
SPReaD: Service-oriented Process for Reengineering and 
DevOps - Developing Microservices for a Brazilian State 
Department of Taxation

DA SILVA, Carlos <http://orcid.org/0000-0001-9608-439X>, JUSTINO, Yan 
and ADACHI, Eiji

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/29091/

This document is the Published Version [VoR]

Citation:

DA SILVA, Carlos, JUSTINO, Yan and ADACHI, Eiji (2021). SPReaD: Service-
oriented Process for Reengineering and DevOps - Developing Microservices for a 
Brazilian State Department of Taxation. Service Oriented Computing and 
Applications, 16, 1-16. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-021-00329-x

ORIG INAL RESEARCH PAPER

SPReaD: service-oriented process for reengineering and DevOps

Developing microservices for a Brazilian state department of taxation

Carlos Eduardo da Silva1 · Yan de Lima Justino2 · Eiji Adachi3

Received: 29 September 2020 / Revised: 2 September 2021 / Accepted: 19 September 2021
© The Author(s) 2021

Abstract
The reengineering of systems into a microservice-based architecture can be seen as an implementation of a service-oriented
architecture (SOA). However, the deployment of SOA into an enterprise is a challenging task, as it may involve the modern-
ization of mission-critical systems with high technical debt and high maintenance costs. To this end, a process is required to
provide an appropriate set of steps and techniques that minimize risks and at the same time ensure the quality of the systems
during themigration process. Thus, this work presents the Service-oriented Process for Reengineering andDevOps—SPReaD,
an instantiation of the mainstream SOA methodology focusing on the reengineering of legacy systems integrating DevOps
aspects for developing microservices systems. This process has been defined during a real software reengineering project
of legacy systems from a Brazilian State Department of Taxation. The results obtained include a substantial improvement
in the quality of the main taxation system used by the state, including not only code-related metrics but also performance
improvements of the services offered, and a change in the methodology adopted by the software development team.

Keywords Microservices · SOA · Software Reengineering · DevOps

1 Introduction

Microservices can be understood as a software approach and
system architecture built upon well-established concepts of
modularization and technical boundaries [14]. It has been
the choice of development teams eager to adopt emerging
practices whose design, standards, and technologies favor
more streamlined software delivery. Also, microservices
have aroused interest in teams that are eager to modern-
ize their legacy monolithic systems [21,22]. It is possible
to notice an increase in the number of reengineering projects

B Carlos Eduardo da Silva
c.dasilva@shu.ac.uk

Yan de Lima Justino
contato@yanjustino.com

Eiji Adachi
eijidachi@imd.ufrn.br

1 Department of Computing, Sheffield Hallam University,
Sheffield, UK

2 XP Inc, São Paulo/SP, Brazil

3 Digital Metropolis Institute, Federal University of Rio Grande
do Norte, Natal/RN, Brazil

focused on themigration of legacy systems to a service-based
solution [1,24].

Although Service-Oriented Architecture (SOA) is consid-
ered as a heavy and complex solution for creating software
systems,microservices share the sameSOAdesign principles
[21,25]. A Service is a software published via an API, which
is part of a contract and provides a collection of resources [6].
These resources are grouped into logical units that represent
a functional context. In fact, microservices do not constitute
a new architectural style different from SOA, but qualify an
implementation of SOA with state-of-the-art software engi-
neering practices [31].

One of the main challenges to obtain a successful SOA
project is in understanding how they should be carried out
[6]. TheMainstream SOAMethodology (MSOAM) provides
a generic reference model of SOA delivery. It is character-
ized by project and lifecycle stages represented by 11 phases,
contemplating from initial planning, services analysis and
design, development and testing, deployment and mainte-
nance, to service versioning and retirement.

According to Fowler [10], “with the microservice archi-
tecture, an application can be easily scaled horizontally and
vertically, productivity and developer speed increase dra-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-021-00329-x&domain=pdf
http://orcid.org/0000-0001-9608-439X
http://orcid.org/0000-0001-7248-716X
http://orcid.org/0000-0002-8286-0017


Service Oriented Computing and Applications

matically, and old technologies can easily be switched to the
newer ones”. To that end, it is necessary to adopt continuous
practices, that is, continuous integration, delivery, deploy-
ment, and monitoring to enable organizations to release new
resources frequently and reliably, ensuring the high quality
of the system deployed throughout its life cycle [3]. In indus-
try, these continuous practices are labelled as DevOps, a set
of practices designed to reduce the time between making a
change in a system and the change being put into production,
while ensuring high quality [3]. These practices together help
shape decisions about how to build microservices and how
to deploy them.

It is noteworthy that while microservices and DevOps
reflect philosophies that refer to a structure of small indepen-
dent teams, most organizations have a large, mission-critical
system that is not designed in this way. These organiza-
tions need to decide whether they want to migrate their
architectures to microservice architectures and which ones
to migrate [3]. However, it is recognized that deploying a
service-oriented solution is unique within each organization
and may consider using different [6] approaches, depending
on the nature and scope of the project. In addition, the degree
of abstraction and complexities involved in reengineering a
legacy system requires process instances that enablemethod-
ologies such as MSOAM to be adopted in conjunction with
modern approaches such as microservices and continuous
practices such as DevOps.

In this context, it is possible to identify a major design
challenge in adopting microservices as a tactic for migration
of legacy systems: the absence of a software reengineering
process that leads to the migration of a monolithic system
to a service-oriented solution in modern approaches such as
microservices.

Based on this, the main contribution of this article is a
process for the reengineering of legacy systems into a SOA-
based system, employing microservices as implementation
tactic. The Service-oriented Process for Reengineering and
DevOps (SPReaD) is an instantiation of the MSOAM with a
focus on a software reengineering process. SPReaD provides
guidance for the development of service-oriented solutions
based onmicroservices while employingDevOps techniques
for continuous software delivery and monitoring.

The SPReaD process has been initially identified in a
project conducted between 2016 and 2018 at the State
Department of Taxation of Rio Grande do Norte (SET-RN)1

during the migration of UVT (Taxation Virtual Unit) system,
the main system of SET-RN. SPReaD has been presented as a
poster at the 2018 ICSE’s Software Engineering in Practice
track [18]. Compared to that first presentation, this article
presents a detailed description of the SPReaD process, its
different artefacts, concrete details of its application. This

1 Secretaria de Estado da Tributação do Rio Grande do Norte.

article also reports on the use of the SPReaD process in a
real project, with significant results regarding the achieve-
ment of important project goals in terms of software quality,
and an impact on the software development and operations
practice of SET-RN.

The remain of this article is organized as follows: Section
2 presents the UVTsystem as the target of the reengineering
project andmainmotivation for the SPReaD process. Section
3 describes the SPReaD process as an instantiation of the
MSOAM. Section 4 presents the use of the SPReaD process
in the migration of the UVTsystem. Section 5 presents an
evaluation of our approach. Section 6 discusses some related
work, while Section 7 concludes the article.

2 The legacy UVT system

The SPReaD process was conceived and employed in the
context of the project that reengineered the Virtual Unit of
Taxation (UVT ) system.2 The UVT system is the main sys-
tem supporting the business processes of the Department of
Taxation of Rio Grande do Norte State (SET-RN) in Brazil. It
was created between 2008 and 2010 to unify the business pro-
cesses of the SET-RN which until that time were supported
by small and independent applications.

The UVT system was structured as a single Web applica-
tion and database, with the goal of providing all the services
available to taxpayers, accountants, carriers and other actors
who interact with the State Department of Taxation. TheWeb
application had three main components: (i) View, (ii) Model
and (iii) Middle-tier. The Model component represents the
different entities of the system. The View component was
responsible for implementing the presentation layer, that is,
the user interface elements, while the Middle-tier compo-
nent implements business logic. Each business functionality
is encapsulated in a Web page composed of the View and
Middle-tier components.

Over the years, the UVT system began to present prob-
lems compromising its evolution. The presentation logic and
the business logic of the systemwere tightly coupled, hinder-
ing the reuse of functionalities, which ultimately promoted
code cloning practices. The business entities were poorly
modularized, with the same entity improperly accumulating
responsibilities of different domain contexts of the system.
This often led to ambiguities about the identity of entities
and undesirable side effects caused by changes in apparently
unrelated features. TheUVT system also made extensive use
of synchronous communication, which slowed system per-
formance when long processing tasks were required.

In order to deliver any new functionality, or corrective
maintenance, the entirety of the UVT system needed to be

2 Unidade Virtual de Tributação, in Portuguese.

123



Service Oriented Computing and Applications

fully compiled. This was a completely manual and complex
process with few quality control activities. That is, even a
small, isolated adjustment forced the entire system to be
recompiled and redeployed. Also, the absence of automated
source code integration mechanisms to deal with the con-
flicts generated during development reduced the quality of
the resulting code, favoringmore frequent bugs in the produc-
tion environment, with negative and unwanted side effects.

The problems presented above harmed the system’s abil-
ity to respond to changing demands. Moreover, requests
for renewing the visual aspects of the system and specially
the necessity of providing UVT services to mobile devices
intensified the need to modernize it. Given the accumulation
of problems over the years and the difficulty of promptly
meeting new demands, the SET-RN decided to abandon this
version of the UVT system and completely reengineer it.

In this context, SET-RN started a reengineering project to
modernize theUVT system. Due to the lack of a well-defined
process to govern the migration of the legacy system, in this
project, SOAwas adopted as a strategic paradigm for model-
ing the desired solution whereas microservices were adopted
as an implementation tactic. In addition, during the develop-
ment of the newversion of the system,DevOpspracticeswere
adopted for integrating, delivering, deploying and monitor-
ing the system. And it was from the combination of these
concepts that SPReaD was conceived.

3 The SPReaD process

The Service-oriented Process for Reengineering and
DevOps (SPReaD) is an instantiation of the Mainstream
SOA Methodology (MSOAM) [5,6]. MSOAM is a refer-
ence model for SOA project delivery, providing a set of
generic activities and practices that needs to be customized
for its usage. We organized the MSOAM activities on a
reengineering process based on the software engineering pro-
cess framework described by Pressman and Maxim [23].
Their framework identifies five generic phases applicable
to all software projects: (i) Communication, (ii) Planning,
(iii) Modeling, (iv) Construction and (v) Deployment. In the
context of SPReaD, theModeling phase is divided into Anal-
ysis andDesign, the Construction phase is divided into Code
and Test and the Deployment phase is divided into Delivery
and Support and Feedback. The diagram in Fig. 1 presents
an overview of the SPReaD process structure; the MSOAM
activities are represented as blue rectangles.

SPReaD, as depicted in Fig. 1, comprises a Software
Reengineering Process followed by a DevOps process. The
rengineering part of SPReaD consists of a Reverse Engi-
neering phase followed by a Forward Engineering phase.
The Reverse Engineering phase corresponds to the Analysis
activity, whereas the Forward Engineering phase comprises

the Design, Code and Test activities. Moreover, the DevOps
part of the process consists of a CI + CDE + CD phase fol-
lowed by a Monitoring phase, corresponding, respectively,
to the Delivery activity, and to the Support and Feedback
activity.3

The phases of SPReaD described above are applied itera-
tively to plan, model, build, and deliver one or more service
inventories, which determine the scope and goal of a given
iteration. In the next sections, we further detail the Model-
ing, Construction andDeployment phases of SPReaD.Due to
space limitations, the Communication and Planning phases
will not be covered in this article.

3.1 Modeling

The Modeling phase comprises the Analysis and Design
activities. We further detail these activities next in Sections
3.1.1 and 3.1.2. The Design activity is the begin of the
Forward Engineering part of the reengineering process; it
comprises the Service-Oriented Design and Service Logic
Design activities.

3.1.1 Analysis

In the context of SPReaD, the analysis activity corresponds
to the Reverse Engineering part of the Software Reengineer-
ing process; it includes the Service Inventory Analysis and
Service Oriented Analysis activities. Figure 2 details these
activities.

The Service Inventory Analysis activity is responsible for
producing the conceptual definition of service inventories.
These inventories are documented in the Service Inventory
Blueprint artefact, which describes main services of the tar-
get system. In the context of SPReaD, the Service Inventory
Analysis comprises three main practical steps: (i) Identify
Bounded Contexts, (ii) Identify Service Candidates, and (iii)
Apply Context Mapping.

In the first and second steps, we employ the Bounded
Context technique borrowed from Domain-Driven Design
(DDD) [28]. Bounded context is used in DDD to isolate
a domain-specific responsibility on an explicit interface
boundary which decides which models to share with other
contexts [20,21]. This technique is employed to delimit the
applicability of certain models and keep them logically uni-
fied and consistent. It is applied over the business services
identified in the legacy monolithic application, i.e., the dif-
ferent Web pages (view and middle-tier components) and
models of the legacy system. These are then labelled and
conceptually isolated into bounded contexts. In this pro-
cess, legacy services and entity models that contain multiple

3 In this context, CI, CDE and CD correspond to Continuous Integra-
tion, Continuous Deployment and Continuous Delivery, respectively.

123



Service Oriented Computing and Applications

Fig. 1 General view of the SPReaD process

Fig. 2 Detailed view of service inventory analysis and service-oriented
analysis activities of the modeling phase

responsibilities are separated into distinct elements. In the
end, each bounded context corresponds to one candidate
microservice, where each service of the legacy system cor-
responds to a capability to be offered by the identified
microservice. These are then organized into Service Inven-
tory Blueprints indicating the main domain contexts. An
inventorymaycontain oneormore bounded contexts depend-
ing on the inventory’s business scope.

In the third step,we employ anotherDDD technique called
Context Mapping. In a monolithic architecture, the commu-
nication between the components of the legacy system can
happen unrestrictedly, as they all share the same core. Since

we are decomposing this core in separate bounded contexts
that are distributed into services, it is necessary to devise
communication strategies between them, which can take dif-
ferent forms. Thus, we employ Context Mapping, which
performs an integration pattern [28] to classify the relation-
ship between external contexts and internal contexts.

The Service Oriented Analysis activity is responsible
for creating new software documentation (Class Diagrams,
Relational Entity Diagrams, Use Cases, etc.) to support
the Forward Engineering process. This documentation helps
explaining the scope of each inventory and its candidate ser-
vices. The activities associated with analysis follow a set of
practices, which are described in the sequence.

Having identified inventories and their candidate services,
the practice to be adopted in service-oriented analysis is the
beginning of the decomposition of the legacy service. This
decomposition occurs by extracting the service logic from the
Web page components (View andMiddle-tier) in two focuses
of analysis: one focus to identify behaviors and models that
satisfy the logic associated with the graphical interface; and
the other focused on service logic, which identifies the capa-
bilities and business entities of the service. This results in
artefacts as user interface prototypes, and service contracts
and design. These are then used for the re-specification,
re-design, re-architecture and re-codification of new user
interfaces and service logic.

3.1.2 Design

Figure 3 illustrates the flow of activities from Service Ori-
ented Design and Service Logic Design. Service-Oriented
Design aims to re-design the software solution with a focus
on reuse, as well as redefining the software architecture to
express the new design features. In support of re-design, we
adopt the service layer pattern [5] where services are cat-
egorized as: a) entity services, which is a reusable service
with an agnostic functional context associated with one or
more related business entities; b) task service, which is a
non-agnostic functional context that generally corresponds
to the logic of the single-purpose parent business process;

123



Service Oriented Computing and Applications

Fig. 3 Detailed viewof service-oriented design and service logic design
activities of the modeling phase

c) utility service, which is also a reusable service with an
agnostic functional context, but this type of service is inten-
tionally not derived from specifications and business analysis
models.

In turn, the activity of Service Logic Design is responsible
for completing the service logic, by defining a set of infor-
mation such as the version of the service, its access policies,
contract schemes and routes for accessing APIs, etc.

The result of Design is the specification of the service
architecture components in terms of its modeling through
structural diagrams, such as UML component and class dia-
grams. In addition, the set of metadata created will allow the
construction of service contracts, which will facilitate the
discovery of its capabilities.

SPReaD follows a design approach based on service
layers and micro-task segregation. Figure 4 exposes the
definition of what a microservice structure should look
like. It is composed of an API layer that is responsible
for handling HTTP/REST requests, including authentication
and authorization in accessing resources, through facades
to orchestrate the service logic. The API layer contains
façades based on the service layers pattern. The applica-
tion layer adopts the CQRS standard approach (Command

Fig. 4 General design structure for microservices

Query Responsibility Segregation) [7], to separate the appli-
cation into two flows: a writing stream called Command, in
which we can find domain models and services to deal with
business logic; and a Query flow, in which data transport
objects (DTOs) that correspond to the service consumers’
query operations reside. The cross-cutting layer provides a
set of cross-domain components to abstract infrastructure
resources, as well as to deal with the state maintenance of
service objects.

Basedon thismodel, the implementation of eachmicroser-
vice can be standardized to reflect a product with greater
autonomy. In addition, the reduced and specialized scope of
each microservice, as well as better componentization of the
application layers and abstraction of the cross-cutting layer
favor its portability and maintainability. Finally, by transfer-
ring the state of objects to infrastructure layers and adopting
strategies for separating the application flows in writing and
reading by adopting CQRS, the system gains a potential to
achieve wide horizontal scalability and significantly improve
its performance.

3.2 Construction

This phase involves the activities of code and test, which
are related, respectively, to the activities of Service develop-
ment, inwhich the actual service is implemented; and Service
test, where software testing techniques are employed. They

123



Service Oriented Computing and Applications

Fig. 5 Detailed viewof service development activity of the construction
phase

complete the forward engineering cycle within the software
reengineering process.

Figure 5 details the flow of the service development
activity. SPReaD is based on two approaches for service
implementation: Service API Implementation and Software
Migration.

The first approach, Service API Implementation concerns
the development of the service contract definedby theService
Oriented Design in a scenario where the desired capability is
not provided by an existing component of the legacy system.
Based on the service contract, the service logic is designed
and implemented, followed by the application of security
concerns over the developed service.

The Software Migration activity is applied to legacy
software in order to transport the service to a new soft-

ware structure. For this, two techniques can be applied:
the functional decomposition or wrapping [29]. Functional
decomposition is used to extract entities and service logic
from the legacy software. Those are encapsulated into busi-
ness components that correspond to the designed service
architecture. The wrapping technique is used to encapsu-
late legacy software with high complexity and an associated
high migration cost. These usually involve shared resources,
classes for infrastructure access, or external services. Finally,
access to the migrated components is regulated by the cre-
ation of a service facade, which hides all the complexity in
the software.

In some cases, the service contract needs to bemade avail-
able before the service logic itself. For example, external
teams hired to develop the front-end may demand access
to the contract to proceed with the construction of GUI’s
(Graphic User Interfaces). In this scenario, the Web API is
made available before the construction of the business com-
ponent.

The SPReaD process does not define any specific step for
the Service Test as different approaches can be employed
according with the practices of the development team and
the resources available. The use of unit tests is the basic
recommended approach, with integration testing becoming
necessary as the number of services deployed grows. This
is also a situation that might require the availability of Web
API before the construction of business components. Finally,
black-box testing is used with those services that encapsulate
legacy components.

3.3 Deployment

The deployment phase involves the activities delivery and
support and feedback. They are responsible for managing
the deployment of services into production and theirmonitor-
ing. The delivery activity is based on the MSOAM’s activity
of service deployment and maintenance, while support and
feedback is based on MSOAM’s service usage and monitor-
ing, and service discovery.

3.3.1 Delivery

The delivery activity corresponds to the service deployment
and maintenance phase of MSOAM and explores the use
of DevOps technique (continuous integration, continuous
deployment, and continuous delivery). Figure 6 details this
activity.

It starts by performing a continuous integration pipeline,
which includes the integration of source code followed by
its compilation (build application), automated tests and code
analysis. These create reports containing integration and
compilation information, indicators regarding test coverage
and calculated technical debt.

123



Service Oriented Computing and Applications

Fig. 6 Detailed view of service deployment and maintenance activity
of the delivery phase

When those activities succeed, the resulting package is
delivered to an homologation environment (continuous deliv-
ery). In case continuous deployment practices are in place,
the resulting package is deployed on a production environ-
ment. Otherwise the deployment in production is a manual
process and thus this phase of the process is considered as
ended.

3.3.2 Support and feedback

The support and feedback activity, detailed in Fig. 7, is
mainly concerned with services that have been deployed and
used in production environment. It includes MSOAM’s ser-
vice usage and monitoring, service discovery, and service
versioning and retirement.

Service usage and monitoring is concerned with the col-
lection, storage, processing, and visualization of different
information about the services. It can includemetrics used for
performance, billing, scalability, and business logic-related
information, such as logging. These are used by operations

Fig. 7 Detailed view of activity of the deployment phase

teams as means of monitoring the supporting infrastructure
and by management teams to understand business dynamics
through service consumption.

Service discovery concerns the provision of a repository,
i.e., a service registry, where all services from the different
inventories can be discovered. In essence, such repository
allows the registration and querying of service metadata
exposing the business capabilities and details of the active
service instances, such as services contracts and endpoints.

The last activity, service versioning, and retirement, is
responsible for supporting changes in existing services, such
as changes to its logic or contract, with minimal disruption
to existing service consumers. This requires version con-
trol tools and mechanisms, as well as tracking. Regarding
versioning, the use of specifications such as Semantic Ver-
sioning plus the adoption of code version control tools such
as Git can assist in managing service changes. With regard
to tracking, the use of Service Catalogs in addition to the

123



Service Oriented Computing and Applications

use of monitoring tools such as the ELK stack4 can indicate
whether certain services continue to be used and by which
customers, facilitating the planning of withdrawing services
without consumption.

4 Application of the SPReaD process

This section presents the concrete application of the SPReaD
process, using the reengineering of the UVT system as a
concrete case study. We describe the different technical
approaches adopted to achieve the objectives set by SET-
RNguided by the phases of the SPReaD process. Given its
relevance and being a central area of SET-RN, we will use
the migration of Tax Collection services as an example to
demonstrate the execution of these phases.

4.1 Modeling

During the modeling phase, the analysis focused on the def-
inition of the Tax Collection Inventory and in the reverse
engineering of its candidate services. Based on this, the
design stage comprised the re-architecture and remodeling
the candidate services.We detail each of these steps and their
activities in the sequence.

4.1.1 Analysis

At the start of the application of SPReaD, all legacy services
were within the same core without pre-established bound-
aries. Thus, the activity of Service Inventory Analysis was
executed in order to delimit the business contexts based on
the use of DDD.

For example, we have conducted a reverse engineering
of legacy services Tax Debt Management and Tax Payment
Management, which have been identified as the business
capacities that are part of the Tax Collection Management
context. The Tax DebtManagement legacy service was com-
posed by several pages, each providing a different business
service, with one for each type of tax and for some auxiliary
functionalities. All the pages had code-behind components
that accessed the same Debit entity. We also noticed that this
entity accumulated broad responsibilities, since it knew all
the contexts of each debt origin, as well as the structures of
relational mapping with the database. The same process has
been conducted with the legacy services City Halls Manage-
ment and Resource Transfer Management, which have been
grouped in the Resource Transfer Management context.

4 Elasticsearch, Logstash, and Kibana, a tool for collecting, analyzing
and visualizing logging and performance information from different
sources.

In our approach, each service inventory can have several
limited contexts, which are implemented as a microservice.
For example, the Tax Collection Inventory contains two
microservices: Tax Collection Management and Resource
Transfer.

As previous mentioned in Sect. 3.1.1, the communication
between bounded contexts is mapped using another DDD
approach called context mapping, which performs an integra-
tion pattern [28] to classify the relationship between external
contexts and internal contexts. For example, the communi-
cation of the Resource Transfer Management microservice
with the services of the external domainCity Hall is interme-
diated by an Anti-Corruption Layer (ACL), since the models
of external requisitions of the city hall need to be adapted to
models aligned to the SET-RN domain. The Tax Collection
Management communicates with external domains as banks
through theConsumer-Supplier strategy, sending (upstream)
and receiving (downstream) documents following the com-
munication specifications established between SET-RN and
the banking institutions.

4.1.2 Design

In order to deal with the complexities identified in legacy
services, each microservice was designed to offer an API
and business components that have the service logic and
entitiesmigrated directly from the legacy system.These com-
ponents encapsulate the different business capacities of the
microservice. For example, as illustrated by Fig. 8, among
the business capacities of the Tax Collection Management
microservice there are Tax Debit Management and Tax Pay-
ment Management. One of the services offered by the Tax
Debit Management component, for example, is Bank Slip
Handler service witch orchestrates the logic flow, entity
models (Debit) and business rules involved with bank slip
generation.

During the migration of these components, some service
logic needed to be wrapped in order to isolate code from
the legacy system. This is the case of the Bank Slip’s File
Transfer, as software structures involved in this logic were
already validated and approved by the banking institutions.

One of the challenges of software reengineering is deal-
ing with legacy database entities. A decision on whether to
migrate those entities into separate contexts must take into
account the costs associated with this migration, as well as
the cost in maintaining the legacy structure. Taking as an
example the Tax Debit Management business component,
the decision was to map the new components of the migrated
services to the relational entity of the legacy database. The
approach adopted is based on the use of façades, where each
façade captures one business service and its respectivemodel,
i.e., one page of the legacy service. Thus, the legacy entity is
decomposed into different façades and their respective mod-

123



Service Oriented Computing and Applications

Fig. 8 Service redesign strategy applied to migrate the tax collection
management services into microservices architecture

els, which in turn have been grouped into different business
services that are exposed by the Tax Collection Management
microservice.

The different models encapsulated in the Tax Debit Man-
agement component have the attributes and business logic
specific to its execution, as well as maps only the fields of
the legacy database that they need. Thus, in the case of the
migration of theUVT system, thiswas the limit towhich soft-
ware reengineering could be applied, which required a great
effort on the part of the development team to deal with the
discrepancies generated between the migrated models and
the entities of the database. In spite of this limitation, this
mapping may possibly be revisited in the future in order to
define strategies formigrations that involve the reengineering
of the database.

4.2 Construction

As previously mentioned, the construction phase encom-
passes the service development activitywhere the actual code
of the new services is produced, and service test which deals
with the testing of the produced services.

Each service inventory is built as a standalone software
solution using .Net Framework, C# language and Visual Stu-

Fig. 9 Example of solution template for Visual Studio for structuring
services source code and identifying the respective patterns used

dio IDE Solution Templates. These templates are based on a
set of patterns from the SOA Project Pattern Catalog [5] and
provide programmerswith a startingpoint onhow to structure
the source code of services. This allowed software projects
and libraries to be organized to represent the delimited con-
texts of the domain inventory pattern. Figure 9 presents an
example of the solution template for theTaxCollection inven-
tory, which contains two microservices: Resource Transfer
Management and Tax Collection Management.

A solution is divided in three basic directories: API,
Application and Cross Cutting. API contains the artefacts
related to the service contract of each microservice (as pre-
sented in Fig. 4), which will be detailed further on this
section, and configurations for stand-alone deployment of
microservices. The microservice API follows the microser-
vice deployment pattern, in which each microservice is a
self-compiling project that encapsulates business compo-
nents and other dependencies in publishing packages that can
be distributed, containerized, and replicated to web applica-
tion servers such as IIS.We also employ the container sidecar
pattern. Microservices usually need to access utility compo-
nents that provide services such as monitoring and logging.
However, these components are not an internal part of the
microservices, requiring some level of isolation. The sidecar
pattern provides a structured way of deploying these utilitary
components in isolated containers that run in the same hosts,
reducing the cost of a remote communication. The applica-
tion directory contains the business logic implementation of
themicroservice according to themicro-task segregation pat-
tern, an application of the CQRS approach. These are identi-
fied in Fig. 9 by SET.TaxCollectionManagement.Command
and SET.TaxCollectionManagement.Query directories. The
Cross-Cutting directory implements the cross-domain utility
layer, containing the code for accessing services like cache,
file system, queue and databases.

123



Service Oriented Computing and Applications

Fig. 10 Detail of the service layer implementation of the tax collection
management microservice

Figure 10presents the elements of theAPI implementation
of the Tax Collection Management microservice. This part
of the code is structured based on the service layer pattern,
where the services are organized into Entity, Task and Utility
layers. Each service then is implemented as a controller (e.g.,
DebitController) acting as a façade that abstracts the actual
service logic implementation, and defining a clear entry point
for its clients, avoiding the coupling of the service logic
with the presentation layer. The controllers are implemented
using the Asp.Net Web API framework. Legacy services are
encapsulated and their calls in are brokered by a contract,
which extracts, encapsulates, and eliminates technical details
of the legacy component’s logic. These are grouped inside
the wrappers, which in this example, is abstracting away
from a SOAP Web service (e.g., BankingFileTransferWeb-
Service.cs. Any access to a legacy component is achieved
through an interface (e.g., IBankingFileTransfer.cs) as to pre-
vent the new service from knowing implementation details
of the legacy logic.

As previously mentioned, SPReaD does not prescribe any
specific strategy for testing, instead recognizing that such
activity must be included according with the resources avail-
able to the development team. In the case of theUVTsystem,
we have employed unit testing during the coding phase in
order to validate that the new business components per-
formed as expected. Integration tests were also applied on
microservices in order to validate their relationship with
some infrastructure components such as database and mes-
saging systems, as well as validate their composition with
other network services. Finally, acceptance tests were also

applied to ensure that the contracts set out in the APIs were
in compliance with the specification.

4.3 Deployment

The deployment phase is composed by the delivery, in which
we describe how DevOps continuous practices have been
adopted; and support and feedback to support the monitor-
ing, discovery and versioning of services in the production
environment.We detail each of these steps and their activities
in the sequence.

4.3.1 Delivery

The delivery phase concerns the infrastructure necessary for
supporting DevOps continuous practices and the definition
of the production environment of the target system.

The continuous integration pipeline is based on the TFS
solution (Microsoft Team Foundation Server). This new
scenario required the SET-RN team to better manage config-
uration to handle continuous code integration, coupled with
automated testing, to ensure the quality of deployment of
deliverable packages.

This set of tools helped SET-RN to centralize and bet-
ter manage software configurations in the development,
approval and production environments. It also assisted in
monitoring the continuous integration process by providing
quick notifications about the status of the software compila-
tion to those interested in delivery. In addition, it provided
software quality monitoring through the execution of auto-
mated tests and the survey of code metrics, which allowed
the team to specify the interruption of software delivery with
failures or below the desired quality expectations.

In order to support CD and CDE, we have created an
stage environment corresponding to a clone of the pro-
duction infrastructure, which is described in Fig. 11. Each
microservice can be distributed into several network nodes,
and replicated according with the need. These are then orga-
nized in two availability zones: production environment and
contingency environment.

This has been possible through the removal of state man-
agement functionality from the service to cache components
using the Redis tool.We employ the centralized isolated state
repository pattern [7], in which microservices publish state
information to a a master state repository. This centralized
state database is deployed in its own containerized environ-
ment, capable of scaling as needed, and used for querying
state information.

We employ a gateway architecture, where a unified point
of entry is responsible for providing load-balance, security
and managing routing to services. We have also identified
cross-cutting components, such as database and identityman-

123



Service Oriented Computing and Applications

Fig. 11 General view of the supporting infrastructure of the UVT system

agement systems, that have been grouped into their own
deployment environment.

There are a number of approaches for dealing with
database design for microservices, ranging from a dedicated
databases where each microservice has exclusive access
to its individual database implementation, to shared iso-
lated database deployed in its own individual container
and independently managed. Since we are dealing with a
legacy database, we employed the shared isolated database
pattern.

4.3.2 Support and feedback

Theactivity of support and feedback is focusedonmonitoring
of different aspects, such as service usage and monitoring;
service discovery; and service versioning and retirement.

Regarding service usage and monitoring, tools were
adopted to obtain data on the use of the services deployed in
the production environment. The tools used for this purpose
were RabbitMQ, which queued the log objects of the var-
ious instances of microservices; the ELK technology stack
(Elastic search, Logstash and Kibana), an end-to-end solu-
tion that provides insights based on real-time monitored data
and presented iteratively through dashboards. In this way,
support teams can monitor the consumption of infrastructure
resources, as well as for the management teams to under-
stand the dynamics of the business through the consumption
of services.

Regarding service discovery, a set of metadata was gen-
erated from the source code of the services contracts, which
aided the formalization of service inventory contracts and
the discovery of the capabilities associated with them. The
service inventory metadata were generated from the Ope-
nAPI specification by the Swagger tool5. These metadata are
published together with our inventory and make up the SET-
RNservices repository portal. This portal provides a standard
way of searching for services capabilities, being employed
by the load balancing tool to discover services instance.

5 Evaluation

This section presents the results obtained by applying
SPReaD for the modernization of theUVT system in order to
evaluate our approach. We start by presenting some quanti-
tative results and then discuss the results of adopting service
orientation.

5.1 Results of Software Reengineering Applied to
UVT System

As a result of software reengineering activities, applica-
tions previously coupled with the legacy UVT system are
better isolated, decoupling the business logic of graphical

5 https://swagger.io/specification/.

123

https://swagger.io/specification/


Service Oriented Computing and Applications

Table 1 UVT system technical
debt before and after migration

Before After
Category Effort Cost Fixes Effort Cost Fixes

Architecture 176d 70.6K 737 8d 3.21k 135

Code smells 51d 20.6K 273 22d 8.87k 301

Dead code – – – 6h30min 325 37

Design 4d1h 1.65K 449 4d5h 1.86k 363

Immutability 17d7h 7.17K 889 6h32min 327 53

Naming conventions 1h25min 70.8 66 3d1h 1.29k 249

OOP design 8d5h 3.46K 837 2d4h 1.05k 610

Source organization 3h45min 15 188 7h 350 28

Visibility 2d4h 1.02K 656 4h22min 219 421

Total 267d 107K 4217 48d 19.6k 2428

interfaces. This represented greater portability, reuse and
a significant improvement in software maintenance. This
is noticeable when we analyze the technical debt of the
migrated system using the “NDepend” tool 6.

Table 1 presents the comparative results of the technical
debt between the legacy system and the migrated system in
terms of effort (in days, hours and minutes), cost (in R$) and
amount of fixes7. The results show a significant reduction in
the technical debt of the migrated code. We can notice a 58%
reduction in the amount of fixes required. The effort required
to make all these corrections went from 267 days to 48 days,
which meant a cost reduction from R$ 107K to R$ 19K.

We also registered a significant decrease in effort in the
Architecture category from 176 days to 8 days. Metrics such
asCode Smells, Immutability,OOPDesign andVisibility also
decreased in debt. This indicates that from a reengineering
point of view the software migration managed to produce
better quality code. On the other hand, Naming Conventions,
Source Organization and Design metrics showed a relative
increase. In addition to these metrics, there was also a record
in the migrated code base of occurrences of the Dead Code
category. This may indicate problems in managing migrated
source code,mainly due to its granularity and decomposition.

For the purpose of comparing this granularity, Table 2
presents the UVT system LoC (Lines of Code) metrics prior
to migration and the microservices created after reengineer-
ing process. In this table, the Rating column presents a
sustainability rating scale related to the value of the tech-
nical debt ratio in the project. This classification is based on
the relationship between the code base size and the estimated

6 This choice was based on the fact that it is based on the SQALE
method (http://www.sqale.org/details) and his analysis is made of the
.NET framework Intermediate language (IL), thus covering all the lan-
guages of the family. .net framework (C#, Visual Basic, and F#) from
the same analysis perspective (https://www.ndepend.com/).
7 The effort is measured by the man–day ratio to develop 1000 lines of
code. By default, the tool adopts the 18 man–day ratio, which means an
average of 55 lines of code written per developer in one day.

Table 2 LoC metrics in legacy code Vs microservices code

Rating UVT #LOCs
C Legacy Code 282K
Rating Microservices #LOCs

A Tax Collection 43K

A Invoices 39K

A Taxpayer Registration 29K

A Carriers 24K

A Fiscal Inspection 41K

A Service Schedule 11K

A Document Authenticity 22K

A Tax Statements 11K

A Debt Installments 27K

247K

time to correct all identified issues. The rating “A” indicates
that the pending correction cost is less than 5% of the esti-
mated fix time, while a rating of “C” indicates that this cost
is between 11% and 20%. The column #LOCs presents the
number of lines of code.

Note that the legacy code of the UVT system is rated “C”,
in turn, inventories received a rating “A” on the sustainability
rating scale. This indicates a very low technical debt. It is
also noted that the total number of LoC in Service Inventories
(247K) approximates the legacy systemLoCnumber (282K).
However, as each Inventory has an independent maintenance
cycle, this number drops considerably.

In addition to the code metrics, performance metrics of
the deployed services were extracted from the production
environment. Table 3 presents some service performance
indicators obtained through the ELK monitoring infrastruc-
ture. These metrics were extracted in different moments
between June/2017 and June/2019 and were grouped by
total number of requests (#Requests) in the month, average
response time (in milliseconds) of all services and number

123

http://www.sqale.org/details
https://www.ndepend.com/


Service Oriented Computing and Applications

Table 3 Service performance results

Month #Requests Response time (ms) #Users

Jun/2017 197K 222 939

Jul/2017 484K 184 4,079

Aug/2017 652K 199 5,162

Sep/2017 3.8M 187 11,156

Oct/2017 4M 242 11,347

Nov/2017 4.2M 204 15,301

Dec/2017 4.4M 203 14,519

Jan/2019 6M 268 16K

Feb/2019 6M 264 16K

Mar/2019 6M 241 15K

Apr/2019 7M 247 18K

May/2019 8M 216 35K

Jun/2019 11M 200 71K

of users (# Users) answered. TheUVT pilot project was offi-
cially launched in June/2017 for an initial user base of less
than 1,000users. In July/2017, the user basewas substantially
expanded (over 4,000 users), and the number of requests
more than doubled (484,665 versus 197,458 from the pre-
vious period), while the response time remained around 200
milliseconds. In August/2017, there was a slight increase
in the number of users (over 5,000 users) and the number
of requests (652,455) with a stable average response time
(199.21 milliseconds).

By August/2017, both the legacy system and the new sys-
temwere active in parallel. However, in September/2017, the
old system was deactivated and from that moment all users
started consuming services on the new UVT system. Thus,
we had a 116% increase in the user base (from 5,162 users to
11,156 users) and a 496% increase in the number of requests
(from 652,455 requests to 3,889,923 requests).

This was a moment of apprehension for the team, but
despite the huge increase in load, the average response time
remained stable at around 200 milliseconds. In addition, the
feedback received from the team was that there was a pos-
itive feeling about the overall system performance, as well
as acceptance feedback from the new Web system graphical
interface and mobile applications. In the following months,
from October/2017 to December/2017, the system presented
an increase of 557,712 requests and 4,145 users. However,
performance remained close to 200 milliseconds.

It is important to mention that between June/2017 and
December/2017, the operations team was actively monitor-
ing the entire environment as part of the deployment phase
activities. This has allowed us to identify infrastructure bot-
tlenecks and make some proactive changes, such as scaling
infrastructure resources allocated to databases and cache ser-
vices, as well as adding new service instances.

During the first trimester of 2019, the system maintained
stable numbers of requests, users and response time. In
May/2019, there was the launch of a new mobile applica-
tion for the general population, which provided a substantial
increase in the number of users. Nevertheless, due to the
DevOps andmonitoring practices introduced by SPReaD the
infrastructure was dynamically adjusted according with the
load, maintaining an average response time between 200 and
250 miliseconds.

During the second semester of 2019, the SPReaD pro-
cess continued to be applied and new services have been
identified, developed and deployed into the infrastructure.
However, we are no longer able to publicize performance
indicators about the services running at SET-RN.

5.2 SPReAD adoption results

The application of SPReaD in the UVT project has pro-
vided SET-RN with substantial benefits, such as reaching the
Service Aware Level, one of the maturity levels of service-
oriented organizations [4]. By reaching this level, it has been
confirmed that the relevant business requirements and goals
are in place and that the global organizational foundation
required for the SOA initiative is in place.

In addition, we also noticed benefits to the software
development lifecycle adopted at SET-RN. For example,
the adoption of a standardized service agreement practices
allowed the creationofmetadata that help in the formalization
of service inventory contracts and the discovery of associ-
ated capabilities. This increased the alignment between IT
and business, as the different stakeholders now have a foun-
dation on which to locate agnostic services that can be used
to define new business processes. This motivated auditors to
redefine their requirements specification and project organi-
zation processes, which can be seen from the search for tools
such as business process management (BPM) and the inter-
est in collaborating with service organization by building a
SET-RN service catalog.

Another noticeable benefit of the project was the capabil-
ity of realtime service monitoring, which not only provided a
pro-active and preventive approach to the support operations
team, but combined with service metadata allowed an under-
standing of the business dynamics from the consumption of
resources by the clients of the UVTsystem.

These results were presented to the business analysts and
the SET-RN management team, with very positive reactions
from the CODIN (Informatics Coordination) management
and the State Department of Taxation. The team was invited
by the Inter-American Development Bank (IDB) to present
the UVT migration project as one of the outstanding success
stories, due to the deadline and efficient resource manage-
ment.

123



Service Oriented Computing and Applications

The impact of this project has transformed SET-RN’s way
of planning and building software solutions. All this has an
impact on the efficiency of the state of Rio Grande do Norte’s
tax collection. In addition, there are new demands for apply-
ing SPReaD to other SET-RN systems, and a new project is
being conducted.

5.3 Lessons learned

Themain lesson learned in this project is the fact that the con-
struction of a large system using microservices still needs
aspects from more traditional SOA. For example, during
the first iterations of the migration project we have found
some gaps in themodeling and construction ofmicroservices
that were filled by seeking in SOA a paradigm to guide the
reengineering of legacy systems. The software quality results
obtained provide evidence that the SPReaD process is able
to follow SOA standard-based concepts for dealing with the
construction and deployment of services, without neglecting
modern aspects of microservices and DevOps-based solu-
tions.

Working with a system that can be considered as critical,
it is not always possible to completely migrate all legacy
code in one shot. For example, some database structures
cannot be easily changed; libraries and pieces of software
that have been certified or approved by third parties must be
maintained. Finally, it is necessary to understand that new
technical debts can be raised during the process, in addition
to those that were inherited through codes that were directly
incorporated into the solution.

6 Related work

This section presents some work related to the topics dis-
cussed in this article, namely themigration of legacy systems
and the use ofMSOAMindevelopment ormigrationprojects.
The main issue tackled by SPReaD is the lack of con-
crete guidance for the reengineering of legacy systems into
microservices that encompasses all phases of the software
development process.

Because of its flexible coupling characteristics, pub-
lished interfaces, and a standard communicationmodel, SOA
allows legacy systems to be exposed as services [17]. How-
ever, any specific migration requires a concrete analysis of
the feasibility, risk and cost involved. In this sense, strategic
identification and service extraction from legacy code is also
crucial.

Along these lines, articles that are relatively close to the
beginnings of SOA, such as [24] and [27], consider the fun-
damental principles of orientation to service as evaluation
elements for the adequacy of existing SOA assets, besides
proposing metrics and guidelines that support the evalua-

tion of these principles. The goal of these researchers is
to help organizations understand the efforts involved in an
SOAmigration by assisting them in identifying services from
existing assets. However, this approach is too abstract and
does not point to process instances closer to service imple-
mentation.

On the other hand, some authors provide methods for
guiding such migration [1,16]. For example, Baghdadi and
Al-bulushi [1] propose the use of wrapping techniques to
extend the business logic of legacy applications while pre-
serving investments through their migration to services.
However, by simply encapsulating legacy logic into service
layers, we are fatally encapsulating its technical debt, which
may lead to a rapid software decay. In this sense, the indis-
criminately application of wrapping technique can anticipate
the need for newmigrations and bring in new associated costs
that could have been better applied if employed in a reengi-
neering process.

More recent works have dealt specifically with methods
for the migration to microservice architecture. Escobar et
al. [8] present an approach for migrating Java enterprise
applications into a microservice architecture. Their approach
performs source code analysis of Enterprise Java Beans
grouping them into microservices based on data flow and
method invocation between the beans. Lin et al. [19] describe
a method for migration of Web applications into a cloud
computing environment following a microservice architec-
ture. However, the description is very abstract with generic
instructions. Kecskemeti et al. [15] present the ENTICE
project, a methodology for decomposingmonolithic services
into microservices. Their approach is focused on strategies
for optimizing the construction and composition of services
into virtual machine and/or container images.

Otherworks report on themigration experience.Gouigoux
and Tamzalit [13] report on the experience of migrating a
real legacy system into amicroservice architecture.However,
they focus on three aspects of the migration process: defining
service granularity, service deployment and service integra-
tion. Balalaie et al. [2] report on the experience of migrating
a real system to a microservice architecture. They define spe-
cific steps for the application under migration. Interestingly,
they report on a series of lessons learned that indicates the
need to a higher-level of guidance, such as the one provided
by service-orientation, and considered by SPReaD, such as
the need for service contracts and templates for service devel-
opment.

Unlike previously mentioned proposals, our approach
presents a process that deals with legacy systems through
the application of software reengineering, whereby the logic
of the legacy application is migrated using, in addition to the
wrapping technique, functional decomposition. In addition,
our approach takes into account the technical debt ratio and
quality attributes required to meet the logic to be migrated.

123



Service Oriented Computing and Applications

Thus, the choice of the strategy to migrate a legacy appli-
cation tends to be based not only on the need to expose a
capacity via service. Moreover, by being developed in an
industrial setting, the SPReaD technique not only adopts a
holistic view but also incorporates those concerns that are
usually not visible to academics.

In fact, a number of surveys and systematic studies have
analyzed the microservice topic [11,12,14] with one of the
most recent by Waseem et al. [30], at the time or writing this
article, in which the focus was on analyzing the relationship
betweenmicroservice architecture andDevOps. It is interest-
ing to notice that themajority ofworks are focused on specific
aspects of the microservice architecture, and do not provide
a holistic view, considering the full software development
life-cycle. Some of these surveys [12,14] have indeed identi-
fied future challenges that are incorporated into the SPReaD
process, such as design (section that talks about design), gran-
ularity, implementation, deployment, and monitoring, with a
strong link to the continuous practices of DevOps.

More closely aligned to our work is the approach of Fan
and Ma [9], in which a migration process considering the
full software development life-cycle is presented. However,
their description is very superficial and does not provide
enoughdetails as to be adopted for amigrationproject besides
mentioning the use of DDD techniques and some of the
tools used. In contrast, the SPReaD process employes the
MSOAM methodology as a solid foundation for guiding the
reengineering process. Moreover, we recognize that not all
migrations project will be able to deal with 100%of the target
software, such as dealing with legacy databases.

More recent references to MSOAM include the work
by Santika, Suhardi and Yustianto [26], in which they pro-
posed the Service Engineering Framework derived from an
approach that uses MSOAM-combined business analysis
tools to avoid redundant activities between analysis of busi-
ness processes and the SOA methodology. This framework
consists of four phases (identification, design, development,
and deployment) and was used to build services from a local
government financial system (municipality). Although this
research seeks alternatives to the implementation of SOA by
using MSOAM as a methodological approach, this use boils
down only to analysis, neglecting the other phases.

Unlike the approaches presented, our proposal can be
seen as an instantiation of the MSOAM focused on software
reengineering, integrating DevOps to deal with some phases
ofMSOAMDeployment.We also report a concrete instantia-
tion of the proposal in a real project with millions of users. In
addition, our process is in linewith thedemandsof theService
Oriented Architecture (SOA) Maintenance and Evolution
Research Agenda [17], specifically in the topics: Process and
Cycle. Life, Architecture and Design, Deployment, Mainte-
nance andEvolution, prepared by SEI (Software Engineering
Institute).

7 Conclusion

In this work, we presented the Service-oriented Process for
Reengineering and DevOps (SPReaD), a process for the
reengineering of legacy systems into microservice archi-
tectures. We also presented a report of an industry project
applying SPReaD to reengineer the UVT system, an infor-
mation system maintained by the Rio Grande do Norte State
Department of Taxation (SET). Results show that the adop-
tion of SPReaD allowed SET to reach the Service Aware
Level of the SOA Governance Model, promoting a better
alignment between IT solutions and business process in the
organization. Also, the reengineered version of theUVT sys-
tem provides better quality attributes when compared to its
legacy version, specially in terms of performance and scala-
bility.

As it is being adopted in the context of other projects,
the principles, standards and tools promoted by SPReaD
are helping to unify and improve SET’s software develop-
ment process. In fact, some principles, standards and tools
of SPReaD are being adopted in SET even in the context of
projects not related to the reengineering of legacy systems.
As future work, we intend to analyze how SPReaD is being
adopted and adapted to these new projects, seeking opportu-
nities for improving and evolving it.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Baghdadi Y, Al-Bulushi W (2015) A guidance process to mod-
ernize legacy applications for soa. Ser Orient Comput Appl
9(1):41–58. https://doi.org/10.1007/s11761-013-0137-3

2. Balalaie A, Heydarnoori A, Jamshidi P (2016) Migrating to cloud-
native architectures using microservices: An experience report. In:
Advances in service-oriented and cloud computing, pp. 201–215.
Cham: Springer. https://doi.org/10.1007/978-3-319-33313-7_15

3. Bass L, Weber I, Zhu L (2015) DevOps: a software architect’s
perspective. Addison-Wesley Professional

4. Erl T (2010) SOA Governance. Prentice Hall
5. Erl T, Carlyle B, Pautasso C, Balasubramanian R (2012) SOAwith

REST: principles, patterns and constraints for building enterprise
solutions with rest, 1st edn. Prentice Hall Press, Upper Saddle
River, NJ, USA

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11761-013-0137-3
https://doi.org/10.1007/978-3-319-33313-7_15


Service Oriented Computing and Applications

6. Erl T, Merson P, Stoffers R (2017) Service-oriented architecture:
analysis and design for services and microservices. Prentice Hall

7. Erl T, Naserpour A (2020) Microservice and containerization
patterns. Arcitura Education Inc. https://patterns.arcitura.com/
microservice-patterns

8. Escobar D, Cárdenas D, Amarillo R, Castro E, Garcés K, Parra
C, Casallas R (2016) Towards the understanding and evolution
of monolithic applications as microservices. In: 2016 XLII Latin
American computing conference (CLEI), pp. 1–11 . https://doi.
org/10.1109/CLEI.2016.7833410

9. Fan CY, Ma SP (2017) Migrating monolithic mobile application
to microservice architecture: an experiment report. In: 2017 IEEE
international conference on AI mobile services (AIMS), pp 109–
112. https://doi.org/10.1109/AIMS.2017.23

10. Fowler SJ (2016) Production-ready microservices: building stan-
dardized systems across an engineering organization, 1st edn.
O’Reilly Media, Inc

11. Francesco PD, Lago P, Malavolta I (2018) Migrating towards
microservice architectures: an industrial survey. In: 2018 IEEE
international conference on software architecture (ICSA) (2018).
https://doi.org/10.1109/ICSA.2018.00012

12. Garriga M (2017) Towards a taxonomy of microservices archi-
tectures. In: International conference on software engineering and
formal methods, pp 203–218. Springer . https://doi.org/10.1007/
978-3-319-74781-1_15

13. Gouigoux JP, Tamzalit D (2017) From monolith to microser-
vices: lessons learned on an industrial migration to a web oriented
architecture. In: 2017 IEEE international conference on software
architecture workshops (ICSAW), pp 62–65 . https://doi.org/10.
1109/ICSAW.2017.35

14. Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S (2018)
Microservices: the journey so far and challenges ahead. IEEESoftw
35(3):24–35. https://doi.org/10.1109/MS.2018.2141039

15. Kecskemeti G, Marosi AC, Kertesz A (2016) The ENTICE
approach to decompose monolithic services into microservices.
In: 2016 international conference on high performance comput-
ing simulation (HPCS), pp 591–596 . https://doi.org/10.1109/
HPCSim.2016.7568389

16. Khadka R, Reijnders G, Saeidi A, Jansen S, Hage J (2011) A
method engineering based legacy to soa migration method. In:
Software maintenance (ICSM), 2011 27th IEEE international con-
ference on, pp 163–172. IEEE

17. Lewis G, Smith D, Kontogiannis K (2010) A research agenda for
service-oriented architecture (soa): Maintenance and evolution of
service-oriented systems. Technical report. CMU/SEI-2010-TN-
003, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA . http://resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=9285

18. de Lima Justino Y, da Silva CE (2018) Reengineering legacy sys-
tems for supporting SOA: a case study on the Brazilian’s secretary
of state for taxation. In: Proceedings of the 40th international con-
ference on software engineering: companion proceedings, ICSE
’18, pp 125–126. ACM, New York, NY, USA . https://doi.org/10.
1145/3183440.3195067

19. Lin J, LinLC,HuangS (2016)Migratingweb applications to clouds
with microservice architectures. In: 2016 International conference
on applied system innovation (ICASI), pp 1–4 . https://doi.org/10.
1109/ICASI.2016.7539733

20. Millett S (2015) Patterns, principles and practices of domain-driven
design. Wiley

21. Newman S (2015) Building microservices, 1st edn. O’Reilly
Media, Inc

22. Newman S (2019) Monolith to microservices: evolutionary pat-
terns to transform your monolith. O’Reilly Media, Incorporated .
https://books.google.com.br/books?id=iul3wQEACAAJ

23. Pressman RS, Maxim BA (2016) Software engineering: a practi-
tioner’s approach, 8a Edition. McGraw Hill

24. Reddy VK, Dubey A, Lakshmanan S, Sukumaran S, Sisodia R
(2009) Evaluating legacy assets in the context of migration to soa.
SoftwQuality J 17(1):51–63. https://doi.org/10.1007/s11219-008-
9055-6

25. RichardsM (2015)Microservices versus service-oriented architec-
ture. O’Reilly Media

26. Santika H, Suhardi, Yustianto P (2017) Engineering local govern-
ment financial service system under good governanceprinciples:
case study: Cimahi government city. In: 2017 5th international con-
ference on information and communication technology (ICoIC7),
pp 1–6 . https://doi.org/10.1109/ICoICT.2017.8074657

27. Sheikh MAA, Aboalsamh HA, Albarrak A (2011) Migration of
legacy applications and services to service-oriented architecture
(soa). In: The 2011 international conference and workshop on cur-
rent trends in information technology (CTIT 11), pp 137–142 .
https://doi.org/10.1109/CTIT.2011.6107949

28. Vernon V (2013) Implementing domain-driven design. Pearson
Education, Inc

29. Wagner C (2014) Model-driven software migration: a methodol-
ogy reengineering, recovery and modernization of legacy systems.
Springer. https://doi.org/10.1007/978-3-658-05270-6

30. WaseemM, Liang P, ShahinM (2020) A systematic mapping study
onmicroservices architecture in DevOps. J Syst Softw 170. https://
doi.org/10.1016/j.jss.2020.110798

31. Zimmermann O (2017) Microservices tenets. Comput Sci
Res Develop 32(3):301–310. https://doi.org/10.1007/s00450-016-
0337-0

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://patterns.arcitura.com/microservice-patterns
https://patterns.arcitura.com/microservice-patterns
https://doi.org/10.1109/CLEI.2016.7833410
https://doi.org/10.1109/CLEI.2016.7833410
https://doi.org/10.1109/AIMS.2017.23
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1109/ICSAW.2017.35
https://doi.org/10.1109/ICSAW.2017.35
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/HPCSim.2016.7568389
https://doi.org/10.1109/HPCSim.2016.7568389
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9285
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9285
https://doi.org/10.1145/3183440.3195067
https://doi.org/10.1145/3183440.3195067
https://doi.org/10.1109/ICASI.2016.7539733
https://doi.org/10.1109/ICASI.2016.7539733
https://books.google.com.br/books?id=iul3wQEACAAJ
https://doi.org/10.1007/s11219-008-9055-6
https://doi.org/10.1007/s11219-008-9055-6
https://doi.org/10.1109/ICoICT.2017.8074657
https://doi.org/10.1109/CTIT.2011.6107949
https://doi.org/10.1007/978-3-658-05270-6
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	SPReaD: service-oriented process for reengineering and DevOps
	Developing microservices for a Brazilian state department of taxation
	Abstract
	1 Introduction
	2 The legacy UVT system
	3 The SPReaD process
	3.1 Modeling
	3.1.1 Analysis
	3.1.2 Design

	3.2 Construction
	3.3 Deployment
	3.3.1 Delivery
	3.3.2 Support and feedback


	4 Application of the SPReaD process
	4.1 Modeling
	4.1.1 Analysis
	4.1.2 Design

	4.2 Construction
	4.3 Deployment
	4.3.1 Delivery
	4.3.2 Support and feedback


	5 Evaluation
	5.1 Results of Software Reengineering Applied to UVT System
	5.2 SPReAD adoption results
	5.3 Lessons learned

	6 Related work
	7 Conclusion
	References





