountered in autonomous

robots. Furthermore, each function is dependent on the preceding stage of the

process, which is less robust as failures at earlier stages can greatly impact the

functioning of the system as a whole. It is also a computationally expensive process

due to the systems needs to build models and produce plans at the same time in order

to function.

The main advantages of behaviour-based robotics over the symbolic approach, such as

faster reactions, stem from the systems method of directly connecting sensory

information onto motor actions. It is a more robust design since processes run in

parallel and can operate independent of one another. This means that if one of the

behaviours fails the remaining behaviours can continue to function, although they may

see a minor impact on performance dependant on the task. It can also handle multiple

23

goals which can be dealt with by individual behaviours at different levels, with the

need for significantly higher computational power.

Both subsumption and motor schema approaches have been proven to be appropriate

methods of creating robot control systems using behaviour-based design, breaking

away from the mainstream method of using representational knowledge and instead

emphasise the use of behavioural decomposition, and tight coupling between sensors

and actuators. The robots presented in Chapters 4 and 5 were designed using the

bottom-up approach of behaviour-based design, with motor schema approach

selected as the base architecture due to its focus on non-layered cooperative

interaction between the separate behaviours.

For instance, the simulated ship hull inspection robot described Chapter 4 performs a

number of separate behaviours that execute in parallel to allow the robot to navigate

the ship hull. The data obtained from its forward facing distance sensors is passed

through a controller which links directly to a corresponding propeller, which allows the

robot to maintain a set distance from the ship hull at all times. While this process is

being executed, the robot uses additional proximity sensors to detect the presence of

other robots or obstacles and adjust its position accordingly. These two behaviours

execute simultaneously, demonstrating a method of generating formation control.

Section 2.4 Multi-Robot Models

When designing cooperative multi-robot systems, mathematical models of the swarm

are essential to evaluate several aspects, such as the feasibility of the task to be carried

out, the minimum number of robots necessary to achieve the desired behaviour, and

the effect of any disturbance to the system. There are two main methods of

describing system behaviours and in swarm robotics that fall under the categories of

microscopic and macroscopic studies. Microscopic models use a bottom-up design and

focus on the individual behaviour and interaction between members of the swarm,

while the macroscopic approach is more of a top-down design concerned with the

function of the swarm as a whole (Brambilla et al., 2013). Microscopic models of

swarm robots are typically described at different levels of abstraction from simple

points representing robots on a 2D plane, to full 3D simulations where environmental

forces, sensors, and actuators are modelled. These different levels of abstraction come

24

with inherent reality gaps, such that when the behaviour is implemented on a real

robot system the results may not align with the simulations. This is an important factor

to consider when selecting an appropriate simulator to represent swarm robot models

and is discussed further in Section 3.4.

Macroscopic models typically use mathematical formula to describe collective

behaviours and one of the most popular categories of these are the rate and

differential equations. In swarm robotics, rate equations can be used to describe the

different proportions of robots exhibiting a set number of states which are derived

from probabilistic finite state machines (PFSM). PFSM consist of different states with

descriptions of how an agent transitions between them. The transitions that govern

the shift between states can be determined by more than just the previous event, such

as specific interactions with external processes. PFSM are a form of non-deterministic

finite state automata where the probability of a given transitions between states is

also provided. Eq. (2.1) shows an implementation of a PFSA applied to a swarm of

robots tasked with collaboratively collecting sticks while avoiding the wall of their

arena (Ijspeert, Martinoli, Billard, and Gambardella, 2001).

PW =
AW

AA
 PR =

NR ∙ AR

AA
 PG1(t) =

NG1(t) ∙ AS

AA
 PG2(t) =

NG2(t) ∙ RG2(t) ∙ AS

AA

PN(t) = 1 − (PW + PR + PG1(t) + PG2(t)) (2.1)

where PN represents the number of probabilities at each iteration, PW is the

probability of encountering a wall, PR for encountering a robot, PS for finding a stick,

PG1 and PG2 for holding a stick and another robot respectively. AW is the surrounding

wall of the arena, AA is the entire arena, and AR is a single robot.

In rate equations, the states from the PFSM are represented as variables with an

equation assigned to each of them much like those of Eq. (2.1). These variables can be

used to track the number of robots in a given state as time evolves and show how

many transitions between states occur within a given time frame and under which

conditions. Indeed, rate equations has been proven effective at modelling swarm

robot systems in foraging scenarios in the presence of interference (Lerman and

Galstyan, 2002), when foraging from multiple sources (Campo and Dorigo, 2007), and

when collecting energy units (Liu and Winfield, 2010). The experimental challenges of

25

microscopic and macroscopic design were investigated by Mermoud, Upadhyay, Evans,

and Martinoli (2014), where they compared the two design methods when used to

solve a given scenario. Their results indicated that for both models, top-down

approaches were less effective than the bottom-up approaches for designing

distributed controllers, but concluded that a model-based control design methodology

that incorporated the aspects of both top-down and bottom-up approaches would be

the most effective.

Both the bottom-up microscopic and top-down macroscopic approaches have seen

success in designing swarm systems capable of carrying out simple tasks, and a

combination of the design methods may be more beneficial than focusing on a single

approach. However, determining exactly which local interactions between agents at

the microscopic level leads to a desired global behaviour at the macroscopic level and

vice-versa is a difficult task. Some promising work towards achieving a quantitative link

between these macroscopic and microscopic behaviours was conducted by Reina,

Miletitch, Dorigo, and Trianni (2015) where they identified quantitative links between

the dynamics of the microscopic implementation of a robot swarm tasked with

shortest-path discovery, and the dynamics of a macroscopic model of a foraging task

based on best-of-n site selection in honeybees.

Their study used central-place foraging strategy in an environment consisting of a

bounded space, a single central nest, and two resources sites at different distance

from the nest. The microscopic behaviour of each robot was implemented as a

probabilistic finite state machine (PFSM). The states indicated which resource site the

agent was committed to, if it were uncommitted, and whether it was in an interactive

or latent state – indicating if the state of a neighbour would affect its own

commitment state – with probabilities dictating each transition. Their microscopic

implementation was evaluated in simulation, the results of which were compared to

their macroscopic model by investigating the decision-making dynamics for varying

probabilities and for sets of different decision problems by varying the distance of the

resource sites. Their results revealed that the final distribution of agents according to

their macroscopic model and the multi-agent simulation were in agreement,

confirming the existence of a quantitative micro-macro link. This work represented a

significant step toward achieving a formal design pattern which was later refined to

26

address the spatial and topological factors that impact the micro-macro link (Reina,

Valentini, Fernández-Oto, Dorigo, and Trianni, 2015), though more research is required

before a general design pattern for swarm robots can be established.

As observed, many existing swarm robot systems are modelled through either

microscopic or macroscopic lenses and see implementation and validation in

simulation or real robots. However, Kazadi et. al (2007; 2009) found another way to

describe the properties and performance of a swarm using mathematical language to

prove their validity. Their model-independent approach used a combination of

bottom-up and top-down design to describe a desired global behaviour in terms of

tangible quantities and measurements. In their 2007 study, they used their method to

form a hexagonal pattern using a swarm whose movement was dictated by the

summed forces of individuals using artificial physics. This was extended in their 2009

study to propose that desired behaviours can be more readily achieved when a swarm

system can be described in terms of measurements within the environment. The

methods by which individual robot obtain these measurements are left open to the

interpretation of designers which they argue allows for implementation of the

behaviours across different swarms with varying morphologies.

There exist alternative methods to modelling swarm behaviour, but methods and

equations provided in this Section were highlighted as they are most applicable to

swarm robot studies discussed in Chapters 4, 5 and 6 of this thesis. For instance, the

robots presented in the ship hull inspection and foraging scenarios were each designed

using either non-deterministic finite state machines or PFSM to describe their

microscopic behaviour with the aim of achieving a desired macroscopic behaviour. The

yield variable R of chapter 5 is an example of how the optimal performance of a swarm

can be quantified using measurements directly obtained from the environment.

Section 2.5 Exploration

Swarm robot systems are inherently mobile and many applications require agents to

move within a given environment in order to accomplish their tasks. This raises the

question of how these agents should move in the environment and if there is an

optimal method of exploration that can be used for tasks such as searching an area,

building maps, or monitoring changes in an environment. Exploration of unknown

27

environments has been a subject of immense interest to researchers over the years for

both singular and multi-robot systems since solutions can be used to solve many real-

world problems of navigation in autonomous systems. These studies mainly focused

on robots gathering information about their surroundings to better inform their

decisions of how to best reach a specified goal location. Consequently, many

algorithms and methods have been developed to solve issues concerning optimal

exploration techniques such as dispersion, coverage, pattern formation, path planning,

flocking, localization, and mapping. This section discusses the various methods

employed in exploration which we found most applicable to the studies of ship hull

inspection and ship hull repair using multi-robot systems presented in Chapters 4 and

5 respectively.

Section 2.5.1 Dispersion and Pattern Formation

Dispersion is a method used by a group of robots to distribute themselves in a given

environment, without falling out of communication range in order to maximise their

coverage of an area. In order to increase the robustness of the technique, dispersion is

typically designed as a process that is not centrality planned. Effective dispersion

techniques should result in a network of distributed robots which have maximised the

area they can monitor while remaining able to communicate with their nearest

neighbours. Dispersion is a useful tool for scenarios where a swarm of robots is tasked

with monitoring environments for hazards (Zhang, Fricke, and Garg, 2011), mapping of

unknown environments (Wang, Liang, and Guan, 2011), or searching for objects or

landmarks in unknown environments (Liu and Nejat, 2013). Pattern formation can be

interpreted as a variant of the dispersion task, where robots tasked with occupying a

space display a repeatable pattern. Swarms that incorporate pattern formations in

their dispersion technique often result in systems more robust to the failure of units or

sensor errors (Turgut, Çelikkanat, Gökçe, and Şahin, 2008), which increases the ability

to recovery from gaps formed in the swarm and minimises the risk of leaving spaces

uninspected. There are many proposed approaches to solving area coverage using

dispersion and pattern formation and the following section discusses a selection of

notable studies.

When robots are tasked with dispersion and pattern formation, they require a way of

ensuring they maintain a specific distance from their closest neighbours and do not fall

28

out of communication range, and there exist a number of ways this has been achieved

in literature such as inter-robot communication (Batalin and Sukhatme, 2002;

McLurkin and Smith, 2004; Falconi, Sabattini, Secchi, Fantuzzi, and Melchiorri, 2015).

Approaches that utilise inter-robot communication rely on either the direct exchange

of information between agents, or the ability of the robot to react to the presence of

other robots that fall within their sensor range. Another approach to modulating the

distance between robots in a group is to instead use the intensity of received wireless

signals from neighbouring robots to determine how far these agents are from each

other – a method referred to as distance estimation using wireless signal strength

(Ludwig and Gini, 2006; Ugur, Turgut, and Sahin, 2007). An alternative method to

achieving dispersion uses virtual forces (Spears, Spears, Hamann, and Heil, 2004;

Sallam and Baroudi, 2015). The virtual forces approach takes inspiration from models

in physics, assigning forces to each robot and using the resultant vectors to determine

the directions agents should travel relative to their neighbour’s trajectories.

One of the most debated methods of dispersion is the use of artificial potential fields

(Reif and Wang, 1999; Balch and Hybinette, 2000; Howard, Matarić, and Sukhatme,

2002; Poduri and Sukhatme, 2004; Mikkelsen, Jespersen, and Ngo, 2013). Artificial

potential fields assign attractive and repulsive forces to all of the robots, obstacles, and

goals within an environment and use the resultant forces to achieve optimal dispersion

and path planning. While effective at allowing robots to navigate known environments,

artificial potential fields has been criticized as being ill suited to real-world

environments as it often times relies on environment features such as obstacles and

goal location to be know prior to execution. Each of these approaches discussed has

proved successful in achieving dispersion and pattern formation for the purpose of

area coverage which is used to inform the approach to complete area coverage in

chapter 3. They also provide valuable insights into optimal dispersion theory which is

discussed below.

Batalin et al. (2002) proposed two methods of dispersion for a swarm of autonomous

robots in order to maximise their sensor coverage; their informative approach where

robots explicitly communicating with other agents to determine where they should

move, and their molecular approach which communicated implicitly, following

boundary conditions with the ability to distinguish between robots and obstacles.

29

These were compared against a basic approach which used obstacle avoidance only.

Their results showed that control strategies that allow agents to communicate with

each other outperform simple obstacle avoidance techniques when performing

dispersion, and the approach which did not explicitly communicate with neighbours

but could distinguish between robots and other obstacles converged to optimal

distributions the fastest. The theory that control algorithms which allow robots to

distinguish other robots from other obstacles can outperform algorithms that neglect

this distinction was reinforced in a study by Morlok and Gini (2007) which proved that

not only does knowledge of the locations of the other robots help to speed up the

exploration process, but that cooperative exploration can outperform random walks

and simple wall following behaviours in maximising area coverage of enclosed spaces.

These studies are prime example supporting the supposition that a coordinated swarm

of robots could perform a complete area coverage search more efficiently than an

uncoordinated swarm of robots.

McLurkin et al. (2004) also conducted experiments with swarms of robots to test their

algorithms of directed dispersion within bounded spaces where their robots spread

out according to information received from local neighbours about their positions.

Further, they proposed an algorithm that allowed a swarm of robots to explore an

arena larger than the maximum distributed formation of the swarm using a pulling

strategy which guided the whole swarm into unknown regions without losing

connectivity or breaking the achieved pattern. Their results showed that path planning

and directed motion algorithms become easier to develop when the primary input is

the positions of other nearby robots. This guided the decision to design the robots of

chapter 3 so they would seek to maintaining contact with at least one other robot at

all times to prevent formations splintering into different groups which could increase

the risk of missing sections of ship hull while performing a search.

Falconi et al. (2015) also provide a good example of how robots using the positions of

neighbours can be leveraged by introducing a method of consensus-based formation

control which allows groups of robots to maintain a given formation even in the

presence of communication delays. This method relies on direct communication

between robots and could be used as another method of exploring unknown

environments in a given formation if the optimal dispersion of a swarm of robots does

30

not cover the entire area to be explored. Their results compare favourably against

other formation control techniques using potential fields which are more susceptible

to communication errors and propagation delays.

Ludwig et al. (2006) identified a vulnerability of inter-robot communication approaches

to dispersion in that these approaches relied heavily on receiving accurate information

of the relative distance and bearing of other robots through sensors. Their solution

was to propose an approach that instead used the strength of received wireless signals

from other robots to approximate their distance and use this information to effectively

disperse. This promised to be an effective alternative which they proved through

simulation. Ugur et al. (2007) took this approach a step further with experiments in

both simulation which more accurately modelled the sensors and on real robots. In

addition, they applied attractive and repulsive forces to robots based on the received

wireless signal intensities, similar to approaches used in potential fields, to modulate

the distance robots would travel from neighbours to ensure they did not travel out of

range or remain too tightly clustered. Their results reinforced that this was an effective

method of dispersion, but demonstrated that the detected signal strength was largely

susceptible to the orientation of the communicating robots, which highlighted the

necessity of selecting appropriate hardware and contingencies for signal errors in such

systems.

Spears et al. (2004) were one of the first to propose a method of creating pattern

formations in large groups of robots using physics inspired virtual forces referred to as

physicomimetics. In their approach the robots display repulsive or attractive forces

acting on neighbouring robots that fall within range of their sensors. Each robot is

given a threshold value within their sensor range allowing the force on their

neighbours to transition from attraction to repulsion and vice versa. This method was

demonstrated in 2D and 3D simulation to be capable of forming square and hexagonal

lattices which were capable of adapting to the loss of agents – such robustness is

greatly desired in real world swarm robot systems where loss of agents is a possibility.

Sallam et al. (2015) adapted the virtual forces framework to develop their own method

(COVER) of cooperative area coverage with robots using virtual forces to achieve

desired formations and population densities around landmarks in an unknown

31

environment. Their results demonstrated a way of deploying this technique to solve

scenarios concerning discovery and monitoring of areas of interest, such as inspection.

Reif et al. (1999) were the first to propose social potential fields for distributed

behavioural control of swarms of robots. In their approach, they apply artificial force

laws to all robots giving agents both attractive and repulsive forces. As such, each

robot’s motion is determined by the resultant artificial force imposed by other robots

and components of the system. Balch et al. (2000) employed a similar technique on a

simulated swarm of goal-oriented robots in a bounded arena with goals and obstacles.

These distributed control techniques, where calculations of motion are performed

asynchronously, proved successful at demonstrating pattern formation and obstacle

avoidance when navigating towards goals. However, these experiments did identify

issues with the approach such as scenarios where agents converged to sub-optimal

solutions and local minima.

Finding an optimal solution to local minima avoidance (LMA) and local minima escape

(LME) is a subject which has received much attention since the first applications of

social potential fields to swarm robots. Notable examples of such solutions include

works by Mabrouk and McInnes (2008) who allow agents to use their internal states to

influence the potential field in way that allows them to achieve LME. Alternatively,

Couceiro, Rocha, and Ferreira (2011) implemented a social inclusion and exclusion

concept which formed a punish-reward system allowing agents close to becoming

stuck in sub-optimal solutions to achieve LMA and LME.

Despite these limitations, researchers such as Howard et al. (2002) and Poduri et al.

(2004) were still able use social potential fields to develop effective systems of

deployable sensor networks, which successfully tackled area coverage scenarios with

results comparable to other techniques being employed at the time. One of main

criticisms of potential field approach is the difficulty of implementation of real robot

swarm without use of centralised control but researchers are continuing to develop

new methods to address this shortcoming such as the Probabilistic Communication

based Potential Forces (PCPF) model proposed by Mikkelsen et al. (2013). PCPF assigns

both attractive and repulsive forces based only on the probability of communication

between robots and the received signal strength, resulting in a method which is more

32

robust to unreliable sensor readings and external noise. This makes PCPF arguably

easier to implement on real robots than the basic potential fields approach since PCPF

better compensates for such factors which are likely to be encountered in real robot

systems.

Section 2.5.2 Coordinated Motion/Flocking

Another key feature of efficient exploration in swarms of robots is the ability to

achieve coordinated motion. Coordinated motion, or flocking behaviour, is the term

ascribed to collections of robots capable of navigating towards a common goal in a

given formation or pattern while retaining the ability to avoid collisions with both

obstacles and other robots. Such techniques are especially useful in scenarios where

the maximum area of dispersion for a group of robots performing area coverage is

smaller than that of the environment to be explored (Falconi et al., 2015). Robots

performing coordinated motion must remain within communication range of

neighbouring robots in order to avoid splintering into separate groups, much like

robots tasked with pattern formation. Indeed, pattern formation is considered a

necessary precursor to achieving effective coordinated motion and studies on both

subjects are often complimentary.

Flocking behaviour was originally inspired by the abilities of groups of social animals to

move with a coordinated motion such as flocks of birds flying in formation, or schools

of fish evading predators (Okubo, 1986). Reynolds (1987) was the first to reproduce

flocking behaviour in simulated agents, which he achieved by instilling members of the

swarm with three rules: collision avoidance, velocity matching, and flock centring. This

seminal paper demonstrated that any multi-agent system made up of individuals that

can sense the distance and relative heading of other members of the swarm are

capable of achieving coordinated motion with the appropriate behaviour. These three

rules served as the basis for subsequent studies into achieving coordinated motion in

swarm robots, even though more recent studies have since demonstrated that flocking

behaviour can still be achieved without exchanging heading information (Antonelli,

Arrichiello, and Chiaverini, 2010; Moeslinger, Schmickl, and Crailsheim, 2010; Stranieri

et al., 2011; Ferrante et al., 2012).

33

Balch and Arkin (1998) advanced the field of coordinated motion in robot teams by

identifying three methods agents could use to maintain a given formation: unit-centre-

reference, leader-reference, and neighbour reference (Fig.2.5.1). In the unit-centre-

reference approach, each robot computes the centre of the formation by averaging

the x and y coordinates of all of the robots involved in the formation and determines

its position relative to that centre. In the leader-referenced approach, each robot

determines its position based on the position of a leading robot, except the leader who

does not attempt to maintain the formation, but whose decisions affect the actions of

its followers. The neighbour-reference method tasks each robot with maintaining a

position relative to a pre-determined neighbour only.

Fig.2.5.1 Formation position determined by the three referencing techniques (From left

to right: unit-centre, leader, neighbour), reproduced from Balch et al. (1998).

The effectiveness of these referencing techniques to achieve coordinated manoeuvres,

such as 90° turns and maintaining formation across an obstacle field, were tested on

four formations common to mechanised infantry units used in the military: line,

column, diamond, and wedge. The results from these experiments demonstrated that

the unit-centred approach performed the best at both turns and formation control

across obstacles for all formations, but identified there are scenarios where this

approach would be less suitable. Unit-centre is very dependent on the ability of

member to sense the position of every other member of the swarm which becomes

impracticable in systems made up of many more units with limited sensing capability.

It is also a technique ill-suited to scenarios where communication is restricted. In such

scenarios, the leader-referenced or neighbour-referenced approaches would prove

more practicable.

Neighbour-referenced approach presents its own issues, such as scenarios where an

agent fails resulting in a formation that splits into two or more separate groups. Balch

and Hybinette (2000) remedied this shortcoming in an alternate study which used

34

virtual forces (social potentials) to create flocking behaviour and enact formation

control. In this approach, the position of each robot was calculated relative to the

positions of multiple neighbours that fell within its short sensor range. This

modification allowed their swarm of robots to form and maintain more complex

formations such as lattice structures while navigating to goals and avoiding obstacles

(Fig.2.5.2), resulting in a system that was more robust to unit failure. The success of

this study and subsequent works concerning flocking was so distinct from the original

neighbour-referenced technique it lead to a new classification, known as multi-

neighbour-reference (Navarro and Matía, 2013), which remains a popular method

used to achieving flocking behaviour.

Fig.2.5.2 Multi-neighbour-referenced approach to coordinated motion; a formation of

24 robots following square attachment geometry successfully navigates around an

obstacle reforming on the other side, abstracted from Balch et al. (2000). The small

grey circles represent the robots and the large dark grey object is the obstacle to avoid.

Studies on achieving coordinated motion in swarm robotics fall under two broader

categories: direction by global target and emergent direction (Bayinder, 2016). In the

direction by global target category, some or all members of the swarm have access to a

global target location which can be used to guide them to their goal and help maintain

formations while in transit and avoiding obstacles. This was the approach used by

Balch et al. (1998) in the studies discussed previously and similarly by Hayes and

35

Dormiani-Tabatabaei (2002) in their work concerning leaderless distributed flocking

algorithms for swarm robots.

Allowing agents access to global information can serve as an advantage in that all

agents know where they must navigate to without needing to communicate this with

neighbours, so communication between agents is only needed for maintain

formations. In groups where only a fraction of the swarm has access to global

information, communication between agents is also used to spread this knowledge

throughout the swarm to inform them of the heading (Çelikkanat and Şahin, 2010),

and assist in reaching consensus on priority targets when there are multiple goals

(Ferrante et al., 2014). However, swarm systems that rely on prior knowledge are only

applicable in known or partially known environments – and so are ill suited to

exploration of unknown areas. Coordinated motion algorithms that function on

emergent direction are preferred for scenarios where prior information is not available

and the area to be explored is unknown.

In the emergent direction category, swarms achieve coordinated motion without using

shared knowledge of global information, but from using only local interactions

between agents. Turgut et al. (2008) implemented such a flocking algorithm on a

swarm of real and simulated robots, using only proximal control and heading

alignment to achieve coordinated motion. Their approach was successful in navigating

arenas with obstacles in the absence of global information. Their system was also

shown to be more robust to errors in relative heading measurements shared between

swarm members – a resilience which only increased when more agents were added to

the swarm. Moeslinger et al. (2010) demonstrated how flocking could be achieved

using emergent direction with their implementation of a low-end flocking algorithm

which was based on simple rules of collision avoidance, separation, and cohesion.

Their results showed that with appropriate distance threshold applied to the infrared

sensors of the robots; flocking behaviour could emerge even without communication

or preassigned tasks of alignment.

Vásárhelyi et al. (2014) implemented a decentralised flocking algorithm on flying

robots which controlled the distance between agents using GPS data and wireless

communication between agents. Their approach used a repulsive distance-based force

36

between neighbouring units to avoid collisions and defined an upper threshold for

repulsion to avoid over-excitation. To compensate for time lag in communication,

robots close to each other damp their velocity difference to reduce oscillations and

synchronise their collective motion with a viscous friction-like term. Their control

algorithm resulted in a swarm robot system with a high stability with resistance to

noise and delays in communication and sensing. This study was of particular

importance because it was one of the first that identified how to address real world

limitations, such as time lag, in swarm robot systems performing coordinated motion.

Section 2.5.3 Localization and Mapping

Navigation of any unknown environment presents challenges for both singular and

multi-robot systems, but there are two particular problems which have a distinct effect

on the effectiveness of the exploration of these environments: localization and

mapping. Localization is the ability of a robot to determine its position relative to

objects, landmarks, and other robots in either its immediate surrounding or globally,

and mapping is the process by which the robots construct a record of these features

for future reference. There are a number of prospective multi-robot systems capable

of performing path finding without localization and mapping by instead utilising

communication and the dispersion of team members within an environment as their

method of navigating to a desired goal (Cohen, 1996; Payton et al., 2001; Ducatelle,

Förster, Di Caro, and Gambardella, 2009; Mullins, Meyer, and Hu, 2012). However, a

greater variety of complex behaviours become possible to achieve by implementing

localization or mapping in multi-robot systems, such as path planning within unknown

dynamic environments. In this section, key approaches to achieving decentralised

localization and mapping in multi-robot systems and their benefits are discussed.

In decentralised multi-robot systems, the task of determining the position of robots

without the aid of external references such as global positioning system (GPS) is non-

trivial. This challenge is known as the localization problem and the best solutions

devised to solve these issues can be categorised into two classes: range based

methods and range-free methods. Range-based methods rely on the ability of

individuals to measure the distance between themselves and global references or

neighbouring robots using the Received Signal Strength (RSS), Time of Arrival (TOA) or

Time Difference of Arrival (TDOA) of two signals known to have different speeds of

37

propagation (Mao, Fidan, and Anderson, 2007). Range-free methods are able to

estimate the position of robots without measuring distance, instead relying heavily on

external references or the presence of recognisable markers within the environment.

Range-free solutions typically require fewer resources than range-based methods

making them more economical, but their results are not as accurate (Yun, Lee, Chung,

Kim, and Kim, 2009).

Fox, Burgard, Kruppa, and Thrun (2000) developed one of the earlier range-based

localization techniques for multi-robot systems working in indoor environments. Based

on Markov localization, their approach allowed a team of heterogeneous robots

equipped with sensors of different granularity to achieve localization faster than

robots performing the task individually by working collaboratively. Their results

support the theory that robots performing localization cooperatively could outperform

uncoordinated individual efforts, but also identified several limitations with their

approach such as only operating if the robot is able to detect and identify the robot it

has seen, and a lack of error handling for false-positive detection of robots greatly

reducing robustness.

Roumeliotis and Bekey (2002) set out to address some of the limitations of previous

approaches by devising a multi-robot localization technique based on the popular

extended Kalman filter (EKF). In their approach, they devised a centralised EKF

designed to account for the position and orientation of all members of the swarm and

split it into component equations which they distributed across the team of robots.

Each robot collected information from their proprioceptive and exteroceptive sensors

and used their respective equation to make estimations of position and orientation,

which was made more accurate by comparing estimations from neighbouring robots

within communication range. This approach required less computation and

communication than previous approaches and was scalable to larger teams.

Furthermore, they showed that information sharing between robots with different

levels of capability allowed the fully functioning robots to improve the estimates of

malfunctioning or less capable robots, increasing robustness of the swarm.

Roumeliotis et al.’s (2002) application of EKF to a distributed sensor network was

seminal to multi-robot localization studies and many papers which followed adopted

38

EKF as the leading method. Martinelli, Pont, and Siegwart (2005) built on the original

paper by using a similar implementation of the EKF to achieve decentralised

localization using the relative observations between robots, such as relative bearing,

relative distance, and relative orientation to successfully increase the accuracy of the

estimations than had been achieved previously. Madhavan, Fregene, and Parker (2004)

used an EKF to propose a scheme for distributed outdoor localization and terrain

mapping, which was a significant step for addressing how to achieve multi-robot

localization in uneven environments. Their approach was shown to operate well in

unmapped and unknown environments, and was further distinguished from previous

studies for being the first that required no restriction on the number of robots that

could move at any one instant while performing localization.

More recent studies have begun to move away from the use of external references

such as GPS in efforts to increase the type of environments their methods could be

applied to, such as underwater environments where access to such systems is not

possible but localization is still required. To this end, De Sá, Nedjah, and De Macedo

Mourelle (2016) proposed two algorithms to aid in localization without the use of

external references such as GPS; one based on the Particle Swarm Optimization (PSO),

and another based on the Backtracking Search Algorithm (BSA). In both approaches,

the robot locations are determined relative to neighbouring robots using range-based

methods and applying confidence values to the measurements obtained to better

determine how accurate the reading is. Their inclusion of the confidence factor

improved the reliability of their techniques, which was shown to be more significant

when fewer neighbouring robots were available for the calculations.

Understanding the objects surrounding a robot at any instant via localization is highly

beneficial in robotic systems performing path planning, and navigation can be

improved further by using this information to create records of previous instances via

the process of mapping. Maps are representations of the physical environment

surrounding a robot created by transforming data from sensors into spatial models,

which are typically either topological or geometric (Thrun, 2002). The task of

constructing a high resolution map when the location of a robot is already known has

already been achieved in previous studies using sonar sensors (Moravec and Elfes,

1985), and vice versa using various algorithms (Borenstein, Everett, and Feng, 1996).

39

However, the task of mapping becomes much less trivial when the locations are yet to

be determined, and this complexity increases when the task is to be performed by

distributed swarm robot systems working cooperatively due to the lack of centralised

control, and limited resources such as memory, computation and communication.

There are numerous studies which have attempted to overcome these limitations, but

of the many approaches dedicated to finding an optimal solutions to localization and

mapping, the most effective methods developed to date involve a process that

undertakes both of these tasks at the same time; Simultaneous Localization and

Mapping (SLAM) (Durrant-Whyte and Bailey, 2006).

Robots performing SLAM estimate their trajectory and the locations of landmarks

using on-board capabilities and without the need for a priori knowledge. These

estimates of landmark locations carry a degree of error, however the differences

between true and estimate landmark locations is common between the landmarks due

to the observing robots initial error in estimating its own location. This means the

relative locations between any two observed landmarks are known with high accuracy

even when the true location of a given landmark is uncertain. These discoveries led to

one of the more important insights into the SLAM technique; increasing the number of

observations always improves the estimates of relative landmark locations (Bailey,

Nieto, and Nebot, 2006), and as the accuracy of the map increases the estimate of the

location of the robot relative to these landmarks also improves resulting in highly

accurate localization.

However, building maps with this technique requires that the individual robots

performing the mapping process have access to a significant amount of memory and

computational power. The multi-robot systems examined within this study are fully

decentralised and only have access to very little memory and computational ability,

which significantly reduces the feasibility of implementing such mapping techniques.

As such, it was decided that for these studies localization techniques alone would

suffice, while implementation of advanced mapping techniques would be delegated to

future studies.

40

Section 2.6 Self-Assembly

Self-assembly is a complex spatially organised behaviour employed in swarm robot

systems which can allow the swarm to perform functions individual robots are not

capable of, such as navigating difficult terrain (Mondada et al., 2005; O’Grady, Groß,

Christensen, and Dorigo, 2010) and collaborative transportation of objects (Groß and

Dorigo, 2009). However, self-assembly in swarm robot systems are typically facilitated

only through local interactions between agents and so require many members to be

within communication range of one another. Many swarm robot scenarios involve

members initially being dispersed within an environment and so require a method

they can follow to regroup at a common location - this is the task of aggregation. Both

aggregation and flocking behaviours (only the latter was discussed in Sec 2.5.2) can be

considered precursors to achieving self-assembly in swarm robots. This section

discusses the various approaches to aggregation and self-assembly which were the

most influential to the design of the multi-robot system and methodology used in

emergency ship hull repair study in Chapter 4.

Section 2.6.1 Aggregation

Like many swarm robot studies, the task of aggregation was originally inspired by

behaviours observed in social insects which saw them gathering at common locations

under specific conditions. Some notable cue-based artificial behaviours, where the

gathering of agents is influenced by environmental conditions, were developed to

mimic those observed in nature, such as bees choosing to rest in areas of high

temperature (Schmickl and Hamann, 2011) or cockroaches being drawn to areas with

less light to safely rest (Garnier, Gautrais, Asadpour, Jost, and Theraulaz, 2009). In

these examples, aggregation is guided by both external stimuli and inter-robot

communication which was shown to be more effective at achieving aggregation than

relying on environmental information alone. Other studies indicate that it is also

possible to achieve aggregation in systems that do not use environmental cues, known

as self-organised aggregation, utilising only inter-robot communication and artificial

forces instead (Mogilner and Edelstein-Keshet, 1999). The methods of control used to

achieve aggregation in artificial systems which are most pertinent to the studies in this

thesis can be categorized into two types: virtual forces, and probabilistic finite state

machines.

41

Virtual forces are a popular method used in swarm robotics to maintain set distances

between agents as discussed in Section 2.5.1 for applications of pattern formation.

When non-local virtual attractive and repulsive forces are applied to the components

of a swarm robot system, it can influence the movement of agents across great

distances, allowing them to stay grouped together while avoiding collisions between

themselves and objects. The magnitude of the attractive and repulsive forces acting

between a robot and its neighbours is typically dictated by distance, such that robots

will move towards each other when the distance between them is large, but will

transition to repulsing one another once they cross a given distance threshold. This

allows swarms to gather at common locations and form clusters while maintaining safe

distances between agents so as to avoid collisions (Mogilner et al., 1999; Vanualailai

and Sharma, 2010; Fetecau and Meskas, 2013). These non-local virtual force

techniques have successfully achieved aggregation behaviour in simulated

environments, but it is significantly harder to implement such behaviours in real robot

systems where the robot sensing capabilities necessary to perform such techniques

are not considered cost effective, or as scalable as more distributed techniques. These

are some of the main reasons why there are relatively few studies on implementing

non-local virtual forces for the purpose of aggregation in real multi-robot systems.

Another method of achieving aggregation in swarm robot systems is to employ

probabilistic strategies. In probabilistic finite state machines, the behaviour of the

robot is represented as various states with a given probability of transitioning between

them. When applied to swarm systems performing aggregation, robots decide

stochastically whether to transition between: 1) approaching other robots, 2)

remaining still, or 3) moving away from other robots (Soysal and Sahin, 2005). The

probability of transitions can be fixed or vary according to influences from

environmental cues, such as the number of robots present in their current location or

more complex inter-robot communication (Sahin et al., 2002). One of the main reasons

studies modelling aggregation behaviours using finite state machines employ

probabilistic strategies over deterministic methods is the ability of PFSM to form

unstable aggregates where robot join and break from existing clusters at random

intervals. Introducing such instability has proven effective at ensuring single large

aggregates form while reducing the risk of stagnation in sub-optimal solutions which

42

form several separate clusters (Garnier et al., 2005; Hamann, Schmickl, Wörn, and

Crailsheim, 2012).

Bayinder (2016) categorised the various aggregation algorithms employed in swarm

robotics into two main types: free aggregation and environment-mediated

aggregation. Free aggregation algorithms are designed to allow multiple robots to

form aggregates anywhere in an environment, without preference for any particular

location. In environment-mediated aggregation algorithms, the conditions of the

robot’s surroundings influence the robot behaviour such that certain locations and

conditions increase the likelihood of robots forming groups. The studies within this

thesis are more concerned with achieving aggregation at specific locations, thus

environment-mediated aggregation algorithms are more relevant. In particular, Arvin

et al. (2014) demonstrated an aggregation algorithm which allowed a group of

dispersed robots to aggregate at a specific location using an acoustic signalling system.

In their approach, the area of aggregation was specified by emitting a sound from that

location using a speaker. The robots used microphones to detect the direction and

intensity of the signal and move accordingly. This system resulted in a successfully

formed group at the specified location. Schmickl, Möslinger, and Crailsheim (2006) also

provided a notable method of enabling swarms of robots to aggregate at two assembly

points of different size with the requisite that the number of robots at each site should

be proportional to size of the assembly location. Their agents were equipped with

minimal sensors capable of detecting when they were at one of the specified regions

but unable to determine its size, and communicating with neighbours. Their system of

communication between agents resulted in a collective perception capable of

collectively measuring the size of the target areas and to communicate these sizes with

the whole swarm.

Section 2.6.2 Self-Assembly

One of the most prominent advantages of multi-robot systems is their ability to

perform tasks which individuals alone are not capable of, and there is no task in swarm

robotics which exemplifies this better than self-assembly. In swarm robot systems,

self-assembly refers primarily to multi-robot systems where agents have the ability to

communicate and connect with one another to form structures and configurations

capable of more than the sum of the individuals acting independently. Studies in self-

43

assembling swarm robot systems focus on two major aspects: robots autonomously

connecting with each other in order to create a desired target structure, known as

morphogenesis, and controlling the resultant structure to perform novel tasks. In their

comprehensive review, Groß and Dorigo (2008) categorised studies on morphogenesis

in macroscopic systems by their primary function such as formation, growth, self-

reconfiguration, self-repair, and template replication.

Formation studies focused on using swarms to produce one or more objects of a

predefined size and structure (Hosokawa, Shimoyama, and Miura, 1994). Growth

studies were concerned with increasing the number of robots that make up a given

structure, which is considered an essential feature of all self-assembling robot systems

(Fukuda, Husband, and Ueyama, 1994). Self-reconfiguration studies worked towards

designing systems capable of changing an existing entity structure to form a new entity

better adapted to changes in the environment or capable of performing different

functions than the original (White, Kopanski, and Lipson, 2004; White, Zykov, Bongard,

and Lipson, 2005). Self-repair studies investigate ways entities could replace faulty or

damaged modules with other fully functioning modules (Bererton and Khosla, 2001).

Template replication studies use modules to recreate templates of objects with a

known size and structure (Griffith, Goldwater, and Jacobson, 2005). The rest of this

section identifies studies which have advanced the field of self-assembly with respect

to swarm robot systems.

There are three notable aspects of morphology that are routinely considered when

designing self-assembling swarm robot systems: binding mechanisms, sensors, and

communication methods. Swarm robot systems that utilise passive binding techniques

such as the use of permanent magnets and electromagnets (Hosokawa et al., 1994;

White et al., 2004; Doyle et al., 2016) are advantageous due to their relative simplicity

and low power consumption, but they come at the cost of limited connection strength.

Alternatively, passive mechanical connection methods can be used in swarm robot

systems to address connection strength, such as the pin and hole connection method

(Yim, Duff, and Roufas, 2000; Castano, Behar, and Will, 2002) in which robots are

designed with faces and pins that correspond to holes on the face of another robot.

This form of attachment results in links more resistant to shear stress, but the robots

require a higher degree of accuracy for the task of aligning faces. Active mechanical

44

links such as actuated mechanical hooks can ensure much stronger links between

robots with lower accuracy requirements than passive mechanical techniques (Fukuda

and Kawauchi, 1990; Mondada et al., 2004; Wei, Chen, Tan, and Wang, 2010), but

typically consume more power and have a higher risk of failure than their passive

counterparts.

Sensors can be assumed to be essential to all swarm robot systems, but in studies

concerning self-assembly, sensors have played a smaller role in externally propelled

systems than self-propelled systems. Externally propelled robots which rely on

external manipulators to move such as magnets guiding agents and thus designing

robots to store information about their surrounds has been considered less essential

to the functioning of the system. However, self-propelled robots which use internal

power sources to move themselves with propellers or wheels require more data about

their surroundings to make informed decisions, and a variety of sensors have been

used to ensure this. There are many types of sensors used to gather information

about robots surroundings in self-assembling swarm robot systems, including the use

of bump switches to detect collisions and confirm physical interactions between

agents (Bererton at al., 2001), infrared detectors and ultrasonic distance sensors for

detecting the presence of obstacles or other robots (Fukada et al., 1194; Castano et al.,

2002; Wei et al., 2010), inclinometers to detect changes in angles of slope or elevation

of a robot (Yim et al., 2003; Murata, Kakomura, and Kurokawa, 2006), and cameras to

gather addition information about obstacles, robots and environmental features

(Yamakita, Taniguchi, and Shukuya, 2003; Mondada et al., 2004; Bonani et al., 2010).

Communication is a vital component to achieving many of the behaviours in swarm

robot systems, and self-assembly is no exception. Some of the most popular

communications methods for self-assembly swarm robots include infrared emitters

and receivers for line-of-sight communication (Fukuda et al., 1990; Yim et al., 2000;

Castano et al., 2002; Murata et al., 2006), Wi-Fi, Bluetooth, and Zigbee for more

reliable wireless communication in crowded environments (Groß, Bonani, Mondada,

and Dorigo, 2006; Wei, et al., 2010; Bonani et al., 2010), and LEDs for close range

communication between individual modules and signalling of states (Groß et al., 2006;

O'Grady et al., 2009; Doyle et al., 2016). The method of communication chosen for the

system can greatly impact the complexity of formations and reconfigurations possible

45

to create. The chosen method is also subject to the environment the robot is expected

to perform the assembly in, for instance, direct line-of-sight communication methods

are ill equipped to function in environments with many obstacles and wireless

communication may be a more appropriate choice.

The effective synthesis of these technologies has led to a number of notable

achievements for swarm robot systems performing self-assembly. Some of the notable

platforms developed for multi-robot self-assembly experiments include the Swarmbot,

MarXbot, Kilobots, Symbrion, and Mori. Groß et al. (2009) used Swarmbots to

demonstrate self-assembly for the purpose of collaborative object transportation,

where a group would surround objects of different shapes and sizes, connect to each

other, and pull the object to a desired location with their increased pulling power.

O'Grady at al. (2009) used tis same platform to demonstrate their SWARMMORPH

protocol which could guide Swarmbots into achieving different morphologies using

LEDs to inform where the robots should approach and connect to each other. Bonani

et al. (2010) developed the MarXbot to improve on various aspects of the Swarmbot

design including an improved binding mechanism and methods of communication.

Mathews et al. (2011) were able to utilise the MarXbot to perform directional self-

assembly, which robots forming part of a desired structure guided other robots using

radio signals, informing them where they could best attach in order to complete the

entity. The Symbrion and Replicator projects (Levi and Kernbach, 2010) investigated

many aspects of self-assembling swarms but focused primarily on the realisation of

symbiotic multi-robot organisms. The resultant Symbrion modules (Liu and Winfield,

2010) were capable of operating as fully autonomous agents in swarm mode, but could

also transition to form part of a greater structure in organism mode where energy and

computational resources could be shared between neighbours. Rubenstein, Cornejo,

and Nagpal (2014) were some of the first to demonstrate self-assembly and pattern

formation in very large swarms using one thousand Kilobots. Their approach allowed

the swarm to form various shapes using four stationary robots to serve as an anchor

point and having agents connect to them appropriately. Doyle et al. (2016) developed

a prototype floating robot capable of controlling the motion of a structure built from

their modules using modular hydraulic propulsion, demonstrating how such

technology could be used to guide such structures. Belke and Paik (2017) developed

46

the Mori platform; a triangular two-dimensional lattice type reconfigurable modular

origami robot, which is notable for its genderless connection mechanism and flexibility

with regards to the variety of complex shapes it can assume from simple component

modules.

Section 2.7 Foraging

Foraging is considered to be one of the more complex forms of collective behaviour to

replicate in multi-robot systems as it relies on the correct execution of a number of

behaviours considered difficult in their own right, such as exploration, global and local

communication, collective transport, and collective decision making. From an

individual agent’s perspective, the foraging task can be described as a sequence of the

following behaviours: exploration of an environment surrounding a nest, identifying

objects and areas of interest, returning the objects to the nest, communicating its

discovery with other robots, and returning to the area of interest to collect more

objects (Dorigo and Di Caro, 1999). The task of foraging in swarm robot systems was

inspired by observations from biological collectives such as bee swarms (Montague,

Dayan, Person, and Sejnowski, 1995) and ant colonies (Traniello, 1989) and their ability

to use local interactions between individuals to exploit resources surrounding their

nests. One notable extension of this behaviour is multi-foraging, where there are

multiple types of retrievable objects in an environment (Campo and Dorigo, 2007),

which presents a promising basis for accomplishing complex practical tasks using

multi-robot systems such as mining or search and rescue operations. In this Section,

some prominent foraging strategies applied to swarm robot systems are presented

according to their applicability to the studies presented in Chapters 4 and 5.

It has been proven that the problem of resource collection in dynamic environments

can be solved by social insect colonies using collective central-place foraging (Olsson et

al. 2008; Detrain and Deneubourg 2008), and it is this success that has spurred

research into recreating such efficient and scalable approaches in swarm robot

systems. A popular method of achieving foraging behaviours in swarm robot systems

involves first deconstructing the behaviour into simpler tasks that flow in sequence.

However, the defining features of these systems often lie in the methods they use to

communicate information between individuals. There are a number of methods

researchers have implemented to achieve foraging behaviour analogous to those

47

observed in biological super-organisms and these can be categorised under the

following two categories: direct communication as outlined in Section 2.6 and

stigmergic communication where information is shared via modification of the

environment (Bayinder, 2016).

Swarm robots systems using global forms of direct communication such as signal

broadcasting can share information between robots over moderate distances. This

approach can aid in aggregation behaviour (Arvin et al., 2014) for the task of foraging

so that robots can inform others of an area of interest (Vaughan, Støy, Sukhatme, and

Matarić, 2000). However, the performance and reliability of these methods tend not to

scale well to very large numbers of robots or over increased distances which is an

undesirable feature of true swarm robot systems (Şahin, 2005). It can also be difficult

to implement such features on simple robots with limited capabilities, of which most

swarm robot systems consist, making it a more impractical option for certain

platforms. Thus, this method of communication may be considered appropriate for

multi-robot systems that use fewer agents and operate over short distances, but sub-

optimal for swarms consisting of many more agents that operate in larger arenas or

unbounded search spaces.

Conversely, local direct communication methods which rely on exchange information

between neighbouring robots that fall within a given range can be considered highly

effective at facilitating effective foraging behaviour in swarm robot systems. Direct

explicit exchange of data can be used to report a robot’s respective state or to indicate

the direction of objects, areas of interest, or the location of a central nest to

neighbouring robots (Arkin, Balch, and Nitz, 1993; Rybski et al., 2004). This information

can be used to improve the robots present behaviour and help it achieve its current

goal more effectively, be it searching for objects, or returning them to the nest. In

addition to direct data exchange, local sensing strategies which simply detect the

presence of nearby robots or obstacles can also be used as an effective tool to aid

foraging behaviour (Hoff, Sagoff, Wood, and Nagpal, 2010). These direct

communication methods can be used to improve the swarm’s ability to reduce

overcrowding (Goldberg and Mataric, 2000) and form more organised paths between

nests and areas of interest (Sadat and Vaughan, 2010; Penders and Alboul, 2012),

enabling more effective foraging strategies.

48

Bee algorithms are a notable class of nature-inspired collective behaviour that use

direct communication techniques to mimic the foraging strategies of honey bees

(Karaboga and Akay, 2009). In bee colonies, foraging consists of a sequence of

behaviours starting with exploration of the sear surrounding the central nest. On

discovery of a food source, the bee collects the precious nectar resource and returns

to the hive to deposit what it has gathered. After completing its deposit, the bee then

performs a special dance of varying direction and intensity to indicate the direction

and distance of its last collection source in the hope of recruiting more bees to assist in

retrieval. This dance is the aspect of bee communication which when applied to swarm

robot systems has been shown to yield effective methods of task-allocation and

foraging (Jevtic, Gutiérrez, Andina, and Jamshidi, 2011; Schmickl et al., 2011). These

individual interactions between agents can be combined to produce an effective

collective decision-making process when the correct tuning parameters are selected,

as demonstrated by Reina et al. (2015) in their shortest-path selection study.

Making changes to the environment in order to communicate between agents, known

as stigmergic communication, is perhaps the most well studied form of indirect

communication found in biological super-organisms and applied to swarm robots

performing coordinated resource collection (Goss et al., 1992; Werger and Matari’c,

1996; Payton et al., 2001; Nouyan et al., 2009; Campo et al., 2010). In natural systems,

this form of communication is best exemplified by certain species of ants which can

secrete and detect pheromones – a chemical substance they can use to mark the

environment (Hölldobler and Wilson, 1990). Ants deposit this pheromone on return to

the nest from a resource site to serve as a mass recruitment mechanism helping to

guide other ants to the same source of forage (Sumpter and Pratt, 2003). Foraging ants

follow these trails, gravitating to paths with a high concentration of pheromone to

exploit the best resource. This system allows ant colonies to form consensus on

selecting the best resource site in the environment according to factors such as food

quality (Beckers et al., 1990), path length (Goss et al., 1989), and predation risk

(Nonacs and Dill, 1990). This positive feedback mechanism is typically disadvantageous

to systems seeking to maintain adaptability and flexibility to a changing environment.

However, there are alternative mechanisms observed in other ant species capable of

overcoming this limitation such as: repellent pheromone to mark off undesirable paths

49

(Stickland et al. 1999; Robinson et al. 2005), using tandem running to recruit ants to

newly available higher-quality food sources (Beckers et al., 1990), or using quality-

dependent linear recruitment and quality-dependent abandonment (Shaffer et al.,

2013).

To recreating stigmergic communication in swarm robots using techniques that mimic

pheromones is a challenging task that must take into account how the pheromones are

deposited, detected by others, and how the resultant trails change over time. The

three most advanced approaches found in literature rely on either using robots as

beacons, robots with on-board sensors and actuators, or smart environments. Beacon

robot techniques use the robots themselves to act as a physical embodiment of

pheromone, commutating the presence and strength of pheromone to neighbouring

robots (Goss et al., 1992; Werger and Matari’c, 1996; Payton et al., 2001; Nouyan et

al., 2009; Campo et al., 2010; Ducatelle et al., 2011; Hoff et al., 2012). This approach is

beneficial since it can be implemented on many simple robots, but is limited by beacon

robots being unable to contribute to the item collection task, ever increasing

population size requirements to address larger environments, and beacon robot

robots serving as obstacles in the environment also. These issues can be addressed by

allowing the beacon robots to remain mobile and contribute to item retrieval (Sperati

et al., 2011; Ducatelle et al., 2011), but performance of this approach relies on

balancing the swarm size and communication range with the size of the search space.

There are a variety of ways researchers have tried to implement stigmergic

communication in swarm robots using on-board actuator and sensors such as using

marker pens to draw lines on a path to represent pheromone (Svennebring and Koenig

2004), emitting gas which other robots can detect (Purnamadjaja and Russell, 2007),

energising phosphorescent paint using UV-LEDS (Mayet et al. 2010), and using ethanol

(Fujisawa et al. 2008, 2014). Of these varied attempts, only the ethanol experiments of

Fujisawa et al. (2008, 2014) were able to model the four critical characteristics of

pheromones observed in natural systems: evaporation, diffusion, locality, and

reactivity. The evaporation aspect is considered especially important to avoid runaway

positive feedback (Garnier et al. 2007, 2013) which can cause swarms to become mired

in sub-optimal solutions or become unable to break from expended resource sites.

50

The final category is smart environments which have the ability to store and supply

virtual pheromone information to swarm robots in real-time (Sugawara et al. 2004;

Garnier et al. 2007; Hecker et al. 2012; Garnier et al. 2013; Arvin et al. 2015; Valentini

et al. 2018). Smart environments are considered one of the most popular approaches

to implementing indirect communication in swarm robots, due to their low cost and

adaptability to different sizes of swarms and search spaces. However, it is far less

practical to use smart environments in real applications than the previously discussed

alternative methods, so its use is instead delegated to targeted research. Mimicking

pheromone trails using smart environments can be accomplished using radio-

frequency identification (RFID) tags (Mamei and Zambonelli 2005, 2007; Herianto et al.

2007; Herianto and Kurabayashi 2009; Bosien et al. 2012; Khaliq et al. 2014), simulated

pheromones using projected lights or other custom hardware (Sugawara et al. 2004;

Garnier et al. 2007, 2013; Arvin et al. 2015; Valentini et al. 2018), or augmented reality

tools in which a virtual environment is interacted with by robots using virtual sensors

and actuators (Reina et al. 2015, 2017).

Determining what constitutes an optimal foraging model requires the selection of

appropriate metrics with consideration given to currencies of costs (quantities to be

maximised in order to achieve optimality) and benefits. The two metrics most often

selected to measure success in foraging theory are the net rate gain of energy and

efficiency (Kacelnik 1984; Houston and McNamara 2014). The net rate of energy gain is

the difference between the forager’s gross rate of gain and its rate of energy

expenditure, while efficiency is the gross rate of energy gain divided by the rate of

energy consumption (Houston and McNamara 2014). However, optimal foraging

theory does not always apply to real systems and developing a theory that works for

several foraging species seems inherently difficult, as the mechanisms underlying

foraging can be quite different (Traniello 1989). Though there are many ant species

where the production of pheromone trails is crucial in the foraging process, other

aspects which are more generally related to the state of the forager and the

environmental conditions should also be considered when developing an optimal

foraging model.

In foraging scenarios, the problem of inter-robot interference also tends to arise

frequently with multiple robots sharing a confined space. This increase in robot

51

congestion is noteworthy for the effect it can have on the efficiency of the overall

swarm with respect to foraging. Increases in robot avoidance events or the length of

time taken to overcome a near collision can increase the gross energy expenditure and

time taken to complete the task. There are two methods of measuring the quantity

and frequency of these occurrences: the number of collisions between robots (Maes et

al., 1996; Goldberg and Matarić, 2000) or the time spent avoiding a robot while trying

to perform another task such as transport an object to the nest (Krieger and Billeter,

2000). Both of these methods can be used in combination with other establish metrics

to assess the impact increased collisions or manoeuvring time has on system efficiency

and net energy gain.

Section 2.8 Summary

The literature explored in the above sections tells a story of how far the field of swarm

robotics has progressed over the past few decades, identifies the most predominate

methods that have evolved out of the research, and can provide clarity on what could

be done to ensure swarm robotics research continues to mature. This section identifies

some of the gaps in existing knowledge that motivated the studies within this thesis.

The subjects of obtaining effective dispersion, pattern formation, coordinated motion,

localization, and self-assembly in multi-robot systems has been explored at length in

ground and air-based scenarios but significantly less so in underwater environments.

This is in part due to the difficulty in translating these techniques, many of which rely

on high frequency sensors and telemetry such as GPS (global positioning system)

coordinates, into the underwater realm where such communication techniques do not

work effectively due to the high absorption of the surround medium (water).

Nevertheless, there are many underwater problems that could benefit from multi-

robot solutions such as underwater inspection of ship hulls or off-shore rigs,

monitoring and surveillance of marine life, and underwater construction. This gap in

knowledge is partially what motivated the research into using swarm robots to

perform underwater inspection and repair of ship hulls.

Foraging strategies in swarm robot systems can be considered a more mature field of

research given the many studies concerned with how to achieve optimal foraging

strategies. However, perfect emulation of an ant colony has not yet been achieved due

52

in part to the complexity of such systems. Indeed biological swarm intelligence is still a

thriving field of study to this day, helping to inform how swarm roboticists may

improve on their own designs. The work being undertaken at the University of

Sheffield, with respect to swarm robot foraging strategies, represented another step

toward creating a swarm robot system more capable of emulating the emergent

behaviour observed in ant colonies, and was the main motivating factor behind

developing obstacle avoidance behaviour for the robots. Ultimately, allowing the

swarm of robots to more accurately represent the biological ant colony their behaviour

was modelled after.

53

Chapter 3. Ship Hull Inspection: Complete Area Coverage

Algorithm
In this chapter, a novel approach to emergency ship hull repair using a swarm of

autonomous underwater robots is introduced. This research uses theories of

cooperative multi-robot exploration and communication to inform the design of a

complete area coverage search method for a swarm of robots tasked with inspecting a

damaged ship hull. The results from this Chapter show how the cooperative search

algorithm is more effective at achieving complete area coverage in less time than the

same multi-robot system using an uncoordinated search algorithm. Additionally, the

chapter presents a simulated robot sensor arrangement that would allow robots to

maintain a set distance from a 3D object. This novel utilisation of an additional

constraint enables the robots to treat their environment more akin to a 2D plane,

which allows for simpler implementations of search algorithms.

The general approach to emergency ship hull repair is presented in Section 3.1 but the

majority of the chapter focuses on the first major stage of the ESHR scenario: ship hull

inspection using a collaborative multi-robot system. This task poses the distinct

challenge of how to fully inspect the submerged hull of a ship using multiple robots,

how to do so effectively, and in a timely manner. To address this challenge, two

complete area coverage (CAC) algorithms were devised: a sweeping search pattern and

a lawnmower search pattern which are described in more detail in Section 3.2. The

search patterns are intended to be used by homogeneous multi-robot systems to

inspect the ship hull while it is still in the water as this is the repair process intended to

take pace immediately following damage. To test the effectiveness of the algorithms

and compare their results, the code was implemented on a simulated group of custom

designed robot modules.

The simulated robot modules used to test the algorithms do not yet have a physical

counterpart and as such, the robot module specifications are restricted to their

geometric shape, key sensors and actuators, and descriptions of their capabilities

which are based on existing technologies currently employed in mobile robotics and

machine vision. A more detailed description of the technical and physical aspects of

the robots is provided in Section 3.3, however it should be noted that these are

features the simulated robot modules are assumed to possess for the purpose of the

54

algorithms. The experiments were wholly conducted in a simulated 3D environment

built using Webots; a simulation suite which is renowned for its ability to correctly

model mobile robots. The key features and reasons for its use in this study, along with

the experimental setup used to compare the effectiveness of the CAC algorithms, are

presented in Section 3.4. The results of the experiments are presented in Section 3.5

and are followed by a discussion of the findings and their implications in Section 3.6.

Section 3.1 Emergency Ship Hull Repair

Section 3.1.1 Background

Emergency ship hull repair (ESHR) is one of many stages of damage control that takes

place in the event of a hull breach while at sea. Innovations in materials, mechanical

engineering, and naval architecture have ensured that the strength and resilience of

ship hulls has remained steadfast this past century, but no sea-faring vessel is immune

to accidental or deliberate damage. When a ship finally suffers a fracture or hull

breach, the race to prevent the loss of the ship begins.

Repairing hull damage immediately after an incident is necessary to prevent the loss of

a ship. Reducing the ingress of water minimises the effect of flooding and supports

efforts to restore buoyancy and stability to the damaged vessel, enabling it to either

continue its course or return to a ship yard for extensive repair. There are numerous

types of breaches that vary in size, shape, depth, and location; each of which affects

whether the breach can be addressed by conventional means.

The standard approach to repairing ship hull breaches, known as shoring, has

remained mostly unchanged from the end of the second world war and amounts to

three general methods: (i) plugging the hole from the interior of the ship using soft

wooden plugs, (ii) covering it with prefabricated patches from the exterior of the ship,

and (iii) establish and maintain flooding boundaries within the ship to prevent further

progress of the flooding (Center, 2013; Press, 1945). These are intended as temporary

repairs and in most cases are not perfectly watertight, but even reducing water ingress

by half can allow crew to quickly bring flooding under control using pumps.

These techniques serve to mitigate damage but are far from optimal given the delay

between detecting a breach, assessing the damage, transporting materials, and

55

carrying out the repair. They are dangerous, time constrained procedures and with

modern naval services moving towards greater autonomy with fewer crew members

(Levander, 2017) it is beginning to stand out as a point of vulnerability. To remedy this

situation, a modern approach to emergency ship hull repair is proposed, using a swarm

of autonomous underwater robots to investigate the ship hull and carry out repairs. If

realised, this solution could remove the requirement for engineers to carry out

inspections to locate the damage and deal with most of the repairs, promoting greater

autonomy of large sea-faring vessels and helping to safeguard the lives of the ship’s

crew.

Section 3.1.2 General ESHR method

The EHSR method discussed is intended to address hull breach scenarios where ingress

of water must be halted to prevent excess listing and quickly restore the stability of the

vessel. The proposed approach suggests using a decentralised group of homogeneous

autonomous underwater robots to collectively carry out ship hull inspection, aggregate

at the hull breach location, self-assemble to form a sheet of connected robots, and use

the resultant structure to cover and seal the hull breach. If carried out correctly, this

would significantly decrease the ingress of water and allow human crew members to

safely deploy pumps to drain the flooded compartments, restoring stability.

Using robots to operate in hazardous environments in place of human operators has

been shown to be an effective solution to reducing the risk to human life and

equipment while making processes faster and more reliable. Using multiple robots

which work cooperatively to complete tasks, rather than individual robots, compounds

these advantages by making the system more robust, flexible and scalable as discussed

in Section 2.1. For this reason, the proposed ESHR solution suggests the use of multiple

robots working together in order to maximise performance in terms of speed of

completion, robustness to failure, and even distribution of workload.

When using multiple robots to carry out a coordinated task, it can be beneficial to

employ decentralised control schemes. This is so that the system can scale its response

to address more demanding scenarios without sacrificing performance due to

increasing computational requirements observed in multi-robot systems which rely on

centralised control schemes, as identified in Section 2.1. The ESHR method is intended

56

to address scenarios which require the detection and repair of ship hull breaches of

various sizes and shapes, making the ability of the system to scale according to the

requirements essential – thus the proposed solution uses a decentralised control

scheme without a master control.

Multi-robot systems can help perform inspection of the ship hull more quickly, but

utilising their greater numbers for the repair task would also be advantageous. One of

the more commonly employed methods of repairing ship hull breaches from the

exterior of the ship involves the use of patches to cover and seal the breach. This

approach could be adapted for use by robot systems in two ways: collective transport

or self-assembly. Using a swarm of robots to collectively transport prefabricated

patches to the hull breach presents a number of issues such as patches being ill-fitted

to the hole, difficulty of transporting objects underwater due environmental

disturbances, or accidental damage to the patch serving as a single point of failure in

the system.

Self-assembling techniques such as those discussed in Section 2.6.2 could be employed

to address the shortcomings of the collective transport approach. If the robots were

designed as modular homogenous units, they could be programmed to form larger

structures using their bodies which could then be used to cover holes of various shapes

and sizes. The self-assembly approach was selected as the repair method as the robots

can adapt their resultant structure to more accurately address damage while reducing

the number of points of failure. The modular robots are homogenous because using

heterogeneous robots to conduct self-assembly has been shown to decrease the

scalability of the system.

Forming a structure of appropriate shape and size is a non-trivial task, however

ensuring the structure can remain attached to the vessel once it has covered the hole

is equally challenging. The precise method of underwater adhesion falls outside of the

scope of this thesis, however the leading suggestion could involve the use of an

underwater epoxy or fibre reinforced polymers (FRP) to be administered by the robot

modules. Rubino, Nisticò, Tucci, and Carlone (2020) performed an extensive review of

the use of FRP in underwater construction and repair of ship, and off-shore platforms.

Their findings show that while the industry still prefers using metal as the primary

57

material for construction and long-term repair, FRP remains a promising alternative

with marked success in the restoration of structures damaged by exposure to the

marine environment, chemical agents, or marine life.

As discussed in Section 2.4, when designing cooperative multi-robot systems it is

important to select a model which can be used to predict how the system will function.

This allows of the evaluation of aspects such as feasibility of the task, number of robots

required, and the effect of disturbances. Finite state machines (FSM) are a prominent

method of modelling multi-robot system behaviour which has be used to solve various

tasks such as exploration, pattern formation and collaborative mapping – at both the

macroscopic ad microscopic scale. These tasks are closely aligned with the ESHR

scenario and thus FSM was selected as the most appropriate model for the robot

behaviour. The FSM of Fig.3.1 describes the robot behaviour and shows how

inspection, assembly, and repair process is expected to unfold.

The emergency ship hull repair process begins with the robot modules being deployed

into the water, entering the start state (S). If the robots receive no signal to indicate

that a complete repair structure has been formed (!f) they immediately transition to

begin searching the ship hull for damage (ES). The robots will continue to explore and

inspect the ship hull until they either locate a hull breach (b) or detect a signal from

another robot that has found a breach (s). If a robot is the first to locate a breach (b), it

changes to the transmit state (TS) and begins broadcasting a short-range acoustic

signal to other robots in its vicinity, notifying them of the location of damage they have

discovered. However, if robots in the search state (ES) have not located the breach but

have instead detected a signal from a robot that has (s), they transition to the follow

state (FS) where they will move toward the origin of the signal until they find a robot in

the area matching the location of the signal (r). This method of guiding robots to a

specific location was inspired by studies of signal-assisted aggregation and self-

assembly which were discussed in Section 2.6.1.

58

States Transitions

S Deploy and start f Complete repair structure formed

ES Explore ship hull b Hull breach located

FS Follow signal s Signal detected

AT Attach to robot r Robot located

TS Transmit location signal p Repair structure attached to ship hull

SB Seal breach a attached to robot

F Finished

Fig.3.1. Finite state machine (FSM) of the emergency ship hull repair robot behaviour,

showing the stages the robots move through: Searching for the damage, aggregating

at the location, forming a repair structure, and sealing the hull breach.

Once two or more robots rendezvous at the hull breach location, they can begin

communicating with each other using their local sensors to determine where to attach

to each other in order to best form a repair structure (AT). Successfully attaching to an

appropriate part of the structure (a) will allow the robot module to transition to the

transmit state (TS). In order to avoid transmitting multiple signals at once, all robots in

the transmit state (TS) will communicate with each other via local sensors and reach a

consensus which single robot should transmit the signal based on factors such as

location and remaining power. This approach to choosing a unit for signal transmission

was inspired by studies of collaborative decision making as discussed in Section 2.7.2.

59

The structure will continue to form by using a robot in the transmit state to guide

robots in the follow state (FS) to optimal attachment positions until a structure of

appropriate shape and size has been full constructed (f). The fulfilment of this

transition condition will be determined as a result of robot modules communicating

the number of robots connected to them and their location in relation to intact and

damaged sections of the ship hull using local sensors. With a repair structure fully

formed, the robot modules transition to the seal state (SB) during which they will

collectively move to cover the breach and being adhering to the intact sections of hull

surrounding the damage. When the modules have completed sealing themselves to

the hull (p) they will transition to their final state (F) indicating that the operation is

complete and that it is safe to deploy pumps into the flooded compartments.

Section 3.2 Simulated Robot Morphology

In order for the proposed CAC algorithms to be assessed, a suitable robot model on

which the code can be implemented is required. Section 3.2.1 specifies the robot

functions and physical capabilities required to carry out the algorithms, demonstrate

how existing underwater robots only fulfil some of these requirements, and identify

the need for a bespoke simulated robot design. Section 3.2.2 delves into the specifics

of the simulated robot morphology giving details of the various sensors, actuators, and

communication techniques used with explanations of their function with respect to

coordinated exploration of the ship hull.

Section 3.2.1 Robot Specification

There are five main abilities the autonomous underwater vehicles (AUV) must possess

in order to carry out the CAC algorithms: they must be able to move freely underwater,

inspect the ship hull, detect objects and other robots, communicate with other robots

over short distances, and self-assemble to form larger water-tight structures. Since

their inception in the mid-20th century, there have been many AUVs developed for the

purposes of underwater inspection, environmental monitoring, and various military

applications. As a result, a plethora of methods and mechanisms have emerged with

the aim of achieving more efficient navigation, communication, localisation, and

mapping in the underwater domain (Paull, Saeedi, Seto, and Li, 2013; Aguirre, Vargas,

Valdes, and Tornero, 2017). The ability to move freely underwater can be attributed to

factors such as hull shape, method of propulsion, and buoyancy control. The geometry

60

of an AUV’s hull plays an important role in how fast the robot will be able to move

through the water – hydrodynamic designs such as the torpedo hull type (McPhail,

2009) are commonly employed in the design of many AUVs primarily for their ability to

generate low drag force (Aguirre et al., 2017). However, alternative hull geometries

such as open structure types (Boeing and Bräunl, 2012) are also worth considering for

applications less concerned with maximum speed and more focused on incorporating

irregular sensors and actuators for achieving applications such as underwater

construction.

With the rise of biomimetic underwater robots designed to move using actuation

similar to biological counterparts such as fish (Wang, Hang, Wang, and Xiao, 2008) a

variety of methods of locomotion now exist for AUVs. However, these new

technologies have yet to be implemented in commercial products and without further

testing and verification, propellers and water jets remain as the most reliable methods

of movement for AUVs. There are many ways propellers have been incorporated into

AUVs to achieve systems with powerful forward thrust and the technology has

continued to mature. In recent years, modifications to improve factors such as

protection from marine debris using enclosed propellers (Kopman, Cavaliere, and

Porfiri, 2011), and using quad-coper configurations to improve manoeuvrability

underwater (Ranganathan, Thondiyath, and Kumar, 2015) have seen increased

utilisation in robot designs. AUVs have also been shown capable of move freely using

internal pumps that create water jets (Mazumdar, Triantafyllou, and Asada, 2015) and

while this method is typically less effective at generating thrust than propellers, it can

at least be used as an additional tool to assist in positional control. Pumps have also

been shown to be an effective tool for injecting and ejecting water from internal

ballasts enabling active buoyancy control in AUVs (Woods, Bauer, and Seto, 2012).

Every AUV requires methods of sensing its surrounds in order to achieve behaviours

necessary for navigation such as obstacle avoidance, localization, and mapping. There

are a variety of sensors available but additional considerations must be made, largely

due to the difficulties associated with operating underwater. A common method of

distance sensing for robots operating on the ground or in the air is infrared (IR)

sensors, but when placed underwater the effective range of these devices is heavily

restricted due to the absorption of rate of the water (Farr et al., 2010). Though even

61

with such restrictions, there are still of AUVs that prove it is possible to perform basic

obstacle avoidance using such sensors, albeit at a restricted range (Deng et al., 2015).

Acoustic signals such as sonar are much lower frequency than IR signals which allows

them to propagate much further through water. Sonar sensors can reliably detect

objects at range and this leads to the widespread implementation of these sensors in

AUVs for applications such as obstacle avoidance, localization, and mapping (Teo, Ong,

and Lai, 2009; Mallios et al., 2010). Acoustic sensors are especially useful for

underwater localization tasks where technologies that rely on radio frequencies such

as GPS cannot be used. Instead AUVs can perform localization using underwater

positioning systems (UPS) which use beacons on the surface of the water to determine

the relative position of a robot using trilateration (Tan, Diamant, Seah, and

Waldmeyer, 2011). Recent studies have also demonstrated the benefit of combining

acoustic sensors with cameras (Evans et al., 2003) showing that machine vision

techniques and sensor-fusion can accomplish more accurate mapping and feature

detection – ideal for visual applications such as autonomous docking or underwater

inspection (Hover et al., 2012).

Using acoustic sensors to detect the presence of objects can allow AUVs to perform

obstacle avoidance, but they also allow for indirect communication between robots.

Stigmergic communication is a powerful tool that can be exploited to produce

formation control or obstacle avoidance behaviours simply from detecting

environmental changes made by other robots (Dorigo et al., 2006), or inferred

positions of other members of the swarm (Balch et al., 2000). Some complex

behaviour, such as self-assembly, are at present too complex to be achieved with

indirect communication alone and require a more direct method of communication.

However, direct communication is not necessary for the CAC algorithms to function

and so discussion of this can instead be found in Chapter 4 where exploitation of direct

communication for self-assembly and signalling is addressed more fully.

The existing AUVs identified in the preceding section reveal that there are several

robots capable of performing some of the four major tasks necessary to carry out CAC

algorithms. However, none of the robots identified in the literature possess a

geometry which would allow for self-assembly – a fifth ability which is required for the

formation of larger water-tight structures. The ability to self-assemble is not necessary

62

for the CAC algorithm, but is of paramount importance to the success of the complete

emergency ship hull repair method and failure to account for this necessary quality in

the early stages of design could cause issues later in the design process. While there is

no existing robot that possesses all of the necessary qualities required for the CAC and

self-assembly experiments, the varied abilities of existing models arguably shows that

a robot capable of performing all of the tasks should be possible to design and

construct. For this reason, the CAC algorithms were chosen to be examined in

simulation using robots with a bespoke design, with a geometry that would allow for

self-assembly, and based on existing technologies demonstrated in current AUVs.

Section 3.2.2 Simulated Robot Design

The morphology of the simulated robot was determined according to the

requirements identified in section 3.2.1 and focuses on the following aspects: robot

hull shapes that would allow for self-assembly, methods of propulsion that allow for

high manoeuvrability and buoyancy control, and sensors that accurately and reliably

retrieve information about the environment and allow for indirect communication

between robots. One of the most limiting factors of the robot design was hull shape.

Typical AUV hull designs tend towards torpedo shapes due to their many advantages

with respect to high manoeuvrability and low drag generation, but formation of larger

water-tight structures can hardly be achieved with such irregular shapes. Therefore,

simpler geometries such as triangles, squares, or hexagons may be a more appropriate

option as these are more commonly selected to carry out self-assembly in existing

ground and air robot systems as discussed in Section 2.6.2. A square geometry was

ultimately selected due to the ability to more easily incorporate multiple propellers

and water jets for positional control, and to simplify the design of the self-assembly

algorithms addressed in Chapter 4. Figure 3.2 illustrates the square structure of the

simulated robot with simple representations of each of its sensors and actuators –

details of which will follow.

63

Fig.3.2. shows a visual representation of the simulated repair robot used in CAC

experiments. The larger circles represent the four enclosed bi-directional thrusters, the

smaller rectangles bordering the thrusters represent the distance sensors, the small

square in the centre of the robot represents the forward-facing camera, and the semi-

spheres on each of the smaller sides of the robot represent both the sonar sensors and

water-jets to control distance from other robots and obstacles.

The simulated robots measure 50cm×50cm×5cm; a similar scale to that of larger ariel

quadcopters which served as inspiration of the propeller arrangement and control

scheme discussed later. This scale makes the implementation of embedded electronics

and mechanical parts more feasible than using smaller casings but decreases it

resistance to shear stress from ocean currents due to its larger cross-sectional area.

However, propellers powerful enough to compensate for these increased stresses can

be implemented, allowing it to maintain its position even in the presence of greater

forces exerted on the robot. The selected scale also allows for the use of mechanical

links with greater strength and size, to be used between robots for linking together in

the self-assembly process. Using relatively large robots reduces the total number of

robots necessary to form a repair patch of adequate size, which means the total

number of mechanical links between agents is less than a larger swarm of smaller

robots, which in turn reduces the likelihood of linkage failures occurring.

The robots used to cover the hull breach should not be too large or singular for several

reasons. For instance, if a single very large robot were used to address the repair and

the unit was to malfunction, the repair process would fail making the system less

robust than using multiple agents. A singular robot would only be able to address

breaches of a given size and shape, as opposed to swarms of robots which are able to

64

scale their approach to repair breaches of any reasonable size and shape. Using

multiple robots with semi-flexible casing would also allow the resultant repair patch to

better conform to the shape of ship hulls which are typically curved. A robot diameter

of 50cm was selected because a collection of 20 robots with these dimensions would

be adequate to repair breaches measuring up to 2m×2m. A single hull breaches that

measure more than 2m×2m on a standard bulk carrier ship which measures

100m×80m×10m would be considered unsalvageable by conventional methods, so

designing the system to try and repair damage of a much larger scale could be

considered unrealistic. There is a limit to the amount of damage a structure can suffer

and still be considered salvageable, and the approaches discussed in this thesis are

only intended to repair damage that falls within these limits.

The simulated robots use a combination of propellers and water jets to control the

position of the robot underwater, which were selected due to their proven reliability.

Similarly, to unmanned air vehicles (UAV), vehicles using rotary blades typically require

three or more propellers to control their position and orientation. The simulated robot

was designed to operate using four bi-directional propellers which are primarily sued

to maintain a set distance from the ship hull during inspection. The decision to use four

propellers was inspired by the methods of movement employed in quadcopter UAVs

which commonly use a combination of four or more rotary blades, and sophisticated

controllers to control their position and orientation (Quan, 2017). Unlike the

quadcopter however, the simulated robots will be operating in a denser fluid

environment which must be accounted for in the control strategy and selecting an

appropriate method of buoyancy control can help compensate for these additional

constraints. To this end, the simulated robots are assumed to possess passive neutral

buoyancy which allows them to stay submerged at 2 meters below the surface of the

water without needing to engage its actuators to maintain this depth. Using a passive

buoyancy system, rather than an active system allows for a simpler design of the robot

and its controllers.

The four propellers and the neutral buoyancy of the robot serve as sufficient actuation

for most tasks requiring underwater manoeuvring, but to increase its ability further

the simulated robot also possesses internal pumps to create water jets. These pumps

push and pull fluid through the main body of the robot via connected channels that

65

run between the four faces of the robot with the smallest cross-sectional area,

allowing it to further control its movement when the four main propellers are working

to maintain a set distance from the ship hull. This method of routing water through the

body to generate thrust is known as hydraulic propulsion (Doyle et al., 2016) and is

illustrated in Fig. 3.3.

Fig.3.3. Three connected robot modules creating a network of internal pumps showing

the resultant motion of the structure from different pumps being activated. The red

arrows indicate the motion of the fluid pushed through the robot using the pumps, and

the green arrows indicate the resultant direction of motion of the structure.

One of the advantages of this method, as demonstrated by Doyle et al.’s modular

hydraulic propulsion robots, is that it can continue to function when robot modules

become connected to each other. When two or more robot modules connect to each

other as shown, their channels become linked and the hydraulic propulsion of each

66

module continues to function, strengthens the connection between modules, and

influences the resultant direction of movement of the new robot configuration. Due to

the dimensions of the robot selected earlier in the design process, the size of the

motors that could feasibly be implemented to enable these methods of movement is

also limited. Thus, the potential maximum speed of each robot is restricted to less than

or equal to 5 m/s in any direction the water inlets are facing.

The selected hull shape and methods of propulsion provide an appropriate base for

the repair robot, but in order to carry out the inspection in earnest the robot requires

methods of sensing its surrounds so it can infer its position in the environment. In

section 2.5.2 one of the more common methods of localisation for swarm robots was

identified – the use of beacons or landmarks. The purpose of the CAC algorithm is to

carry out inspection of a ship hull, and this is something we can exploit to our

advantage by selecting the ship hull as a known landmark in an otherwise boundless

environment. To enable a positive identification of the ship hull, the robot is fitted with

a forward-facing camera close to the centre of the robot, and four infrared distance

sensors that border the four propellers as described in Fig.3.2. Section 3.2.1 discussed

how IR sensors are ill equipped for long-range underwater sensing but can function

adequately over short ranges such as the 2 meters distance the robots will be working

to maintain from the ship hull.

The simulated robot also possesses four sonar sensors; one on each of the 4 faces of

the robot with the smallest cross-sectional area, which it can use to confirm the

location of neighbouring robots and potential obstacles in the water, such as debris,

seaweed, or moving sea creatures. The robots use these proximity sensors to detect

when another robot is in range of the sensor closest to the waterline, and in range of

the sensor furthest away from the waterline ensuring that it always remains in contact

with these other modules throughout the inspection process. Each robot works to

equalize the measured distance between itself and its two closest neighbours using

virtual forces techniques much like those discussed in sections 2.5.1 and 2.5.2. The

robots use the error between their two opposing proximity sensor readings to affect

the magnitude and direction of their internal pumps which control the position of the

robot using hydraulic propulsion, enabling effective pattern formation and control. By

ensuring each robot follows this protocol, the formation of robots shown in Fig. 3.4 can

67

be created and maintained, enabling a more complete examination of the ship hull to

be performed.

Figure 3.4. Optimal configuration of the swarm of repair robots for conduction ship hull

inspection. Each robot works to maintain this formation as it conducts the inspection by

first positively identifying two robots either side of itself and moving to equalize the

distance between the two. The exception to this rule is the robot closest to the

waterline, which always works to stay with 1 meter of the waterline.

The main method of inspection of the ship hull is to be performed by a forward-facing

camera and accompanying light which sits close to the centre of the largest face of the

robot. There are a number of aspects to consider when choosing an appropriate

camera including lighting, camera field of view, pixel resolution and the subject of the

images captures, and whether it is stationary or in motion. Each of these features can

be used to dictate the type, resolution and size of camera that would be most suitable

for the job. However, the visual computation method used to detect defects and

deformations in the ship hull lies outside the scope of this study on complete area

coverage. Instead, the field of view of each robot (2mx2m) is the main metric used to

determine if sections of the ship hull are being inspected by more than a single robot,

which we can use to discern if the area coverage of the ship hull is complete or not.

However, there are examples of machine vision techniques that have been successfully

applied to autonomous underwater vehicles with limited computational power to

enable visual detection and feature recognition. For instance, edge detection and line

68

extraction which are commonly employed in machine vision and work well when the

robot has access to information about the structure being imaged, which could be

suitable for this scenario where the object of inspection is known to be a ship hull.

Gamroth (2010) demonstrated how automatic detection and tracking of man-made

objects in subsea environments can be achieved with such techniques in the presence

of marine snow and poor visibility.

In simulation, the distance sensors the robot is equipped with are visualised as red

dots wherever they intersect with the ship hull, and the forward-facing cameras can

detect this. This information is used to confirm the overlap of camera fields of view

between two or more robots inspecting the ship hull near one another as shown in

Figure 3.5. If the camera detects more than four red dots, this indicates that the extra

red dots are from the distance sensor of another neighbouring robot. Each camera has

a field of view that allows it to examine a 4m2 section of the ship hull at any one time

while maintaining a distance of 2 meters from the ship hull in accordance with the

constraints enacted on the mobile robots carrying out the inspection.

Fig 3.5. Overlap of camera field of view, signified by the presence of more than four

simulated red dots, from the robots’ distance sensors, on the camera image.

With appropriate sensors and actuator selected, the simulated robot now possesses

the ability to move freely underwater and sense its surrounds – all of which are

necessary for carrying out the CAC algorithms in this study. In addition, it possesses

capabilities that will allow for effective self-assembly behaviours to be implemented

69

such as direct communication over short ranges, interlocking mechanisms, and an

appropriate hull geometry which are discussed further in Chapter 4. The next section

delves into the methodology and discusses how these functionalities are utilised to

perform a ship hull inspection using CAC algorithms.

Section 3.3 Ship Hull Inspection Methodology

The proposed CAC algorithms are designed to work on multi-robot systems in which

each individual robot possess the same morphology and programming. As described

previously in section 3.2, the robots’ modules are capable of moving freely underwater

in any direction, but to simplify the search algorithms and the subsequent controllers

for the robots a constraint was added to the robots’ working-space with respect to the

ship hull. This constraint compels the robot to use its four forward-facing distance

sensors and corresponding bi-directional propellers to maintain a set distance of 2

meters from the ship hull, as illustrated in Fig. 3.6. Ensuring the robot stays aligned

with the ship hull reduces the chance that the robot will lose contact with the target

and its neighbours while allowing for simpler control schemes to be considered. More

discussion on the benefits of this additional constraint and how it affects the outcome

of the simulated experiments is presented in Section 3.6.

Fig 3.6. Robot works to achieve a set distance and orientation to the ship hull, by

maintaining equal readings on their four forward facing distance sensors. (a) The

forward-facing distance sensors detect a difference in measured distance from the ship

hull, indicating the robot is not parallel to the hull as required, and (b) The bi-

directional propellers have adjusted the magnitude and direction of their thrust to

equalise the distance sensor readings, giving a better indication that the robot is more

parallel to the ship hull than was previously recorded.

70

The PID controller as shown in Fig. 3.7 and described in Eq. (3.1) was implemented on

each of the four forward-facing propellers individually, the collective result of which

enables the robot to align with the ship hull as parallel as possible. Each propeller

generates the most appropriate direction and magnitude of thrust using an error signal

which is determined by the difference between the desired distance between the

propeller and the ship hull (2 meters) and the measured distance from each propeller’s

corresponding distance sensor. There are many closed-loop controllers that could have

been used to achieve the desired set point, but the classical PID controller was chosen

because it is well understood, has been proven highly reliable in the control of motors

and positioning (Åström, Hägglund, and Astrom, 2006; Visioli, 2006), and continues to

prove successful in recent applications to AUV control (Khodayari and Balochian, 2015;

Sarhadi, Noei, and Khosravi, 2016).

Fig.3.7 Block diagram showing (a) the PID controller implemented on forward facing

propellers of the robot to control its distance from the ship hull, and (b) the internal

working of the plant Smogeli, (2006).

The desired set point r(t) of the controller represents a distance sensor reading of 2

meters between the sensor and the ship hull. This set point r(t) is compared against

the measured output y(t) creating an error signal e(t) which represents the difference

71

between the current state and the desired state. The PID controller applies

proportional, integral, and derivative gains to this signal as described in Eq. 1 to create

a control signalu(t). This signal is then passed through the plant - composed of the

motor, gearbox, and propeller - to affect the speed of rotation and resultant position

of the robot, changing the measured output signal y(t) from the corresponding

distance sensor, which is fed back to the comparator to generate a new error

signale(t).

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡′)𝑑𝑡′
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (3.1)

Where 𝑢(𝑡) is the control variable, 𝑒(𝑡) is the error between the desired set point and

the measured output, and 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the respective proportional, integral, and

derivative gains (Visioli, 2006).

The complexity of propulsion systems such as that of Fig.3.7 (b) and their design is not

to be understated, with the many factors that affect the efficiency and effectiveness of

the propeller performance that need to be accounted for. In this example from Sogeli

(2006), 𝑄𝑚 is the motor torque, 𝑄𝑚𝑑is the desired motor torque, 𝜔 is the angular

velocity of the propeller, 𝑄𝑝 is the propeller torque, 𝑇𝑝𝑑is the desired thrust, and 𝑇𝑝 is

the actual propeller thrust. Comprehensive low-level system design involving such

parameters falls outside the scope of this study, but has been examined extensively by

other researchers investigating marine propulsion (Smogeli, 2006; Pivano, 2008).

Instead, these aspects of the system will be explored in future studies concerning the

use of propellers for positional control of AUVs in dynamic environments.

With the robots’ movements constrained to maintain a set distance from the ship hull,

the CAC algorithms become more comparable to those used to explore 2D spaces

where only the XY-plane considered. Both CAC approaches described here after,

operate using the same conditions described above, maintaining an equal distance

from the ship hull as often as the controllers will allow. The two methods, referred to

as the lawnmower search (uncoordinated) and the sweeping search (coordinated), are

both designed to fully inspect the middle section of a ship hull. Studies on area

coverage using multiple robots have demonstrated the benefit of minimising turns in

such approaches (Vandermeulen, Groß, and Kolling, 2019), which indicates that the

sweeping search should marginally outperform the lawnmower approach. The results

72

of the following experiments should confirm this while also indicating the effect of

allowing coordination among the robots.

The lawnmower search (Fig. 3.8) is an un-coordinated complete area coverage method

which can be used to measure the performance of a swarm of homogeneous robots

where each robot operates independently of the actions of its neighbours. In this

method, the robots are evenly distributed along one side of the vessel at the

waterline, allowing for an initial overlap of their forward-facing camera field of view.

Note that this initial even distribution of robots is not controlled by the robots

themselves, but by the mechanism used to deploy the robots into the water from the

side of the ship, and once deployed the robots do not communicate with each other.

Fig.3.8. the four distinct phases of the un-coordinated lawnmower search pattern with

robots represented by green squares and movement pattern represented by red

arrows. (a) Shows the initial distribution of the robots, (b) shows their direction of

movement for the first pass under the ship hull, (c) shows the lateral movement of 2m,

and (d) shows the next pass back under the ship hull.

Each robot performs and individual search in a straight line that stretches under the

vessel until the waterline on the other side of the ship hull has been reached. Once this

point has been reached, the robot will turn and move parallel to the ship hull for 2

meters (half the width of its cameras field of view). The robot then completes the

initial pattern by performing the same straight line search under the vessel once more

73

until the original side is reached. This pattern then repeats until the entire hull has

been examined. In this approach sensors are only used to maintain a set distance from

the ship hull, inspect its condition with the camera, and perform basic obstacle

avoidance to prevent collisions and ensure completion of the search – formation

control between robots is not used.

The sweeping search (Fig. 3.9) is the coordinated approach which is intended to

outperform the uncoordinated lawnmower search in terms of time to complete the

search, and robustness to sensor noise or population failure in agreement with the

findings of section 2.5 of the literature review. The robots are initially evenly

distributed underneath the vessel, forming a line that follows the curvature of the hull.

The search stretches the length of the ship hull from front to back and terminates once

the main body of the ship hull has been examined. Although this approach starts with

a different initial configuration, the main distinction of this approach is that the robots

are instructed to stay within sensor range (4 meters) of one another while performing

their search of the ship hull. The robots take measurements of the distance themselves

and their two closest neighbours using their proximity sensors on opposing sides. This

data is passed through a PID controller Eq. (3.1) to minimise the difference between

these two values, which would indicate an equal distance between the robot and each

of its neighbours has been achieved. The maximum allowed space between each robot

is defined by the point at which the overlap of their forward-facing camera field of

view falls to zero.

In the lawnmower approach, coordinated motion is achieved using a method of

formation control which enables each robot to set the direction and velocity of its

internal propellers, responsible for moving the robot about the x-y plane, using

hydraulic propulsion. The direction and velocity of these propellers are determined

using the readings from the proximity sensors which measure the difference in

distance between its two closest neighbours, as described in Eq. (3.2).

𝑒(𝑡) = min{𝑃𝑆𝐿, 4.0} − min{𝑃𝑆𝑅, 4.0} (3.2)

The error value (e(t)) is generated by subtracting the minimum distance measurements

of its left proximity sensor (𝑃𝑆𝐿), and its right proximity sensor (𝑃𝑆𝑅) which indicates

whether it needs to move closer or farther away from its respective neighbours. A

74

minimum is used to limit the speed at which the robot moves to equalise the distance

between itself and a missing neighbour, as using the maximum range of the sensor

instead of a cap of 4.0 (representing 4 meters) could cause the robot to accelerate

faster than is desired, which could cause collisions with newly discovered neighbours.

Negative error values indicate the robot would need to move closer to its neighbour

on the left, while positive error values indicate that it would need to move closer to its

neighbour on the right. Passing this error value though a PID controller, as described in

Eq. (3.1) would allow the robot to safely equalize the distance between its neighbours

at a controlled speed, forming a more stable formation.

Fig.3.9. the three distinct phases of the coordinated sweeping search pattern with

robots represented by green squares and movement pattern represented by red

arrows. (a) Shows the initial distribution of the robots, (b) shows their direction of

movement for their pass under the ship hull, and (c) shows their final distribution

following a successful inspection.

75

In scenarios where the robot has lost sight of one of its neighbours – for instance when

a robot has broken down - Introducing the cap of 4.0 in the error calculation also helps

prevent the robot from losing contact with the neighbour that is visible while searching

for a neighbour on its unoccupied side. The robots are assumed to be capable of

discerning when they are within 1 meter of breaching the waterline. When a robot

detects this, it will ignore a lack of neighbours closer to the water line that themselves

and work to maintain a set distance of 1m below to waterline, serving as one end of

the line formation of robots under the hull.

Section 3.4 Experiment Setup

Webots is the simulation software that was selected to carry out the ship hull

inspection experiments. This allowed for the creation of more realistic models of the

swarm of swimming robots, the underwater environments, and the ship hull to be

inspected. The experimental setup for the lawnmower and sweeping search

experiments is kept relatively simple by modelling only the ship hull, the robots, and

the fluid environment, but omitting the inclusion of additional obstacles. The body of

water was modelled with a high clarity to ensure that the image quality of the robots

forward-facing camera was not impacted by anomalies such as mud, oil, or other

impurities. In order to assess the performance of the system under ideal conditions,

fluid qualities such as turbulence, complex currents, and tides were not initially

modelled and instead a static body of water is used so that only the viscosity of the

fluid and the buoyancy of the robots are considered. Exactly how the results and

system performance are expected to change when implemented in a turbulent

environment is a subject which has been delegated to future experiments. The

simulated ship used in the experiments is that of a bulk carrier ship, the second most

common sea faring vessels used in international shipping of dry cargoes with a high

weight to cost ratio such as coal, grain, and ore (Global merchant fleet - number of

ships by type 2019 | Statista, 2020). The ship hull inspection technique discussed in

this study could also be applied to the more common general cargo tankers, but the

bulk carrier ship hull was selected because these types of ship typically carry more

valuable cargo and as such are at the greatest risk of loss. The scale of the modelled

bulk carrier ship is relatively small, measuring 100m×8m×10m in length, height and

width respectively (Fig. 3.10). If a different size of vessel or a ship with a wholly

76

different shape of hull were to be used the CAC algorithms for inspection should in

theory not need adjustment. However, the number of robots deployed to conduct the

search may need to be increased or decreased to avoid sparsity or overcrowding of

robots carrying out the work. Given the size of the simulated ship, the total area of the

hull section to be inspected, and the maximum size of breach that could be consider

salvageable (as discussed in Section 3.2.2), a population of 20 robots with dimensions

of 50cm×50cm×5cm per module and an average field of view of 4m2, would be

sufficient to achieve complete area coverage and conduct subsequent repairs by

following the ESHR approach outlined in Section 3.1.2.

Fig.3.10. Three-dimensional model of the bulk carrier ship used in the ship hull

inspection simulations with fluid environment colorized.

In the experiments, the ship’s propellers and thrusters are not activated so that the

ship remains in place, simply floating in the body of water to allow the robots to

conduct search. The ship sits very low in the water so that the majority of the hull is

submerged, which would be the case if the ballast tank of the vessel was full. In

addition, since both methods of ship hull inspection are intended to examine a ship

which has taken on additional water, the hull is submerged even further to the point

where only a meter of the hull section sits above the surface, allowing realistic

simulations of scenarios where the ship is holding even more water than the ballast

would allow. This configuration represents the largest area to be examined and the

worst-case scenario before the ship begins to sink in earnest.

77

The two methods of ship hull inspection described in section 3.3 as the un-coordinated

lawnmower approach and the coordinated sweeping approach are tested, and three

scenarios are examined for each of the two methods in environments with no

additional obstacles. The first scenario tests the system performance in an ideal

setting, where every robot in the swarm is fully functioning throughout the experiment

and there is no excessive noise or errors present in any of the sensor measurements or

camera images. The second scenario examines the performance of each system in the

presence of some sensor noise which is evenly distributed among the distance sensors

used to maintain a set distance from the ship hull. Noisy reading from sensors such as

the IR devices discussed in section 3.2 are a common occurrence in underwater

robotics applications and so the forward-facing IR sensors of the simulated robots are

modelled with additive white Gaussian noise (AWGN) which is fortunately an available

method of modelling noisy sensor reading in the Webots simulation software. AWGN

is a basic noise model used to mimic the effects on signals caused by random

processes that occur naturally - such as the temperature and clarity of the water or the

intensity of ambient light - and is added to any noise that may be intrinsic to the

sensor model. The noise is modelled with standard deviations of 5%, 10%, and 15%

respectively, as shown in Figure 3.11.

Fig.3.11. Additive White Gaussian noise (AWGN) with a standard deviation (σ) of 5%

added to the distance sensor values to examine how the system functions in the

presence of noise. The highlighted red section identifies the range within which the

majority (68.2%) of noise values will be generated. Standard deviations of 5%, 10%,

and 15% are modelled in separate experiments, but following the same Gaussian

distribution curve as shown.

78

The third scenario tests the system performance with ideal sensor readings, but

examines how the robots adapt when a percentage of the robot population completely

fails and does not recover. Three experiments will be run per search method, where

5%, 10%, and 15% of the team of robot will be randomly selected to fail at different

times during the experiment, at which point the functioning robots will instead treat

the faulty robots as obstacles to be avoided. In such a scenario, the remaining robots

must then either distribute the work evenly among the remaining robots by

collectively filling the gaps that have formed, or delegate the work of each failed robot

to its closest functioning neighbour.

The performance of the lawnmower and sweeping searches, in each of the three

scenarios, is determined by the successful completion of the CAC task and three

additional factors: field of view (FOV) overlap, FOV gaps, and completion time. One

method of assessing the completeness of the CAC algorithms is to measure the total

area of overlap and total area of gaps generated between the camera FOVs of each

robot. If a single robot is tasked with inspecting an object but is operating with faulty

sensors it may develop a false image of the target. However, if two or more units

inspect a section of the same object and can reach consensus on their measurements,

even if one is faulty this reduces the risk of taking erroneous readings or false positives

as fact. So the more FOV overlap present, the higher the chance of observing the true

state of a section of hull that is inspected. The quantity of FOV overlap and gaps

generated are found by recording the global positions of each of the robots and the

FOV measurements from the XY-plane, all of which are readily accessible through the

simulator. These values are then applied to Eq. (3.3) where the total FOV overlap or

gap can be calculated.

𝐴𝑓𝑜𝑣 = (𝐻𝑓𝑜𝑣 − √∆𝑥2 + ∆𝑦2) × (𝑉𝑓𝑜𝑣 − ∆𝑧), (3.3)

Where Afov represents the area of overlap or resultant gap formed between two

robots FOV. Hfov and Vfov represent the minimum xy-plane FOV measurements of the

robot in question compared against its closest neighbour. ∆x, ∆y, and ∆z represent the

differences in position of the two robot cameras in the x, y and z coordinates,

respectively.

79

The measurements and subsequent calculations from Eq. (3.3) are carried out for each

robot and occur every 50cm that is traversed by the swarm. If the calculation yields a

negative value, this indicates a gap has formed between the respective robot FOVs,

while positive values represent an area of FOV overlap. Higher levels of overlap

indicate a higher probability that the robots are observing the true state of the ship

hull, contributing towards a more complete inspection. Gaps in FOV indicate sections

of ship hull that have gone un-inspected and are thus counted as incomplete searches.

Only approaches that do not generate gaps can be classed as complete. Figure 3.12

illustrates the concept of FOV overlap between two robots in the same arrangement

that is used in the experiments.

Fig.3.12. Field of view overlap diagram. The image shows two robots angled towards a

hollow cylinder, the field of view and camera frustums are drawn in red for robot 1 and

green for robot 2. The yellow shaded section represents the overlap between the two

robots’ field of view.

The final factor for measuring the performance of each approach is simulation

completion time. Time is an important element of emergency ship hull repair as the

longer a breach remains in disrepair, the higher the likelihood that flood boundaries

within the ship will fail, leading to worse flooding and greater instability of the ship.

The quicker the system can perform a complete search, the faster it can discover any

potential hull breaches, and thus the more well suited it will be to forming part of the

automated emergency ship hull repair system. These experiments should reveal the

80

approach which yields the fastest and most complete search of the ship hull, even in

the presence of failed robot modules or erroneous sensor readings.

Section 3.5 Results

In this section, the performance of the lawnmower and sweeping searches on a

simulated generic cargo tanker are assessed in three separate scenarios: ideal

conditions, sensors with 5%, 10%, and 15% additive noise, and 5%, 10%, and 15%

population failure. Fifty separate simulations were carried out for each variable that

was changed in each scenario for both approaches, resulting in a combined total of

700 simulations for the un-coordinated lawnmower search and the coordinated

sweeping search. The results were compiled and compared in MATLAB to help identify

the search method that yielded the quickest completion time and the most complete

search. In all the figures shown forthwith, each bar represents the median result of the

50 simulations per variable change. Error bars are included indicating the maximum

and minimum values obtained, except for Fig.3.13 in which the results are

deterministic and therefore no variation in behaviour was observed.

Section 3.5.1 Ideal Conditions

Figure 3.13 shows the comparison of results between the lawnmower and sweeping

search in the ideal scenario, where all robot sensors operate without erroneous

readings or noise, and none of the robot population fails throughout the simulation.

Neither approach generates gaps throughout the experiment proving that complete

area coverage has been achieved by both. It can be observed that the sweeping search

achieves greater FOV overlap than the lawnmower approach, indicating that the

sweeping search has a higher probability of observing the true state of the ship hull,

providing a greater degree of certainty concerning the recorded sensor measurements.

The largest distinction that can be observed between the two search methods is how

the sweeping search takes less time to complete the same search while achieving a

higher FOV overlap. These results are in agreement with other studies investigating the

effect of turn minimising behaviour in robot teams for area coverage (Vandermeulen

et al., 2019) further confirming the hypothesis that search methods with fewer turns

typically result in fast completion times for area coverage. Under ideal conditions, the

sweeping search seems to outperform the lawnmower search in terms of time to

completion and FOV overlap.

81

Fig.3.13. Ideal scenario comparison for the lawnmower search and the sweeping

search, where all agents operate with perfect sensor measurements and none of the

population fails.

Section 3.5.2 Noisy Sensor Measurements

Figure 3.14 compares lawnmower and sweeping search performance in three

scenarios where the forward-facing distance sensors of the robots return erroneous

measurements due to the inclusion of additive white Gaussian noise (AWGN) with

variances of 5%, 10% and 15%. Though errors are present, none of the population fully

fails throughout these simulations so that each robot completes their individual

search. From the results, it is clear that the lawnmower does not generate gaps, but

the sweeping search does. This indicates that when significant noise is introduced to

the distance sensors only the lawnmower approach achieves complete area coverage

while the sweeping approach fails. The sweeping search yields greater FOV overlaps

when less errors are present; however, it is quickly outperformed by the lawnmower

approach once errors begin to build, and this performance gap widens when the

magnitude of erroneous reading increases. In addition, the overlap generated by the

lawnmower approach is more consistent, with low deviation across different

percentages of error. The sweeping search may take less time to complete its search

pattern than the lawnmower search, but because it has begun to generate gaps it can

82

no longer qualify as a complete search. This indicates that when erroneous sensor

measurements are more prevalent, the lawnmower search is superior to the sweeping

search. On completion of the initial experiments, several simulations were conducted

with extreme erroneous sensor measurements of 30% which revealed that both

systems quickly break formation and fail to complete the search. This demonstrated

that while the lawnmower approach is more tolerant to sensor noise than the

sweeping search, neither system is wholly immune.

83

Fig.3.14. Error Scenario Comparison; (a) the sweeping search (coordinated), and (b) the

lawnmower search (uncoordinated). In these experiments, the robots operated with

erroneous sensor measurements with variances of 5%, 10%, and 15%. None of the

robots fully fail in this scenario but the noisy sensor readings have a negative effect on

the robots’ ability to complete their tasks.

84

Section 3.5.3 Partial Population Failure

Figure 3.15 compares the partial population failure scenarios for the lawnmower and

sweeping searches. In these scenarios all robot sensors operate without erroneous

measurements or noise, but a percentage of the population fails at a random time

interval and does not recover, instead serving as obstacles that the remaining

functioning robots must avoid. The robots are configured so that 5%, 10%, and 15% of

the total population will fail in three respective separate scenarios. The results show

that neither search method generates gaps in FOV which indicates that complete area

coverage is still achieved in both cases. The lawnmower search achieves more

cumulative overlap than the sweeping search, indicating that it has a higher probability

of observing the true state of the ship hull. However, this comes at the cost of a

significantly longer completion time than the sweeping search whose completion time

is almost unaffected by decreases in population of up to 15%. In fact, the lawnmower

approach takes approximately 5 times longer to complete its search than the sweeping

search, but only yields 1.5 times the overall area of FOV overlap. This indicates that the

uncoordinated lawnmower search is less efficient than the coordinated sweeping

search at redistributing additional workload when part of the population fails, which is

in agreement with section 2.5.1 where the benefits of distributed systems are

discussed.

Full videos of these simulations showing the lawnmower and sweeping searches under

ideal conditions can be accessed via the GitHub repository:

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair.

Additionally, the code used to construct the Webots environment can be accessed via

the same link, while experts of the programs used to control the robots can be

examined in greater detail in Appendix A: Ship Hull Inspection Webots Simulation

Code.

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair

85

Fig.3.15. Partial population failure scenario comparison; (a) the sweeping search

(coordinated), and (b) the lawnmower search (uncoordinated). In these experiments, all

the robots operated with ideal sensor measurements, but a percentage of the

population completely failed and did not recover. Percentage failures of 5%, 10%, and

15% are shown which represent scenarios where one, two, or three robots completely

fail at a random interval, and serve as obstacles from that point forward.

86

Section 3.5.4 Effect of Ship Size on Results

As mentioned in Section 3.4, these simulations were carried out in Webots with a bulk

carrier ship hull measuring 100m×8m×10m serving as the object of interest. The

algorithms deployed on the robots for maintaining a desired distance and orientation

relative to the ship hull are designed to allow them to inspect various ship hull shapes

without increasing the time of complete searches or reduce FOV overlap. However,

using the same number of robots to inspect ship hulls of different lengths than our

simulated model could significantly impact the results. For instance, if the

circumference of the ship hull to be inspected was halved, such that the hull was

narrower, and the same number of robots was used to perform inspection – this could

decrease the completion time, but increase the risk of collisions between robots.

Similarly, if the circumference of the ship hull was double that of the simulated model;

more robots would be required to achieve comparable completion times and FOV

overlap to that of the results. Therefore, to achieve similar results recorded in these

scenarios, Eq. (3.4) can be used to determine how many robots should be deployed

based on the circumference of the ship hull, and the width of the robot FOV while the

width of the robot’s largest face is no greater than ¼ that of its FOV width.

𝑁𝑅 = ⌈
𝑊𝐻

min (𝐻𝑓𝑜𝑣 , 𝑉𝑓𝑜𝑣)
∙ 1.5⌉, (3.4)

where 𝑁𝑅 is the recommended number for robots required for the insection of the

ship hull, 𝑊𝐻 is the circumference of the ship hull in meters, and 𝐻𝑓𝑜𝑣 and 𝑉𝑓𝑜𝑣 are the

horizontal and vertical dimensions of the robots FOV, respectively. The minimum of

the FOV dimensions is used so that the robot can perform its inspection at any

orientation. This result in multiplied by 1.5 to ensure adequate FOV overlap and is

finally rounded to the smallest integer greater than or equal to the result to give the

number of required robots. For example, the circumference of the simulated ship hull

from the experiments was 26𝑚 and the 𝐻𝑓𝑜𝑣 = 𝑉𝑓𝑜𝑣 = 2𝑚 which gives a result of 20

robots.

Section 3.6 Discussion
It may seem as though the question of which method is superior under the three

circumstances is rather clear, however there are additional considerations that must

87

be made for the sweeping search method. This is because as a coordinated method it

relies on the accuracy of its sonar sensors on it to maintain contact with its neighbours.

It was found that while many of the sensors in Webots quite accurately represent their

real-life counterparts, the sonar sensors are regrettably less accurate. Rather than

detecting objects that come within a given range of the sensor, in Webots sonar

sensors are modelled as multiple laser rays emitting from a point, and objects are only

detected when they intersect with these rays (Fig.3.16). This means objects that can fit

between these rays can become more easily lost to the sensor, causing the robot to

believe the object it was sensing has suddenly vanished. This is a scenario that

frequently occurred in simulation when the robots turned at sharp angles while

following the curvature of the ship hull. In these scenarios, the PID controller that

works to equalize the distance measurements on each side of the robot quickly moves

to regain equilibrium. When the robots fail to see each other in these scenarios they

have a higher likelihood of colliding, which causes both agents to fall away from the

arranged line, and ultimately fail to complete their searches.

Fig.3.16. Webots simulated representation of the sonar sensors in operation on two of

the ship hull inspection robots. Multiple rays are used to represent the sonar sensors –

red rays indicate a beam which has not detected an obstacle, but when a ray turns

green this indicates it has passed through an obstacle. This image shows the common

scenario where the robot on the upper left of the frame can see the other robot, but the

robot of the lower right-hand side of the frame cannot see the robot on the upper left

hand side of the frame.

88

In the second set of experiments, where errors were introduced to the forward-facing

distance sensors, the inaccuracies caused the robots to sway slightly, increasing the

likelihood that neighbouring agents would fall between the already scattered sonar

rays and become lost to the robot. To address this issue, a more accurate

representation of the sonar sensors should be used in subsequent simulations to see

how the system behaves without this unintended disturbance. It is reasonable to

assume that a more accurate representation of sonar sensors would remove some of

the instability that has caused gaps to form, and would further serve to reduce the

reality gap between the simulated and real world systems. However, at present the

lawnmower search appears to outperform the sweeping search in terms of robustness

to sensor noise.

Despite these shortcomings, the coordinated sweeping search method was able to

adapt well to losing a percentage of its population. In fact, when a higher percentage

of the agents were removed the speed of completion appears to have slightly

increased. This increase in speed could be due to how the area of the ship hull narrows

towards the back of the vessel. When the area to be inspected becomes smaller, using

larger populations of robots can lead to some overcrowding and begins serve as more

of a hindrance than a benefit. Thus, it seems reducing the size of the population when

approaching narrower section of the hull increases the speed of inspection by reducing

overcrowding. Understanding this aspect could allow for adjustments to the search

method so that the robot population size can be increased or reduced according to the

collective space between robots rather than the predetermined maximum length

between two points on the ship hull. This improvement could serve to increase the

efficiency of the system by only recruiting robots from the available population which

are deemed essential to the search, instructing others to form a second line of

inspection or remain on standby. Such adjustments could also make implementation of

this search method more readily applicable to ships with different hull shapes and

sizes.

Comparison of the results from Fig.3.13 and Fig.3.15 (b) confirms that the completion

time for the un-coordinated lawnmower search method is severely impacted by partial

population failure as was predicted. When even a single agent (5% of the population) is

removed, the time required to complete the inspection can increase by up to 100%.

89

This effect is compounded when a group of two or more consecutive agents fail near

each other. This is due to the closest remaining functioning neighbour robot having to

perform the work that would have been performed by the faulty robot, increasing the

workload of the individual rather than the work being evenly distributed throughout

the swarm as is the case in the sweeping search scenario. This reduces the scalability

of the lawnmower approach, as larger swarms will perform less efficiently when the

workload of failed agents is simply shifted to its closest neighbour.

The results show how the coordinated sweeping search method outperforms the un-

coordinated lawnmower search method under ideal conditions and in the face of

partial population failure, which is in agreement with the literature findings of Section

2.5 concerning coordinated motion and area coverage in dynamic and static 2D

environments. Comparisons between these CAC experiments which took place in a 3D

simulated environment and the 2D search space experiments from literature are

possible thanks to the implementation of constraints to the robots working space. This

allowed the swarm robots movements and pattern formations to mimic that of robots

exploring 2D bounded arenas, despite carrying out an inspection of a curved surface

without a solid boundary.

However, due to inaccuracies of the sonar sensors modelled in the Webots simulator

as mentioned above, the sweeping search is presently more sensitive to sensor noise

than the lawnmower search and leads to instabilities which render the inspection

incomplete under certain conditions. The sweeping search may be superior in terms of

time taken to complete the inspection, and robustness to partial population failure,

but not to erroneous sensor readings. Provided the sonar sensors are modelled more

accurately and the sweeping search method are modified to better adapt to sensor

noise, it could in theory outperform the lawnmower search in all the scenarios. As it

stands, the lawnmower search method is the only inspection which qualifies as

complete in all scenarios and must be recognised as such.

90

Chapter 4. Ship Hull Repair: Self-Assembly Algorithms
The research presented within this chapter pertains to the second stage of the

emergency ship hull repair scenario outlined in Section 3.1 and is intended to follow

successful completion of the ship hull inspection stage described in Section 3.3. This

study examines the ability of the robot swarm to aggregate at a specified location and

form a patch using a novel self-assembly technique which relies on direct optic

communication. Self-assembly is a branch of robotics research which studies how

distributed groups of robots can interact and arrange to form new configurations

which are capable of more than the sum of the individual parts. As discussed in Section

2.6, the type of self-assembly detailed in these studies pertains to how a swarm of

autonomous underwater modular robots can combine to create a patch of a given

shape and size using their own bodies. The purpose of the resultant structure will be to

cover and repair the ship hull damage which it has been created to address. The effect

that increased robot traffic has on this robot assembly process is also studied by

varying the population density across multiple simulations and scenarios.

The main contribution of this research is a method of self-assembly that allows

modular robots to form repair patches, using their own bodies as material, which are

large enough to coving a holes of various shapes and sizes in a ship hull. The results

from the experiments are used to inform the design of an improved self-assembly

approach which suggests a method of enhancing the initial approach by controlling the

angle of approach the robots use when navigating their way to the damage, or by

allowing more than one assembly location for the repair patch.

Much like the simulated repair robots of the ship hull inspection scenario, the

simulated robots used in this study do not yet have a real-world counterpart and are

instead restricted to more abstract descriptions of their abilities and morphology.

Section 4.1 provides more insight into the use of direct communication for the purpose

of self-assembly, and is followed by a description of the simulated robot morphology.

The robots in these experiments are intended to possess much of the same abilities as

those in Chapter 3 but their morphology and representation have been changed to

allow for simpler simulation of larger robot populations. The necessity of these

adjustments is provided in more detail in Section 4.1.2. Section 4.2 reveals the method

of aggregation used to guide robots to the location of the ship hull damage, referred to

91

as the primary assembly point (PAP), and the self-assembly method which uses direct

communication techniques to form a correctly sized repair patch. Section 4.3 discusses

the experimental setup and explains how the success of each simulation is intended to

be measured. The results of the experiments are provided in Section 4.4, and the

chapter concludes with a discussion of these results and their implications in Section

4.5.

Section 4.1 Simulated Robot Morphology

In Chapter 3, the robot morphology was designed primarily for assessing the ability of

the robots to move relative to the ship hull and other robots using indirect

communication methods. In this study however, the robots will require more direct

forms of communication in order to carry out the aggregation behaviour and self-

assembly procedures being tested. To this end, Section 4.1.1 lists the functions and

physical capabilities the robot will require, in addition to those specified in Section

3.1.1, to carry out the self-assembly task. Section 4.1.2 presents the new simulated

robot designed to meet these requirements and explains the reasons behind the

changes which were deemed necessary to carry out the self-assembly behaviour.

Section 4.1.1 Robot Specification

To perform the aggregation and self-assembly behaviours presented in this Chapter, at

a minimum the AUVs require the ability to directly communicate with one another

over short distances, and to connect with other robots to form larger structures. This is

in addition to possessing an appropriate geometry which allows them to create water-

tight seals between robot modules and the ability to effectively move underwater as

described in Section 3.2.2. Direct communication between robots has been

successfully achieved underwater using acoustic signalling (Paull, Huang, Seto, and

Leonard, 2015), but this method operates at low bandwidth and is more subject to

noise introduced from reflections from objects in close proximity in the water

(Joordens and Jamshidi, 2010). Optic communication is an alternative method for short

range underwater communication that uses light pulses (Schmickl et al., 2010). This

approach overcomes some of the limitations observed in acoustic signalling but can be

subject to other factors such as water clarity and ambient lighting conditions.

Minimising the influence of environmental conditions on optic communication can be

achieved by reducing the distance between agents. However, the shortcoming of both

92

systems may be better compensated for if a combination of the two communication

methods is used instead (Lodovisi, Loreti, Bracciale, and Betti, 2018). A hybrid system

could be well suited to multi-AUV systems that communicate under varied conditions,

due to the ability to adapt the communication method based on the environmental

conditions and transmission range.

As discussed in Section 2.6, swarm robots tasked with self-assembly are often

dispersed within an environment and so require a method of aggregation to allow

them to regroup at a common location to begin assembly. The purpose of the robots in

this scenario is to address ship hull damage by using self-assembly to form a repair

patch near the location of the damage. Therefore, environment mediated aggregation

methods which rely on information from the environment may be more appropriate.

In Section 2.6.1, it was explained how Arvin et al. (2014) used acoustic signalling

systems to achieve such aggregation behaviours in robots. This is a technique which

may be adaptable to underwater swarm robot scenarios since acoustic signalling has

been shown to be effective at communicating over short and long distances in such

environments.

There are a variety of self-assembly methods which have seen application in ground

and air environments, as previously identified in Section 2.6.2, but relatively fewer

have been applied to the underwater domain. As such, some of the self-assembly

methods used for inspiration and guidance come from systems originally intended for

a different environment than underwater, but could still be realistically implemented.

The robots are intended to create a repair patch using their own bodies, a category of

self-assembly methods referred to a morphogenesis, and the structure they form

should be suited to the shape and size of the damage found on the ship hull. To

achieve the proposed self-assembly behaviour, the robots require: a method of

assessing the size and shape of the damage, sensing the presence of other robots,

communicating their state to each other, a morphology which allows them to form

watertight seals between units, and a method of forming physical connections

between robots which are strong enough to withstand underwater currents and

collisions.

93

Section 4.1.2 Simulated Robot Design

In this study the robot morphology slightly diverges from the robots described in

Section 3.2.2 by simplifying their representation for a 2D environment while

implementing new direct communication and physical connection functions. These

changes in simulation environment and robot representation were made to address

issues surrounding simulation speed and accuracy. This study is primarily concerned

with studying how well a swarm robot system can follow the proposed self-assembly

protocol in the presence of high traffic scenarios where more than 20 robots are used.

The complexity of the simulated robots and their sensors in Webots environment did

not allow for efficient simulation of a significantly higher quantity of the robots tested

in Chapter 3. With single runs of simulations taking days to complete, it was decided

that using a simpler model in a simulation environment better suited to very high

numbers of agents would be more beneficial for the initial tests of the algorithm. To

this end, the experiments were conducted in Netlogo, the multi-agent programmable

modelling environment, but underwater effects such as drag force and signal

attenuation were omitted from the model.

The new simulated robots are assumed to possess much of the same abilities of the

robots described in the ship hull inspection scenario from Chapter 3. These include the

ability to maintain a set distance from the ship hull using propellers and distance

sensors, detect the presence of other robots and obstacles using side-mounted sonar

sensors, and assess the condition of the ship hull using a forward-facing camera. The

new abilities available to these robots include direct communicate over short distances

using sonar transmitters and receivers, connecting to other robots to form larger

structures, disconnecting to reconfigure the resultant structure, and the ability to

exchange information with neighbouring robots using optic communication (LEDs). The

main distinctions between the previous and new simulated robots are their size,

speed, and representation in the environment.

The robot modules described here are modelled at one tenth the size of the original

simulated robots from Chapter 3, measuring 0.05m by 0.05m. Reducing the size of

each robot module allowed for more accurate representation in the Netlogo simulator

where the complexity of the agents modelled is more limited than Webots. However,

to maintain this accurate representation it is necessary to also scale back the

94

maximum possible speed of each robot module to correspond with their reduced

stature. Therefore, each robot is modelled with a maximum speed of 0.05 m/s which

roughly equates to moving at one body length per simulated second of time. In the 2D

Netlogo environment, these robots are represented as simple squares with different

colours to represent their states. In the Webots simulator and on real world robots

these states would instead be communicated via multi colours LEDs and corresponding

colour sensitive photo-transistors.

Unlike the indirect communication methods used in the CAC algorithm experiments,

the aggregation and self-assembly behaviours require more direct methods of

information exchange. To allow the robots to gather at the location of the ship hull

damage, the robots are assumed to possess an active omnidirectional low frequency

acoustic signalling system which operates using sonar transmitters and receivers. This

allows for any of the robots which discover the ship hull damage to send a global

transmission about the location to the other robots within range on the same

transmission/receiver frequency. The system is configured so that robots are only able

to do one of these actions at a time; either they are transmitting because they have

located the breach and are forming part of the repair patch using their bodies, or they

are open to receiving signals because they are still in the ship hull inspection process,

at which point they will abandon their search and move to participate in the repair at

the specified location.

To perform the self-assembly behaviours, the robots use close range module-to-

module interactions between connected agents to communicate the state each

module is currently occupying – information which is essential for the self-assembly

protocol to function as intended. This is achieved using multi-coloured LEDs on one

robot and corresponding RGB colour sensors on the connected neighbouring robot.

This form of optic communication has been shown to be as reliable as acoustic

signalling at exchanging information at close range, as discussed in Section 2.6.2 of the

literature review. The state of each of these robots determines whether their current

connections are sufficient or if a re-configuration should be attempted to form a

structure with a more appropriate shape or size. This form of direct communication is

only achievable once the modules are aligned with each other so that the LEDs and

phototransistors of two robots have an unobstructed line or sight. An effective method

95

of ensuring the robots being aligned is to allow this communication only once they

have physically connected to one-another. There are benefits and drawback to both

mechanical and magnetic links, as discussed in Section 2.6.2, but active magnetic links

were selected as the connection method due to their ease of coupling and de-coupling

and decreased likelihood of mechanical failure.

As described in Section 3.3 of the previous chapter, these robots are able to control

their orientation relative to the ship hull using four forward-facing propellers. The

robots use these propellers and corresponding distance sensors to maintain a distance

of 2m from the ship hull, enabling them to implement algorithms which allow them to

treat the ship hull as though it is a 2D plane and more easily interact with neighbouring

robots. Robots then use their internal pumps to move closer or further away from

other robots; working to align themselves so they may communicate their respective

states directly using their corresponding LEDs and Phototransistors. These experiments

were carried out in simulations that modelled static bodies of water so while the risk

of each robot’s orientation changing on approach to other robots is low, it is still

possible. Because the risk of this occurrence in simulation was low, motorised controls

to correct such a change in orientation were not implemented. Instead, the magnetic

links used to couple robots together could be used to correct any minor tilts in

orientation as illustrated in Figure 4.1.

As a tilted robot approaches a robot it intends to directly communicate with, it will

attempt to align its most forward leading magnetic link with that of the other robot. As

indicated in Figure 4.1(b), minor tilts can be corrected by the strength of the upper

magnets coming together, nudging the robots orientation back into place. While this

adjustment is sufficient to correct minor changes in orientation, corrections to major

changes in robot orientation may require additional propellers in combination with an

inertial measurement unit (IMU) to be included in future models to ensure greater

control and stability.

96

Fig.4.1. Illustration of repair robots (light grey squares) correcting minor orientation tilit

using magnetic links (purple squares on the corner of each robot face). (a) Shows one

robot on approach to another at an unfavourable angle of orientation, indicated by the

red arrow. (b) shows the moment the robots first make cotact, with the green circle

highlighing the two magnetic links used to pull the robot back into orientation. (c)

shows the final configuration of the two robots, now linked together by both magnetic

links.

In the Netlogo simulations the time taken for robots to identify ship hull damage,

recognise when they are within sensor range of another robot, directly communicate

with other robots, and their magnetic coupling/decoupling procedure are all modelled

to be instantaneous. However, in more complex 3D simulations and real world

experiments a time lag between these events in inevitable and the potential impact of

these factors is discussed in Section 4.5.

Section 4.2 Methodology

The self-assembly method presented in this section is intended for scenarios where a

robot has already successfully identified hull breach damage. This robot serves as the

primary assembly point (PAP) and sends out a signal which informs any robots within

range of the transmission of its location. The first set of experiments examines

scenarios where all the repair robots approach from a common direction as this

increases the likelihood of high congestion events, and allows for the study how the

97

swarm robots adapt under such circumstances. The self-assembly protocol followed by

the robots in this scenario instructs them to form a square structure which is wide

enough and long enough to cover a circular breach, based on the diameter of the hole.

The second set of experiments seeks to increase congestion further with the inclusion

of obstacles for the robots to avoid when on-route to the PAP. This is included to

examine how the system will perform under increasingly challenging condition in

terms of time to completion and recorded collisions between robots.

The robot serving as the beacon for the PAP is working to maintain its position at the

edge of the hole between the damaged and intact section of the hull. Much like the

simulated environment in the ship hull inspection experiments, the ship is stationary

and does not roll or drift which makes it easier for the robots to maintain their

positions relative to the ship hull. However, in more realistic scenarios and simulations

the ship hull is likely to roll and drift, requiring the robots to work to maintain their

position by using connections to the ship hull such as physical tethers, magnets, or on-

board image processing. The robot is already fitted with a forward-facing camera to

recognise a damaged section of ship hull, and this same camera could be used to take

pictures of the ship hull that the robot could use as a reference to where it wants to

stay. Using this image to recognise when the ship hull is moving, the robot could

calculate the direction of the drift and move in a similar direction to match the change

in position, waiting for the moment when its current view of the ship hull and the

saved image of its desired location are aligned once more. The robot broadcasts its

location using the acoustic signalling system described in Section 4.1.2, while it is

working to maintain its desired position, providing a rough estimate of its location to

any robots within transmission range.

In all the ship hull repair scenarios, the robots are capable of indirect communication

using side-mounted proximity sensors to detect the presence of other robots and

obstacles and avoid or communicate as appropriate. They are also capable of two

forms of direct communication, which they use to relay information about the general

location of the breach and recognise the state of another robot forming part of the

repair patch while also providing information about their own state. The first method

of communication is an acoustic signalling system (Fig. 4.2) which uses short-ranged

sonar transmitters and receivers to send and receive signals from robots located at the

98

hull breach indicating the PAP. The second method enables each robot to use their tri-

coloured LEDs and corresponding RGB sensors to read the state of neighbouring

robots, which indicates if the robots they are connecting to need other robots to

connect to them, or if they should look for a different robot to attach to (Fig.4.3).

Fig.4.2. Simulated robot modules using direct communication techniques to inform

each other of the location of the hull breach and the primary assembly point (PAP).The

Robot that has located the breach transmits (Tx) the signal using an omnidirectional

low frequency sonar and the robots that have not located the breach receive (Rx) this

signal moving towards the PAP.

99

Fig.4.3. Robot modules communicate their state with neighbours using LEDs (red,

green, and orange circles) and RGB sensors (white triangles). Red LEDs indicate a robot

that is in transit to the primary assembly point (PAP). Orange LEDs indicate a robot that

is directly communicating with other robots and trying to find an appropriate place to

attach to the structure. Green LEDs indicate a robot that has found an acceptable

position, attached, and is now counted as a part of the repair patch.

Inspired by the rules of cellular automata, each robot’s state is determined primarily

by the states of other connected robots that form a Von Neumann neighbourhood

(Fig.4.4) and its position relative to the ship hull damage. The robot states are

communicated to one another using LEDs, with states represented as different colours.

When robot A(x, y) is in the red state and on route to the PAP it only takes into account

the state of robot D(x, y-1) when deciding to transition to the orange state. When

robot A(x, y) is in the orange state it uses the states of robots L(x-1, y) and R(x+1, y) to

determine when if transitions to the green state. Finally, when robot A(x, y) is in the

green state, it uses its position relative to the ship hull and the states of all the robots

100

in its Von Neumann neighbourhood to determine when it transitions to the purple

state, indicating the repair structure is complete. Table 4.1 shows the partial truth

table each robot uses to determine its state transitions based on the states of its

neighbours, while Figure 4.5 shows how these transitions might unfold. Using LEDs to

communicating robot states as different colours is a simple but effective method

which can be used to inform other robots if there is a better position, they could

occupy to better achieve the required shape and size of the repair structure.

Fig.4.4. Typical Von Neumann neighbourhood with notation adjusted to accurately

represent the x-y plane is represented in Netlogo simulation software. A (x, y)

represents the agent in question, L (x-1, y) is the agent to the left, R (x+1, y) is the agent

to the right, U (x, y+1) is the agent upwards, and D (x, y-1) is the agent down from

agent A’s position.

101

Table.4.1. Partial truth table of the self-assembling repair robot A(x, y) when it is

located at the PAP and in the orange state indicating that it is forming the central part

of a block that is under construction. As discussed above, in this position it only uses the

states of the neighbouring robots L(x - 1, y) and R(x + 1, y) to dictate its state

transitions. Only when robot A(x, y) detects that these robots are in the green state

does it decide to transition to the green state also. Number 1 represents the red state,

number 2 represents the orange state, and number 3 represents the green state.

L (x - 1, y)

(t)

R(x + 1, y)

(t)

A (x, y)

(t + 1)

1 1 2

1 2 2

1 3 2

2 1 2

2 2 2

2 3 2

3 1 2

3 2 2

3 3 3

102

 (t)

(t + 1)

(t + 2)

Fig.4.5. this diagram shows a state transition example using the state transition truth

table from Table 4.1. Robot A(x, y) at time (t) examines the states of robots L(x-1, y)

and R(x+1, y) to determine whether it should turn green or remain orange. It observed

that robot R(x+1, y) was not in the green state during inspection and so chooses to

remain orange. At time (t+1) robot A(x, y) examines the states of robots L(x-1, y) and

R(x+1, y) again to check if there has been a change, this time confirming that both

robots are in the green state. At time step (t+2) robot A(x, y) has transitioned to green

based on the states of its neighbours observed during the previous step.

103

Once a robot module has successfully navigated to the location of a robot module

close to the breach location, it can begin the CD self-assembly protocol. The protocol

instructs each robot to begin attaching to other robots until they collectively form a

block of robots that spans the full diameter of the breach. The length of this block is

determined by the cameras which can recognise when the modules have formed a line

of adequate length, which is achieved by checking if the modules that form each end

of the block are centred over an intact section of ship hull, but also connected to a

robot that is centred over the breach. Once the first block has fully formed, the block

advances by one module body-length (0.05m) and the unattached modules begin

forming a second block above the first, increasing the total area of the structure. This

process then repeats until every module on the perimeter of the breach can confirm

they are not directly above the breach but are still connected to a module that is. In

this case the robots communicate to each other that a patch of appropriate size has

been achieved and they enter their final state where they prepare to attach to the hull

and seal the breach. The result is a square sheet formed of robot modules which is

large enough to cover the hole.

At the beginning of this section it was stated that the simulated damage to be repaired

would be a circular hole and here we revealed that the self-assembly algorithm is

designed to form a square patch cable of coving this hole. However, the algorithm can

be adapted to form square patches for a variety of hole shapes by using the forward

facing camera to determine the maximum diameter of the hole and using this to

determine the length of connected modules the robot must form. This length ensures

the patch formed would be sufficient to cover the entire breach, provided enough

chains of modules are connected together. However, the current approach is best

suited for addressing circular holes, which were selected as they represent the most

common form of battle damage sustained from a direct torpedo hit.

In order for the proposed Self-assembly algorithm to function effectively, the robots

must be able to link and unlink with relative ease. As discussed in section 4.1.2 the

robots are designed to use actively controlled magnetic links as they have a lower

tendency of failure than more common mechanical linking methods in repeated

coupling/decoupling scenarios. Should the magnetic links prove to be insufficient in

withstanding the pressure from the surround fluid and forces of waves, a combination

104

of mechanical and magnetic links may be substituted to improve the integrity of the

patch – even if this may increase the risk of failures of linking and unlinking from other

robots. However, the ability of the swarm to maintain the integrity of the completed

structure they form using magnetic links alone is a question that falls outside the scope

of this scenario and is instead delegated to future works. For the purpose of this

algorithm, it is assumed that the robots experience no failures to link or unlink during

the self-assembly process.

The pseudocode in Fig.4.6 represents our self-assembly algorithm used in all of the

experiments including those where additional obstacles are modelled. It shows the

protocols for navigation, obstacle avoidance, and the state transitions each robot

module undergoes to create the desired square structure.

Algorithm 1 CD Self-Assembly Algorithm

1: begin program

2:

3: while unattached to block do

4: if obstacle ahead = false then

5: if agent ahead = false then

6: face reference point module.

7: move forward by 0.05m.

8: else

9: if agent ahead = red then

10: move backwards by 0.05m.

11: else if agent ahead = green then

12: attach to top of agent.

13: else if left neighbour of agent ahead = green then

14: attach to right side of block.

15: else

16: attach to left side of block.

17: end if

18: end if

19: else

20: if space left of agent empty then

21: turn left

105

22: move forward by 0.05m

23: else if space right of agent empty then

24: turn right

25: move forward by 0.05m

26: else

27: turn left

28: end if

29: end while

30: while own state ≠ green do

31: if hull breach in line of sight = false then

32: own state = green.

33: else

34: if left neighbour state ≠ green then

35: own state = orange.

36: else

37: if right neighbour state ≠ green then

38: own state = orange.

39: else

40: own state = green.

41: end if

42: end if

43: end if

44: end while

45: while own state ≠ purple do

46: if all neighbour states = green then

47: advance 0.05m to cover hull breach.

48: if hull breach in line of sight = false then

49: own state = purple.

50: end if

51: else

52: if all neighbour states = purple then

53: own state = purple.

54: end if

55: end if

56: end while

106

57: while breach ≠ sealed do

58: approach and seal hull breach.

59: end while

60:

61: end program

Fig.4.6. Pseudocode for the navigation, obstacle avoidance, and state transitions of our

algorithm, instructing agents which module to attach to, and which state to occupy

based on their displayed state.

Section 4.3 Experimental setup

As mentioned in Section 4.1, the experiments are conducted in the 2D simulation

environment Netlogo using simplified robot morphology. This allowed for simulation of

larger robot populations which could positively identify surrounding robots and

obstacles more reliably than in the 3D Webots simulations of Chapter 3. The

experimental setups are designed to test the ability of the robot swarm to self-

assemble in scenarios of high congestion, where many robots are simultaneously vying

for limited space to complete their task. The first setup is concerned with testing how

varying the robot population density affect the time taken to complete repair

structures of various sizes and how frequently collisions or errors occur. The second

setup uses a similar configuration to the first, but includes additional obstacles placed

at three different positions between the approaching robots and the PAP. This

inclusion is to examine how the inclusion of additional obstacles affects the congestion

observed in the experiments, and whether is hinders or benefits the system relative to

the first experiments where no additional obstacles were present.

The simulated robot modules can freely move in the simulation space, but to reduce

the widening reality gap related to the simpler morphology used, the robots are

modelled with a boundary that cannot be crossed by other robots or obstacles. This

embodiment of the robots means they are unable to move through, over, or under

other robots and obstacles. In order to overcome obstacles and other robots blocking

the robots path to the PAP, one of two methods must be used. If an obstacle is

encountered ahead of the robot it will stop, examine the spaces to its left and right,

and take the path less obstructed until the obstacle is no longer blocking its path. If

instead another robot is encountered, it follows the rule which compels it to give way

107

to other robots that are either ahead or to the right of them. When all members of the

swarm adhere to this rule of avoidance, it reduces the likelihood of collisions with

robots and obstacles which would hinder the ability of the swarm to aggregate at the

PAP and perform the assembly in an orderly manner.

All of the simulated environments use a rectangular arena, which represents a section

of the ship hull to be inspected as shown in Fig.4.7. The light grey area represents the

section of ship hull above the waterline, the blue area is the section of ship hull

beneath the waterline, and the black area represents the hull breach. The robot

modules are represented as small squares which display one of four colours,

representing the colour of their LEDs which they use to communicate their respective

states when in close proximity to other robots: red, orange, green, and purple. All

robots begin as red squares indicating they have received a signal informing them of

the PAP location and are in currently in transit to join the repair effort. Green blocks

represent robots that are forming part of the repair structure and have settled on their

final location. Orange blocks represent robot modules that are in the process of

examining the states of other modules while moving to an appropriate place to attach,

or connected to the structure, but forming part of an incomplete section. When a

complete repair structure has been formed, the robots use their state and the states of

their neighbours to propagate this information and become purple blocks, indicating

that the process is complete and shown in Fig 4.7 (b).

108

Fig.4.7. Netlogo simulated environment, showing (a) robot modules carrying out the

self-assembly protocol, and (b) robot modules that have successfully completed the

repair patch. The colours of each block represent the LEDs on each face of the robot,

which indicates their state: red for in transit, orange for looking for a place to attach,

green for having already attached to a robot in an appropriate position, and purple

indicating that a complete structure has been formed.

All simulations begin with a group of robot modules already deployed in the water,

ready to approach the ship hull breach. The initial number of robots deployed in the

environment is deliberately insufficient to form complete repair patch, requiring that

more robot modules are introduced as the simulation progresses. The number of

robots added to the simulation each minute to assist with the repair is one of the

controlled variables, and these deployments occur at steady rates ranging from 2 to 40

additional robots per minute. This rate of deployment is how increases and decreases

in robot population density are implemented – breaking high congestion events into

multiple separate instances allowing for a clearer vision of the effect these high

congestion events have on the self-assembly process. In addition to the deployment

rate, the number of robots currently on route to the PAP is also considered and the

system prevents additional robots from being deployed until less than two full

deployments of robots are approaching the PAP. It is hypothesised that controlling the

number of robots deployed to form the repair patch in this way may reduce the risk of

system failure due to overcrowding while still allowing high congestion events to

occur. A series of 100 simulated experiments are performed for each variable changed,

(a) (b)

109

including increases of decreases in robot deployment rate. The results from these

experiments are graphed in Section 4.4, with each point represents the median value

obtained all the simulations.

Section 4.3.1 Robot Congestion Setup

These experiments address hull breaches less than or equal to 0.6 m in diameter, since

this represents the upper bound of common torpedo diameters. In this scenario, a hull

breach has led to a single compartment becoming fully flooded, but flood boundaries

have been established within the ship to seal the room off from other sections of the

ship. The constants of this experiment are the shape of the breach (circular), the

maximum movement speed of the repair robots (0.05m/s), the speed of coupling and

decoupling of modules (instant), and the speed of information exchange between the

robots (instant). The variables of this experiment include the location of the hull

breach (depth of 0.6m to 4.2m) and the size of the breach (diameter of 0.1m to 0.6m).

Tables 4.2 and 4.3 show these constants and variables and list the range of values

examined.

Table.4.2. Constants of the high congestion experiments with their value listed

Constant Value

Ship hull breach shape Circular

Robot maximum speed (meters per

second)

0.05

Coupling/decoupling speed Instant

Communication speed Instant

Table.4.3. Variables of the high congestion experiments, with their range of variables

listed.

Variable Values

Hull breach depth (meters) 1.2, 2.4, and 3.6

Hull breach diameter (meters) 0.2, 0.4, and 0.6

Robot deployment rate (per minute) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,

28, 30, 32, 34, 36, 38, and 40

110

A multi-robot system can be identified as suffering from high congestion when a

significant fraction of the population is forced to change their speed or direction as a

result of avoiding collisions with other robots. In the context of these experiments, a

swarm is considered to be experiencing high congestion if more than 50% of the

robots must perform robot avoidance on route to the PAP. By varying the number of

robots deployed each minute and measuring how long it takes the swarm to complete

the repair against the frequency of robot avoidance events (high congestion), it may be

possible to identify the point at which the system performance begins to suffer due to

overcrowding. This could be used to determine which of the deployment rates

achieves the highest speed of completion without causing more than 50% of the

population to avoid robot collisions (high congestion). Increasing the depth and

diameter of the hull breach will change the angles of approach each robot follows

when navigating to the PAP. This can be used as a secondary method of increasing the

likelihood of high congestion forming and may reveal another point at which high

congestion begins to occur due to robots using steep angles of approach, resulting in

less space to manoeuvre when avoiding collisions with other robots.

Section 4.3.2 Obstacle Avoidance Setup

The second set of experiments examine how the inclusion of additional obstacles

between the approaching robots and the hull breach affects their ability to complete

their self-assembly task relative to the results from the first scenario. In these

experiments the hull breach diameter and depth are kept constant at 0.4m and 2.4m

respectively, choosing to vary the size and location of the obstacles instead. All the

obstacles have a circular shape and come in one of three different diameters: 0.2m for

half the width of the breach, 0.4m for the same size as the breach, and 0.6m for one

and a half times the size of the breach. In addition to this, each obstacle will occupy

one of three separate locations between the starting point of the robots’ journey and

the PAP; above and left of the breach, directly above the breach, and above and right

of the breach as illustrated in Fig.4.8. Tables 4.4 and 4.5 show the constants and

variables of these obstacle avoidance experiments and list the range of values

examined.

111

Fig.4.8. Netlogo simulated environment, showing (a) small obstacle (0.2m diameter)

placed above and to the left of the breach, (b) a medium obstacle (0.4m diameter)

directly above the breach, and (c) a large obstacle (0.6m diameter) above and to the

right of the breach.

Table.4.4. Constants of the obstacle avoidance experiments with their value listed.

Constant Value

Obstacle shape Circular

Ship hull breach shape Circular

Hull breach diameter (meters) 0.4

Hull breach depth (meters) 2.4

Robot maximum speed (meters per

second)

0.05

Coupling/decoupling speed Instant

Communication speed Instant

(a) (b)

(c)

112

Table.4.5. Variables of the obstacle avoidance experiments with their range of

variables listed.

Variable Values

Obstacle location Left, centre, and right

Obstacle diameter (meters) 0.2, 0.4, and 0.6

Robot deployment rate (per minute) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,

28, 30, 32, 34, 36, 38, and 40

The inclusion of additional obstacles may serve to slow the overall progress of the

assembly, or prove a benefit in scenarios using higher deployment rates of robots by

shifting the location of the congestion away from the PAP, allowing for faster assembly

of the structure by reducing overcrowding. The inclusion of an obstacle may also cause

some robots to alter their original course such that they encounter fewer robots along

their new path, reducing the congestion experienced across the swarm as a whole.

Section 4.4 Results

In this section, the results from the robot congestion and obstacle avoidance

experiments, as described in Section 4.3, are presented and compared. A series of 100

simulated experiments is performed for each variable changed in the two scenarios,

such as increases or decreases in robot deployment rate, and the size and location of

the hull breaches and additional obstacles. Each subsection presents six of the most

significant graphs, with the remainder delegated to Appendix C. Each point on these

graphs represents the median value obtained from successful runs of each set of 100

simulations, excluding the scenarios where robots become stuck close to the PAP,

causing a blockage to form and preventing any further assembly actions of robots. The

cause of these blockage events and their implications are discussed within this section,

while how this information can be used to improve the self-assembly approach is

discussed in Section 4.5. The graphs are presented in sets of two according to varying

breach depth, with the first graph in each set showing the time taken for each robot

population to complete the self-assembly of a repair patch. The second graph of each

set shows the percentage of each robot population which encountered another robot

on route to the PAP, causing it to change it speed and direction, referred to as robot

113

congestion percentage. In Section 4.4.2 the second graph of each set also includes the

percentage of the robot population which have encountered an obstacle on route to

the PAP, referred to as obstacle avoidance percentage, to measure how this affects the

results.

Section 4.4.1 Robot Congestion Results

The robot congestion experiments examined the swarm’s ability to perform the self-

assembly protocol on hull breaches of varying size and at varying depths beneath the

waterline. The results of these experiments revealed truths that hold across all

scenarios such that it is only necessary to show a sample of the results here to identify

varying trends. As such, the graphs only show results from scenarios using a breach

diameter of 0.4 meters. Table 4.6 shows samples from all the scenarios to demonstrate

some of the correlations, but otherwise full results are delegated to Appendix C.

Increasing the diameter of the breach predictably increases the time taken for each

robot population to repair the breach – doubling the size of the breach doubles the

time taken to perform the repair. Increasing the number of robots deployed each

minute decreases the time taken to complete self-assembly, but also increases the

number of robots performing robot avoidance. It can be observed from figure 4.9 (a)

and (b) that as the percentage of the robot population experiencing congestion

increases, the gains in competition speed start to decrease.

This correlation may at first seem to be the primary cause of the decreased

performance; however this trend is not perfectly mirrored in figures 4.10 and 4.11

where the time taken to complete the self-assembly is closely correlated with that of

figure 4.9 (a), but the percentage of robot congestion decreases when the depth of the

breach decreases. This would indicate that the depth of the breach has a more

significant impact on the number of robot avoidance events than initially considered.

However, the reason for this may have less to do with breach depth and more to do

with the angle of approach each robot takes on approaching the PAP. As the depth of

the breach decreases, robots deployed at the top right and left of the arena begin to

use shallower angles of approach than those deployed in the top middle. Shallower

angles of approach seem to form paths that are more evenly spread across the arena

than steep angles of approach, which concentrates the density of the robot population

in the area directly above the PAP.

114

Our original measure of optimal robot deployment rate was to be determined by the

robots which could complete the self-assembly procedure in the fastest time without

pushing more than 50% of the total population to experience robot avoidance (high

congestion). The results show that robot congestion varies according to the depth of

the breach and the consequent angles of approach used by the swarm, so the optimal

deployment rate varies also. So for swarms using the proposed self-assembly protocol

to address breaches with a diameter of 0.4m, the optimal deployment rate (robot

congestion < 50%) at 3.6m is 8 robots per minute (rob/m) which resulted in a

completion time of 15.5 minutes, at 2.4m is 12 rob/m which resulted in a completion

time of 10.33 minutes, and at 1.2m is 16 rob/m which resulted in a completion time of

7.7 minutes. These results have helped identify aspects of the approach which could

be adjusted to improve the self-assembly protocol, such as changing the systems

reliance on a PAP and controlling the robot angles of approach, which are discussed

further in Section 4.5.

115

Fig.4.9. Graphs of results from the robot congestion experiments that shows (a) the

time taken for each robot population to complete the self-assembly, and (b) the robot

congestion percentage formed for varying deployment rates. Each result represents the

median value obtained from 100 simulations, with error bars showing the standard

deviation. This plot shows the results of the experiments using a breach diameter of 0.4

meters at a breach depth of 3.6 meters.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate (per minute)

(a) Breach Diameter of 0.4m at Depth of 3.6m

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o
b

o
t

C
o
n

g
es

ti
o
n

 P
er

ce
n

ta
g
e

(%
)

Robot Deployment Rate (per minute)

(b) Breach Diameter of 0.4m at Depth of 3.6m

116

Fig.4.10. Graphs of results from the robot congestion experiments that shows (a) the

time taken for each robot population to complete the self-assembly, and (b) the robot

congestion percentage formed for varying deployment rates. This plot shows the

results of the experiments using a breach diameter of 0.4 meters at a breach depth of

2.4 meters.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate (per minute)

(a) Breach Diameter of 0.4m at Depth of 2.4m

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o
b

to
 C

o
n

g
es

ti
o
n

 P
er

ce
n

ta
g
e
 (

%
)

Robot Deployment Rate (per minute)

(b) Breach Diameter of 0.4m at Depth of 2.4m

117

Fig.4.11. Graphs of results from the robot congestion experiments that shows (a) the

time taken for each robot population to complete the self-assembly, and (b) the robot

congestion percentage formed for varying deployment rates. This plot shows the

results of the experiments using a breach diameter of 0.4 meters at a breach depth of

1.2 meters.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate (per minute)

(a) Breach Diameter of 0.4m at Depth of 1.2m

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o
b

o
t

C
o
n

g
es

ti
o
n

 P
er

ce
n

ta
g
e
 (

%
)

Robot Deployment Rate (per minute)

(b) Breach Diameter of 0.4m at Depth of 1.2m

118

Table 4.6 Sample results from across all robot congestion scenarios.

Breach

Diameter

(meters

Breach

Depth

(meters)

Robot

Deployment

Rate

(per minute)

Time

Taken

(seconds)

Robot

Congestion

(%)

0.2 3.6 10 330 58

0.2 3.6 20 208 82

0.2 3.6 30 163 85

0.4 3.6 10 751 55

0.4 3.6 20 407 88

0.4 3.6 30 304 89

0.6 3.6 10 1372 55

0.6 3.6 20 726 88

0.6 3.6 30 512 91

0.2 2.4 10 308 44

0.2 2.4 20 184 82

0.2 2.4 30 138 83

0.4 2.4 10 732 43

0.4 2.4 20 389 83

0.4 2.4 30 285 90

0.6 2.4 10 1358 31

0.6 2.4 20 706 85

0.6 2.4 30 488 90

0.2 1.2 10 289 13

0.2 1.2 20 161 69

0.2 1.2 30 115 76

0.4 1.2 10 715 19

0.4 1.2 20 373 70

0.4 1.2 30 262 87

0.6 1.2 10 1348 14

0.6 1.2 20 696 64

0.6 1.2 30 467 88

Section 4.4.2 Obstacle Avoidance Results

In the obstacle avoidance experiments the same self-assembly protocol is examined,

but additional obstacles are introduced to the environment to measure if their

inclusion affects the prevalence of robot congestion. The depth and diameter of the

hull breach are kept the same at 2.4m and 0.4m respectively, but the size and location

of the obstacles are varied. The results from these experiments reveal some

interesting effects of including obstacles at the three locations: above and left of the

119

PAP, directly above the PAP, and above and right of the PAP. Obstacle diameters of

0.2m and 0.4m result in fewer obstacle avoidance events and so their effect is less

pronounced than experiments using obstacle diameters of 0.6m. For this reason, the

graphs show the results from the experiments using the largest obstacle diameter to

make the effect of their inclusion clearer. Table 4.6 provides samples from all of the

scenarios to help demonstrate trends, while full results of the smaller obstacle

experiments are delegated to Appendix C.

Comparing the results from figures 4.12(a), 4.13(a), and 4.14 (a) to figure 4.10 (a)

reveals that that inclusion of additional obstacles has not had a significant impact on

the time taken to complete the self-assembly task. However, including the obstacles at

the aforementioned locations has had a marked effect on the percentage of robot

congestion experienced by the swarm. Figures 4.12 and 4.14 provide a mirror image of

each other, showing how placing obstacles directly in the path of the robots

approaching the PAP with the shallowest angles of approach has a significant effect on

the amount of recorded robot congestion. Comparing Figure 4.13 (b) to Figure 4.10 (b)

shows how the obstacle avoidance events occurring directly above the PAP has had a

less significant effect on the recorded robot congestion percentage than when placed

directly in the path of robots following shallow angles but has also increased the total

amount of robot congestion. The inclusion of the obstacles did not noticeably change

the number of robots than can be deployed per minute before experiencing high

congestion (> 50%) when placed above the PAP. However, including obstacle above

and left or above and right has effectively reduced the deployment rate from is 12

rob/m which resulted in a completion time of 10.33 minutes, to 8 rob/m which

resulted in a completion time of 15.23 minutes.

Avoiding the obstacles placed on the left and the right seems to have caused the

robots to take alternate routes to the PAP with a different angle of approach, with a

knock-on effect of increasing the number of recorded robot avoidance events. This

supports the view that controlling the angle of approach used by the robots on

approach to the PAP may be leveraged to decrease robot congestion, which could

allow for a greater number of robots to be deployed at one time to perform the self-

assembly protocol, and ultimately decreasing the time taken to complete the ship hull

repair. These considerations are discussed in more detail in the following Section 4.5.

120

The full program code used to conduct these experiments is included in Appendix B

and full videos of the simulations showing the self-assembly protocol can be accessed

via the dedicated GitHub repository at https://github.com/MattSHaire/Emergency-

Ship-Hull-Repair.

121

Fig.4.12. Graphs of results from the obstacle avoidance experiments that shows (a) the

time taken for each robot population to complete the self-assembly, and (b) the robot

congestion and obstacle avoidance percentages formed for varying deployment rates.

Each result represents the median value obtained from 100 simulations, with error bars

showing the standard deviation. This plot shows the results of the experiments using an

obstacle diameter of 0.6 meters at the location above and left of the PAP.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate (per minute)

(a) Obstacle Diameter of 0.6m at Position Above and Left

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g
e
 (

%
)

Robot Deployment Rate (per minute)

(b) Obstacle Diameter of 0.6m at Position Above and Left

Robot Congestion (%) Obstacle Avoidance %

122

Fig.4.13. Graphs of results from the obstacle avoidance experiments that shows (a) the

time taken for each robot population to complete the self-assembly, and (b) the robot

congestion and obstacle avoidance percentages formed for varying deployment rates.

This plot shows the results of the experiments using an obstacle diameter of 0.6 meters

at the location directly above the PAP.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate (per minute)

(a) Obstacle Diameter of 0.6m at Position Directly Above

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g
e
 (

%
)

Robot Deployment Rate (per minute)

(b) Obstacle Diameter of 0.6m at Position Directly Above

Robot Congestion (%) Obstacle Avoidance %

123

Fig.4.14. Graphs of results from the obstacle avoidance experiments that shows (a) the

time taken for each robot population to complete the self-assembly, and (b) the robot

congestion and obstacle avoidance percentages formed for varying deployment rates.

This plot shows the results of the experiments using an obstacle diameter of 0.6 meters

at the location above and right of the PAP.

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate (per minute)

(a) Obstacle Diameter of 0.6m at Position Above and Right

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g
e
 (

%
)

Robot Deployment Rate (per minute)

(b) Obstacle Diameter of 0.6m at Position Above and Right

Robot Congestion (%) Obstacle Avoidance %

124

Table 4.7 Sample results from across all obstacle avoidance scenarios.

Obstacle

Diameter

(meters

Obstacle

Location

Robot

Deployment

Rate

(per minute)

Time

Taken

(seconds)

Robot

Congestion

(%)

Obstacle

Avoidance

(%)

0.2 left 10 731 22 10

0.2 left 20 392 67 15

0.2 left 30 285 84 13

0.4 left 10 733 49 29

0.4 left 20 393 84 24

0.4 left 30 283 90 25

0.6 left 10 733 52 39

0.6 left 20 393 87 38

0.6 left 30 288 91 35

0.2 centre 10 731 14 0

0.2 centre 20 391 52 10

0.2 centre 30 283 86 13

0.4 centre 10 730 32 20

0.4 centre 20 389 81 20

0.4 centre 30 282 88 20

0.6 centre 10 733 51 20

0.6 centre 20 394 83 30

0.6 centre 30 284 89 26

0.2 right 10 732 22 10

0.2 right 20 391 67 15

0.2 right 30 282 83 13

0.4 right 10 734 51 29

0.4 right 20 396 85 24

0.4 right 30 288 91 25

0.6 right 10 736 55 39

0.6 right 20 396 87 39

0.6 right 30 290 92 35

Section 4.5 Discussion

The results from the Section 4.4 identified trends that hold across breach sizes and

depths , as shown in tables 4.6 and 4.7, and confirm the hypothesis that increasing the

number of robots deployed per minute decreases the time taken for the swarm to

aggregate at the PAP and perform the self-assembly, but sees diminished returns due

to increased robot congestion. The results also helped reveal that occurrences of robot

congestion events can be disrupted by changing the angle of approach the robots use

125

when approach the breach by way of additional obstacles. The diminished returns

observed in time taken to complete the repair are primarily due to the overcrowding

of robots on approach to the PAP. Using a single assembly point may be appropriate

for smaller swarm sizes, as observed from the results which show how fewer robot

avoidance events occur when the robot deployment rate is held below 8 robots per

minute, but unfit for larger swarms. As the number of robots swarming about the PAP

increases, so too does the likelihood of robots becoming stuck near this point and

becoming unable to manoeuvre away – leading to blockages which could lead the

system to fail. This is in agreement with existing literature which argues that increased

congestion in restricted arenas can have a detrimental effect on performance. The

following section discusses how we can use this analysis to inform the design guidance

of such systems, overcoming the issues identified, and leading to a more reliable

method of self-assembly.

There are a variety of ways one could address the issues of overcrowding in these

experiments based on the data gathered in Section 4.4. One such method of

overcoming the limitation imposed by using a single assembly point would be to

introduce multiple alternative assembly points which robots could navigate to if the

PAP is too congested. This would allow the robots to better distribute themselves

around the hull breach and reduce the number of robot vying for space about a single

point, creating a more scalable approach. An extension of this adjustment would be to

replace the concept of assembly points with a more general assembly area (GAA),

where the robots have more control over their angles of approach and instructing

them instead to attach to other robots in the general vicinity to form the necessary

patch. However, such a significant change to the approach would warrant a new

algorithm that could account for not using a single point, but still using the states of

neighbouring robots and hull breach location to determine its next actions. Such an

approach is outlined below.

This modified method proposes an alternative self-assembly protocol designed for

robots approaching the general location of the hull breach from different directions

with varying angle of approach as this better represents the robot distribution likely to

follow the ship hull inspection stage of repair presented in Chapter 3. Further to

avoiding overcrowding about a single point, this approach is also intended to improve

126

the efficiency of the approach by making the shape of the repair patch more specific.

Rather than assembling to form a predefined square structure of adequate size, this

approach instructs the robots to form a structure closer to the shape of the hull

damage. The shape of the resultant patch is dictated by the shape of the hull breach

such that the hole in the ship serves as a rough template for the robots to copy. This

approach is intended as a more efficient use of the robots forming the patch, reducing

the number of redundant robots on the perimeter of the hull breach as observed in

the previous self-assembly approach.

For this approach to function correctly, the abilities of the robots to communicate and

sense their environment must remain unchanged from those outlined in Section 4.1.

The robots should still be able to sense the presence of other robots using side-

mounted proximity sensors and communicate over short distances using

omnidirectional low frequency sonar sysetms, as shown in Fig.4.5. Most improtantly,

they should still exchange information about their respective states when physically

connected to other robots using their tri-coloured LEDs and corresponding RGB

sensors, as shown Fig.4.6. The biggest distinction is the method by which the robots

self-assemble to form a structure which mimics the shape of the damage to be

repaired. However, this self-assembly approach is still intended to function provided a

robot has already located the hull breach, but unlike the previous method the protocol

functions well regardless which position the robot occupies relative to the hull

damage. The first robot broadcasts its position which gives an indication of GAA which

can be anywhere above the hull breach, but most likely on the perimeter of the

damage. Figure 4.15 shows a finite state machine of the new approach describing how

the robot transitions between the various states to form the repair structure.

127

States Transitions

S Approach the general assembly area a Robot is above the hull breach

R Activate red LED rc Connected to a robot with a red state

G Activate green LED gc Connected to a robot with a green

state

B Activate blue LED bc Connected to a robot with a blue

state

F Finished self-assembly fn Full neighbourhood of robots

confirmed

Fig.4.15. Finite state machine and transition table for the Improved self-assembly

protocol. This approach forms a repair structure that mimics the shape of the ship hull

breach, reducing the number of unessential robots.

All robots on approach to the GAA begin in the (S) state and have no LEDs active,

indicating that they are performing the aggregation behaviour which come before the

self-assembly behaviour. When the robot nears the assembly area there are three

potential events it will follow. If it enters the GAA and detects that it is above the hull

breach (a) it will transition to the (R) state, activating its red LED and begin searching

for other robots to connect to in its vicinity. If it enters the GAA but encounters a robot

before it detects it is above the hull breach it will examine the state of that robot using

its phototransistor. If the robot it detected is displaying a red LED (R), this indicates it

has encountered a robot on the outer most edge breach (!a & rc) and will physically

attach to this robot, transitioning to the (G) state, activating its green LED. If the robot

128

encounters a robot before encountering the hull breach in the GAA that is displaying a

green LED (!a & gc & !rc), it will physically attach to it and transition to the (B) state,

activating its blue LED. If the robot encounters robots in the (B) state around the GAA,

it will not attach and instead look for another robot to attach to in the (G) or (R) state.

Once physically connected to a robot and within the GAA, the robots next actions are

determined by the number of robots in its Von Neumann neighbourhood and their

respective states. If the robot in question is occupying the (R) state, it will continue to

hold this state until it has detected a full neighbourhood and one of its neighbours is

displaying the blue state (fn & bc), at which point it will transition to the (G) state.

Robots occupying the (G) state will continue to occupy this state until the same

conditions are met (fn & bc), at which point it will transition to the (B) state. Once all

robots have reached the (B) state, it will work to hold its position and state,

transitioning to the (F) state to indicate it has fulfilled its function for the self-assembly

procedure.

The procedure described above provides an alternative method of carrying out self-

assembly while avoiding the pitfalls of overcrowding and handicaps imposed by

unfavourable angles of approach which occur when relying on a single point of

assembly. Future work could investigate the effectiveness of this new approach in

comparison to the original aggregation and self-assembly protocol but in the

meantime, the current approach may suffice with respect to how the complete

emergency ship hull repair approach could be expected to unfold. The proposed self-

assembly protocol that relies on a single point of assembly and varied angles of

approach has proved capable of forming a repair patch of adequate shape and size to

address hull breaches as originally outlined in Section 4.1. The optimal number of

robots to be deployed each minute using this approach has been identified in Section

4.3 and shown to vary according to the breach depth and size.

This chapter marks the end of the current research into emergency ship hull repair

using swarm of autonomous underwater robots. Chapter 5 instead moves into the

realm of nature-inspired swarm robotics, with focus given to obstacle avoidance in

large swarm performing foraging behaviours as discussed in Section 2.7 of the

literature review.

129

Chapter 5. Collective Foraging Using Nature Inspired

Swarm Robots

Foraging, as discussed in Section 2.7, is a behaviour that allows agents in an arena to

seek out and retrieve objects of interest and can be described from the individual’s

perspective as a sequence of tasks: exploration of an environment surrounding a

depot, identifying objects and areas of interest, returning objects to the depot,

communicating its discovery with others, and returning to areas of interest to collect

more objects (Dorigo and Di Caro, 1999). How cooperative teams of agents can work

together to achieve more efficient and robust collective foraging strategies is a subject

which can prove very beneficial for engineers designing multi robot systems. Distance-

quality trade-offs and foraging strategies which can scale well with different swarm

sizes are of particular interest.

The study presented in this Chapter is an extension of a study on pheromone-based

collective foraging (Font Llenas et al. 2018) and shows how one can achieve a

sophisticated collective foraging strategy with minimalist agents using a virtual

pheromone system of stigmergic communication and simple wall avoidance behaviour

(Talamali et al., 2020). The controllers implemented on the individual robots use

simplified binary pheromone sensors but prove to be capable of reproducing classical

foraging experiments that used more capable agents that utilise their ability to sense

pheromone concentrations and follow gradients. The wall avoidance behaviour is

implemented using a similar binary sensor allowing robots to avoid collisions with the

bounded arena. A key feature of the controller is a parameter which can be tuned to

adjust the selectivity of individual agents comparing the distance of an object of

interest from a central depot and quality of the object. The system is examined in the

ARGOS simulator (Pinciroli et al., 2018) and verified using a physical swarm of up to

200 robots using the Augmented Reality Kilobots (ARK) system to implement virtual

pheromone trails, sensors, and actuators (Reina at al., 2017).

The author’s main contribution to research from this study is the implementation of

obstacle avoidance behaviour with low computational overhead on a large swarm of

robots tasked with collective foraging in environments. This inclusion of obstacle

avoidance behaviour solved a major issue where the physical robots would previously

130

become stuck against the walls of their bounded arena and other robots. By

implementing obstacle avoidance, the robots are able to avoid falling into these un-

recoverable states, which improves the performance of the swarm, and creates a

system more capable of emulating the collective foraging behaviours observed in

biological counterparts such as ant colonies.

Section 5.1 presents the morphology of the simulated and physical robots used in the

experiments with details of how the virtual sensors and actuators implemented to

augment their existing abilities. Section 5.2 discussed the methodology used to create

the optimal resource collection model, with details on how it is validated and verified

through simulation and experimentation provided in Section 5.3. The results of these

simulations and experiments are presented in Section 5.4 and Section 5.5 discusses

these results, their implications, and how the wall avoidance behaviour can be adapted

to implement robot avoidance which has been shown to reduce collisions and enable

more efficient foraging strategies.

Section 5.1 Problem Definition and Robot Morphology

This study investigates the problem of resource collection in an unknown environment

by a swarm of robots with limited computational and memory capabilities. S number

of robots occupy an environment which features a central depot of radius 10cm,

surrounded by n circular source areas of radius 10cm, each referred to as Ai where i ∈

{1,..., n}. Each of these areas offers an unlimited number of items of varying quality Qi,

which is a numerical indication of the importance of the resource with higher values

indicating items of greater importance; this system is intended to mimic the nutritional

value of items in animal foraging. When a robot enters a source area, it immediately

collects one virtual item and returns it to the central circular depot. In this model the

handling time of the resource item and time taken to discover items within the source

areas are both assumed to be instantaneous. Robot are modelled with the ability to

only carry one item at a time between the source areas and central depot and the

robot speed when carrying an item remains the same as when not carrying an item.

Using higher levels of abstraction for these aspects helps keep the collective motion

aspect and allocation of robots to source areas as the focus of the study. The main

purpose of this study is to discern how indirect communication, in the form of virtual

pheromones, can be leveraged by the robot swarm to balance the trade-off between

131

quality of resource items and the distance between the central depot and source areas

– resulting in more optimal foraging strategies.

In order to carry out the behaviours investigated in this study, the robots must possess

capabilities which allow them to operate in an unknown environment. With limited

computational and memory abilities, the robots will be incapable of memorising the

locations of the source areas and must instead rely on pheromone trails to rediscover

these sources. To accomplish this, the robots must be capable of stigmergic

communication (see Section 2.7) by applying and reading temporary marks in the

environment. The robots are also assumed to always know the direction to the central

depot relative to their position, similar to the path integration abilities observed in

social insects (Collett and Collett, 2002; Bregy et al., 2008; Heinze et al., 2018). Finally,

the robots will be able to detect when obstacles are in front of them but will only use

this ability for the purpose of avoiding collisions. This ability to sense objects is not

utilised to detect other robots and robots are not allowed to directly communicate

amongst each other as this would complicate the results of this study which is

primarily concerned with the capabilities of indirect communication only.

The following sections discuss the morphology of the robots selected to serve as

foraging agents in both the simulations and physical experiments (5.1.1), how the

capabilities of these robots are expanded by using augmented reality to model

additional virtual sensors and actuators (5.1.2), and how these sensors are used to

implement pheromone trails following and wall avoidance behaviours (5.1.3).

Section 5.1.1 Kilobots

The robot selected to conduct the simulated and physical experiments is the Kilobot

Fig. (5.1): a minimalistic robot which has become a popular choice for swarm robotics

research concerning agents with limited physical and cognitive abilities (Rubenstein et

al. 2014). Kilobots are designed to move on flat surfaces using a pair of vibration

motors to perform a slip-stick differential drive motion. This system allows the Kilobot

to move at an approximate speed of 1 cm/s and rotate at a rate of approximately

40°/s. Though small, Kilobots come with a number of capabilities such as the ability to

directly communicate with other Kilobots within 10cm using its infrared (IR)

transceiver, display its internal state to others by using its RGB LED, detect changes in

132

Lux intensity using an on-board ambient-light sensor, and is able to receive messages

from an overhead control board (OHC). The OHC is a key component which allows for

the augmentation of Kilobots with virtual sensors and actuators (see Section 5.1.2)

which enables the agents to perform more complex tasks.

Fig.5.1. a picture of a Kilobot with a 3D printed ring originally designed for the study of

Pratissoli et al. (2019) and reused in Talamali et al. (2020). The addition of the ring

significantly improves the ability of the ARK system to track Kilobots and detect their

LED colours.

Simulation of both the Kilobots and the ARK system were made possible thanks to the

work from Pinciroli et al. (2018) who successfully developed a plugin for the popular

ARGoS simulator. Their plugin accurately captures the behaviour of real Kilobot

allowing for faster simulation of behaviours in very large swarms prior to real-world

experiments. In simulation, the process of resetting each robot to new start locations

and resetting its memory is a very fast simple process, but this is not the case for

physical swarms. In real-world experiments, programming each Kilobot individually is a

very time-consuming process which significantly slows the rate at which experiments

can be run by increasing the time taken to reset each Kilobot. The OHC can be used to

overcome this bottleneck by allowing users to quickly program multiple Kilobots

through wireless IR communication, significantly reducing the time taken to reset the

swarm for each experiment. The Kilobot is a low-cost and easy-to-operate platform,

and its simplicity makes it an ideal choice for these experiments which are concerned

133

with how optimal foraging strategies can be achieved using agents with limited

capabilities.

Section 5.1.2 Augmented Reality Kilobots (ARK)

Kilobots are simple robots with only limited capabilities and while previous

experiments have shown that they are capable of recreating common swarm

behaviours such as exploration, they require additional functionality to perform more

complex behaviours such as stigmergic communication. To extend the abilities of the

Kilobot and allow for the modelling of complex behaviours, Reina et al. (2017) and

Valentini et al. (2018) implemented open-source technology that could augment the

Kilobots capabilities with virtual sensors and actuators, referred to as Augmented

Reality for Kilobots (ARK) and the Kilogrid respectively. The ARK system was selected as

the augmentation method for the Kilobots in this study because of its low installation

cost and ability to perform other tasks such as motor calibration, unique ID assignment

and video recording of experiments.

The ARK system uses an overhead camera array to track the Kilobots, an IR-OHC to

communicate with the Kilobots, and a computer which serves as a base control station

(BCS) to simulate the virtual environment. The virtual sensor information for each

Kilobot is computed on the BCS and communicated to the specific robots with

addressed messages via the OHC. The virtual actuator information is computed on-

board by the Kilobots and is communicated to the BCS using colour-coded messages

which it displays using its LEDs. The position and colour of the LED is captured by the

overhead cameras and sent to the BCS which processes the information and updates

the virtual environment appropriately. The BCS is also responsible for updating the

temporal dynamics of the virtual environment such that entropy of pheromone

concentration can be accurately modelled. Using the ARK system this way allows each

Kilobot to receive personalised information about its virtual sensors in real-time and

autonomously decides when to modify the virtual environment using virtual actuators.

The ARK system is used to allow robots to apply and detect virtual pheromone which

evaporates and diffuses over time – mimicking the behaviour of stigmergic

communication observed in ant species (see Section 2.7). To achieve this, each Kilobot

134

is equipped with five additional virtual sensors and one virtual actuator. As specified in

Talamali et al. (2020) each Kilobot is equipped with the following:

Sensor / Actuator Description

Area sensor The Kilobots can detect if they are within the depot or a

source area and distinguish between the two.

Item quality sensor When the Kilobots enter a source area they can assess

the quality of the item available for retrieval. When the

Kilobots enter the depot, they can recognise the quality

of the items that have been collected up to that instant.

Depot direction sensor The Kilobots always knows the direction of the depot

relative to their own position.

Wall sensor The Kilobots can sense if there is a wall (obstacle) at a

distance of ∼ 5cm in front of themselves; note that this

ability is not used in this study to detect the presence of

other robots (Fig.5.2).

Pheromone gland actuator The Kilobots can deposit a drop of pheromone at their

location - they express this behaviour by blinking their

top-mounted LED blue.

Pheromone antennae The Kilobots can sense the presence of pheromone at a

distance of ∼ 3.5cm from their centre in front of

themselves.

The Kilobot swarm operates in a bounded arena which ARK represents as a discrete 2D

matrix made up of cells measuring 6.7 × 6.7𝑚𝑚2. ARK stores information about

deposited pheromone presence and concentration in each respective cell forming a

pheromone matrix which is updated at each time-step of length ∆𝑡 = 0.5𝑠 to reflect

the evaporation and diffusion of pheromone. The pheromone matrix can be altered at

each time step by robots depositing pheromone, where each drop represents of an

increment of 𝜙 = 250 in the cell under the robot’s centre. The concentration of

pheromone in each matrix cell 𝑚(𝑖,𝑗) is determined by Eq. (5.1) which was first

introduced in Talamali et al. (2020):

135

𝑚(𝑖,𝑗) = 𝑚(𝑖,𝑗)[𝑒log(0.5)𝜖∆𝑡 − 4𝛾∆𝑡] + [𝑚(𝑖,𝑗±1) + 𝑚(𝑖±1,𝑗)]𝛾∆𝑡 (5.1)

where the parameters 𝜖 = 0.1 and 𝛾 = 0.02 are the evaporation and diffusion rates,

respectively. Eq. (5.1) is a discrete realisation of Fick’s law of diffusion (Fick, 1855),

where the exponential term in introduced to take into account pheromone

evaporation, which is consistent with biological studies (Garnier et al. 2013).

Section 5.1.3 Stigmergic Communication and Wall Avoidance

The virtual sensors and actuators of the augmented Kilobots enable them to perform

the two behaviours which are essential to completing the foraging task – stigmergic

communication and wall avoidance (Fig. 5.2 and 5.3 respectively). The Kilobots are

capable of sensing the presence of virtual pheromone in front of themselves at a

distance of ~3.5𝑐𝑚 in four 45° wide sectors for a total detection arc of 180°.The

virtual sensors signify the presence or absence of pheromone as binary values and are

not capable of discerning the quantity or concentration of the pheromone they are

sensing. When a Kilobot who is exploring detects pheromone, this event triggers a

change in behaviour causing the Kilobot to abandon its search and instead move

towards the detected pheromone as indicated in Fig. 5.2.

Fig.5.2. This diagram illustrates the Kilobot pheromone detection system via the ARK as

introduced in Talamali et al. (2020).

Each Kilobot can detect the presence of pheromone of any of its four forward facing

45° wide sectors. In Fig. 5.2, the virtual pheromones are represented as blue circles

136

and because their presence is represented by the Kilobot as binary values, its virtual

sensor readings would effectively read as [1, 0, 1, 0]. In the illustration, the robot has

encountered pheromone in two of its detection sectors and must choose one direction

to follow. It does this by comparing the angles between each sector in which

pheromone is present and the direction of the depot (the depot being represented by

a white house within a dark blue circle) and choosing to follow the sector which has

the largest angle of difference in direction (represented as red and green arrows). The

pheromone in sector 0 has a greater angle of difference than the pheromone in sector

2 and so the robot chooses to move in the direction of the pheromone in sector 0.

The Kilobots are also able to detect the presence of obstacles in front of themselves at

a distance of ~5𝑐𝑚 in four 45° wide sectors for a total detection arc of 180°. Similar

to the pheromone detection system, the presence of obstacles in each sector is

represented as binary values and is used to indicate when the robot has encountered a

wall, but not other robots. This is used by the robot to avoid collisions with obstacles

that fall between itself and either the depot or the source area.

(a) (b)

(c) (d)

137

Fig.5.3. This diagram illustrates the Kilobot wall avoidance system via the ARK.

When a wall is detected by the two central sectors in the range [−45°, 45°] of the

robot’s heading the robot will turn left or right at an angle of 22.5° in the opposite

direction of the sensed obstacle until an obstacle is no longer detected in the two

central sectors, at which point the robot will then move in a straight line for 2.5𝑠 and

then return to its previous task of item retrieval, or exploration. Obstacles are detected

as grey squares (represented in Fig 5.3 as a red square) and similar to the detection of

pheromone, the Kilobot represents this obstacle presence as binary values, such that

its virtual sensor readings would be [1, 1, 0, 0] in (a). In the illustration, the robot has

encountered an obstacle in one of its central sectors (AO state) while exploring the

environment (RW state) and must choose an appropriate direction to turn and avoid a

collision. It does this by comparing the presence of obstacles in the two central sectors

in the range: [−45°, 45°] of its current heading. There is an obstacle detected in sector

1 and not sector 2 and so the robot chooses to rotate right in steps of 22.5° until no

obstacle is detected in the two central sectors (b), and then moves in a straight line for

2.5𝑠 (c), after which it will return to its previous task of exploration (d). Both stigmergic

communication and wall avoidance behaviours are better characterised by the

probabilistic finite state machine (PFSM) used to describe the individual behaviour of

the Kilobots (Fig.5.4) and discussed in more detail in the following Section 5.2 on the

methodology.

Section 5.2 Methodology

Section 5.2.1 explains how the desired foraging behaviour can be described at the

microscopic level using a probabilistic finite state machine (PFSM) to represent the

individual robot behaviours, as illustrated in Fig. 5.4. The main structure of the

behaviour is based on the control scheme designed by Font Llenas et al. (2018), but

has been enriched by the inclusion of a new obstacle avoidance state (indicated as AO

in Fig. 5.4). The abilities of the individual have been further enhanced by including an

additional form of indirect communication which enables adaptability to different item

qualities (Section 5.2.1), and by allowing for probabilistic transitions and tuneable

pheromone functions (Section 5.2.2).

138

Fig. 5.4 Probabilistic finite state machine (PFSM) of the individual robot behaviour from

Talamali et al. (2020). Circles represent states and arrows represent transitions. The

labels for each state and transition are listed in the table adjoined to the diagram.

Section 5.2.1 Individual Behaviour

In all the examined scenarios, the robots do not possess a-priori knowledge of the

environment surrounding the depot such as the number of items, their location, or

item qualities. As such, the first action of the robots is to begin exploring the

environment to discover item source areas (RW state in Fig.5.4). The Kilobots’ limited

capabilities (Section 5.1.1) prohibit the use of more complex coordinated search

patterns such as those discussed in Section 2.5, and instead force the robots to rely on

using an isotropic random walk to explore. Though less efficient than coordinated

exploration, random walks provide a simple but effective method of searching for

targets in unknown environments (Dimidov et al. 2016) most suitable to simple robot

swarms.

When executing the random walk, the robots will alternate between travelling in a

straight motion for 10 seconds, and performing a uniformly random rotation

between[−𝜋, 𝜋]; a pattern which repeats until the robot encounters an event which

triggers a transition to a new state. One such event is when a robot encounters a

source area, which causes the robot to (virtually) pick up an item and begin

transporting it to the central depot (GD state in Fig. 5.4). As outlined in Section 5.1.4,

The Kilobots are assumed to possess limited memory and are only ever able to

139

remember the direction towards a single location in the search space, and in these

scenarios this location is the relative direction to the depot. This assumption of limited

memory is consistent with the behaviour observed in several ant species which use

path integration to return to their nest (Collett and Collett 2002; Bregy et al. 2008;

Heinze et al. 2018).

The robots use their memory of the depot location to always find their way back when

returning items they have collected. To memorise other points of interest in the

environment surrounding the depot, the robots use their virtual pheromone as a form

of stigmergic communication, creating form of collective memory. When a robot is

returning to the depot from a source location, it deposits virtual pheromone to allow

itself and other robots to rediscover the source area. Robots in the GD state perform a

probabilistic function Eq. (5.2) every four seconds which determines the rate of

pheromone deposition based on the quality of the collected item, as described in

Section 5.2.2. When the robot reaches the depot, it deposits its item and executes

another probabilistic function (see Eq. (5.3)), based on a comparison between the

quality of its recently deposited item and the highest quality item any robot has

deposited so far, as described in Section 5.2.3. This function determines whether the

robot will turn to follow the pheromone trail it recently created (TB state in Fig. 5.4.),

or to abandon the previously discovered source area and resume exploration though

random walk (RW state).

When any of the Kilobot sense virtual pheromone via their virtual antennae, composed

of the four sectors as described in Section 5.1.3, they immediately shift to follow the

trail (FP state in Fig. 5.4.), moving in the direction of the triggered antennae sector

until they reach either the end of the trail or an intersect between two of more trails. If

a robot detects pheromone in more than one direction, e.g. both left and right sectors

as in the illustration of Fig. 5.2, the robot will compare the sensed-pheromone

directions with the directions to the depot (red and green angles in Fig. 5.2) and moves

in the direction of the pheromone most opposed in direction to the depot (green

arrow in Fig. 5.2). This decision relies on the assumptions that robots only deposit

pheromone in their straight path from a source area to the depot and that they always

have access to the depot vector. As detailed in Section 5.1.3 and illustrated in Fig. 5.3,

the robot behaviour has been enriched through the inclusion of an obstacle avoidance

140

state (AO state in Fig. 5.4), allowing the robot to detect when it is in close proximity to

obstacles. However, in these experiments this ability is only utilised to detect when it is

in proximity to walls.

Section 5.2.2 Adaptability to Different Item Qualities

As mentioned in Section 5.2.1, the robots do not possess prior information about the

environment including the item qualities available to be collected. When the system is

initialised, a maximum item quality has not yet been established for robots to compare

the quality of their collected items to. As such, they are left to initially assume the

quality of the item they have collected is the global maximum. However, the value of

this global maximum quality (𝑄𝑚𝑎𝑥) can be updated over time according to the highest

quality item returned to the depot by any robot, which can be used to tune the robot

behaviour to what was initially an unknown quality range. This indirect communication

method, where the robots compare the quality of their items with the global

maximum, occurs within the depot.

Each time a robot enters the depot, it compares the value of the item it is carrying with

the highest item quality collected up to that point. If the quality of the item is it

carrying is greater than that of the current maximum, it will update 𝑄𝑚𝑎𝑥 to reflect

that its item quality is the highest collected. If the quality of its collected item is less

than the global maximum, this will increase the probability that the robot will abandon

its current source in order to seek the source of the high quality items. This mechanism

of quality comparison parallels the behaviour of social animals where individuals can

assess the nutrient quality of the swarm’s reserves and compare it to their own

collected items (Dussutour and Simpson 2009; Arganda et al. 2014).

In these studies, unlimited item sources are utilised to investigate the steady state

regime; however, in cases of limited sources (i.e. with a limited number of items) the

robots may update their quality range by only observing the latest collected items. In

this way, the swarm is predicted to be able to flexibly adapt to appearances or

depletions of available sources.

141

Section 5.2.3 Adaptable Behaviour from Tuneable Functions

When robots are returning items from a source area to the depot, they lay a

pheromone trail. These trails of pheromones serve as temporary paths between

source areas and the depot, indirectly communicating the locations of discovered

source areas to other robots. The contribution of each robot in creating and

maintaining these paths proliferates to create a form of collective memory, allowing

the swarm to recall the locations of source areas in the environment. This system is

what allows robots which cannot internally store source locations to overcome their

individual limitations and return to previously discovered source areas. These trails are

created and detected via the virtual pheromone glands and antennae of the robots as

described in Section 5.1.2. Similar to the approach of Font Llenas et al. (2018), robots

returning with items probabilistically decide every four seconds whether or not to lay

the next drop of pheromone. In their approach, the probability of pheromone

deposition was dictated by a linear function relating the item quality to the global

maximum, i.e.𝑃𝜙(𝑄𝑖) =
𝑄𝑖

𝑄𝑚𝑎𝑥
, which allowed the swarm to give priority to higher-

quality source areas. In this study, a tuneable function is implemented to allow robots

to regulate their selectivity on quality using a single parameter α ≥ 0. The probability

that the robot will deposit its next drop of pheromone is given by Eq.5.2 which was

introduced in Talamali et al. (2020):

𝑃𝜙(𝑄𝑖) = 𝑒𝛼(𝑄𝑖−𝑄𝑚𝑎𝑥)𝑄𝑖
−1

 (5.2)

Each individual robot has access to α and can alter this value to vary the global

response. Values of 𝛼 > 1 cause the function to have an exponential shape on 𝑄𝑖,

resulting in highly selective behaviour in favour of the highest quality sources. A value

of 𝛼 ≈ 1 leads to an approximately linear response which is similar to the function

investigated in (Font Llenas et al. 2018) such that Eq. (5.2) can be used as a

generalisation of the previous specific function. Finally, decreasing α when α < 1

gradually flattens out the function to a constant value, so that when the limit of 𝛼 = 0

becomes constant 𝑃𝜙(𝑄𝑖) = 1; this results in constant pheromone trails irrespective of

the quality of items within the source areas.

Up to this point only the quality of the items has been considered when choosing the

probability of pheromone drop deposition. However, in social insects it has been

142

observed that the distance of the different source areas from the nest is also a factor

which can be used to better determine which route will generate the greatest energy

gain [i.e. foraging ants (Shaffer et al. 2013) and house hunting honeybees (Seeley et al.

2012)]. For instance, in scenarios where a high quality object is significantly further

away than a closer lower quality item, the closer item may net the higher energy gain

and be considered a superior option, or if the path to the best source is overcrowded a

less crowded path to a different source may be a better option. To balance this

distance-quality trade-off, the individual robot capabilities are expanded to include a

decay function 𝑃𝑑(𝑡𝑖) in Eq. (5.3) which is called when the robot enters the depot to

deposit an item, helping them to decide whether to continue exploiting the same

source or abandon it and begin searching for new sources. The travel time 𝑡𝑖 is

measured by the robots as the time spent between the item collection (from the

source 𝐴𝑖) and the item deposition (in the depot). The function 𝑃𝑑(𝑡𝑖), similarly to

𝑃𝜙(𝑄𝑖) of Eq. (5.2), is modulated by the parameter α as:

𝑃𝑑(𝑡𝑖) = (α + 1)−2𝑒

𝑡𝑖−𝑡𝑚𝑎𝑥

(𝛼+1)√𝑡𝑖 (5.3)

where 𝑡𝑚𝑎𝑥 is a parameter indicating robot’s prior knowledge on the maximum

acceptable time to return from a source. The 𝑡𝑚𝑎𝑥 parameter could be adaptively

tuned (similarly to 𝑄𝑚𝑎𝑥 in Sect. 5.2.2), however this aspect falls beyond the scope of

this study and instead the value of 𝑡𝑚𝑎𝑥 is fixed at 100𝑠. Using a fixed value of 𝑡𝑚𝑎𝑥

can be considered reasonable as agents in both biological and artificial systems will

only consider sources areas that are within a certain maximum distance of the depot

which is decided a priori. This distance can be decided for instance using the length of

time a robot can remain operational before needing to return to a depot to recharge,

or the distance a robot may travel before encountering a wall of a bounded arena.

Eq. (5.2) and Eq. (5.3) are linked by the parameter α which the robots can regulate to

alter the swarm behaviour. Increasing 𝛼 > 1 has the combined effect of increasing

discriminability on quality 𝑄𝑖 and flattening 𝑃𝑑(𝑡𝑖) ≈ 0 for any distance; In this

scenario the swarm chooses to ignore the distance of source areas but is highly

selective based on higher-quality source areas. Conversely, small values of 𝛼 < 1

flattens out quality differences 𝑃𝜙(𝑄𝑖) ≈ 1 and accentuates differences on travel time

with an exponential abandonment 𝑃𝑑(𝑡𝑖) on high travel times; this leads to a system

143

where the only discriminating factor on source selection is distance due to a

combination of evaporation and abandonment of sources which are further away.

Finally, intermediate values of 𝛼 ≈ 1 give a quasi-linear response of 𝑃𝜙(𝑄𝑖) and

sublinear 𝑃𝑑(𝑡𝑖) > 0 which allows the swarm to balance the distance-quality trade-off

similarly to what has been reported in Font Llenas et al. (2018).

Section 5.3 Experimental Setup and Model Prediction

In this section, the parameters used to assess whether the swarm of robots are

achieving an optimal approach to resource collection are explained. The mathematical

models presented in each subsection tie these qualities together and are inspired by

general aspects of optimal foraging theory (Kacelnik 1984; Houston and McNamara

2014). The model is used to determine the effectiveness of the system by comparing

the benefits gained from the resources gathered with the cost incurred from

transporting these items to the central depot. Section 5.3.1 introduces the three main

components of the model and the resultant equation used to predict the performance

of the system in each experiment. Section 5.3.2 presents the various environment

configurations used to assess the system and confirm the optimality of the resource

collation model.

Section 5.3.1 Model of Optimal Resource Collection

The three main components of the model are the quality of the items retrieved, the

number of robots dedicated to each available source area, and the time taken the

travel between the respective source areas and the central depot. The number of

robots allocated to a source area is modelled as 𝜌𝑗 (with 𝑗 ∈ {1, ⋯ , 𝑛 }) which

represents the fraction of the total robot population currently on the trail between the

central depot and source area 𝐴𝑗. The robots that are actively transporting items

between any of the 𝑛 source areas are referred to as workers and their fraction of the

robots currently on a trail is denoted by 𝜌𝑤 = ∑ 𝜌𝑗
𝑛
𝑗=1 . The remaining robots that are

exploring the arena are called explorers and their fraction is denoted as 𝜌𝑒 = 1 − 𝜌𝑤.

The time taken for robots to travel between the central depot and their allocated

source area is determined by the distance between the source and the depot, and the

level of congestion on their respective trail; highly congested trails typically lead to

increased collisions between robots which results in longer travel times. Talamali et al.

144

(2020) combined these qualities in Eq. (5.4) to create the swarm yield variable 𝑅 which

represents the net gain of the system. This value can be used to clearly correlate the

performance of the system with how it allocates robots to different sources under

varying environmental conditions – helping to determine which approach represents

the most optimal foraging strategy.

𝑅 = ∑
𝑞𝑗𝛽𝑗𝜌𝑗𝑆

�̃�𝑗
2

𝑛

𝑗=1

, (5.4)

𝑤𝑖𝑡ℎ �̃�𝑗 = 𝑑𝑗 + 𝑣𝑜𝑇𝐶,𝑗(𝜌𝑗𝑆)

where S is the swarm size, 𝑞𝑗 =
𝑄𝑖

𝑄𝑚𝑎𝑥
 is the normalised quality of source area 𝐴𝑗, 𝜌𝑗 is

the fraction of robots on the trail between central depot and source area 𝐴𝑗, 𝛽𝑗 is a

fitting parameter characterising the relationship between the number of collected

items from source 𝐴𝑗 and the number of robots on the trail to 𝐴𝑗. The parameter �̃�𝑗

represents the sum of parameter 𝑑𝑗, which is the distance between source area 𝐴𝑗 and

the central depot, 𝑣𝑜 = 1𝑐𝑚/𝑠 which is the Kilobot’s speed (fixed parameter), and the

function 𝑇𝐶,𝑗(𝜌𝑗𝑆) which models the additional travel time arising from traffic

congestion. This equation models traffic congestion as an increase of the travel

distance 𝑑𝑗 by accumulating the additional length of 𝑣𝑜𝑇𝐶,𝑗(𝜌𝑗𝑆).

The design parameters used to obtain the function 𝑇𝐶,𝑗(𝜌𝑗𝑆) were collected from

physics-based simulation data as described in Appendix A of Talamali et al. (2020),

which provides full details of how these parameters were derived. The details

surrounding the derivation of traffic congestion model are purposefully omitted from

this Chapter as this aspect is primarily a contribution of the co-author Salah Talamali

and does not represent the main contribution presented in this study, i.e. obstacle

avoidance behaviour implementation.

The experiments undertaken in this study consider cases of resource collection in

environments with 𝑛 = 2 source areas, in order to study the basic properties of the

yield function in Eq. (5.4). The aim of the swarm robot system is to optimally allocate

the population of robots between the two source areas to maximise the yield R. To

simplify the assessment of the basic properties, all robots are assumed to be actively

involved in resource collection (i.e. all robots are workers and none are explorers

145

(𝜌𝑤 = 1, 𝜌𝑒 = 0); where the fraction ρ1 = ρ is the robots collecting items from source

𝐴1, and the fraction ρ2 = 1 − ρ represents robots collecting items from source 𝐴2. With

these assumptions, the yield function can instead be given as:

𝑅(𝜌) = 𝑅1(𝜌) + 𝑅2(𝜌)

 𝑤ℎ𝑒𝑟𝑒 𝑅1(𝜌) =
𝑞1𝛽1𝜌𝑆

�̃�1
2

, 𝑅2(𝜌) =
𝑞2𝛽2(1 − 𝜌)𝑆

�̃�2
2

 (5.5)

The purpose of this function is to examine how the swarm allocates its resources, so

the dependency of R on ρ is explicitly mentioned in Eq. (5.5); this helps in determining

the optimal value of 0 ≤ ρ ≤ 1 that will maximise the yield. In Talamali et al. (2020) they

found that increasing ρ, where ρ ∈ [0, 1] lead to the following outcomes:

Variation of ρ Result

Monotonic increase of 𝑅(𝜌) until 𝜌 = 1 Workers converge on global maximum -

all workers allocated to source area A1

Monotonic decrease of 𝑅(𝜌) until 𝜌 = 0 Workers converge on global maximum -

all workers allocated to source area A2

0 < 𝜌 < 1 Workers are split between 2 local maxima

(one of which is also the global

maximum).

In the following section, the equations for swarm yield are used to predict the system

performance in each of the experiments. The experimental setups used to study the

effects of varying environment parameters, such as item quality and source distance,

on the yield function are also described. The first scenario looks at source areas of

equal distance and different item quality, the second scenario uses equal item qualities

and varied source area distances, and the final scenario predicts the critical swarm size

in an equal distance and item quality scenario.

5.3.2 Equal Distances and Varying Qualities

As indicated in the previous section, overcrowding on the trails between the depot and

source areas can lead to congestion which negatively affects the swarm yield. When

source areas are both equally close to the depot the risk of overcrowding increases

and moving the source areas further away from the depot decreases the risk of

146

overcrowding, such that when the source areas are sufficiently distanced from the

depot, overcrowding effects are negligible. The first setup examines both scenarios

with 𝑛 = 2 source areas which are equally far from the depot or equally near the

depot, and where the item quality of source area 𝐴1 is held constant at 𝑞1 = 1, and

the item quality of source area 𝐴2 is varied at 𝑞2 ∈ {0.5, 0.75, 1}. The results from

these experiments (Fig. 5.5) reveal that when the sources are relatively far (Fig. 5.5

(a)), it is optimal to allocate all workers to the better-quality source area, whereas for

source areas in close proximity (Fig. 5.5 (b)) the yield is maximised if the trail between

the higher-quality option and depot does not become overcrowded.

Fig. 5.5 Model predictions of yield R depending on worker allocation ρ for: (a) equally

distant sources where 𝑑1 = 𝑑2 = 3.5𝑚; and (b) equally nearby sources where

𝑑1 = 𝑑2 = 0.6𝑚. The parameter values selected for this experiment were:𝛽1 = 𝛽2 =

�̅� = 0.965, 𝑇01 = 𝑇02 = 𝑇0̅̅̅̅ = 0.029, 𝜅1 = 𝜅2 = �̅� = 2.321, and 𝑆 = 200.

In scenarios where the qualities of the items available in each source area are different

it may seem intuitive to allocate all workers to collect from the higher quality source.

However, allocating workers in this way tends to lead to increases risk of robot

collisions and overcrowding which we know increases congestion and reduces the

overall yield of the system. This is especially prevalent in scenarios where the source

areas are equally near to the depot and the risk of overcrowding is already elevated.

This means there is a limit to the efficiency of the robot swarm collecting the items

147

which is dependent on the total number of workers, their size, and the space available

of the trail between the source areas and depot.

Fig. 5.5 (a) shows that for sufficiently large distances between source area and depot,

where the risk of overcrowding is significantly lower, it is indeed optimal to allocate all

workers to the source area containing higher-quality items. If the quality of the items

available in both source areas is equal, then the yield from exploiting each source is

marginally larger if both source areas are exploited equally. However, in cases where

both source areas are near the depot (Fig. 5.5 (b)) the optimal strategy changes. Here

the best strategy is not to equally exploit both resources, but instead to minimise

traffic congestion on the trail between the depot and the sources which have the

highest quality items (low ρ in Fig.5.5 (b)). The system may achieve this by allocating a

higher fraction of the workers to the lower quality item source area. Interestingly, this

remains the best strategy for maximising yield even when the quality of the items

available from both source areas is equal.

5.3.3 Equal Qualities and Varying Distances

The second experimental setup examines cases where both of the available source

areas contain items with equal quality, but the distance between the source areas and

the depot are different – this will help determine how the yield R is affected by varying

the distance. In Fig. 5.6 the graph plots the corresponding yield function for equal

qualities 𝑞1 = 𝑞2 = 1, a fixed swarm size of S = 200 robots, a fixed distance of the first

source area 𝐴1 where 𝑑1 = 0.6𝑚, and varying the distance of the second source area

𝐴2 where 𝑑2 ∈ {0.3𝑚, 0.6𝑚, 0.9𝑚}. Fig 5.6 shows how overcrowding of the trail

affects the swarm yield R and reveals that the optimal strategy is to allocate the

majority of the robots to which ever source area is the furthest from the central depot.

This effectively reduces the congestion experience on the closer source area, resulting

in fewer collisions which could slow the progress of the workers, and increasing the

yield.

148

Fig. 5.6 Model predictions of swarm yield R depending on workers allocation ρ for equal

qualities 𝑞1 = 𝑞2 = 1. The parameter values selected for this experiment are the same

as the first setup at: 𝛽1 = 𝛽2 = �̅� = 0.965, 𝑇01 = 𝑇02 = 𝑇0̅̅̅̅ = 0.029, 𝜅1 = 𝜅2 =

�̅� = 2.321, and 𝑆 = 200.

Fig.5.6 (a) shows the effect of varying the distance of the second source area on R, and

Fig.5.6 (b) shows the effect of varying the swarm size S with respect to the critical

swarm size 𝑆𝑐. The effect of overcrowding has a significant effect on the efficiency of

the swarm, where it is only possible to attain the maximum yield when a limited

number of workers (10–20%) collect from the nearest source area in order to reduce

congestion on that trail. The critical swarm size Sc characterises the effect of

overcrowding, i.e. when the swarm is sufficiently large (𝑆 > 𝑆𝑐) it is optimal to keep at

least one path with less than 50% workers; otherwise, the effect of overcrowding

begins to decrease the income of resources on both paths. The expression used to

obtain the value of the critical swarm size and detailed analyses are provided in

Appendix C of Talamali et al. (2020).

From the models, it is possible to determine the optimal foraging strategy for different

robot population sizes relative to the critical swarm size, assuming the source areas are

equally distant from the depot, and their item qualities are the same. If the number of

robots exceeds the critical swarm size (𝑆 > 𝑆𝑐) the optimal strategy is to allocate more

robots to one of either available sources, as collection from either source would give

the same reward and incur the same cost. The main aim of this strategy is to avoid

overcrowding both paths to increase the yield of robots on the less populated trail. In

149

scenarios where 𝑆 < 𝑆𝑐, the maximum possible yield for swarms where 𝑆 > 𝑆𝑐 is

smaller due to the increased prevalence of overcrowding which leads to less efficient

foraging. This highlights the importance of controlling the number of workers for the

purpose of maximising the global intake; a strategy which is implemented in a

decentralised fashion by ants (Charbonneau et al. 2015; Pagliara et al. 2018), and

recently investigated in the context of swarm robotics (Mayya et al. 2019).

Section 5.4 Results

The performance of the proposed system was primarily studied by using physics-based

simulations of a variety of experimental conditions. Experiments using up to 200

physical Kilobots were conducted to validate the Kilobot behaviour in a bounded arena

that matched the central depot, multi-source area simulated environment with no

obstacles. The physics-based simulations were conducted with ARGoS (Pinciroli et al.

2012, 2018) which is a state-of-the-art swarm robotics simulator that accurately and

efficiently simulates the Kilobots and the ARK system via a dedicated plug-in (Pinciroli

et al. 2018).

The physical robot experiments were run with fully charged Kilobots whose motors

have been automatically calibrated through ARK (Reina et al. 2017). The results

presented within this section mainly pertain to the simulations as this is where the wall

avoidance behaviour and adaptability function were implemented with respect to

additional obstacles in the environment. In the physical experiments, the wall

avoidance behaviour mainly serves to prevent Kilbots becoming stuck on the boundary

of the arena which was a common occurrence before the introduction of this capability

and affected the outcomes of the previous experiments. Details of the physical set-up,

experimental results and analysis can be found in Talamali et al. (2020). Section 5.4.1

presents a set of the simulation results that highlight the benefits of having introduced

a virtual wall sensor, adaptability to unknown environmental scenarios, and behaviour

modulation to balance the distance-quality trade-off. The robot simulation code is

open source and available online at:

https://github.com/DiODeProject/PheromoneKilobotSwarmIntell

https://github.com/DiODeProject/PheromoneKilobotSwarmIntell

150

Videos of the physical experiments, augmented by superimposing the virtual

environment, are available online at:

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a

Section 5.4.1 Tuneable and Adaptive Swarm Response

In this subsection, we report the results from the simulated and real robot

experiments to provide evidence of the swarm behaviour obtained using obstacle

avoidance, adaptability, and individual function modulation.

The inclusion of obstacle avoidance behaviour allows the robots to navigate in more

complex environment where there are obstructions between the depot and the source

areas. A set of simulated experiments were conducted in order to demonstrate this

ability and prove the swarms’ capability of selecting the most optimal foraging strategy

given various choices. Fig. 5.8 (b) shows a screenshot of the experiments which we

inspired by the well-known study of Goss et al. (1989) which showed that ants are able

to exploit the shorter path in double-bridge experiments – scenarios in which there are

multiple paths between a source and depot with different lengths. In the experiments

reported herein, the robots possess less cognitive capability than individual ants and

are unable to distinguish between difference pheromone intensities, follow gradients,

or make decisions based on differences in pheromone concentration. However, the

results show that the robots still display a preference for the shortest path available,

which demonstrates their ability to determine the most optimal strategy even with

limited information.

It is important to note that this outcome was not limited to conditions where the rate

of pheromone evaporation was too high to maintain the longer path but establish the

shorter path. The robots still showed preference for the short path in scenarios where

both the longer path and shorter path were complete and viable. Following the initial

experiment, the environment was modified to block the shorter path and only allow

the longer path to remain as an option. As shown in Fig. 5.8 (a), the robots were still

able to exploit the best available path. Double-bridge experimental setups have been

emulated in other swarm robotics studies such as Montes de Oca et al. (2010) and

Scheidler et al. (2016) though the swarm behaviour and desired goals under

investigation were different that this study.

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a

151

Fig. 5.8. The Final distribution of Kilobots from the simulated 50 Kilobot swarm

experiment inspired by the ants’ double-bridge experiment by Goss et al. (1989),

originally published in Talamali et al. (2020), in which two paths (a long 1.8m path and

a shorter 1.4m path) connect a single source to a single depot.

When the swarm only had access to the longest path (Fig. 5.8 (a)) the Kilobots using

the path to collect items reinforced the concentration of pheromone using repeated

trips for their collections. However, when both paths were available (Fig. 5.8 (b)), the

Kilobots disregarded the longer path, showing a high preference for the shorter path

between the source and depot for their collections. The number of robots on the two

paths at the end of one simulated hour is shown in (Fig. 5.8 (c)). The boxes represent

the 1st to 3rd quartile range of data from 100 simulations, with the median results

represented as a horizontal line within the box, and whiskers extending to represent

1.5 times the interquartile range. The individual Kilobots cannot follow a pheromone

gradient nor detect any difference in pheromone concentration. Despite their limited

individual capabilities, under certain conditions the robot swarm can reproduce

behaviour similar to foraging ant colonies, which instead rely on much higher cognitive

abilities at the individual level.

These results indicate that for experimental conditions similar to those conducted

here, individual agents with simpler cognitive abilities are sufficient for reproducing

152

the emergent behaviour observed in more complex social insect colonies such as ants.

However, ants and more capable agents with the ability to distinguish between

different pheromone concentrations are likely to be more flexible with the ability to

optimise path lengths in a wider variety of dynamic environments than the robot

system presented herein. In fact, it is likely that changing variables such as the density

of robots in the environment or significantly varying the path lengths may degrade the

performance of the Kilobots, but this remains to be confirmed.

The next set of experiments set out to prove the ability of the swarm to adapt to any

range of qualities, as described in in section 5.2.2, showing a response that is sensitive

to ratios between qualities (
𝑄2

𝑄1
) rather than absolute values. These experiments

examined three scenarios (Fig. 5.8) with 𝑛 = 2 sources where the ratio between the

two item qualities remained the same (
𝑄2

𝑄1
= 0.4), but the absolute values of the

qualities were (
𝑄2

𝑄1
=

6

15
 ,

𝑄2

𝑄1
=

4

10
 ,

𝑄2

𝑄1
=

2

5
). These results compare the new adaptive

strategy based on quality ratio (white box plots) and a strategy that only considers

absolute quality values (grey box plots).

Fig. 5.9. Simulation results showing the robot swarms ability to adapt to different item

qualities based on ratios rather than absolute values, originally published in Talamali et

al. (2020).

The key of figure 5.9 indicates how the data of the aforementioned experiments are

represented. Grey boxes represent the experiments where the maximum quality used

by the swarm to tune its response is set prior to be 10 and remains so even if the

actual maximum quality recorded in the environment is higher or lower than 10. The

153

white boxes represent the experiments where the maximum quality use by the swarm

to tune its response is updated according to the highest quality item returned to the

depot, creating an adaptive response. Boxes with a bold outline represent information

pertaining to area A1, while boxes with a normal outline represent information

pertaining to the second area A2. For instance, the bold grey box on the right hand

side of Fig 5.9 (b) indicates the small number of robots dedicated to the path between

the depot and area A1 when the swarm is using a static maximum quality of 10.

Fig. 5.9 (a) and (b) show that the adaptive strategy allows the swarm to adapt to any

condition to maximise the number of items collected while the constant maximum

quality of 10 strategy was only able to maximise its items collected when the

predetermined quality range matched that of the environment’s range. This sensitivity

to relative quality of food source rather than absolute quality has also been

documented in foraging ant species (Wendt et al. 2018). Fig. 5.9 (a) shows the number

of item collected, and Fig. 5.9 (b) shows the number of robots on each path at the end

of the simulation. The experiments used a single depot and 𝑛 = 2 source areas, where

the superior source 𝐴1 and inferior source 𝐴2 were equal distance from the depot

(𝑑1 = 𝑑2 = 1𝑚). The ratio of the item qualities in 𝐴1 and 𝐴2 were kept constant at

(
𝑄2

𝑄1
= 0.4), but the absolute values were varied as indicated on the x-axis of both

graphs. All experiments were conducted with swarms of 𝑆 = 50 Kilobots and an

intermediate value of 𝛼 = 0.85 in Eq.(5.2) and Eq.(5.3). Similar to Fig. 5.7, the boxes

range from the 1st to 3rd quartile of the data from 100 simulations with the median

indicated by a horizontal line; the whiskers extend to 1.5 times the interquartile range.

The constant range strategy (dark boxplots) only yields good results if the predefined

range matches the actual range of the environment (central experiment). Whereas the

adaptive strategy allows the swarm to exploit resources as a function of their relative

qualities in a range adapted to the environment.

As discussed in section 5.2.2, robots can modulate their behaviour to give priority to

source areas which are closer (low α) or contain higher quality items (high α) – an

ability which can results in different collective responses depending on the

environment. These dynamics were investigated in experiments using 𝑆 = 50

simulated Kilobots operating in an environment with 𝑛 = 2 source areas, where 𝐴1

154

contained higher quality items (𝑄1 = 10) and 𝐴2 contained lower quality items

(𝑄2 = 4). The distance of 𝐴1 from the depot remained constant at 𝑑1 = 1𝑚, while the

distance of 𝐴2 was varied at 𝑑2 ∈ [0.5𝑚, 1𝑚]. The relatively small swarm size of

𝑆 = 50 was selected due to the results reported by (Font Llenas et al. 2018) for a

similar scenario, where it was shown that large swarms do not discriminate between

sources where there are enough robots to maximally exploit both areas.

Fig. 5.10. Effect of modulating parameter α from Eq. (5.2) and (5.3) to favour nearer

source areas (α = 0), to favour the best-quality sources (α = 10), or to balance the

distance-quality trade-off (0 < α < 10).

Fig. 5.10 is made up of three graphs to show what effect tuning the selectivity of the

robots has on (a) the number of items collected per minute, (b) the number of robots

on the path between the depot and area A1 or the path between the depot and area

A2, and (c) the weighted collected items per minute; while varying the distance of the

second source area. The key to the left of Fig. 5.10 (c), shows how α is represented in

the graphs where light grey coloured points and lines represent setting the tuneable

parameter to α = 0 (distance selective behaviour), dark grey coloured points and lines

155

represent setting the tuneable parameter α = 0.85 (optimal distance-quality trade-off),

and black coloured points and lines represent setting the tenable parameter to α = 10

(quality selective). In addition, each graph of Fig.5.10 contains a second key to indicate

the distribution of robots in the environment for simulation and physical experiments.

Solid lines represent information pertaining to area A1 of the simulation, while dashed

lines represent information pertaining to area A2 of the simulation. For instance, in

Fig.5.10 (b) the dashed, dark grey line indicates the number of robots on the path

between the depot and area A2 in simulation, when the tuneable parameter α is set to

0.85 so robots can weigh the benefit of quality versus distance of the source. The solid

circles represent information pertaining to area A1 of the physical experiments, and

solid squares represent information pertaining to area A2. For example, the solid black

circle of Fig.5.10 (b) indicates that a much higher portion of robots were on the path

between the depot and area A1 than the depot and area A2 in the physical

experiments.

The results represent hour-long simulated and physical robots experiments for

scenarios with 𝑛 = 2 sources. The initial exploration phase is excluded, with mean

values indicating the last 30 minutes only. Physical robots’ results are indicated as solid

symbols with vertical bars indicating the 95% confidence intervals of 3 runs for each

condition. Lines represent the mean of 100 simulations with the shaded areas

representing 95% confidence intervals. Source 𝐴1 had quality 𝑄1 = 10 and was located

at distance 𝑑1 = 1𝑚; source 𝐴2 had quality 𝑄2 = 4 and varying distance 𝑑2 ∈

[0.5𝑚, 1𝑚]. (a) shows the rate of items collected per minute, (b) shows the mean

number of robots on each path, and (c) is the rate of item collected per minute

weighted by the normalised quality 𝑞1 = 1.0 and 𝑞2 = 0.5.

Using α = 0 promoted distance selectivity, where the simulated swarm had the highest

item collection per minute in (Fig. 5.10 (a)) from the closest source (𝐴2) to which the

majority of the workers were deployed in (Fig. 5.10 (b)). Using α = 10 promoted quality

selectivity, where the simulated swarm had the highest item collection per minute in

(Fig. 5.10 (a)) from the highest quality source (𝐴1) to which the majority of the robots

were deployed in (Fig. 5.10 (b)). Finally, intermediate value of α = 0.85, led to a

distance-quality trade-off where the swarm exploited the nearest inferior-quality

source only if it was much closer than the farther superior-quality source. Three

156

experiments were conducted with 50 physical robots for each of the two limit cases of

quality-selective α = 10 (solid black symbols) and of distance-selective α = 0 (solid light-

grey symbols). Videos of these experiments are available as online supplementary

material at:

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a

The results from the physical experiments showed the Kilobots to be less efficient at

resource collection than their simulated counterparts. This reality gap is likely due to a

difference in the motion speed of the physical and simulated robots. The simulation

was accurately tuned on the movement speed of fully charged Kilobots (Pinciroli et al.

2018), but did not take into account that the robot’s speed reduced over time as its

battery charge diminished. Despite this difference, the results still demonstrated that

in both cases the two strategies (𝛼 ∈ [0,10]) favoured either the closest or best-

quality source area respectively, as shown in simulation.

Section 5.5 Discussion

The results from these experiments demonstrate how complex collective foraging

strategies can emerge from simple individual agents. Both the simulated and real

robots possessed a minimal cognitive architecture which utilised only a simply binary

detector for pheromone trails and obstacles, and maintenance of a home vector which

informed them of the relative direction of the depot. Therefore, the individual robots

have only a fraction of the capabilities of a real ant. However, when imbued with the

ability to deposit pheromone at a rate determined by a single tuneable parameter,

they become capable of qualitatively reproduce classical results such as the shortest

path exploitation observed in lab ant colonies (Goss et al. 1989), and achieve distance-

quality trade-off of foraging. The experiments also examined the effect of resource

distribution on the optimal distribution of foragers over source areas. Other studies

have considered the effect of colony size on recruitment strategy (Planqué et al. 2010;

Pagliara et al. 2018; Mayya et al. 2019), the approach within this study instead

assumes the recruitment strategy and investigates the optimal distribution.

The agent controllers are able to approximate the optimal distribution for relatively

small swarm sizes, although large swarms depart from optimality. Large swarms lead

to crowded environments which require strategies to clear paths in order to reduce

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a

157

traffic congestion. Two possible strategies to limit traffic congestion were examined in

this study: modifying the abandonment strategy or enriching the individual behaviour

with collision-reactive states. Should an agent decide to abandon its current source,

the robots simply resumed exploration however the effects of this abandonment

strategy are limited as robots then quickly rediscover a path (which may be already

congested). A better abandonment strategy could improve the results of the

abandonment behaviour introduced in this work. For instance, the robots could be

instructed to remain at the depot for a period of time before resuming exploration,

similar to ants (Pagliara et al. 2018). This would allow time for the pheromone trail it

has abandoned to weaken and reduce the risk of rediscovering the path it abandoned.

In addition, it is possible to maintain a steady flow of traffic which remains undisrupted

even in relatively crowded conditions by individual ants changing their behaviour as a

function of collisions with other ants (Dussutour et al. 2004; Poissonnier et al. 2019).

Inspired by these results, the robot behaviour could be enriched with new collision-

dependent states using the same collision detection system employed for wall

avoidance behaviour outlined in Section 5.1.3.

The results from the experiments are complementary to other approaches using

minimal controllers for collective behaviour in the swarm robotics field (Gauci et al.

2014; Özdemir et al. 2018). Using simple controllers increases their transferability to

various robotics platforms because the functions require minimal hardware to carry

out the necessary functions. Simple behaviours also contribute to shrinking the reality

gap, preserving consistent dynamics when moving from simulation to physical systems

– as demonstrated in section 5.4.1 where the same control software was used to

produce qualitatively similar results. The ability of simple robots to generate complex

collective dynamics should be of interest to biologist and offer practical utility to

engineers.

158

Chapter 6. Conclusions and Future Work

At the begging of this thesis, the author set out to answer whether collaborative multi-

robot teams could outperform uncoordinated multi-robot teams, and how such

systems may be applied to address real world issues that present a challenge to

conventional single-robot systems and human teams. In this concluding Chapter, the

significance of the findings, the contribution to knowledge they represent, and the

new questions that should be considered following these discoveries are presented.

Section 6.1 presents the main conclusions to the research in Chapters 3, 4, and 5, while

Section 6.2 presents some of the more prominent questions that remain to be

explored following the findings of the research.

Section 6.1 Main conclusions

Chapters 3 and 4 set out to investigate the feasibility of a multi-robot system intended

to replace human teams in carrying out emergency ship hull repair of vessels that

suffer a hull breach at sea.

Chapter 3 focused on the inspection process, and proved through simulation that the

cooperative search algorithm was more effective at achieving complete area coverage

of the ship hull in less time than the same multi-robot system using an uncoordinated

search algorithm. Additionally, a robot sensor arrangement and accompanying control

scheme was presented that instructed the robots to maintain a set distance from a 3D

object, allowing them to treat their environment more akin to a 2D plane. This

demonstrated a method of implementing simpler search algorithms on swarm robots

while maintaining their ability to carry out inspection of a 3D surface underwater.

Chapter 4 examined how modular multi-robot teams may be used to seal circular hull

breaches of various sizes by self-assembling in a decentralised manner to form a repair

patch of appropriate shape and size. The results from the experiments also informed

an improved self-assembly method where robot congestion may be reduced by

controlling the angle of approach the robots use when navigating their way to the

damage, or by allowing more than one assembly location for the repair patch –

ultimately improving the speed of structure formation.

Chapter 5 investigated the use of nature inspired multi-robot teams in foraging

scenarios. Specifically, the study demonstrated how the researchers’ implementation

159

of stigmergic communication, plastic behaviours, and the newly implemented obstacle

avoidance behaviour enabled very simple robots to perform comparatively well to

more complex robot teams tasked with the same objectives. The obstacle avoidance

behaviour solved a major issue of physical robots becoming stuck against the walls of

their bounded arena and other robots which improved the performance of the swarm,

and created a system more capable of emulating the collective foraging behaviours

observed in biological swarms such as ants.

Section 6.1.1 Ship Hull Inspection: Complete Area Coverage

Previous studies have demonstrated that collaborative multi-robot teams may

outperform uncoordinated multi-robot teams under certain conditions but efforts to

examine this supposition in a wider range of scenarios have been limited. Using the

emergency ship hull repair scenario introduced in Chapter 3, the author set out to

examine if collaborative multi-robot systems could indeed outperform their

uncoordinated counterparts, and how this could be leveraged to improve on existing

solutions. The two main aspects of emergency ship hull repair that could benefit the

most from the use of collaborative multi-robot teams were inspection and repair.

Chapter 3 focused on the inspection aspect by proposing an individual robot behaviour

that encourages collaboration between robots when performing a search, with the

intent of developing a system which was faster and more resilient to sensor errors and

individual robot failure that uncoordinated teams.

A bespoke simulated robot model whose constituent parts were based on existing

technologies employed in modern autonomous robots was developed, including more

recent developments in underwater propulsion such as modular hydraulic propulsion.

To assess whether a coordinated team of these robots could indeed outperform an

uncoordinated team of the same robots, a series of simulated experiments based

around autonomous ship hull inspection were carried out in the open source robot

simulator Webots. In these scenarios both robot teams were tasked with inspecting

the mid-section of the ship hull and were assessed on which team could accomplish

the task the fastest without leaving gaps in their inspection. The system resilience was

tested in later scenarios, by introducing errors to the robot distance sensors or by

choosing a percentage of the robot team to fail at a random time. These test

160

conditions were intended to reveal which of the teams would perform better in the

presence of significant sensor noise, or the partial population failure.

The results of these experiments revealed that the coordinated team of robots

managed to outperform the un-coordinated robot team under ideal conditions and in

the face of partial population failure, while the uncoordinated team was more resilient

to significant sensor noise than the coordinated team which heavily relied on these

readings to coordinate their efforts. These results identified some shortcoming of the

Webots simulation environment such as inaccurate sonar sensor models, and helped

identify some ways in which the coordinated search algorithm may be improved.

Ultimately, the results confirmed the author’s hypothesis that a coordinated robot

teams could indeed outperform the same collection of robots performing the same

search task without coordinating with one another. However, it should be noted that

significant sensor errors can act as the tipping point – moving these systems to

become unstable and perform worse than teams of robots who do not rely on these

sensors for their behaviour.

One of the most significant contributions to knowledge of this research is the

introduction of a complete area coverage algorithm and novel underwater inspection

method introduced as part of the ship hull repair scenario. The robots’ method of

controlling its distance and orientation relative to the ship hull using distance sensors

allowed the robots to treat the surface of a 3D object as a 2D plane. This allowed for

the implementation of less complex search algorithms comparable to those employed

in swarm systems operating in 2D bounded arenas. This reduction in complexity allows

for its implementation on less capable robots that would otherwise lack the

computation ability to perform path planning, localization or mapping in complex 3D

environments. In addition, the method of ship hull inspection using a swarm of

autonomous robots presents an alternative approach for emergency ship hull

inspection that could save humans from performing such high-risk tasks.

Section 6.1.2 Ship Hull Repair: Aggregation and Self-Assembly

The next step in developing the emergency ship hull repair method was to investigate

how the coordinated team of robots could progress from inspection of the hull to

repair of damage. Chapter 4 investigated this repair aspect by proposing an individual

161

robot behaviour that could be used by a team of robots to self-assemble into a repair

patch for sealing hull breaches in a decentralised manner. Decentralised methods of

organization are advantageous compared to centralised methods as they do not

require the governance of a single entity which removes a critical point of failure and

increases the robustness and scalability of the approach. The method of self-assembly

proposed was reliant on the use of local communication between robots using, which

would demonstrate a method of complex organisation that did not require external

guidance.

To assess the effectiveness of the self-assembly protocol, a series of experiments

which would examine how modular robot teams of different population sizes could

form a repair patch of an appropriate size and shape over hull breaches of varying sizes

was devised. The experiments were carried out in Netlogo, a simulator well suited to

studies involving very large numbers of robots, and using a simplified model of the

same robots utilised in Chapter 3. The experiments assessed the performance of robot

teams of different sizes and their ability to form repair patches about a single assembly

point – a task which grew increasingly more difficult for teams to perform as the size of

robot population grew. This would allow the researchers to identify the point at which

the size of the robot population densities became more of a detriment to team

performance than an improvement, and assess any shortcomings of the approach.

The results of the experiments show that the robots’ teams could indeed use the self-

assembly protocol to form repair patches of appropriate shapes and sizes for hull

breaches of different sizes and at different locations under certain conditions. One of

the most important conditions necessary to ensure the robots could best perform self-

assembly, was the location of the hull breach and the associated assembly point. If the

space around the assembly point was too small to accommodate multiple robots, team

performance would suffer. This vulnerability could be addressed by increasing the

number of assembly point the robots could choose to being assembling, allowing them

to assemble from any approach vector. These shortfalls of the approach were

addressed in the closing section of Chapter 4 with the proposal of a modified version

of the self-assembly method which would allow the robots to approach from any

direction.

162

The main contributions of this research was the introduction of a self-assembly

algorithm which could be used by teams of homogeneous modular robots to

successfully create complex formations using only simple local communication. The

algorithm was applied to the emergency ship hull repair scenario to show how such

self-organisation techniques could be applied to solve real world challenges. The self-

assembly algorithm was investigated in a 2D environment but if applied to the robots

used in Chapter 3, which are capable of representing 3D surface as a 2D plane, it would

be possible to implement this technique on that same system. This represents another

step towards realising an approach to emergency ship hull repair using a coordinated

multi-robot team.

Section 6.1.3 Nature Inspired Swarms: Foraging and Obstacle Avoidance

Following the investigation into how co-operative multi-robot teams could be applied

to ship hull inspection and repair, a separate collaborative effort was made towards

researching how stigmergic communication and plastic behaviours could enable very

simple robots to perform as competently as more complex robot teams in foraging

scenarios. Chapter 5 presented the efforts the author made towards implementing

obstacle avoidance behaviour in a large team of Kilobots and improve the swarm’s

ability to navigate unknown environments, while the collaborators of this research

focused on expanding the stigmergic communication and plastic behaviours presented

in their earlier study concerning foraging Kilobots in a multi-source environment.

To assess the performance of these modifications, several simulated and physical

experiments were devised to test the swarm’s ability to forage efficiently in a bounded

arena with a central depot and different source areas of items of varying quality. The

robots used in this study, referred to as Kilobots, are very simple agents, but were

imbued with greater ability by the collaborators implementation of the augmented

reality Kilobot (ARK) system. This enabled the Kilobots to perform more complex

actions such as obstacle avoidance, pheromone deposition, and pheromone sensing.

The obstacle avoidance behaviour was implemented in both simulated and real-world

Kilobots, but was primarily assessed in simulation using a setup inspired by the double

bridge experiment – where the robots would have an option of choosing between a

longer of shorter path between the source and depot with the aim of increasing

efficiency. The Kilobot swarm’s virtual pheromone-based communication system and

163

ability to choose the most optimal foraging strategy based on relative item quality and

source area distances were examined in simulated and real-world experiments.

The results of the double-bridge inspired simulations, and the multi-source real world

experiments that used physical Kilobots, showed that the obstacle avoidance

behaviour successfully enabled the robots to avoid becoming stuck on the boundaries

of obstacles. The results also proved the swarm capable of using simplified stigmergic

communication to favour the shortest path between the central depot and the source,

performing comparatively well to more complex multi-robot systems. The simulated

and real-world multi-source experiment results demonstrated the system’s ability to

use the relative ratios of quality and distance to identify the foraging strategy which

maximised yield and to gravitate towards that approach.

Prior to the inclusion of the obstacle avoidance behaviour, individual Kilobots would

frequently become stuck on the edges of the bounded arena, reducing the overall

effectiveness of the swarm. Without the obstacle avoidance behaviour, the swarm

could not be expected to perform effectively in environments with obstacles, a

common feature of real-world environments, as increasing the obstacles would

likewise increase the number of collisions and robots becoming stuck. The most

notable contribution of the author to this collaborative study was the inclusion of this

behaviour which better prepared the robots to function in more complex

environments, and helped make their performance comparable to more capable

artificial and biological multi-agent systems.

Section 6.2 Future Work

The studies presented within this text represent but a fraction of the potential of truly

cooperative multi-robot systems, and while much has been revealed from this

research, there is far more which remains to be unveiled. This final section presents a

collection of questions which could prove beneficial in advancing the field of swarm

robotics, as pertains to emergency ship hull repair using autonomous underwater

robots, and nature inspired foraging multi-robot systems.

Section 6.2.1 Complete Emergency Ship Hull Repair

Using a coordinated team of robots to carry out ship hull inspection and to repair hull

breaches as proposed in Chapters 3 and 4 represent significant steps toward realising a

164

full solution to emergency ship hull repair. The results of the research show these

approaches may be plausible, but there remain questions which need to be addressed

before such techniques should be feasibly implemented on real robots. For instance, in

both the inspection and self-assembly scenarios the robots are operating in a static

body of water, but even the calmest oceans are significantly more dynamic than this.

Fluid dynamics such as waves and underwater currents, and obstructions such as sand,

seaweed are all common features of underwater environments which these robots

must be equipped to handle. A ship that has suffered hull damage as a result of a

battle will not typically halt their course to repair while still in the midst of combat, and

so the system could be adapted to service a ship which is still in transit. Even if these

aspects are addressed and the team of robot successfully form a patch of appropriate

shape and size to cover a hull breach, the method by which the robots adhere to the

hull has not yet been decided.

Future studies relating to this application should investigate aspects such as: the ability

of the robots to maintain their stability in the presence of additional external forces

such as waves, the wakes formed by obstacles, and underwater currents. The

inspection, self-assembly, and repair processes ought to be adapted so that they may

perform these actions on vessels which are still in transit, allowing for repairs to occur

even in the midst of combat which would help to restore stability without exposing the

ship to greater risk of attack. Changing the shape of the robots to make them more

hydrodynamic would significantly increase the performance individuals and likely

would benefit the swarm as whole. The obstacle avoidance behaviour of these robots

should be developed further to enable individuals to anticipate and avoid additional

moving obstacles. An appropriate method of underwater adhesion, which would allow

the robots to seal a hull breach, needs to be selected to complete the emergency ship

hull repair process. Studies such as these would greatly contribute to completing this

novel approach to emergency ship hull repair and help make the final leap from

concept to reality.

Section 6.2.2 Robot Avoidance in Foraging Swarm Robots

In Chapter 5, the ARK system was used to imbue Kilobots with obstacle avoidance

behaviour which proved to be a useful tool for preventing the robot become stuck at

the boundary of walls. However, wall avoidance is only a single example of how this

165

ability could be leveraged to improve the performance of the swarm. This same ability

to detect walls in the forward sections of the Kilobot could be used to detect the

presence of other obstacles, including other Kilobots. Previous studies on multi-agent

systems (Dussutour et al. 2004; Poissonnier et al. 2019) have shown how the traffic

congestion in environments with large numbers of agents can be limited by using

collision-reactive behaviours. Introducing a collision-dependant state to the individual

robot’s behaviour, such that they may form multiple traffic lanes between sources and

depots, could prove to increase the efficiency of the swarm without having altered

their morphology, and with minimal additional computational overhead. The

stigmergic communication and adaptive quality-sensitive behaviour established in this

work demonstrated how simple individuals with limited capabilities, were able to

achieve similar levels of performance to more complex biological multi-agent systems,

and Introducing robot-avoidance and queue forming behaviours to such a system

could prove to increase the efficiency of the system even further.

Scholars interested in pursuing swarm robotics research should note the following:

Every addition to an individual’s behaviour invites a measure of change to the whole

system which may be difficult to predict. How one might design an individual

behaviour which reliably and predictably proliferates into a desired collective

behaviour is one of the driving forces behind swarm robotics research today. That is

why it is the author’s firm belief that developing a general design pattern for swarm

robot systems is one of the most important pursuits open to swarm robotics

researchers today. When general design patterns for swarm robot system are finally

achieved, cooperative multi-robot systems such as our emergency ship hull repair

robots will no longer require years of novel research and development. Instead,

scientists and engineers will finally have a reliable, evidence-based method to enable

them to transform individual ideas into collective realities, opening the floodgates to

new innovations which could change the world.

166

References
[1] Aguirre, F., Vargas, S., Valdes, D., & Tornero, J. (2017). State of the art of

parameters for mechanical design of an autonomous underwater vehicle.

International Journal of Oceans and Oceanography, 11(1), 89-103.

[2] Antonelli, G., Arrichiello, F., & Chiaverini, S. (2010). Flocking for multi-robot

systems via the null-space-based behavioural control. Swarm Intelligence, 4(1), 37.

[3] Arganda, S., Nicolis, S. C., Perochain, A., Péchabadens, C., Latil, G., & Dussutour, A.

(2014). Collective choice in ants: The role of protein and carbohydrates ratios.

Journal of Insect Physiology, 69, 19–26.

[4] Arkin, R. C. (1989). Motor schema—based mobile robot navigation. The

International journal of robotics research, 8(4), 92-112.

[5] Arkin, R. C., Balch, T., & Nitz, E. (1993, May). Communication of behavioural state in

multi-agent retrieval tasks. In [1993] Proceedings IEEE International Conference on

Robotics and Automation (pp. 588-594). IEEE.

[6] Arkin, R., & Bekey, G. (1997). Robot colonies-editorial. Autonomous Robots, 4(1).

[7] Arkin, R. (1998). Behaviour-based robotics. MIT Press.

[8] Arvin, F., Turgut, A. E., Bazyari, F., Arikan, K. B., Bellotto, N., & Yue, S. (2014). Cue-

based aggregation with a mobile robot swarm: a novel fuzzy-based method.

Adaptive Behaviour, 22(3), 189-206.

[9] Arvin, F., Turgut, A. E., Bellotto, N., & Yue, S. (2014, October). Comparison of

different cue-based swarm aggregation strategies. In International Conference in

Swarm Intelligence (pp. 1-8). Springer, Cham.

[10] Arvin, F., Yue, S., & Xiong, C. (2015). Colias-φ: An autonomous micro robot for

artificial pheromone communication. International Journal of Mechanical

Engineering and Robotics Research, 4(4), 349–353.

[11] Åström, K. J., Hägglund, T., & Astrom, K. J. (2006). Advanced PID control (Vol.

461). Research Triangle Park, NC: ISA-The Instrumentation, Systems, and

Automation Society.

[12] Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping

(SLAM): Part II. IEEE robotics & automation magazine, 13(3), 108-117.

[13] Bailey, T., Nieto, J., & Nebot, E. (2006, May). Consistency of the FastSLAM

algorithm. In Proceedings 2006 IEEE International Conference on Robotics and

Automation, 2006. ICRA 2006. (pp. 424-429). IEEE.

[14] Balch, T., & Arkin, R. (1994). Communication in reactive multiagent robotic

systems. Autonomous Robots, 1(1), 27–52.

[15] Balch, T., & Arkin, R. (1998). Behaviour-based formation control for multirobot

teams. IEEE Transactions on Robotics and Automation, 14(6), 926–939.

[16] Balch, T., & Hybinette, M. (2000, April). Social potentials for scalable multi-

robot formations. In Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings (Cat.

No. 00CH37065) (Vol. 1, pp. 73-80). IEEE.

167

[17] Barca, J., & Sekercioglu, Y. (2013). Swarm robotics reviewed. Robotica, 31(3),

345–359.

[18] Batalin, M. A., & Sukhatme, G. S. (2002). Spreading out: A local approach to

multi-robot coverage. In Distributed Autonomous Robotic Systems 5 (pp. 373-382).

Springer, Tokyo.

[19] Bayindir, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172,

292–321.

[20] Beckers, R., Deneubourg, J. L., Goss, S., & Pasteels, J. M. (1990). Collective

decision making through food recruitment. Insectes Sociaux, 37(3), 258–267.

[21] Belke, C. H., & Paik, J. (2017). Mori: a modular origami robot. IEEE/ASME

Transactions on Mechatronics, 22(5), 2153-2164.

[22] Beni, G. (1988). The concept of cellular robotic system. Proceedings IEEE

International Symposium on Intelligent Control 1988, 57–62.

[23] Beni, G., and J. Wang. "Swarm Intelligence." In Proceedings Seventh Annual

Meeting of the Robotics Society of Japan, 425-428. Tokyo: RSJ Press, 1989.

[24] Beni, G., and J. Wang. "Theoretical Problems for the Realization of Distributed

Robotic Systems." In Proceedings 1991 IEEE International Conference on Robotic

and Automation, 1914-1920. Los Alamitos, CA: IEEE Computer Society Press, 1991.

[25] Beni, G., and S. Hackwood. "Stationary Waves in Cyclic Swarms." In Proceedings

1992 IEEE Int. Symp. on Intelligent Control, 234-242. Los Alamitos, CA: IEEE

Computer Society Press, 1992.

[26] Beni, G. (2005). From Swarm Intelligence to Swarm Robotics. In Swarm

Robotics: SAB 2004 International Workshop, Santa Monica, CA, USA, July 17, 2004,

Revised Selected Papers (Vol. 3342, pp. 1–9). Berlin, Heidelberg: Springer Berlin

Heidelberg.

[27] Bererton, C., & Khosla, P. K. (2001). Towards a team of robots with repair

capabilities: a visual docking system. In Experimental Robotics VII (pp. 333-342).

Springer, Berlin, Heidelberg.

[28] Boeing, A., & Bräunl, T. (2012, December). Leveraging multiple simulators for

crossing the reality gap. In 2012 12th International Conference on Control

Automation Robotics & Vision (ICARCV) (pp. 1113-1119). IEEE.

[29] Bonabeau, E., Theraulaz, G., Deneubourg, J., Aron, S., & Camazine, S. (1997).

[Review of Self-organization in social insects]. Trends in Ecology & Evolution, 12(5),

188–193.

[30] Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from

natural to artificial systems. New York: Oxford University Press.

[31] Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G.,

... & Mondada, F. (2010, October). The marXbot, a miniature mobile robot opening

new perspectives for the collective-robotic research. In 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 4187-4193). IEEE.

[32] Borenstein, J., Everett, H. R., & Feng, L. (1996). Navigating mobile robots:

Systems and techniques. AK Peters, Ltd.

168

[33] Bosien, A., Turau, V., & Zambonelli, F. (2012). Approaches to fast sequential

inventory and path following in RFID-enriched environments. International Journal

of Radio Frequency Identification Technology and Applications, 4(1), 28–48.

[34] Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: a

review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

[35] Bregy, P., Sommer, S., & Wehner, R. (2008). Nest-mark orientation versus

vector navigation in desert ants. Journal of Experimental Biology, 211(12), 1868–

1873.

[36] Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE

journal on robotics and automation, 2(1), 14-23.

[37] Brooks, R. A. (1990). Elephants don't play chess. Robotics and autonomous

systems, 6(1-2), 3-15.

[38] Burgard, W., Moors, M., Stachniss, C., & Schneider, F. E. (2005). Coordinated

multi-robot exploration. IEEE Transactions on robotics, 21(3), 376-386.

[39] Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau.

(2003). Self-Organisation in Biological Systems (Vol. 7). Princeton University Press,

NJ, USA.

[40] Campo, A., & Dorigo, M. (2007, September). Efficient multi-foraging in swarm

robotics. In European Conference on Artificial Life (pp. 696-705). Springer, Berlin,

Heidelberg.

[41] Campo, A., Gutiérrez, Á., Nouyan, S., Pinciroli, C., Longchamp, V., Garnier, S., et

al. (2010). Artificial pheromone for path selection by a foraging swarm of robots.

Biological Cybernetics, 103(5), 339–352.

[42] Castano, A., Behar, A., & Will, P. M. (2002). The Conro modules for

reconfigurable robots. IEEE/ASME transactions on mechatronics, 7(4), 403-409.

[43] Çelikkanat, H., & Şahin, E. (2010). Steering self-organized robot flocks through

externally guided individuals. Neural Computing and Applications, 19(6), 849-865.

[44] Center, N. (2013). Navy Damage Controlman - NAVEDTRA 14057 (Non-resident

Training Course). [S.l.]: LULU COM.

[45] Charbonneau, D., Hillis, N., & Dornhaus, A. (2015). ’Lazy’ in nature: Ant colony

time budgets show high ‘inactivity’ in the field as well as in the lab. Insectes

Sociaux, 62(1), 31–35.

[46] Cohen, W. W. (1996). Adaptive mapping and navigation by teams of simple

robots. Robotics and autonomous systems, 18(4), 411-434.

[47] Collett, T. S., & Collett, M. (2002). Memory use in insect visual navigation.

Nature Reviews Neuroscience, 3(7), 542–552.

[48] Couceiro, M. S., Rocha, R. P., & Ferreira, N. M. (2011, November). A novel

multi-robot exploration approach based on particle swarm optimization

algorithms. In 2011 IEEE International Symposium on Safety, Security, and Rescue

Robotics (pp. 327-332). IEEE.

[49] de Sá, A. O., Nedjah, N., & de Macedo Mourelle, L. (2016). Distributed efficient

localization in swarm robotic systems using swarm intelligence algorithms.

Neurocomputing, 172, 322-336.

169

[50] Deng, X., Jiang, D., Wang, J., Li, M., & Chen, Q. (2015, November). Study on the

3D printed robotic fish with autonomous obstacle avoidance behaviour based on

the adaptive neuro-fuzzy control. In IECON 2015-41st Annual Conference of the

IEEE Industrial Electronics Society (pp. 000007-000012). IEEE.

[51] Detrain, C., & Deneubourg, J. L. (2008). Collective decision-making and foraging

patterns in ants and honeybees. Advances in insect physiology, 35, 123-173.

[52] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a

colony of cooperating agents. Ieee Transactions On Systems Man And Cybernetics

Part B-Cybernetics, 26(1), 29–41.

[53] Doyle, M. J., Xu, X., Gu, Y., Perez-Diaz, F., Parrott, C., & Groß, R. (2016, May).

Modular hydraulic propulsion: A robot that moves by routing fluid through itself. In

2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5189-

5196). IEEE.

[54] Ducatelle, F., Förster, A., Di Caro, G. A., & Gambardella, L. M. (2009).

Supporting navigation in multi-robot systems through delay tolerant network

communication. IFAC Proceedings Volumes, 42(22), 25-30.

[55] Ducatelle, F., Di Caro, G. A., Pinciroli, C., Mondada, F., & Gambardella, L. M.

(2011). Communication assisted navigation in robotic swarms: self-organization

and cooperation. In Proceedings of the 2011 IEEE/RSJ international conference on

intelligent robots and systems (IROS 2011) (pp. 4981–4988). IEEE.

[56] Ducatelle, F., Di Caro, G. A., Pinciroli, C., & Gambardella, L. M. (2011). Self-

organized cooperation between robotic swarms. Swarm Intelligence, 5(2), 73–96.

[57] Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping:

part I. IEEE robotics & automation magazine, 13(2), 99-110.

[58] Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J. L. (2004). Optimal

traffic organization in ants under crowded conditions. Nature, 428(6978), 70–73.

[59] Dussutour, A., & Simpson, S. J. (2009). Communal nutrition in ants. Current

Biology, 19(9), 740–744.

[60] Evans, J., Redmond, P., Plakas, C., Hamilton, K., & Lane, D. (2003, September).

Autonomous docking for Intervention-AUVs using sonar and video-based real-time

3D pose estimation. In Oceans 2003. Celebrating the Past... Teaming Toward the

Future (IEEE Cat. No. 03CH37492) (Vol. 4, pp. 2201-2210). IEEE.

[61] Falconi, R., Sabattini, L., Secchi, C., Fantuzzi, C., & Melchiorri, C. (2015). Edge-

weighted consensus-based formation control strategy with collision avoidance.

Robotica, 33(2), 332-347.

[62] Farr, N., Bowen, A., Ware, J., Pontbriand, C., & Tivey, M. (2010, May). An

integrated, underwater optical/acoustic communications system. In OCEANS'10

IEEE SYDNEY (pp. 1-6). IEEE.

[63] Feldman, J. A., & Sproull, R. F. (1977). Decision theory and artificial intelligence

II: The hungry monkey. Cognitive Science, 1(2), 158-192.

[64] Ferrante, E., Turgut, A. E., Mathews, N., Birattari, M., & Dorigo, M. (2010,

September). Flocking in stationary and non-stationary environments: a novel

170

communication strategy for heading alignment. In International conference on

parallel problem solving from nature (pp. 331-340). Springer, Berlin, Heidelberg.

[65] Ferrante, E., Turgut, A. E., Stranieri, A., Pinciroli, C., Birattari, M., & Dorigo, M.

(2014). A self-adaptive communication strategy for flocking in stationary and non-

stationary environments. Natural Computing, 13(2), 225-245.

[66] Fetecau, R. C., & Meskas, J. (2013). A nonlocal kinetic model for predator–prey

interactions. Swarm Intelligence, 7(4), 279-305.

[67] Fick, A. (1855). Ueber diffusion. Annalen der Physik, 170(1), 59–86.

[68] Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intelligence theories,

methods, and technologies . Cambridge, MA: MIT Press.

[69] Font Llenas, A., Talamali, M. S., Xu, X., Marshall, J. A. R., & Reina, A. (2018).

Quality-sensitive foraging by a robot swarm through virtual pheromone trails. InM.

Dorigo, M. Birattari, C. Blum, A. Christensen, A. Reina, & V. Trianni (Eds.), Swarm

Intelligence (ANTS 2018), LNCS (Vol. 11172, pp. 135–149). Berlin: Springer.

[70] Fox, D., Burgard, W., Kruppa, H., & Thrun, S. (2000). A probabilistic approach to

collaborative multi-robot localization. Autonomous robots, 8(3), 325-344

[71] Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., & Matsuno, F. (2008).

Dependency by concentration of pheromone trail for multiple robots. In M. Dorigo,

M. Birattari, C. Blum, M. Clerc, T. Stützle, & A. F. T. Winfield (Eds.), SAnt colony

optimization and swarm intelligence (ANTS 2008), LNCS (Vol. 5217, pp. 283–290).

Berlin: Springer.

[72] Fujisawa, R., Dobata, S., Sugawara, K., & Matsuno, F. (2014). Designing

pheromone communication in swarm robotics: Group foraging behaviour mediated

by chemical substance. Swarm Intelligence, 8(3), 227–246.

[73] Fukuda, T., & Nakagawa, S. (1988). Approach to the dynamically reconfigurable

robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55–72.

[74] Fukuda, T., & Kawauchi, Y. (1990, May). Cellular robotic system (CEBOT) as one

of the realization of self-organizing intelligent universal manipulator. In

Proceedings., IEEE International Conference on Robotics and Automation (pp. 662-

667). IEEE.

[75] Fukuda, T., Husband, T., & Ueyama, T. (1994). Cellular robotics and micro

robotic systems (Vol. 10). World Scientific.

[76] Gamroth, C. A. (2010). Automatic detection and tracking in underwater

environments with marine snow (Doctoral dissertation, University of British

Columbia).

[77] Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., &

Theraulaz, G. (2005, September). Aggregation behaviour as a source of collective

decision in a group of cockroach-like-robots. In European conference on artificial

life (pp. 169-178). Springer, Berlin, Heidelberg.

[78] Garnier, S., Tâche, F., Combe, M., Grimal, A., & Theraulaz, G. (2007). Alice in

pheromone land: An experimental setup for the study of ant-like robots. In

Proceedings of the 2007 IEEE swarm intelligence symposium (SIS 2007) (pp. 37–44).

IEEE.

171

[79] Garnier, S., Gautrais, J., Asadpour, M., Jost, C., & Theraulaz, G. (2009). Self-

organized aggregation triggers collective decision making in a group of cockroach-

like robots. Adaptive Behaviour, 17(2), 109-133.

[80] Garnier, S., Combe, M., Jost, C., & Theraulaz, G. (2013). Do ants need to

estimate the geometrical properties of trail bifurcations to find an efficient route?

A swarm robotics test bed. PLoS Computational Biology, 9(3), e1002903.

[81] Gauci, M., Chen, J., Li,W., Dodd, T. J., & Groß, R. (2014). Self-organized

aggregation without computation. The International Journal of Robotics Research,

33(8), 1145–1161.

[82] Goldberg, D., & Mataric, M. J. (2000). Robust behaviour-based control for

distributed multi-robot collection tasks. University of Southern California Los

Angeles United States.

[83] Goss, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in

the Argentine ant. Naturwissenschaften, 76(12), 579–581.

[84] Goss, S., Deneubourg, J. L., Bourgine, P.,&Varela, E. (1992).Harvesting by a

group of robots. In 1st European conference on artificial Life (pp. 195–204). MIT

Press.

[85] Griffith, S., Goldwater, D., & Jacobson, J. M. (2005). Self-replication from

random parts. nature, 437(7059), 636-636.

[86] Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-

assembly in swarm-bots. IEEE transactions on robotics, 22(6), 1115-1130.

[87] Groß, R., & Dorigo, M. (2008). Self-assembly at the macroscopic scale.

Proceedings of the IEEE, 96(9), 1490-1508.

[88] Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots.

International Journal of Bio-Inspired Computation, 1(1-2), 1-13.

[89] Hackwood, S., and G. Beni. "Self-Organizing Sensors by Deterministic

Annealing." In Proceedings 1991 IEEE/RSJ International Conference on Intelligent

Robot and Systems, IROS'91, 1177-1183. Los Alamitos, CA: IEEE Computer Society

Press, 1991.

[90] Hackwood, S., and G. Beni. "Self-Organization of Sensors for Swarm

Intelligence." In Proceedings IEEE 1992 International Conference on Robotics

[91] Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2019a). Ship hull

inspection using a swarm of autonomous underwater robots: a Search algorithm.

In 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics

(SSRR) (pp. 114-115). IEEE.

[92] Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2019b). Ship hull repair

using a swarm of autonomous underwater robots: A self-assembly algorithm. In

2019 European Conference on Mobile Robots (ECMR) (pp. 1-6). IEEE.

[93] Hamann, H., Schmickl, T., Wörn, H., & Crailsheim, K. (2012). Analysis of

emergent symmetry breaking in collective decision making. Neural Computing and

Applications, 21(2), 207-218.

[94] Hayes, A. T., & Dormiani-Tabatabaei, P. (2002, May). Self-organized flocking

with agent failure: Off-line optimization and demonstration with real robots. In

172

Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat.

No. 02CH37292) (Vol. 4, pp. 3900-3905). IEEE.

[95] Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., & Moses, M. E. (2012).

Formica ex Machina: Ant swarm foraging from physical to virtual and back again. In

M. Dorigo, et al. (Eds.), Swarm intelligence (ANTS 2012), LNCS (Vol. 7461, pp. 252–

259). Berlin: Springer. Heinze, S., Narendra, A., & Cheung, A. (2018). Principles of

insect path integration. Current Biology, 28(17), R1043–R1058.

[96] Herianto, Kurabayashi, D. (2009). Realization of an artificial pheromone system

in random data carriers using RFID tags for autonomous navigation. In Proceedings

of the 2009 IEEE/RSJ international conference on robotics and automation (ICRA

2009) (pp. 2288–2293). IEEE.

[97] Herianto, Sakakibara T., & Kurabayashi, D. (2007). Artificial pheromone system

using RFID for navigation of autonomous robots. Journal of Bionic Engineering,

4(4), 245–253.

[98] Hoff, N. R., Sagoff, A., Wood, R. J., & Nagpal, R. (2010, December). Two foraging

algorithms for robot swarms using only local communication. In 2010 IEEE

International Conference on Robotics and Biomimetics (pp. 123-130). IEEE.

[99] Hoff, N., Wood, R., & Nagpal, R. (2012). Distributed colony-level algorithm

switching for robot swarm foraging. In A. Martinoli, et al. (Eds.), Distributed

autonomous robotic systems (DARS 2010), STAR (Vol. 83, pp. 417–430). Berlin:

Springer.

[100] Hölldobler, B., & Wilson, E. O. (1990). The Ants. Cambridge: Harvard University

Press.

[101] Houston, A. I.,&McNamara, J.M. (2014). Foraging currencies, metabolism and

behavioural routines. Journal of Animal Ecology, 83(1), 30–40.

[102] Hover, F. S., Eustice, R. M., Kim, A., Englot, B., Johannsson, H., Kaess, M., &

Leonard, J. J. (2012). Advanced perception, navigation and planning for

autonomous in-water ship hull inspection. The International Journal of Robotics

Research, 31(12), 1445-1464.

[103] Hosokawa, K., Shimoyama, I., & Miura, H. (1994). Dynamics of self-assembling

systems: Analogy with chemical kinetics. Artificial Life, 1(4), 413-427.

[104] Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network

deployment using potential fields: A distributed, scalable solution to the area

coverage problem. In Distributed Autonomous Robotic Systems 5 (pp. 299-308).

Springer, Tokyo.

[105] Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001).

Collaboration through the exploitation of local interactions in autonomous

collective robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149-

171.

[106] Jevtic, A., Gutiérrez, A., Andina, D., & Jamshidi, M. (2011). Distributed bee’s

algorithm for task allocation in swarm of robots. IEEE Systems Journal, 6(2), 296-

304.

173

[107] Joordens, M. A., & Jamshidi, M. (2010). Consensus control for a system of

underwater swarm robots. IEEE Systems Journal, 4(1), 65-73.

[108] Kacelnik,A. (1984).Central place foraging in Starlings (Sturnus vulgaris). I.

patches residence time. The Journal of Animal Ecology, 53(1), 283.

[109] Kazadi, S., Lee, J. R., & Lee, J. (2007, October). Artificial physics, swarm

engineering, and the Hamiltonian method. In World congress on engineering and

computer science (pp. 623-632).

[110] Kazadi, S., Lee, J. R., & Lee, J. (2009). Model independence in swarm robotics.

Int. J. Intelligent Computing and Cybernetics, 2(4), 672-694.

[111] Khaliq, A. A., Di Rocco, M., & Saffiotti, A. (2014). Stigmergic algorithms for

multiple minimalistic robots on an RFID floor. Swarm Intelligence, 8(3), 199–225.

[112] Khodayari, M. H., & Balochian, S. (2015). Modelling and control of autonomous

underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID

controller. Journal of Marine Science and Technology, 20(3), 559-578.

[113] Kopman, V., Cavaliere, N., & Porfiri, M. (2011). MASUV-1: A miniature

underwater vehicle with multidirectional thrust vectoring for safe animal

interactions. IEEE/ASME transactions on mechatronics, 17(3), 563-571.

[114] Krieger, M. J., & Billeter, J. B. (2000). The call of duty: Self-organised task

allocation in a population of up to twelve mobile robots. Robotics and Autonomous

Systems, 30(1-2), 65-84.

[115] Kube, C., & Hong Zhang. (1993). Collective Robotics: From Social Insects to

Robots. Adaptive Behaviour, 2(2), 189–218.

[116] Kumar, V., & Sahin, F. (2003, October). Cognitive maps in swarm robots for the

mine detection application. In SMC'03 Conference Proceedings. 2003 IEEE

International Conference on Systems, Man and Cybernetics. Conference Theme-

System Security and Assurance (Cat. No. 03CH37483) (Vol. 4, pp. 3364-3369). IEEE.

[117] Levander, O. (2017). Autonomous ships on the high seas. Spectrum, IEEE, 54(2),

26-31.

[118] Levi, P., & Kernbach, S. (Eds.). (2010). Symbiotic multi-robot organisms:

reliability, adaptability, evolution (Vol. 7). Springer Science & Business Media.

[119] Liu, W., & Winfield, A. F. (2010, September). Autonomous morphogenesis in

self-assembling robots using IR-based sensing and local communications. In

International Conference on Swarm Intelligence (pp. 107-118). Springer, Berlin,

Heidelberg.

[120] Liu, Y., & Nejat, G. (2013). Robotic urban search and rescue: A survey from the

control perspective. Journal of Intelligent & Robotic Systems, 72(2), 147-165.

[121] Lodovisi, C., Loreti, P., Bracciale, L., & Betti, S. (2018). Performance analysis of

hybrid optical–acoustic AUV swarms for marine monitoring. Future Internet, 10(7),

65.

[122] Ludwig, L., & Gini, M. (2006). Robotic swarm dispersion using wireless intensity

signals. In Distributed Autonomous Robotic Systems 7 (pp. 135-144). Springer,

Tokyo.

174

[123] Mabrouk, M. H., & McInnes, C. R. (2008). Solving the potential field local

minimum problem using internal agent states. Robotics and Autonomous Systems,

56(12), 1050-1060.

[124] Madhavan, R., Fregene, K., & Parker, L. E. (2004). Distributed cooperative

outdoor multirobot localization and mapping. Autonomous Robots, 17(1), 23-39.

[125] Maes, P., Mataric, M. J., Meyer, J. A., Pollack, J., & Wilson, S. W. (1996). A study

of territoriality: The role of critical mass in adaptive task division.

[126] Mallios, A., Ridao, P., Ribas, D., Maurelli, F., & Petillot, Y. (2010, October). EKF-

SLAM for AUV navigation under probabilistic sonar scan-matching. In 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems (pp. 4404-4411). IEEE.

[127] Mamei, M., & Zambonelli, F. (2005). Physical deployment of digital pheromones

through RFID technology. In Proceedings of the 2005 IEEE swarm intelligence

symposium (SIS 2005) (pp. 281–288). IEEE.

[128] Mamei, M., & Zambonelli, F. (2007). Pervasive pheromone-based interaction

with RFID tags. ACM Transactions on Autonomous and Adaptive Systems, 2(2), 4.

[129] Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network

localization techniques. Computer networks, 51(10), 2529-2553.

[130] Martinelli, A., Pont, F., & Siegwart, R. (2005, April). Multi-robot localization

using relative observations. In Proceedings of the 2005 IEEE international

conference on robotics and automation (pp. 2797-2802). IEEE.

[131] Martinoli, A. (1999). Swarm intelligence in autonomous collective robotics:

From tools to the analysis and synthesis of distributed control strategies (Doctoral

dissertation, Verlag nicht ermittelbar).

[132] Martinoli, A., Ijspeert, A. J., & Gambardella, L. M. (1999, September). A

probabilistic model for understanding and comparing collective aggregation

mechanisms. In European Conference on Artificial Life (pp. 575-584). Springer,

Berlin, Heidelberg

[133] Mathews, N., Christensen, A. L., O'Grady, R., Rétornaz, P., Bonani, M.,

Mondada, F., & Dorigo, M. (2011, September). Enhanced directional self-assembly

based on active recruitment and guidance. In 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 4762-4769). IEEE.

[134] Mayet, R., Roberz, J., Schmickl, T., & Crailsheim, K. (2010). Antbots: A feasible

visual emulation of pheromone trails for swarm robots. In M. Dorigo, et al. (Eds.),

Swarm intelligence (ANTS 2010), LNCS (Vol. 6234, pp. 84–94). Berlin: Springer.

[135] Mayya, S., Pierpaoli, P., & Egerstedt, M. (2019). Voluntary retreat for

decentralized interference reduction in robot swarms. In Proceedings of the 2019

IEEE/RSJ international conference on robotics and automation (ICRA 2019) (pp.

9667–9673). IEEE.

[136] McLurkin, J., & Smith, J. (2004). Distributed algorithms for dispersion in indoor

environments using a swarm of autonomous mobile robots. In in 7th International

Symposium on Distributed Autonomous Robotic Systems (DARS).

175

[137] McPhail, S. (2009). Autosub6000: A deep diving long range AUV. Journal of

Bionic Engineering, 6(1), 55-62.

[138] Mermoud, G., Upadhyay, U., Evans, W. C., & Martinoli, A. (2014). Top-down vs.

bottom-up model-based methodologies for distributed control: a comparative

experimental study. In Experimental Robotics (pp. 615-629). Springer, Berlin,

Heidelberg.

[139] Mikkelsen, S. B., Jespersen, R., & Ngo, T. D. (2013). Probabilistic communication

based potential force for robot formations: A practical approach. In Distributed

Autonomous Robotic Systems (pp. 243-253). Springer, Berlin, Heidelberg.

[140] Moeslinger, C., Schmickl, T., & Crailsheim, K. (2010, September). Emergent

flocking with low-end swarm robots. In International Conference on Swarm

Intelligence (pp. 424-431). Springer, Berlin, Heidelberg.

[141] Mogilner, A., & Edelstein-Keshet, L. (1999). A non-local model for a swarm.

Journal of mathematical biology, 38(6), 534-570.

[142] Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. W., Floreano, D.,

Deneubourg, J. L., ... & Dorigo, M. (2004). SWARM-BOT: A new distributed robotic

concept. Autonomous robots, 17(2-3), 193-221.

[143] Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., & Floreano, D.

(2005, September). Superliner physical performances in a SWARM-BOT. In

European Conference on Artificial Life (pp. 282-291). Springer, Berlin, Heidelberg.

[144] Montague, P. R., Dayan, P., Person, C., & Sejnowski, T. J. (1995). Bee foraging in

uncertain environments using predictive hebbian learning. Nature, 377(6551), 725-

728.

[145] Montes de Oca, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., &

Dorigo, M. (2010).Majority-rule opinion dynamics with differential latency: A

mechanism for self-organized collective decision-making. Swarm Intelligence, 5(3–

4), 305–327

[146] Moravec, H., & Elfes, A. (1985, March). High resolution maps from wide angle

sonar. In Proceedings. 1985 IEEE international conference on robotics and

automation (Vol. 2, pp. 116-121). IEEE.

[147] Morlok, R., & Gini, M. (2007). Dispersing robots in an unknown environment. In

Distributed Autonomous Robotic Systems 6 (pp. 253-262). Springer, Tokyo.

[148] Mullins, J., Meyer, B., & Hu, A. P. (2012, September). Collective robot

navigation using diffusion limited aggregation. In International Conference on

Parallel Problem Solving from Nature (pp. 266-276). Springer, Berlin, Heidelberg.

[149] Muniganti, P., & Pujol, A. O. (2010, May). A survey on mathematical models of

swarm robotics. In Workshop of physical agents (pp. 29-30).

[150] Murata, S., Kakomura, K., & Kurokawa, H. (2006, October). Docking

experiments of a modular robot by visual feedback. In 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 625-630). IEEE.

[151] Navarro, I., & Matía, F. (2013). An Introduction to Swarm Robotics. ISRN

Robotics, 2013, 1–10.

176

[152] Navarro, I., & Matía, F. (2013). A survey of collective movement of mobile

robots. International Journal of Advanced Robotic Systems, 10(1), 73.

[153] Nedjah, N., & Junior, L. (2019). Review of methodologies and tasks in swarm

robotics towards standardization. Swarm and Evolutionary Computation, 50.

[154] Nonacs, P., & Dill, L. M. (1990). Mortality risk vs. food quality trade-offs in a

common currency: Ant patch preferences. Ecology, 71(5), 1886–1892.

[155] Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork

in self-organized robot colonies. IEEE Transactions on Evolutionary Computation,

13(4), 695-711.

[156] O'Grady, R., Christensen, A. L., & Dorigo, M. (2009). SWARMORPH: multirobot

morphogenesis using directional self-assembly. IEEE Transactions on Robotics,

25(3), 738-743.

[157] O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2010). Self-assembly

strategies in a group of autonomous mobile robots. Autonomous Robots, 28(4),

439-455.

[158] Okubo, A. (1986). Dynamical aspects of animal grouping: swarms, schools,

flocks, and herds. Advances in biophysics, 22, 1-94.

[159] Olsson, O., Brown, J. S., & Helf, K. L. (2008). A guide to central place effects in

foraging. Theoretical population biology, 74(1), 22-33.

[160] Özdemir, A., Gauci, M.,Bonnet, S.,&Groß, R. (2018). Finding consensus without

computation. IEEE Robotics and Automation Letters, 3(3), 1346–1353.

[161] Pagliara, R., Gordon, D. M., & Leonard, N. E. (2018). Regulation of harvester ant

foraging as a closed-loop excitable system. PLOS Computational Biology, 14(12),

e1006200.

[162] Paull, L., Saeedi, S., Seto, M., & Li, H. (2013). AUV navigation and localization: A

review. IEEE Journal of Oceanic Engineering, 39(1), 131-149.

[163] Paull, L., Huang, G., Seto, M., & Leonard, J. J. (2015, May). Communication-

constrained multi-AUV cooperative SLAM. In 2015 IEEE international conference on

robotics and automation (ICRA) (pp. 509-516). IEEE.

[164] Payton, D. W., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone

robotics. Autonomous Robots, 11(3), 319–324.

[165] Pedlosky, J. (2013). Geophysical Fluid Dynamics. Springer Publishing.

[166] Penders, J., & Alboul, L. (2012). Emerging robot swarm traffic. International

Journal of Intelligent Computing and Cybernetics, 5(3), 312–339.

[167] Pinciroli, C., Talamali, M. S., Reina, A., Marshall, J. A. R., & Trianni, V. (2018).

Simulating Kilobots within ARGoS: Models and experimental validation. In M.

Dorigo, M. Birattari, C. Blum, A. Christensen, A. Reina, & V. Trianni (Eds.), Swarm

intelligence (ANTS 2018), LNCS (Vol. 11172, pp. 176–187). Berlin: Springer.

[168] Planqué, R., Van Den Berg, J. B., & Franks, N. R. (2010). Recruitment strategies

and colony size in ants. PLoS One, 5(8), e11664.

[169] Poissonnier, L. A., Motsch, S., Gautrais, J., Buhl, J., & Dussutour, A. (2019). Still

flowing, experimental investigation of ant traffic under crowded conditions. eLife

(in press).

177

[170] Poduri, S., & Sukhatme, G. S. (2004, April). Constrained coverage for mobile

sensor networks. In IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA'04. 2004 (Vol. 1, pp. 165-171). IEEE.

[171] Pratte, M., Gervet, J., & Theraulaz, G. (1990). Behavioural Profiles in Polistes

Dominulus (Christ) Wasp Societies: a Quantitative Study. Behaviour, 113(3-4), 223–

249.

[172] Press, P. (1945). Handbook of Damage Control NAVPERS 16191.

[173] Purnamadjaja, A. H., & Russell, R. A. (2007). Guiding robots’ behaviours using

pheromone communication. Autonomous Robots, 23(2), 113–130.

[174] Quan, Q. (2017). Introduction to multicopter design and control (pp. 150-160).

Beijing: Springer.

[175] Ranganathan, T., Thondiyath, A., & Kumar, S. P. S. (2015, February). Design and

analysis of an underwater quadrotor-AQUAD. In 2015 IEEE Underwater Technology

(UT) (pp. 1-5). IEEE.

[176] Rashid, A. T., Frasca, M., Ali, A. A., Rizzo, A., & Fortuna, L. (2015). Multi-robot

localization and orientation estimation using robotic cluster matching algorithm.

Robotics and Autonomous Systems, 63, 108-121.

[177] Reif, J. H., & Wang, H. (1999). Social potential fields: A distributed behavioural

control for autonomous robots. Robotics and Autonomous Systems, 27(3), 171-

194.

[178] Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015). A quantitative micro–

macro link for collective decisions: the shortest path discovery/selection example.

Swarm Intelligence, 9(2-3), 75-102.

[179] Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A

design pattern for decentralised decision making. PloS one, 10(10).

[180] Reina, A., Salvaro, M., Francesca, G., Garattoni, L., Pinciroli, C., Dorigo, M., &

Birattari, M. (2015). Augmented reality for robots: Virtual sensing technology

applied to a swarm of e-pucks. In Proceedings of the 2015 NASA/ESA conference

on adaptive hardware and systems (AHS 2015) (pp. 1–6). IEEE.

[181] Reina, A., Cope, A. J., Nikolaidis, E., Marshall, J. A. R., & Sabo, C. (2017). ARK:

Augmented reality for Kilobots. IEEE Robotics and Automation Letters, 2(3), 1755–

1761.

[182] Reynolds, C. W. (1987, August). Flocks, herds and schools: A distributed

behavioural model. In Proceedings of the 14th annual conference on Computer

graphics and interactive techniques (pp. 25-34).

[183] Robinson, E. J. H., Jackson, D. E., Holcombe, M., & Ratnieks, F. L. W. (2005). ‘No

entry’ signal in ant foraging. Nature, 438(7067), 442–442.

[184] Roumeliotis, S. I., & Bekey, G. A. (2002). Distributed multirobot localization.

IEEE transactions on robotics and automation, 18(5), 781-795.

[185] Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly

in a thousand-robot swarm. Science, 345(6198), 795-799.

178

[186] Rubino, F., Nisticò, A., Tucci, F., & Carlone, P. (2020). Marine application of fibre

reinforced composites: a review. Journal of Marine Science and Engineering, 8(1),

26.

[187] Rybski, P. E., Larson, A., Veeraraghavan, H., LaPoint, M., & Gini, M. (2004).

Communication strategies in multi-robot search and retrieval: Experiences with

mindart. In Proc. 7th Int. Symp. Distributed Autonomous Robotic Systems.

[188] Sahin, E., Labella, T. H., Trianni, V., Deneubourg, J. L., Rasse, P., Floreano, D., ...

& Dorigo, M. (2002, October). SWARM-BOT: Pattern formation in a swarm of self-

assembling mobile robots. In IEEE International Conference on Systems, Man and

Cybernetics (Vol. 4, pp. 6-pp). IEEE.

[189] Şahin, E. (2005). Swarm Robotics: From Sources of Inspiration to Domains of

Application. In Swarm Robotics: SAB 2004 International Workshop, Santa Monica,

CA, USA, July 17, 2004, Revised Selected Papers (Vol. 3342, pp. 10–20). Berlin,

Heidelberg: Springer Berlin Heidelberg.

[190] Sallam, G., & Baroudi, U. (2015, October). COVER: a cooperative virtual force

robot deployment technique. In 2015 IEEE International Conference on Computer

and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and

Computing (pp. 1308-1315). IEEE.

[191] Sarhadi, P., Noei, A. R., & Khosravi, A. (2016). Model reference adaptive PID

control with anti-windup compensator for an autonomous underwater vehicle.

Robotics and Autonomous Systems, 83, 87-93.

[192] Scheidler, A., Brutschy, A., Ferrante, E., & Dorigo, M. (2016). The k-unanimity

rule for self-organized decision-making in swarms of robots. IEEE Transactions on

Cybernetics, 46(5), 1175–1188.

[193] Schmickl, T., Möslinger, C., & Crailsheim, K. (2006, September). Collective

perception in a robot swarm. In International Workshop on Swarm Robotics (pp.

144-157). Springer, Berlin, Heidelberg.

[194] Schmickl, T., & Hamann, H. (2011). BEECLUST: A swarm algorithm derived from

honeybees. Bio-inspired Computing and Communication Networks. CRC Press

(March 2011).

[195] Schmickl, T., Thenius, R., Moslinger, C., Timmis, J., Tyrrell, A., Read, M., ... &

Manfredi, L. (2011, October). CoCoRo--The Self-Aware Underwater Swarm. In 2011

Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops

(pp. 120-126). IEEE.

[196] Shaffer, Z., Sasaki, T., & Pratt, S. C. (2013). Linear recruitment leads to

allocation and flexibility in collective foraging by ants. Animal Behaviour, 86(5),

967–975.

[197] Smogeli, Ø. N. (2006). Control of marine propellers: from normal to extreme

conditions.

[198] Solomon, N. (2004). U.S. Patent Application No. 10/421,593.

179

[199] Soysal, O., & Sahin, E. (2005, June). Probabilistic aggregation strategies in

swarm robotic systems. In Proceedings 2005 IEEE Swarm Intelligence Symposium,

2005. SIS 2005. (pp. 325-332). IEEE.

[200] Spears, W. M., Spears, D. F., Hamann, J. C., & Heil, R. (2004). Distributed,

physics-based control of swarms of vehicles. Autonomous Robots, 17(2-3), 137-

162.

[201] Statista. 2020. Global Merchant Fleet - Number Of Ships By Type 2019 |

Statista. [online] Available at: https://www.statista.com/statistics/264024/number-

of-merchant-ships-worldwide-by-type/ [Accessed 1 October 2020].

[202] Stickland, T. R., Britton, N. F., & Franks, N. R. (1999). Models of information

flow in ant foraging: The benefits of both attractive and repulsive signals. In C.

Detrain, J. L. Deneubourg, & J.M. Pasteels (Eds.), Information processing in social

insects (pp. 83–100). Basel: Birkhäuser.

[203] Sugawara, K., Kazama, T., & Watanabe, T. (2004). Foraging behaviour of

interacting robots with virtual pheromone. In Proceedings of the 2004 IEEE/RSJ

international conference on intelligent robots and systems (IROS 2004) (Vol. 3, pp.

3074–3079). IEEE.

[204] Sumpter, D., & Pratt, S. (2003). A modelling framework for understanding social

insect foraging. Behavioural Ecology and Socio-biology, 53(3), 131-144.

[205] Svennebring, J., & Koenig, S. (2004). Building terrain-covering ant robots: A

feasibility study. Autonomous Robots, 16(3), 313–332.

[206] Talamali, M. S., Bose, T., Haire, M., Xu, X., Marshall, J. A., & Reina, A. (2020).

Sophisticated collective foraging with minimalist agents: a swarm robotics test.

Swarm Intelligence, 14(1), 25-56.

[207] Tan, H. P., Diamant, R., Seah, W. K., & Waldmeyer, M. (2011). A survey of

techniques and challenges in underwater localization. Ocean Engineering, 38(14-

15), 1663-1676.

[208] Teo, K., Ong, K. W., & Lai, H. C. (2009, October). Obstacle detection, avoidance

and anti-collision for MEREDITH AUV. In OCEANS 2009 (pp. 1-10). IEEE.

[209] Thrun, S. (2002). Robotic mapping: A survey. Exploring artificial intelligence in

the new millennium, 1(1-35), 1.

[210] Traniello, J. F. (1989). Foraging strategies of ants. Annual review of entomology,

34(1), 191-210.

[211] Turgut, A. E., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized

flocking in mobile robot swarms. Swarm Intelligence, 2(2-4), 97-120.

[212] Ugur, E., Turgut, A. E., & Sahin, E. (2007, November). Dispersion of a swarm of

robots based on realistic wireless intensity signals. In 2007 22nd international

symposium on computer and information sciences (pp. 1-6). IEEE.

[213] Valentini, G., Antoun, A., Trabattoni, M., Wiandt, B., Tamura, Y., Hocquard, E.,

et al. (2018). Kilogrid: A novel experimental environment for the Kilobot robot.

Swarm Intelligence, 12(3), 245–266.

180

[214] Vandermeulen, I., Groß, R., & Kolling, A. (2019, May). Turn-minimizing

multirobot coverage. In 2019 International Conference on Robotics and

Automation (ICRA) (pp. 1014-1020). IEEE.

[215] Vanualailai, J., & Sharma, B. N. (2010). A Lagrangian-based swarming behaviour

in the absence of obstacles. In Proceedings of the Workshop on Mathematical

Control Theory (pp. 119-135).

[216] Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T., &

Vicsek, T. (2014, September). Outdoor flocking and formation flight with

autonomous aerial robots. In 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 3866-3873). IEEE.

[217] Vaughan, R. T., Støy, K., Sukhatme, G. S., & Matarić, M. J. (2000, June).

Whistling in the dark: cooperative trail following in uncertain localization space. In

Proceedings of the fourth international conference on Autonomous agents (pp.

187-194).

[218] Visioli, A. (2006). Practical PID control. Springer Science & Business Media.

[219] Wang, Z., Hang, G., Li, J., Wang, Y., & Xiao, K. (2008). A micro-robot fish with

embedded SMA wire actuated flexible biomimetic fin. Sensors and Actuators A:

Physical, 144(2), 354-360.

[220] Wang, Y., Liang, A., & Guan, H. (2011, April). Frontier-based multi-robot map

exploration using particle swarm optimization. In 2011 IEEE symposium on Swarm

intelligence (pp. 1-6). IEEE.

[221] Wei, H., Chen, Y., Tan, J., & Wang, T. (2010). Sambot: A self-assembly modular

robot system. IEEE/ASME Transactions on Mechatronics, 16(4), 745-757.

[222] Werger, B.B., Matari´c, M.J. (1996). Robotic “food” chains: Externalization of

state and program for minimal agent foraging. In From animals to animats 4.

Proceedings of the 4th international conference on simulation of adaptive

behaviour (SAB 96) (pp. 625–634). MIT Press.

[223] White, P. J., Kopanski, K., & Lipson, H. (2004, April). Stochastic self-

reconfigurable cellular robotics. In IEEE International Conference on Robotics and

Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 3, pp. 2888-2893). IEEE.

[224] White, P., Zykov, V., Bongard, J. C., & Lipson, H. (2005, June). Three

Dimensional Stochastic Reconfiguration of Modular Robots. In Robotics: Science

and Systems (pp. 161-168).

[225] Witkowski, U., El Habbal, M. A. M., Herbrechtsmeier, S., Tanoto, A., Penders, J.,

Alboul, L., & Gazi, V. (2008). Ad-hoc network communication infrastructure for

multi-robot systems in disaster scenarios. In Proceedings of IARP/EURON

Workshop on Robotics for Risky Interventions and Environmental Surveillance (RISE

2008), Benicassim, Spain.

[226] Wolfram, S. (1983). Cellular automata. Cellular Automata Modelling of

Chemical Systems, 9.

[227] Woods, S. A., Bauer, R. J., & Seto, M. L. (2012). Automated ballast tank control

system for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering,

37(4), 727-739.

181

[228] Yamakita, M., Taniguchi, Y., & Shukuya, Y. (2003, September). Analysis of

formation control of cooperative transportation of mother ship by SMC. In 2003

IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)

(Vol. 1, pp. 951-956). IEEE.

[229] Yim, M., Duff, D. G., & Roufas, K. D. (2000, April). PolyBot: a modular

reconfigurable robot. In Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings (Cat.

No. 00CH37065) (Vol. 1, pp. 514-520). IEEE.

[230] Yun, S., Lee, J., Chung, W., Kim, E., & Kim, S. (2009). A soft computing approach

to localization in wireless sensor networks. Expert Systems with Applications, 36(4),

7552-7561.

[231] Zarzhitsky, D., Spears, D. F., & Spears, W. M. (2005, August). Distributed

robotics approach to chemical plume tracing. In 2005 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 4034-4039). IEEE.

[232] Zhang, G., Fricke, G. K., & Garg, D. P. (2011). Spill detection and perimeter

surveillance via distributed swarming agents. IEEE/asme Transactions on

Mechatronics, 18(1), 121-129.

182

Appendix A: Ship Hull Inspection Webots Simulation Code

Appendix A features the code used to carry out the experiments from Chapters 3.

Webots was the program used for the Search algorithm simulations. The code used to

perform the Partial Population Failure (PPF) experiments for the sweeping search is:

SHI_A1_PPF_10.wbt, SHIR_A1_SUP_PPF_10.c, and SHIR_A1_ROB_PPF.c

The c programs displayed here are those used by the robots to perform ship hull

inspection according to the design presented in the main text of Chapter 3. These can

also be accessed using the GitHub repository:

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair. The code used to

perform the Partial Population Failure (PPF) experiments for the lawnmower search is:

SHI_A2_PPF_10.wbt, SHIR_A2_SUP_PPF_10.c, and SHIR_A2_CON.c

These files can be executed on the Webots Desktop App, which can be accessed from

the following link: https://www.cyberbotics.com/download/download.

SHIR_A1_ROB_PPF.c
/*
 * File: SHIR_A1_ROB_PPF.c
 * Date: 03/04/2018
 * Description: This controller tells each of the robots how to behave in order
 * to achieve complete area coverage of the ship hull during inspection.
 * Author: Matthew Haire
 */

/* Webot specific libraries */
#include <webots/robot.h>
#include <webots/motor.h>
#include <webots/supervisor.h>
#include <webots/gps.h>
#include <webots/inertial_unit.h>
#include <webots/emitter.h>
#include <webots/receiver.h>
#include <webots/distance_sensor.h>

/* Standard C libraries */
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair
https://www.cyberbotics.com/download/download

183

/* Macros used throughout program */
#define TIME_STEP 16.0
#define WATERLINE 19.0
#define MAXDIST 2.0
#define SPACE 2.0
#define ASSEMBLY_TIME 10.0

/* PID Controller Structure */
struct SPID
{
 double pGain, iGain, dGain; // proportional, integral, and differential gains
 double iState; // integrator state
 double dState; // last position input
} SPID_X, SPID_Y, SPID_Z;

/* Update Robot position function */
double UpdatePos(struct SPID pid, double current_pos, double desired_pos);

/* Main program */
int main(int argc, char **argv)
{
 wb_robot_init();
 /* Distance sensors */
 const WbDeviceTag ds_ft = wb_robot_get_device("ds_ft");
 wb_distance_sensor_enable(ds_ft, TIME_STEP);
 const WbDeviceTag ds_fb = wb_robot_get_device("ds_fb");
 wb_distance_sensor_enable(ds_fb, TIME_STEP);
 const WbDeviceTag ds_fl = wb_robot_get_device("ds_fl");
 wb_distance_sensor_enable(ds_fl, TIME_STEP);
 const WbDeviceTag ds_fr = wb_robot_get_device("ds_fr");
 wb_distance_sensor_enable(ds_fr, TIME_STEP);
 const WbDeviceTag ps_t = wb_robot_get_device("ps_t");
 wb_distance_sensor_enable(ps_t, TIME_STEP);
 const WbDeviceTag ps_b = wb_robot_get_device("ps_b");
 wb_distance_sensor_enable(ps_b, TIME_STEP);
 const WbDeviceTag ps_l = wb_robot_get_device("ps_l");
 wb_distance_sensor_enable(ps_l, TIME_STEP);
 const WbDeviceTag ps_r = wb_robot_get_device("ps_r");
 wb_distance_sensor_enable(ps_r, TIME_STEP);
 /* GPS */
 const WbDeviceTag gps = wb_robot_get_device("gps");
 wb_gps_enable(gps, TIME_STEP);
 /* Motors */
 const WbDeviceTag rmxft = wb_robot_get_device("rmxft");
 wb_motor_set_position(rmxft, INFINITY);
 wb_motor_set_velocity(rmxft, 0);
 const WbDeviceTag rmxfb = wb_robot_get_device("rmxfb");
 wb_motor_set_position(rmxfb, INFINITY);
 wb_motor_set_velocity(rmxfb, 0);
 const WbDeviceTag rmxfl = wb_robot_get_device("rmxfl");
 wb_motor_set_position(rmxfl, INFINITY);
 wb_motor_set_velocity(rmxfl, 0);
 const WbDeviceTag rmxfr = wb_robot_get_device("rmxfr");

184

 wb_motor_set_position(rmxfr, INFINITY);
 wb_motor_set_velocity(rmxfr, 0);
 const WbDeviceTag rmy = wb_robot_get_device("rmy");
 wb_motor_set_position(rmy, INFINITY);
 wb_motor_set_velocity(rmy, 0);
 const WbDeviceTag rmz = wb_robot_get_device("rmz");
 wb_motor_set_position(rmz, INFINITY);
 wb_motor_set_velocity(rmz, 0);

 /* PID initial Controller variables */
 SPID_X.pGain = 1; // increase speed of response
 SPID_X.iGain = 100; // reduce error between actual and desired sensor values
 SPID_X.dGain = -85; // Remove oscillation, but increase cumulative error (threatens stability
of system)
 SPID_X.iState = 0;
 SPID_X.dState = 0.001;
 SPID_Y = SPID_X;
 SPID_Z = SPID_X;

 /* Local variables */
 double x_pos = 0.0, y_pos = 0.0, z_pos = 0.0;
 double goal_x = 24.0, goal_y = 18.25, end_goal = -20.0;
 //double lost_x = 0.0, lost_y = 0.0, lost_z = 0.0;
 double ps_error = 0.0;
 bool ASSEMBLY_COMPLETE = 0, SEARCH_COMPLETE = 0, WAIT = 0;
 // set random fail time
 srand(time(NULL));
 int fail_time = (rand() % 10) +1;

 /* Main loop */
 while (wb_robot_step(TIME_STEP) != -1)
 {
 x_pos = wb_gps_get_values(gps)[0];
 y_pos = wb_gps_get_values(gps)[1];
 z_pos = wb_gps_get_values(gps)[2];

 ASSEMBLY_COMPLETE = 1; // SKIP ASSEMBLY STAGE

 if(!ASSEMBLY_COMPLETE)
 {
 /* ASSEMBLY STAGE */
 // Set motor velocity of lost agents to 0.0
 if(wb_distance_sensor_get_value(ds_ft) >= 3.0 && wb_distance_sensor_get_value(ds_fb)
>= 3.0 && wb_distance_sensor_get_value(ds_fl) >= 3.0 &&
wb_distance_sensor_get_value(ds_fr) >= 3.0)
 {

 // change this section so that if the robot loses it tethers with other robots it defaults to
the position where it lost contact and waits.
 wb_motor_set_velocity(rmxft, 0.0);
 wb_motor_set_velocity(rmxfb, 0.0);
 wb_motor_set_velocity(rmxfl, 0.0);
 wb_motor_set_velocity(rmxfr, 0.0);

185

 wb_motor_set_velocity(rmy, 0.0);
 wb_motor_set_velocity(rmz, 0.0);
 }
 // Stay centred
 wb_motor_set_velocity(rmz, -(UpdatePos(SPID_Z, x_pos, goal_x)));
 //get difference in distance between agents using sensors
 ps_error = wb_distance_sensor_get_value(ps_t) -
wb_distance_sensor_get_value(ps_b);

 // Maintain distance of 2.0m from ship hull
 wb_motor_set_velocity(rmxft, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_ft), MAXDIST))/2);
 wb_motor_set_velocity(rmxfb, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fb), MAXDIST))/2);
 wb_motor_set_velocity(rmxfl, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fl), MAXDIST))/2);
 wb_motor_set_velocity(rmxfr, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fr), MAXDIST))/2);

 //set desired positions
 if(wb_distance_sensor_get_value(ps_t) >= 3.0 && y_pos >= WATERLINE && z_pos > 0.0)
 {
 wb_motor_set_velocity(rmy, (UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); // Stay
close to the
 }
 else if(wb_distance_sensor_get_value(ps_b) >= 3.0 && y_pos >= WATERLINE && z_pos
< 0.0)
 {
 wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); //
Stay close to the Waterline
 }
 else
 {
 wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, ps_error, 0.0)));
 }
 //timer for assembly complete
 if(wb_robot_get_time() >= ASSEMBLY_TIME) ASSEMBLY_COMPLETE = 1;
 }
 else
 {
 /* SEARCH STAGE */
 // search complete
 if(x_pos <= end_goal || wb_robot_get_time() >= fail_time) SEARCH_COMPLETE = 1;

 if(!SEARCH_COMPLETE)
 {
 // Move at a steady speed towards the end position
 wb_motor_set_velocity(rmz, 5.0);
 //get difference in distance between agents using sensors
 ps_error = wb_distance_sensor_get_value(ps_t) - wb_distance_sensor_get_value(ps_b);

 // Maintain distance of 2.0m from ship hull

186

 wb_motor_set_velocity(rmxft, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_ft), MAXDIST))/2);
 wb_motor_set_velocity(rmxfb, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fb), MAXDIST))/2);
 wb_motor_set_velocity(rmxfl, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fl), MAXDIST))/2);
 wb_motor_set_velocity(rmxfr, (UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fr), MAXDIST))/2);

 // set desired positions
 if(wb_distance_sensor_get_value(ps_t) >= 3.0 && y_pos >= WATERLINE && z_pos > 0.0)
 {
 wb_motor_set_velocity(rmy, (UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); // Stay
close to the Waterline
 }
 else if(wb_distance_sensor_get_value(ps_b) >= 3.0 && y_pos >= WATERLINE && z_pos <
0.0)
 {
 wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); // Stay
close to the Waterline
 }
 else
 {
 wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, ps_error, 0.0)));
 }
 }
 else
 {
 if(!WAIT)
 {
 /* EXIT STAGE */
 goal_x = x_pos - 0.5;
 goal_y = y_pos;

 /* print fail_time to file */
 FILE * fp;
 fp = fopen("SHIR_A1_PPF_10_FT.txt", "a");
 fprintf(fp, "\nFail Time = %3d", fail_time);
 fclose(fp);

 WAIT = 1;
 }
 else
 {
 // Maintain positions until end of simulation
 wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x));
 wb_motor_set_velocity(rmy, UpdatePos(SPID_Y, y_pos, goal_y));
 wb_motor_set_velocity(rmxft, UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_ft), MAXDIST));
 wb_motor_set_velocity(rmxfb, UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fb), MAXDIST));
 wb_motor_set_velocity(rmxfl, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fl),
MAXDIST));

187

 wb_motor_set_velocity(rmxfr, UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fr), MAXDIST));
 }
 }
 }
 }
 wb_robot_cleanup();
 return(0);
}

double UpdatePos(struct SPID pid, double current_pos, double desired_pos)
{
 double error = desired_pos - current_pos;
 double pTerm, iTerm, dTerm;
 pTerm = pid.pGain * error;
 pid.iState += error;
 iTerm = pid.iGain * pid.iState;
 dTerm = pid.dGain * (error - pid.dState);
 pid.dState = error;
 double result = pTerm + iTerm + dTerm;
 if(result >= 10.0) return(10.0);
 else if(result <= -10.0) return(-10.0);
 else return(result);
}

SHIR_A2_CON.c
/*
* File: SHIR_A2_CON.c
* Date: 25/03/2019
* Description: This controller tells each of the robots how to behave in order
* to achieve complete area coverage of the ship hull during inspection.
* Author: Matthew Haire
*/

/* Webot specific libraries */
#include <webots/robot.h>
#include <webots/motor.h>
#include <webots/supervisor.h>
#include <webots/gps.h>
#include <webots/inertial_unit.h>
#include <webots/emitter.h>
#include <webots/receiver.h>
#include <webots/distance_sensor.h>

/* Standard C libraries */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>

/* Macros used throughout program */

188

#define TIME_STEP 16.0
#define WATERLINE 19.0
#define MAXDIST 2.00
#define ASSEMBLY_TIME 2.00

/* PID Controller Structure */
struct SPID
{
 double pGain, iGain, dGain; // proportional, integral, and differential gains
 double iState; // integrator state
 double dState; // last position input
} SPID_X, SPID_Y, SPID_Z;

/* Update Robot position function */
double UpdatePos(struct SPID pid, double current_pos, double desired_pos);

/* Main program */
int main(int argc, char **argv)
{
 wb_robot_init();
 /* Distance sensors */
 const WbDeviceTag ds_ft = wb_robot_get_device("ds_ft");
 wb_distance_sensor_enable(ds_ft, TIME_STEP);
 const WbDeviceTag ds_fb = wb_robot_get_device("ds_fb");
 wb_distance_sensor_enable(ds_fb, TIME_STEP);
 const WbDeviceTag ds_fl = wb_robot_get_device("ds_fl");
 wb_distance_sensor_enable(ds_fl, TIME_STEP);
 const WbDeviceTag ds_fr = wb_robot_get_device("ds_fr");
 wb_distance_sensor_enable(ds_fr, TIME_STEP);
 /*
 const WbDeviceTag ps_t = wb_robot_get_device("ps_t");
 wb_distance_sensor_enable(ps_t, TIME_STEP);
 const WbDeviceTag ps_b = wb_robot_get_device("ps_b");
 wb_distance_sensor_enable(ps_b, TIME_STEP);
 const WbDeviceTag ps_l = wb_robot_get_device("ps_l");
 wb_distance_sensor_enable(ps_l, TIME_STEP);
 const WbDeviceTag ps_r = wb_robot_get_device("ps_r");
 wb_distance_sensor_enable(ps_r, TIME_STEP);
 */
 /* GPS */
 const WbDeviceTag gps = wb_robot_get_device("gps");
 wb_gps_enable(gps, TIME_STEP);
 /* Motors */
 const WbDeviceTag rmxft = wb_robot_get_device("rmxft");
 wb_motor_set_position(rmxft, INFINITY);
 wb_motor_set_velocity(rmxft, 0);
 const WbDeviceTag rmxfb = wb_robot_get_device("rmxfb");
 wb_motor_set_position(rmxfb, INFINITY);
 wb_motor_set_velocity(rmxfb, 0);
 const WbDeviceTag rmxfl = wb_robot_get_device("rmxfl");
 wb_motor_set_position(rmxfl, INFINITY);
 wb_motor_set_velocity(rmxfl, 0);
 const WbDeviceTag rmxfr = wb_robot_get_device("rmxfr");

189

 wb_motor_set_position(rmxfr, INFINITY);
 wb_motor_set_velocity(rmxfr, 0);
 const WbDeviceTag rmy = wb_robot_get_device("rmy");
 wb_motor_set_position(rmy, INFINITY);
 wb_motor_set_velocity(rmy, 0);
 const WbDeviceTag rmz = wb_robot_get_device("rmz");
 wb_motor_set_position(rmz, INFINITY);
 wb_motor_set_velocity(rmz, 0);

 /* PID initial Controller variables */
 SPID_X.pGain = 1; // increase speed of responce
 SPID_X.iGain = 100; // reduce the error caused by gravity pulling object down
 SPID_X.dGain = -85; // Remove oscillation
 SPID_X.iState = 0;
 SPID_X.dState = 0.001;
 SPID_Y = SPID_X;
 SPID_Y.pGain = 2;
 SPID_Z = SPID_Y;

 /* Local variables */
 double x_pos = 0.0, y_pos = 0.0, z_pos = 0.0;
 double goal_x = 0.0, goal_y = 0.0;
 bool SEARCH_COMPLETE = 0, DOWN = 1, UP = 0;

 /* Main loop */
 while (wb_robot_step(TIME_STEP) != -1)
 {
 x_pos = wb_gps_get_values(gps)[0];
 y_pos = wb_gps_get_values(gps)[1];
 z_pos = wb_gps_get_values(gps)[2];

 // This approach does not require an assembly protocol
 if(wb_robot_get_time() <= TIME_STEP)
 {
 goal_x = x_pos;
 }

 if(!SEARCH_COMPLETE)
 {
 // If agent goes out of bounds, deactivate.
 if(x_pos <= -21.0 || x_pos >= 26.0 || y_pos <= 12.0 || y_pos >= 21.0 || z_pos >= 9.0 ||
z_pos <= -7.0)
 {
 wb_motor_set_velocity(rmxft, 0.0);
 wb_motor_set_velocity(rmxfb, 0.0);
 wb_motor_set_velocity(rmxfl, 0.0);
 wb_motor_set_velocity(rmxfr, 0.0);
 wb_motor_set_velocity(rmy, 0.0);
 wb_motor_set_velocity(rmz, 0.0);
 break;
 }
 else
 {

190

 //printf("DOWN: %d UP: %d\n", DOWN, UP);
 // Maintain distance of 2.0m from ship hull
 wb_motor_set_velocity(rmxft, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_ft),
MAXDIST)/2);
 wb_motor_set_velocity(rmxfb, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fb),
MAXDIST)/2);
 wb_motor_set_velocity(rmxfl, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fl),
MAXDIST)/2);
 wb_motor_set_velocity(rmxfr, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fr),
MAXDIST)/2);
 // MOVE DOWN
 if(DOWN && !UP)
 {
 wb_motor_set_velocity(rmy, -5.0);
 wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x));
 if(z_pos < 0.0 && y_pos >= WATERLINE)
 {
 UP = 1;
 goal_x = (x_pos + 1.0);
 }
 }
 // MOVE FORWARD
 if(DOWN && UP)
 {
 wb_motor_set_velocity(rmy, -UpdatePos(SPID_Y, y_pos, WATERLINE));
 wb_motor_set_velocity(rmz, -5.0);
 if(x_pos >= goal_x)
 {
 DOWN = 0;
 goal_x = x_pos;
 }
 }
 // MOVE UP
 if(!DOWN && UP)
 {
 wb_motor_set_velocity(rmy, 5.0);
 wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x));
 if(z_pos > 0.0 && y_pos >= WATERLINE)
 {
 UP = 0;
 DOWN = 0;
 goal_x = (x_pos + 1.0);
 }
 }
 // MOVE FORWARD
 if(!DOWN && !UP)
 {
 wb_motor_set_velocity(rmy, UpdatePos(SPID_Y, y_pos, WATERLINE));
 wb_motor_set_velocity(rmz, -5.0);
 if(x_pos >= goal_x)
 {
 DOWN = 1;
 goal_x = x_pos;

191

 }
 }
 // SEARCH COMPLETE
 //This section requires editing for PPF experiments
 if(x_pos >= 27.0)
 {
 SEARCH_COMPLETE = 1;
 goal_x = x_pos + 1.0;
 goal_y = WATERLINE;
 }
 }
 }
 else
 {
 break;
 // ASSEMBLE AT THE FRONT OF THE SHIP
 //wb_motor_set_velocity(rmxft, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_ft),
MAXDIST));
 //wb_motor_set_velocity(rmxfb, UpdatePos(SPID_X,
wb_distance_sensor_get_value(ds_fb), MAXDIST));
 //wb_motor_set_velocity(rmxfl, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fl),
MAXDIST));
 //wb_motor_set_velocity(rmxfr, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fr),
MAXDIST));
 //wb_motor_set_velocity(rmy, UpdatePos(SPID_Y, y_pos, goal_y));
 //wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x));
 }
 }
 wb_robot_cleanup();
 return(0);
}
double UpdatePos(struct SPID pid, double current_pos, double desired_pos)
{
 double error = desired_pos - current_pos;
 double pTerm, iTerm, dTerm;
 pTerm = pid.pGain * error;
 pid.iState += error;
 iTerm = pid.iGain * pid.iState;
 dTerm = pid.dGain * (error - pid.dState);
 pid.dState = error;
 double result = pTerm + iTerm + dTerm;
 return(result);
}

192

Appendix B: Ship Hull Repair Netlogo Simulation Code

Appendix B features the code used to carry out the experiments from Chapters 4.

Netlogo was the simulation suite used for the Self-assembly algorithm simulations. The

two sets of code displayed here are: ESHR SA Experiment 1 and ESHR SA Experiment 2.

These can be files can be downloaded from the GitHub repository

(https://github.com/MattSHaire/Emergency-Ship-Hull-Repair) and executed on the

Netlogo Desktop App or uploaded and executed in a browser using Netlogo Web which

can be accessed from https://www.netlogoweb.org/

ESHR SA Experiment 1

;; EMERGENCY SHIP HULL REPAIR
;; SELF ASSEMBLING AGENTS APPROACH VERSION 3.0
;; BY MATTHEW HAIRE
;; LAST EDITED: 03 May 2019

globals
[
 seal ;; check if breach is sealed or not
 speed ;; movement speed of turtles
 goalx ;; goal x coordinate
 goaly ;; goal y coordinate
 sproutx ;; x coordinates of turtle for creation
 increments ;; while loop variable for robots
 spacing ;; spacing for robots
 turtles_attached ;; robots that form part of breach
 turtles_unattached ;; robots that remain unattached
]

turtles-own
[
 active ;; state of the turtle - either in transit or in position
 goalpos ;; goal position of turtle - either centre, left or right or breach
 agent_ahead ;; reporter for color of agent ahead of turtle
]

to setup
 clear-all
 reset-ticks
 set seal 0
 set speed 1
 set turtles_attached 0
 set turtles_unattached 0
 setup-environment
 setup-turtles
 vid:start-recorder

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair
https://www.netlogoweb.org/

193

end

to setup-environment
 resize-world -50 50 -50 50
 set-patch-size 5
 set goalx breachx
 set goaly (breachy + breachsize + 1)
 ask patches
 [
 set pcolor 5
 if pycor <= (min-pycor + (max-pycor * 1.9))
 [
 set pcolor 105
]
 ask patch breachx breachy
 [
 set pcolor 101
 ask patches in-radius breachsize
 [
 set pcolor 101
]
]
]
end

to setup-turtles

 set increments 0
 set sproutx 0
 set spacing (96 / robotpop)

 while [increments < (robotpop / 2)]
 [
 set sproutx (sproutx - spacing)
 ask patch sproutx 48
 [
 Sprout 1
]
 set increments (increments + 1)
]

 set sproutx 0
 while [increments < robotpop]
 [
 set sproutx (sproutx + spacing)
 ask patch sproutx 48
 [
 Sprout 1
]

194

 set increments (increments + 1)
]

 ask turtles
 [
 set active 1
 set goalpos "centre"
 set shape "square"
 set size 1
 set color red
 set agent_ahead "null"
]
end

to start
 if seal = 1 OR ticks > 1000
 [
 set turtles_attached count turtles with [xcor >= (breachx - breachsize - 1) AND xcor
<= (breachx + breachsize + 1) AND ycor >= (breachy - breachsize - 1) AND ycor <=
(breachy + breachsize + 1)]

 if breachsize = 6 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 5 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 4 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 3 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 2 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 1 [set turtles_unattached count turtles - turtles_attached]

 show count turtles
 show turtles_unattached
 show seal
 stop
]
 turtle-actions
 spawn-turtles
 advance-line
 tick
end

to turtle-actions
 ask turtles
 [
 if active = 1
 [
 if goalpos = "left"
 [
 ifelse pycor > (goaly + 1)
 [
 setxy pxcor (goaly + 1)

195

]
 [
 ifelse not any? (turtles-on patch-left-and-ahead 90 1)
 [
 set agent_ahead "null"
 setxy pxcor goaly
 set color orange
 set active 0
 if pxcor > goalx
 [
 set goalpos "right"
]
]
 [
 set heading 270
 forward speed
]
 if pxcor < (goalx - breachsize - 1)
 [
 set goalpos "lost"
 set active 1
]
]
]
 if goalpos = "right"
 [
 ifelse pycor > (goaly + 1)
 [
 setxy pxcor (goaly + 1)
]
 [
 ifelse not any? (turtles-on patch-right-and-ahead 90 1)
 [
 set agent_ahead "null"
 setxy pxcor goaly
 set color orange
 set active 0
 if pxcor < goalx
 [
 set goalpos "left"
]
]
 [
 set heading 90
 forward speed
]
 if pxcor > (goalx + breachsize + 1)
 [
 set goalpos "lost"

196

 set active 1
]
]
]

 if goalpos = "lost"
 [
 facexy pxcor (goaly + 6)
 ifelse not any? (turtles-on patch-ahead 1.5)
 [
 set agent_ahead "null"
 ifelse pycor >= (goaly + 6)
 [
 set goalpos "centre"
 facexy goalx goaly
 set color red
]
 [
 forward speed
]
]
 [
 if any? (turtles-on patch-ahead 1.5) with [color = red]
 [
 set agent_ahead "red"
 back speed ;; previously 1
]
 if any? (turtles-on patch-ahead 1.5) with [color = orange]
 [
 set agent_ahead "orange"
 back speed ;; previously 1
]
 if any? (turtles-on patch-ahead 1.5) with [color = green]
 [
 set agent_ahead "green"
 back speed ;; previously 1
]
]
]

 if goalpos = "centre"
 [
 facexy goalx goaly
 ifelse not any? (turtles-on patch-ahead 1.5)
 [
 set agent_ahead "null"
 ifelse (pxcor < (goalx + 0.5) AND pxcor > (goalx - 0.5) AND pycor > (goaly - 0.5)
AND pycor < (goaly + 0.5))
 [

197

 setxy goalx goaly
 set heading 180
 set color orange
 set active 0
]
 [
 forward speed ;; previously 1
]
]
 [
 if any? (turtles-on patch-ahead 1.5) with [color = red]
 [
 set agent_ahead "red"
 back speed ;; previously 1
]
 if any? (turtles-on patch-ahead 1.5) with [color = orange]
 [
 set agent_ahead "orange"
 setxy pxcor pycor
 if not any? (turtles-on patch (goalx - 1) goaly) OR any? (turtles-on patch (goalx -
1) goaly) with [color = orange]
 [
 set heading 270
 ifelse any? (turtles-on patch-ahead 1) OR any? (turtles-on patch-ahead 2)
 [
 set heading 90
 set goalpos "right"
]
 [
 set heading 270
 set goalpos "left"
]
]
 if (not any? (turtles-on patch (goalx + 1) goaly) OR any? (turtles-on patch (goalx
+ 1) goaly) with [color = orange]) AND (goalpos != "left")
 [
 set heading 90
 set goalpos "right"
]
]
 if any? (turtles-on patch-ahead 1.5) with [color = green]
 [
 set agent_ahead "green"
 ifelse not any? (turtles-on patch goalx goaly)
 [
 setxy goalx goaly
 set heading 180
 set color orange
 set active 0

198

]
 [
 back (speed / 2)
]
]
]
]
]
 if active = 0
 [
 ifelse goalpos = "centre"
 [
 if any? ((turtles-on patch (goalx - 1) goaly) with [color = green]) AND any? ((turtles-
on patch (goalx + 1) goaly) with [color = green])
 [
 set color green
]
]
 [
 ifelse xcor < (goalx - breachsize) OR xcor > (goalx + breachsize)
 [
 set color green
]
 [
 if any? (turtles-on patch (pxcor - 1) pycor) with [color = green] OR any? (turtles-
on patch (pxcor + 1) pycor) with [color = green]
 [
 set color green
]
]
]
]
]
end

to spawn-turtles
 if (ticks > 1) AND (remainder ticks Deployrate) = 0 [
 set increments 0
 set sproutx 0
 while [increments < (robotpop / 2)]
 [
 set sproutx (sproutx - spacing)
 ask patch sproutx 48
 [
 Sprout 1
]
 set increments (increments + 1)
]

199

 set sproutx 0
 while [increments < robotpop]
 [
 set sproutx (sproutx + spacing)
 ask patch sproutx 48
 [
 Sprout 1
]
 set increments (increments + 1)
]

 ask turtles with [pycor = 48]
 [
 set active 1
 set goalpos "centre"
 set shape "square"
 set size 1
 set color red
 set agent_ahead "null"
]
]
end

to advance-line
 if any? (turtles-on patch breachx (breachy - breachsize - 1)) AND any? (turtles-on
patch goalx goaly) with [color = green]
 [
 ask turtles
 [
 set color violet
 set active 3
]
 set seal 1
]
 if any? (turtles-on patch goalx goaly) with [color = green]
 [
 ask turtles with [ycor < (goaly + 0.5) AND goalpos != "lost"]
 [
 set heading 180
 forward speed
 set active 3
]
]
end

ESHR SA Experiment 2

;; EMERGENCY SHIP HULL REPAIR
;; SELF ASSEMBLING AGENTS APPROACH VERSION 3.1
;; BY MATTHEW HAIRE

200

;; LAST EDITED: 03 May 2019

globals
[
 seal ;; check if breach is sealed or not
 speed ;; movement speed of turtles
 goalx ;; goal x coordinate
 goaly ;; goal y coordinate
 sproutx ;; x coordinates of turtle for creation
 increments ;; while loop variable for robots
 spacing ;; spacing for robots
 sub_breach
 sub_agent
 total_ingress
 Q
 Area
 turtles_attached
 turtles_unattached
]

turtles-own
[
 active ;; state of the turtle - either in transit or in position
 goalpos ;; goal position of turtle - either centre, left or right or breach
 agent_ahead ;; reporter for color of agent ahead of turtle
]

to setup
 clear-all
 reset-ticks
 set seal 0
 set speed 1
 set turtles_attached 0
 set turtles_unattached 0
 setup-environment
 setup-turtles
end

to setup-environment
 resize-world -50 50 -50 50
 set-patch-size 5
 set goalx breachx
 set goaly (breachy + breachsize + 1)
 set sub_agent 0
 set total_ingress 0
 set Q 0
 set Area (pi * breachsize ^ 2 * 0.00694)
 ask patches
 [

201

 set pcolor 5
 if pycor <= (min-pycor + (max-pycor * 1.9))
 [
 set pcolor 105
]
 ask patch breachx breachy
 [
 set pcolor 101
 ask patches in-radius breachsize
 [
 set pcolor 101
]
]
]
end

to setup-turtles

 set increments 0
 set sproutx 0
 set spacing (96 / robotpop)

 while [increments < (robotpop / 2)]
 [
 set sproutx (sproutx - spacing)
 ask patch sproutx 48
 [
 Sprout 1
]
 set increments (increments + 1)
]

 set sproutx 0
 while [increments < robotpop]
 [
 set sproutx (sproutx + spacing)
 ask patch sproutx 48
 [
 Sprout 1
]
 set increments (increments + 1)
]

 ask turtles
 [
 set active 1
 set goalpos "centre"
 set shape "square"
 set size 1

202

 set color red
 set agent_ahead "null"
]
end

to start
 if (ticks > 1) AND (remainder ticks mov_spd) = 0
 [
 water-ingress-calc
]
 if seal = 1 OR total_ingress >= 14870
 [
 set turtles_attached count turtles with [xcor >= (breachx - breachsize - 1) AND xcor
<= (breachx + breachsize + 1) AND ycor >= (breachy - breachsize - 1) AND ycor <=
(breachy + breachsize + 1)]

 if breachsize = 6 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 5 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 4 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 3 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 2 [set turtles_unattached count turtles - turtles_attached]
 if breachsize = 1 [set turtles_unattached count turtles - turtles_attached]

 show count turtles
 show turtles_unattached
 show total_ingress
 show seal
 stop
]
 water-ingress-calc
 turtle-actions
 spawn-turtles
 advance-line
 tick
end

to turtle-actions
 ask turtles
 [
 if active = 1
 [
 if goalpos = "left"
 [
 ifelse pycor > (goaly + 1)
 [
 setxy pxcor (goaly + 1)
]
 [
 ifelse not any? (turtles-on patch-left-and-ahead 90 1)

203

 [
 set agent_ahead "null"
 setxy pxcor goaly
 set color orange
 set active 0
 if pxcor > goalx
 [
 set goalpos "right"
]
]
 [
 set heading 270
 forward speed
]
 if pxcor < (goalx - breachsize - 1)
 [
 set goalpos "lost"
 set active 1
]
]
]
 if goalpos = "right"
 [
 ifelse pycor > (goaly + 1)
 [
 setxy pxcor (goaly + 1)
]
 [
 ifelse not any? (turtles-on patch-right-and-ahead 90 1)
 [
 set agent_ahead "null"
 setxy pxcor goaly
 set color orange
 set active 0
 if pxcor < goalx
 [
 set goalpos "left"
]
]
 [
 set heading 90
 forward speed
]
 if pxcor > (goalx + breachsize + 1)
 [
 set goalpos "lost"
 set active 1
]
]

204

]

 if goalpos = "lost"
 [
 facexy pxcor (goaly + 6)
 ifelse not any? (turtles-on patch-ahead 1.5)
 [
 set agent_ahead "null"
 ifelse pycor >= (goaly + 6)
 [
 set goalpos "centre"
 facexy goalx goaly
 set color red
]
 [
 forward speed
]
]
 [
 if any? (turtles-on patch-ahead 1.5) with [color = red]
 [
 set agent_ahead "red"
 back speed ;; previously 1
]
 if any? (turtles-on patch-ahead 1.5) with [color = orange]
 [
 set agent_ahead "orange"
 back speed ;; previously 1
]
 if any? (turtles-on patch-ahead 1.5) with [color = green]
 [
 set agent_ahead "green"
 back speed ;; previously 1
]
]
]

 if goalpos = "centre"
 [
 facexy goalx goaly
 ifelse not any? (turtles-on patch-ahead 1.5)
 [
 set agent_ahead "null"
 ifelse (pxcor < (goalx + 0.5) AND pxcor > (goalx - 0.5) AND pycor > (goaly - 0.5)
AND pycor < (goaly + 0.5))
 [
 setxy goalx goaly
 set heading 180
 set color orange

205

 set active 0
]
 [
 forward speed ;; previously 1
]
]
 [
 if any? (turtles-on patch-ahead 1.5) with [color = red]
 [
 set agent_ahead "red"
 back speed
]
 if any? (turtles-on patch-ahead 1.5) with [color = orange]
 [
 set agent_ahead "orange"
 setxy pxcor pycor
 if not any? (turtles-on patch (goalx - 1) goaly) OR any? (turtles-on patch (goalx -
1) goaly) with [color = orange]
 [
 set heading 270
 ifelse any? (turtles-on patch-ahead 1) OR any? (turtles-on patch-ahead 2)
 [
 set heading 90
 set goalpos "right"
]
 [
 set heading 270
 set goalpos "left"
]
]
 if (not any? (turtles-on patch (goalx + 1) goaly) OR any? (turtles-on patch (goalx
+ 1) goaly) with [color = orange]) AND (goalpos != "left")
 [
 set heading 90
 set goalpos "right"
]
]
 if any? (turtles-on patch-ahead 1.5) with [color = green]
 [
 set agent_ahead "green"
 ifelse not any? (turtles-on patch goalx goaly)
 [
 setxy goalx goaly
 set heading 180
 set color orange
 set active 0
]
 [
 back (speed / 2)

206

]
]
]
]
]
 if active = 0
 [
 ifelse goalpos = "centre"
 [
 if any? ((turtles-on patch (goalx - 1) goaly) with [color = green]) AND any? ((turtles-
on patch (goalx + 1) goaly) with [color = green])
 [
 set color green
]
]
 [
 ifelse xcor < (goalx - breachsize) OR xcor > (goalx + breachsize)
 [
 set color green
]
 [
 if any? (turtles-on patch (pxcor - 1) pycor) with [color = green] OR any? (turtles-
on patch (pxcor + 1) pycor) with [color = green]
 [
 set color green
]
]
]
]
]
end

to spawn-turtles
 if (ticks > 1) AND (remainder ticks Deployrate) = 0 [
 set increments 0
 set sproutx 0
 while [increments < (robotpop / 2)]
 [
 set sproutx (sproutx - spacing)
 ask patch sproutx 48
 [
 Sprout 1
]
 set increments (increments + 1)
]

 set sproutx 0
 while [increments < robotpop]
 [

207

 set sproutx (sproutx + spacing)
 ask patch sproutx 48
 [
 Sprout 1
]
 set increments (increments + 1)
]

 ask turtles with [pycor = 48]
 [
 set active 1
 set goalpos "centre"
 set shape "square"
 set size 1
 set color red
 set agent_ahead "null"
]
]
end

to advance-line
 if any? (turtles-on patch breachx (breachy - breachsize - 1)) AND any? (turtles-on
patch goalx goaly) with [color = green]
 [
 ask turtles
 [
 set color violet
 set active 3
]
 set seal 1
]
 if any? (turtles-on patch goalx goaly) with [color = green]
 [
 ask turtles with [ycor < (goaly + 0.5)]
 [
 set heading 180
 forward speed
 set active 3
]
]
end

to water-ingress-calc
 if breachy = 33 [set Q (Area * sqrt (64.348 * 1))]
 if breachy = 21 [set Q (Area * sqrt (64.348 * 2))]
 if breachy = 9 [set Q (Area * sqrt (64.348 * 3))]
 if breachy = -3 [set Q (Area * sqrt (64.348 * 4))]
 if breachy = -15 [set Q (Area * sqrt (64.348 * 5))]
 if breachy = -27 [set Q (Area * sqrt (64.348 * 6))]

208

 if breachy = -39 [set Q (Area * sqrt (64.348 * 7))]

 set sub_breach (count patches with [pcolor = 101])
 set sub_agent (count turtles-on patches with [pcolor = 101])
 set Q (Q * (sub_breach - sub_agent) / sub_breach)
 set Q (Q / 60 * 6.23)
 set total_ingress (total_ingress + Q)
end

209

Appendix C: Additional Results from Ship Hull Repair

Experiments
Appendix C features the graphed results from the emergency ship hull repair

experiments of Chapter 4 which examined self-assembly of a repair patch under

varying conditions. The graphs here primarily relate to the experiments which

examined breach diameters of 0.2m and 0.6m when no obstacles were present and

the experiments where the breach diameter remained constant but an obstacle was

included whose diameter and position would vary.

Breach Diameter 0.2m (No Obstacles)

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Breach Diameter of 0.2m at Depth of 3.6m

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Breach Diameter of 0.2m at Depth of 2.4m

210

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Breach Diameter of 0.2m at Depth of 1.2m

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Breach Diameter of 0.2m at Depth of 3.6m

211

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Breach Diameter of 0.2m at Depth of 2.4m

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Breach Diameter of 0.2m at Depth of 1.2m

212

Breach Diameter 0.6m (No Obstacles)

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Breach Diameter of 0.6m at Depth of 3.6m

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Breach Diameter of 0.6m at Depth of 2.4m

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Breach Diameter of 0.6m at Depth of 1.2m

213

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Breach Diameter of 0.6m at Depth of 3.6m

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Breach Diameter of 0.6m at Depth of 2.4m

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Breach Diameter of 0.6m at Depth of 1.2m

214

Obstacle Diameter 0.2m (Breach Diameter 0.4m)

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Obstacle Diameter of 0.2m at Position Left

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Obstacle Diameter of 0.2m at Position Centre

215

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Obstacle Diameter of 0.2m at Position Right

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Obstacle Diameter of 0.2m at Position Left

Robot Congestion (%) Obstacle Avoidance %

216

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Obstacle Diameter of 0.2m at Position Centre

Robot Congestion (%) Obstacle Avoidance %

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate

Obstacle Diameter of 0.2m at Position Right

Robot Congestion (%) Obstacle Avoidance %

217

Obstacle Diameter 0.6m (Breach Diameter 0.4m)

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Obstacle Diameter of 0.6m at Position Left

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Obstacle Diameter of 0.6m at Position Centre

218

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e
(s

)

Robot Deployment Rate

Obstacle Diameter of 0.6m at Position Right

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate (per minute)

(b) Obstacle Diameter of 0.6m at Position Above and

Left

Robot Congestion (%) Obstacle Avoidance %

219

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate (per minute)

(b) Obstacle Diameter of 0.6m at Position Directly

Above

Robot Congestion (%) Obstacle Avoidance %

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

P
er

ce
n

ta
g

e
(%

)

Robot Deployment Rate (per minute)

(b) Obstacle Diameter of 0.6m at Position Above and

Right

Robot Congestion (%) Obstacle Avoidance %

220

Appendix D: Publications and Research Outputs

As referenced within the main text, this thesis was born out of years of research into

swarm robotics which resulted in findings significant enough to warrant two

conference papers, a journal paper, symposium oral presentations and a symposium

poster – which was fortunate enough to win the runner-up prize for best poster. These

are listed below:

Conference Papers

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2019, September). Ship hull

inspection using a swarm of autonomous underwater robots: a Search algorithm. In

2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)

(pp. 114-115). IEEE.

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2019, September). Ship hull repair

using a swarm of autonomous underwater robots: A self-assembly algorithm. In 2019

European Conference on Mobile Robots (ECMR) (pp. 1-6). IEEE.

Journal Papers

Talamali, M. S., Bose, T., Haire, M., Xu, X., Marshall, J. A., & Reina, A. (2020).

Sophisticated collective foraging with minimalist agents: a swarm robotics test. Swarm

Intelligence, 14(1), 25-56.

Posters

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2017). Bio-inspired artificial nest-

site selection swarm simulation and potential applications. Poster. Sheffield Hallam

University MERI Symposium 2017. (Runner-Up Best Poster Award)

Oral Presentations

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2018). Emergency Ship Hull Repair

Using a Swarm of Autonomous Underwater Robots. Poster. Sheffield Hallam University

MERI Symposium 2018.

