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(Dated: July 12, 2021)

Strong oblique shock waves of granular flow are a steady-state solution formed when a granular
free-surface flow deflects around a wedge-shaped obstacle at a supercritical speed, but they do not
usually occur because their formation requires specific conditions to be satisfied downstream of
the shock wave. This paper discusses the method of generating the strong oblique shock wave in
laboratory experiment and numerical simulation. The experiment is conducted on a plexiglass chute
inclined at an angle to the horizontal, in which a dry granular material is released from a hopper
at the top of the chute to form a channelized flow that passes a wedge at a downslope location.
In order to generate a strong oblique shock wave, a second gate is established at the downstream
of the wedge to control the material to flow out only at the designed time and height. Such a
granular flowing process is simulated with a depth-averaged granular flow model, where the above
two-gate system is mirrored into the inlet and outlet boundaries, respectively. The formation of
the strong oblique shock is investigated through the transient solution of the flow field, and a good
agreement is observed between the experiment and the simulation. Then, the steady-state solution
of the interaction between the weak and strong oblique shocks is analysed in the experiment and
simulation. This result can be regarded as the third solution of granular shock because it can be
formed by just changing the opening time of the second gate. With the dramatic change in flow
thickness and velocity across the strong oblique shock, the bulk inertial number, used to quantify
the rheological relation of granular materials, becomes extremely small, but it does not seem to

affect the behaviour of the flow discussed in this paper.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Granular free-surface flows driven by gravity arc com-
monly seen in industrial (e.g. food, mining, chemical
or pharmaceutical) and natural (e.g. volcanical, mud-
slide or snow-avalanche) processes. An important phe-
nomenon often observed in such processes is that when
granular materials travel faster than the speed of sound
and are deflected by obstacles, shock waves are gener-
ated. Such shock waves bear many similarities with the
hydraulic jumps of water flows (see,!,2?). Since granular
flows usually exhibit a weak scale dependence, labora-
tory experiments can be used to gain important insight
into these processes. Savage (1979)* studied a granular
avalanche moving down an inclined chute and observed
a granular shock wave being generated when the flow
was stopped by a downstream splitter. Savage & Hutter
(1989)° modelled the governing equations as a shallow-
water type for granular flows by incorporating a Mohr-
Coulomb law for the basal friction. Hutter et al. (1993)°
later introduced a “jump” term into the basal friction law
to reflect the discontinuous change across shock waves,
and Wieland et al. (1999)7 used this relation to simulate
a granular avalanche moving on a curved bed. When
studying the flow around various obstacles, Gray et al.
(2003) showed that the simple Coulomb friction law still
works well in the granular shock simulation.

The attempts to establish a more complex rheological
relationship show that as the flow of granular materials
becomes more complicated, the corresponding rheologi-
cal law may need to be more complex to reflect the be-

haviours of the flow as well. Pouliquen (1999)° scaled
the mean flow velocity of his measurement according to
the minimum thickness that varies with the inclination
angle of the slope, and proposed an empirical expres-
sion for the dynamic friction coefficient, u, as a func-
tion of the flow velocity @ and thickness h, followed by
further improvements'®!'. By investigating the visco-
plastic behaviour of the gravitationally-driven granular
flow bounded between two parallel rough side walls, a
French research group (2004)'2 modelled the rheological
behaviour of y according to a dimensionless inertial num-
ber,
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where ¥, represents a mean shear rate, P is the normal
hydrostatic pressure, p the density of the grain, and d
the diameter of the grain. The introduction of the iner-
tia number has brought great convenience to the descrip-
tion of the law of basal friction, so the form of p(I) has
since become a commonly-used method of expressing the
rheological law of granular materials, e.g.,"*'7. In the
mean time, the validity of the u(I)-rheology has been
examined for a wider range of parameters by Holyoake
& McElwaine (2012)'8, where they tested a sand flow
down a steep chute for both flat and bumpy basal condi-
tions over much deeper slope angles, and concluded that
the p(I)-rheology does not fully capture the accelerat-
ing dynamics or the transverse velocity profile on the
bumpy base. Gray & Edwards (2014)'° incorporated
the p(I)-rheology into the depth-averaged granular flow
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model and showed that the rheology cannot be used out-
side the range of angles where steady-uniform flows de-
velop. The well-posed and ill-posed problem of the ju(I)-
rheology was addressed by Barker et al. (2015)?, and
they showed that the p(I) representation works well for
intermediate values of I, but becomes ill-posed when the
inertial number becomes high or low. By considering the
stretching of the convective Kelvin wave vector in basal
flows, the stability of the p(I)-rheology was further stud-
ied for planar simple shearing and pure shearing flows?!.
With the advance of computing technology, meanwhile,
the discrete element method (DEM) has become popu-
lar on understanding the rheological relations of granu-
lar material in recent years. Examples may include the
numerical modelling of frictional ellipses®>?3, DEM sim-
ulation of rod-like particles?* and binary granular parti-
cles of different shapes?®, and DEM modelling of rapid
granular flows on inclines?®. Above all, a more complex
rheological law of granular material makes it possible to
run simulations based on more complicated models?”>?%,
and the study on the granular shock waves may provide a
unique approach to understand the underlying rheology
of granular materials due to the dramatic change in flow
properties across the shock wave.

Tai et al. (2002)%° used marker points to track the
moving front of a granular shock in their chute-flow sim-
ulation. Pitman et al. (2003)*° simulated the granu-
lar avalanches and landslides over a realistic terrain with
the use of adaptive mesh. Following the work of Gray
et al.®, Hikonardéttir and Hogg (2005)3! further studied
the granular flow around a wedge, and showed that the
source terms, which are consisted of gravitational force
and basal friction, can impose a substantial effect on the
oblique shock angle. Amarouchene and Kelly (2006)32
experimentally measured the speed of sound for the de-
tached shock front in granular flows around square and
circular obstacles. Gray & Cui (2007)%% made a further
study to the granular flow around wedge problem through
numerical simulations and experiments, and formulated
the oblique shock wave relation for granular flows. At the
same time, Cui et al. (2007)** simulated the movement
of a snow avalanche under the realistic topographic con-
ditions at Flateyri, Iceland, and showed that an oblique
shock was generated when the avalanche was deflected
by a defensive dam. Other examples of granular shock
studies may include granular jets and hydraulic jumps
on an inclined plane®®, bow shock waves around a cir-
cular cylinder®, travelling and steady shock waves over
a smooth two-dimensional bump®”. To have an over-
all picture about the studies of granular flow in recent
years, readers may find the review written by Delannay
et al.?® helpful too, and this paper will focus on the strong
oblique shock waves of granular flow.

According to the granular oblique shock relation®?,
there exist two solutions of oblique shock wave for a given
incoming Froude number Fr; if the wedge deflection an-
gle, 0, is smaller than its detachment angle 6y.x. For
the convenience of discussion this relation has been re-

oblique shock
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FIG. 1: The shock-deflection relation of granular flow for
incoming Froude numbers Fr; = 1.5,2,3, 5,8, 15,50, 500, co.
The solid lines denote the solution of weak shock, the shorter-
dashed lines denote the solution of strong shock, the dashdot
line represents the after-shock Fro = 1, and the longer-dashed
line represents the detachment angle €ax-

FIG. 2: An experimental photo showing a steady granular
flow around an oblique wedge that has a deflection angle § =
20°. The flow is driven down the slope by gravity. and a
strong oblique shock wave is generated with the control of
the outflow conditions through a downstreamn gate. The flow
direction is oriented from left to right here.

produced in Fig. 1. From it, for example, if Fr; = 5 and
0 = 20°, one can get a smaller angle 8; = 30.69° corre-
sponding to a weak oblique shock solution, and a larger
angle f; = 86.15° corresponding to a strong oblique
shock solution, for O, = 45.98°. Usually weak oblique
shock waves are favored to occur in most of natural gran-
ular flows when moving at supercritical speed (Frq > 1),
whilst the occurrence of strong oblique shock waves de-
pends on specific conditions to be met at the downstream
of the shock. Shown in Fig. 2 is an experiment result of
a steady granular flow impacting an oblique wedge with
0 = 20°. A granular material, 100’s and 1000’s sprin-
kles in red and white, is released from a hopper at the
top of a chute inclined at 38° angle to the horizontal, and
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flows, from left to right, down the chute. A strong oblique
shock wave is generated in this experiment since the out-
flow conditions downstreamn the wedge are controlled by
a designated gate shown in this figure.

This paper will first discuss the method of generat-
ing strong oblique shock waves through laboratory ex-
periment and numerical simulation, and then discuss the
time-dependent and steady-state solutions obtained in
the experiment and simulation. Investigation will then
be made to the steady-state interaction between weak
and strong oblique shock waves. Since the flow charac-
teristics change more drastically when passing through
the strong oblique shock wave, its influence on the iner-
tia number [ will be analysed at the end.

II. GOVERNING EQUATIONS AND
COMPUTATIONAL METHOD

A. Governing equations for granular free-surface
flows

The constitutive relation of granular materials can be
extremely complicated when internal properties due to
collision, deformation, friction and lubrication are consid-
ered. However if a flow moves at a relatively fast speed,
e.g. snow avalanches, such internal complexities can be
often negligible, leaving only the basal fiction and the
gravitational force to be considered. By “fast-moving”
here it means that the Froude number (equivalent to the
Mach number in gasdynamics) of the flow,

Fr = [a|/\/ ghcos, 2)

is greater than 1, where || is the depth-averaged flow
speed, h the flow thickness, ¢ the inclination angle of a

slope, whereas 4/ gﬁcos( represents the wave propaga-
tion speed of the flow, and the tilde notation represents
a dimenisonal term. A granular free-surface flow can be
treated as a shallow-water type since the depth of the flow
in the normal direction is much smaller than its travelling
distance along the slope, therefor flow variables such as
velocity can be simplified as a bulk eutity by a depth-
averaged integration (Savage & Hutter 1989°). Early
types of such models started to appear in 1960’s and
70’s when snow avalanches were studied®®*!, later more
complicated basal frictional relations were introduced to
similar types of model (e.g.>4244).

The governing equations used in this paper are briefly
explained as follows. Suppose the equations are set up in
a fixed Cartesian coordinate system, Ozy, with the origin
O being at the start of an avalanching flow, the x—axis
following the downslope direction of the chute inclined
at an angle ¢ to the horizontal, and the y—axis being
in the cross-slope direction of the chute. With @ and o
being the components of the depth-averaged velocity @
in x— and y—directions, respectively, one can have the
governing equations in dimensionless form as follows

(k) + (h@), + (hD), =0,
(hi); + (hi?), + (hUD), + (3h%cos(). = hS®, (3)
(h0)¢ + (hud), + (h0?), + (3h*cos (), = hSY,

and the source terms of the right-hand side are

ST = sin(j—,u(ﬁ/\ﬁ\)(cos(j—%ﬁz)—a—cosg",
ox ox
o= anieosc- Lty Pooe,
= n(v/|al)(cos ¢ Bzu aycos(,

where f is the coefficient of friction, b is the height of the
topography normal to the reference base, ¢ is allowed
to vary in the xz—direction for a possible topographical
change of the basal surface. The Coulomb friction law is
given by p = tand, with 0 being the basal friction angle.
To obtain the non-dimensional form of (3), the following
scalings have been applied: 1 unit of length is equal to
30 millimeters (denoted L), 1 unit of time is equal to
0.0553 seconds (based on \/L/g), and 1 unit of velocity
is equal to 0.5422 m/s (based on /Lg), where g = 9.80
m/s?. Correspondingly, one can have another form of the
Froude number, Fr = |@|//hcosC.

If let S* = S¥ = 0 and 9/9t = 0, (3) can yield the
following # — 8 — Fr relation®?

14 4/1+ 8Frisin® 3
0=p8—tan"! — 3 (5)
2Fr7 sin 23
which is plotted in Fig. 1.

Further introduce conservative variables, m = hu and
n = h, one can re-write (3) as

ou O0E  OF

E-‘r%-l-a—y:s, (6)

where

(hym,n)",

(m,m?/h+ h?/2cos(, mn/h i
(n,mn/h,n?/h+ h?/2cos()"
(0,hS% hs¥)"

M

VR e
Il

with the superscript “7” denoting the transpose to a row
vector.

B. The computational method

The introduction of the TVD (total variation dimin-
ishing) concept by Harten (1983)% has since modern-
ized the techniques of shock capturing in numerical sim-
ulations. This method makes it possible to highly re-
solve shock waves without causing numerical fluctuations
across the discontinuity, and has been widely adopted
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in gasdynamic simulations e.g. with the use of the up-
wind TVD method. By adopting a similar concept of
TVD, Nessyahu & Tadmor (1990)%6 developed a second-
order Non-Oscillatory Central (NOC) scheme based on
the central difference of Lax-Friedrichs. Since then, a
number of higher-order NOC schemes have been estab-
lished (e.g.18750:53),

Unlike the upwind TVD method, the central TVD
scheme provides a simpler computational approach be-
cause the Riemann solver is no longer needed, but it has
only been used in shock wave simulations on granular
flows in recent years. Tai et al.? used a staggered NOC
scheme to simulate the evolution of a one-dimensional
parabolic cap. Gray et al.® used the same NOC scheme
to simulate the granular avalanche past obstacles by in-
corporating the shape of obstacles as 9b/dx and 9b/dy
(see, equation (4)). However, an NOC scheme without
staggering the computational grid can be more easily im-
plemented in simulations for the flow around around an
obstacle334:36:51 " and are adopted in the present work
too.

FIG. 3: An example of the computational grid, where the flow
is oriented from left to right, and an oblique wedge is placed
at the bottom right. The grid points here have been skipped
to make it clearly visible in the domain.

Shown in Fig. 3 is the computational grid used for the
simulation of the flow around a wedge with angle 6 = 20°,
where the z—direction covers a length of 15 dimension-
less units in the downslope, and the y—direction covers a
width of 10 units in the cross slope of the chute. Assume
the flow is oriented from left to right in the domain, so the
left boundary can be aligned at = 0 for a lateral width
Wy = 10. At this boundary, an initial (or inlet) condi-
tion is defined with a flow thickness hy and a downslope
velocity @, for its cross-slope velocity 09 = 0. The right
(or outlet) boundary is thus at z = 15 in the domain,
has a cross-slope width Wi, where W, = Wy — [, sin 6,
with I, being the length of the wedge. Other boundary
conditions are given as follows: a symmetric condition
is given to the bottom boundary up to the leading edge,
then a slip wall condition to the wall surface of the wedge,
and a far ficld condition is given to the top boundary to
allow the free propagation of the shock wave. In order
to properly generate the strong oblique shock wave, the

outlet condition in the simulation needs to be determined
according to the conservation of mass flux as follows

~Wo W1
/ h[]’l]()dy = / hlﬂl(ly = }I,()’U.()I/V(], (8)
0 0

where hg and hy correspoud to the inlet and outlet flow
thicknesses, respectively, and the term @ represents the
resultant velocity for @ and @. Since the flow at the inlet
is one-dimensional and uniform, one can let @y = g, it
then gives a constant product hotigWy in equation (8).
The detail of determining the outlet conditions will be
explained later in Section III B.

For the finite difference method used here, it is conve-
nient to use a body-fitted coordinate system, say, O'&n, in
the computation domain, with the {—axis following the
tangent along the wedge surface and the n—axis normal
to & by pointing outward. Therefore, the governing equa-
tion (6) needs to be transformed into the computational
domain through

; 9)
to give (e.g.52)

=5, (10)

where

',

J-
J-
J-

H& B + &, F),

1(77:E+nyF)~, <11)

Uy o )
Il

= (0,J71hS®, J=1h§¥)T.

In these relations, the Jacobian cocfficient J can be ob-
tained by

J = &ony — &yt = (weyy — Tqye) (12)

where the terms &, &,, 17, and 7, are coordinate deriva-
tives with respect to the subscripted axes = or y. Note
also that the physical velocity components (@, 7) are as-
sociated with (i, ) in the computational domain by

() -G w

If denote a grid point with a discrete coordinate (j,1),
with j representing the ¢ dependence and [ the n depen-
dence, an explicit numerical stencil can be constructed
for a temporal layer 07 in a form

U = U7+ U+ U~ M Eja— MaFja 6787, (14)

where Uj; = (Ujip) k = 1,2,3, A\ == 67/06, Ay =
67/0n, 7" = ndt, and the prime and double-prime nota-
tions represent the discrete derivatives in the {—direction
and n—direction, respectively.
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In the present simulation, a third-order accurate
scheme proposed by Jiang et al®® is used with a
“minmod”-limiter. If denote w as a variable, a “min-
mod” limiter can be given as

. 1
w); = minmod (Aw]-+1/27 3 (w41 —wj—1) 7Aw]-,1/2) ,

(15)
where Aw;_1/2 = wj — wj—1, Awji1/9 = wjp1 — wj.
The CFL condition is determined by the maximum
wave speed a™* as follows*0
oT

a m <1, Vj,l, (16)

with
a™™ = max (ﬂ (& + D)V 0+ e + D)7,
(17)
where ¢ = /hcosC, and @ and © are obtained according
to Eq. (13).

III. SET-UP FOR THE LABORATORY
EXPERIMENT AND COMPUTER SIMULATION

A. The set-up and measurement in the experiment

In order to operate practically in the experiment, a
two-gate system is established within the 15 by 10 test
area, as shown in Fig. 3, to control the start of the gran-
ular flow at the inlet and the formation of the strong
oblique shock wave from the outlet, respectively. To fur-
ther illustrate the settings, a schematic of the experiment
set-up is shown in Fig. 4. The experiment was carried
out on a plexiglass chute that was 40 units (or 1200 mm)
long and 10 units (or 300 mm) wide, inclined at an angle
¢ = 38° to the horizontal. A hopper was placed at the
top of the chute, where the granular material, 100’s and
1000’s sprinkles with a diameter of 1mm, can be stored
and then released through a gate, i.e the first gate or up-
stream gate. This gate controls the inlet conditions of
the flow and is aligned at x = 0, where the inlet bound-
ary conditions are defined by the initial flow thickness
ho and initial downslope velocity @ since the cross-slope
velocity 7o = 0. To obtain these values, the flow velocity
was measured with a particle image velocimetry (PIV)
device and the flow thickness was measured along the
transparent sidewall with a micrometer, giving ho = 0.72
(or 22 mm) and @y = 1.013 (or 0.55 m/s), which implies
a supercritical flow from the inlet as the Froude number
Fro = 1.34.

Whether the flow propagating further down the slope
is accelerative or not depends on the difference between
the inclination angle ¢ and the basal friction angle J.
Simplifying the downslope source term of (4) for one-
dimensional and straight chute surface conditions leads
to

sin(¢ — 9)

S* =sin( — tandcos( = 5
cos

(18)

FIG. 4: A schematic of the experiment set-up for the granular
free-surface flow down a chute, where the leading edge (L.E.)
of the wedge is denoted for its location.

Therefore, non-accelerative flows can occur as well if
¢ < 6, but the present work will focus on the acceler-
ative flow only. To obtain a realistic value of d, the PIV
device was used to measure the velocity distribution of
the test area by starting the same flow frow the first gate,
but making it move down the chute without encounter-
ing any obstacle. By matching this measured velocity
distribution with the numerical solution of @ for the one-
dimensional flow under the same hg, @y and ¢, a value of
§ = 23° was obtained®®. Therefore, the flow here is fully
accelerative along the chute since ¢ is much greater than
4.

Away from the first gate, an oblique wedge was now
placed at a downslope position x = 7.5. This wedge
was 8 units long and was deflected at an angle 6 = 20°
against the sidewall of the chute. Placed immediately
downstream of this wedge was the second gate (or down-
stream gate), of which height, A exp, and opening time,
t1,exp, Were controlled such that the strong oblique shock
wave could form from the leading edge of the wedge.

To better understand hy exp and £y exp, let us briefly
explain the formation process of a strong oblique shock
wave. When a granular material is released from the first
gate at the top of a chute, a weak oblique shock wave first
appears along the wedge as the flow is deflected by it. As
the flow propagates further downstream and is blocked
by the second gate, a normal shock wave forms there
and travels back upstream as a strong shock wave. At
the instant when the strong shock wave moves upstream
to near the leading edge, i.e. at ¢t = t1 exp, the second
gate is opened, allowing the blocked material to flow out
downstream at a controlled height of i1 exp. As time pro-
gresses further, this strong shock wave gradually steadies
as a strong oblique shock wave by attaching from the
leading edge of the wedge.

In order to determine the actual values of Ay exp and
t1,exp, & few trial tests were conducted in the experiment
to ensure the generation of the strong oblique shock wave,
where each test was an attempt for a set of combined
values of hi exp and t1 exp. In the present case, hy exp is
shown to be 20+ 1 mm (or 0.6667 +0.0333), and t1 ey, =
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1.60+0.04 seconds (or 28.9+0.72). This is an interesting
result because Ry cxp hiere is very close to the inlet flow
thickness, hg = 22 mm (or 0.72). Since this wedge has
a length [, = 8 and is deflected by 6 = 20°, the second
gate thus has a lateral width W7 = 7.26. With the first
gate having a width W, = 10, one may say that the
heights of the first gate and the second gate can be kept
approximately equivalent if their lateral widths are wide
enough.

B. The set-up and implementation in the computer
simulation

As shown in Fig. 3, the set-up of the computational
domain has been kept identical to the test area designed
for the above experiment. To follow the flow propaga-
tion naturally, an H-type grid, with a size of 196 x 201
gridpoints, is used in the simulation to cover a domain
of 0 < x <15 and 0 <y < 10, respectively. This grid
size has been checked through the preliminary test and
is sufficient to ensure an accuracy of simulation with a
residual of below 1075, e.g., in Fig. 5. The inlet condi-
tions, hg = 0.72, uy = 1.013 and 9y = 0, are given at
z = 0 for the left boundary. For the outlet conditions on
the right boundary, they will be given in a similar man-
ner as in the experiment to mirror the settings for the
second gate.

Although the inlet flow has one-dimensional features,
the outlet flow at the downstream of the wedge is two-
dimensional since both h; and @; = (41,71) can vary
over Wi. To provide an cffective and direct outflow flux
for the outlet condition, one introduces an average mass
flux that is only based on the downslope component

1

— hytidy. 19
Wy ), My (19)

my =
Let t1,compt be the opening time for the outlet condition,
then m, can be controlled as follows

= 0 t < tl compt s
mp =13 - ! 20
{ 7nl,compt t Z tl.comptv ( )

where 1M1 compt is the actual value used in the simulation.
Similarly, the determination of M1 compt and 1 compt can
be done through a few trial simulations. According to
equation (8), a good initial guess of M1 compt can be ob-
tained by letting it be hotigWo/Wh.

For the current example, since Wy = 10 and W, =
7.26, one can have an initial value, M1, comps = 1.005. Fig.
5 shows the time evolutions of the average flow thickness,
Nave, and its residual, 65, for M1 compt = 1.005, 0.995 and
0.97, respectively, under a fixed ¢1 comps = 27.0 (i.e., 1.49
seconds). Here, haye and dh are calculated by

No Ny 5 (n)
B — i Z]:yl hi,j

ave N.N. 6]7’(n) = ‘h;(;\z - hz(xe_l)‘7
xdVy

(21)

where N, and N, represents the numbers of the grid-
points in the z— and y—directions, respectively, and the
superscript () represents the progress of simulation in
the time domain. It is seen that a steady-state solution
has achieved when M compt = 0.995, while the initial
guess of My compy = 1.005 appears to be slightly “under
blocking” the outlet boundary, but such fluctuation is
only within an error of 1%. The result for the opening
time t1 compt agrees broadly well with the experiment,
tiexp = 28.9 =0.72 (or 1.60 + 0.04 seconds), having an
error of 7%.

IV. FORMATION OF THE STRONG OBLIQUE
SHOCK WAVE

Following the set-up of the above two-gate system, the
inlet conditions for the first gate are given by hg = 0.72,
4y = 1.013 and 99 = 0 under ¢ = 38° and § = 23°,
identical between the experiment and the simulation. For
the outlet conditions at the second gate, the experiment
settings are iy exp = 20 £ 1 mm and #; eyxp = 1.60 £0.04
scconds, and the simulation scttings arc mi compt = 0.995
and t1 compt = 1.49 seconds.

Since the granular flowing process around the wedge
was recorded by a video camera, the time interval be-
tween two consecutive frames is equal to 0.08 seconds.
As shown in Fig. 6, in order to focus on recording the
primary flow region, the horizontal length of the camera’s
window was limited to a range of 5.4 < x < 15, while the
lateral width can be kept at 0 < y < 10. This means
that only when the front of the granular flow entered the
window could the first “meaningful” or blank-free image
be captured and then used for comparison, as shown in
Fig. 6a. In fact, this corresponds to a time-dependent
solution at 0.12 seconds, or 2.17 units of dimensionless
time, in the simulation.

In order to observe and compare the formation process
of the strong oblique shock wave in the experiment and
simulation, a series of time-evolving sequences are shown
in figures 6 and 7, where the images denoted by “(a)”
to “(1)” are long-exposure snapshots of the flow taken
in the experiment, and the corresponding flow thickness
contours obtained in the simulation are labelled for the
time nodes from 0.12 to 2.84 seconds.

For the first three consecutive sequences in Fig. 6,
namely, images (a-c) and the flow thickness contours cor-
responding to ¢ = 0.12, 0.20 and 0.28 seconds, the front of
the flow moves rapidly from left to right along the chute.
As the flow only has a thin layer at the front at these
instants, it is difficult to observe any form of shock wave
from the experiment. However, as shown in the solution
of 0.20 seconds, once the front of the flow has hit the tip
of the wedge, even a very weak form of shock can be cap-
tured in the numerical simulation. In fact, the solution of
0.28 seconds suggests that this weak shock wave travels
downstream slightly faster than the moving front of the
flow.
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FIG. 5: Evolution history of (a) the average flow thickness haye, (b) the residual of have. Three outflow fluxes, my = 1.005, 0.995
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represents an initial guess for m; according to (19). the dashdot line is for m1 = 0.97, and the solid line is for m; = 0.995

where a steady-state solution has achieved for 6h < 107°.

The numerical solution at 0.60 seconds and its exper-
imental image (d) start to show a more complex struc-
ture. Since the second gate, which is aligned with the
right boundary, remains blocked until the opening time
is reached, a strong shock wave is first formed there and
propagates back upstream. In this early stage of up-
stream propagation, this strong shock region is charac-
terized by two forms of shock — a bow shock wave that in-
teracts with the weak oblique shock wave near the wedge,
and a normal shock that connects the bow shock and ex-
tends to the sidewall at the far end. This part of normal
shock wave still has features of one-dimensional flow, or
one can say, if the granular flow is only blocked by the
downstream gate in an obstacle-free chute, then the back-
propagating wave will only be a simple normal shock?.

As this strong shock region travels further upstream,
the normal shock merges quickly with the bow shock,
forming a single strong shock wave. From images (e-
f) in Fig. 6 and all the images in Fig. 7, as well their
corresponding time-specified numerical solutions in these
figures, one can see that this strong shock wave develops
continuously with time, while moving to the upstream
and interacting with the weak oblique shock wave, and
settles as a steady-state solution, as shown by the 2.84
second solution and image (1) in Fig. 7. The results for
the 1.48 seconds and 1.64 seconds are of particular in-
terest as the solution of 1.48 seconds corresponds to the
second gate opening time, ¢1 compt = 1.49 seconds, used
in the simulation, where the position of the strong shock
wave is around x = 10. For the solution of 1.64 seconds,
the strong shock wave moves to a position of z = 8.6,
much closer to the leading edge of the wedge, but this
instant is around the opening time of the second gate
used in the experiment because 1 exp = 1.60 & 0.04 sec-
onds. Also observed in these time-evolving solutions is
the appearance of a “thickness concentration” zone to-
wards the trailing edge of the wedge, in which the thick-
ness h increases even more significantly. Such features
can also be seen in images (g-i), where, in similar areas

near the wedge, the camera’s long-exposure does not blur
the static state of the particles, so the details are clearly
visible. In the last three numerical solutions of Fig. 7,
it can be seen that both the shape and the attachment
point of the strong oblique shock wave still undergo fur-
ther adjustment when approaching the steady state of
2.84 seconds.

V. INTERACTIONS BETWEEN WEAK AND
STRONG SHOCK WAVES

A. Time-dependent interaction between the weak
oblique and bow shocks

During the formation of the strong oblique shock wave,
there are continuous time-dependent interactions be-
tween the weak and the strong shocks once the granular
flow reaches the second gate, persisting until the weak
oblique shock disappears at the tip of the wedge. Fol-
lowing the definition of the shock-shock interactions for
gasdynamic problems by Edney (1968)*, Grasso®® sum-
marized the interaction characters in a simpler manner,
whereas the interaction between weak and strong shocks
can be referred as a type III or type IV interaction.

To give a clearer picture about the early stage details
of the flow impacting the second gate of downstream,
further transient solutions of flow thickness h, based on
the same simulation conducted for Fig. 6, are shown in
Fig. 8. In these time sequences, the 0.30 second solution
shows an instant of the flow just prior to the impact,
where the oblique shock propagates to the downstream
faster than the rest of the flow. At the time of 0.31 sec-
onds, the front of the oblique shock reaches the second
gate first, and a shock interaction starts to appear near
the trailing edge of the wedge (also, see an inset in this
plot). Shortly at 0.33 seconds, the normal shock and
its interaction with the oblique shock become clearer,
and are continuously strengthened, while moving back
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upstream, in the solutions for 0.37, 0.39 and 0.44 sec-  onds. An inset of the color map of h is added to the 0.37
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second plot, where a bow shock starts to take its shape
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action, taking place between oblique (or incident) shock
and bow shock, to a type IV structure®®>®, but there are
clear differences between gasdynamic and granular flows.
Among these, the change of the flow speed, represented
by the Froude number or the Mach number, in the region
downstream of the oblique shock differs significantly. As
shown in Fig. 9, for the times of 0.46 to 1.48 seconds, the
Froude number of the flow is totally subcritical (Fr < 1)
in the downstream of the oblique shock, whereas in gas-
dynamics the Mach number of the flow in a similar region
remains supersonic (i.e. above 1). Another difference be-
tween granular flow and gasdynamic flow is the interpre-
tation of the so-called “slip line”. On this slip, as long as
the pressures are balanced, the flow velocities from two
adjacent layers along this line can slip, but this has not
been, or at least not clearly, observed in the simulation
here.

Besides, a supercritical region, Fr > 1, is observed in
the 1.60 second solution of Fig. 9, and this feature will
be clearer when the shock interaction becomes a steady-
state solution.

B. Steady-state interaction between the weak and
strong oblique shocks

During the experiment it was also observed that, if the
second gate’s height hj oy, was kept fixed, say, around
20 £+ 1 millimeters, different forms of shock wave could
be achieved as steady state by only changing ¢ exp. For
example, if ¢ exp was set greater than 1.60 + 0.04 sec-
onds, a strong normal shock would appear somewhere
upstream the wedge?. If t1,exp Was set smaller, an in-
teraction of weak and strong oblique shocks would ap-
pear as steady state somewhere in-between the wedge, as
shown in Fig. 10. In this figure, a different opening time,
t1exp = 0.92 £ 0.04 seconds, was used for opening the
second gate in the experiment, while other conditions in-
cluding the height of the second gate remain unchanged.
Also shown in Fig. 10 are the steady-state solutions of the
flow thickness and Froude number obtained in the simu-
lation, where a numerical opening time, ¢; compt = 0.84
seconds, is used, and this gives an error of 8.7% with the
comparison to the experimental time of 0.92 seconds. In
addition, the outflow flux M compt used in the simulation
was only adjusted to 0.992.

Further comparing the shape of the steady shock inter-
action with that of the transient’s, e.g., of 1.08 seconds in
Fig. 6 or of 1.32 seconds in Fig. 7, one can see that the
branch of the strong shock here becomes more oblique
since the flow upstream the shock has fully developed as
an accelerative steady flow along the slope under a 38°
inclination over a basal friction angle of 23°. Another
interesting change of the flow behaviours is that the flow
field downstream the weak oblique shock remains largely
supercritical, and this feature is even closer to its gasdy-
namics counterpart.

The comparison between the time-dependent interac-
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tion and the steady-state interaction of shocks suggests
that there may exist close relations between these two
types of interaction, not just for the shape of it, but
maybe more practically, for the determination of the nu-
merical opening time t1 compt- To do this, one further
tracked the move of the position of the shock intersec-
tion, e.g. point x; annotated in the 0.44 second plot of
Fig. 8, in the time-dependent simulation of the strong
oblique shock. As shown in Fig. 1la, the position of
the shock intersection point zs, in non-dimensional units
and marked by symbol A, moves approximately linearly
with the increase of time (in seconds). To give a better
comparison, a linear best fit is provided, where a relation
rs = —4.73t+16.29 is obtained, and is shown in solid line
alongside the A markers. For this linear trend line, since
the gradient coefficient 4.73 has a unit of seconds™!, one
can re-scale it to us = 0.1419 m/s (or 0.2617 units), as a
moving rate for the intersection point xs.

Using this rate, one can approximate the time used
for a shock intersection point to move from the lead-
ing edge of zy, = 7.5 to a designated location, say,
x5 = 10.8 required for the present steady-state inter-
section in Fig. 10. This then yields a time gap of
12.61 units (or 0.6793 seconds, and for simplicity the
use of dimensional unit is dropped thereafter). That
is to say, if the opening time required for generating
a strong oblique shock of steady-state is known, e.g.
t1compt = 27.0, then the opening time for achieving a
steady-state interaction between weak and strong oblique
shocks, for example, at s = 10.8, can be approximated
by tisappx. = 27.0 — 12.61 = 14.39. This gives an error
of 5.6% with the comparison to the actual opening time,
t1s,compt = 15.24, used for Fig. 10’s simulation.

The rate of change, dz,/dt, of the above individual
markers in Fig. 1la is further studied by applying the
trapezium rule to the Azg/At operations. This mov-
ing rate is denoted by wu,; (in m/s) and marked with
circular points in Fig. 11b. It can be seen from these
results that the shock intersection does not move up-
stream at a constant rate, but approaches the tip of the
wedge with a tendency of gradually becoming smaller.
A few trend lines are provided along these markers in
this figure, where the solid line represeuts a quadratic
trend wug; = 0.0475t2 — 0.1341¢ + 0.2291, the dashdot line
represents a linear trend us; = —0.0296¢ + 0.1855, and
the dashed line is an average of the marker’s values over
time S0 U ave = 0.1516 m/s (or 0.2796 units). Repeat-
ing a similar calculation as above, this average value of
Us,ave then gives an estimate of the numerical opening
time f15,ave = 15.20 units (or 0.841 seconds). This is a
surprisingly close, nearly identical result since the actual
opening time used in the simulation is 15.24 units. One
reason may be that, since this shock intersection takes
place at a mid-wedge location x5 = 10.8, its actual mov-
ing rate is closer to s ave. Therefore, using the moving
rate of the shock intersection can provide a more measur-
able estimation for the second gate’s opening time, which
would make simulation and experiment more easily op-
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FIG. 8 Time-dependent numerical solutions of flow thickness h for ¢t = 0.30, 0.31, 0.33, 0.37, 0.39 and 0.44 seconds, showing the
early stage of the back-to-upstream propagation of strong shocks, when the flow is blocked by the second gate of downstream.
As the weak oblique shock arrives the gate first around 0.31 seconds, a bow shock appears by interacting with the oblique shock
near the wedge. Away from this near-wedge region, a one-dimensional normal shock is generated and travels back stream. The
conditions here are the same as used in figures 6 and 7.
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FIG. 9: Time-dependent contours of Froude number near the shock interaction region, obtained at times of 0.60, 0.84, 1.08,
1.32, 1.48 and 1.64 seconds that correspond to the numerical solutions in figures 6 and 7.

erated, if the location of the shock intersection point is C. A numerical test on the effect of the basal
known in advance. friction

Since the basal friction, u = tand, is an important
factor affecting the flow behaviour through the source
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numerical simulation. A green line is added to the experimental result to show the fronts of the weak and strong shocks.
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FIG. 11: The upslope travelling of the intersected shock with time, obtained from the transient numerical solutions. Panel (a)
shows variation of the position of the shock intersection point, zs (in non-dimensional units here), with time (in seconds), where
the markers of A denote the numerical solutions, and the solid line is obtained by a linear best fit so that zs = —4.73t + 16.29.
Panel (b) shows variation of the travelling rate of point z, along the upslope direction, denoted by us; (in m/s), with time,
where the circular markers represent the numerical results, and the solid line, dashdot line and dashed line represent the trend
lines of quadratic, linear and average, respectively. Note that the direction of the horizontal axis ¢ here has been reversed.
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FIG. 12: The steady-state solutions of h for the strong oblique shock with different basal friction angles, where (a) § = 18°,
(b) 8 =30°, and (c) § = 35°.

terms given in (4), a further numerical test has been con- ing other conditions unchanged. To obtain such solutions
ducted by varying the basal friction angle ¢ while keep- in the simulation, the inlet conditions for the first gate
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and the outlet conditions for the second gate remain ex-
actly the same as used in Section IV, namely, ho = 0.72,
Gy = 1.013, vg = 0, M1 compt = 0.995 and ¢ = 38°, and
the only change is the use of different opening time of the
second gate t1 compt- As shown in Fig. 12, three angles
of §, 18°, 30° and 35°, are used in the simulation. Cor-
responding to these solutions are the different values of
t1,compts Where (a) t1 compt = 29.1, (D) t1,comps = 19.75,
and (c) t1 compt = 13.3. With the increase of §, and thus
of w, one can see in the figure that the strong oblique
shock becomes more oblique towards the downstream.
This is because the incoming Froude number at the front
of the wedge becomes smaller with the increase of d, e.g.,
(a) Fr1 = 5.75, (b) 3.73 and (c) 2.52, thus the corre-
sponding shock angle 8 becomes smaller too (see, Fig.
1). Another interesting observation is that, these numer-
ical solutions can be obtained by only changing 1 compt
while the outflow flux M compt remains exactly the same
as used previously. With the increase of d, the gravi-
tational effect that accelerates the flow to downstream
becomes smaller, as suggested in (18). It then allows the
strong shock to travel back upstream at a faster rate af-
ter being stopped by the downstream gate, hence £1 compt
gets smaller as a result.

V1. CHANGE OF THE INERTIAL NUMBER
ACROSS SHOCK WAVES

A. The bulk inertial number of granular
free-surface flows

With reference to the inertial number, I, defined in
equation (1), Holyoake & McElwaine (2012)'® used a
bulk inertial number, denoted I,, to express the bulk
effect for granular free-surface flow. In particular they
re-defined the local shear rate in a form

; (22)

where £ is the dimensional flow thickness, and a;, refers
to the velocity at free surface, but is assumed to be the
same as the depth-averaged velocity. Similarly, the tilde
notation here is used to denote a dimensional term.

For the normal hydrostatic pressure P used in (1), one
defines it as follows. Let P, be the pressure distribution
normal to the chute basal surface, i.e. along the positive
z-axis by pointing upward, and it can be given as

P. = pg(h— z)cos¢ (23)

over a normal height of h. Integrating P. over h
and depth-averaging the product then yields a depth-
averaged hydrostatic pressure

h
pot

P.dz = 1pgﬁ cos(. (24)
hJo 2
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Since 1/ghcos( is the dimensional sound speed of wave
propagation, one can have another form for the Froude
number

ol o
\/ ghcos ¢
Substituting (22), (24) and (25) into (1) gives
d d
I, = ﬁzFr or \/iﬁm (26)

which can be directly applied to granular free-surface
flows. For the granular flow studied in this paper, since
Fr = 5 at the the front of the wedge, and with h = 0.3
and d = 1/30, one can have a bulk inertial number,
Iy = 0.7071, upstream the shock wave.

B. The ratio of the bulk inertial number across
shock waves

To follow the change of the inertial number, I, across
shock waves, a ratio of I, denoted I, is introduce in the
following form

Ipa
I, =
T Ib17

(27)

where the subscripts “1” and “2” represents the flow con-
ditions upstream and downstream of shock wave, respec-
tively. Therefore, substituting (26) into (27) gives

_ illFI‘Q or thYQ

I, ==
! thI‘] hZFrl

(28)

since the grain diameter d is unchanged. Further relat-
ing (28) directly with the change in flow velocity and
thickness across shock gives

_ 3/2
|| (h1)°

Ir ==\ . 29
Ve (29)

With the following oblique shock relations®?

|82 _ _ cosf
lai] " cos(8 - 0)
hy _ tanf 30
hi  tan(B—0)’
one can have
_ cosf tan(3 — 6) 3/2 (31)
" cos(B —0) tan 3 ’

which directly relates the change of the bulk inertial num-
ber across shock wave with the shock angle 5 and the
wedge angle 6.
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FIG. 13: Ratio of the inertia number I, = I3/} across
shock wave, as a function of the wedge angle ¢ for Fr; =
1.5,2,3,5,8,15. The solid lines correspond to the weak shock,
the short-dashed lines correspond to the strong shock, the
long-dashed line marks the transition fmax, and the dotdash
line marks the Fry = 1.

A theoretical solution of I, can be obtained with the
use of the oblique shock relation (5), as shown in Fig. 13.
It is seen that the change of I, across a strong oblique
shock is far greater than that across a weak oblique shock.
For example, for Fr = 5 and 6 = 20°, I,. is equal to 0.157
across a weak shock, but only 9.85 x 1073 across a strong
shock. Or if the inertial number upstream the shock is
Iy = 0.7071, it then reduces to an inertial number of
0.111 at the downstream of the weak oblique shock, but
at the downstream of the strong oblique shock the cor-
responding inertial number is only equal to 6.96 x 1073,
for the case studied in this paper.

VII. CONCLUSIONS

The formulation of the oblique shock relation of gran-
ular flow (Gray & Cui 2007%3) suggests that there exists
a strong oblique shock wave for a given incoming Froude
number, Fry > 1, if the flow is deflected by a wedge an-
gle 0 that is smaller than the detachment angle 0,,,x. To
generate such a strong oblique shock solution in experi-
ment, the channelized granular flow on an inclined chute
needs to be enclosed by a two-gate system, in which the
first gate provides the inlet conditions at the top of the
chute, and the second gate, of which height hj ey, and
opening time #1 exp need to be controlled, provides the
right outlet conditions at the downstream of the wedge.
In the simulation of such two-dimensional chute flow, cor-
respondingly, the left boundary of the computational do-
main should act as the first gate, providing the inlet con-
ditions for hy and g, whereas the right boundary should
act as the second gate, which is controlled by the outlet
conditions defined by the outflow flux M1 compt and the
numerical opening time t1 compt. As the flow is driven by
the gravitational force but resisted by the basal friction,
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the example studied in this paper is fully accelerative for
¢ = 38° and § = 23°, and hence the Froude number of
the flow can be accelerated from Frg = 1.34 at x = 0
to Fry = 5 at « = 7.5. With such an incoming Froude
number at the upstream of the wedge, the strong oblique
shock wave is predicted to appear at an angle of 86.15°,
but both the experiment and simulation suggest that it
has an actual angle around 78° due to the effect of the
flow acceleration (Fig. 7).

During the time-dependent evolution of the strong
oblique shock wave, there undergo instantaneous inter-
actions between the weak and strong shock waves. This
is because the weak oblique shock wave always first ap-
pears once the flow impacts the leading edge of the wedge
while the strong shock wave only starts to occur after
the flow is blocked back by the second gate at the down-
stream. The existence of the steady-state interaction be-
tween the weak and strong oblique shocks may be re-
garded as the third type of solution for the supercritical
granular free-surface flow around a wedge since it can be
generated both in the experiment and simulation by only
changing the opening time of the second gate, while other
conditions remain unchanged from generating the strong
oblique shock.

Since there are much sharper jumps in flow proper-
ties across the strong oblique shock wave, the bulk iner-
tial number becomes extremely small in the strong shock
area, which might suggest that the underlying rheologi-
cal behaviours of the material have changed. However,
the work in this paper shows that the classic Coulomb
friction law can still allow the solutions of the numerical
simulation to be well agreed with the experiment.

The phenomena related to the granular strong shocks
may also be important in applications. For example, if
a strong shock wave could be triggered by controlling
certain downstream infrastructures at an appropriate lo-
cation, the damage of the natural hazardous flow would
be alleviated to a controllable scale. Also, strong shocks
may often occur in industrial processes, e.g., when paddy
rice is poured into a rice milling chamber, a strong shock
can be generated immediately once the grains impact the
bottom of the vessel. Since the outlet conditions in such
a container also need to be controlled in order to achieve
for a better milling quality, a type of two-gate mechanism
might bear certain analogy to the settings in this paper.

It might be useful to suggest a few areas that could
be worked on in the future. The first area would be the
conduct of the experiment in a broader range of control
parameters in order to provide a more comprehensive
evaluation to the settings of the two-gate system. For
example, if the wedge angle becomes larger, the outflow
conditions of the second gate may start to vary more sub-
stantially because the downstream flow has a greater two-
dimensionality, and this may cause further deviations in
gate height and opening time. Other interesting param-
eters, such as the moving rate of the shock intersection
point, might also be worth a further attention, for ex-
ample, to see if it could still be kept approximately con-
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stant. On the other hand, adaptive mesh or dynamics
mesh could be very useful for studying the shock inter-
action details observed in the granular flow simulation,
where features associated with the slip-line and the su-
percritical jet downstream of the oblique shock would be
particularly interesting.
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