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Abstract 
Swarm intelligence is the study of natural biological systems with the ability to 

transform simple local interactions into complex global behaviours. Swarm robotics 

takes these principles and applies them to multi-robot systems with the aim of 

achieving the same level of complex behaviour which can result in more robust, 

scalable and flexible robotic solutions than singular robot systems. This research 

concerns how cooperative multi-robot systems can be utilised to solve real world 

challenges and outperform existing techniques. 

The majority of this research is focused around an emergency ship hull repair scenario 

where a ship has taken damage and sea water is flowing into the hull, decreasing the 

stability of the ship. A bespoke team of simulated robots using novel algorithms enable 

the robots to perform a coordinated ship hull inspection, allowing the robots to locate 

the damage faster than a similarly sized uncoordinated team of robots. Following this 

investigation, a method is presented by which the same team of robots can use self-

assembly to form a structure, using their own bodies as material, to cover and repair 

the hole in the ship hull, halting the ingress of sea water. 

The results from a collaborative nature-inspired scenario are also presented in which a 

swarm of simple robots are tasked with foraging within an initially unexplored 

bounded arena. Many of the behaviours implemented in swarm robotics are inspired 

by biological swarms including their goals such as optimal distribution within 

environments. In this scenario, there are multiple items of varying quality which can be 

collected from different sources in the area to be returned to a central depot. The aim 

of this study is to imbue the robot swarm with a behaviour that will allow them to 

achieve the most optimal foraging strategy similar to those observed in more complex 

biological systems such as ants. The author’s main contribution to this study is the 

implementation of an obstacle avoidance behaviour which allows the swarm of robots 

to behave more similarly to systems of higher complexity. 
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Chapter 1. Introduction 

Section 1.1 Background 

Swarm intelligence is the study of natural biological systems with the ability to 

transform simple local interactions into complex global behaviours. Swarm robotics 

takes these principles and applies them to multi-robot systems with the aim of 

achieving the same level of complex behaviour which can result in more robust, 

scalable and flexible robotic solutions than singular robot systems. The key to 

overcoming individual shortcomings in multi-agent systems is communication. Isolated 

individuals only have access to their immediate surrounds which reduces the 

information available to them and limits their ability to make informed decisions. By 

communicating with others, these limits are removed and the extent of their 

knowledge is no longer restricted to their individual reach, but to the reach of the 

collective. Inter robot communication creates opportunities for individuals to 

collaborate, enabling them to achieve tasks they would be incapable of performing 

alone, and increasing the speed at which achievable tasks can be completed. This 

research demonstrates these principles by showing how cooperative multi-robot 

systems can be utilised to solve real world challenges and outperform existing 

techniques.  

Section 1.2 Importance of the research  

Researchers have begun to recognise the power of swarm intelligence and the 

solutions it could provide if appropriately applied to multi-robot systems from the 

early 2000s to the present day. Solutions which rely on a single highly complex robot 

may be capable of performing a variety of tasks simple robots would be unable to 

achieve themselves, however this comes with a number of drawbacks, prime among 

these being poor scalability and the infamous single point of failure (SPOF). When 

aspects of a problem grow (such as the size of an environment to be monitored or 

explored) it becomes more difficult for a single robot system to scale its solution, 

reducing efficiency and increasing the time taken to complete tasks. Should a single 

robot break or malfunction the entire system must come to a halt until repairs have 

been completed. 
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Cooperative multi-robot systems offer a viable alternative to the conventional single-

robot solution which can overcome both of these issues. Multi-robot systems 

experience less reduction in performance when scaling their approach to a growing 

problem thanks to the ability to easily add more robots and expand the system’s 

reach. If a single robot breaks or malfunctions in a multi-robot system the team can 

still continue to function, albeit at a reduced efficiency, removing the SPOF associated 

with single robot solutions. When designed correctly, multi-robot systems are even 

capable of changing their collective approach to match changing problems such as 

navigating dynamic environments. 

It stands to show that cooperative multi-robot systems may offer many advantages 

compared to more complex individual robots, but this is highly dependent on the 

behaviours built into each robot. Robots which are incapable of communicating or 

coordinating with other robots do not offer the benefits of multi-robot systems as 

listed above. As such, the subject of how to design individual robot behaviours which 

result in desired complex global behaviours is of paramount importance to the field of 

swarm robotics research. This thesis presents three novel demonstrations of how 

individual robot behaviour and communication are leveraged to create complex global 

behaviours applied to an entirely new approach to emergency ship hull repair, and 

nature inspired foraging scenarios. This research on multi-robot systems performing 

emergency ship hull repair is a first of its kind study and is the most significant 

contribution to knowledge. All of the studies serve as new examples of how 

cooperative multi-robot systems may be applied to address real-world problems and 

showcase the possibilities of swarm robotics. 

Section 1.3 Motivation 

The motivation behind pursuing this research came from the author’s interest applying 

robots to efficiently solve real world problems that are deemed hazardous to human 

life. During the author’s time in the British Royal Fleet Auxiliary, he was instructed on 

conventional methods of emergency ship hull repair and the importance of regaining 

ship stability quickly. The task of emergency ship hull repair is entrusted to human 

crew members, but being a dangerous and time constrained procedure it increases the 

risk of injury to the crew. It was during the author’s research into swarm robotics when 

a method of delegating the emergency ship hull repair procedure to a multi-robot 
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system was first formed. Using robots to autonomously repair ship hull damage would 

reduce the risk to human life by removing them from the situation and allowing them 

to focus on other tasks. Studying at Sheffield Hallam University allowed the author to 

learn from some of the most respected swarm robotics researchers while undertaking 

his research. This exchange of knowledge and tutelage increased the author’s 

knowledge of cooperative multi-robot systems such that he began consider how this 

technology could be applied to solve other issues beyond ship hull repair. This interest 

encouraged the author to participate in a joint research project with another team of 

swarm robot researchers at the University of Sheffield and the collaboration resulted 

in a comprehensive study on designing optimal foraging behaviours in multi-robot 

systems, which served to expand the author’s knowledge of open issues in swarm 

robotics, but also how current swarm robots could be applied to solve other real-world 

problems.  

Section 1.4 Research challenges 

There are several open issues in the field of swarm robotics yet to be full addressed 

which had to be taken into consideration when proceeding with the studies. One of 

the more significant issues to address is the lack of a general design pattern for swarm 

robot systems – how to achieve any desired global behaviour from the design of 

individual robot behaviours and vice versa. While some progress has been made 

towards realising formal design patterns for some specific global behaviour, a general 

design pattern has not yet been formulated. Furthermore, many existing design 

patterns are highly dependent on the robots physical morphology which makes them 

difficult to implement on multi-robot systems using different robots from the example. 

Without a general design pattern, the author had to utilise the latest body of research 

when designing the individual robot behaviours to create the desired global 

behaviours for the studies. 

This research presented a number of additional challenges for the author to overcome. 

The ship hull repair scenario made use of bespoke simulated autonomous underwater 

robots, whose design was based on existing technologies which had been 

demonstrated in other underwater robots. There is a variety of open-source and 

proprietary robot simulators available for carrying out experiments but few of these 

have been optimised for swarm robotics research. The simulators which are better 
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designed to run multi-robot simulations also vary in their ability to model different 

environments such as air, ground, and water. Of the fraction of simulators suitable for 

multi-robot systems, only a very small portion of these can simulate fluids 

appropriately. This presented a challenge to the researchers in choosing a suitable 

simulator to carry out the ship hull repair experiments while minimising the reality 

gap.  

Section 1.5 Outline of Thesis 

The research is separated into six chapters. Chapter 1 opens with a brief introduction 

to the subject of artificial swarm intelligence, the main subjects explored within this 

thesis, and the significance of the research. This is followed by an explanation of the 

author’s interest in pursuing cooperative multi-robot systems research and a 

discussion of how the author addresses the more prominent open issues and 

challenges in swarm robotics through these studies. The Chapter concludes with this 

outline of how the paper will proceed, providing a summary of the contents contained 

in the main body of the thesis. 

Chapter 2 provides a comprehensive review of the historical developments of swarm 

robotics and multi-robot systems from their inception to the present day. Included are 

key publications which established the theories and methodologies found to be most 

relevant to the studies performed in this thesis such as: the main principles of swarm 

robotics, historical developments, behaviour-based robotics, multi-robot modelling, 

pattern-formation, coordinated motion, localisation and mapping, multi-robot 

exploration, aggregation, modularity, self-assembly, and foraging behaviours. The 

methodologies present in each subsequent chapter are linked to this literature review, 

to show how the approach was informed by established swarm robot methods and 

theories. The final section identifies gaps in existing research and indicates how the 

studies in this thesis contribute to bridging these gaps. 

Chapter 3 is an extension of the published work by Haire, et al. (2019a) and presents 

the emergency ship hull repair scenario and proposes solutions which use a group of 

cooperative autonomous underwater robots to perform inspection. The methodology 

for the ship hull inspection is explained in-depth and is followed by a presentation, 

analysis and discussion of the results from the experiments. The morphology of the 
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individual robots and their design is discussed along with the simulated environment. 

The chapter concludes with a detailed discussion of the results and their implications 

on future experiments concerning emergency ship hull repair and complete area 

coverage (CAC) algorithms applied to swarm robot systems. 

Chapter 4 is an extension of the published work by Haire, et al. (2019b) and presents 

the next stage of the emergency ship hull repair process, providing an in-depth 

explanation of the methodology used for the swarm robots performing self-assembly. 

Differences in robot morphology from those used in Chapter 5 are identified here 

along with the simulated environment used to carry out experiments. The chapter 

proceeds to discuss the experimental setup, presenting the results of the experiments, 

and concludes with a discussion of the implications of the findings on future 

experiments concerning emergency ship hull repair and self-assembly algorithms 

applied to swarms of homogeneous modular robots. 

Chapter 5 is an extension of the published work by Talamali, et al. (2020) to which the 

author of this thesis contributed. The chapter discusses how nature-inspired swarm 

robot systems can be applied to solve foraging scenarios and obstacle-avoidance tasks, 

and then delves into the methodologies used in the experiments.  The study examines 

swarm-size dependant foraging strategies, how these influence the performance of a 

swarm of robots, and how the author’s implementation of obstacle avoidance 

benefited this collaborative study. The chapter concludes with a discussion of the 

implications of these studies, and how they impact the field of swarm robots and will 

influence future studies of the subject. 

Chapter 6 is the final chapter which provides a succinct conclusion for each of the 

studies presented in the thesis. Each of the studies provides a contribution to the 

existing knowledge of swarm robotics research and these are identified here. The 

chapter ends by proposing a collection of recommended future studies that could 

further advance the field of swarm robotics with respect to the studies presented 

within this thesis. All references are provided in the section following this along with 

appendices containing relevant code, supplemental figures, tables and graphs. 



12 
 

Section 1.6 Main Contributions 

The research presented within this thesis contains three novel contributions to the 

field of cooperative multi-robot systems. Chapter 3 presents an application that utilises 

theories of cooperative multi-robot exploration and communication to create a 

complete area coverage search method for a swarm of robots tasked with inspecting a 

damaged ship hull. The cooperative search algorithm was proven in simulation to be 

more effective at achieving complete area coverage in less time than the same multi-

robot system using an uncoordinated search algorithm. Additionally, the chapter 

presents a simulated robot sensor arrangement that would allow robots to maintain a 

set distance from a 3D object, allowing them to treat their environment more akin to a 

2D plane, which allows for simpler implementations of the search algorithm. 

Chapter 4 expands on the scenario presented in Chapter 3 with respect to autonomous 

ship hull repair using a swarm of robots. The main contribution of this research is a 

method of self-assembly that would allow modular robots to form a repair patch 

capable of coving a hole in a ship hull. In addition, the results from the experiments 

informed an improved self-assembly approach which suggests a method of enhancing 

the initial approach by controlling the angle of approach the robots use when 

navigating their way to the damage, or by allowing more than one assembly location 

for the repair patch. 

The main contribution of chapter 5 is the implementation of obstacle avoidance 

behaviour with low computational overhead on a large swarm of robots tasked with 

collective foraging in environments. The swarm of robots are able to tune their 

responses to their environment to create the best distribution of agents balancing 

quality of items to collect against the distance required to retrieve them. The obstacle 

avoidance behaviour solved a major issue of physical robots becoming stuck against 

the walls of their bounded arena and other robots, which improved the performance 

of the swarm, and created a system more capable of emulating the collective foraging 

behaviours observed in biological swarm such as ants. 
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Chapter 2. Literature Review 

Section 2.1 Main Principles 

Swarm intelligence is considered the study of natural biological systems with the ability 

to transform simple local interactions into complex global behaviours, such as bees 

working together to build nests, ants exploring environments and foraging for food, or 

the pattern formation in schools of fish evading predators (Bonabeau, Dorigo, and 

Theraulaz, 1999; Camazine, Deneubourg, Franks, Sneyd, Theraulaz, and Bonabeau,  

2003). Swarm robotics takes these same principles and applies them to multi-robot 

systems with the aim of achieving the same level of complex global behaviour from 

simple local robotic interactions, which can result in more robust, scalable and flexible 

robotic solutions (Beni, 2005; Şahin, 2005). The first definition of the term swarm 

robotics, which is still regarded as the most complete description of the discipline 

(Barca and Sekercioglu, 2013; Brambilla, Ferrante, Birattari, and Dorigo, 2013; Navarro 

and Matía, 2013; Bayindir, 2016; Nedjah and Junior, 2019), was proposed by Şahin 

(2005) in his seminal paper ‘Swarm Robotics: From Sources of Inspiration to Domains 

of Application’: 

“Swarm robotics is the study of how a large number of relatively simple 

physically embodied agents can be designed such that a desired collective 

behaviour emerges from the local interactions among agents and between the 

agents and the environment.” 

Following this definition, Şahin (2005) identified the main principles of swarm robot 

systems with a focus on three desired properties: robustness, flexibility, and scalability. 

Robustness is the ability of a system to continue to function, albeit at lower 

performance, when a portion of the system fails or in the presence of disturbances in 

the environment. Scalability is the ability of a system to increase and decrease the 

number of individuals of the group and continue to function using only the same local 

interaction rules. Flexibility is the ability of a system to adapt and address changing 

demands such that the system can reconfigure its group members or approach to 

address various tasks. 

These are the main aspects of a swarm robot system, but in order to further 

distinguish them from other closely related subjects and more general multi-robot 
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systems, Şahin (2005) identified additional sets of criteria: The individuals that make 

up the swarm should be autonomous – they should possess physical embodiment with 

the ability to interact with the environment. Studies of social insects (Camazine et al., 

2003) showed that natural systems are able to achieve robust, flexible and scalable 

behaviours without the need for a centralised control; these same attributes are 

desired for swarm robot systems and so designers should make effort to ensure their 

systems are also decentralised. The abilities of the system should involve coordination 

of large numbers of robots, or at least smaller numbers of individuals with the ability 

to scale to higher population sizes without the need to change the simple local rules of 

interaction. The individuals that make up the group should be homogeneous with no 

variance between robots – heterogeneous groups of robots with predefined roles and 

different rules of interaction are less scalable and robust than homogeneous groups 

and as such rarely meet the criteria to qualify as a swarm system. The individual robots 

should be relatively simple compared to the task at hand, such that an individual 

would be incapable of carrying out the task by itself, or completes the task much less 

efficiently than a group of individuals would. Finally, the robots used to make up these 

systems should only need to utilise limited sensing and local communication for the 

swarm to achieve its desired behaviour. This form or distributed coordination removes 

the need for global communication methods that would likely hinder the scalability of 

swarm. 

These definitions were initially intended as a means to determine to what degree the 

term swarm robotics might apply to a given multi-robot system, but had since evolved 

to serve as the corner stones for defining most swarm robot systems in use today. 

Most importantly, true swarm robot systems today are described as multi-robot 

systems which are capable of generating complex global behaviours from simple local 

interaction; these are systems which are capable of performing more than the mere 

sum of its individual parts. In the following section, the origin of the research of swarm 

robotics is discussed with insights into how the subject was originally formed from 

fusions of the studies of multi-robot systems and collective intelligence observed in 

nature.   
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Section 2.2 Historical Developments of Swarm Robotics 

Swarm robotics is a relatively new area of research, but its founding extends back to 

the early 1980s when researchers were using cellular automata to model and replicate 

the patterns and behaviours observed in nature (Wolfram, 1983). Wolfram’s studies of 

self-organisation and the ability of cellular automata to produce complex patterns 

from simple rules sparked the imagination of scientist giving new momentum to the 

study of how such natural complex behaviours may be replicated in artificial systems.  

In the late 1980s concepts and studies of multi-robot systems with the ability to self-

organise began to emerge and a new term to describe them; cellular robots (Fukuda 

and Nakagawa, 1988; Beni, 1988). This term was intended to indicate how these 

groups of simple robots could behave like the cells of an organism, assembling to form 

more complex structures. The term swarm intelligence began being used by Beni 

(1988), Beni and Wang (1989; 1991), and Hackwood and Beni (1991; 1992) to describe 

the ability of these cellular robot systems to generate patterns and complexity through 

simple local interactions. However, research into biological systems displaying 

collective intelligence such as insect colonies by Pratte, Gervet, and Theraulaz (1990) 

was also being conducted at the same time, and the crossover between the disciplines 

quickly became apparent. These biologists found that the concepts of swarm 

intelligence could be used to describe the behaviours they had been observing in 

nature. After all, the systems they were describing were also decentralised, 

homogeneous and made up of large groups of relatively simple individuals, but 

capable of displaying complex behaviours. 

Biologists and roboticists alike began utilising the concepts of swarm intelligence in 

their research to find new ways of understanding how natural systems functioned and 

how these discoveries could be applied to artificial systems to generate complex 

behaviours (Kube and Zhang, 1993; Balch and Arkin, 1994; Dorigo, Maniezzo, and 

Colorni, 1996; Bonabeau, Theraulaz, Deneubourg, Aron, and Camazine, 1997; Balch 

and Arkin, 1998; Arkin, 1998). It soon became apparent that the term swarm 

intelligence could be used to describe both the behaviours of natural and artificial 

systems, and by the late 1990s the definition was extended to include attempts to 

design algorithms or distributed problem-solving devices inspired by the collective 

behaviour of social insect colonies and other animal societies (Bonabeau et al., 1999). 
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In the early 2000s it had been revealed that social insects indeed functioned without 

centralized coordination and yet their interactions and behaviours formed a natural 

system that was robust, flexible and scalable (Camazine et al., 2003) – properties 

considered desirable for distributed multi-robot systems. This helped solidify the idea 

that artificial systems with these properties could be developed if behaviours from 

natural systems could be replicated, which boosted research into reproducing the 

behaviours observed in ants, bees, fish, and birds in multi-robot systems. By this point 

in time, there were a variety of terms being used to describe these kinds of multi-robot 

systems such as the earlier mentioned cellular robotics, robot colonies, distributed 

robotics, and collective robotics (Kube et al., 1993; Arkin and Bekey, 1997; Martinoli, 

1999). With no universal terminology yet in place Sahin (2005) sought to establish the 

term swarm robotics as the title of this disciple, distinguishing the subject from general 

multi-robot systems. He provided the first definition and listed the three main 

principles of robustness, flexibility, and scalability – which are still recognised as the 

defining points of swarm robot systems today (Nedjah et al., 2019). 

There were a variety of suggested applications of swarm intelligence prior to Sahin’s 

definition of swarm robotics, but by the mid-2000s some of the more sought-after 

domains of application had become clearer. These domains included: tasks that 

covered a region, such as space exploration (Burgard, Moors, Stachniss, and Schneider, 

2005), environmental monitoring (Dhariwal, Sukhatme, and Requicha, 2004), 

surveillance (Solomon, 2004), or hazard detection (Zarzhitsky, Spears, and Spears, 

2005); tasks considered too dangerous for humans, such as robot mine detection 

(Kumar and Sahin, 2003); tasks that may scale up or down in time, such as 

containment of oil spills (Kakalis and Ventikos, 2008); and tasks where redundancy is a 

benefit, such as forming dynamic communication networks in disaster scenarios 

(Witkowski, El-Habbal, Herbrechtsmeier, Tanoto, Penders, Alboul, and Gazi, 2008). 

The subject area of swarm robotics only continued to grow with researchers tackling a 

plethora of problems with the aim of one day realising many of the suggested 

applications of this new technology. Along with the advances came a number of 

taxonomies on the subject of swarm robotics each identifying the most prominent 

problems being tackled by researchers and categorising them into various subject 

areas. Of the variety of suggested classifications of the subject, Brambilla et al. and 
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Bayindir’s taxonomies are currently the most accepted in the literature (Nedjah et al., 

2019). Brambilla divided the works of swarm robotics into the two classes of methods 

and collective behaviours as shown in Table 2.1. While Bayindir divided the subject 

into the five main axis of modelling, behaviour, design, communication, analytical 

studies, and problems shown in Table 2.2. 

Table 2.1 Brambilla et al.’s (2013) taxonomy of swarm robotics research 

Methods 

Design methods 
Behaviour-based design methods 

Automatic design methods 

Analysis methods 

Microscopic models 

Macroscopic models 

Real-robot analysis 

Collective 

behaviours 

Spatially-organising 

behaviours 

Aggregation 

Pattern formation 

Chain formation 

Self-assembly and morphogenesis 

Object clustering and assembling 

Navigation behaviours 

Collective exploration 

Coordinated motion 

Collective transport 

Collective decision-making 
Consensus achievement 

Task allocation 

Other collective 

behaviours 
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Table 2.2 Bayindir’s (2016) taxonomy of swarm robotics research. 

Modelling 

Sensor-based 

Microscopic 

Macroscopic 

Cellular Automata 

Behaviour design 

Nonadaptive 

Learning Reinforcment Learning 

Evolution 

Communication 
Interaction via Sensing 

Interaction via Communication 

Analytical Studies 

Problems 

Pattern Formation 

Aggregation 

Chain Formation 

Self-assembly 

Coordinated Movement 

Hole Avoidance 

Foraging 

Self-Deployment 

 

Both Brambilla et al. and Bayindir’s taxonomies can be used to identify which subjects 

a study belongs to and help identify how it may relate to other research categories. For 

instance, in this thesis the following subjects could be categorised according to 

Brambilla as follows: Complete area coverage algorithms using a swarm of robots in 

Chapter 4 can be categorised as collective behaviours, navigation behaviours or 

spatially-organizing behaviours, collective exploration, coordinated motion, and chain 

formation. Self-assembly using a swarm of robots in Chapter 5 can be categorised as 

collective behaviours, spatially-organizing behaviours, aggregation, self-assembly and 

morphogenesis, collective decision-making, and consensus achievement. Foraging with 

obstacle avoidance in Chapter 6 can be categorised under methods, analysis methods, 

and real robot analysis. It could also be categorised under collective behaviours, 
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collective decision making, task allocation, or navigation behaviours and collective 

exploration. 

The following sections and studies within were mainly selected according to the 

catagories outlined in Brambilla and Bayindri’s taxonomies, but only lists those that are 

most applicable to the subsequent research presented in Chapters 3, 4, and 5 of this 

thesis. They include discussions of the most prominent studies that have contributed 

to the advancment of swarm robotics, the methods and approaches that have 

emerged, and identifies the papers that have had a significat influence on this thesis 

and helped inform the design process for each robot system. 

Section 2.3 Behaviour Based Robotics 

The most widely used approach to designing robots with artificial intelligence (AI), 

prior to the mid-1980s, used what became known as the symbolic system, where 

robots used symbols to represent the world around them and perform mathematical 

functions to solve various scenarios (Feldman, and Sproull, 1977). This approach to AI 

saw many successes in solving problems encountered by robots, but as the scenarios 

to solve became more complex, the computation needed to obtain solutions became 

increasingly expensive. To solve this dilemma, a new approach to achieving robotic 

solutions was proposed: behaviour-based robotics (Brooks, 1986; 1990). The symbolic 

system approach to AI relied heavily on high-level cognitive processes such as 

representation and reasoning to achieve desired robot behaviours, but in the 

behaviour-based approach the perceptions of the robots were directly coupled with 

actions resulting in solutions that were much less computationally expensive - the key 

to this is in how the task to be performed is decomposed into subtasks. In the symbolic 

system approach the control system of the robot is divided into separate modules to 

find solutions via a process of functional decomposition, where the problem is split 

into series of sequential processes such as perception, modelling, planning, and 

execution as shown in Fig.2.3.1. Conversely, behaviour-based robot control systems 

develop solutions using behavioural decomposition, where the solution is represented 

as separate independent processes running simultaneously following the subsumption 

architecture as shown in Fig.2.3.2. 
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Fig.2.3.1 Functional decomposition of a desired robot task, adapted from Brooks 

(1986). 

 

Fig.2.3.2 Behavioural decomposition of a desired robot task, adapted from Brooks 

(1986). 

Contrary to the sequential function blocks of the symbolic system, behaviour-based 

architectures are typically represented as stacks of parallel concurrent behaviours. One 

of the first methods of dictating how the layers interact is known as subsumption 

architecture (Brooks, 1986), called such due to the way it subsumes lower levels of 

behaviour. In subsumption architecture the bottom layers deal with the most crucial 

behaviours to the robot’s survival such as obstacle avoidance and the top levels 

control more complex processes such as object recognition, localization or mapping. 

These systems are designed with a bottom-up approach, starting with the simplest 

most essential behaviours and only adding higher behaviour once the lower-level 

behaviours have been tested, refined, and proven functional and robust. Although 

higher level behaviours can rely on the functioning of lower-level behaviours, they do 

not explicitly use the lower levels as subroutines, only as a set of existing competences. 

Subsumption is one of the better documented methods of coordinating the different 

levels but there are alternative methods of showing how the different levels of 
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behaviours correspond to one another which are compared in Arkin’s (1998) review of 

behaviour-based robotics. 

When subsumption architecture was first proposed, Arkin (1989) authored an 

alternative approach to behaviour-based robotics using the concept of motor schema. 

Motor schema theory is a method that is able to describe the behaviour of agents 

using a higher level of abstraction and representing them as modules.  There are a 

number of definitions of schema which depend on the area of application but for the 

purpose of encoding robotic behaviours, Arkin (1998) defined schema as follows: 

“A schema is the basic unit of behaviour from which complex actions can be 

constructed; it consists of the knowledge of how to act or perceive as well as 

the computational process by which it is enacted.” 

Much like other behaviour-based methods, motor schema demonstrated advantages 

over the symbolic system approach to the design of control systems for autonomous 

robots. In motor schema the modules that represent different behaviours execute 

concurrently and all of the responses formed by the modules are represented as 

vectors using potential fields. Unlike subsumption architecture, coordination between 

the modules is achieved using vector addition and there is no pre-defined hierarchy for 

this cooperation. However, the biggest distinction between the approaches is the 

inclusion of a second layer between the schema and the output of the motors, where 

the information generated in each schema is fused to form a single resultant action. 

This is best illustrated by Arkin (1989) in Fig.2.3.3 where he applied motor schema 

theory to solve robot navigation with his perception-action schema. This method 

results in extremely fast computation since only a single vector is required to be 

computed at the robot’s current location. 
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Fig.2.3.3 Motor schema theory applied to robot navigation; perception-action schema 

relationship, adapted from Arkin (1998). 

Floreano and Mattiussi (2008) provided a good summary of the main benefits and 

drawbacks of the symbolic system design and behaviour-based design. The symbolic 

approach to design excels at producing robotic systems that are precise, controllable, 

and predictable – qualities well suited to domain applications such as surgical robotics 

or assembly line machines. The main drawback of this approach is its failure to cope 

well with noise and uncertainty, which are commonly encountered in autonomous 

robots. Furthermore, each function is dependent on the preceding stage of the 

process, which is less robust as failures at earlier stages can greatly impact the 

functioning of the system as a whole. It is also a computationally expensive process 

due to the systems needs to build models and produce plans at the same time in order 

to function. 

The main advantages of behaviour-based robotics over the symbolic approach, such as 

faster reactions, stem from the systems method of directly connecting sensory 

information onto motor actions. It is a more robust design since processes run in 

parallel and can operate independent of one another. This means that if one of the 

behaviours fails the remaining behaviours can continue to function, although they may 

see a minor impact on performance dependant on the task. It can also handle multiple 
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goals which can be dealt with by individual behaviours at different levels, with the 

need for significantly higher computational power. 

Both subsumption and motor schema approaches have been proven to be appropriate 

methods of creating robot control systems using behaviour-based design, breaking 

away from the mainstream method of using representational knowledge and instead 

emphasise the use of behavioural decomposition, and tight coupling between sensors 

and actuators. The robots presented in Chapters 4 and 5 were designed using the 

bottom-up approach of behaviour-based design, with motor schema approach 

selected as the base architecture due to its focus on non-layered cooperative 

interaction between the separate behaviours. 

For instance, the simulated ship hull inspection robot described Chapter 4 performs a 

number of separate behaviours that execute in parallel to allow the robot to navigate 

the ship hull. The data obtained from its forward facing distance sensors is passed 

through a controller which links directly to a corresponding propeller, which allows the 

robot to maintain a set distance from the ship hull at all times. While this process is 

being executed, the robot uses additional proximity sensors to detect the presence of 

other robots or obstacles and adjust its position accordingly. These two behaviours 

execute simultaneously, demonstrating a method of generating formation control. 

Section 2.4 Multi-Robot Models 

When designing cooperative multi-robot systems, mathematical models of the swarm 

are essential to evaluate several aspects, such as the feasibility of the task to be carried 

out, the minimum number of robots necessary to achieve the desired behaviour, and 

the effect of any disturbance to the system.  There are two main methods of 

describing system behaviours and in swarm robotics that fall under the categories of 

microscopic and macroscopic studies. Microscopic models use a bottom-up design and 

focus on the individual behaviour and interaction between members of the swarm, 

while the macroscopic approach is more of a top-down design concerned with the 

function of the swarm as a whole (Brambilla et al., 2013). Microscopic models of 

swarm robots are typically described at different levels of abstraction from simple 

points representing robots on a 2D plane, to full 3D simulations where environmental 

forces, sensors, and actuators are modelled. These different levels of abstraction come 
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with inherent reality gaps, such that when the behaviour is implemented on a real 

robot system the results may not align with the simulations. This is an important factor 

to consider when selecting an appropriate simulator to represent swarm robot models 

and is discussed further in Section 3.4. 

Macroscopic models typically use mathematical formula to describe collective 

behaviours and one of the most popular categories of these are the rate and 

differential equations. In swarm robotics, rate equations can be used to describe the 

different proportions of robots exhibiting a set number of states which are derived 

from probabilistic finite state machines (PFSM). PFSM consist of different states with 

descriptions of how an agent transitions between them. The transitions that govern 

the shift between states can be determined by more than just the previous event, such 

as specific interactions with external processes. PFSM are a form of non-deterministic 

finite state automata where the probability of a given transitions between states is 

also provided. Eq. (2.1) shows an implementation of a PFSA applied to a swarm of 

robots tasked with collaboratively collecting sticks while avoiding the wall of their 

arena (Ijspeert, Martinoli, Billard, and Gambardella, 2001). 

PW =
AW

AA
     PR =

NR ∙ AR

AA
     PG1(t) =

NG1(t) ∙ AS

AA
     PG2(t) =

NG2(t) ∙ RG2(t) ∙ AS

AA
 

PN(t) = 1 − (PW + PR + PG1(t) + PG2(t))                             (2.1) 

where PN represents the number of probabilities at each iteration, PW is the 

probability of encountering a wall, PR for encountering a robot, PS for finding a stick, 

PG1 and PG2 for holding a stick and another robot respectively. AW is the surrounding 

wall of the arena, AA is the entire arena, and AR is a single robot. 

In rate equations, the states from the PFSM are represented as variables with an 

equation assigned to each of them much like those of Eq. (2.1). These variables can be 

used to track the number of robots in a given state as time evolves and show how 

many transitions between states occur within a given time frame and under which 

conditions. Indeed, rate equations has been proven effective at modelling swarm 

robot systems in foraging scenarios in the presence of interference (Lerman and 

Galstyan, 2002), when foraging from multiple sources (Campo and Dorigo, 2007), and 

when collecting energy units (Liu and Winfield, 2010). The experimental challenges of 
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microscopic and macroscopic design were investigated by Mermoud, Upadhyay, Evans, 

and Martinoli (2014), where they compared the two design methods when used to 

solve a given scenario. Their results indicated that for both models, top-down 

approaches were less effective than the bottom-up approaches for designing 

distributed controllers, but concluded that a model-based control design methodology 

that incorporated the aspects of both top-down and bottom-up approaches would be 

the most effective. 

Both the bottom-up microscopic and top-down macroscopic approaches have seen 

success in designing swarm systems capable of carrying out simple tasks, and a 

combination of the design methods may be more beneficial than focusing on a single 

approach. However, determining exactly which local interactions between agents at 

the microscopic level leads to a desired global behaviour at the macroscopic level and 

vice-versa is a difficult task. Some promising work towards achieving a quantitative link 

between these macroscopic and microscopic behaviours was conducted by Reina, 

Miletitch, Dorigo, and Trianni (2015) where they identified quantitative links between 

the dynamics of the microscopic implementation of a robot swarm tasked with 

shortest-path discovery, and the dynamics of a macroscopic model of a foraging task 

based on best-of-n site selection in honeybees.  

Their study used central-place foraging strategy in an environment consisting of a 

bounded space, a single central nest, and two resources sites at different distance 

from the nest. The microscopic behaviour of each robot was implemented as a 

probabilistic finite state machine (PFSM). The states indicated which resource site the 

agent was committed to, if it were uncommitted, and whether it was in an interactive 

or latent state – indicating if the state of a neighbour would affect its own 

commitment state – with probabilities dictating each transition. Their microscopic 

implementation was evaluated in simulation, the results of which were compared to 

their macroscopic model by investigating the decision-making dynamics for varying 

probabilities and for sets of different decision problems by varying the distance of the 

resource sites. Their results revealed that the final distribution of agents according to 

their macroscopic model and the multi-agent simulation were in agreement, 

confirming the existence of a quantitative micro-macro link. This work represented a 

significant step toward achieving a formal design pattern which was later refined to 
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address the spatial and topological factors that impact the micro-macro link (Reina, 

Valentini, Fernández-Oto, Dorigo, and Trianni, 2015), though more research is required 

before a general design pattern for swarm robots can be established.  

As observed, many existing swarm robot systems are modelled through either 

microscopic or macroscopic lenses and see implementation and validation in 

simulation or real robots. However, Kazadi et. al (2007; 2009) found another way to 

describe the properties and performance of a swarm using mathematical language to 

prove their validity. Their model-independent approach used a combination of 

bottom-up and top-down design to describe a desired global behaviour in terms of 

tangible quantities and measurements. In their 2007 study, they used their method to 

form a hexagonal pattern using a swarm whose movement was dictated by the 

summed forces of individuals using artificial physics. This was extended in their 2009 

study to propose that desired behaviours can be more readily achieved when a swarm 

system can be described in terms of measurements within the environment.  The 

methods by which individual robot obtain these measurements are left open to the 

interpretation of designers which they argue allows for implementation of the 

behaviours across different swarms with varying morphologies. 

There exist alternative methods to modelling swarm behaviour, but methods and 

equations provided in this Section were highlighted as they are most applicable to 

swarm robot studies discussed in Chapters 4, 5 and 6 of this thesis. For instance, the 

robots presented in the ship hull inspection and foraging scenarios were each designed 

using either non-deterministic finite state machines or PFSM to describe their 

microscopic behaviour with the aim of achieving a desired macroscopic behaviour. The 

yield variable R of chapter 5 is an example of how the optimal performance of a swarm 

can be quantified using measurements directly obtained from the environment. 

Section 2.5 Exploration 

Swarm robot systems are inherently mobile and many applications require agents to 

move within a given environment in order to accomplish their tasks. This raises the 

question of how these agents should move in the environment and if there is an 

optimal method of exploration that can be used for tasks such as searching an area, 

building maps, or monitoring changes in an environment. Exploration of unknown 



27 
 

environments has been a subject of immense interest to researchers over the years for 

both singular and multi-robot systems since solutions can be used to solve many real-

world problems of navigation in autonomous systems. These studies mainly focused 

on robots gathering information about their surroundings to better inform their 

decisions of how to best reach a specified goal location. Consequently, many 

algorithms and methods have been developed to solve issues concerning optimal 

exploration techniques such as dispersion, coverage, pattern formation, path planning, 

flocking, localization, and mapping. This section discusses the various methods 

employed in exploration which we found most applicable to the studies of ship hull 

inspection and ship hull repair using multi-robot systems presented in Chapters 4 and 

5 respectively. 

Section 2.5.1 Dispersion and Pattern Formation 

Dispersion is a method used by a group of robots to distribute themselves in a given 

environment, without falling out of communication range in order to maximise their 

coverage of an area. In order to increase the robustness of the technique, dispersion is 

typically designed as a process that is not centrality planned. Effective dispersion 

techniques should result in a network of distributed robots which have maximised the 

area they can monitor while remaining able to communicate with their nearest 

neighbours. Dispersion is a useful tool for scenarios where a swarm of robots is tasked 

with monitoring environments for hazards (Zhang, Fricke, and Garg, 2011), mapping of 

unknown environments (Wang, Liang, and Guan, 2011), or searching for objects or 

landmarks in unknown environments (Liu and Nejat, 2013). Pattern formation can be 

interpreted as a variant of the dispersion task, where robots tasked with occupying a 

space display a repeatable pattern. Swarms that incorporate pattern formations in 

their dispersion technique often result in systems more robust to the failure of units or 

sensor errors (Turgut, Çelikkanat, Gökçe, and Şahin, 2008), which increases the ability 

to recovery from gaps formed in the swarm and minimises the risk of leaving spaces 

uninspected. There are many proposed approaches to solving area coverage using 

dispersion and pattern formation and the following section discusses a selection of 

notable studies. 

When robots are tasked with dispersion and pattern formation, they require a way of 

ensuring they maintain a specific distance from their closest neighbours and do not fall 



28 
 

out of communication range, and there exist a number of ways this has been achieved 

in literature such as inter-robot communication (Batalin and Sukhatme, 2002; 

McLurkin and Smith, 2004; Falconi, Sabattini, Secchi, Fantuzzi, and Melchiorri, 2015). 

Approaches that utilise inter-robot communication rely on either the direct exchange 

of information between agents, or the ability of the robot to react to the presence of 

other robots that fall within their sensor range. Another approach to modulating the 

distance between robots in a group is to instead use the intensity of received wireless 

signals from neighbouring robots to determine how far these agents are from each 

other – a method referred to as distance estimation using wireless signal strength 

(Ludwig and Gini, 2006; Ugur, Turgut, and Sahin, 2007). An alternative method to 

achieving dispersion uses virtual forces (Spears, Spears, Hamann, and Heil, 2004; 

Sallam and Baroudi, 2015). The virtual forces approach takes inspiration from models 

in physics, assigning forces to each robot and using the resultant vectors to determine 

the directions agents should travel relative to their neighbour’s trajectories. 

One of the most debated methods of dispersion is the use of artificial potential fields 

(Reif and Wang, 1999; Balch and Hybinette, 2000; Howard, Matarić, and Sukhatme, 

2002; Poduri and Sukhatme, 2004; Mikkelsen, Jespersen, and Ngo, 2013).  Artificial 

potential fields assign attractive and repulsive forces to all of the robots, obstacles, and 

goals within an environment and use the resultant forces to achieve optimal dispersion 

and path planning. While effective at allowing robots to navigate known environments, 

artificial potential fields has been criticized as being ill suited to real-world 

environments as it often times relies on environment features such as obstacles and 

goal location to be know prior to execution. Each of these approaches discussed has 

proved successful in achieving dispersion and pattern formation for the purpose of 

area coverage which is used to inform the approach to complete area coverage in 

chapter 3. They also provide valuable insights into optimal dispersion theory which is 

discussed below. 

Batalin et al. (2002) proposed two methods of dispersion for a swarm of autonomous 

robots in order to maximise their sensor coverage; their informative approach where 

robots explicitly communicating with other agents to determine where they should 

move, and their molecular approach which communicated implicitly, following 

boundary conditions with the ability to distinguish between robots and obstacles. 
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These were compared against a basic approach which used obstacle avoidance only. 

Their results showed that control strategies that allow agents to communicate with 

each other outperform simple obstacle avoidance techniques when performing 

dispersion, and the approach which did not explicitly communicate with neighbours 

but could distinguish between robots and other obstacles converged to optimal 

distributions the fastest. The theory that control algorithms which allow robots to 

distinguish other robots from other obstacles can outperform algorithms that neglect 

this distinction was reinforced in a study by Morlok and Gini (2007) which proved that 

not only does knowledge of the locations of the other robots help to speed up the 

exploration process, but that cooperative exploration can outperform random walks 

and simple wall following behaviours in maximising area coverage of enclosed spaces. 

These studies are prime example supporting the supposition that a coordinated swarm 

of robots could perform a complete area coverage search more efficiently than an 

uncoordinated swarm of robots. 

McLurkin et al. (2004) also conducted experiments with swarms of robots to test their 

algorithms of directed dispersion within bounded spaces where their robots spread 

out according to information received from local neighbours about their positions. 

Further, they proposed an algorithm that allowed a swarm of robots to explore an 

arena larger than the maximum distributed formation of the swarm using a pulling 

strategy which guided the whole swarm into unknown regions without losing 

connectivity or breaking the achieved pattern. Their results showed that path planning 

and directed motion algorithms become easier to develop when the primary input is 

the positions of other nearby robots. This guided the decision to design the robots of 

chapter 3 so they would seek to maintaining contact with at least one other robot at 

all times to prevent formations splintering into different groups which could increase 

the risk of missing sections of ship hull while performing a search.  

Falconi et al. (2015) also provide a good example of how robots using the positions of 

neighbours can be leveraged by introducing a method of consensus-based formation 

control which allows groups of robots to maintain a given formation even in the 

presence of communication delays. This method relies on direct communication 

between robots and could be used as another method of exploring unknown 

environments in a given formation if the optimal dispersion of a swarm of robots does 
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not cover the entire area to be explored. Their results compare favourably against 

other formation control techniques using potential fields which are more susceptible 

to communication errors and propagation delays. 

Ludwig et al. (2006) identified a vulnerability of inter-robot communication approaches 

to dispersion in that these approaches relied heavily on receiving accurate information 

of the relative distance and bearing of other robots through sensors. Their solution 

was to propose an approach that instead used the strength of received wireless signals 

from other robots to approximate their distance and use this information to effectively 

disperse. This promised to be an effective alternative which they proved through 

simulation. Ugur et al. (2007) took this approach a step further with experiments in 

both simulation which more accurately modelled the sensors and on real robots. In 

addition, they applied attractive and repulsive forces to robots based on the received 

wireless signal intensities, similar to approaches used in potential fields, to modulate 

the distance robots would travel from neighbours to ensure they did not travel out of 

range or remain too tightly clustered. Their results reinforced that this was an effective 

method of dispersion, but demonstrated that the detected signal strength was largely 

susceptible to the orientation of the communicating robots, which highlighted the 

necessity of selecting appropriate hardware and contingencies for signal errors in such 

systems.  

Spears et al. (2004) were one of the first to propose a method of creating pattern 

formations in large groups of robots using physics inspired virtual forces referred to as 

physicomimetics. In their approach the robots display repulsive or attractive forces 

acting on neighbouring robots that fall within range of their sensors. Each robot is 

given a threshold value within their sensor range allowing the force on their 

neighbours to transition from attraction to repulsion and vice versa. This method was 

demonstrated in 2D and 3D simulation to be capable of forming square and hexagonal 

lattices which were capable of adapting to the loss of agents – such robustness is 

greatly desired in real world swarm robot systems where loss of agents is a possibility. 

Sallam et al. (2015) adapted the virtual forces framework to develop their own method 

(COVER) of cooperative area coverage with robots using virtual forces to achieve 

desired formations and population densities around landmarks in an unknown 
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environment. Their results demonstrated a way of deploying this technique to solve 

scenarios concerning discovery and monitoring of areas of interest, such as inspection. 

Reif et al. (1999) were the first to propose social potential fields for distributed 

behavioural control of swarms of robots. In their approach, they apply artificial force 

laws to all robots giving agents both attractive and repulsive forces. As such, each 

robot’s motion is determined by the resultant artificial force imposed by other robots 

and components of the system. Balch et al. (2000) employed a similar technique on a 

simulated swarm of goal-oriented robots in a bounded arena with goals and obstacles. 

These distributed control techniques, where calculations of motion are performed 

asynchronously, proved successful at demonstrating pattern formation and obstacle 

avoidance when navigating towards goals. However, these experiments did identify 

issues with the approach such as scenarios where agents converged to sub-optimal 

solutions and local minima. 

Finding an optimal solution to local minima avoidance (LMA) and local minima escape 

(LME) is a subject which has received much attention since the first applications of 

social potential fields to swarm robots. Notable examples of such solutions include 

works by Mabrouk and McInnes (2008) who allow agents to use their internal states to 

influence the potential field in way that allows them to achieve LME. Alternatively, 

Couceiro, Rocha, and Ferreira (2011) implemented a social inclusion and exclusion 

concept which formed a punish-reward system allowing agents close to becoming 

stuck in sub-optimal solutions to achieve LMA and LME. 

Despite these limitations, researchers such as Howard et al. (2002) and Poduri et al. 

(2004) were still able use social potential fields to develop effective systems of 

deployable sensor networks, which successfully tackled area coverage scenarios with 

results comparable to other techniques being employed at the time. One of main 

criticisms of potential field approach is the difficulty of implementation of real robot 

swarm without use of centralised control but researchers are continuing to develop 

new methods to address this shortcoming such as the Probabilistic Communication 

based Potential Forces (PCPF) model proposed by Mikkelsen et al. (2013). PCPF assigns 

both attractive and repulsive forces based only on the probability of communication 

between robots and the received signal strength, resulting in a method which is more 
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robust to unreliable sensor readings and external noise. This makes PCPF arguably 

easier to implement on real robots than the basic potential fields approach since PCPF 

better compensates for such factors which are likely to be encountered in real robot 

systems. 

Section 2.5.2 Coordinated Motion/Flocking 

Another key feature of efficient exploration in swarms of robots is the ability to 

achieve coordinated motion. Coordinated motion, or flocking behaviour, is the term 

ascribed to collections of robots capable of navigating towards a common goal in a 

given formation or pattern while retaining the ability to avoid collisions with both 

obstacles and other robots. Such techniques are especially useful in scenarios where 

the maximum area of dispersion for a group of robots performing area coverage is 

smaller than that of the environment to be explored (Falconi et al., 2015). Robots 

performing coordinated motion must remain within communication range of 

neighbouring robots in order to avoid splintering into separate groups, much like 

robots tasked with pattern formation. Indeed, pattern formation is considered a 

necessary precursor to achieving effective coordinated motion and studies on both 

subjects are often complimentary. 

Flocking behaviour was originally inspired by the abilities of groups of social animals to 

move with a coordinated motion such as flocks of birds flying in formation, or schools 

of fish evading predators (Okubo, 1986). Reynolds (1987) was the first to reproduce 

flocking behaviour in simulated agents, which he achieved by instilling members of the 

swarm with three rules: collision avoidance, velocity matching, and flock centring. This 

seminal paper demonstrated that any multi-agent system made up of individuals that 

can sense the distance and relative heading of other members of the swarm are 

capable of achieving coordinated motion with the appropriate behaviour. These three 

rules served as the basis for subsequent studies into achieving coordinated motion in 

swarm robots, even though more recent studies have since demonstrated that flocking 

behaviour can still be achieved without exchanging heading information (Antonelli, 

Arrichiello, and Chiaverini, 2010; Moeslinger, Schmickl, and Crailsheim, 2010; Stranieri 

et al., 2011; Ferrante et al., 2012). 
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Balch and Arkin (1998) advanced the field of coordinated motion in robot teams by 

identifying three methods agents could use to maintain a given formation: unit-centre-

reference, leader-reference, and neighbour reference (Fig.2.5.1). In the unit-centre-

reference approach, each robot computes the centre of the formation by averaging 

the x and y coordinates of all of the robots involved in the formation and determines 

its position relative to that centre. In the leader-referenced approach, each robot 

determines its position based on the position of a leading robot, except the leader who 

does not attempt to maintain the formation, but whose decisions affect the actions of 

its followers. The neighbour-reference method tasks each robot with maintaining a 

position relative to a pre-determined neighbour only.  

 

Fig.2.5.1 Formation position determined by the three referencing techniques (From left 

to right: unit-centre, leader, neighbour), reproduced from Balch et al. (1998). 

The effectiveness of these referencing techniques to achieve coordinated manoeuvres, 

such as 90° turns and maintaining formation across an obstacle field, were tested on 

four formations common to mechanised infantry units used in the military: line, 

column, diamond, and wedge. The results from these experiments demonstrated that 

the unit-centred approach performed the best at both turns and formation control 

across obstacles for all formations, but identified there are scenarios where this 

approach would be less suitable. Unit-centre is very dependent on the ability of 

member to sense the position of every other member of the swarm which becomes 

impracticable in systems made up of many more units with limited sensing capability. 

It is also a technique ill-suited to scenarios where communication is restricted. In such 

scenarios, the leader-referenced or neighbour-referenced approaches would prove 

more practicable. 

Neighbour-referenced approach presents its own issues, such as scenarios where an 

agent fails resulting in a formation that splits into two or more separate groups. Balch 

and Hybinette (2000) remedied this shortcoming in an alternate study which used 
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virtual forces (social potentials) to create flocking behaviour and enact formation 

control. In this approach, the position of each robot was calculated relative to the 

positions of multiple neighbours that fell within its short sensor range. This 

modification allowed their swarm of robots to form and maintain more complex 

formations such as lattice structures while navigating to goals and avoiding obstacles 

(Fig.2.5.2), resulting in a system that was more robust to unit failure. The success of 

this study and subsequent works concerning flocking was so distinct from the original 

neighbour-referenced technique it lead to a new classification, known as multi-

neighbour-reference (Navarro and Matía, 2013), which remains a popular method 

used to achieving flocking behaviour. 

                    

 

Fig.2.5.2 Multi-neighbour-referenced approach to coordinated motion; a formation of 

24 robots following square attachment geometry successfully navigates around an 

obstacle reforming on the other side, abstracted from Balch et al. (2000). The small 

grey circles represent the robots and the large dark grey object is the obstacle to avoid. 

Studies on achieving coordinated motion in swarm robotics fall under two broader 

categories: direction by global target and emergent direction (Bayinder, 2016). In the 

direction by global target category, some or all members of the swarm have access to a 

global target location which can be used to guide them to their goal and help maintain 

formations while in transit and avoiding obstacles. This was the approach used by 

Balch et al. (1998) in the studies discussed previously and similarly by Hayes and 
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Dormiani-Tabatabaei (2002) in their work concerning leaderless distributed flocking 

algorithms for swarm robots. 

Allowing agents access to global information can serve as an advantage in that all 

agents know where they must navigate to without needing to communicate this with 

neighbours, so communication between agents is only needed for maintain 

formations. In groups where only a fraction of the swarm has access to global 

information, communication between agents is also used to spread this knowledge 

throughout the swarm to inform them of the heading (Çelikkanat and Şahin, 2010), 

and assist in reaching consensus on priority targets when there are multiple goals 

(Ferrante et al., 2014). However, swarm systems that rely on prior knowledge are only 

applicable in known or partially known environments – and so are ill suited to 

exploration of unknown areas. Coordinated motion algorithms that function on 

emergent direction are preferred for scenarios where prior information is not available 

and the area to be explored is unknown. 

In the emergent direction category, swarms achieve coordinated motion without using 

shared knowledge of global information, but from using only local interactions 

between agents. Turgut et al. (2008) implemented such a flocking algorithm on a 

swarm of real and simulated robots, using only proximal control and heading 

alignment to achieve coordinated motion. Their approach was successful in navigating 

arenas with obstacles in the absence of global information. Their system was also 

shown to be more robust to errors in relative heading measurements shared between 

swarm members – a resilience which only increased when more agents were added to 

the swarm. Moeslinger et al. (2010) demonstrated how flocking could be achieved 

using emergent direction with their implementation of a low-end flocking algorithm 

which was based on simple rules of collision avoidance, separation, and cohesion. 

Their results showed that with appropriate distance threshold applied to the infrared 

sensors of the robots; flocking behaviour could emerge even without communication 

or preassigned tasks of alignment. 

Vásárhelyi et al. (2014) implemented a decentralised flocking algorithm on flying 

robots which controlled the distance between agents using GPS data and wireless 

communication between agents. Their approach used a repulsive distance-based force 
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between neighbouring units to avoid collisions and defined an upper threshold for 

repulsion to avoid over-excitation. To compensate for time lag in communication, 

robots close to each other damp their velocity difference to reduce oscillations and 

synchronise their collective motion with a viscous friction-like term. Their control 

algorithm resulted in a swarm robot system with a high stability with resistance to 

noise and delays in communication and sensing. This study was of particular 

importance because it was one of the first that identified how to address real world 

limitations, such as time lag, in swarm robot systems performing coordinated motion. 

Section 2.5.3 Localization and Mapping 

Navigation of any unknown environment presents challenges for both singular and 

multi-robot systems, but there are two particular problems which have a distinct effect 

on the effectiveness of the exploration of these environments: localization and 

mapping. Localization is the ability of a robot to determine its position relative to 

objects, landmarks, and other robots in either its immediate surrounding or globally, 

and mapping is the process by which the robots construct a record of these features 

for future reference. There are a number of prospective multi-robot systems capable 

of performing path finding without localization and mapping by instead utilising 

communication and the dispersion of team members within an environment as their 

method of navigating to a desired goal (Cohen, 1996; Payton et al., 2001; Ducatelle, 

Förster, Di Caro, and Gambardella, 2009; Mullins, Meyer, and Hu, 2012). However, a 

greater variety of complex behaviours become possible to achieve by implementing 

localization or mapping in multi-robot systems, such as path planning within unknown 

dynamic environments. In this section, key approaches to achieving decentralised 

localization and mapping in multi-robot systems and their benefits are discussed. 

In decentralised multi-robot systems, the task of determining the position of robots 

without the aid of external references such as global positioning system (GPS) is non-

trivial. This challenge is known as the localization problem and the best solutions 

devised to solve these issues can be categorised into two classes: range based 

methods and range-free methods. Range-based methods rely on the ability of 

individuals to measure the distance between themselves and global references or 

neighbouring robots using the Received Signal Strength (RSS), Time of Arrival (TOA) or 

Time Difference of Arrival (TDOA) of two signals known to have different speeds of 
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propagation (Mao, Fidan, and Anderson, 2007). Range-free methods are able to 

estimate the position of robots without measuring distance, instead relying heavily on 

external references or the presence of recognisable markers within the environment. 

Range-free solutions typically require fewer resources than range-based methods 

making them more economical, but their results are not as accurate (Yun, Lee, Chung, 

Kim, and Kim, 2009). 

Fox, Burgard, Kruppa, and Thrun (2000) developed one of the earlier range-based 

localization techniques for multi-robot systems working in indoor environments. Based 

on Markov localization, their approach allowed a team of heterogeneous robots 

equipped with sensors of different granularity to achieve localization faster than 

robots performing the task individually by working collaboratively. Their results 

support the theory that robots performing localization cooperatively could outperform 

uncoordinated individual efforts, but also identified several limitations with their 

approach such as only operating if the robot is able to detect and identify the robot it 

has seen, and a lack of error handling for false-positive detection of robots greatly 

reducing robustness. 

Roumeliotis and Bekey (2002) set out to address some of the limitations of previous 

approaches by devising a multi-robot localization technique based on the popular 

extended Kalman filter (EKF). In their approach, they devised a centralised EKF 

designed to account for the position and orientation of all members of the swarm and 

split it into component equations which they distributed across the team of robots. 

Each robot collected information from their proprioceptive and exteroceptive sensors 

and used their respective equation to make estimations of position and orientation, 

which was made more accurate by comparing estimations from neighbouring robots 

within communication range. This approach required less computation and 

communication than previous approaches and was scalable to larger teams. 

Furthermore, they showed that information sharing between robots with different 

levels of capability allowed the fully functioning robots to improve the estimates of 

malfunctioning or less capable robots, increasing robustness of the swarm. 

Roumeliotis et al.’s (2002) application of EKF to a distributed sensor network was 

seminal to multi-robot localization studies and many papers which followed adopted 
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EKF as the leading method. Martinelli, Pont, and Siegwart (2005) built on the original 

paper by using a similar implementation of the EKF to achieve decentralised 

localization using the relative observations between robots, such as relative bearing, 

relative distance, and relative orientation to successfully increase the accuracy of the 

estimations than had been achieved previously. Madhavan, Fregene, and Parker (2004) 

used an EKF to propose a scheme for distributed outdoor localization and terrain 

mapping, which was a significant step for addressing how to achieve multi-robot 

localization in uneven environments. Their approach was shown to operate well in 

unmapped and unknown environments, and was further distinguished from previous 

studies for being the first that required no restriction on the number of robots that 

could move at any one instant while performing localization. 

More recent studies have begun to move away from the use of external references 

such as GPS in efforts to increase the type of environments their methods could be 

applied to, such as underwater environments where access to such systems is not 

possible but localization is still required. To this end, De Sá, Nedjah, and  De Macedo 

Mourelle (2016) proposed two algorithms to aid in localization without the use of 

external references such as GPS; one based on the Particle Swarm Optimization (PSO), 

and another based on the Backtracking Search Algorithm (BSA). In both approaches, 

the robot locations are determined relative to neighbouring robots using range-based 

methods and applying confidence values to the measurements obtained to better 

determine how accurate the reading is. Their inclusion of the confidence factor 

improved the reliability of their techniques, which was shown to be more significant 

when fewer neighbouring robots were available for the calculations. 

Understanding the objects surrounding a robot at any instant via localization is highly 

beneficial in robotic systems performing path planning, and navigation can be 

improved further by using this information to create records of previous instances via 

the process of mapping. Maps are representations of the physical environment 

surrounding a robot created by transforming data from sensors into spatial models, 

which are typically either topological or geometric (Thrun, 2002). The task of 

constructing a high resolution map when the location of a robot is already known has 

already been achieved in previous studies using sonar sensors (Moravec and Elfes, 

1985), and vice versa using various algorithms (Borenstein, Everett, and Feng, 1996). 
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However, the task of mapping becomes much less trivial when the locations are yet to 

be determined, and this complexity increases when the task is to be performed by 

distributed swarm robot systems working cooperatively due to the lack of centralised 

control, and limited resources such as memory, computation and communication. 

There are numerous studies which have attempted to overcome these limitations, but 

of the many approaches dedicated to finding an optimal solutions to localization and 

mapping, the most effective methods developed to date involve a process that 

undertakes both of these tasks at the same time; Simultaneous Localization and 

Mapping (SLAM) (Durrant-Whyte and Bailey, 2006). 

Robots performing SLAM estimate their trajectory and the locations of landmarks 

using on-board capabilities and without the need for a priori knowledge. These 

estimates of landmark locations carry a degree of error, however the differences 

between true and estimate landmark locations is common between the landmarks due 

to the observing robots initial error in estimating its own location. This means the 

relative locations between any two observed landmarks are known with high accuracy 

even when the true location of a given landmark is uncertain. These discoveries led to 

one of the more important insights into the SLAM technique; increasing the number of 

observations always improves the estimates of relative landmark locations (Bailey, 

Nieto, and Nebot, 2006), and as the accuracy of the map increases the estimate of the 

location of the robot relative to these landmarks also improves resulting in highly 

accurate localization. 

However, building maps with this technique requires that the individual robots 

performing the mapping process have access to a significant amount of memory and 

computational power. The multi-robot systems examined within this study are fully 

decentralised and only have access to very little memory and computational ability, 

which significantly reduces the feasibility of implementing such mapping techniques. 

As such, it was decided that for these studies localization techniques alone would 

suffice, while implementation of advanced mapping techniques would be delegated to 

future studies. 
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Section 2.6 Self-Assembly 

Self-assembly is a complex spatially organised behaviour employed in swarm robot 

systems which can allow the swarm to perform functions individual robots are not 

capable of, such as navigating difficult terrain (Mondada et al., 2005; O’Grady, Groß, 

Christensen, and Dorigo, 2010) and collaborative transportation of objects (Groß and 

Dorigo, 2009). However, self-assembly in swarm robot systems are typically facilitated 

only through local interactions between agents and so require many members to be 

within communication range of one another. Many swarm robot scenarios involve 

members initially being dispersed within an environment and so require a method 

they can follow to regroup at a common location - this is the task of aggregation. Both 

aggregation and flocking behaviours (only the latter was discussed in Sec 2.5.2) can be 

considered precursors to achieving self-assembly in swarm robots. This section 

discusses the various approaches to aggregation and self-assembly which were the 

most influential to the design of the multi-robot system and methodology used in 

emergency ship hull repair study in Chapter 4. 

Section 2.6.1 Aggregation 

Like many swarm robot studies, the task of aggregation was originally inspired by 

behaviours observed in social insects which saw them gathering at common locations 

under specific conditions. Some notable cue-based artificial behaviours, where the 

gathering of agents is influenced by environmental conditions, were developed to 

mimic those observed in nature, such as bees choosing to rest in areas of high 

temperature (Schmickl and Hamann, 2011) or cockroaches being drawn to areas with 

less light to safely rest (Garnier, Gautrais, Asadpour, Jost, and Theraulaz, 2009). In 

these examples, aggregation is guided by both external stimuli and inter-robot 

communication which was shown to be more effective at achieving aggregation than 

relying on environmental information alone. Other studies indicate that it is also 

possible to achieve aggregation in systems that do not use environmental cues, known 

as self-organised aggregation, utilising only inter-robot communication and artificial 

forces instead (Mogilner and Edelstein-Keshet, 1999). The methods of control used to 

achieve aggregation in artificial systems which are most pertinent to the studies in this 

thesis can be categorized into two types: virtual forces, and probabilistic finite state 

machines. 
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Virtual forces are a popular method used in swarm robotics to maintain set distances 

between agents as discussed in Section 2.5.1 for applications of pattern formation. 

When non-local virtual attractive and repulsive forces are applied to the components 

of a swarm robot system, it can influence the movement of agents across great 

distances, allowing them to stay grouped together while avoiding collisions between 

themselves and objects. The magnitude of the attractive and repulsive forces acting 

between a robot and its neighbours is typically dictated by distance, such that robots 

will move towards each other when the distance between them is large, but will 

transition to repulsing one another once they cross a given distance threshold. This 

allows swarms to gather at common locations and form clusters while maintaining safe 

distances between agents so as to avoid collisions (Mogilner et al., 1999; Vanualailai 

and Sharma, 2010; Fetecau and Meskas, 2013). These non-local virtual force 

techniques have successfully achieved aggregation behaviour in simulated 

environments, but it is significantly harder to implement such behaviours in real robot 

systems where the robot sensing capabilities necessary to perform such techniques 

are not considered cost effective, or as scalable as more distributed techniques. These 

are some of the main reasons why there are relatively few studies on implementing 

non-local virtual forces for the purpose of aggregation in real multi-robot systems. 

Another method of achieving aggregation in swarm robot systems is to employ 

probabilistic strategies. In probabilistic finite state machines, the behaviour of the 

robot is represented as various states with a given probability of transitioning between 

them. When applied to swarm systems performing aggregation, robots decide 

stochastically whether to transition between: 1) approaching other robots, 2) 

remaining still, or 3) moving away from other robots (Soysal and Sahin, 2005). The 

probability of transitions can be fixed or vary according to influences from 

environmental cues, such as the number of robots present in their current location or 

more complex inter-robot communication (Sahin et al., 2002). One of the main reasons 

studies modelling aggregation behaviours using finite state machines employ 

probabilistic strategies over deterministic methods is the ability of PFSM to form 

unstable aggregates where robot join and break from existing clusters at random 

intervals. Introducing such instability has proven effective at ensuring single large 

aggregates form while reducing the risk of stagnation in sub-optimal solutions which 
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form several separate clusters (Garnier et al., 2005; Hamann, Schmickl, Wörn, and 

Crailsheim, 2012). 

Bayinder (2016) categorised the various aggregation algorithms employed in swarm 

robotics into two main types: free aggregation and environment-mediated 

aggregation. Free aggregation algorithms are designed to allow multiple robots to 

form aggregates anywhere in an environment, without preference for any particular 

location. In environment-mediated aggregation algorithms, the conditions of the 

robot’s surroundings influence the robot behaviour such that certain locations and 

conditions increase the likelihood of robots forming groups. The studies within this 

thesis are more concerned with achieving aggregation at specific locations, thus 

environment-mediated aggregation algorithms are more relevant. In particular, Arvin 

et al. (2014) demonstrated an aggregation algorithm which allowed a group of 

dispersed robots to aggregate at a specific location using an acoustic signalling system. 

In their approach, the area of aggregation was specified by emitting a sound from that 

location using a speaker. The robots used microphones to detect the direction and 

intensity of the signal and move accordingly. This system resulted in a successfully 

formed group at the specified location. Schmickl, Möslinger, and Crailsheim (2006) also 

provided a notable method of enabling swarms of robots to aggregate at two assembly 

points of different size with the requisite that the number of robots at each site should 

be proportional to size of the assembly location. Their agents were equipped with 

minimal sensors capable of detecting when they were at one of the specified regions 

but unable to determine its size, and communicating with neighbours. Their system of 

communication between agents resulted in a collective perception capable of 

collectively measuring the size of the target areas and to communicate these sizes with 

the whole swarm. 

Section 2.6.2 Self-Assembly 

One of the most prominent advantages of multi-robot systems is their ability to 

perform tasks which individuals alone are not capable of, and there is no task in swarm 

robotics which exemplifies this better than self-assembly. In swarm robot systems, 

self-assembly refers primarily to multi-robot systems where agents have the ability to 

communicate and connect with one another to form structures and configurations 

capable of more than the sum of the individuals acting independently. Studies in self-
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assembling swarm robot systems focus on two major aspects: robots autonomously 

connecting with each other in order to create a desired target structure, known as 

morphogenesis, and controlling the resultant structure to perform novel tasks. In their 

comprehensive review, Groß and Dorigo (2008) categorised studies on morphogenesis 

in macroscopic systems by their primary function such as formation, growth, self-

reconfiguration, self-repair, and template replication. 

Formation studies focused on using swarms to produce one or more objects of a 

predefined size and structure (Hosokawa, Shimoyama, and Miura, 1994). Growth 

studies were concerned with increasing the number of robots that make up a given 

structure, which is considered an essential feature of all self-assembling robot systems 

(Fukuda, Husband, and Ueyama, 1994). Self-reconfiguration studies worked towards 

designing systems capable of changing an existing entity structure to form a new entity 

better adapted to changes in the environment or capable of performing different 

functions than the original (White, Kopanski, and Lipson, 2004; White, Zykov, Bongard, 

and Lipson, 2005). Self-repair studies investigate ways entities could replace faulty or 

damaged modules with other fully functioning modules (Bererton and Khosla, 2001). 

Template replication studies use modules to recreate templates of objects with a 

known size and structure (Griffith, Goldwater, and Jacobson, 2005). The rest of this 

section identifies studies which have advanced the field of self-assembly with respect 

to swarm robot systems. 

There are three notable aspects of morphology that are routinely considered when 

designing self-assembling swarm robot systems: binding mechanisms, sensors, and 

communication methods. Swarm robot systems that utilise passive binding techniques 

such as the use of permanent magnets and electromagnets (Hosokawa et al., 1994; 

White et al., 2004; Doyle et al., 2016) are advantageous due to their relative simplicity 

and low power consumption, but they come at the cost of limited connection strength. 

Alternatively, passive mechanical connection methods can be used in swarm robot 

systems to address connection strength, such as the pin and hole connection method 

(Yim, Duff, and Roufas, 2000; Castano, Behar, and Will, 2002) in which robots are 

designed with faces and pins that correspond to holes on the face of another robot. 

This form of attachment results in links more resistant to shear stress, but the robots 

require a higher degree of accuracy for the task of aligning faces. Active mechanical 
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links such as actuated mechanical hooks can ensure much stronger links between 

robots with lower accuracy requirements than passive mechanical techniques (Fukuda 

and Kawauchi, 1990; Mondada et al., 2004; Wei, Chen, Tan, and Wang, 2010), but 

typically consume more power and have a higher risk of failure than their passive 

counterparts. 

Sensors can be assumed to be essential to all swarm robot systems, but in studies 

concerning self-assembly, sensors have played a smaller role in externally propelled 

systems than self-propelled systems. Externally propelled robots which rely on 

external manipulators to move such as magnets guiding agents and thus designing 

robots to store information about their surrounds has been considered less essential 

to the functioning of the system. However, self-propelled robots which use internal 

power sources to move themselves with propellers or wheels require more data about 

their surroundings to make informed decisions, and a variety of sensors have been 

used to ensure this.  There are many types of sensors used to gather information 

about robots surroundings in self-assembling swarm robot systems, including the use 

of bump switches to detect collisions and confirm physical interactions between 

agents (Bererton at al., 2001), infrared detectors and ultrasonic distance sensors for 

detecting the presence of obstacles or other robots (Fukada et al., 1194; Castano et al., 

2002; Wei et al., 2010), inclinometers to detect changes in angles of slope or elevation 

of a robot (Yim et al., 2003; Murata, Kakomura, and Kurokawa, 2006), and cameras to 

gather addition  information about obstacles, robots and environmental features 

(Yamakita, Taniguchi, and Shukuya, 2003; Mondada et al., 2004; Bonani et al., 2010). 

Communication is a vital component to achieving many of the behaviours in swarm 

robot systems, and self-assembly is no exception. Some of the most popular 

communications methods for self-assembly swarm robots include infrared emitters 

and receivers for line-of-sight communication (Fukuda et al., 1990; Yim et al., 2000; 

Castano et al., 2002; Murata et al., 2006), Wi-Fi, Bluetooth, and Zigbee for more 

reliable wireless communication in crowded environments (Groß, Bonani, Mondada, 

and Dorigo, 2006; Wei, et al., 2010; Bonani et al., 2010), and LEDs for close range 

communication between individual modules and signalling of states (Groß et al., 2006; 

O'Grady et al., 2009; Doyle et al., 2016). The method of communication chosen for the 

system can greatly impact the complexity of formations and reconfigurations possible 
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to create. The chosen method is also subject to the environment the robot is expected 

to perform the assembly in, for instance, direct line-of-sight communication methods 

are ill equipped to function in environments with many obstacles and wireless 

communication may be a more appropriate choice.  

The effective synthesis of these technologies has led to a number of notable 

achievements for swarm robot systems performing self-assembly. Some of the notable 

platforms developed for multi-robot self-assembly experiments include the Swarmbot, 

MarXbot, Kilobots, Symbrion, and Mori. Groß et al. (2009) used Swarmbots to 

demonstrate self-assembly for the purpose of collaborative object transportation, 

where a group would surround objects of different shapes and sizes, connect to each 

other, and pull the object to a desired location with their increased pulling power. 

O'Grady at al. (2009) used tis same platform to demonstrate their SWARMMORPH 

protocol which could guide Swarmbots into achieving different morphologies using 

LEDs to inform where the robots should approach and connect to each other. Bonani 

et al. (2010) developed the MarXbot to improve on various aspects of the Swarmbot 

design including an improved binding mechanism and methods of communication. 

Mathews et al. (2011) were able to utilise the MarXbot to perform directional self-

assembly, which robots forming part of a desired structure guided other robots using 

radio signals, informing them where they could best attach in order to complete the 

entity. The Symbrion and Replicator projects (Levi and Kernbach, 2010) investigated 

many aspects of self-assembling swarms but focused primarily on the realisation of 

symbiotic multi-robot organisms. The resultant Symbrion modules (Liu and Winfield, 

2010) were capable of operating as fully autonomous agents in swarm mode, but could 

also transition to form part of a greater structure in organism mode where energy and 

computational resources could be shared between neighbours. Rubenstein, Cornejo, 

and Nagpal (2014) were some of the first to demonstrate self-assembly and pattern 

formation in very large swarms using one thousand Kilobots. Their approach allowed 

the swarm to form various shapes using four stationary robots to serve as an anchor 

point and having agents connect to them appropriately. Doyle et al. (2016) developed 

a prototype floating robot capable of controlling the motion of a structure built from 

their modules using modular hydraulic propulsion, demonstrating how such 

technology could be used to guide such structures. Belke and Paik (2017) developed 
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the Mori platform; a triangular two-dimensional lattice type reconfigurable modular 

origami robot, which is notable for its genderless connection mechanism and flexibility 

with regards to the variety of complex shapes it can assume from simple component 

modules. 

Section 2.7 Foraging 

Foraging is considered to be one of the more complex forms of collective behaviour to 

replicate in multi-robot systems as it relies on the correct execution of a number of 

behaviours considered difficult in their own right, such as exploration, global and local 

communication, collective transport, and collective decision making. From an 

individual agent’s perspective, the foraging task can be described as a sequence of the 

following behaviours: exploration of an environment surrounding a nest, identifying 

objects and areas of interest, returning the objects to the nest, communicating its 

discovery with other robots, and returning to the area of interest to collect more 

objects (Dorigo and Di Caro, 1999). The task of foraging in swarm robot systems was 

inspired by observations from biological collectives such as bee swarms (Montague, 

Dayan, Person, and Sejnowski, 1995) and ant colonies (Traniello, 1989) and their ability 

to use local interactions between individuals to exploit resources surrounding their 

nests. One notable extension of this behaviour is multi-foraging, where there are 

multiple types of retrievable objects in an environment (Campo and Dorigo, 2007), 

which presents a promising basis for accomplishing complex practical tasks using 

multi-robot systems such as mining or search and rescue operations. In this Section, 

some prominent foraging strategies applied to swarm robot systems are presented 

according to their applicability to the studies presented in Chapters 4 and 5. 

It has been proven that the problem of resource collection in dynamic environments 

can be solved by social insect colonies using collective central-place foraging (Olsson et 

al. 2008; Detrain and Deneubourg 2008), and it is this success that has spurred 

research into recreating such efficient and scalable approaches in swarm robot 

systems. A popular method of achieving foraging behaviours in swarm robot systems 

involves first deconstructing the behaviour into simpler tasks that flow in sequence. 

However, the defining features of these systems often lie in the methods they use to 

communicate information between individuals. There are a number of methods 

researchers have implemented to achieve foraging behaviour analogous to those 
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observed in biological super-organisms and these can be categorised under the 

following two categories: direct communication as outlined in Section 2.6 and 

stigmergic communication where information is shared via modification of the 

environment (Bayinder, 2016). 

Swarm robots systems using global forms of direct communication such as signal 

broadcasting can share information between robots over moderate distances. This 

approach can aid in aggregation behaviour (Arvin et al., 2014) for the task of foraging 

so that robots can inform others of an area of interest (Vaughan, Støy, Sukhatme, and 

Matarić, 2000). However, the performance and reliability of these methods tend not to 

scale well to very large numbers of robots or over increased distances which is an 

undesirable feature of true swarm robot systems (Şahin, 2005). It can also be difficult 

to implement such features on simple robots with limited capabilities, of which most 

swarm robot systems consist, making it a more impractical option for certain 

platforms. Thus, this method of communication may be considered appropriate for 

multi-robot systems that use fewer agents and operate over short distances, but sub-

optimal for swarms consisting of many more agents that operate in larger arenas or 

unbounded search spaces. 

Conversely, local direct communication methods which rely on exchange information 

between neighbouring robots that fall within a given range can be considered highly 

effective at facilitating effective foraging behaviour in swarm robot systems. Direct 

explicit exchange of data can be used to report a robot’s respective state or to indicate 

the direction of objects, areas of interest, or the location of a central nest to 

neighbouring robots (Arkin, Balch, and Nitz, 1993; Rybski et al., 2004). This information 

can be used to improve the robots present behaviour and help it achieve its current 

goal more effectively, be it searching for objects, or returning them to the nest. In 

addition to direct data exchange, local sensing strategies which simply detect the 

presence of nearby robots or obstacles can also be used as an effective tool to aid 

foraging behaviour (Hoff, Sagoff, Wood, and Nagpal, 2010). These direct 

communication methods can be used to improve the swarm’s ability to reduce 

overcrowding (Goldberg and Mataric, 2000) and form more organised paths between 

nests and areas of interest (Sadat and Vaughan, 2010; Penders and Alboul, 2012), 

enabling more effective foraging strategies. 
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Bee algorithms are a notable class of nature-inspired collective behaviour that use 

direct communication techniques to mimic the foraging strategies of honey bees 

(Karaboga and Akay, 2009). In bee colonies, foraging consists of a sequence of 

behaviours starting with exploration of the sear surrounding the central nest. On 

discovery of a food source, the bee collects the precious nectar resource and returns 

to the hive to deposit what it has gathered. After completing its deposit, the bee then 

performs a special dance of varying direction and intensity to indicate the direction 

and distance of its last collection source in the hope of recruiting more bees to assist in 

retrieval. This dance is the aspect of bee communication which when applied to swarm 

robot systems has been shown to yield effective methods of task-allocation and 

foraging (Jevtic, Gutiérrez, Andina, and Jamshidi, 2011; Schmickl et al., 2011). These 

individual interactions between agents can be combined to produce an effective 

collective decision-making process when the correct tuning parameters are selected, 

as demonstrated by Reina et al. (2015) in their shortest-path selection study. 

Making changes to the environment in order to communicate between agents, known 

as stigmergic communication, is perhaps the most well studied form of indirect 

communication found in biological super-organisms and applied to swarm robots 

performing coordinated resource collection (Goss et al., 1992; Werger and Matari’c, 

1996; Payton et al., 2001; Nouyan et al., 2009; Campo et al., 2010). In natural systems, 

this form of communication is best exemplified by certain species of ants which can 

secrete and detect pheromones – a chemical substance they can use to mark the 

environment (Hölldobler and Wilson, 1990). Ants deposit this pheromone on return to 

the nest from a resource site to serve as a mass recruitment mechanism helping to 

guide other ants to the same source of forage (Sumpter and Pratt, 2003). Foraging ants 

follow these trails, gravitating to paths with a high concentration of pheromone to 

exploit the best resource. This system allows ant colonies to form consensus on 

selecting the best resource site in the environment according to factors such as food 

quality (Beckers et al., 1990), path length (Goss et al., 1989), and predation risk 

(Nonacs and Dill, 1990). This positive feedback mechanism is typically disadvantageous 

to systems seeking to maintain adaptability and flexibility to a changing environment. 

However, there are alternative mechanisms observed in other ant species capable of 

overcoming this limitation such as: repellent pheromone to mark off undesirable paths 
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(Stickland et al. 1999; Robinson et al. 2005), using tandem running to recruit ants to 

newly available higher-quality food sources (Beckers et al., 1990), or using quality-

dependent linear recruitment and quality-dependent abandonment (Shaffer et al., 

2013). 

To recreating stigmergic communication in swarm robots using techniques that mimic 

pheromones is a challenging task that must take into account how the pheromones are 

deposited, detected by others, and how the resultant trails change over time. The 

three most advanced approaches found in literature rely on either using robots as 

beacons, robots with on-board sensors and actuators, or smart environments. Beacon 

robot techniques use the robots themselves to act as a physical embodiment of 

pheromone, commutating the presence and strength of pheromone to neighbouring 

robots (Goss et al., 1992; Werger and Matari’c, 1996; Payton et al., 2001; Nouyan et 

al., 2009; Campo et al., 2010; Ducatelle et al., 2011; Hoff et al., 2012). This approach is 

beneficial since it can be implemented on many simple robots, but is limited by beacon 

robots being unable to contribute to the item collection task, ever increasing 

population size requirements to address larger environments, and beacon robot 

robots serving as obstacles in the environment also. These issues can be addressed by 

allowing the beacon robots to remain mobile and contribute to item retrieval (Sperati 

et al., 2011; Ducatelle et al., 2011), but performance of this approach relies on 

balancing the swarm size and communication range with the size of the search space. 

There are a variety of ways researchers have tried to implement stigmergic 

communication in swarm robots using on-board actuator and sensors such as using 

marker pens to draw lines on a path to represent pheromone (Svennebring and Koenig 

2004), emitting gas which other robots can detect (Purnamadjaja and Russell, 2007), 

energising phosphorescent paint using UV-LEDS (Mayet et al. 2010), and using ethanol 

(Fujisawa et al. 2008, 2014). Of these varied attempts, only the ethanol experiments of 

Fujisawa et al. (2008, 2014) were able to model the four critical characteristics of 

pheromones observed in natural systems: evaporation, diffusion, locality, and 

reactivity. The evaporation aspect is considered especially important to avoid runaway 

positive feedback (Garnier et al. 2007, 2013) which can cause swarms to become mired 

in sub-optimal solutions or become unable to break from expended resource sites. 
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The final category is smart environments which have the ability to store and supply 

virtual pheromone information to swarm robots in real-time (Sugawara et al. 2004; 

Garnier et al. 2007; Hecker et al. 2012; Garnier et al. 2013; Arvin et al. 2015; Valentini 

et al. 2018). Smart environments are considered one of the most popular approaches 

to implementing indirect communication in swarm robots, due to their low cost and 

adaptability to different sizes of swarms and search spaces. However, it is far less 

practical to use smart environments in real applications than the previously discussed 

alternative methods, so its use is instead delegated to targeted research. Mimicking 

pheromone trails using smart environments can be accomplished using radio-

frequency identification (RFID) tags (Mamei and Zambonelli 2005, 2007; Herianto et al. 

2007; Herianto and Kurabayashi 2009; Bosien et al. 2012; Khaliq et al. 2014), simulated 

pheromones using projected lights or other custom hardware (Sugawara et al. 2004; 

Garnier et al. 2007, 2013; Arvin et al. 2015; Valentini et al. 2018), or augmented reality 

tools in which a virtual environment is interacted with by robots using virtual sensors 

and actuators (Reina et al. 2015, 2017). 

Determining what constitutes an optimal foraging model requires the selection of 

appropriate metrics with consideration given to currencies of costs (quantities to be 

maximised in order to achieve optimality) and benefits. The two metrics most often 

selected to measure success in foraging theory are the net rate gain of energy and 

efficiency (Kacelnik 1984; Houston and McNamara 2014). The net rate of energy gain is 

the difference between the forager’s gross rate of gain and its rate of energy 

expenditure, while efficiency is the gross rate of energy gain divided by the rate of 

energy consumption (Houston and McNamara 2014). However, optimal foraging 

theory does not always apply to real systems and developing a theory that works for 

several foraging species seems inherently difficult, as the mechanisms underlying 

foraging can be quite different (Traniello 1989). Though there are many ant species 

where the production of pheromone trails is crucial in the foraging process, other 

aspects which are more generally related to the state of the forager and the 

environmental conditions should also be considered when developing an optimal 

foraging model. 

In foraging scenarios, the problem of inter-robot interference also tends to arise 

frequently with multiple robots sharing a confined space. This increase in robot 
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congestion is noteworthy for the effect it can have on the efficiency of the overall 

swarm with respect to foraging. Increases in robot avoidance events or the length of 

time taken to overcome a near collision can increase the gross energy expenditure and 

time taken to complete the task. There are two methods of measuring the quantity 

and frequency of these occurrences: the number of collisions between robots (Maes et 

al., 1996; Goldberg and Matarić, 2000) or the time spent avoiding a robot while trying 

to perform another task such as transport an object to the nest (Krieger and Billeter, 

2000). Both of these methods can be used in combination with other establish metrics 

to assess the impact increased collisions or manoeuvring time has on system efficiency 

and net energy gain. 

Section 2.8 Summary 

The literature explored in the above sections tells a story of how far the field of swarm 

robotics has progressed over the past few decades, identifies the most predominate 

methods that have evolved out of the research, and can provide clarity on what could 

be done to ensure swarm robotics research continues to mature. This section identifies 

some of the gaps in existing knowledge that motivated the studies within this thesis. 

The subjects of obtaining effective dispersion, pattern formation, coordinated motion, 

localization, and self-assembly in multi-robot systems has been explored at length in 

ground and air-based scenarios but significantly less so in underwater environments. 

This is in part due to the difficulty in translating these techniques, many of which rely 

on high frequency sensors and telemetry such as GPS (global positioning system) 

coordinates, into the underwater realm where such communication techniques do not 

work effectively due to the high absorption of the surround medium (water). 

Nevertheless, there are many underwater problems that could benefit from multi-

robot solutions such as underwater inspection of ship hulls or off-shore rigs, 

monitoring and surveillance of marine life, and underwater construction. This gap in 

knowledge is partially what motivated the research into using swarm robots to 

perform underwater inspection and repair of ship hulls. 

Foraging strategies in swarm robot systems can be considered a more mature field of 

research given the many studies concerned with how to achieve optimal foraging 

strategies. However, perfect emulation of an ant colony has not yet been achieved due 
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in part to the complexity of such systems. Indeed biological swarm intelligence is still a 

thriving field of study to this day, helping to inform how swarm roboticists may 

improve on their own designs. The work being undertaken at the University of 

Sheffield, with respect to swarm robot foraging strategies, represented another step 

toward creating a swarm robot system more capable of emulating the emergent 

behaviour observed in ant colonies, and was the main motivating factor behind 

developing obstacle avoidance behaviour for the robots. Ultimately, allowing the 

swarm of robots to more accurately represent the biological ant colony their behaviour 

was modelled after. 
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Chapter 3. Ship Hull Inspection: Complete Area Coverage 

Algorithm 
In this chapter, a novel approach to emergency ship hull repair using a swarm of 

autonomous underwater robots is introduced. This research uses theories of 

cooperative multi-robot exploration and communication to inform the design of a 

complete area coverage search method for a swarm of robots tasked with inspecting a 

damaged ship hull. The results from this Chapter show how the cooperative search 

algorithm is more effective at achieving complete area coverage in less time than the 

same multi-robot system using an uncoordinated search algorithm. Additionally, the 

chapter presents a simulated robot sensor arrangement that would allow robots to 

maintain a set distance from a 3D object. This novel utilisation of an additional 

constraint enables the robots to treat their environment more akin to a 2D plane, 

which allows for simpler implementations of search algorithms. 

The general approach to emergency ship hull repair is presented in Section 3.1 but the 

majority of the chapter focuses on the first major stage of the ESHR scenario: ship hull 

inspection using a collaborative multi-robot system. This task poses the distinct 

challenge of how to fully inspect the submerged hull of a ship using multiple robots, 

how to do so effectively, and in a timely manner. To address this challenge, two 

complete area coverage (CAC) algorithms were devised: a sweeping search pattern and 

a lawnmower search pattern which are described in more detail in Section 3.2. The 

search patterns are intended to be used by homogeneous multi-robot systems to 

inspect the ship hull while it is still in the water as this is the repair process intended to 

take pace immediately following damage. To test the effectiveness of the algorithms 

and compare their results, the code was implemented on a simulated group of custom 

designed robot modules. 

The simulated robot modules used to test the algorithms do not yet have a physical 

counterpart and as such, the robot module specifications are restricted to their 

geometric shape, key sensors and actuators, and descriptions of their capabilities 

which are based on existing technologies currently employed in mobile robotics and 

machine vision. A more detailed description of the technical and physical aspects of 

the robots is provided in Section 3.3, however it should be noted that these are 

features the simulated robot modules are assumed to possess for the purpose of the 
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algorithms. The experiments were wholly conducted in a simulated 3D environment 

built using Webots; a simulation suite which is renowned for its ability to correctly 

model mobile robots. The key features and reasons for its use in this study, along with 

the experimental setup used to compare the effectiveness of the CAC algorithms, are 

presented in Section 3.4. The results of the experiments are presented in Section 3.5 

and are followed by a discussion of the findings and their implications in Section 3.6. 

Section 3.1 Emergency Ship Hull Repair 

Section 3.1.1 Background 

Emergency ship hull repair (ESHR) is one of many stages of damage control that takes 

place in the event of a hull breach while at sea. Innovations in materials, mechanical 

engineering, and naval architecture have ensured that the strength and resilience of 

ship hulls has remained steadfast this past century, but no sea-faring vessel is immune 

to accidental or deliberate damage. When a ship finally suffers a fracture or hull 

breach, the race to prevent the loss of the ship begins. 

Repairing hull damage immediately after an incident is necessary to prevent the loss of 

a ship. Reducing the ingress of water minimises the effect of flooding and supports 

efforts to restore buoyancy and stability to the damaged vessel, enabling it to either 

continue its course or return to a ship yard for extensive repair. There are numerous 

types of breaches that vary in size, shape, depth, and location; each of which affects 

whether the breach can be addressed by conventional means. 

The standard approach to repairing ship hull breaches, known as shoring, has 

remained mostly unchanged from the end of the second world war and amounts to 

three general methods: (i) plugging the hole from the interior of the ship using soft 

wooden plugs, (ii) covering it with prefabricated patches from the exterior of the ship, 

and (iii) establish and maintain flooding boundaries within the ship to prevent further 

progress of the flooding (Center, 2013; Press, 1945). These are intended as temporary 

repairs and in most cases are not perfectly watertight, but even reducing water ingress 

by half can allow crew to quickly bring flooding under control using pumps. 

These techniques serve to mitigate damage but are far from optimal given the delay 

between detecting a breach, assessing the damage, transporting materials, and 
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carrying out the repair. They are dangerous, time constrained procedures and with 

modern naval services moving towards greater autonomy with fewer crew members 

(Levander, 2017) it is beginning to stand out as a point of vulnerability. To remedy this 

situation, a modern approach to emergency ship hull repair is proposed, using a swarm 

of autonomous underwater robots to investigate the ship hull and carry out repairs. If 

realised, this solution could remove the requirement for engineers to carry out 

inspections to locate the damage and deal with most of the repairs, promoting greater 

autonomy of large sea-faring vessels and helping to safeguard the lives of the ship’s 

crew. 

Section 3.1.2 General ESHR method 

The EHSR method discussed is intended to address hull breach scenarios where ingress 

of water must be halted to prevent excess listing and quickly restore the stability of the 

vessel. The proposed approach suggests using a decentralised group of homogeneous 

autonomous underwater robots to collectively carry out ship hull inspection, aggregate 

at the hull breach location, self-assemble to form a sheet of connected robots, and use 

the resultant structure to cover and seal the hull breach. If carried out correctly, this 

would significantly decrease the ingress of water and allow human crew members to 

safely deploy pumps to drain the flooded compartments, restoring stability. 

Using robots to operate in hazardous environments in place of human operators has 

been shown to be an effective solution to reducing the risk to human life and 

equipment while making processes faster and more reliable. Using multiple robots 

which work cooperatively to complete tasks, rather than individual robots, compounds 

these advantages by making the system more robust, flexible and scalable as discussed 

in Section 2.1. For this reason, the proposed ESHR solution suggests the use of multiple 

robots working together in order to maximise performance in terms of speed of 

completion, robustness to failure, and even distribution of workload. 

When using multiple robots to carry out a coordinated task, it can be beneficial to 

employ decentralised control schemes. This is so that the system can scale its response 

to address more demanding scenarios without sacrificing performance due to 

increasing computational requirements observed in multi-robot systems which rely on 

centralised control schemes, as identified in Section 2.1. The ESHR method is intended 
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to address scenarios which require the detection and repair of ship hull breaches of 

various sizes and shapes, making the ability of the system to scale according to the 

requirements essential – thus the proposed solution uses a decentralised control 

scheme without a master control. 

Multi-robot systems can help perform inspection of the ship hull more quickly, but 

utilising their greater numbers for the repair task would also be advantageous. One of 

the more commonly employed methods of repairing ship hull breaches from the 

exterior of the ship involves the use of patches to cover and seal the breach. This 

approach could be adapted for use by robot systems in two ways: collective transport 

or self-assembly. Using a swarm of robots to collectively transport prefabricated 

patches to the hull breach presents a number of issues such as patches being ill-fitted 

to the hole, difficulty of transporting objects underwater due environmental 

disturbances, or accidental damage to the patch serving as a single point of failure in 

the system. 

Self-assembling techniques such as those discussed in Section 2.6.2 could be employed 

to address the shortcomings of the collective transport approach. If the robots were 

designed as modular homogenous units, they could be programmed to form larger 

structures using their bodies which could then be used to cover holes of various shapes 

and sizes. The self-assembly approach was selected as the repair method as the robots 

can adapt their resultant structure to more accurately address damage while reducing 

the number of points of failure. The modular robots are homogenous because using 

heterogeneous robots to conduct self-assembly has been shown to decrease the 

scalability of the system. 

Forming a structure of appropriate shape and size is a non-trivial task, however 

ensuring the structure can remain attached to the vessel once it has covered the hole 

is equally challenging. The precise method of underwater adhesion falls outside of the 

scope of this thesis, however the leading suggestion could involve the use of an 

underwater epoxy or fibre reinforced polymers (FRP) to be administered by the robot 

modules. Rubino, Nisticò, Tucci, and Carlone (2020) performed an extensive review of 

the use of FRP in underwater construction and repair of ship, and off-shore platforms. 

Their findings show that while the industry still prefers using metal as the primary 
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material for construction and long-term repair, FRP remains a promising alternative 

with marked success in the restoration of structures damaged by exposure to the 

marine environment, chemical agents, or marine life. 

As discussed in Section 2.4, when designing cooperative multi-robot systems it is 

important to select a model which can be used to predict how the system will function. 

This allows of the evaluation of aspects such as feasibility of the task, number of robots 

required, and the effect of disturbances. Finite state machines (FSM) are a prominent 

method of modelling multi-robot system behaviour which has be used to solve various 

tasks such as exploration, pattern formation and collaborative mapping – at both the 

macroscopic ad microscopic scale. These tasks are closely aligned with the ESHR 

scenario and thus FSM was selected as the most appropriate model for the robot 

behaviour. The FSM of Fig.3.1 describes the robot behaviour and shows how 

inspection, assembly, and repair process is expected to unfold. 

The emergency ship hull repair process begins with the robot modules being deployed 

into the water, entering the start state (S). If the robots receive no signal to indicate 

that a complete repair structure has been formed (!f) they immediately transition to 

begin searching the ship hull for damage (ES).  The robots will continue to explore and 

inspect the ship hull until they either locate a hull breach (b) or detect a signal from 

another robot that has found a breach (s). If a robot is the first to locate a breach (b), it 

changes to the transmit state (TS) and begins broadcasting a short-range acoustic 

signal to other robots in its vicinity, notifying them of the location of damage they have 

discovered. However, if robots in the search state (ES) have not located the breach but 

have instead detected a signal from a robot that has (s), they transition to the follow 

state (FS) where they will move toward the origin of the signal until they find a robot in 

the area matching the location of the signal (r). This method of guiding robots to a 

specific location was inspired by studies of signal-assisted aggregation and self-

assembly which were discussed in Section 2.6.1.  
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States Transitions 

S Deploy and start f Complete repair structure formed 

ES Explore ship hull b Hull breach located 

FS Follow signal s Signal detected 

AT Attach to robot r Robot located 

TS Transmit location signal p Repair structure attached to ship hull 

SB Seal breach a attached to robot 

F Finished  

 

Fig.3.1. Finite state machine (FSM) of the emergency ship hull repair robot behaviour, 

showing the stages the robots move through: Searching for the damage, aggregating 

at the location, forming a repair structure, and sealing the hull breach. 

Once two or more robots rendezvous at the hull breach location, they can begin 

communicating with each other using their local sensors to determine where to attach 

to each other in order to best form a repair structure (AT). Successfully attaching to an 

appropriate part of the structure (a) will allow the robot module to transition to the 

transmit state (TS). In order to avoid transmitting multiple signals at once, all robots in 

the transmit state (TS) will communicate with each other via local sensors and reach a 

consensus which single robot should transmit the signal based on factors such as 

location and remaining power. This approach to choosing a unit for signal transmission 

was inspired by studies of collaborative decision making as discussed in Section 2.7.2.  
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The structure will continue to form by using a robot in the transmit state to guide 

robots in the follow state (FS) to optimal attachment positions until a structure of 

appropriate shape and size has been full constructed (f). The fulfilment of this 

transition condition will be determined as a result of robot modules communicating 

the number of robots connected to them and their location in relation to intact and 

damaged sections of the ship hull using local sensors. With a repair structure fully 

formed, the robot modules transition to the seal state (SB) during which they will 

collectively move to cover the breach and being adhering to the intact sections of hull 

surrounding the damage. When the modules have completed sealing themselves to 

the hull (p) they will transition to their final state (F) indicating that the operation is 

complete and that it is safe to deploy pumps into the flooded compartments. 

Section 3.2 Simulated Robot Morphology 

In order for the proposed CAC algorithms to be assessed, a suitable robot model on 

which the code can be implemented is required. Section 3.2.1 specifies the robot 

functions and physical capabilities required to carry out the algorithms, demonstrate 

how existing underwater robots only fulfil some of these requirements, and identify 

the need for a bespoke simulated robot design. Section 3.2.2 delves into the specifics 

of the simulated robot morphology giving details of the various sensors, actuators, and 

communication techniques used with explanations of their function with respect to 

coordinated exploration of the ship hull. 

Section 3.2.1 Robot Specification 

There are five main abilities the autonomous underwater vehicles (AUV) must possess 

in order to carry out the CAC algorithms: they must be able to move freely underwater, 

inspect the ship hull, detect objects and other robots, communicate with other robots 

over short distances, and self-assemble to form larger water-tight structures. Since 

their inception in the mid-20th century, there have been many AUVs developed for the 

purposes of underwater inspection, environmental monitoring, and various military 

applications. As a result, a plethora of methods and mechanisms have emerged with 

the aim of achieving more efficient navigation, communication, localisation, and 

mapping in the underwater domain (Paull, Saeedi, Seto, and Li, 2013; Aguirre, Vargas, 

Valdes, and Tornero, 2017). The ability to move freely underwater can be attributed to 

factors such as hull shape, method of propulsion, and buoyancy control. The geometry 



60 
 

of an AUV’s hull plays an important role in how fast the robot will be able to move 

through the water – hydrodynamic designs such as the torpedo hull type (McPhail, 

2009) are commonly employed in the design of many AUVs primarily for their ability to 

generate low drag force (Aguirre et al., 2017). However, alternative hull geometries 

such as open structure types (Boeing and Bräunl, 2012) are also worth considering for 

applications less concerned with maximum speed and more focused on incorporating 

irregular sensors and actuators for achieving applications such as underwater 

construction. 

With the rise of biomimetic underwater robots designed to move using actuation 

similar to biological counterparts such as fish (Wang, Hang, Wang, and Xiao, 2008) a 

variety of methods of locomotion now exist for AUVs. However, these new 

technologies have yet to be implemented in commercial products and without further 

testing and verification, propellers and water jets remain as the most reliable methods 

of movement for AUVs. There are many ways propellers have been incorporated into 

AUVs to achieve systems with powerful forward thrust and the technology has 

continued to mature. In recent years, modifications to improve factors such as 

protection from marine debris using enclosed propellers (Kopman, Cavaliere, and 

Porfiri, 2011), and using quad-coper configurations to improve manoeuvrability 

underwater (Ranganathan, Thondiyath, and Kumar, 2015) have seen increased 

utilisation in robot designs. AUVs have also been shown capable of move freely using 

internal pumps that create water jets (Mazumdar, Triantafyllou, and Asada, 2015) and 

while this method is typically less effective at generating thrust than propellers, it can 

at least be used as an additional tool to assist in positional control. Pumps have also 

been shown to be an effective tool for injecting and ejecting water from internal 

ballasts enabling active buoyancy control in AUVs (Woods, Bauer, and Seto, 2012). 

Every AUV requires methods of sensing its surrounds in order to achieve behaviours 

necessary for navigation such as obstacle avoidance, localization, and mapping. There 

are a variety of sensors available but additional considerations must be made, largely 

due to the difficulties associated with operating underwater. A common method of 

distance sensing for robots operating on the ground or in the air is infrared (IR) 

sensors, but when placed underwater the effective range of these devices is heavily 

restricted due to the absorption of rate of the water (Farr et al., 2010). Though even 
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with such restrictions, there are still of AUVs that prove it is possible to perform basic 

obstacle avoidance using such sensors, albeit at a restricted range (Deng et al., 2015). 

Acoustic signals such as sonar are much lower frequency than IR signals which allows 

them to propagate much further through water. Sonar sensors can reliably detect 

objects at range and this leads to the widespread implementation of these sensors in 

AUVs for applications such as obstacle avoidance, localization, and mapping (Teo, Ong, 

and Lai, 2009; Mallios et al., 2010). Acoustic sensors are especially useful for 

underwater localization tasks where technologies that rely on radio frequencies such 

as GPS cannot be used. Instead AUVs can perform localization using underwater 

positioning systems (UPS) which use beacons on the surface of the water to determine 

the relative position of a robot using trilateration (Tan, Diamant, Seah, and 

Waldmeyer, 2011). Recent studies have also demonstrated the benefit of combining 

acoustic sensors with cameras (Evans et al., 2003) showing that machine vision 

techniques and sensor-fusion can accomplish more accurate mapping and feature 

detection – ideal for visual applications such as autonomous docking or underwater 

inspection (Hover et al., 2012). 

Using acoustic sensors to detect the presence of objects can allow AUVs to perform 

obstacle avoidance, but they also allow for indirect communication between robots. 

Stigmergic communication is a powerful tool that can be exploited to produce 

formation control or obstacle avoidance behaviours simply from detecting 

environmental changes made by other robots (Dorigo et al., 2006), or inferred 

positions of other members of the swarm (Balch et al., 2000). Some complex 

behaviour, such as self-assembly, are at present too complex to be achieved with 

indirect communication alone and require a more direct method of communication. 

However, direct communication is not necessary for the CAC algorithms to function 

and so discussion of this can instead be found in Chapter 4 where exploitation of direct 

communication for self-assembly and signalling is addressed more fully. 

The existing AUVs identified in the preceding section reveal that there are several 

robots capable of performing some of the four major tasks necessary to carry out CAC 

algorithms. However, none of the robots identified in the literature possess a 

geometry which would allow for self-assembly – a fifth ability which is required for the 

formation of larger water-tight structures. The ability to self-assemble is not necessary 
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for the CAC algorithm, but is of paramount importance to the success of the complete 

emergency ship hull repair method and failure to account for this necessary quality in 

the early stages of design could cause issues later in the design process. While there is 

no existing robot that possesses all of the necessary qualities required for the CAC and 

self-assembly experiments, the varied abilities of existing models arguably shows that 

a robot capable of performing all of the tasks should be possible to design and 

construct. For this reason, the CAC algorithms were chosen to be examined in 

simulation using robots with a bespoke design, with a geometry that would allow for 

self-assembly, and based on existing technologies demonstrated in current AUVs.  

Section 3.2.2 Simulated Robot Design  

The morphology of the simulated robot was determined according to the 

requirements identified in section 3.2.1 and focuses on the following aspects: robot 

hull shapes that would allow for self-assembly, methods of propulsion that allow for 

high manoeuvrability and buoyancy control, and sensors that accurately and reliably 

retrieve information about the environment and allow for indirect communication 

between robots. One of the most limiting factors of the robot design was hull shape. 

Typical AUV hull designs tend towards torpedo shapes due to their many advantages 

with respect to high manoeuvrability and low drag generation, but formation of larger 

water-tight structures can hardly be achieved with such irregular shapes. Therefore, 

simpler geometries such as triangles, squares, or hexagons may be a more appropriate 

option as these are more commonly selected to carry out self-assembly in existing 

ground and air robot systems as discussed in Section 2.6.2. A square geometry was 

ultimately selected due to the ability to more easily incorporate multiple propellers 

and water jets for positional control, and to simplify the design of the self-assembly 

algorithms addressed in Chapter 4. Figure 3.2 illustrates the square structure of the 

simulated robot with simple representations of each of its sensors and actuators – 

details of which will follow. 
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Fig.3.2. shows a visual representation of the simulated repair robot used in CAC 

experiments. The larger circles represent the four enclosed bi-directional thrusters, the 

smaller rectangles bordering the thrusters represent the distance sensors, the small 

square in the centre of the robot represents the forward-facing camera, and the semi-

spheres on each of the smaller sides of the robot represent both the sonar sensors and 

water-jets to control distance from other robots and obstacles. 

The simulated robots measure 50cm×50cm×5cm; a similar scale to that of larger ariel 

quadcopters which served as inspiration of the propeller arrangement and control 

scheme discussed later. This scale makes the implementation of embedded electronics 

and mechanical parts more feasible than using smaller casings but decreases it 

resistance to shear stress from ocean currents due to its larger cross-sectional area. 

However, propellers powerful enough to compensate for these increased stresses can 

be implemented, allowing it to maintain its position even in the presence of greater 

forces exerted on the robot. The selected scale also allows for the use of mechanical 

links with greater strength and size, to be used between robots for linking together in 

the self-assembly process. Using relatively large robots reduces the total number of 

robots necessary to form a repair patch of adequate size, which means the total 

number of mechanical links between agents is less than a larger swarm of smaller 

robots, which in turn reduces the likelihood of linkage failures occurring. 

The robots used to cover the hull breach should not be too large or singular for several 

reasons. For instance, if a single very large robot were used to address the repair and 

the unit was to malfunction, the repair process would fail making the system less 

robust than using multiple agents. A singular robot would only be able to address 

breaches of a given size and shape, as opposed to swarms of robots which are able to 
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scale their approach to repair breaches of any reasonable size and shape. Using 

multiple robots with semi-flexible casing would also allow the resultant repair patch to 

better conform to the shape of ship hulls which are typically curved. A robot diameter 

of 50cm was selected because a collection of 20 robots with these dimensions would 

be adequate to repair breaches measuring up to 2m×2m. A single hull breaches that 

measure more than 2m×2m on a standard bulk carrier ship which measures 

100m×80m×10m would be considered unsalvageable by conventional methods, so 

designing the system to try and repair damage of a much larger scale could be 

considered unrealistic. There is a limit to the amount of damage a structure can suffer 

and still be considered salvageable, and the approaches discussed in this thesis are 

only intended to repair damage that falls within these limits. 

The simulated robots use a combination of propellers and water jets to control the 

position of the robot underwater, which were selected due to their proven reliability. 

Similarly, to unmanned air vehicles (UAV), vehicles using rotary blades typically require 

three or more propellers to control their position and orientation. The simulated robot 

was designed to operate using four bi-directional propellers which are primarily sued 

to maintain a set distance from the ship hull during inspection. The decision to use four 

propellers was inspired by the methods of movement employed in quadcopter UAVs 

which commonly use a combination of four or more rotary blades, and sophisticated 

controllers to control their position and orientation (Quan, 2017). Unlike the 

quadcopter however, the simulated robots will be operating in a denser fluid 

environment which must be accounted for in the control strategy and selecting an 

appropriate method of buoyancy control can help compensate for these additional 

constraints. To this end, the simulated robots are assumed to possess passive neutral 

buoyancy which allows them to stay submerged at 2 meters below the surface of the 

water without needing to engage its actuators to maintain this depth. Using a passive 

buoyancy system, rather than an active system allows for a simpler design of the robot 

and its controllers. 

The four propellers and the neutral buoyancy of the robot serve as sufficient actuation 

for most tasks requiring underwater manoeuvring, but to increase its ability further 

the simulated robot also possesses internal pumps to create water jets. These pumps 

push and pull fluid through the main body of the robot via connected channels that 
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run between the four faces of the robot with the smallest cross-sectional area, 

allowing it to further control its movement when the four main propellers are working 

to maintain a set distance from the ship hull. This method of routing water through the 

body to generate thrust is known as hydraulic propulsion (Doyle et al., 2016) and is 

illustrated in Fig. 3.3.  

 

Fig.3.3. Three connected robot modules creating a network of internal pumps showing 

the resultant motion of the structure from different pumps being activated. The red 

arrows indicate the motion of the fluid pushed through the robot using the pumps, and 

the green arrows indicate the resultant direction of motion of the structure. 

One of the advantages of this method, as demonstrated by Doyle et al.’s modular 

hydraulic propulsion robots, is that it can continue to function when robot modules 

become connected to each other. When two or more robot modules connect to each 

other as shown, their channels become linked and the hydraulic propulsion of each 
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module continues to function, strengthens the connection between modules, and 

influences the resultant direction of movement of the new robot configuration. Due to 

the dimensions of the robot selected earlier in the design process, the size of the 

motors that could feasibly be implemented to enable these methods of movement is 

also limited. Thus, the potential maximum speed of each robot is restricted to less than 

or equal to 5 m/s in any direction the water inlets are facing. 

The selected hull shape and methods of propulsion provide an appropriate base for 

the repair robot, but in order to carry out the inspection in earnest the robot requires 

methods of sensing its surrounds so it can infer its position in the environment. In 

section 2.5.2 one of the more common methods of localisation for swarm robots was 

identified – the use of beacons or landmarks. The purpose of the CAC algorithm is to 

carry out inspection of a ship hull, and this is something we can exploit to our 

advantage by selecting the ship hull as a known landmark in an otherwise boundless 

environment. To enable a positive identification of the ship hull, the robot is fitted with 

a forward-facing camera close to the centre of the robot, and four infrared distance 

sensors that border the four propellers as described in Fig.3.2. Section 3.2.1 discussed 

how IR sensors are ill equipped for long-range underwater sensing but can function 

adequately over short ranges such as the 2 meters distance the robots will be working 

to maintain from the ship hull. 

The simulated robot also possesses four sonar sensors; one on each of the 4 faces of 

the robot with the smallest cross-sectional area, which it can use to confirm the 

location of neighbouring robots and potential obstacles in the water, such as debris, 

seaweed, or moving sea creatures. The robots use these proximity sensors to detect 

when another robot is in range of the sensor closest to the waterline, and in range of 

the sensor furthest away from the waterline ensuring that it always remains in contact 

with these other modules throughout the inspection process. Each robot works to 

equalize the measured distance between itself and its two closest neighbours using 

virtual forces techniques much like those discussed in sections 2.5.1 and 2.5.2. The 

robots use the error between their two opposing proximity sensor readings to affect 

the magnitude and direction of their internal pumps which control the position of the 

robot using hydraulic propulsion, enabling effective pattern formation and control. By 

ensuring each robot follows this protocol, the formation of robots shown in Fig. 3.4 can 
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be created and maintained, enabling a more complete examination of the ship hull to 

be performed. 

 

Figure 3.4. Optimal configuration of the swarm of repair robots for conduction ship hull 

inspection. Each robot works to maintain this formation as it conducts the inspection by 

first positively identifying two robots either side of itself and moving to equalize the 

distance between the two. The exception to this rule is the robot closest to the 

waterline, which always works to stay with 1 meter of the waterline. 

The main method of inspection of the ship hull is to be performed by a forward-facing 

camera and accompanying light which sits close to the centre of the largest face of the 

robot. There are a number of aspects to consider when choosing an appropriate 

camera including lighting, camera field of view, pixel resolution and the subject of the 

images captures, and whether it is stationary or in motion. Each of these features can 

be used to dictate the type, resolution and size of camera that would be most suitable 

for the job. However, the visual computation method used to detect defects and 

deformations in the ship hull lies outside the scope of this study on complete area 

coverage. Instead, the field of view of each robot (2mx2m) is the main metric used to 

determine if sections of the ship hull are being inspected by more than a single robot, 

which we can use to discern if the area coverage of the ship hull is complete or not. 

However, there are examples of machine vision techniques that have been successfully 

applied to autonomous underwater vehicles with limited computational power to 

enable visual detection and feature recognition. For instance, edge detection and line 
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extraction which are commonly employed in machine vision and work well when the 

robot has access to information about the structure being imaged, which could be 

suitable for this scenario where the object of inspection is known to be a ship hull. 

Gamroth (2010) demonstrated how automatic detection and tracking of man-made 

objects in subsea environments can be achieved with such techniques in the presence 

of marine snow and poor visibility. 

In simulation, the distance sensors the robot is equipped with are visualised as red 

dots wherever they intersect with the ship hull, and the forward-facing cameras can 

detect this. This information is used to confirm the overlap of camera fields of view 

between two or more robots inspecting the ship hull near one another as shown in 

Figure 3.5. If the camera detects more than four red dots, this indicates that the extra 

red dots are from the distance sensor of another neighbouring robot. Each camera has 

a field of view that allows it to examine a 4m2 section of the ship hull at any one time 

while maintaining a distance of 2 meters from the ship hull in accordance with the 

constraints enacted on the mobile robots carrying out the inspection. 

 

Fig 3.5. Overlap of camera field of view, signified by the presence of more than four 

simulated red dots, from the robots’ distance sensors, on the camera image. 

With appropriate sensors and actuator selected, the simulated robot now possesses 

the ability to move freely underwater and sense its surrounds – all of which are 

necessary for carrying out the CAC algorithms in this study. In addition, it possesses 

capabilities that will allow for effective self-assembly behaviours to be implemented 
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such as direct communication over short ranges, interlocking mechanisms, and an 

appropriate hull geometry which are discussed further in Chapter 4. The next section 

delves into the methodology and discusses how these functionalities are utilised to 

perform a ship hull inspection using CAC algorithms. 

Section 3.3 Ship Hull Inspection Methodology 

The proposed CAC algorithms are designed to work on multi-robot systems in which 

each individual robot possess the same morphology and programming. As described 

previously in section 3.2, the robots’ modules are capable of moving freely underwater 

in any direction, but to simplify the search algorithms and the subsequent controllers 

for the robots a constraint was added to the robots’ working-space with respect to the 

ship hull. This constraint compels the robot to use its four forward-facing distance 

sensors and corresponding bi-directional propellers to maintain a set distance of 2 

meters from the ship hull, as illustrated in Fig. 3.6. Ensuring the robot stays aligned 

with the ship hull reduces the chance that the robot will lose contact with the target 

and its neighbours while allowing for simpler control schemes to be considered. More 

discussion on the benefits of this additional constraint and how it affects the outcome 

of the simulated experiments is presented in Section 3.6. 

 

Fig 3.6. Robot works to achieve a set distance and orientation to the ship hull, by 

maintaining equal readings on their four forward facing distance sensors. (a) The 

forward-facing distance sensors detect a difference in measured distance from the ship 

hull, indicating the robot is not parallel to the hull as required, and (b) The bi-

directional propellers have adjusted the magnitude and direction of their thrust to 

equalise the distance sensor readings, giving a better indication that the robot is more 

parallel to the ship hull than was previously recorded. 
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The PID controller as shown in Fig. 3.7 and described in Eq. (3.1) was implemented on 

each of the four forward-facing propellers individually, the collective result of which 

enables the robot to align with the ship hull as parallel as possible.  Each propeller 

generates the most appropriate direction and magnitude of thrust using an error signal 

which is determined by the difference between the desired distance between the 

propeller and the ship hull (2 meters) and the measured distance from each propeller’s 

corresponding distance sensor. There are many closed-loop controllers that could have 

been used to achieve the desired set point, but the classical PID controller was chosen 

because it is well understood, has been proven highly reliable in the control of motors 

and positioning (Åström, Hägglund, and Astrom, 2006; Visioli, 2006), and continues to 

prove successful in recent applications to AUV control (Khodayari and Balochian, 2015; 

Sarhadi, Noei, and Khosravi, 2016). 

 

 

Fig.3.7 Block diagram showing (a) the PID controller implemented on forward facing 

propellers of the robot to control its distance from the ship hull, and (b) the internal 

working of the plant  Smogeli, (2006). 

The desired set point r(t) of the controller represents a distance sensor reading of 2 

meters between the sensor and the ship hull. This set point r(t) is compared against 

the measured output y(t) creating an error signal e(t) which represents the difference 
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between the current state and the desired state. The PID controller applies 

proportional, integral, and derivative gains to this signal as described in Eq. 1 to create 

a control signalu(t). This signal is then passed through the plant - composed of the 

motor, gearbox, and propeller - to affect the speed of rotation and resultant position 

of the robot, changing the measured output signal y(t) from the corresponding 

distance sensor, which is fed back to the comparator to generate a new error 

signale(t). 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡′)𝑑𝑡′
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
                                            (3.1) 

Where 𝑢(𝑡) is the control variable, 𝑒(𝑡) is the error between the desired set point and 

the measured output, and 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the respective proportional, integral, and 

derivative gains (Visioli, 2006). 

The complexity of propulsion systems such as that of Fig.3.7 (b) and their design is not 

to be understated, with the many factors that affect the efficiency and effectiveness of 

the propeller performance that need to be accounted for. In this example from Sogeli 

(2006), 𝑄𝑚 is the motor torque, 𝑄𝑚𝑑is the desired motor torque, 𝜔 is the angular 

velocity of the propeller, 𝑄𝑝 is the propeller torque, 𝑇𝑝𝑑is the desired thrust, and 𝑇𝑝 is 

the actual propeller thrust. Comprehensive low-level system design involving such 

parameters falls outside the scope of this study, but has been examined extensively by 

other researchers investigating marine propulsion (Smogeli, 2006; Pivano, 2008). 

Instead, these aspects of the system will be explored in future studies concerning the 

use of propellers for positional control of AUVs in dynamic environments. 

With the robots’ movements constrained to maintain a set distance from the ship hull, 

the CAC algorithms become more comparable to those used to explore 2D spaces 

where only the XY-plane considered. Both CAC approaches described here after, 

operate using the same conditions described above, maintaining an equal distance 

from the ship hull as often as the controllers will allow. The two methods, referred to 

as the lawnmower search (uncoordinated) and the sweeping search (coordinated), are 

both designed to fully inspect the middle section of a ship hull. Studies on area 

coverage using multiple robots have demonstrated the benefit of minimising turns in 

such approaches (Vandermeulen, Groß, and Kolling, 2019), which indicates that the 

sweeping search should marginally outperform the lawnmower approach. The results 
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of the following experiments should confirm this while also indicating the effect of 

allowing coordination among the robots. 

The lawnmower search (Fig. 3.8) is an un-coordinated complete area coverage method 

which can be used to measure the performance of a swarm of homogeneous robots 

where each robot operates independently of the actions of its neighbours. In this 

method, the robots are evenly distributed along one side of the vessel at the 

waterline, allowing for an initial overlap of their forward-facing camera field of view. 

Note that this initial even distribution of robots is not controlled by the robots 

themselves, but by the mechanism used to deploy the robots into the water from the 

side of the ship, and once deployed the robots do not communicate with each other. 

 

Fig.3.8. the four distinct phases of the un-coordinated lawnmower search pattern with 

robots represented by green squares and movement pattern represented by red 

arrows. (a) Shows the initial distribution of the robots, (b) shows their direction of 

movement for the first pass under the ship hull, (c) shows the lateral movement of 2m, 

and (d) shows the next pass back under the ship hull. 

Each robot performs and individual search in a straight line that stretches under the 

vessel until the waterline on the other side of the ship hull has been reached. Once this 

point has been reached, the robot will turn and move parallel to the ship hull for 2 

meters (half the width of its cameras field of view). The robot then completes the 

initial pattern by performing the same straight line search under the vessel once more 
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until the original side is reached. This pattern then repeats until the entire hull has 

been examined. In this approach sensors are only used to maintain a set distance from 

the ship hull, inspect its condition with the camera, and perform basic obstacle 

avoidance to prevent collisions and ensure completion of the search – formation 

control between robots is not used. 

The sweeping search (Fig. 3.9) is the coordinated approach which is intended to 

outperform the uncoordinated lawnmower search in terms of time to complete the 

search, and robustness to sensor noise or population failure in agreement with the 

findings of section 2.5 of the literature review. The robots are initially evenly 

distributed underneath the vessel, forming a line that follows the curvature of the hull. 

The search stretches the length of the ship hull from front to back and terminates once 

the main body of the ship hull has been examined. Although this approach starts with 

a different initial configuration, the main distinction of this approach is that the robots 

are instructed to stay within sensor range (4 meters) of one another while performing 

their search of the ship hull. The robots take measurements of the distance themselves 

and their two closest neighbours using their proximity sensors on opposing sides. This 

data is passed through a PID controller Eq. (3.1) to minimise the difference between 

these two values, which would indicate an equal distance between the robot and each 

of its neighbours has been achieved. The maximum allowed space between each robot 

is defined by the point at which the overlap of their forward-facing camera field of 

view falls to zero. 

In the lawnmower approach, coordinated motion is achieved using a method of 

formation control which enables each robot to set the direction and velocity of its 

internal propellers, responsible for moving the robot about the x-y plane, using 

hydraulic propulsion. The direction and velocity of these propellers are determined 

using the readings from the proximity sensors which measure the difference in 

distance between its two closest neighbours, as described in Eq. (3.2). 

𝑒(𝑡) = min{𝑃𝑆𝐿, 4.0} − min{𝑃𝑆𝑅, 4.0}                                      (3.2) 

The error value (e(t)) is generated by subtracting the minimum distance measurements 

of its left proximity sensor (𝑃𝑆𝐿), and its right proximity sensor (𝑃𝑆𝑅) which indicates 

whether it needs to move closer or farther away from its respective neighbours. A 
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minimum is used to limit the speed at which the robot moves to equalise the distance 

between itself and a missing neighbour, as using the maximum range of the sensor 

instead of a cap of 4.0 (representing 4 meters) could cause the robot to accelerate 

faster than is desired, which could cause collisions with newly discovered neighbours. 

Negative error values indicate the robot would need to move closer to its neighbour 

on the left, while positive error values indicate that it would need to move closer to its 

neighbour on the right. Passing this error value though a PID controller, as described in 

Eq. (3.1) would allow the robot to safely equalize the distance between its neighbours 

at a controlled speed, forming a more stable formation. 

 

Fig.3.9. the three distinct phases of the coordinated sweeping search pattern with 

robots represented by green squares and movement pattern represented by red 

arrows. (a) Shows the initial distribution of the robots, (b) shows their direction of 

movement for their pass under the ship hull, and (c) shows their final distribution 

following a successful inspection. 
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In scenarios where the robot has lost sight of one of its neighbours – for instance when 

a robot has broken down - Introducing the cap of 4.0 in the error calculation also helps 

prevent the robot from losing contact with the neighbour that is visible while searching 

for a neighbour on its unoccupied side. The robots are assumed to be capable of 

discerning when they are within 1 meter of breaching the waterline. When a robot 

detects this, it will ignore a lack of neighbours closer to the water line that themselves 

and work to maintain a set distance of 1m below to waterline, serving as one end of 

the line formation of robots under the hull. 

Section 3.4 Experiment Setup 

Webots is the simulation software that was selected to carry out the ship hull 

inspection experiments. This allowed for the creation of more realistic models of the 

swarm of swimming robots, the underwater environments, and the ship hull to be 

inspected. The experimental setup for the lawnmower and sweeping search 

experiments is kept relatively simple by modelling only the ship hull, the robots, and 

the fluid environment, but omitting the inclusion of additional obstacles. The body of 

water was modelled with a high clarity to ensure that the image quality of the robots 

forward-facing camera was not impacted by anomalies such as mud, oil, or other 

impurities. In order to assess the performance of the system under ideal conditions, 

fluid qualities such as turbulence, complex currents, and tides were not initially 

modelled and instead a static body of water is used so that only the viscosity of the 

fluid and the buoyancy of the robots are considered. Exactly how the results and 

system performance are expected to change when implemented in a turbulent 

environment is a subject which has been delegated to future experiments. The 

simulated ship used in the experiments is that of a bulk carrier ship, the second most 

common sea faring vessels used in international shipping of dry cargoes with a high 

weight to cost ratio such as coal, grain, and ore (Global merchant fleet - number of 

ships by type 2019 | Statista, 2020). The ship hull inspection technique discussed in 

this study could also be applied to the more common general cargo tankers, but the 

bulk carrier ship hull was selected because these types of ship typically carry more 

valuable cargo and as such are at the greatest risk of loss. The scale of the modelled 

bulk carrier ship is relatively small, measuring 100m×8m×10m in length, height and 

width respectively (Fig. 3.10). If a different size of vessel or a ship with a wholly 
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different shape of hull were to be used the CAC algorithms for inspection should in 

theory not need adjustment. However, the number of robots deployed to conduct the 

search may need to be increased or decreased to avoid sparsity or overcrowding of 

robots carrying out the work. Given the size of the simulated ship, the total area of the 

hull section to be inspected, and the maximum size of breach that could be consider 

salvageable (as discussed in Section 3.2.2), a population of 20 robots with dimensions 

of 50cm×50cm×5cm per module and an average field of view of 4m2, would be 

sufficient to achieve complete area coverage and conduct subsequent repairs by 

following the ESHR approach outlined in Section 3.1.2. 

 

Fig.3.10. Three-dimensional model of the bulk carrier ship used in the ship hull 

inspection simulations with fluid environment colorized. 

In the experiments, the ship’s propellers and thrusters are not activated so that the 

ship remains in place, simply floating in the body of water to allow the robots to 

conduct search. The ship sits very low in the water so that the majority of the hull is 

submerged, which would be the case if the ballast tank of the vessel was full.  In 

addition, since both methods of ship hull inspection are intended to examine a ship 

which has taken on additional water, the hull is submerged even further to the point 

where only a meter of the hull section sits above the surface, allowing realistic 

simulations of scenarios where the ship is holding even more water than the ballast 

would allow. This configuration represents the largest area to be examined and the 

worst-case scenario before the ship begins to sink in earnest. 
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The two methods of ship hull inspection described in section 3.3 as the un-coordinated 

lawnmower approach and the coordinated sweeping approach are tested, and three 

scenarios are examined for each of the two methods in environments with no 

additional obstacles. The first scenario tests the system performance in an ideal 

setting, where every robot in the swarm is fully functioning throughout the experiment 

and there is no excessive noise or errors present in any of the sensor measurements or 

camera images. The second scenario examines the performance of each system in the 

presence of some sensor noise which is evenly distributed among the distance sensors 

used to maintain a set distance from the ship hull. Noisy reading from sensors such as 

the IR devices discussed in section 3.2 are a common occurrence in underwater 

robotics applications and so the forward-facing IR sensors of the simulated robots are 

modelled with additive white Gaussian noise (AWGN) which is fortunately an available 

method of modelling noisy sensor reading in the Webots simulation software. AWGN 

is a basic noise model used to mimic the effects on signals caused by random 

processes that occur naturally - such as the temperature and clarity of the water or the 

intensity of ambient light - and is added to any noise that may be intrinsic to the 

sensor model. The noise is modelled with standard deviations of 5%, 10%, and 15% 

respectively, as shown in Figure 3.11. 

 

Fig.3.11. Additive White Gaussian noise (AWGN) with a standard deviation (σ) of 5% 

added to the distance sensor values to examine how the system functions in the 

presence of noise. The highlighted red section identifies the range within which the 

majority (68.2%) of noise values will be generated. Standard deviations of 5%, 10%, 

and 15% are modelled in separate experiments, but following the same Gaussian 

distribution curve as shown. 
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The third scenario tests the system performance with ideal sensor readings, but 

examines how the robots adapt when a percentage of the robot population completely 

fails and does not recover. Three experiments will be run per search method, where 

5%, 10%, and 15% of the team of robot will be randomly selected to fail at different 

times during the experiment, at which point the functioning robots will instead treat 

the faulty robots as obstacles to be avoided. In such a scenario, the remaining robots 

must then either distribute the work evenly among the remaining robots by 

collectively filling the gaps that have formed, or delegate the work of each failed robot 

to its closest functioning neighbour. 

The performance of the lawnmower and sweeping searches, in each of the three 

scenarios, is determined by the successful completion of the CAC task and three 

additional factors: field of view (FOV) overlap, FOV gaps, and completion time. One 

method of assessing the completeness of the CAC algorithms is to measure the total 

area of overlap and total area of gaps generated between the camera FOVs of each 

robot. If a single robot is tasked with inspecting an object but is operating with faulty 

sensors it may develop a false image of the target. However, if two or more units 

inspect a section of the same object and can reach consensus on their measurements, 

even if one is faulty this reduces the risk of taking erroneous readings or false positives 

as fact. So the more FOV overlap present, the higher the chance of observing the true 

state of a section of hull that is inspected. The quantity of FOV overlap and gaps 

generated are found by recording the global positions of each of the robots and the 

FOV measurements from the XY-plane, all of which are readily accessible through the 

simulator. These values are then applied to Eq. (3.3) where the total FOV overlap or 

gap can be calculated. 

𝐴𝑓𝑜𝑣 = (𝐻𝑓𝑜𝑣 − √∆𝑥2 + ∆𝑦2) × (𝑉𝑓𝑜𝑣 − ∆𝑧),                                        (3.3) 

Where Afov  represents the area of overlap or resultant gap formed between two 

robots FOV. Hfov and Vfov represent the minimum xy-plane FOV measurements of the 

robot in question compared against its closest neighbour. ∆x, ∆y, and ∆z represent the 

differences in position of the two robot cameras in the x, y and z coordinates, 

respectively. 
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The measurements and subsequent calculations from Eq. (3.3) are carried out for each 

robot and occur every 50cm that is traversed by the swarm. If the calculation yields a 

negative value, this indicates a gap has formed between the respective robot FOVs, 

while positive values represent an area of FOV overlap. Higher levels of overlap 

indicate a higher probability that the robots are observing the true state of the ship 

hull, contributing towards a more complete inspection. Gaps in FOV indicate sections 

of ship hull that have gone un-inspected and are thus counted as incomplete searches. 

Only approaches that do not generate gaps can be classed as complete. Figure 3.12 

illustrates the concept of FOV overlap between two robots in the same arrangement 

that is used in the experiments. 

 

Fig.3.12. Field of view overlap diagram. The image shows two robots angled towards a 

hollow cylinder, the field of view and camera frustums are drawn in red for robot 1 and 

green for robot 2. The yellow shaded section represents the overlap between the two 

robots’ field of view. 

The final factor for measuring the performance of each approach is simulation 

completion time. Time is an important element of emergency ship hull repair as the 

longer a breach remains in disrepair, the higher the likelihood that flood boundaries 

within the ship will fail, leading to worse flooding and greater instability of the ship. 

The quicker the system can perform a complete search, the faster it can discover any 

potential hull breaches, and thus the more well suited it will be to forming part of the 

automated emergency ship hull repair system. These experiments should reveal the 
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approach which yields the fastest and most complete search of the ship hull, even in 

the presence of failed robot modules or erroneous sensor readings.  

Section 3.5 Results 

In this section, the performance of the lawnmower and sweeping searches on a 

simulated generic cargo tanker are assessed in three separate scenarios: ideal 

conditions, sensors with 5%, 10%, and 15% additive noise, and 5%, 10%, and 15% 

population failure. Fifty separate simulations were carried out for each variable that 

was changed in each scenario for both approaches, resulting in a combined total of 

700 simulations for the un-coordinated lawnmower search and the coordinated 

sweeping search. The results were compiled and compared in MATLAB to help identify 

the search method that yielded the quickest completion time and the most complete 

search. In all the figures shown forthwith, each bar represents the median result of the 

50 simulations per variable change. Error bars are included indicating the maximum 

and minimum values obtained, except for Fig.3.13 in which the results are 

deterministic and therefore no variation in behaviour was observed. 

Section 3.5.1 Ideal Conditions 

Figure 3.13 shows the comparison of results between the lawnmower and sweeping 

search in the ideal scenario, where all robot sensors operate without erroneous 

readings or noise, and none of the robot population fails throughout the simulation. 

Neither approach generates gaps throughout the experiment proving that complete 

area coverage has been achieved by both. It can be observed that the sweeping search 

achieves greater FOV overlap than the lawnmower approach, indicating that the 

sweeping search has a higher probability of observing the true state of the ship hull, 

providing a greater degree of certainty concerning the recorded sensor measurements. 

The largest distinction that can be observed between the two search methods is how 

the sweeping search takes less time to complete the same search while achieving a 

higher FOV overlap. These results are in agreement with other studies investigating the 

effect of turn minimising behaviour in robot teams for area coverage (Vandermeulen 

et al., 2019) further confirming the hypothesis that search methods with fewer turns 

typically result in fast completion times for area coverage. Under ideal conditions, the 

sweeping search seems to outperform the lawnmower search in terms of time to 

completion and FOV overlap.  
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Fig.3.13. Ideal scenario comparison for the lawnmower search and the sweeping 

search, where all agents operate with perfect sensor measurements and none of the 

population fails. 

Section 3.5.2 Noisy Sensor Measurements 

Figure 3.14 compares lawnmower and sweeping search performance in three 

scenarios where the forward-facing distance sensors of the robots return erroneous 

measurements due to the inclusion of additive white Gaussian noise (AWGN) with 

variances of 5%, 10% and 15%.  Though errors are present, none of the population fully 

fails throughout these simulations so that each robot completes their individual 

search. From the results, it is clear that the lawnmower does not generate gaps, but 

the sweeping search does. This indicates that when significant noise is introduced to 

the distance sensors only the lawnmower approach achieves complete area coverage 

while the sweeping approach fails. The sweeping search yields greater FOV overlaps 

when less errors are present; however, it is quickly outperformed by the lawnmower 

approach once errors begin to build, and this performance gap widens when the 

magnitude of erroneous reading increases. In addition, the overlap generated by the 

lawnmower approach is more consistent, with low deviation across different 

percentages of error. The sweeping search may take less time to complete its search 

pattern than the lawnmower search, but because it has begun to generate gaps it can 
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no longer qualify as a complete search. This indicates that when erroneous sensor 

measurements are more prevalent, the lawnmower search is superior to the sweeping 

search. On completion of the initial experiments, several simulations were conducted 

with extreme erroneous sensor measurements of 30% which revealed that both 

systems quickly break formation and fail to complete the search. This demonstrated 

that while the lawnmower approach is more tolerant to sensor noise than the 

sweeping search, neither system is wholly immune. 
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Fig.3.14. Error Scenario Comparison; (a) the sweeping search (coordinated), and (b) the 

lawnmower search (uncoordinated). In these experiments, the robots operated with 

erroneous sensor measurements with variances of 5%, 10%, and 15%. None of the 

robots fully fail in this scenario but the noisy sensor readings have a negative effect on 

the robots’ ability to complete their tasks. 
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Section 3.5.3 Partial Population Failure 

Figure 3.15 compares the partial population failure scenarios for the lawnmower and 

sweeping searches. In these scenarios all robot sensors operate without erroneous 

measurements or noise, but a percentage of the population fails at a random time 

interval and does not recover, instead serving as obstacles that the remaining 

functioning robots must avoid. The robots are configured so that 5%, 10%, and 15% of 

the total population will fail in three respective separate scenarios. The results show 

that neither search method generates gaps in FOV which indicates that complete area 

coverage is still achieved in both cases. The lawnmower search achieves more 

cumulative overlap than the sweeping search, indicating that it has a higher probability 

of observing the true state of the ship hull. However, this comes at the cost of a 

significantly longer completion time than the sweeping search whose completion time 

is almost unaffected by decreases in population of up to 15%. In fact, the lawnmower 

approach takes approximately 5 times longer to complete its search than the sweeping 

search, but only yields 1.5 times the overall area of FOV overlap. This indicates that the 

uncoordinated lawnmower search is less efficient than the coordinated sweeping 

search at redistributing additional workload when part of the population fails, which is 

in agreement with section 2.5.1 where the benefits of distributed systems are 

discussed. 

Full videos of these simulations showing the lawnmower and sweeping searches under 

ideal conditions can be accessed via the GitHub repository:   

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair. 

Additionally, the code used to construct the Webots environment can be accessed via 

the same link, while experts of the programs used to control the robots can be 

examined in greater detail in Appendix A: Ship Hull Inspection Webots Simulation 

Code. 

 

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair
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Fig.3.15. Partial population failure scenario comparison; (a) the sweeping search 

(coordinated), and (b) the lawnmower search (uncoordinated). In these experiments, all 

the robots operated with ideal sensor measurements, but a percentage of the 

population completely failed and did not recover. Percentage failures of 5%, 10%, and 

15% are shown which represent scenarios where one, two, or three robots completely 

fail at a random interval, and serve as obstacles from that point forward. 
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Section 3.5.4 Effect of Ship Size on Results 

As mentioned in Section 3.4, these simulations were carried out in Webots with a bulk 

carrier ship hull measuring 100m×8m×10m serving as the object of interest. The 

algorithms deployed on the robots for maintaining a desired distance and orientation 

relative to the ship hull are designed to allow them to inspect various ship hull shapes 

without increasing the time of complete searches or reduce FOV overlap. However, 

using the same number of robots to inspect ship hulls of different lengths than our 

simulated model could significantly impact the results. For instance, if the 

circumference of the ship hull to be inspected was halved, such that the hull was 

narrower, and the same number of robots was used to perform inspection – this could 

decrease the completion time, but increase the risk of collisions between robots.  

Similarly, if the circumference of the ship hull was double that of the simulated model; 

more robots would be required to achieve comparable completion times and FOV 

overlap to that of the results. Therefore, to achieve similar results recorded in these 

scenarios, Eq. (3.4) can be used to determine how many robots should be deployed 

based on the circumference of the ship hull, and the width of the robot FOV while the 

width of the robot’s largest face is no greater than ¼ that of its FOV width. 

𝑁𝑅 = ⌈
𝑊𝐻

min (𝐻𝑓𝑜𝑣 , 𝑉𝑓𝑜𝑣)
∙ 1.5⌉,                                                (3.4) 

where 𝑁𝑅 is the recommended number for robots required for the insection of the 

ship hull, 𝑊𝐻 is the circumference of the ship hull in meters, and 𝐻𝑓𝑜𝑣 and 𝑉𝑓𝑜𝑣 are the 

horizontal and vertical dimensions of the robots FOV, respectively. The minimum of 

the FOV dimensions is used so that the robot can perform its inspection at any 

orientation. This result in multiplied by 1.5 to ensure adequate FOV overlap and is 

finally rounded to the smallest integer greater than or equal to the result to give the 

number of required robots. For example, the circumference of the simulated ship hull 

from the experiments was 26𝑚 and the 𝐻𝑓𝑜𝑣 = 𝑉𝑓𝑜𝑣 = 2𝑚 which gives a result of 20 

robots. 

Section 3.6 Discussion 
It may seem as though the question of which method is superior under the three 

circumstances is rather clear, however there are additional considerations that must 
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be made for the sweeping search method. This is because as a coordinated method it 

relies on the accuracy of its sonar sensors on it to maintain contact with its neighbours. 

It was found that while many of the sensors in Webots quite accurately represent their 

real-life counterparts, the sonar sensors are regrettably less accurate. Rather than 

detecting objects that come within a given range of the sensor, in Webots sonar 

sensors are modelled as multiple laser rays emitting from a point, and objects are only 

detected when they intersect with these rays (Fig.3.16). This means objects that can fit 

between these rays can become more easily lost to the sensor, causing the robot to 

believe the object it was sensing has suddenly vanished. This is a scenario that 

frequently occurred in simulation when the robots turned at sharp angles while 

following the curvature of the ship hull. In these scenarios, the PID controller that 

works to equalize the distance measurements on each side of the robot quickly moves 

to regain equilibrium. When the robots fail to see each other in these scenarios they 

have a higher likelihood of colliding, which causes both agents to fall away from the 

arranged line, and ultimately fail to complete their searches. 

 

Fig.3.16. Webots simulated representation of the sonar sensors in operation on two of 

the ship hull inspection robots. Multiple rays are used to represent the sonar sensors – 

red rays indicate a beam which has not detected an obstacle, but when a ray turns 

green this indicates it has passed through an obstacle. This image shows the common 

scenario where the robot on the upper left of the frame can see the other robot, but the 

robot of the lower right-hand side of the frame cannot see the robot on the upper left 

hand side of the frame. 
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In the second set of experiments, where errors were introduced to the forward-facing 

distance sensors, the inaccuracies caused the robots to sway slightly, increasing the 

likelihood that neighbouring agents would fall between the already scattered sonar 

rays and become lost to the robot. To address this issue, a more accurate 

representation of the sonar sensors should be used in subsequent simulations to see 

how the system behaves without this unintended disturbance. It is reasonable to 

assume that a more accurate representation of sonar sensors would remove some of 

the instability that has caused gaps to form, and would further serve to reduce the 

reality gap between the simulated and real world systems. However, at present the 

lawnmower search appears to outperform the sweeping search in terms of robustness 

to sensor noise. 

Despite these shortcomings, the coordinated sweeping search method was able to 

adapt well to losing a percentage of its population. In fact, when a higher percentage 

of the agents were removed the speed of completion appears to have slightly 

increased. This increase in speed could be due to how the area of the ship hull narrows 

towards the back of the vessel. When the area to be inspected becomes smaller, using 

larger populations of robots can lead to some overcrowding and begins serve as more 

of a hindrance than a benefit. Thus, it seems reducing the size of the population when 

approaching narrower section of the hull increases the speed of inspection by reducing 

overcrowding. Understanding this aspect could allow for adjustments to the search 

method so that the robot population size can be increased or reduced according to the 

collective space between robots rather than the predetermined maximum length 

between two points on the ship hull. This improvement could serve to increase the 

efficiency of the system by only recruiting robots from the available population which 

are deemed essential to the search, instructing others to form a second line of 

inspection or remain on standby. Such adjustments could also make implementation of 

this search method more readily applicable to ships with different hull shapes and 

sizes. 

Comparison of the results from Fig.3.13 and Fig.3.15 (b) confirms that the completion 

time for the un-coordinated lawnmower search method is severely impacted by partial 

population failure as was predicted. When even a single agent (5% of the population) is 

removed, the time required to complete the inspection can increase by up to 100%. 



89 
 

This effect is compounded when a group of two or more consecutive agents fail near 

each other. This is due to the closest remaining functioning neighbour robot having to 

perform the work that would have been performed by the faulty robot, increasing the 

workload of the individual rather than the work being evenly distributed throughout 

the swarm as is the case in the sweeping search scenario. This reduces the scalability 

of the lawnmower approach, as larger swarms will perform less efficiently when the 

workload of failed agents is simply shifted to its closest neighbour. 

The results show how the coordinated sweeping search method outperforms the un-

coordinated lawnmower search method under ideal conditions and in the face of 

partial population failure, which is in agreement with the literature findings of Section 

2.5 concerning coordinated motion and area coverage in dynamic and static 2D 

environments. Comparisons between these CAC experiments which took place in a 3D 

simulated environment and the 2D search space experiments from literature are 

possible thanks to the implementation of constraints to the robots working space. This 

allowed the swarm robots movements and pattern formations to mimic that of robots 

exploring 2D bounded arenas, despite carrying out an inspection of a curved surface 

without a solid boundary. 

However, due to inaccuracies of the sonar sensors modelled in the Webots simulator 

as mentioned above, the sweeping search is presently more sensitive to sensor noise 

than the lawnmower search and leads to instabilities which render the inspection 

incomplete under certain conditions. The sweeping search may be superior in terms of 

time taken to complete the inspection, and robustness to partial population failure, 

but not to erroneous sensor readings. Provided the sonar sensors are modelled more 

accurately and the sweeping search method are modified to better adapt to sensor 

noise, it could in theory outperform the lawnmower search in all the scenarios. As it 

stands, the lawnmower search method is the only inspection which qualifies as 

complete in all scenarios and must be recognised as such. 
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Chapter 4. Ship Hull Repair: Self-Assembly Algorithms 
The research presented within this chapter pertains to the second stage of the 

emergency ship hull repair scenario outlined in Section 3.1 and is intended to follow 

successful completion of the ship hull inspection stage described in Section 3.3. This 

study examines the ability of the robot swarm to aggregate at a specified location and 

form a patch using a novel self-assembly technique which relies on direct optic 

communication. Self-assembly is a branch of robotics research which studies how 

distributed groups of robots can interact and arrange to form new configurations 

which are capable of more than the sum of the individual parts. As discussed in Section 

2.6, the type of self-assembly detailed in these studies pertains to how a swarm of 

autonomous underwater modular robots can combine to create a patch of a given 

shape and size using their own bodies. The purpose of the resultant structure will be to 

cover and repair the ship hull damage which it has been created to address. The effect 

that increased robot traffic has on this robot assembly process is also studied by 

varying the population density across multiple simulations and scenarios. 

The main contribution of this research is a method of self-assembly that allows 

modular robots to form repair patches, using their own bodies as material, which are 

large enough to coving a holes of various shapes and sizes in a ship hull. The results 

from the experiments are used to inform the design of an improved self-assembly 

approach which suggests a method of enhancing the initial approach by controlling the 

angle of approach the robots use when navigating their way to the damage, or by 

allowing more than one assembly location for the repair patch. 

Much like the simulated repair robots of the ship hull inspection scenario, the 

simulated robots used in this study do not yet have a real-world counterpart and are 

instead restricted to more abstract descriptions of their abilities and morphology. 

Section 4.1 provides more insight into the use of direct communication for the purpose 

of self-assembly, and is followed by a description of the simulated robot morphology. 

The robots in these experiments are intended to possess much of the same abilities as 

those in Chapter 3 but their morphology and representation have been changed to 

allow for simpler simulation of larger robot populations. The necessity of these 

adjustments is provided in more detail in Section 4.1.2. Section 4.2 reveals the method 

of aggregation used to guide robots to the location of the ship hull damage, referred to 
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as the primary assembly point (PAP), and the self-assembly method which uses direct 

communication techniques to form a correctly sized repair patch. Section 4.3 discusses 

the experimental setup and explains how the success of each simulation is intended to 

be measured. The results of the experiments are provided in Section 4.4, and the 

chapter concludes with a discussion of these results and their implications in Section 

4.5. 

Section 4.1 Simulated Robot Morphology 

In Chapter 3, the robot morphology was designed primarily for assessing the ability of 

the robots to move relative to the ship hull and other robots using indirect 

communication methods. In this study however, the robots will require more direct 

forms of communication in order to carry out the aggregation behaviour and self-

assembly procedures being tested. To this end, Section 4.1.1 lists the functions and 

physical capabilities the robot will require, in addition to those specified in Section 

3.1.1, to carry out the self-assembly task. Section 4.1.2 presents the new simulated 

robot designed to meet these requirements and explains the reasons behind the 

changes which were deemed necessary to carry out the self-assembly behaviour.  

Section 4.1.1 Robot Specification 

To perform the aggregation and self-assembly behaviours presented in this Chapter, at 

a minimum the AUVs require the ability to directly communicate with one another 

over short distances, and to connect with other robots to form larger structures. This is 

in addition to possessing an appropriate geometry which allows them to create water-

tight seals between robot modules and the ability to effectively move underwater as 

described in Section 3.2.2. Direct communication between robots has been 

successfully achieved underwater using acoustic signalling (Paull, Huang, Seto, and 

Leonard, 2015), but this method operates at low bandwidth and is more subject to 

noise introduced from reflections from objects in close proximity in the water 

(Joordens and Jamshidi, 2010). Optic communication is an alternative method for short 

range underwater communication that uses light pulses (Schmickl et al., 2010). This 

approach overcomes some of the limitations observed in acoustic signalling but can be 

subject to other factors such as water clarity and ambient lighting conditions. 

Minimising the influence of environmental conditions on optic communication can be 

achieved by reducing the distance between agents. However, the shortcoming of both 
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systems may be better compensated for if a combination of the two communication 

methods is used instead (Lodovisi, Loreti, Bracciale, and Betti, 2018). A hybrid system 

could be well suited to multi-AUV systems that communicate under varied conditions, 

due to the ability to adapt the communication method based on the environmental 

conditions and transmission range. 

As discussed in Section 2.6, swarm robots tasked with self-assembly are often 

dispersed within an environment and so require a method of aggregation to allow 

them to regroup at a common location to begin assembly. The purpose of the robots in 

this scenario is to address ship hull damage by using self-assembly to form a repair 

patch near the location of the damage. Therefore, environment mediated aggregation 

methods which rely on information from the environment may be more appropriate. 

In Section 2.6.1, it was explained how Arvin et al. (2014) used acoustic signalling 

systems to achieve such aggregation behaviours in robots. This is a technique which 

may be adaptable to underwater swarm robot scenarios since acoustic signalling has 

been shown to be effective at communicating over short and long distances in such 

environments. 

There are a variety of self-assembly methods which have seen application in ground 

and air environments, as previously identified in Section 2.6.2, but relatively fewer 

have been applied to the underwater domain. As such, some of the self-assembly 

methods used for inspiration and guidance come from systems originally intended for 

a different environment than underwater, but could still be realistically implemented. 

The robots are intended to create a repair patch using their own bodies, a category of 

self-assembly methods referred to a morphogenesis, and the structure they form 

should be suited to the shape and size of the damage found on the ship hull. To 

achieve the proposed self-assembly behaviour, the robots require: a method of 

assessing the size and shape of the damage, sensing the presence of other robots, 

communicating their state to each other, a morphology which allows them to form 

watertight seals between units, and a method of forming physical connections 

between robots which are strong enough to withstand underwater currents and 

collisions.  
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Section 4.1.2 Simulated Robot Design 

In this study the robot morphology slightly diverges from the robots described in 

Section 3.2.2 by simplifying their representation for a 2D environment while 

implementing new direct communication and physical connection functions. These 

changes in simulation environment and robot representation were made to address 

issues surrounding simulation speed and accuracy. This study is primarily concerned 

with studying how well a swarm robot system can follow the proposed self-assembly 

protocol in the presence of high traffic scenarios where more than 20 robots are used. 

The complexity of the simulated robots and their sensors in Webots environment did 

not allow for efficient simulation of a significantly higher quantity of the robots tested 

in Chapter 3. With single runs of simulations taking days to complete, it was decided 

that using a simpler model in a simulation environment better suited to very high 

numbers of agents would be more beneficial for the initial tests of the algorithm. To 

this end, the experiments were conducted in Netlogo, the multi-agent programmable 

modelling environment, but underwater effects such as drag force and signal 

attenuation were omitted from the model. 

The new simulated robots are assumed to possess much of the same abilities of the 

robots described in the ship hull inspection scenario from Chapter 3. These include the 

ability to maintain a set distance from the ship hull using propellers and distance 

sensors, detect the presence of other robots and obstacles using side-mounted sonar 

sensors, and assess the condition of the ship hull using a forward-facing camera. The 

new abilities available to these robots include direct communicate over short distances 

using sonar transmitters and receivers, connecting to other robots to form larger 

structures, disconnecting to reconfigure the resultant structure, and the ability to 

exchange information with neighbouring robots using optic communication (LEDs). The 

main distinctions between the previous and new simulated robots are their size, 

speed, and representation in the environment. 

The robot modules described here are modelled at one tenth the size of the original 

simulated robots from Chapter 3, measuring 0.05m by 0.05m. Reducing the size of 

each robot module allowed for more accurate representation in the Netlogo simulator 

where the complexity of the agents modelled is more limited than Webots. However, 

to maintain this accurate representation it is necessary to also scale back the 
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maximum possible speed of each robot module to correspond with their reduced 

stature. Therefore, each robot is modelled with a maximum speed of 0.05 m/s which 

roughly equates to moving at one body length per simulated second of time. In the 2D 

Netlogo environment, these robots are represented as simple squares with different 

colours to represent their states. In the Webots simulator and on real world robots 

these states would instead be communicated via multi colours LEDs and corresponding 

colour sensitive photo-transistors. 

Unlike the indirect communication methods used in the CAC algorithm experiments, 

the aggregation and self-assembly behaviours require more direct methods of 

information exchange. To allow the robots to gather at the location of the ship hull 

damage, the robots are assumed to possess an active omnidirectional low frequency 

acoustic signalling system which operates using sonar transmitters and receivers. This 

allows for any of the robots which discover the ship hull damage to send a global 

transmission about the location to the other robots within range on the same 

transmission/receiver frequency. The system is configured so that robots are only able 

to do one of these actions at a time; either they are transmitting because they have 

located the breach and are forming part of the repair patch using their bodies, or they 

are open to receiving signals because they are still in the ship hull inspection process, 

at which point they will abandon their search and move to participate in the repair at 

the specified location. 

To perform the self-assembly behaviours, the robots use close range module-to-

module interactions between connected agents to communicate the state each 

module is currently occupying – information which is essential for the self-assembly 

protocol to function as intended. This is achieved using multi-coloured LEDs on one 

robot and corresponding RGB colour sensors on the connected neighbouring robot. 

This form of optic communication has been shown to be as reliable as acoustic 

signalling at exchanging information at close range, as discussed in Section 2.6.2 of the 

literature review. The state of each of these robots determines whether their current 

connections are sufficient or if a re-configuration should be attempted to form a 

structure with a more appropriate shape or size.  This form of direct communication is 

only achievable once the modules are aligned with each other so that the LEDs and 

phototransistors of two robots have an unobstructed line or sight. An effective method 
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of ensuring the robots being aligned is to allow this communication only once they 

have physically connected to one-another. There are benefits and drawback to both 

mechanical and magnetic links, as discussed in Section 2.6.2, but active magnetic links 

were selected as the connection method due to their ease of coupling and de-coupling 

and decreased likelihood of mechanical failure. 

As described in Section 3.3 of the previous chapter, these robots are able to control 

their orientation relative to the ship hull using four forward-facing propellers. The 

robots use these propellers and corresponding distance sensors to maintain a distance 

of 2m from the ship hull, enabling them to implement algorithms which allow them to 

treat the ship hull as though it is a 2D plane and more easily interact with neighbouring 

robots. Robots then use their internal pumps to move closer or further away from 

other robots; working to align themselves so they may communicate their respective 

states directly using their corresponding LEDs and Phototransistors. These experiments 

were carried out in simulations that modelled static bodies of water so while the risk 

of each robot’s orientation changing on approach to other robots is low, it is still 

possible. Because the risk of this occurrence in simulation was low, motorised controls 

to correct such a change in orientation were not implemented. Instead, the magnetic 

links used to couple robots together could be used to correct any minor tilts in 

orientation as illustrated in Figure 4.1. 

As a tilted robot approaches a robot it intends to directly communicate with, it will 

attempt to align its most forward leading magnetic link with that of the other robot. As 

indicated in Figure 4.1(b), minor tilts can be corrected by the strength of the upper 

magnets coming together, nudging the robots orientation back into place. While this 

adjustment is sufficient to correct minor changes in orientation, corrections to major 

changes in robot orientation may require additional propellers in combination with an 

inertial measurement unit (IMU) to be included in future models to ensure greater 

control and stability. 
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Fig.4.1. Illustration of repair robots (light grey squares) correcting minor orientation tilit 

using magnetic links (purple squares on the corner of each robot face). (a) Shows one 

robot on approach to another at an unfavourable angle of orientation, indicated by the 

red arrow. (b) shows the moment the robots first make cotact, with the green circle 

highlighing the two magnetic links used to pull the robot back into orientation. (c) 

shows the final configuration of the two robots, now linked together by both magnetic 

links. 

In the Netlogo simulations the time taken for robots to identify ship hull damage, 

recognise when they are within sensor range of another robot, directly communicate 

with other robots, and their magnetic coupling/decoupling procedure are all modelled 

to be instantaneous. However, in more complex 3D simulations and real world 

experiments a time lag between these events in inevitable and the potential impact of 

these factors is discussed in Section 4.5. 

Section 4.2 Methodology 

The self-assembly method presented in this section is intended for scenarios where a 

robot has already successfully identified hull breach damage. This robot serves as the 

primary assembly point (PAP) and sends out a signal which informs any robots within 

range of the transmission of its location. The first set of experiments examines 

scenarios where all the repair robots approach from a common direction as this 

increases the likelihood of high congestion events, and allows for the study how the 
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swarm robots adapt under such circumstances. The self-assembly protocol followed by 

the robots in this scenario instructs them to form a square structure which is wide 

enough and long enough to cover a circular breach, based on the diameter of the hole. 

The second set of experiments seeks to increase congestion further with the inclusion 

of obstacles for the robots to avoid when on-route to the PAP. This is included to 

examine how the system will perform under increasingly challenging condition in 

terms of time to completion and recorded collisions between robots.  

The robot serving as the beacon for the PAP is working to maintain its position at the 

edge of the hole between the damaged and intact section of the hull. Much like the 

simulated environment in the ship hull inspection experiments, the ship is stationary 

and does not roll or drift which makes it easier for the robots to maintain their 

positions relative to the ship hull. However, in more realistic scenarios and simulations 

the ship hull is likely to roll and drift, requiring the robots to work to maintain their 

position by using connections to the ship hull such as physical tethers, magnets, or on-

board image processing. The robot is already fitted with a forward-facing camera to 

recognise a damaged section of ship hull, and this same camera could be used to take 

pictures of the ship hull that the robot could use as a reference to where it wants to 

stay. Using this image to recognise when the ship hull is moving, the robot could 

calculate the direction of the drift and move in a similar direction to match the change 

in position, waiting for the moment when its current view of the ship hull and the 

saved image of its desired location are aligned once more. The robot broadcasts its 

location using the acoustic signalling system described in Section 4.1.2, while it is 

working to maintain its desired position, providing a rough estimate of its location to 

any robots within transmission range. 

In all the ship hull repair scenarios, the robots are capable of indirect communication 

using side-mounted proximity sensors to detect the presence of other robots and 

obstacles and avoid or communicate as appropriate. They are also capable of two 

forms of direct communication, which they use to relay information about the general 

location of the breach and recognise the state of another robot forming part of the 

repair patch while also providing information about their own state. The first method 

of communication is an acoustic signalling system (Fig. 4.2) which uses short-ranged 

sonar transmitters and receivers to send and receive signals from robots located at the 
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hull breach indicating the PAP. The second method enables each robot to use their tri-

coloured LEDs and corresponding RGB sensors to read the state of neighbouring 

robots, which indicates if the robots they are connecting to need other robots to 

connect to them, or if they should look for a different robot to attach to (Fig.4.3). 

 

Fig.4.2. Simulated robot modules using direct communication techniques to inform 

each other of the location of the hull breach and the primary assembly point (PAP).The 

Robot that has located the breach transmits (Tx) the signal using an omnidirectional 

low frequency sonar and the robots that have not located the breach receive (Rx) this 

signal moving towards the PAP. 
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Fig.4.3. Robot modules communicate their state with neighbours using LEDs (red, 

green, and orange circles) and RGB sensors (white triangles). Red LEDs indicate a robot 

that is in transit to the primary assembly point (PAP). Orange LEDs indicate a robot that 

is directly communicating with other robots and trying to find an appropriate place to 

attach to the structure. Green LEDs indicate a robot that has found an acceptable 

position, attached, and is now counted as a part of the repair patch. 

Inspired by the rules of cellular automata, each robot’s state is determined primarily 

by the states of other connected robots that form a Von Neumann neighbourhood 

(Fig.4.4) and its position relative to the ship hull damage. The robot states are 

communicated to one another using LEDs, with states represented as different colours. 

When robot A(x, y) is in the red state and on route to the PAP it only takes into account 

the state of robot D(x, y-1) when deciding to transition to the orange state. When 

robot A(x, y) is in the orange state it uses the states of robots L(x-1, y) and R(x+1, y) to 

determine when if transitions to the green state. Finally, when robot A(x, y) is in the 

green state, it uses its position relative to the ship hull and the states of all the robots 
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in its Von Neumann neighbourhood to determine when it transitions to the purple 

state, indicating the repair structure is complete. Table 4.1 shows the partial truth 

table each robot uses to determine its state transitions based on the states of its 

neighbours, while Figure 4.5 shows how these transitions might unfold. Using LEDs to 

communicating robot states as different colours is a simple but effective method 

which can be used to inform other robots if there is a better position, they could 

occupy to better achieve the required shape and size of the repair structure. 

 

Fig.4.4. Typical Von Neumann neighbourhood with notation adjusted to accurately 

represent the x-y plane is represented in Netlogo simulation software. A (x, y) 

represents the agent in question, L (x-1, y) is the agent to the left, R (x+1, y) is the agent 

to the right, U (x, y+1) is the agent upwards, and D (x, y-1) is the agent down from 

agent A’s position. 
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Table.4.1. Partial truth table of the self-assembling repair robot A(x, y) when it is 

located at the PAP and in the orange state indicating that it is forming the central part 

of a block that is under construction. As discussed above, in this position it only uses the 

states of the neighbouring robots L(x - 1, y) and R(x + 1, y) to dictate its state 

transitions. Only when robot A(x, y) detects that these robots are in the green state 

does it decide to transition to the green state also. Number 1 represents the red state, 

number 2 represents the orange state, and number 3 represents the green state. 

 

L (x - 1, y) 

(t) 

R(x + 1, y) 

(t) 

A (x, y) 

(t + 1) 

1 1 2 

1 2 2 

1 3 2 

2 1 2 

2 2 2 

2 3 2 

3 1 2 

3 2 2 

3 3 3 
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 (t) 

 

(t + 1) 

 

(t + 2) 

     

Fig.4.5. this diagram shows a state transition example using the state transition truth 

table from Table 4.1. Robot A(x, y) at time (t) examines the states of robots L(x-1, y) 

and R(x+1, y) to determine whether it should turn green or remain orange. It observed 

that robot R(x+1, y) was not in the green state during inspection and so chooses to 

remain orange. At time (t+1) robot A(x, y) examines the states of robots L(x-1, y) and 

R(x+1, y) again to check if there has been a change, this time confirming that both 

robots are in the green state. At time step (t+2) robot A(x, y) has transitioned to green 

based on the states of its neighbours observed during the previous step. 
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Once a robot module has successfully navigated to the location of a robot module 

close to the breach location, it can begin the CD self-assembly protocol. The protocol 

instructs each robot to begin attaching to other robots until they collectively form a 

block of robots that spans the full diameter of the breach. The length of this block is 

determined by the cameras which can recognise when the modules have formed a line 

of adequate length, which is achieved by checking if the modules that form each end 

of the block are centred over an intact section of ship hull, but also connected to a 

robot that is centred over the breach. Once the first block has fully formed, the block 

advances by one module body-length (0.05m) and the unattached modules begin 

forming a second block above the first, increasing the total area of the structure. This 

process then repeats until every module on the perimeter of the breach can confirm 

they are not directly above the breach but are still connected to a module that is. In 

this case the robots communicate to each other that a patch of appropriate size has 

been achieved and they enter their final state where they prepare to attach to the hull 

and seal the breach. The result is a square sheet formed of robot modules which is 

large enough to cover the hole. 

At the beginning of this section it was stated that the simulated damage to be repaired 

would be a circular hole and here we revealed that the self-assembly algorithm is 

designed to form a square patch cable of coving this hole. However, the algorithm can 

be adapted to form square patches for a variety of hole shapes by using the forward 

facing camera to determine the maximum diameter of the hole and using this to 

determine the length of connected modules the robot must form. This length ensures 

the patch formed would be sufficient to cover the entire breach, provided enough 

chains of modules are connected together. However, the current approach is best 

suited for addressing circular holes, which were selected as they represent the most 

common form of battle damage sustained from a direct torpedo hit. 

In order for the proposed Self-assembly algorithm to function effectively, the robots 

must be able to link and unlink with relative ease. As discussed in section 4.1.2 the 

robots are designed to use actively controlled magnetic links as they have a lower 

tendency of failure than more common mechanical linking methods in repeated 

coupling/decoupling scenarios. Should the magnetic links prove to be insufficient in 

withstanding the pressure from the surround fluid and forces of waves, a combination 
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of mechanical and magnetic links may be substituted to improve the integrity of the 

patch – even if this may increase the risk of failures of linking and unlinking from other 

robots. However, the ability of the swarm to maintain the integrity of the completed 

structure they form using magnetic links alone is a question that falls outside the scope 

of this scenario and is instead delegated to future works. For the purpose of this 

algorithm, it is assumed that the robots experience no failures to link or unlink during 

the self-assembly process. 

The pseudocode in Fig.4.6 represents our self-assembly algorithm used in all of the 

experiments including those where additional obstacles are modelled. It shows the 

protocols for navigation, obstacle avoidance, and the state transitions each robot 

module undergoes to create the desired square structure. 

Algorithm 1   CD Self-Assembly Algorithm 

1: begin program 

2: 

3:   while unattached to block do 

4: if obstacle ahead = false   then 

5:          if agent ahead = false   then 

6:               face reference point module. 

7:    move forward by 0.05m. 

8:          else  

9:               if agent ahead = red   then 

10:                     move backwards by 0.05m. 

11:    else if agent ahead = green   then 

12:           attach to top of agent. 

13:    else if left neighbour of agent ahead = green   then 

14:           attach to right side of block. 

15:    else 

16:                    attach to left side of block. 

17:             end if 

18:          end if 

19: else 

20:  if space left of agent empty then 

21:   turn left 
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22:   move forward by 0.05m 

23:  else if space right of agent empty then 

24:   turn right 

25:    move forward by 0.05m 

26:  else 

27:   turn left 

28: end if 

29:   end while 

30:   while own state ≠ green do 

31:        if hull breach in line of sight = false then 

32:             own state = green. 

33:        else 

34:             if left neighbour state ≠ green then 

35:                  own state = orange. 

36:             else 

37:                  if right neighbour state ≠ green then 

38:                       own state = orange. 

39:                  else 

40:                       own state = green. 

41:                  end if 

42:             end if 

43:        end if 

44:   end while 

45:   while own state ≠ purple do 

46:        if all neighbour states = green then 

47:             advance 0.05m to cover hull breach. 

48:             if hull breach in line of sight = false then 

49:                  own state = purple. 

50:             end if 

51:        else 

52:             if all neighbour states = purple then 

53:                  own state = purple. 

54:             end if 

55:        end if 

56:   end while 
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57:   while breach ≠ sealed do 

58:        approach and seal hull breach. 

59:   end while 

60: 

61: end program 

 

Fig.4.6. Pseudocode for the navigation, obstacle avoidance, and state transitions of our 

algorithm, instructing agents which module to attach to, and which state to occupy 

based on their displayed state. 

Section 4.3 Experimental setup 

As mentioned in Section 4.1, the experiments are conducted in the 2D simulation 

environment Netlogo using simplified robot morphology. This allowed for simulation of 

larger robot populations which could positively identify surrounding robots and 

obstacles more reliably than in the 3D Webots simulations of Chapter 3. The 

experimental setups are designed to test the ability of the robot swarm to self-

assemble in scenarios of high congestion, where many robots are simultaneously vying 

for limited space to complete their task. The first setup is concerned with testing how 

varying the robot population density affect the time taken to complete repair 

structures of various sizes and how frequently collisions or errors occur. The second 

setup uses a similar configuration to the first, but includes additional obstacles placed 

at three different positions between the approaching robots and the PAP. This 

inclusion is to examine how the inclusion of additional obstacles affects the congestion 

observed in the experiments, and whether is hinders or benefits the system relative to 

the first experiments where no additional obstacles were present. 

The simulated robot modules can freely move in the simulation space, but to reduce 

the widening reality gap related to the simpler morphology used, the robots are 

modelled with a boundary that cannot be crossed by other robots or obstacles. This 

embodiment of the robots means they are unable to move through, over, or under 

other robots and obstacles. In order to overcome obstacles and other robots blocking 

the robots path to the PAP, one of two methods must be used. If an obstacle is 

encountered ahead of the robot it will stop, examine the spaces to its left and right, 

and take the path less obstructed until the obstacle is no longer blocking its path. If 

instead another robot is encountered, it follows the rule which compels it to give way 
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to other robots that are either ahead or to the right of them. When all members of the 

swarm adhere to this rule of avoidance, it reduces the likelihood of collisions with 

robots and obstacles which would hinder the ability of the swarm to aggregate at the 

PAP and perform the assembly in an orderly manner.  

All of the simulated environments use a rectangular arena, which represents a section 

of the ship hull to be inspected as shown in Fig.4.7. The light grey area represents the 

section of ship hull above the waterline, the blue area is the section of ship hull 

beneath the waterline, and the black area represents the hull breach. The robot 

modules are represented as small squares which display one of four colours, 

representing the colour of their LEDs which they use to communicate their respective 

states when in close proximity to other robots: red, orange, green, and purple. All 

robots begin as red squares indicating they have received a signal informing them of 

the PAP location and are in currently in transit to join the repair effort. Green blocks 

represent robots that are forming part of the repair structure and have settled on their 

final location. Orange blocks represent robot modules that are in the process of 

examining the states of other modules while moving to an appropriate place to attach, 

or connected to the structure, but forming part of an incomplete section. When a 

complete repair structure has been formed, the robots use their state and the states of 

their neighbours to propagate this information and become purple blocks, indicating 

that the process is complete and shown in Fig 4.7 (b). 
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Fig.4.7. Netlogo simulated environment, showing (a) robot modules carrying out the 

self-assembly protocol, and (b) robot modules that have successfully completed the 

repair patch. The colours of each block represent the LEDs on each face of the robot, 

which indicates their state: red for in transit, orange for looking for a place to attach, 

green for having already attached to a robot in an appropriate position, and purple 

indicating that a complete structure has been formed. 

All simulations begin with a group of robot modules already deployed in the water, 

ready to approach the ship hull breach. The initial number of robots deployed in the 

environment is deliberately insufficient to form complete repair patch, requiring that 

more robot modules are introduced as the simulation progresses. The number of 

robots added to the simulation each minute to assist with the repair is one of the 

controlled variables, and these deployments occur at steady rates ranging from 2 to 40 

additional robots per minute. This rate of deployment is how increases and decreases 

in robot population density are implemented – breaking high congestion events into 

multiple separate instances allowing for a clearer vision of the effect these high 

congestion events have on the self-assembly process. In addition to the deployment 

rate, the number of robots currently on route to the PAP is also considered and the 

system prevents additional robots from being deployed until less than two full 

deployments of robots are approaching the PAP. It is hypothesised that controlling the 

number of robots deployed to form the repair patch in this way may reduce the risk of 

system failure due to overcrowding while still allowing high congestion events to 

occur. A series of 100 simulated experiments are performed for each variable changed, 

(a) (b) 
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including increases of decreases in robot deployment rate. The results from these 

experiments are graphed in Section 4.4, with each point represents the median value 

obtained all the simulations. 

Section 4.3.1 Robot Congestion Setup 

These experiments address hull breaches less than or equal to 0.6 m in diameter, since 

this represents the upper bound of common torpedo diameters. In this scenario, a hull 

breach has led to a single compartment becoming fully flooded, but flood boundaries 

have been established within the ship to seal the room off from other sections of the 

ship. The constants of this experiment are the shape of the breach (circular), the 

maximum movement speed of the repair robots (0.05m/s), the speed of coupling and 

decoupling of modules (instant), and the speed of information exchange between the 

robots (instant). The variables of this experiment include the location of the hull 

breach (depth of 0.6m to 4.2m) and the size of the breach (diameter of 0.1m to 0.6m). 

Tables 4.2 and 4.3 show these constants and variables and list the range of values 

examined. 

Table.4.2. Constants of the high congestion experiments with their value listed 

Constant Value 

Ship hull breach shape Circular 

Robot maximum speed (meters per 

second) 

0.05 

Coupling/decoupling speed Instant 

Communication speed Instant 

 

Table.4.3. Variables of the high congestion experiments, with their range of variables 

listed. 

Variable Values 

Hull breach depth (meters) 1.2, 2.4, and 3.6 

Hull breach diameter (meters) 0.2, 0.4, and 0.6 

Robot deployment rate (per minute) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 

28, 30, 32, 34, 36, 38, and 40 
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A multi-robot system can be identified as suffering from high congestion when a 

significant fraction of the population is forced to change their speed or direction as a 

result of avoiding collisions with other robots. In the context of these experiments, a 

swarm is considered to be experiencing high congestion if more than 50% of the 

robots must perform robot avoidance on route to the PAP. By varying the number of 

robots deployed each minute and measuring how long it takes the swarm to complete 

the repair against the frequency of robot avoidance events (high congestion), it may be 

possible to identify the point at which the system performance begins to suffer due to 

overcrowding. This could be used to determine which of the deployment rates 

achieves the highest speed of completion without causing more than 50% of the 

population to avoid robot collisions (high congestion). Increasing the depth and 

diameter of the hull breach will change the angles of approach each robot follows 

when navigating to the PAP. This can be used as a secondary method of increasing the 

likelihood of high congestion forming and may reveal another point at which high 

congestion begins to occur due to robots using steep angles of approach, resulting in 

less space to manoeuvre when avoiding collisions with other robots. 

Section 4.3.2 Obstacle Avoidance Setup 

The second set of experiments examine how the inclusion of additional obstacles 

between the approaching robots and the hull breach affects their ability to complete 

their self-assembly task relative to the results from the first scenario. In these 

experiments the hull breach diameter and depth are kept constant at 0.4m and 2.4m 

respectively, choosing to vary the size and location of the obstacles instead. All the 

obstacles have a circular shape and come in one of three different diameters: 0.2m for 

half the width of the breach, 0.4m for the same size as the breach, and 0.6m for one 

and a half times the size of the breach. In addition to this, each obstacle will occupy 

one of three separate locations between the starting point of the robots’ journey and 

the PAP; above and left of the breach, directly above the breach, and above and right 

of the breach as illustrated in Fig.4.8. Tables 4.4 and 4.5 show the constants and 

variables of these obstacle avoidance experiments and list the range of values 

examined. 
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Fig.4.8. Netlogo simulated environment, showing (a) small obstacle (0.2m diameter) 

placed above and to the left of the breach, (b) a medium obstacle (0.4m diameter) 

directly above the breach, and (c) a large obstacle (0.6m diameter) above and to the 

right of the breach. 

Table.4.4. Constants of the obstacle avoidance experiments with their value listed. 

Constant Value 

Obstacle shape Circular 

Ship hull breach shape Circular 

Hull breach diameter (meters) 0.4 

Hull breach depth (meters) 2.4 

Robot maximum speed (meters per 

second) 

0.05 

Coupling/decoupling speed Instant 

Communication speed Instant 

(a) (b) 

(c) 
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Table.4.5. Variables of the obstacle avoidance experiments with their range of 

variables listed. 

Variable Values 

Obstacle location Left, centre, and right 

Obstacle diameter (meters) 0.2, 0.4, and 0.6 

Robot deployment rate (per minute) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 

28, 30, 32, 34, 36, 38, and 40 

 

The inclusion of additional obstacles may serve to slow the overall progress of the 

assembly, or prove a benefit in scenarios using higher deployment rates of robots by 

shifting the location of the congestion away from the PAP, allowing for faster assembly 

of the structure by reducing overcrowding. The inclusion of an obstacle may also cause 

some robots to alter their original course such that they encounter fewer robots along 

their new path, reducing the congestion experienced across the swarm as a whole. 

Section 4.4 Results 

In this section, the results from the robot congestion and obstacle avoidance 

experiments, as described in Section 4.3, are presented and compared. A series of 100 

simulated experiments is performed for each variable changed in the two scenarios, 

such as increases or decreases in robot deployment rate, and the size and location of 

the hull breaches and additional obstacles. Each subsection presents six of the most 

significant graphs, with the remainder delegated to Appendix C. Each point on these 

graphs represents the median value obtained from successful runs of each set of 100 

simulations, excluding the scenarios where robots become stuck close to the PAP, 

causing a blockage to form and preventing any further assembly actions of robots. The 

cause of these blockage events and their implications are discussed within this section, 

while how this information can be used to improve the self-assembly approach is 

discussed in Section 4.5. The graphs are presented in sets of two according to varying 

breach depth, with the first graph in each set showing the time taken for each robot 

population to complete the self-assembly of a repair patch. The second graph of each 

set shows the percentage of each robot population which encountered another robot 

on route to the PAP, causing it to change it speed and direction, referred to as robot 
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congestion percentage. In Section 4.4.2 the second graph of each set also includes the 

percentage of the robot population which have encountered an obstacle on route to 

the PAP, referred to as obstacle avoidance percentage, to measure how this affects the 

results. 

Section 4.4.1 Robot Congestion Results 

The robot congestion experiments examined the swarm’s ability to perform the self-

assembly protocol on hull breaches of varying size and at varying depths beneath the 

waterline. The results of these experiments revealed truths that hold across all 

scenarios such that it is only necessary to show a sample of the results here to identify 

varying trends. As such, the graphs only show results from scenarios using a breach 

diameter of 0.4 meters. Table 4.6 shows samples from all the scenarios to demonstrate 

some of the correlations, but otherwise full results are delegated to Appendix C. 

Increasing the diameter of the breach predictably increases the time taken for each 

robot population to repair the breach – doubling the size of the breach doubles the 

time taken to perform the repair. Increasing the number of robots deployed each 

minute decreases the time taken to complete self-assembly, but also increases the 

number of robots performing robot avoidance. It can be observed from figure 4.9 (a) 

and (b) that as the percentage of the robot population experiencing congestion 

increases, the gains in competition speed start to decrease. 

This correlation may at first seem to be the primary cause of the decreased 

performance; however this trend is not perfectly mirrored in figures 4.10 and 4.11 

where the time taken to complete the self-assembly is closely correlated with that of 

figure 4.9 (a), but the percentage of robot congestion decreases when the depth of the 

breach decreases. This would indicate that the depth of the breach has a more 

significant impact on the number of robot avoidance events than initially considered. 

However, the reason for this may have less to do with breach depth and more to do 

with the angle of approach each robot takes on approaching the PAP. As the depth of 

the breach decreases, robots deployed at the top right and left of the arena begin to 

use shallower angles of approach than those deployed in the top middle. Shallower 

angles of approach seem to form paths that are more evenly spread across the arena 

than steep angles of approach, which concentrates the density of the robot population 

in the area directly above the PAP. 



114 
 

Our original measure of optimal robot deployment rate was to be determined by the 

robots which could complete the self-assembly procedure in the fastest time without 

pushing more than 50% of the total population to experience robot avoidance (high 

congestion). The results show that robot congestion varies according to the depth of 

the breach and the consequent angles of approach used by the swarm, so the optimal 

deployment rate varies also. So for swarms using the proposed self-assembly protocol 

to address breaches with a diameter of 0.4m, the optimal deployment rate (robot 

congestion < 50%) at 3.6m is 8 robots per minute (rob/m) which resulted in a 

completion time of 15.5 minutes, at 2.4m is 12 rob/m which resulted in a completion 

time of 10.33 minutes, and at 1.2m is 16 rob/m which resulted in a completion time of 

7.7 minutes. These results have helped identify aspects of the approach which could 

be adjusted to improve the self-assembly protocol, such as changing the systems 

reliance on a PAP and controlling the robot angles of approach, which are discussed 

further in Section 4.5. 
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Fig.4.9. Graphs of results from the robot congestion experiments that shows (a) the 

time taken for each robot population to complete the self-assembly, and (b) the robot 

congestion percentage formed for varying deployment rates. Each result represents the 

median value obtained from 100 simulations, with error bars showing the standard 

deviation. This plot shows the results of the experiments using a breach diameter of 0.4 

meters at a breach depth of 3.6 meters. 
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Fig.4.10. Graphs of results from the robot congestion experiments that shows (a) the 

time taken for each robot population to complete the self-assembly, and (b) the robot 

congestion percentage formed for varying deployment rates. This plot shows the 

results of the experiments using a breach diameter of 0.4 meters at a breach depth of 

2.4 meters. 
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Fig.4.11. Graphs of results from the robot congestion experiments that shows (a) the 

time taken for each robot population to complete the self-assembly, and (b) the robot 

congestion percentage formed for varying deployment rates. This plot shows the 

results of the experiments using a breach diameter of 0.4 meters at a breach depth of 

1.2 meters. 
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Table 4.6 Sample results from across all robot congestion scenarios. 

Breach 

Diameter 

(meters 

Breach 

Depth 

(meters) 

Robot 

Deployment 

Rate 

(per minute) 

Time 

Taken 

(seconds) 

Robot 

Congestion 

(%) 

0.2 3.6 10 330 58 

0.2 3.6 20 208 82 

0.2 3.6 30 163 85 

0.4 3.6 10 751 55 

0.4 3.6 20 407 88 

0.4 3.6 30 304 89 

0.6 3.6 10 1372 55 

0.6 3.6 20 726 88 

0.6 3.6 30 512 91 

0.2 2.4 10 308 44 

0.2 2.4 20 184 82 

0.2 2.4 30 138 83 

0.4 2.4 10 732 43 

0.4 2.4 20 389 83 

0.4 2.4 30 285 90 

0.6 2.4 10 1358 31 

0.6 2.4 20 706 85 

0.6 2.4 30 488 90 

0.2 1.2 10 289 13 

0.2 1.2 20 161 69 

0.2 1.2 30 115 76 

0.4 1.2 10 715 19 

0.4 1.2 20 373 70 

0.4 1.2 30 262 87 

0.6 1.2 10 1348 14 

0.6 1.2 20 696 64 

0.6 1.2 30 467 88 

Section 4.4.2 Obstacle Avoidance Results 

In the obstacle avoidance experiments the same self-assembly protocol is examined, 

but additional obstacles are introduced to the environment to measure if their 

inclusion affects the prevalence of robot congestion. The depth and diameter of the 

hull breach are kept the same at 2.4m and 0.4m respectively, but the size and location 

of the obstacles are varied. The results from these experiments reveal some 

interesting effects of including obstacles at the three locations: above and left of the 
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PAP, directly above the PAP, and above and right of the PAP. Obstacle diameters of 

0.2m and 0.4m result in fewer obstacle avoidance events and so their effect is less 

pronounced than experiments using obstacle diameters of 0.6m. For this reason, the 

graphs show the results from the experiments using the largest obstacle diameter to 

make the effect of their inclusion clearer. Table 4.6 provides samples from all of the 

scenarios to help demonstrate trends, while full results of the smaller obstacle 

experiments are delegated to Appendix C. 

Comparing the results from figures 4.12(a), 4.13(a), and 4.14 (a) to figure 4.10 (a) 

reveals that that inclusion of additional obstacles has not had a significant impact on 

the time taken to complete the self-assembly task. However, including the obstacles at 

the aforementioned locations has had a marked effect on the percentage of robot 

congestion experienced by the swarm. Figures 4.12 and 4.14 provide a mirror image of 

each other, showing how placing obstacles directly in the path of the robots 

approaching the PAP with the shallowest angles of approach has a significant effect on 

the amount of recorded robot congestion. Comparing Figure 4.13 (b) to Figure 4.10 (b) 

shows how the obstacle avoidance events occurring directly above the PAP has had a 

less significant effect on the recorded robot congestion percentage than when placed 

directly in the path of robots following shallow angles but has also increased the total 

amount of robot congestion. The inclusion of the obstacles did not noticeably change 

the number of robots than can be deployed per minute before experiencing high 

congestion (> 50%) when placed above the PAP. However, including obstacle above 

and left or above and right has effectively reduced the deployment rate from is 12 

rob/m which resulted in a completion time of 10.33 minutes, to 8 rob/m which 

resulted in a completion time of 15.23 minutes.  

Avoiding the obstacles placed on the left and the right seems to have caused the 

robots to take alternate routes to the PAP with a different angle of approach, with a 

knock-on effect of increasing the number of recorded robot avoidance events. This 

supports the view that controlling the angle of approach used by the robots on 

approach to the PAP may be leveraged to decrease robot congestion, which could 

allow for a greater number of robots to be deployed at one time to perform the self-

assembly protocol, and ultimately decreasing the time taken to complete the ship hull 

repair. These considerations are discussed in more detail in the following Section 4.5. 
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The full program code used to conduct these experiments is included in Appendix B 

and full videos of the simulations showing the self-assembly protocol can be accessed 

via the dedicated GitHub repository at https://github.com/MattSHaire/Emergency-

Ship-Hull-Repair. 
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Fig.4.12. Graphs of results from the obstacle avoidance experiments that shows (a) the 

time taken for each robot population to complete the self-assembly, and (b) the robot 

congestion and obstacle avoidance percentages formed for varying deployment rates. 

Each result represents the median value obtained from 100 simulations, with error bars 

showing the standard deviation. This plot shows the results of the experiments using an 

obstacle diameter of 0.6 meters at the location above and left of the PAP. 
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Fig.4.13. Graphs of results from the obstacle avoidance experiments that shows (a) the 

time taken for each robot population to complete the self-assembly, and (b) the robot 

congestion and obstacle avoidance percentages formed for varying deployment rates. 

This plot shows the results of the experiments using an obstacle diameter of 0.6 meters 

at the location directly above the PAP. 
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Fig.4.14. Graphs of results from the obstacle avoidance experiments that shows (a) the 

time taken for each robot population to complete the self-assembly, and (b) the robot 

congestion and obstacle avoidance percentages formed for varying deployment rates. 

This plot shows the results of the experiments using an obstacle diameter of 0.6 meters 

at the location above and right of the PAP. 
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Table 4.7 Sample results from across all obstacle avoidance scenarios. 

Obstacle 

Diameter 

(meters 

Obstacle 

Location 

Robot 

Deployment 

Rate 

(per minute) 

Time 

Taken 

(seconds) 

Robot 

Congestion 

(%) 

Obstacle 

Avoidance 

(%) 

0.2 left 10 731 22 10 

0.2 left 20 392 67 15 

0.2 left 30 285 84 13 

0.4 left 10 733 49 29 

0.4 left 20 393 84 24 

0.4 left 30 283 90 25 

0.6 left 10 733 52 39 

0.6 left 20 393 87 38 

0.6 left 30 288 91 35 

0.2 centre 10 731 14 0 

0.2 centre 20 391 52 10 

0.2 centre 30 283 86 13 

0.4 centre 10 730 32 20 

0.4 centre 20 389 81 20 

0.4 centre 30 282 88 20 

0.6 centre 10 733 51 20 

0.6 centre 20 394 83 30 

0.6 centre 30 284 89 26 

0.2 right 10 732 22 10 

0.2 right 20 391 67 15 

0.2 right 30 282 83 13 

0.4 right 10 734 51 29 

0.4 right 20 396 85 24 

0.4 right 30 288 91 25 

0.6 right 10 736 55 39 

0.6 right 20 396 87 39 

0.6 right 30 290 92 35 

Section 4.5 Discussion 

The results from the Section 4.4 identified trends that hold across breach sizes and 

depths , as shown in tables 4.6 and 4.7, and confirm the hypothesis that increasing the 

number of robots deployed per minute decreases the time taken for the swarm to 

aggregate at the PAP and perform the self-assembly, but sees diminished returns due 

to increased robot congestion. The results also helped reveal that occurrences of robot 

congestion events can be disrupted by changing the angle of approach the robots use 
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when approach the breach by way of additional obstacles. The diminished returns 

observed in time taken to complete the repair are primarily due to the overcrowding 

of robots on approach to the PAP. Using a single assembly point may be appropriate 

for smaller swarm sizes, as observed from the results which show how fewer robot 

avoidance events occur when the robot deployment rate is held below 8 robots per 

minute, but unfit for larger swarms. As the number of robots swarming about the PAP 

increases, so too does the likelihood of robots becoming stuck near this point and 

becoming unable to manoeuvre away – leading to blockages which could lead the 

system to fail. This is in agreement with existing literature which argues that increased 

congestion in restricted arenas can have a detrimental effect on performance. The 

following section discusses how we can use this analysis to inform the design guidance 

of such systems, overcoming the issues identified, and leading to a more reliable 

method of self-assembly. 

There are a variety of ways one could address the issues of overcrowding in these 

experiments based on the data gathered in Section 4.4. One such method of 

overcoming the limitation imposed by using a single assembly point would be to 

introduce multiple alternative assembly points which robots could navigate to if the 

PAP is too congested. This would allow the robots to better distribute themselves 

around the hull breach and reduce the number of robot vying for space about a single 

point, creating a more scalable approach. An extension of this adjustment would be to 

replace the concept of assembly points with a more general assembly area (GAA), 

where the robots have more control over their angles of approach and instructing 

them instead to attach to other robots in the general vicinity to form the necessary 

patch. However, such a significant change to the approach would warrant a new 

algorithm that could account for not using a single point, but still using the states of 

neighbouring robots and hull breach location to determine its next actions. Such an 

approach is outlined below. 

This modified method proposes an alternative self-assembly protocol designed for 

robots approaching the general location of the hull breach from different directions 

with varying angle of approach as this better represents the robot distribution likely to 

follow the ship hull inspection stage of repair presented in Chapter 3. Further to 

avoiding overcrowding about a single point, this approach is also intended to improve 



126 
 

the efficiency of the approach by making the shape of the repair patch more specific. 

Rather than assembling to form a predefined square structure of adequate size, this 

approach instructs the robots to form a structure closer to the shape of the hull 

damage. The shape of the resultant patch is dictated by the shape of the hull breach 

such that the hole in the ship serves as a rough template for the robots to copy. This 

approach is intended as a more efficient use of the robots forming the patch, reducing 

the number of redundant robots on the perimeter of the hull breach as observed in 

the previous self-assembly approach. 

For this approach to function correctly, the abilities of the robots to communicate and 

sense their environment must remain unchanged from those outlined in Section 4.1. 

The robots should still be able to sense the presence of other robots using side-

mounted proximity sensors and communicate over short distances using 

omnidirectional low frequency sonar sysetms, as shown in Fig.4.5. Most improtantly, 

they should still exchange information about their respective states when physically 

connected to other robots using their tri-coloured LEDs and corresponding RGB 

sensors, as shown Fig.4.6. The biggest distinction is the method by which the robots 

self-assemble to form a structure which mimics the shape of the damage to be 

repaired. However, this self-assembly approach is still intended to function provided a 

robot has already located the hull breach, but unlike the previous method the protocol 

functions well regardless which position the robot occupies relative to the hull 

damage. The first robot broadcasts its position which gives an indication of GAA which 

can be anywhere above the hull breach, but most likely on the perimeter of the 

damage. Figure 4.15 shows a finite state machine of the new approach describing how 

the robot transitions between the various states to form the repair structure. 
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States Transitions 

S Approach the general assembly area a Robot is above the hull breach 

R Activate red LED rc Connected to a robot with a red state 

G Activate green LED gc Connected to a robot with a green 

state 

B Activate blue LED bc Connected to a robot with a blue 

state 

F Finished self-assembly fn Full neighbourhood of robots 

confirmed 

Fig.4.15. Finite state machine and transition table for the Improved self-assembly 

protocol. This approach forms a repair structure that mimics the shape of the ship hull 

breach, reducing the number of unessential robots. 

All robots on approach to the GAA begin in the (S) state and have no LEDs active, 

indicating that they are performing the aggregation behaviour which come before the 

self-assembly behaviour. When the robot nears the assembly area there are three 

potential events it will follow. If it enters the GAA and detects that it is above the hull 

breach (a) it will transition to the (R) state, activating its red LED and begin searching 

for other robots to connect to in its vicinity. If it enters the GAA but encounters a robot 

before it detects it is above the hull breach it will examine the state of that robot using 

its phototransistor. If the robot it detected is displaying a red LED (R), this indicates it 

has encountered a robot on the outer most edge breach (!a & rc) and will physically 

attach to this robot, transitioning to the (G) state, activating its green LED. If the robot 
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encounters a robot before encountering the hull breach in the GAA that is displaying a 

green LED (!a & gc & !rc), it will physically attach to it and transition to the (B) state, 

activating its blue LED. If the robot encounters robots in the (B) state around the GAA, 

it will not attach and instead look for another robot to attach to in the (G) or (R) state. 

Once physically connected to a robot and within the GAA, the robots next actions are 

determined by the number of robots in its Von Neumann neighbourhood and their 

respective states. If the robot in question is occupying the (R) state, it will continue to 

hold this state until it has detected a full neighbourhood and one of its neighbours is 

displaying the blue state (fn & bc), at which point it will transition to the (G) state. 

Robots occupying the (G) state will continue to occupy this state until the same 

conditions are met (fn & bc), at which point it will transition to the (B) state. Once all 

robots have reached the (B) state, it will work to hold its position and state, 

transitioning to the (F) state to indicate it has fulfilled its function for the self-assembly 

procedure. 

The procedure described above provides an alternative method of carrying out self-

assembly while avoiding the pitfalls of overcrowding and handicaps imposed by 

unfavourable angles of approach which occur when relying on a single point of 

assembly. Future work could investigate the effectiveness of this new approach in 

comparison to the original aggregation and self-assembly protocol but in the 

meantime, the current approach may suffice with respect to how the complete 

emergency ship hull repair approach could be expected to unfold. The proposed self-

assembly protocol that relies on a single point of assembly and varied angles of 

approach has proved capable of forming a repair patch of adequate shape and size to 

address hull breaches as originally outlined in Section 4.1. The optimal number of 

robots to be deployed each minute using this approach has been identified in Section 

4.3 and shown to vary according to the breach depth and size. 

This chapter marks the end of the current research into emergency ship hull repair 

using swarm of autonomous underwater robots. Chapter 5 instead moves into the 

realm of nature-inspired swarm robotics, with focus given to obstacle avoidance in 

large swarm performing foraging behaviours as discussed in Section 2.7 of the 

literature review. 
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Chapter 5.  Collective Foraging Using Nature Inspired 

Swarm Robots 

Foraging, as discussed in Section 2.7, is a behaviour that allows agents in an arena to 

seek out and retrieve objects of interest and can be described from the individual’s 

perspective as a sequence of tasks: exploration of an environment surrounding a 

depot, identifying objects and areas of interest, returning objects to the depot, 

communicating its discovery with others, and returning to areas of interest to collect 

more objects (Dorigo and Di Caro, 1999). How cooperative teams of agents can work 

together to achieve more efficient and robust collective foraging strategies is a subject 

which can prove very beneficial for engineers designing multi robot systems. Distance-

quality trade-offs and foraging strategies which can scale well with different swarm 

sizes are of particular interest. 

The study presented in this Chapter is an extension of a study on pheromone-based 

collective foraging (Font Llenas et al. 2018) and shows how one can achieve a 

sophisticated collective foraging strategy with minimalist agents using a virtual 

pheromone system of stigmergic communication and simple wall avoidance behaviour 

(Talamali et al., 2020). The controllers implemented on the individual robots use 

simplified binary pheromone sensors but prove to be capable of reproducing classical 

foraging experiments that used more capable agents that utilise their ability to sense 

pheromone concentrations and follow gradients. The wall avoidance behaviour is 

implemented using a similar binary sensor allowing robots to avoid collisions with the 

bounded arena. A key feature of the controller is a parameter which can be tuned to 

adjust the selectivity of individual agents comparing the distance of an object of 

interest from a central depot and quality of the object. The system is examined in the 

ARGOS simulator (Pinciroli et al., 2018) and verified using a physical swarm of up to 

200 robots using the Augmented Reality Kilobots (ARK) system to implement virtual 

pheromone trails, sensors, and actuators (Reina at al., 2017). 

The author’s main contribution to research from this study is the implementation of 

obstacle avoidance behaviour with low computational overhead on a large swarm of 

robots tasked with collective foraging in environments. This inclusion of obstacle 

avoidance behaviour solved a major issue where the physical robots would previously 
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become stuck against the walls of their bounded arena and other robots. By 

implementing obstacle avoidance, the robots are able to avoid falling into these un-

recoverable states, which improves the performance of the swarm, and creates a 

system more capable of emulating the collective foraging behaviours observed in 

biological counterparts such as ant colonies. 

Section 5.1 presents the morphology of the simulated and physical robots used in the 

experiments with details of how the virtual sensors and actuators implemented to 

augment their existing abilities. Section 5.2 discussed the methodology used to create 

the optimal resource collection model, with details on how it is validated and verified 

through simulation and experimentation provided in Section 5.3. The results of these 

simulations and experiments are presented in Section 5.4 and Section 5.5 discusses 

these results, their implications, and how the wall avoidance behaviour can be adapted 

to implement robot avoidance which has been shown to reduce collisions and enable 

more efficient foraging strategies. 

Section 5.1 Problem Definition and Robot Morphology 

This study investigates the problem of resource collection in an unknown environment 

by a swarm of robots with limited computational and memory capabilities. S number 

of robots occupy an environment which features a central depot of radius 10cm, 

surrounded by n circular source areas of radius 10cm, each referred to as Ai where i ∈ 

{1,..., n}. Each of these areas offers an unlimited number of items of varying quality Qi, 

which is a numerical indication of the importance of the resource with higher values 

indicating items of greater importance; this system is intended to mimic the nutritional 

value of items in animal foraging. When a robot enters a source area, it immediately 

collects one virtual item and returns it to the central circular depot. In this model the 

handling time of the resource item and time taken to discover items within the source 

areas are both assumed to be instantaneous. Robot are modelled with the ability to 

only carry one item at a time between the source areas and central depot and the 

robot speed when carrying an item remains the same as when not carrying an item. 

Using higher levels of abstraction for these aspects helps keep the collective motion 

aspect and allocation of robots to source areas as the focus of the study. The main 

purpose of this study is to discern how indirect communication, in the form of virtual 

pheromones, can be leveraged by the robot swarm to balance the trade-off between 
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quality of resource items and the distance between the central depot and source areas 

– resulting in more optimal foraging strategies.  

In order to carry out the behaviours investigated in this study, the robots must possess 

capabilities which allow them to operate in an unknown environment. With limited 

computational and memory abilities, the robots will be incapable of memorising the 

locations of the source areas and must instead rely on pheromone trails to rediscover 

these sources. To accomplish this, the robots must be capable of stigmergic 

communication (see Section 2.7) by applying and reading temporary marks in the 

environment. The robots are also assumed to always know the direction to the central 

depot relative to their position, similar to the path integration abilities observed in 

social insects (Collett and Collett, 2002; Bregy et al., 2008; Heinze et al., 2018). Finally, 

the robots will be able to detect when obstacles are in front of them but will only use 

this ability for the purpose of avoiding collisions. This ability to sense objects is not 

utilised to detect other robots and robots are not allowed to directly communicate 

amongst each other as this would complicate the results of this study which is 

primarily concerned with the capabilities of indirect communication only. 

The following sections discuss the morphology of the robots selected to serve as 

foraging agents in both the simulations and physical experiments (5.1.1), how the 

capabilities of these robots are expanded by using augmented reality to model 

additional virtual sensors and actuators (5.1.2), and how these sensors are used to 

implement pheromone trails following and wall avoidance behaviours (5.1.3). 

Section 5.1.1 Kilobots 

The robot selected to conduct the simulated and physical experiments is the Kilobot 

Fig. (5.1): a minimalistic robot which has become a popular choice for swarm robotics 

research concerning agents with limited physical and cognitive abilities (Rubenstein et 

al. 2014). Kilobots are designed to move on flat surfaces using a pair of vibration 

motors to perform a slip-stick differential drive motion. This system allows the Kilobot 

to move at an approximate speed of 1 cm/s and rotate at a rate of approximately 

40°/s. Though small, Kilobots come with a number of capabilities such as the ability to 

directly communicate with other Kilobots within 10cm using its infrared (IR) 

transceiver, display its internal state to others by using its RGB LED, detect changes in 
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Lux intensity using an on-board ambient-light sensor, and is able to receive messages 

from an overhead control board (OHC). The OHC is a key component which allows for 

the augmentation of Kilobots with virtual sensors and actuators (see Section 5.1.2) 

which enables the agents to perform more complex tasks.  

 

Fig.5.1. a picture of a Kilobot with a 3D printed ring originally designed for the study of 

Pratissoli et al. (2019) and reused in Talamali et al. (2020). The addition of the ring 

significantly improves the ability of the ARK system to track Kilobots and detect their 

LED colours. 

Simulation of both the Kilobots and the ARK system were made possible thanks to the 

work from Pinciroli et al. (2018) who successfully developed a plugin for the popular 

ARGoS simulator. Their plugin accurately captures the behaviour of real Kilobot 

allowing for faster simulation of behaviours in very large swarms prior to real-world 

experiments. In simulation, the process of resetting each robot to new start locations 

and resetting its memory is a very fast simple process, but this is not the case for 

physical swarms. In real-world experiments, programming each Kilobot individually is a 

very time-consuming process which significantly slows the rate at which experiments 

can be run by increasing the time taken to reset each Kilobot. The OHC can be used to 

overcome this bottleneck by allowing users to quickly program multiple Kilobots 

through wireless IR communication, significantly reducing the time taken to reset the 

swarm for each experiment. The Kilobot is a low-cost and easy-to-operate platform, 

and its simplicity makes it an ideal choice for these experiments which are concerned 
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with how optimal foraging strategies can be achieved using agents with limited 

capabilities. 

Section 5.1.2 Augmented Reality Kilobots (ARK) 

Kilobots are simple robots with only limited capabilities and while previous 

experiments have shown that they are capable of recreating common swarm 

behaviours such as exploration, they require additional functionality to perform more 

complex behaviours such as stigmergic communication. To extend the abilities of the 

Kilobot and allow for the modelling of complex behaviours, Reina et al. (2017) and 

Valentini et al. (2018) implemented open-source technology that could augment the 

Kilobots capabilities with virtual sensors and actuators, referred to as Augmented 

Reality for Kilobots (ARK) and the Kilogrid respectively. The ARK system was selected as 

the augmentation method for the Kilobots in this study because of its low installation 

cost and ability to perform other tasks such as motor calibration, unique ID assignment 

and video recording of experiments. 

The ARK system uses an overhead camera array to track the Kilobots, an IR-OHC to 

communicate with the Kilobots, and a computer which serves as a base control station 

(BCS) to simulate the virtual environment. The virtual sensor information for each 

Kilobot is computed on the BCS and communicated to the specific robots with 

addressed messages via the OHC. The virtual actuator information is computed on-

board by the Kilobots and is communicated to the BCS using colour-coded messages 

which it displays using its LEDs. The position and colour of the LED is captured by the 

overhead cameras and sent to the BCS which processes the information and updates 

the virtual environment appropriately. The BCS is also responsible for updating the 

temporal dynamics of the virtual environment such that entropy of pheromone 

concentration can be accurately modelled. Using the ARK system this way allows each 

Kilobot to receive personalised information about its virtual sensors in real-time and 

autonomously decides when to modify the virtual environment using virtual actuators. 

The ARK system is used to allow robots to apply and detect virtual pheromone which 

evaporates and diffuses over time – mimicking the behaviour of stigmergic 

communication observed in ant species (see Section 2.7). To achieve this, each Kilobot 
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is equipped with five additional virtual sensors and one virtual actuator. As specified in 

Talamali et al. (2020) each Kilobot is equipped with the following: 

Sensor / Actuator Description 

Area sensor The Kilobots can detect if they are within the depot or a 

source area and distinguish between the two. 

Item quality sensor When the Kilobots enter a source area they can assess 

the quality of the item available for retrieval. When the 

Kilobots enter the depot, they can recognise the quality 

of the items that have been collected up to that instant. 

Depot direction sensor The Kilobots always knows the direction of the depot 

relative to their own position. 

Wall sensor The Kilobots can sense if there is a wall (obstacle) at a 

distance of ∼ 5cm in front of themselves; note that this 

ability is not used in this study to detect the presence of 

other robots (Fig.5.2). 

Pheromone gland actuator The Kilobots can deposit a drop of pheromone at their 

location - they express this behaviour by blinking their 

top-mounted LED blue. 

Pheromone antennae The Kilobots can sense the presence of pheromone at a 

distance of ∼ 3.5cm from their centre in front of 

themselves. 

 

The Kilobot swarm operates in a bounded arena which ARK represents as a discrete 2D 

matrix made up of cells measuring 6.7 × 6.7𝑚𝑚2. ARK stores information about 

deposited pheromone presence and concentration in each respective cell forming a 

pheromone matrix which is updated at each time-step of length ∆𝑡 = 0.5𝑠 to reflect 

the evaporation and diffusion of pheromone. The pheromone matrix can be altered at 

each time step by robots depositing pheromone, where each drop represents of an 

increment of 𝜙 = 250 in the cell under the robot’s centre. The concentration of 

pheromone in each matrix cell 𝑚(𝑖,𝑗) is determined by Eq. (5.1) which was first 

introduced in Talamali et al. (2020): 
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𝑚(𝑖,𝑗) = 𝑚(𝑖,𝑗)[𝑒log(0.5)𝜖∆𝑡 − 4𝛾∆𝑡] + [𝑚(𝑖,𝑗±1) + 𝑚(𝑖±1,𝑗)]𝛾∆𝑡                         (5.1) 

where the parameters 𝜖 = 0.1 and 𝛾 = 0.02 are the evaporation and diffusion rates, 

respectively. Eq. (5.1) is a discrete realisation of Fick’s law of diffusion (Fick, 1855), 

where the exponential term in introduced to take into account pheromone 

evaporation, which is consistent with biological studies (Garnier et al. 2013). 

Section 5.1.3 Stigmergic Communication and Wall Avoidance 

The virtual sensors and actuators of the augmented Kilobots enable them to perform 

the two behaviours which are essential to completing the foraging task – stigmergic 

communication and wall avoidance (Fig. 5.2 and 5.3 respectively). The Kilobots are 

capable of sensing the presence of virtual pheromone in front of themselves at a 

distance of ~3.5𝑐𝑚 in four 45° wide sectors for a total detection arc of 180°.The 

virtual sensors signify the presence or absence of pheromone as binary values and are 

not capable of discerning the quantity or concentration of the pheromone they are 

sensing. When a Kilobot who is exploring detects pheromone, this event triggers a 

change in behaviour causing the Kilobot to abandon its search and instead move 

towards the detected pheromone as indicated in Fig. 5.2.  

 

Fig.5.2. This diagram illustrates the Kilobot pheromone detection system via the ARK as 

introduced in Talamali et al. (2020). 

Each Kilobot can detect the presence of pheromone of any of its four forward facing 

45° wide sectors. In Fig. 5.2, the virtual pheromones are represented as blue circles 
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and because their presence is represented by the Kilobot as binary values, its virtual 

sensor readings would effectively read as [1, 0, 1, 0]. In the illustration, the robot has 

encountered pheromone in two of its detection sectors and must choose one direction 

to follow. It does this by comparing the angles between each sector in which 

pheromone is present and the direction of the depot (the depot being represented by 

a white house within a dark blue circle) and choosing to follow the sector which has 

the largest angle of difference in direction (represented as red and green arrows). The 

pheromone in sector 0 has a greater angle of difference than the pheromone in sector 

2 and so the robot chooses to move in the direction of the pheromone in sector 0. 

The Kilobots are also able to detect the presence of obstacles in front of themselves at 

a distance of ~5𝑐𝑚 in four 45° wide sectors for a total detection arc of 180°. Similar 

to the pheromone detection system, the presence of obstacles in each sector is 

represented as binary values and is used to indicate when the robot has encountered a 

wall, but not other robots. This is used by the robot to avoid collisions with obstacles 

that fall between itself and either the depot or the source area.  

 

 

(a) (b) 

(c) (d) 
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Fig.5.3. This diagram illustrates the Kilobot wall avoidance system via the ARK. 

When a wall is detected by the two central sectors in the range [−45°, 45°] of the 

robot’s heading the robot will turn left or right at an angle of 22.5° in the opposite 

direction of the sensed obstacle until an obstacle is no longer detected in the two 

central sectors, at which point the robot will then move in a straight line for 2.5𝑠 and 

then return to its previous task of item retrieval, or exploration. Obstacles are detected 

as grey squares (represented in Fig 5.3 as a red square) and similar to the detection of 

pheromone, the Kilobot represents this obstacle presence as binary values, such that 

its virtual sensor readings would be [1, 1, 0, 0] in (a). In the illustration, the robot has 

encountered an obstacle in one of its central sectors (AO state) while exploring the 

environment (RW state) and must choose an appropriate direction to turn and avoid a 

collision. It does this by comparing the presence of obstacles in the two central sectors 

in the range: [−45°, 45°] of its current heading. There is an obstacle detected in sector 

1 and not sector 2 and so the robot chooses to rotate right in steps of 22.5° until no 

obstacle is detected in the two central sectors (b), and then moves in a straight line for 

2.5𝑠 (c), after which it will return to its previous task of exploration (d). Both stigmergic 

communication and wall avoidance behaviours are better characterised by the 

probabilistic finite state machine (PFSM) used to describe the individual behaviour of 

the Kilobots (Fig.5.4) and discussed in more detail in the following Section 5.2 on the 

methodology. 

Section 5.2 Methodology 

Section 5.2.1 explains how the desired foraging behaviour can be described at the 

microscopic level using a probabilistic finite state machine (PFSM) to represent the 

individual robot behaviours, as illustrated in Fig. 5.4. The main structure of the 

behaviour is based on the control scheme designed by Font Llenas et al. (2018), but 

has been enriched by the inclusion of a new obstacle avoidance state (indicated as AO 

in Fig. 5.4). The abilities of the individual have been further enhanced by including an 

additional form of indirect communication which enables adaptability to different item 

qualities (Section 5.2.1), and by allowing for probabilistic transitions and tuneable 

pheromone functions (Section 5.2.2). 
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Fig. 5.4 Probabilistic finite state machine (PFSM) of the individual robot behaviour from 

Talamali et al. (2020). Circles represent states and arrows represent transitions. The 

labels for each state and transition are listed in the table adjoined to the diagram. 

Section 5.2.1 Individual Behaviour 

In all the examined scenarios, the robots do not possess a-priori knowledge of the 

environment surrounding the depot such as the number of items, their location, or 

item qualities. As such, the first action of the robots is to begin exploring the 

environment to discover item source areas (RW state in Fig.5.4). The Kilobots’ limited 

capabilities (Section 5.1.1) prohibit the use of more complex coordinated search 

patterns such as those discussed in Section 2.5, and instead force the robots to rely on 

using an isotropic random walk to explore. Though less efficient than coordinated 

exploration, random walks provide a simple but effective method of searching for 

targets in unknown environments (Dimidov et al. 2016) most suitable to simple robot 

swarms. 

When executing the random walk, the robots will alternate between travelling in a 

straight motion for 10 seconds, and performing a uniformly random rotation 

between[−𝜋, 𝜋]; a pattern which repeats until the robot encounters an event which 

triggers a transition to a new state. One such event is when a robot encounters a 

source area, which causes the robot to (virtually) pick up an item and begin 

transporting it to the central depot (GD state in Fig. 5.4). As outlined in Section 5.1.4, 

The Kilobots are assumed to possess limited memory and are only ever able to 
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remember the direction towards a single location in the search space, and in these 

scenarios this location is the relative direction to the depot. This assumption of limited 

memory is consistent with the behaviour observed in several ant species which use 

path integration to return to their nest (Collett and Collett 2002; Bregy et al. 2008; 

Heinze et al. 2018). 

The robots use their memory of the depot location to always find their way back when 

returning items they have collected. To memorise other points of interest in the 

environment surrounding the depot, the robots use their virtual pheromone as a form 

of stigmergic communication, creating form of collective memory. When a robot is 

returning to the depot from a source location, it deposits virtual pheromone to allow 

itself and other robots to rediscover the source area. Robots in the GD state perform a 

probabilistic function Eq. (5.2) every four seconds which determines the rate of 

pheromone deposition based on the quality of the collected item, as described in 

Section 5.2.2. When the robot reaches the depot, it deposits its item and executes 

another probabilistic function (see Eq. (5.3)), based on a comparison between the 

quality of its recently deposited item and the highest quality item any robot has 

deposited so far, as described in Section 5.2.3. This function determines whether the 

robot will turn to follow the pheromone trail it recently created (TB state in Fig. 5.4.), 

or to abandon the previously discovered source area and resume exploration though 

random walk (RW state).  

When any of the Kilobot sense virtual pheromone via their virtual antennae, composed 

of the four sectors as described in Section 5.1.3, they immediately shift to follow the 

trail (FP state in Fig. 5.4.), moving in the direction of the triggered antennae sector 

until they reach either the end of the trail or an intersect between two of more trails. If 

a robot detects pheromone in more than one direction, e.g. both left and right sectors 

as in the illustration of Fig. 5.2, the robot will compare the sensed-pheromone 

directions with the directions to the depot (red and green angles in Fig. 5.2) and moves 

in the direction of the pheromone most opposed in direction to the depot (green 

arrow in Fig. 5.2). This decision relies on the assumptions that robots only deposit 

pheromone in their straight path from a source area to the depot and that they always 

have access to the depot vector. As detailed in Section 5.1.3 and illustrated in Fig. 5.3, 

the robot behaviour has been enriched through the inclusion of an obstacle avoidance 
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state (AO state in Fig. 5.4), allowing the robot to detect when it is in close proximity to 

obstacles. However, in these experiments this ability is only utilised to detect when it is 

in proximity to walls. 

Section 5.2.2 Adaptability to Different Item Qualities 

As mentioned in Section 5.2.1, the robots do not possess prior information about the 

environment including the item qualities available to be collected. When the system is 

initialised, a maximum item quality has not yet been established for robots to compare 

the quality of their collected items to. As such, they are left to initially assume the 

quality of the item they have collected is the global maximum. However, the value of 

this global maximum quality (𝑄𝑚𝑎𝑥) can be updated over time according to the highest 

quality item returned to the depot by any robot, which can be used to tune the robot 

behaviour to what was initially an unknown quality range. This indirect communication 

method, where the robots compare the quality of their items with the global 

maximum, occurs within the depot. 

Each time a robot enters the depot, it compares the value of the item it is carrying with 

the highest item quality collected up to that point. If the quality of the item is it 

carrying is greater than that of the current maximum, it will update 𝑄𝑚𝑎𝑥 to reflect 

that its item quality is the highest collected. If the quality of its collected item is less 

than the global maximum, this will increase the probability that the robot will abandon 

its current source in order to seek the source of the high quality items. This mechanism 

of quality comparison parallels the behaviour of social animals where individuals can 

assess the nutrient quality of the swarm’s reserves and compare it to their own 

collected items (Dussutour and Simpson 2009; Arganda et al. 2014). 

In these studies, unlimited item sources are utilised to investigate the steady state 

regime; however, in cases of limited sources (i.e. with a limited number of items) the 

robots may update their quality range by only observing the latest collected items. In 

this way, the swarm is predicted to be able to flexibly adapt to appearances or 

depletions of available sources. 
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Section 5.2.3 Adaptable Behaviour from Tuneable Functions 

When robots are returning items from a source area to the depot, they lay a 

pheromone trail. These trails of pheromones serve as temporary paths between 

source areas and the depot, indirectly communicating the locations of discovered 

source areas to other robots. The contribution of each robot in creating and 

maintaining these paths proliferates to create a form of collective memory, allowing 

the swarm to recall the locations of source areas in the environment. This system is 

what allows robots which cannot internally store source locations to overcome their 

individual limitations and return to previously discovered source areas. These trails are 

created and detected via the virtual pheromone glands and antennae of the robots as 

described in Section 5.1.2. Similar to the approach of Font Llenas et al. (2018), robots 

returning with items probabilistically decide every four seconds whether or not to lay 

the next drop of pheromone. In their approach, the probability of pheromone 

deposition was dictated by a linear function relating the item quality to the global 

maximum, i.e.𝑃𝜙(𝑄𝑖) =
𝑄𝑖

𝑄𝑚𝑎𝑥
, which allowed the swarm to give priority to higher-

quality source areas. In this study, a tuneable function is implemented to allow robots 

to regulate their selectivity on quality using a single parameter α ≥ 0. The probability 

that the robot will deposit its next drop of pheromone is given by Eq.5.2 which was 

introduced in Talamali et al. (2020): 

𝑃𝜙(𝑄𝑖) = 𝑒𝛼(𝑄𝑖−𝑄𝑚𝑎𝑥)𝑄𝑖
−1

                                                        (5.2) 

Each individual robot has access to α and can alter this value to vary the global 

response. Values of 𝛼 > 1 cause the function to have an exponential shape on 𝑄𝑖, 

resulting in highly selective behaviour in favour of the highest quality sources. A value 

of 𝛼 ≈ 1 leads to an approximately linear response which is similar to the function 

investigated in (Font Llenas et al. 2018) such that Eq. (5.2) can be used as a 

generalisation of the previous specific function. Finally, decreasing α when α < 1 

gradually flattens out the function to a constant value, so that when the limit of 𝛼 = 0 

becomes constant 𝑃𝜙(𝑄𝑖) = 1; this results in constant pheromone trails irrespective of 

the quality of items within the source areas. 

Up to this point only the quality of the items has been considered when choosing the 

probability of pheromone drop deposition. However, in social insects it has been 
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observed that the distance of the different source areas from the nest is also a factor 

which can be used to better determine which route will generate the greatest energy 

gain [i.e. foraging ants (Shaffer et al. 2013) and house hunting honeybees (Seeley et al. 

2012)]. For instance, in scenarios where a high quality object is significantly further 

away than a closer lower quality item, the closer item may net the higher energy gain 

and be considered a superior option, or if the path to the best source is overcrowded a 

less crowded path to a different source may be a better option. To balance this 

distance-quality trade-off, the individual robot capabilities are expanded to include a 

decay function 𝑃𝑑(𝑡𝑖) in Eq. (5.3) which is called when the robot enters the depot to 

deposit an item, helping them to decide whether to continue exploiting the same 

source or abandon it and begin searching for new sources. The travel time 𝑡𝑖 is 

measured by the robots as the time spent between the item collection (from the 

source 𝐴𝑖) and the item deposition (in the depot). The function 𝑃𝑑(𝑡𝑖), similarly to 

𝑃𝜙(𝑄𝑖) of Eq. (5.2), is modulated by the parameter α as: 

𝑃𝑑(𝑡𝑖) = (α + 1)−2𝑒

𝑡𝑖−𝑡𝑚𝑎𝑥

(𝛼+1)√𝑡𝑖                                                          (5.3) 

where 𝑡𝑚𝑎𝑥 is a parameter indicating robot’s prior knowledge on the maximum 

acceptable time to return from a source. The 𝑡𝑚𝑎𝑥 parameter could be adaptively 

tuned (similarly to 𝑄𝑚𝑎𝑥 in Sect. 5.2.2), however this aspect falls beyond the scope of 

this study and instead the value of 𝑡𝑚𝑎𝑥 is fixed at 100𝑠. Using a fixed value of 𝑡𝑚𝑎𝑥 

can be considered reasonable as agents in both biological and artificial systems will 

only consider sources areas that are within a certain maximum distance of the depot 

which is decided a priori. This distance can be decided for instance using the length of 

time a robot can remain operational before needing to return to a depot to recharge, 

or the distance a robot may travel before encountering a wall of a bounded arena. 

Eq. (5.2) and Eq. (5.3) are linked by the parameter α which the robots can regulate to 

alter the swarm behaviour. Increasing 𝛼 > 1 has the combined effect of increasing 

discriminability on quality 𝑄𝑖 and flattening 𝑃𝑑(𝑡𝑖) ≈ 0 for any distance; In this 

scenario the swarm chooses to ignore the distance of source areas but is highly 

selective based on higher-quality source areas. Conversely, small values of  𝛼 < 1  

flattens out quality differences 𝑃𝜙(𝑄𝑖) ≈ 1 and accentuates differences on travel time 

with an exponential abandonment 𝑃𝑑(𝑡𝑖) on high travel times; this leads to a system 
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where the only discriminating factor on source selection is distance due to a 

combination of evaporation and abandonment of sources which are further away. 

Finally, intermediate values of 𝛼 ≈ 1   give a quasi-linear response of 𝑃𝜙(𝑄𝑖) and 

sublinear 𝑃𝑑(𝑡𝑖) > 0 which allows the swarm to balance the distance-quality trade-off 

similarly to what has been reported in Font Llenas et al. (2018). 

Section 5.3 Experimental Setup and Model Prediction 

In this section, the parameters used to assess whether the swarm of robots are 

achieving an optimal approach to resource collection are explained. The mathematical 

models presented in each subsection tie these qualities together and are inspired by 

general aspects of optimal foraging theory (Kacelnik 1984; Houston and McNamara 

2014). The model is used to determine the effectiveness of the system by comparing 

the benefits gained from the resources gathered with the cost incurred from 

transporting these items to the central depot. Section 5.3.1 introduces the three main 

components of the model and the resultant equation used to predict the performance 

of the system in each experiment. Section 5.3.2 presents the various environment 

configurations used to assess the system and confirm the optimality of the resource 

collation model. 

Section 5.3.1 Model of Optimal Resource Collection 

The three main components of the model are the quality of the items retrieved, the 

number of robots dedicated to each available source area, and the time taken the 

travel between the respective source areas and the central depot. The number of 

robots allocated to a source area is modelled as 𝜌𝑗 (with 𝑗 ∈ {1, ⋯ , 𝑛 }) which 

represents the fraction of the total robot population currently on the trail between the 

central depot and source area 𝐴𝑗. The robots that are actively transporting items 

between any of the 𝑛 source areas are referred to as workers and their fraction of the 

robots currently on a trail is denoted by 𝜌𝑤 = ∑ 𝜌𝑗
𝑛
𝑗=1 . The remaining robots that are 

exploring the arena are called explorers and their fraction is denoted as 𝜌𝑒 = 1 − 𝜌𝑤.  

The time taken for robots to travel between the central depot and their allocated 

source area is determined by the distance between the source and the depot, and the 

level of congestion on their respective trail; highly congested trails typically lead to 

increased collisions between robots which results in longer travel times. Talamali et al. 
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(2020) combined these qualities in Eq. (5.4) to create the swarm yield variable 𝑅 which 

represents the net gain of the system. This value can be used to clearly correlate the 

performance of the system with how it allocates robots to different sources under 

varying environmental conditions – helping to determine which approach represents 

the most optimal foraging strategy. 

𝑅 = ∑
𝑞𝑗𝛽𝑗𝜌𝑗𝑆

�̃�𝑗
2

𝑛

𝑗=1

,                                                     (5.4)   

𝑤𝑖𝑡ℎ �̃�𝑗 = 𝑑𝑗 + 𝑣𝑜𝑇𝐶,𝑗(𝜌𝑗𝑆) 

where S is the swarm size, 𝑞𝑗 =
𝑄𝑖

𝑄𝑚𝑎𝑥
 is the normalised quality of source area 𝐴𝑗, 𝜌𝑗 is 

the fraction of robots on the trail between central depot and source area 𝐴𝑗, 𝛽𝑗 is a 

fitting parameter characterising the relationship between the number of collected 

items from source 𝐴𝑗 and the number of robots on the trail to 𝐴𝑗. The parameter �̃�𝑗 

represents the sum of parameter 𝑑𝑗, which is the distance between source area 𝐴𝑗 and 

the central depot, 𝑣𝑜 = 1𝑐𝑚/𝑠 which is the Kilobot’s speed (fixed parameter), and the 

function 𝑇𝐶,𝑗(𝜌𝑗𝑆) which models the additional travel time arising from traffic 

congestion. This equation models traffic congestion as an increase of the travel 

distance 𝑑𝑗 by accumulating the additional length of 𝑣𝑜𝑇𝐶,𝑗(𝜌𝑗𝑆). 

The design parameters used to obtain the function 𝑇𝐶,𝑗(𝜌𝑗𝑆)  were collected from 

physics-based simulation data as described in Appendix A of Talamali et al. (2020), 

which provides full details of how these parameters were derived. The details 

surrounding the derivation of traffic congestion model are purposefully omitted from 

this Chapter as this aspect is primarily a contribution of the co-author Salah Talamali 

and does not represent the main contribution presented in this study, i.e. obstacle 

avoidance behaviour implementation. 

The experiments undertaken in this study consider cases of resource collection in 

environments with 𝑛 = 2 source areas, in order to study the basic properties of the 

yield function in Eq. (5.4). The aim of the swarm robot system is to optimally allocate 

the population of robots between the two source areas to maximise the yield R. To 

simplify the assessment of the basic properties, all robots are assumed to be actively 

involved in resource collection (i.e. all robots are workers and none are explorers 
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(𝜌𝑤 = 1, 𝜌𝑒 = 0); where the fraction ρ1 = ρ is the robots collecting items from source 

𝐴1, and the fraction ρ2 = 1 − ρ represents robots collecting items from source 𝐴2. With 

these assumptions, the yield function can instead be given as: 

𝑅(𝜌) = 𝑅1(𝜌) + 𝑅2(𝜌)    

  𝑤ℎ𝑒𝑟𝑒 𝑅1(𝜌) =
𝑞1𝛽1𝜌𝑆

�̃�1
2

,   𝑅2(𝜌) =
𝑞2𝛽2(1 − 𝜌)𝑆

�̃�2
2

                                        (5.5) 

The purpose of this function is to examine how the swarm allocates its resources, so 

the dependency of R on ρ is explicitly mentioned in Eq. (5.5); this helps in determining 

the optimal value of 0 ≤ ρ ≤ 1 that will maximise the yield. In Talamali et al. (2020) they 

found that increasing ρ, where ρ ∈ [0, 1] lead to the following outcomes: 

Variation of ρ Result 

Monotonic increase of 𝑅(𝜌) until 𝜌 = 1 Workers converge on global maximum - 

all workers allocated to source area A1 

Monotonic decrease of 𝑅(𝜌) until 𝜌 = 0 Workers converge on global maximum - 

all workers allocated to source area A2 

0 < 𝜌 < 1 Workers are split between 2 local maxima 

(one of which is also the global 

maximum). 

 

In the following section, the equations for swarm yield are used to predict the system 

performance in each of the experiments. The experimental setups used to study the 

effects of varying environment parameters, such as item quality and source distance, 

on the yield function are also described. The first scenario looks at source areas of 

equal distance and different item quality, the second scenario uses equal item qualities 

and varied source area distances, and the final scenario predicts the critical swarm size 

in an equal distance and item quality scenario. 

5.3.2 Equal Distances and Varying Qualities 

As indicated in the previous section, overcrowding on the trails between the depot and 

source areas can lead to congestion which negatively affects the swarm yield. When 

source areas are both equally close to the depot the risk of overcrowding increases 

and moving the source areas further away from the depot decreases the risk of 
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overcrowding, such that when the source areas are sufficiently distanced from the 

depot, overcrowding effects are negligible. The first setup examines both scenarios 

with 𝑛 = 2 source areas which are equally far from the depot or equally near the 

depot, and where the item quality of source area 𝐴1 is held constant at 𝑞1 = 1, and 

the item quality of source area 𝐴2 is varied at 𝑞2 ∈ {0.5, 0.75, 1}. The results from 

these experiments (Fig. 5.5) reveal that when the sources are relatively far (Fig. 5.5 

(a)), it is optimal to allocate all workers to the better-quality source area, whereas for 

source areas in close proximity (Fig. 5.5 (b)) the yield is maximised if the trail between 

the higher-quality option and depot does not become overcrowded. 

 

Fig. 5.5 Model predictions of yield R depending on worker allocation ρ for: (a) equally 

distant sources where 𝑑1 = 𝑑2 = 3.5𝑚; and (b) equally nearby sources where 

𝑑1 = 𝑑2 = 0.6𝑚. The parameter values selected for this experiment were:𝛽1 = 𝛽2 =

�̅� = 0.965,  𝑇01 = 𝑇02 = 𝑇0̅̅̅̅ = 0.029,  𝜅1 = 𝜅2 = �̅� = 2.321, and 𝑆 = 200. 

In scenarios where the qualities of the items available in each source area are different 

it may seem intuitive to allocate all workers to collect from the higher quality source. 

However, allocating workers in this way tends to lead to increases risk of robot 

collisions and overcrowding which we know increases congestion and reduces the 

overall yield of the system. This is especially prevalent in scenarios where the source 

areas are equally near to the depot and the risk of overcrowding is already elevated. 

This means there is a limit to the efficiency of the robot swarm collecting the items 
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which is dependent on the total number of workers, their size, and the space available 

of the trail between the source areas and depot. 

Fig. 5.5 (a) shows that for sufficiently large distances between source area and depot, 

where the risk of overcrowding is significantly lower, it is indeed optimal to allocate all 

workers to the source area containing higher-quality items. If the quality of the items 

available in both source areas is equal, then the yield from exploiting each source is 

marginally larger if both source areas are exploited equally. However, in cases where 

both source areas are near the depot (Fig. 5.5 (b)) the optimal strategy changes. Here 

the best strategy is not to equally exploit both resources, but instead to minimise 

traffic congestion on the trail between the depot and the sources which have the 

highest quality items (low ρ in Fig.5.5 (b)). The system may achieve this by allocating a 

higher fraction of the workers to the lower quality item source area. Interestingly, this 

remains the best strategy for maximising yield even when the quality of the items 

available from both source areas is equal. 

5.3.3 Equal Qualities and Varying Distances 

The second experimental setup examines cases where both of the available source 

areas contain items with equal quality, but the distance between the source areas and 

the depot are different – this will help determine how the yield R is affected by varying 

the distance. In Fig. 5.6 the graph plots the corresponding yield function for equal 

qualities 𝑞1 = 𝑞2 = 1, a fixed swarm size of S = 200 robots, a fixed distance of the first 

source area 𝐴1 where 𝑑1 = 0.6𝑚, and varying the distance of the second source area 

𝐴2  where 𝑑2 ∈ {0.3𝑚, 0.6𝑚, 0.9𝑚}. Fig 5.6 shows how overcrowding of the trail 

affects the swarm yield R and reveals that the optimal strategy is to allocate the 

majority of the robots to which ever source area is the furthest from the central depot. 

This effectively reduces the congestion experience on the closer source area, resulting 

in fewer collisions which could slow the progress of the workers, and increasing the 

yield. 
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Fig. 5.6 Model predictions of swarm yield R depending on workers allocation ρ for equal 

qualities 𝑞1 = 𝑞2 = 1. The parameter values selected for this experiment are the same 

as the first setup at: 𝛽1 = 𝛽2 = �̅� = 0.965,  𝑇01 = 𝑇02 = 𝑇0̅̅̅̅ = 0.029,  𝜅1 = 𝜅2 =

�̅� = 2.321, and 𝑆 = 200.  

Fig.5.6 (a) shows the effect of varying the distance of the second source area on R, and 

Fig.5.6 (b) shows the effect of varying the swarm size S with respect to the critical 

swarm size 𝑆𝑐. The effect of overcrowding has a significant effect on the efficiency of 

the swarm, where it is only possible to attain the maximum yield when a limited 

number of workers (10–20%) collect from the nearest source area in order to reduce 

congestion on that trail. The critical swarm size Sc characterises the effect of 

overcrowding, i.e. when the swarm is sufficiently large (𝑆 > 𝑆𝑐) it is optimal to keep at 

least one path with less than 50% workers; otherwise, the effect of overcrowding 

begins to decrease the income of resources on both paths. The expression used to 

obtain the value of the critical swarm size and detailed analyses are provided in 

Appendix C of Talamali et al. (2020). 

From the models, it is possible to determine the optimal foraging strategy for different 

robot population sizes relative to the critical swarm size, assuming the source areas are 

equally distant from the depot, and their item qualities are the same. If the number of 

robots exceeds the critical swarm size (𝑆 > 𝑆𝑐) the optimal strategy is to allocate more 

robots to one of either available sources, as collection from either source would give 

the same reward and incur the same cost. The main aim of this strategy is to avoid 

overcrowding both paths to increase the yield of robots on the less populated trail. In 
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scenarios where 𝑆 < 𝑆𝑐, the maximum possible yield for swarms where 𝑆 > 𝑆𝑐 is 

smaller due to the increased prevalence of overcrowding which leads to less efficient 

foraging. This highlights the importance of controlling the number of workers for the 

purpose of maximising the global intake; a strategy which is implemented in a 

decentralised fashion by ants (Charbonneau et al. 2015; Pagliara et al. 2018), and 

recently investigated in the context of swarm robotics (Mayya et al. 2019). 

Section 5.4 Results 

The performance of the proposed system was primarily studied by using physics-based 

simulations of a variety of experimental conditions. Experiments using up to 200 

physical Kilobots were conducted to validate the Kilobot behaviour in a bounded arena 

that matched the central depot, multi-source area simulated environment with no 

obstacles. The physics-based simulations were conducted with ARGoS (Pinciroli et al. 

2012, 2018) which is a state-of-the-art swarm robotics simulator that accurately and 

efficiently simulates the Kilobots and the ARK system via a dedicated plug-in (Pinciroli 

et al. 2018). 

The physical robot experiments were run with fully charged Kilobots whose motors 

have been automatically calibrated through ARK (Reina et al. 2017). The results 

presented within this section mainly pertain to the simulations as this is where the wall 

avoidance behaviour and adaptability function were implemented with respect to 

additional obstacles in the environment. In the physical experiments, the wall 

avoidance behaviour mainly serves to prevent Kilbots becoming stuck on the boundary 

of the arena which was a common occurrence before the introduction of this capability 

and affected the outcomes of the previous experiments. Details of the physical set-up, 

experimental results and analysis can be found in Talamali et al. (2020). Section 5.4.1 

presents a set of the simulation results that highlight the benefits of having introduced 

a virtual wall sensor, adaptability to unknown environmental scenarios, and behaviour 

modulation to balance the distance-quality trade-off. The robot simulation code is 

open source and available online at: 

https://github.com/DiODeProject/PheromoneKilobotSwarmIntell 

https://github.com/DiODeProject/PheromoneKilobotSwarmIntell
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Videos of the physical experiments, augmented by superimposing the virtual 

environment, are available online at: 

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a 

Section 5.4.1 Tuneable and Adaptive Swarm Response 

In this subsection, we report the results from the simulated and real robot 

experiments to provide evidence of the swarm behaviour obtained using obstacle 

avoidance, adaptability, and individual function modulation.  

The inclusion of obstacle avoidance behaviour allows the robots to navigate in more 

complex environment where there are obstructions between the depot and the source 

areas. A set of simulated experiments were conducted in order to demonstrate this 

ability and prove the swarms’ capability of selecting the most optimal foraging strategy 

given various choices. Fig. 5.8 (b) shows a screenshot of the experiments which we 

inspired by the well-known study of Goss et al. (1989) which showed that ants are able 

to exploit the shorter path in double-bridge experiments – scenarios in which there are 

multiple paths between a source and depot with different lengths. In the experiments 

reported herein, the robots possess less cognitive capability than individual ants and 

are unable to distinguish between difference pheromone intensities, follow gradients, 

or make decisions based on differences in pheromone concentration. However, the 

results show that the robots still display a preference for the shortest path available, 

which demonstrates their ability to determine the most optimal strategy even with 

limited information. 

It is important to note that this outcome was not limited to conditions where the rate 

of pheromone evaporation was too high to maintain the longer path but establish the 

shorter path. The robots still showed preference for the short path in scenarios where 

both the longer path and shorter path were complete and viable. Following the initial 

experiment, the environment was modified to block the shorter path and only allow 

the longer path to remain as an option. As shown in Fig. 5.8 (a), the robots were still 

able to exploit the best available path. Double-bridge experimental setups have been 

emulated in other swarm robotics studies such as Montes de Oca et al. (2010) and 

Scheidler et al. (2016) though the swarm behaviour and desired goals under 

investigation were different that this study.  

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
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Fig. 5.8. The Final distribution of Kilobots from the simulated 50 Kilobot swarm 

experiment inspired by the ants’ double-bridge experiment by Goss et al. (1989), 

originally published in Talamali et al. (2020), in which two paths (a long 1.8m path and 

a shorter 1.4m path) connect a single source to a single depot. 

When the swarm only had access to the longest path (Fig. 5.8 (a)) the Kilobots using 

the path to collect items reinforced the concentration of pheromone using repeated 

trips for their collections. However, when both paths were available (Fig. 5.8 (b)), the 

Kilobots disregarded the longer path, showing a high preference for the shorter path 

between the source and depot for their collections. The number of robots on the two 

paths at the end of one simulated hour is shown in (Fig. 5.8 (c)). The boxes represent 

the 1st to 3rd quartile range of data from 100 simulations, with the median results 

represented as a horizontal line within the box, and whiskers extending to represent 

1.5 times the interquartile range.  The individual Kilobots cannot follow a pheromone 

gradient nor detect any difference in pheromone concentration. Despite their limited 

individual capabilities, under certain conditions the robot swarm can reproduce 

behaviour similar to foraging ant colonies, which instead rely on much higher cognitive 

abilities at the individual level. 

These results indicate that for experimental conditions similar to those conducted 

here, individual agents with simpler cognitive abilities are sufficient for reproducing 
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the emergent behaviour observed in more complex social insect colonies such as ants. 

However, ants and more capable agents with the ability to distinguish between 

different pheromone concentrations are likely to be more flexible with the ability to 

optimise path lengths in a wider variety of dynamic environments than the robot 

system presented herein. In fact, it is likely that changing variables such as the density 

of robots in the environment or significantly varying the path lengths may degrade the 

performance of the Kilobots, but this remains to be confirmed.  

The next set of experiments set out to prove the ability of the swarm to adapt to any 

range of qualities, as described in in section 5.2.2, showing a response that is sensitive 

to ratios between qualities (
𝑄2

𝑄1
) rather than absolute values. These experiments 

examined three scenarios (Fig. 5.8) with 𝑛 = 2 sources where the ratio between the 

two item qualities remained the same (
𝑄2

𝑄1
= 0.4), but the absolute values of the 

qualities were ( 
𝑄2

𝑄1
=

6

15
 ,

𝑄2

𝑄1
=

4

10
 ,

𝑄2

𝑄1
=

2

5
 ). These results compare the new adaptive 

strategy based on quality ratio (white box plots) and a strategy that only considers 

absolute quality values (grey box plots). 

 

Fig. 5.9. Simulation results showing the robot swarms ability to adapt to different item 

qualities based on ratios rather than absolute values, originally published in Talamali et 

al. (2020). 

The key of figure 5.9 indicates how the data of the aforementioned experiments are 

represented. Grey boxes represent the experiments where the maximum quality used 

by the swarm to tune its response is set prior to be 10 and remains so even if the 

actual maximum quality recorded in the environment is higher or lower than 10. The 
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white boxes represent the experiments where the maximum quality use by the swarm 

to tune its response is updated according to the highest quality item returned to the 

depot, creating an adaptive response. Boxes with a bold outline represent information 

pertaining to area A1, while boxes with a normal outline represent information 

pertaining to the second area A2. For instance, the bold grey box on the right hand 

side of Fig 5.9 (b) indicates the small number of robots dedicated to the path between 

the depot and area A1 when the swarm is using a static maximum quality of 10. 

Fig. 5.9 (a) and (b) show that the adaptive strategy allows the swarm to adapt to any 

condition to maximise the number of items collected while the constant maximum 

quality of 10 strategy was only able to maximise its items collected when the 

predetermined quality range matched that of the environment’s range. This sensitivity 

to relative quality of food source rather than absolute quality has also been 

documented in foraging ant species (Wendt et al. 2018). Fig. 5.9 (a) shows the number 

of item collected, and Fig. 5.9 (b) shows the number of robots on each path at the end 

of the simulation. The experiments used a single depot and 𝑛 = 2 source areas, where 

the superior source 𝐴1 and inferior source 𝐴2  were equal distance from the depot 

(𝑑1 = 𝑑2 = 1𝑚). The ratio of the item qualities in 𝐴1 and 𝐴2 were kept constant at 

(
𝑄2

𝑄1
= 0.4), but the absolute values were varied as indicated on the x-axis of both 

graphs.  All experiments were conducted with swarms of 𝑆 = 50 Kilobots and an 

intermediate value of 𝛼 = 0.85 in Eq.(5.2) and Eq.(5.3). Similar to Fig. 5.7, the boxes 

range from the 1st to 3rd quartile of the data from 100 simulations with the median 

indicated by a horizontal line; the whiskers extend to 1.5 times the interquartile range. 

The constant range strategy (dark boxplots) only yields good results if the predefined 

range matches the actual range of the environment (central experiment). Whereas the 

adaptive strategy allows the swarm to exploit resources as a function of their relative 

qualities in a range adapted to the environment. 

As discussed in section 5.2.2, robots can modulate their behaviour to give priority to 

source areas which are closer (low α) or contain higher quality items (high α) – an 

ability which can results in different collective responses depending on the 

environment. These dynamics were investigated in experiments using 𝑆 = 50 

simulated Kilobots operating in an environment with 𝑛 = 2 source areas, where 𝐴1 
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contained higher quality items (𝑄1 = 10) and 𝐴2 contained lower quality items 

(𝑄2 = 4). The distance of 𝐴1 from the depot remained constant at 𝑑1 = 1𝑚, while the 

distance of 𝐴2 was varied at 𝑑2 ∈ [0.5𝑚, 1𝑚].  The relatively small swarm size of 

𝑆 = 50  was selected due to the results reported by (Font Llenas et al. 2018) for a 

similar scenario, where it was shown that large swarms do not discriminate between 

sources where there are enough robots to maximally exploit both areas. 

 

 

Fig. 5.10. Effect of modulating parameter α from Eq. (5.2) and (5.3) to favour nearer 

source areas (α = 0), to favour the best-quality sources (α = 10), or to balance the 

distance-quality trade-off (0 < α < 10). 

Fig. 5.10 is made up of three graphs to show what effect tuning the selectivity of the 

robots has on (a) the number of items collected per minute, (b) the number of robots 

on the path between the depot and area A1 or the path between the depot and area 

A2, and (c) the weighted collected items per minute; while varying the distance of the 

second source area. The key to the left of Fig. 5.10 (c), shows how α is represented in 

the graphs where light grey coloured points and lines represent setting the tuneable 

parameter to α = 0 (distance selective behaviour), dark grey coloured points and lines 
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represent setting the tuneable parameter α = 0.85 (optimal distance-quality trade-off), 

and black coloured points and lines represent setting the tenable parameter to α = 10 

(quality selective). In addition, each graph of Fig.5.10 contains a second key to indicate 

the distribution of robots in the environment for simulation and physical experiments. 

Solid lines represent information pertaining to area A1 of the simulation, while dashed 

lines represent information pertaining to area A2 of the simulation. For instance, in 

Fig.5.10 (b) the dashed, dark grey line indicates the number of robots on the path 

between the depot and area A2 in simulation, when the tuneable parameter α is set to 

0.85 so robots can weigh the benefit of quality versus distance of the source. The solid 

circles represent information pertaining to area A1 of the physical experiments, and 

solid squares represent information pertaining to area A2. For example, the solid black 

circle of Fig.5.10 (b) indicates that a much higher portion of robots were on the path 

between the depot and area A1 than the depot and area A2 in the physical 

experiments. 

The results represent hour-long simulated and physical robots experiments for 

scenarios with 𝑛 = 2 sources. The initial exploration phase is excluded, with mean 

values indicating the last 30 minutes only. Physical robots’ results are indicated as solid 

symbols with vertical bars indicating the 95% confidence intervals of 3 runs for each 

condition. Lines represent the mean of 100 simulations with the shaded areas 

representing 95% confidence intervals. Source 𝐴1 had quality 𝑄1 = 10 and was located 

at distance 𝑑1 = 1𝑚; source 𝐴2 had quality 𝑄2 = 4 and varying distance 𝑑2 ∈

[0.5𝑚, 1𝑚]. (a) shows the rate of items collected per minute, (b) shows the mean 

number of robots on each path, and (c) is the rate of item collected per minute 

weighted by the normalised quality 𝑞1 = 1.0  and 𝑞2 = 0.5. 

Using α = 0 promoted distance selectivity, where the simulated swarm had the highest 

item collection per minute in (Fig. 5.10 (a)) from the closest source (𝐴2) to which the 

majority of the workers were deployed in (Fig. 5.10 (b)). Using α = 10 promoted quality 

selectivity, where the simulated swarm had the highest item collection per minute in 

(Fig. 5.10 (a)) from the highest quality source (𝐴1) to which the majority of the robots 

were deployed in (Fig. 5.10 (b)). Finally, intermediate value of α = 0.85, led to a 

distance-quality trade-off where the swarm exploited the nearest inferior-quality 

source only if it was much closer than the farther superior-quality source. Three 
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experiments were conducted with 50 physical robots for each of the two limit cases of 

quality-selective α = 10 (solid black symbols) and of distance-selective α = 0 (solid light-

grey symbols). Videos of these experiments are available as online supplementary 

material at: 

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a 

The results from the physical experiments showed the Kilobots to be less efficient at 

resource collection than their simulated counterparts. This reality gap is likely due to a 

difference in the motion speed of the physical and simulated robots. The simulation 

was accurately tuned on the movement speed of fully charged Kilobots (Pinciroli et al. 

2018), but did not take into account that the robot’s speed reduced over time as its 

battery charge diminished. Despite this difference, the results still demonstrated that 

in both cases the two strategies (𝛼 ∈ [0,10]) favoured either the closest or best-

quality source area respectively, as shown in simulation.  

Section 5.5 Discussion 

The results from these experiments demonstrate how complex collective foraging 

strategies can emerge from simple individual agents. Both the simulated and real 

robots possessed a minimal cognitive architecture which utilised only a simply binary 

detector for pheromone trails and obstacles, and maintenance of a home vector which 

informed them of the relative direction of the depot. Therefore, the individual robots 

have only a fraction of the capabilities of a real ant. However, when imbued with the 

ability to deposit pheromone at a rate determined by a single tuneable parameter, 

they become capable of qualitatively reproduce classical results such as the shortest 

path exploitation observed in lab ant colonies (Goss et al. 1989), and achieve distance-

quality trade-off of foraging. The experiments also examined the effect of resource 

distribution on the optimal distribution of foragers over source areas. Other studies 

have considered the effect of colony size on recruitment strategy (Planqué et al. 2010; 

Pagliara et al. 2018; Mayya et al. 2019), the approach within this study instead 

assumes the recruitment strategy and investigates the optimal distribution. 

The agent controllers are able to approximate the optimal distribution for relatively 

small swarm sizes, although large swarms depart from optimality. Large swarms lead 

to crowded environments which require strategies to clear paths in order to reduce 

https://www.youtube.com/playlist?list=PLCGKY9OHLZwMaGeB6cxVfxmHwhBFqKF7a
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traffic congestion. Two possible strategies to limit traffic congestion were examined in 

this study: modifying the abandonment strategy or enriching the individual behaviour 

with collision-reactive states. Should an agent decide to abandon its current source, 

the robots simply resumed exploration however the effects of this abandonment 

strategy are limited as robots then quickly rediscover a path (which may be already 

congested). A better abandonment strategy could improve the results of the 

abandonment behaviour introduced in this work. For instance, the robots could be 

instructed to remain at the depot for a period of time before resuming exploration, 

similar to ants (Pagliara et al. 2018). This would allow time for the pheromone trail it 

has abandoned to weaken and reduce the risk of rediscovering the path it abandoned. 

In addition, it is possible to maintain a steady flow of traffic which remains undisrupted 

even in relatively crowded conditions by individual ants changing their behaviour as a 

function of collisions with other ants (Dussutour et al. 2004; Poissonnier et al. 2019). 

Inspired by these results, the robot behaviour could be enriched with new collision-

dependent states using the same collision detection system employed for wall 

avoidance behaviour outlined in Section 5.1.3. 

The results from the experiments are complementary to other approaches using 

minimal controllers for collective behaviour in the swarm robotics field (Gauci et al. 

2014; Özdemir et al. 2018). Using simple controllers increases their transferability to 

various robotics platforms because the functions require minimal hardware to carry 

out the necessary functions. Simple behaviours also contribute to shrinking the reality 

gap, preserving consistent dynamics when moving from simulation to physical systems 

– as demonstrated in section 5.4.1 where the same control software was used to 

produce qualitatively similar results. The ability of simple robots to generate complex 

collective dynamics should be of interest to biologist and offer practical utility to 

engineers. 
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Chapter 6. Conclusions and Future Work 

At the begging of this thesis, the author set out to answer whether collaborative multi-

robot teams could outperform uncoordinated multi-robot teams, and how such 

systems may be applied to address real world issues that present a challenge to 

conventional single-robot systems and human teams. In this concluding Chapter, the 

significance of the findings, the contribution to knowledge they represent, and the 

new questions that should be considered following these discoveries are presented. 

Section 6.1 presents the main conclusions to the research in Chapters 3, 4, and 5, while 

Section 6.2 presents some of the more prominent questions that remain to be 

explored following the findings of the research.  

Section 6.1 Main conclusions 

Chapters 3 and 4 set out to investigate the feasibility of a multi-robot system intended 

to replace human teams in carrying out emergency ship hull repair of vessels that 

suffer a hull breach at sea.  

Chapter 3 focused on the inspection process, and proved through simulation that the 

cooperative search algorithm was more effective at achieving complete area coverage 

of the ship hull in less time than the same multi-robot system using an uncoordinated 

search algorithm. Additionally, a robot sensor arrangement and accompanying control 

scheme was presented that instructed the robots to maintain a set distance from a 3D 

object, allowing them to treat their environment more akin to a 2D plane. This 

demonstrated a method of implementing simpler search algorithms on swarm robots 

while maintaining their ability to carry out inspection of a 3D surface underwater. 

Chapter 4 examined how modular multi-robot teams may be used to seal circular hull 

breaches of various sizes by self-assembling in a decentralised manner to form a repair 

patch of appropriate shape and size. The results from the experiments also informed 

an improved self-assembly method where robot congestion may be reduced by  

controlling the angle of approach the robots use when navigating their way to the 

damage, or by allowing more than one assembly location for the repair patch – 

ultimately improving the speed of structure formation. 

Chapter 5 investigated the use of nature inspired multi-robot teams in foraging 

scenarios. Specifically, the study demonstrated how the researchers’ implementation 
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of stigmergic communication, plastic behaviours, and the newly implemented obstacle 

avoidance behaviour enabled very simple robots to perform comparatively well to 

more complex robot teams tasked with the same objectives. The obstacle avoidance 

behaviour solved a major issue of physical robots becoming stuck against the walls of 

their bounded arena and other robots which improved the performance of the swarm, 

and created a system more capable of emulating the collective foraging behaviours 

observed in biological swarms such as ants. 

Section 6.1.1 Ship Hull Inspection: Complete Area Coverage 

Previous studies have demonstrated that collaborative multi-robot teams may 

outperform uncoordinated multi-robot teams under certain conditions but efforts to 

examine this supposition in a wider range of scenarios have been limited. Using the 

emergency ship hull repair scenario introduced in Chapter 3, the author set out to 

examine if collaborative multi-robot systems could indeed outperform their 

uncoordinated counterparts, and how this could be leveraged to improve on existing 

solutions. The two main aspects of emergency ship hull repair that could benefit the 

most from the use of collaborative multi-robot teams were inspection and repair. 

Chapter 3 focused on the inspection aspect by proposing an individual robot behaviour 

that encourages collaboration between robots when performing a search, with the 

intent of developing a system which was faster and more resilient to sensor errors and 

individual robot failure that uncoordinated teams. 

A bespoke simulated robot model whose constituent parts were based on existing 

technologies employed in modern autonomous robots was developed, including more 

recent developments in underwater propulsion such as modular hydraulic propulsion. 

To assess whether a coordinated team of these robots could indeed outperform an 

uncoordinated team of the same robots, a series of simulated experiments based 

around autonomous ship hull inspection were carried out in the open source robot 

simulator Webots. In these scenarios both robot teams were tasked with inspecting 

the mid-section of the ship hull and were assessed on which team could accomplish 

the task the fastest without leaving gaps in their inspection. The system resilience was 

tested in later scenarios, by introducing errors to the robot distance sensors or by 

choosing a percentage of the robot team to fail at a random time. These test 
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conditions were intended to reveal which of the teams would perform better in the 

presence of significant sensor noise, or the partial population failure. 

The results of these experiments revealed that the coordinated team of robots 

managed to outperform the un-coordinated robot team under ideal conditions and in 

the face of partial population failure, while the uncoordinated team was more resilient 

to significant sensor noise than the coordinated team which heavily relied on these 

readings to coordinate their efforts. These results identified some shortcoming of the 

Webots simulation environment such as inaccurate sonar sensor models, and helped 

identify some ways in which the coordinated search algorithm may be improved. 

Ultimately, the results confirmed the author’s hypothesis that a coordinated robot 

teams could indeed outperform the same collection of robots performing the same 

search task without coordinating with one another. However, it should be noted that 

significant sensor errors can act as the tipping point – moving these systems to 

become unstable and perform worse than teams of robots who do not rely on these 

sensors for their behaviour. 

One of the most significant contributions to knowledge of this research is the 

introduction of a complete area coverage algorithm and novel underwater inspection 

method introduced as part of the ship hull repair scenario. The robots’ method of 

controlling its distance and orientation relative to the ship hull using distance sensors 

allowed the robots to treat the surface of a 3D object as a 2D plane. This allowed for 

the implementation of less complex search algorithms comparable to those employed 

in swarm systems operating in 2D bounded arenas. This reduction in complexity allows 

for its implementation on less capable robots that would otherwise lack the 

computation ability to perform path planning, localization or mapping in complex 3D 

environments. In addition, the method of ship hull inspection using a swarm of 

autonomous robots presents an alternative approach for emergency ship hull 

inspection that could save humans from performing such high-risk tasks. 

Section 6.1.2 Ship Hull Repair: Aggregation and Self-Assembly 

The next step in developing the emergency ship hull repair method was to investigate 

how the coordinated team of robots could progress from inspection of the hull to 

repair of damage. Chapter 4 investigated this repair aspect by proposing an individual 



161 
 

robot behaviour that could be used by a team of robots to self-assemble into a repair 

patch for sealing hull breaches in a decentralised manner. Decentralised methods of 

organization are advantageous compared to centralised methods as they do not 

require the governance of a single entity which removes a critical point of failure and 

increases the robustness and scalability of the approach. The method of self-assembly 

proposed was reliant on the use of local communication between robots using, which 

would demonstrate a method of complex organisation that did not require external 

guidance. 

To assess the effectiveness of the self-assembly protocol, a series of experiments 

which would examine how modular robot teams of different population sizes could 

form a repair patch of an appropriate size and shape over hull breaches of varying sizes 

was devised. The experiments were carried out in Netlogo, a simulator well suited to 

studies involving very large numbers of robots, and using a simplified model of the 

same robots utilised in Chapter 3. The experiments assessed the performance of robot 

teams of different sizes and their ability to form repair patches about a single assembly 

point – a task which grew increasingly more difficult for teams to perform as the size of 

robot population grew. This would allow the researchers to identify the point at which 

the size of the robot population densities became more of a detriment to team 

performance than an improvement, and assess any shortcomings of the approach. 

The results of the experiments show that the robots’ teams could indeed use the self-

assembly protocol to form repair patches of appropriate shapes and sizes for hull 

breaches of different sizes and at different locations under certain conditions. One of 

the most important conditions necessary to ensure the robots could best perform self-

assembly, was the location of the hull breach and the associated assembly point. If the 

space around the assembly point was too small to accommodate multiple robots, team 

performance would suffer. This vulnerability could be addressed by increasing the 

number of assembly point the robots could choose to being assembling, allowing them 

to assemble from any approach vector. These shortfalls of the approach were 

addressed in the closing section of Chapter 4 with the proposal of a modified version 

of the self-assembly method which would allow the robots to approach from any 

direction. 
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The main contributions of this research was the introduction of a self-assembly 

algorithm which could be used by teams of homogeneous modular robots to 

successfully create complex formations using only simple local communication. The 

algorithm was applied to the emergency ship hull repair scenario to show how such 

self-organisation techniques could be applied to solve real world challenges. The self-

assembly algorithm was investigated in a 2D environment but if applied to the robots 

used in Chapter 3, which are capable of representing 3D surface as a 2D plane, it would 

be possible to implement this technique on that same system. This represents another 

step towards realising an approach to emergency ship hull repair using a coordinated 

multi-robot team. 

Section 6.1.3 Nature Inspired Swarms: Foraging and Obstacle Avoidance 

Following the investigation into how co-operative multi-robot teams could be applied 

to ship hull inspection and repair, a separate collaborative effort was made towards 

researching how stigmergic communication and plastic behaviours could enable very 

simple robots to perform as competently as more complex robot teams in foraging 

scenarios. Chapter 5 presented the efforts the author made towards implementing 

obstacle avoidance behaviour in a large team of Kilobots and improve the swarm’s 

ability to navigate unknown environments, while the collaborators of this research 

focused on expanding the stigmergic communication and plastic behaviours presented 

in their earlier study concerning foraging Kilobots in a multi-source environment. 

To assess the performance of these modifications, several simulated and physical 

experiments were devised to test the swarm’s ability to forage efficiently in a bounded 

arena with a central depot and different source areas of items of varying quality. The 

robots used in this study, referred to as Kilobots, are very simple agents, but were 

imbued with greater ability by the collaborators implementation of the augmented 

reality Kilobot (ARK) system. This enabled the Kilobots to perform more complex 

actions such as obstacle avoidance, pheromone deposition, and pheromone sensing. 

The obstacle avoidance behaviour was implemented in both simulated and real-world 

Kilobots, but was primarily assessed in simulation using a setup inspired by the double 

bridge experiment – where the robots would have an option of choosing between a 

longer of shorter path between the source and depot with the aim of increasing 

efficiency. The Kilobot swarm’s virtual pheromone-based communication system and 
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ability to choose the most optimal foraging strategy based on relative item quality and 

source area distances were examined in simulated and real-world experiments. 

The results of the double-bridge inspired simulations, and the multi-source real world 

experiments that used physical Kilobots, showed that the obstacle avoidance 

behaviour successfully enabled the robots to avoid becoming stuck on the boundaries 

of obstacles. The results also proved the swarm capable of using simplified stigmergic 

communication to favour the shortest path between the central depot and the source, 

performing comparatively well to more complex multi-robot systems. The simulated 

and real-world multi-source experiment results demonstrated the system’s ability to 

use the relative ratios of quality and distance to identify the foraging strategy which 

maximised yield and to gravitate towards that approach. 

Prior to the inclusion of the obstacle avoidance behaviour, individual Kilobots would 

frequently become stuck on the edges of the bounded arena, reducing the overall 

effectiveness of the swarm. Without the obstacle avoidance behaviour, the swarm 

could not be expected to perform effectively in environments with obstacles, a 

common feature of real-world environments, as increasing the obstacles would 

likewise increase the number of collisions and robots becoming stuck. The most 

notable contribution of the author to this collaborative study was the inclusion of this 

behaviour which better prepared the robots to function in more complex 

environments, and helped make their performance comparable to more capable 

artificial and biological multi-agent systems. 

Section 6.2 Future Work 

The studies presented within this text represent but a fraction of the potential of truly 

cooperative multi-robot systems, and while much has been revealed from this 

research, there is far more which remains to be unveiled. This final section presents a 

collection of questions which could prove beneficial in advancing the field of swarm 

robotics, as pertains to emergency ship hull repair using autonomous underwater 

robots, and nature inspired foraging multi-robot systems. 

Section 6.2.1 Complete Emergency Ship Hull Repair 

Using a coordinated team of robots to carry out ship hull inspection and to repair hull 

breaches as proposed in Chapters 3 and 4 represent significant steps toward realising a 
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full solution to emergency ship hull repair. The results of the research show these 

approaches may be plausible, but there remain questions which need to be addressed 

before such techniques should be feasibly implemented on real robots. For instance, in 

both the inspection and self-assembly scenarios the robots are operating in a static 

body of water, but even the calmest oceans are significantly more dynamic than this. 

Fluid dynamics such as waves and underwater currents, and obstructions such as sand, 

seaweed are all common features of underwater environments which these robots 

must be equipped to handle. A ship that has suffered hull damage as a result of a 

battle will not typically halt their course to repair while still in the midst of combat, and 

so the system could be adapted to service a ship which is still in transit. Even if these 

aspects are addressed and the team of robot successfully form a patch of appropriate 

shape and size to cover a hull breach, the method by which the robots adhere to the 

hull has not yet been decided. 

Future studies relating to this application should investigate aspects such as: the ability 

of the robots to maintain their stability in the presence of additional external forces 

such as waves, the wakes formed by obstacles, and underwater currents. The 

inspection, self-assembly, and repair processes ought to be adapted so that they may 

perform these actions on vessels which are still in transit, allowing for repairs to occur 

even in the midst of combat which would help to restore stability without exposing the 

ship to greater risk of attack. Changing the shape of the robots to make them more 

hydrodynamic would significantly increase the performance individuals and likely 

would benefit the swarm as whole. The obstacle avoidance behaviour of these robots 

should be developed further to enable individuals to anticipate and avoid additional 

moving obstacles. An appropriate method of underwater adhesion, which would allow 

the robots to seal a hull breach, needs to be selected to complete the emergency ship 

hull repair process. Studies such as these would greatly contribute to completing this 

novel approach to emergency ship hull repair and help make the final leap from 

concept to reality. 

Section 6.2.2 Robot Avoidance in Foraging Swarm Robots  

In Chapter 5, the ARK system was used to imbue Kilobots with obstacle avoidance 

behaviour which proved to be a useful tool for preventing the robot become stuck at 

the boundary of walls. However, wall avoidance is only a single example of how this 
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ability could be leveraged to improve the performance of the swarm. This same ability 

to detect walls in the forward sections of the Kilobot could be used to detect the 

presence of other obstacles, including other Kilobots. Previous studies on multi-agent 

systems (Dussutour et al. 2004; Poissonnier et al. 2019) have shown how the traffic 

congestion in environments with large numbers of agents can be limited by using 

collision-reactive behaviours. Introducing a collision-dependant state to the individual 

robot’s behaviour, such that they may form multiple traffic lanes between sources and 

depots, could prove to increase the efficiency of the swarm without having altered 

their morphology, and with minimal additional computational overhead. The 

stigmergic communication and adaptive quality-sensitive behaviour established in this 

work demonstrated how simple individuals with limited capabilities, were able to 

achieve similar levels of performance to more complex biological multi-agent systems, 

and Introducing robot-avoidance and queue forming behaviours to such a system 

could prove to increase the efficiency of the system even further. 

Scholars interested in pursuing swarm robotics research should note the following: 

Every addition to an individual’s behaviour invites a measure of change to the whole 

system which may be difficult to predict. How one might design an individual 

behaviour which reliably and predictably proliferates into a desired collective 

behaviour is one of the driving forces behind swarm robotics research today. That is 

why it is the author’s firm belief that developing a general design pattern for swarm 

robot systems is one of the most important pursuits open to swarm robotics 

researchers today. When general design patterns for swarm robot system are finally 

achieved, cooperative multi-robot systems such as our emergency ship hull repair 

robots will no longer require years of novel research and development. Instead, 

scientists and engineers will finally have a reliable, evidence-based method to enable 

them to transform individual ideas into collective realities, opening the floodgates to 

new innovations which could change the world. 
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Appendix A: Ship Hull Inspection Webots Simulation Code 

Appendix A features the code used to carry out the experiments from Chapters 3. 

Webots was the program used for the Search algorithm simulations. The code used to 

perform the Partial Population Failure (PPF) experiments for the sweeping search is: 

SHI_A1_PPF_10.wbt, SHIR_A1_SUP_PPF_10.c, and SHIR_A1_ROB_PPF.c 

The c programs displayed here are those used by the robots to perform ship hull 

inspection according to the design presented in the main text of Chapter 3. These can 

also be accessed using the GitHub repository: 

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair. The code used to 

perform the Partial Population Failure (PPF) experiments for the lawnmower search is: 

SHI_A2_PPF_10.wbt, SHIR_A2_SUP_PPF_10.c, and SHIR_A2_CON.c 

These files can be executed on the Webots Desktop App, which can be accessed from 

the following link: https://www.cyberbotics.com/download/download. 

SHIR_A1_ROB_PPF.c 
/* 
 * File:          SHIR_A1_ROB_PPF.c 
 * Date:          03/04/2018 
 * Description:   This controller tells each of the robots how to behave in order 
 *                to achieve complete area coverage of the ship hull during inspection. 
 * Author:        Matthew Haire 
 */ 
 
/* Webot specific libraries */ 
#include <webots/robot.h> 
#include <webots/motor.h> 
#include <webots/supervisor.h> 
#include <webots/gps.h> 
#include <webots/inertial_unit.h> 
#include <webots/emitter.h> 
#include <webots/receiver.h> 
#include <webots/distance_sensor.h> 
 
/* Standard C libraries */ 
#include <time.h> 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdbool.h> 
 

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair
https://www.cyberbotics.com/download/download
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/* Macros used throughout program */ 
#define TIME_STEP 16.0 
#define WATERLINE 19.0 
#define MAXDIST 2.0 
#define SPACE 2.0 
#define ASSEMBLY_TIME 10.0 
 
/* PID Controller Structure */ 
struct SPID 
{ 
  double pGain, iGain, dGain; // proportional, integral, and differential gains 
  double iState; // integrator state 
  double dState; // last position input 
} SPID_X, SPID_Y, SPID_Z; 
 
/* Update Robot position function */ 
double UpdatePos(struct SPID pid, double current_pos, double desired_pos); 
 
/* Main program */ 
int main(int argc, char **argv) 
{ 
  wb_robot_init(); 
  /* Distance sensors */ 
  const WbDeviceTag ds_ft = wb_robot_get_device("ds_ft"); 
  wb_distance_sensor_enable(ds_ft, TIME_STEP); 
  const WbDeviceTag ds_fb = wb_robot_get_device("ds_fb"); 
  wb_distance_sensor_enable(ds_fb, TIME_STEP); 
  const WbDeviceTag ds_fl = wb_robot_get_device("ds_fl"); 
  wb_distance_sensor_enable(ds_fl, TIME_STEP); 
  const WbDeviceTag ds_fr = wb_robot_get_device("ds_fr"); 
  wb_distance_sensor_enable(ds_fr, TIME_STEP); 
  const WbDeviceTag ps_t = wb_robot_get_device("ps_t"); 
  wb_distance_sensor_enable(ps_t, TIME_STEP); 
  const WbDeviceTag ps_b = wb_robot_get_device("ps_b"); 
  wb_distance_sensor_enable(ps_b, TIME_STEP); 
  const WbDeviceTag ps_l = wb_robot_get_device("ps_l"); 
  wb_distance_sensor_enable(ps_l, TIME_STEP); 
  const WbDeviceTag ps_r = wb_robot_get_device("ps_r"); 
  wb_distance_sensor_enable(ps_r, TIME_STEP); 
  /* GPS */ 
  const WbDeviceTag gps  = wb_robot_get_device("gps"); 
  wb_gps_enable(gps, TIME_STEP); 
  /* Motors */ 
  const WbDeviceTag rmxft = wb_robot_get_device("rmxft"); 
  wb_motor_set_position(rmxft, INFINITY); 
  wb_motor_set_velocity(rmxft, 0); 
  const WbDeviceTag rmxfb = wb_robot_get_device("rmxfb"); 
  wb_motor_set_position(rmxfb, INFINITY); 
  wb_motor_set_velocity(rmxfb, 0); 
  const WbDeviceTag rmxfl = wb_robot_get_device("rmxfl"); 
  wb_motor_set_position(rmxfl, INFINITY); 
  wb_motor_set_velocity(rmxfl, 0); 
  const WbDeviceTag rmxfr = wb_robot_get_device("rmxfr"); 
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  wb_motor_set_position(rmxfr, INFINITY); 
  wb_motor_set_velocity(rmxfr, 0); 
  const WbDeviceTag rmy = wb_robot_get_device("rmy"); 
  wb_motor_set_position(rmy, INFINITY); 
  wb_motor_set_velocity(rmy, 0); 
  const WbDeviceTag rmz = wb_robot_get_device("rmz"); 
  wb_motor_set_position(rmz, INFINITY); 
  wb_motor_set_velocity(rmz, 0); 
 
  /* PID initial Controller variables */ 
  SPID_X.pGain = 1;     // increase speed of response 
  SPID_X.iGain = 100;   // reduce error between actual and desired sensor values 
  SPID_X.dGain = -85;   // Remove oscillation, but increase cumulative error (threatens stability 
of system) 
  SPID_X.iState = 0; 
  SPID_X.dState = 0.001; 
  SPID_Y = SPID_X; 
  SPID_Z = SPID_X; 
 
  /* Local variables */ 
  double x_pos = 0.0, y_pos = 0.0, z_pos = 0.0; 
  double goal_x = 24.0, goal_y = 18.25, end_goal = -20.0; 
  //double lost_x = 0.0, lost_y = 0.0, lost_z = 0.0; 
  double ps_error = 0.0; 
  bool ASSEMBLY_COMPLETE = 0, SEARCH_COMPLETE = 0, WAIT = 0; 
  // set random fail time 
  srand(time(NULL)); 
  int fail_time = (rand() % 10) +1; 
 
  /* Main loop */ 
  while (wb_robot_step(TIME_STEP) != -1) 
  { 
    x_pos = wb_gps_get_values(gps)[0]; 
    y_pos = wb_gps_get_values(gps)[1]; 
    z_pos = wb_gps_get_values(gps)[2]; 
 
      ASSEMBLY_COMPLETE = 1; // SKIP ASSEMBLY STAGE 
 
      if(!ASSEMBLY_COMPLETE) 
      { 
        /* ASSEMBLY STAGE */ 
        // Set motor velocity of lost agents to 0.0 
        if(wb_distance_sensor_get_value(ds_ft) >= 3.0 && wb_distance_sensor_get_value(ds_fb) 
>= 3.0 && wb_distance_sensor_get_value(ds_fl) >= 3.0 && 
wb_distance_sensor_get_value(ds_fr) >= 3.0) 
        { 
         
        // change this section so that if the robot loses it tethers with other robots it defaults to 
the position where it lost contact and waits. 
          wb_motor_set_velocity(rmxft, 0.0); 
          wb_motor_set_velocity(rmxfb, 0.0); 
          wb_motor_set_velocity(rmxfl, 0.0); 
          wb_motor_set_velocity(rmxfr, 0.0); 
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          wb_motor_set_velocity(rmy, 0.0); 
          wb_motor_set_velocity(rmz, 0.0); 
        } 
            // Stay centred 
            wb_motor_set_velocity(rmz, -(UpdatePos(SPID_Z, x_pos, goal_x))); 
            //get difference in distance between agents using sensors 
            ps_error = wb_distance_sensor_get_value(ps_t) - 
wb_distance_sensor_get_value(ps_b); 
             
              // Maintain distance of 2.0m from ship hull 
              wb_motor_set_velocity(rmxft, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_ft), MAXDIST))/2); 
              wb_motor_set_velocity(rmxfb, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fb), MAXDIST))/2); 
              wb_motor_set_velocity(rmxfl, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fl), MAXDIST))/2); 
              wb_motor_set_velocity(rmxfr, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fr), MAXDIST))/2); 
             
            //set desired positions 
            if(wb_distance_sensor_get_value(ps_t) >= 3.0 && y_pos >= WATERLINE && z_pos > 0.0) 
            { 
              wb_motor_set_velocity(rmy, (UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); // Stay 
close to the  
            } 
            else if(wb_distance_sensor_get_value(ps_b) >= 3.0 && y_pos >= WATERLINE && z_pos 
< 0.0) 
            { 
              wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); // 
Stay close to the Waterline 
            } 
            else 
            { 
              wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, ps_error, 0.0))); 
            } 
        //timer for assembly complete 
        if(wb_robot_get_time() >= ASSEMBLY_TIME) ASSEMBLY_COMPLETE = 1; 
    } 
    else 
    { 
      /* SEARCH STAGE */ 
      // search complete 
      if(x_pos <= end_goal || wb_robot_get_time() >= fail_time) SEARCH_COMPLETE = 1; 
 
      if(!SEARCH_COMPLETE) 
      { 
        // Move at a steady speed towards the end position 
        wb_motor_set_velocity(rmz, 5.0); 
        //get difference in distance between agents using sensors 
        ps_error = wb_distance_sensor_get_value(ps_t) - wb_distance_sensor_get_value(ps_b); 
         
              // Maintain distance of 2.0m from ship hull 
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              wb_motor_set_velocity(rmxft, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_ft), MAXDIST))/2); 
              wb_motor_set_velocity(rmxfb, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fb), MAXDIST))/2); 
              wb_motor_set_velocity(rmxfl, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fl), MAXDIST))/2); 
              wb_motor_set_velocity(rmxfr, (UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fr), MAXDIST))/2); 
         
        // set desired positions 
        if(wb_distance_sensor_get_value(ps_t) >= 3.0 && y_pos >= WATERLINE && z_pos > 0.0) 
        { 
          wb_motor_set_velocity(rmy, (UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); // Stay 
close to the Waterline 
        } 
        else if(wb_distance_sensor_get_value(ps_b) >= 3.0 && y_pos >= WATERLINE && z_pos < 
0.0) 
        { 
          wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, y_pos, WATERLINE + 0.5))*2); // Stay 
close to the Waterline 
        } 
        else 
        { 
          wb_motor_set_velocity(rmy, -(UpdatePos(SPID_Y, ps_error, 0.0))); 
        } 
      } 
      else 
      { 
        if(!WAIT) 
        { 
          /* EXIT STAGE */ 
          goal_x = x_pos - 0.5; 
          goal_y = y_pos; 
           
          /* print fail_time to file */ 
          FILE * fp; 
          fp = fopen("SHIR_A1_PPF_10_FT.txt", "a"); 
          fprintf(fp, "\nFail Time = %3d", fail_time); 
          fclose(fp); 
           
          WAIT = 1; 
        } 
        else 
        { 
          // Maintain positions until end of simulation 
          wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x)); 
          wb_motor_set_velocity(rmy, UpdatePos(SPID_Y, y_pos, goal_y)); 
          wb_motor_set_velocity(rmxft, UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_ft), MAXDIST)); 
          wb_motor_set_velocity(rmxfb, UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fb), MAXDIST)); 
          wb_motor_set_velocity(rmxfl, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fl), 
MAXDIST)); 
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          wb_motor_set_velocity(rmxfr, UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fr), MAXDIST)); 
        } 
      } 
    } 
  } 
  wb_robot_cleanup(); 
  return(0); 
} 
 
double UpdatePos(struct SPID pid, double current_pos, double desired_pos) 
{ 
  double error = desired_pos - current_pos; 
  double pTerm, iTerm, dTerm; 
  pTerm = pid.pGain * error; 
  pid.iState += error; 
  iTerm = pid.iGain * pid.iState; 
  dTerm = pid.dGain  * (error - pid.dState); 
  pid.dState = error; 
  double result = pTerm + iTerm + dTerm; 
  if(result >= 10.0) return(10.0); 
  else if(result <= -10.0) return(-10.0); 
  else return(result); 
} 
 

SHIR_A2_CON.c 
/* 
* File:          SHIR_A2_CON.c 
* Date:          25/03/2019 
* Description:   This controller tells each of the robots how to behave in order 
*                to achieve complete area coverage of the ship hull during inspection. 
* Author:        Matthew Haire 
*/ 
 
/* Webot specific libraries */ 
#include <webots/robot.h> 
#include <webots/motor.h> 
#include <webots/supervisor.h> 
#include <webots/gps.h> 
#include <webots/inertial_unit.h> 
#include <webots/emitter.h> 
#include <webots/receiver.h> 
#include <webots/distance_sensor.h> 
 
/* Standard C libraries */ 
#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdbool.h> 
 
/* Macros used throughout program */ 
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#define TIME_STEP 16.0 
#define WATERLINE 19.0 
#define MAXDIST 2.00 
#define ASSEMBLY_TIME 2.00 
 
/* PID Controller Structure */ 
struct SPID 
{ 
  double pGain, iGain, dGain; // proportional, integral, and differential gains 
  double iState; // integrator state 
  double dState; // last position input 
} SPID_X, SPID_Y, SPID_Z; 
 
/* Update Robot position function */ 
double UpdatePos(struct SPID pid, double current_pos, double desired_pos); 
 
/* Main program */ 
int main(int argc, char **argv) 
{ 
  wb_robot_init(); 
  /* Distance sensors */ 
  const WbDeviceTag ds_ft = wb_robot_get_device("ds_ft"); 
  wb_distance_sensor_enable(ds_ft, TIME_STEP); 
  const WbDeviceTag ds_fb = wb_robot_get_device("ds_fb"); 
  wb_distance_sensor_enable(ds_fb, TIME_STEP); 
  const WbDeviceTag ds_fl = wb_robot_get_device("ds_fl"); 
  wb_distance_sensor_enable(ds_fl, TIME_STEP); 
  const WbDeviceTag ds_fr = wb_robot_get_device("ds_fr"); 
  wb_distance_sensor_enable(ds_fr, TIME_STEP); 
  /* 
  const WbDeviceTag ps_t = wb_robot_get_device("ps_t"); 
  wb_distance_sensor_enable(ps_t, TIME_STEP); 
  const WbDeviceTag ps_b = wb_robot_get_device("ps_b"); 
  wb_distance_sensor_enable(ps_b, TIME_STEP); 
  const WbDeviceTag ps_l = wb_robot_get_device("ps_l"); 
  wb_distance_sensor_enable(ps_l, TIME_STEP); 
  const WbDeviceTag ps_r = wb_robot_get_device("ps_r"); 
  wb_distance_sensor_enable(ps_r, TIME_STEP); 
  */ 
  /* GPS */ 
  const WbDeviceTag gps  = wb_robot_get_device("gps"); 
  wb_gps_enable(gps, TIME_STEP); 
  /* Motors */ 
  const WbDeviceTag rmxft = wb_robot_get_device("rmxft"); 
  wb_motor_set_position(rmxft, INFINITY); 
  wb_motor_set_velocity(rmxft, 0); 
  const WbDeviceTag rmxfb = wb_robot_get_device("rmxfb"); 
  wb_motor_set_position(rmxfb, INFINITY); 
  wb_motor_set_velocity(rmxfb, 0); 
  const WbDeviceTag rmxfl = wb_robot_get_device("rmxfl"); 
  wb_motor_set_position(rmxfl, INFINITY); 
  wb_motor_set_velocity(rmxfl, 0); 
  const WbDeviceTag rmxfr = wb_robot_get_device("rmxfr"); 
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  wb_motor_set_position(rmxfr, INFINITY); 
  wb_motor_set_velocity(rmxfr, 0); 
  const WbDeviceTag rmy = wb_robot_get_device("rmy"); 
  wb_motor_set_position(rmy, INFINITY); 
  wb_motor_set_velocity(rmy, 0); 
  const WbDeviceTag rmz = wb_robot_get_device("rmz"); 
  wb_motor_set_position(rmz, INFINITY); 
  wb_motor_set_velocity(rmz, 0); 
   
  /* PID initial Controller variables */ 
  SPID_X.pGain = 1;   // increase speed of responce 
  SPID_X.iGain = 100; // reduce the error caused by gravity pulling object down  
  SPID_X.dGain = -85;   // Remove oscillation 
  SPID_X.iState = 0; 
  SPID_X.dState = 0.001; 
  SPID_Y = SPID_X; 
  SPID_Y.pGain = 2;   
  SPID_Z = SPID_Y; 
   
  /* Local variables */ 
  double x_pos = 0.0, y_pos = 0.0, z_pos = 0.0; 
  double goal_x = 0.0, goal_y = 0.0; 
  bool SEARCH_COMPLETE = 0, DOWN = 1, UP = 0; 
   
  /* Main loop */ 
  while (wb_robot_step(TIME_STEP) != -1) 
  { 
    x_pos = wb_gps_get_values(gps)[0]; 
    y_pos = wb_gps_get_values(gps)[1]; 
    z_pos = wb_gps_get_values(gps)[2]; 
 
    // This approach does not require an assembly protocol 
    if(wb_robot_get_time() <= TIME_STEP) 
    { 
      goal_x = x_pos; 
    } 
     
    if(!SEARCH_COMPLETE) 
    { 
      // If agent goes out of bounds, deactivate. 
      if(x_pos <= -21.0 || x_pos >= 26.0 || y_pos <= 12.0 || y_pos >= 21.0 || z_pos >= 9.0 || 
z_pos <= -7.0) 
      { 
        wb_motor_set_velocity(rmxft, 0.0); 
        wb_motor_set_velocity(rmxfb, 0.0); 
        wb_motor_set_velocity(rmxfl, 0.0); 
        wb_motor_set_velocity(rmxfr, 0.0); 
        wb_motor_set_velocity(rmy, 0.0); 
        wb_motor_set_velocity(rmz, 0.0); 
        break; 
      } 
      else 
      {       
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        //printf("DOWN: %d UP: %d\n", DOWN, UP); 
        // Maintain distance of 2.0m from ship hull 
        wb_motor_set_velocity(rmxft, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_ft), 
MAXDIST)/2); 
        wb_motor_set_velocity(rmxfb, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fb), 
MAXDIST)/2); 
        wb_motor_set_velocity(rmxfl, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fl), 
MAXDIST)/2); 
        wb_motor_set_velocity(rmxfr, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fr), 
MAXDIST)/2); 
        // MOVE DOWN       
        if(DOWN && !UP) 
        { 
          wb_motor_set_velocity(rmy, -5.0); 
          wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x)); 
          if(z_pos < 0.0 && y_pos >= WATERLINE) 
          { 
            UP = 1; 
            goal_x = (x_pos + 1.0); 
          } 
        } 
        // MOVE FORWARD 
        if(DOWN && UP) 
        { 
          wb_motor_set_velocity(rmy, -UpdatePos(SPID_Y, y_pos, WATERLINE)); 
          wb_motor_set_velocity(rmz, -5.0); 
          if(x_pos >= goal_x) 
          { 
            DOWN = 0; 
            goal_x = x_pos; 
          } 
        } 
        // MOVE UP 
        if(!DOWN && UP) 
        { 
          wb_motor_set_velocity(rmy, 5.0); 
          wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x)); 
          if(z_pos > 0.0 && y_pos >= WATERLINE) 
          { 
            UP = 0; 
            DOWN = 0; 
            goal_x = (x_pos + 1.0); 
          } 
        } 
        // MOVE FORWARD 
        if(!DOWN && !UP) 
        { 
          wb_motor_set_velocity(rmy, UpdatePos(SPID_Y, y_pos, WATERLINE)); 
          wb_motor_set_velocity(rmz, -5.0); 
          if(x_pos >= goal_x) 
          { 
            DOWN = 1; 
            goal_x = x_pos; 
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          } 
        } 
        // SEARCH COMPLETE 
        //This section requires editing for PPF experiments 
        if(x_pos >= 27.0) 
        { 
          SEARCH_COMPLETE = 1; 
          goal_x = x_pos + 1.0; 
          goal_y = WATERLINE; 
        } 
      } 
    } 
    else 
    { 
      break; 
      // ASSEMBLE AT THE FRONT OF THE SHIP 
      //wb_motor_set_velocity(rmxft, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_ft), 
MAXDIST)); 
      //wb_motor_set_velocity(rmxfb, UpdatePos(SPID_X, 
wb_distance_sensor_get_value(ds_fb), MAXDIST)); 
      //wb_motor_set_velocity(rmxfl, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fl), 
MAXDIST)); 
      //wb_motor_set_velocity(rmxfr, UpdatePos(SPID_X, wb_distance_sensor_get_value(ds_fr), 
MAXDIST)); 
      //wb_motor_set_velocity(rmy, UpdatePos(SPID_Y, y_pos, goal_y)); 
      //wb_motor_set_velocity(rmz, -UpdatePos(SPID_Z, x_pos, goal_x)); 
    }   
  } 
  wb_robot_cleanup(); 
  return(0); 
} 
double UpdatePos(struct SPID pid, double current_pos, double desired_pos) 
{ 
  double error = desired_pos - current_pos; 
  double pTerm, iTerm, dTerm; 
  pTerm = pid.pGain * error; 
  pid.iState += error; 
  iTerm = pid.iGain * pid.iState; 
  dTerm = pid.dGain  * (error - pid.dState); 
  pid.dState = error; 
  double result = pTerm + iTerm + dTerm; 
  return(result); 
} 
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Appendix B: Ship Hull Repair Netlogo Simulation Code 

Appendix B features the code used to carry out the experiments from Chapters 4. 

Netlogo was the simulation suite used for the Self-assembly algorithm simulations. The 

two sets of code displayed here are: ESHR SA Experiment 1 and ESHR SA Experiment 2. 

These can be files can be downloaded from the GitHub repository 

(https://github.com/MattSHaire/Emergency-Ship-Hull-Repair) and executed on the 

Netlogo Desktop App or uploaded and executed in a browser using Netlogo Web which 

can be accessed from https://www.netlogoweb.org/ 

ESHR SA Experiment 1 

;; EMERGENCY SHIP HULL REPAIR 
;; SELF ASSEMBLING AGENTS APPROACH VERSION 3.0 
;; BY MATTHEW HAIRE 
;; LAST EDITED:    03 May 2019 
 
globals 
[ 
  seal  ;; check if breach is sealed or not 
  speed ;; movement speed of turtles 
  goalx ;; goal x coordinate 
  goaly ;; goal y coordinate 
  sproutx ;; x coordinates of turtle for creation 
  increments ;; while loop variable for robots 
  spacing ;; spacing for robots 
  turtles_attached ;; robots that form part of breach 
  turtles_unattached ;; robots that remain unattached 
] 
 
turtles-own 
[ 
  active  ;; state of the turtle - either in transit or in position 
  goalpos ;; goal position of turtle - either centre, left or right or breach 
  agent_ahead ;; reporter for color of agent ahead of turtle 
] 
 
to setup 
  clear-all 
  reset-ticks 
  set seal 0 
  set speed 1 
  set turtles_attached 0 
  set turtles_unattached 0 
  setup-environment 
  setup-turtles 
  vid:start-recorder 

https://github.com/MattSHaire/Emergency-Ship-Hull-Repair
https://www.netlogoweb.org/
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end 
 
to setup-environment 
  resize-world -50 50 -50 50 
  set-patch-size 5 
  set goalx breachx 
  set goaly (breachy + breachsize + 1) 
  ask patches 
  [ 
    set pcolor 5 
    if pycor <= (min-pycor + (max-pycor * 1.9)) 
    [ 
      set pcolor 105 
    ] 
    ask patch breachx breachy 
    [ 
      set pcolor 101 
      ask patches in-radius breachsize 
      [ 
        set pcolor 101 
      ] 
    ] 
  ] 
end 
 
to setup-turtles 
 
  set increments 0 
  set sproutx 0 
  set spacing (96 / robotpop) 
 
  while [increments < (robotpop / 2)] 
  [ 
    set sproutx (sproutx - spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
    set increments (increments + 1) 
  ] 
 
  set sproutx 0 
  while [increments < robotpop] 
  [ 
    set sproutx (sproutx + spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
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    set increments (increments + 1) 
  ] 
 
  ask turtles 
    [ 
      set active 1 
      set goalpos "centre" 
      set shape "square" 
      set size 1 
      set color red 
      set agent_ahead "null" 
    ] 
end 
 
to start 
  if seal = 1 OR ticks > 1000 
  [ 
    set turtles_attached count turtles with [xcor >= (breachx - breachsize - 1) AND xcor 
<= (breachx + breachsize + 1) AND ycor >= (breachy - breachsize - 1) AND ycor <= 
(breachy + breachsize + 1)] 
 
    if breachsize = 6 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 5 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 4 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 3 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 2 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 1 [set turtles_unattached count turtles - turtles_attached] 
 
    show count turtles 
    show turtles_unattached 
    show seal 
    stop 
  ] 
  turtle-actions 
  spawn-turtles 
  advance-line 
  tick 
end 
 
to turtle-actions 
  ask turtles 
  [ 
    if active = 1 
    [ 
      if goalpos = "left" 
      [ 
        ifelse pycor > (goaly + 1) 
        [ 
          setxy pxcor (goaly + 1) 
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        ] 
        [ 
          ifelse not any? (turtles-on patch-left-and-ahead 90 1) 
          [ 
            set agent_ahead "null" 
            setxy pxcor goaly 
            set color orange 
            set active 0 
            if pxcor > goalx 
            [ 
              set goalpos "right" 
            ] 
          ] 
          [ 
            set heading 270 
            forward speed 
          ] 
          if pxcor < (goalx - breachsize - 1) 
          [ 
            set goalpos "lost" 
            set active 1 
          ] 
        ] 
      ] 
      if goalpos = "right" 
      [ 
        ifelse pycor > (goaly + 1) 
        [ 
          setxy pxcor (goaly + 1) 
        ] 
        [ 
          ifelse not any? (turtles-on patch-right-and-ahead 90 1) 
          [ 
            set agent_ahead "null" 
            setxy pxcor goaly 
            set color orange 
            set active 0 
            if pxcor < goalx 
            [ 
              set goalpos "left" 
            ] 
          ] 
          [ 
            set heading 90 
            forward speed 
          ] 
          if pxcor > (goalx + breachsize + 1) 
          [ 
            set goalpos "lost" 
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            set active 1 
          ] 
        ] 
      ] 
 
      if goalpos = "lost" 
      [ 
          facexy pxcor (goaly + 6) 
          ifelse not any? (turtles-on patch-ahead 1.5) 
          [ 
          set agent_ahead "null" 
          ifelse pycor >= (goaly + 6) 
           [ 
             set goalpos "centre" 
             facexy goalx goaly 
             set color red 
           ] 
           [ 
             forward speed 
           ] 
          ] 
          [ 
           if any? (turtles-on patch-ahead 1.5) with [color = red] 
           [ 
             set agent_ahead "red" 
             back speed ;; previously 1 
           ] 
           if any? (turtles-on patch-ahead 1.5) with [color = orange] 
           [ 
             set agent_ahead "orange" 
             back speed ;; previously 1 
           ] 
           if any? (turtles-on patch-ahead 1.5) with [color = green] 
           [ 
             set agent_ahead "green" 
             back speed ;; previously 1 
           ] 
          ] 
      ] 
 
      if goalpos = "centre" 
      [ 
        facexy goalx goaly 
        ifelse not any? (turtles-on patch-ahead 1.5) 
        [ 
          set agent_ahead "null" 
          ifelse (pxcor < (goalx + 0.5) AND pxcor > (goalx - 0.5) AND pycor > (goaly - 0.5) 
AND pycor < (goaly + 0.5)) 
          [ 
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            setxy goalx goaly 
            set heading 180 
            set color orange 
            set active 0 
          ] 
          [ 
            forward speed ;; previously 1 
          ] 
        ] 
        [ 
          if any? (turtles-on patch-ahead 1.5) with [color = red] 
          [ 
            set agent_ahead "red" 
            back speed ;; previously 1 
          ] 
          if any? (turtles-on patch-ahead 1.5) with [color = orange] 
          [ 
            set agent_ahead "orange" 
            setxy pxcor pycor 
            if not any? (turtles-on patch (goalx - 1) goaly) OR any? (turtles-on patch (goalx - 
1) goaly) with [color = orange] 
            [ 
              set heading 270 
              ifelse any? (turtles-on patch-ahead 1) OR any? (turtles-on patch-ahead 2) 
              [ 
                set heading 90 
                set goalpos "right" 
              ] 
              [ 
                set heading 270 
                set goalpos "left" 
              ] 
            ] 
            if (not any? (turtles-on patch (goalx + 1) goaly) OR any? (turtles-on patch (goalx 
+ 1) goaly) with [color = orange]) AND (goalpos != "left") 
            [ 
              set heading 90 
              set goalpos "right" 
            ] 
          ] 
          if any? (turtles-on patch-ahead 1.5) with [color = green] 
          [ 
            set agent_ahead "green" 
            ifelse not any? (turtles-on patch goalx goaly) 
            [ 
              setxy goalx goaly 
              set heading 180 
              set color orange 
              set active 0 
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            ] 
            [ 
              back (speed / 2) 
            ] 
          ] 
        ] 
      ] 
    ] 
    if active = 0 
    [ 
      ifelse goalpos = "centre" 
      [ 
        if any? ((turtles-on patch (goalx - 1) goaly) with [color = green]) AND any? ((turtles-
on patch (goalx + 1) goaly) with [color = green]) 
        [ 
          set color green 
        ] 
      ] 
      [ 
        ifelse xcor < (goalx - breachsize) OR xcor > (goalx + breachsize) 
        [ 
          set color green 
        ] 
        [ 
          if any? (turtles-on patch (pxcor - 1) pycor) with [color = green] OR any? (turtles-
on patch (pxcor + 1) pycor) with [color = green] 
          [ 
            set color green 
          ] 
        ] 
      ] 
    ] 
  ] 
end 
 
to spawn-turtles 
  if (ticks > 1) AND (remainder ticks Deployrate) = 0 [ 
  set increments 0 
  set sproutx 0 
  while [increments < (robotpop / 2)] 
  [ 
    set sproutx (sproutx - spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
    set increments (increments + 1) 
  ] 
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  set sproutx 0 
  while [increments < robotpop] 
  [ 
    set sproutx (sproutx + spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
    set increments (increments + 1) 
  ] 
 
    ask turtles with [pycor = 48] 
    [ 
      set active 1 
      set goalpos "centre" 
      set shape "square" 
      set size 1 
      set color red 
      set agent_ahead "null" 
    ] 
  ] 
end 
 
to advance-line 
  if any? (turtles-on patch breachx (breachy - breachsize - 1)) AND any? (turtles-on 
patch goalx goaly) with [color = green] 
  [ 
    ask turtles 
    [ 
      set color violet 
      set active 3 
    ] 
    set seal 1 
  ] 
  if any? (turtles-on patch goalx goaly) with [color = green] 
  [ 
    ask turtles with [ycor < (goaly + 0.5) AND goalpos != "lost"] 
    [ 
      set heading 180 
      forward speed 
      set active 3 
    ] 
  ] 
end 

ESHR SA Experiment 2 

;; EMERGENCY SHIP HULL REPAIR 
;; SELF ASSEMBLING AGENTS APPROACH VERSION 3.1 
;; BY MATTHEW HAIRE 
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;; LAST EDITED:    03 May 2019 
 
globals 
[ 
  seal  ;; check if breach is sealed or not 
  speed ;; movement speed of turtles 
  goalx ;; goal x coordinate 
  goaly ;; goal y coordinate 
  sproutx ;; x coordinates of turtle for creation 
  increments ;; while loop variable for robots 
  spacing ;; spacing for robots 
  sub_breach 
  sub_agent 
  total_ingress 
  Q 
  Area 
  turtles_attached 
  turtles_unattached 
] 
 
turtles-own 
[ 
  active  ;; state of the turtle - either in transit or in position 
  goalpos ;; goal position of turtle - either centre, left or right or breach 
  agent_ahead ;; reporter for color of agent ahead of turtle 
] 
 
to setup 
  clear-all 
  reset-ticks 
  set seal 0 
  set speed 1 
  set turtles_attached 0 
  set turtles_unattached 0 
  setup-environment 
  setup-turtles 
end 
 
to setup-environment 
  resize-world -50 50 -50 50 
  set-patch-size 5 
  set goalx breachx 
  set goaly (breachy + breachsize + 1) 
  set sub_agent 0 
  set total_ingress 0 
  set Q 0 
  set Area (pi * breachsize ^ 2 * 0.00694) 
  ask patches 
  [ 
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    set pcolor 5 
    if pycor <= (min-pycor + (max-pycor * 1.9)) 
    [ 
      set pcolor 105 
    ] 
    ask patch breachx breachy 
    [ 
      set pcolor 101 
      ask patches in-radius breachsize 
      [ 
        set pcolor 101 
      ] 
    ] 
  ] 
end 
 
to setup-turtles 
 
  set increments 0 
  set sproutx 0 
  set spacing (96 / robotpop) 
 
  while [increments < (robotpop / 2)] 
  [ 
    set sproutx (sproutx - spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
    set increments (increments + 1) 
  ] 
 
  set sproutx 0 
  while [increments < robotpop] 
  [ 
    set sproutx (sproutx + spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
    set increments (increments + 1) 
  ] 
 
  ask turtles 
    [ 
      set active 1 
      set goalpos "centre" 
      set shape "square" 
      set size 1 
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      set color red 
      set agent_ahead "null" 
    ] 
end 
 
to start 
  if (ticks > 1) AND (remainder ticks mov_spd) = 0 
  [ 
    water-ingress-calc 
  ] 
  if seal = 1 OR total_ingress >= 14870 
  [ 
    set turtles_attached count turtles with [xcor >= (breachx - breachsize - 1) AND xcor 
<= (breachx + breachsize + 1) AND ycor >= (breachy - breachsize - 1) AND ycor <= 
(breachy + breachsize + 1)] 
 
    if breachsize = 6 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 5 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 4 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 3 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 2 [set turtles_unattached count turtles - turtles_attached] 
    if breachsize = 1 [set turtles_unattached count turtles - turtles_attached] 
 
    show count turtles 
    show turtles_unattached 
    show total_ingress 
    show seal 
    stop 
  ] 
  water-ingress-calc 
  turtle-actions 
  spawn-turtles 
  advance-line 
  tick 
end 
 
to turtle-actions 
  ask turtles 
  [ 
    if active = 1 
    [ 
      if goalpos = "left" 
      [ 
        ifelse pycor > (goaly + 1) 
        [ 
          setxy pxcor (goaly + 1) 
        ] 
        [ 
          ifelse not any? (turtles-on patch-left-and-ahead 90 1) 
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          [ 
            set agent_ahead "null" 
            setxy pxcor goaly 
            set color orange 
            set active 0 
            if pxcor > goalx 
            [ 
              set goalpos "right" 
            ] 
          ] 
          [ 
            set heading 270 
            forward speed 
          ] 
          if pxcor < (goalx - breachsize - 1) 
          [ 
            set goalpos "lost" 
            set active 1 
          ] 
        ] 
      ] 
      if goalpos = "right" 
      [ 
        ifelse pycor > (goaly + 1) 
        [ 
          setxy pxcor (goaly + 1) 
        ] 
        [ 
          ifelse not any? (turtles-on patch-right-and-ahead 90 1) 
          [ 
            set agent_ahead "null" 
            setxy pxcor goaly 
            set color orange 
            set active 0 
            if pxcor < goalx 
            [ 
              set goalpos "left" 
            ] 
          ] 
          [ 
            set heading 90 
            forward speed 
          ] 
          if pxcor > (goalx + breachsize + 1) 
          [ 
            set goalpos "lost" 
            set active 1 
          ] 
        ] 
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      ] 
 
      if goalpos = "lost" 
      [ 
          facexy pxcor (goaly + 6) 
          ifelse not any? (turtles-on patch-ahead 1.5) 
          [ 
          set agent_ahead "null" 
          ifelse pycor >= (goaly + 6) 
           [ 
             set goalpos "centre" 
             facexy goalx goaly 
             set color red 
           ] 
           [ 
             forward speed 
           ] 
          ] 
          [ 
           if any? (turtles-on patch-ahead 1.5) with [color = red] 
           [ 
             set agent_ahead "red" 
             back speed ;; previously 1 
           ] 
           if any? (turtles-on patch-ahead 1.5) with [color = orange] 
           [ 
             set agent_ahead "orange" 
             back speed ;; previously 1 
           ] 
           if any? (turtles-on patch-ahead 1.5) with [color = green] 
           [ 
             set agent_ahead "green" 
             back speed ;; previously 1 
           ] 
          ] 
      ] 
 
      if goalpos = "centre" 
      [ 
        facexy goalx goaly 
        ifelse not any? (turtles-on patch-ahead 1.5) 
        [ 
          set agent_ahead "null" 
          ifelse (pxcor < (goalx + 0.5) AND pxcor > (goalx - 0.5) AND pycor > (goaly - 0.5) 
AND pycor < (goaly + 0.5)) 
          [ 
            setxy goalx goaly 
            set heading 180 
            set color orange 
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            set active 0 
          ] 
          [ 
            forward speed ;; previously 1 
          ] 
        ] 
        [ 
          if any? (turtles-on patch-ahead 1.5) with [color = red] 
          [ 
            set agent_ahead "red" 
            back speed 
          ] 
          if any? (turtles-on patch-ahead 1.5) with [color = orange] 
          [ 
            set agent_ahead "orange" 
            setxy pxcor pycor 
            if not any? (turtles-on patch (goalx - 1) goaly) OR any? (turtles-on patch (goalx - 
1) goaly) with [color = orange] 
            [ 
              set heading 270 
              ifelse any? (turtles-on patch-ahead 1) OR any? (turtles-on patch-ahead 2) 
              [ 
                set heading 90 
                set goalpos "right" 
              ] 
              [ 
                set heading 270 
                set goalpos "left" 
              ] 
            ] 
            if (not any? (turtles-on patch (goalx + 1) goaly) OR any? (turtles-on patch (goalx 
+ 1) goaly) with [color = orange]) AND (goalpos != "left") 
            [ 
              set heading 90 
              set goalpos "right" 
            ] 
          ] 
          if any? (turtles-on patch-ahead 1.5) with [color = green] 
          [ 
            set agent_ahead "green" 
            ifelse not any? (turtles-on patch goalx goaly) 
            [ 
              setxy goalx goaly 
              set heading 180 
              set color orange 
              set active 0 
            ] 
            [ 
              back (speed / 2) 
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            ] 
          ] 
        ] 
      ] 
    ] 
    if active = 0 
    [ 
      ifelse goalpos = "centre" 
      [ 
        if any? ((turtles-on patch (goalx - 1) goaly) with [color = green]) AND any? ((turtles-
on patch (goalx + 1) goaly) with [color = green]) 
        [ 
          set color green 
        ] 
      ] 
      [ 
        ifelse xcor < (goalx - breachsize) OR xcor > (goalx + breachsize) 
        [ 
          set color green 
        ] 
        [ 
          if any? (turtles-on patch (pxcor - 1) pycor) with [color = green] OR any? (turtles-
on patch (pxcor + 1) pycor) with [color = green] 
          [ 
            set color green 
          ] 
        ] 
      ] 
    ] 
  ] 
end 
 
to spawn-turtles 
  if (ticks > 1) AND (remainder ticks Deployrate) = 0 [ 
  set increments 0 
  set sproutx 0 
  while [increments < (robotpop / 2)] 
  [ 
    set sproutx (sproutx - spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
    set increments (increments + 1) 
  ] 
 
  set sproutx 0 
  while [increments < robotpop] 
  [ 
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    set sproutx (sproutx + spacing) 
    ask patch sproutx 48 
    [ 
      Sprout 1 
    ] 
    set increments (increments + 1) 
  ] 
 
    ask turtles with [pycor = 48] 
    [ 
      set active 1 
      set goalpos "centre" 
      set shape "square" 
      set size 1 
      set color red 
      set agent_ahead "null" 
    ] 
  ] 
end 
 
to advance-line 
  if any? (turtles-on patch breachx (breachy - breachsize - 1)) AND any? (turtles-on 
patch goalx goaly) with [color = green] 
  [ 
    ask turtles 
    [ 
      set color violet 
      set active 3 
    ] 
    set seal 1 
  ] 
  if any? (turtles-on patch goalx goaly) with [color = green] 
  [ 
    ask turtles with [ycor < (goaly + 0.5)] 
    [ 
      set heading 180 
      forward speed 
      set active 3 
    ] 
  ] 
end 
 
to water-ingress-calc 
  if breachy = 33 [set Q (Area * sqrt (64.348 * 1))] 
  if breachy = 21 [set Q (Area * sqrt (64.348 * 2))] 
  if breachy = 9 [set Q (Area * sqrt (64.348 * 3))] 
  if breachy = -3 [set Q (Area * sqrt (64.348 * 4))] 
  if breachy = -15 [set Q (Area * sqrt (64.348 * 5))] 
  if breachy = -27 [set Q (Area * sqrt (64.348 * 6))] 
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  if breachy = -39 [set Q (Area * sqrt (64.348 * 7))] 
 
  set sub_breach (count patches with [pcolor = 101]) 
  set sub_agent (count turtles-on patches with [pcolor = 101]) 
  set Q (Q * (sub_breach - sub_agent) / sub_breach) 
  set Q (Q / 60 * 6.23) 
  set total_ingress (total_ingress + Q) 
end 
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Appendix C: Additional Results from Ship Hull Repair 

Experiments 
Appendix C features the graphed results from the emergency ship hull repair 

experiments of Chapter 4 which examined self-assembly of a repair patch under 

varying conditions. The graphs here primarily relate to the experiments which 

examined breach diameters of 0.2m and 0.6m when no obstacles were present and 

the experiments where the breach diameter remained constant but an obstacle was 

included whose diameter and position would vary. 
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Breach Diameter 0.6m (No Obstacles) 
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Obstacle Diameter 0.2m (Breach Diameter 0.4m) 
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Obstacle Diameter 0.6m (Breach Diameter 0.4m) 
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Appendix D: Publications and Research Outputs 

As referenced within the main text, this thesis was born out of years of research into 

swarm robotics which resulted in findings significant enough to warrant two 

conference papers, a journal paper, symposium oral presentations and a symposium 

poster – which was fortunate enough to win the runner-up prize for best poster. These 

are listed below: 

Conference Papers 

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2019, September). Ship hull 

inspection using a swarm of autonomous underwater robots: a Search algorithm. In 

2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) 

(pp. 114-115). IEEE. 

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2019, September). Ship hull repair 

using a swarm of autonomous underwater robots: A self-assembly algorithm. In 2019 

European Conference on Mobile Robots (ECMR) (pp. 1-6). IEEE. 

Journal Papers 

Talamali, M. S., Bose, T., Haire, M., Xu, X., Marshall, J. A., & Reina, A. (2020). 

Sophisticated collective foraging with minimalist agents: a swarm robotics test. Swarm 

Intelligence, 14(1), 25-56. 

Posters 

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2017). Bio-inspired artificial nest-

site selection swarm simulation and potential applications. Poster. Sheffield Hallam 

University MERI Symposium 2017. (Runner-Up Best Poster Award) 

Oral Presentations 

Haire, M., Xu, X., Alboul, L., Penders, J., & Zhang, H. (2018). Emergency Ship Hull Repair 

Using a Swarm of Autonomous Underwater Robots. Poster. Sheffield Hallam University 

MERI Symposium 2018. 

 


