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WHAT THIS PAPER ADDS 
 

• Isolated VM<15mm is associated with atypical development in 7-8% and in 30-40% 

of isolated VM>15mm where VP shunt insertion rates are 20-30%. Larger degree of 

VM and progressive increases are associated with worse outcomes. 

• Isolated agenesis of the corpus callosum is associated with normal outcome in 76% 

and severely atypical developmental outcomes in 8%. 

• Isolated microcephaly 2-3 SD below the mean is likely to be associated with normal 

outcome and >3SD below the mean likely to have atypical developmental outcome. 

Isolated macrocephaly is likely to be associated with normal outcome. 

• HPE is strongly associated with chromosomal and genetic abnormalities, perinatal 

death or atypical developmental outcome. Outcomes in other cerebral / cortical 

malformations are dependent on the extent of the lesion, regions of the brain 

affected, presence of other abnormalities and aetiology. 

• The outcome data on posterior fossa abnormalities is lacking. DWC is associated 

with developmental diff iculties in up to 60% of fetuses, whilst the Blake Pouch cyst 

gives a similar risk to the general population. A small cerebellum in early gestation 

may exhibit catch-up growth. 

• Counselling of MMC should involve a multidisciplinary team with knowledge of the all  

long-term outcomes and should not be incorrectly catastrophic. Fetal surgery should 

be discussed, where appropriate. 
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ABSTRACT 

Following diagnosis of a fetal neurological abnormality, prospective parents want to know 

the best and worst-case scenarios and an estimation of the risk for their fetus having 

atypical developmental outcome. The literature on developmental outcomes for fetal 

neurological abnormalities is poor: studies are characterised by retrospective design, 

small sample size, often no standardised assessment of development, and differing 

definitions of abnormality. This paper provides an aide-memoir on the risks of adverse 

neurodevelopmental outcome for ventriculomegaly, cortical abnormalities, microcephaly, 

macrocephaly, agenesis of the corpus callosum, posterior fossa abnormalities, and 

myelomeningocele to assist health care professionals in counselling. The data in this 

paper should be used alongside recommendations on counselling and service design in 

paper one to provide antenatal counselling. 
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INTRODUCTION 

Once a fetal neurological anomaly has been diagnosed by ultrasound or in-utero magnetic 

resonance imaging (iuMRI), prospective parents want to understand the aetiology and likely 

developmental outcome. Part one of our review discussed prospective parents’ views on 

antenatal counselling and recommendations for how services should be designed and risks 

communicated.1 To ensure prospective parents receive appropriate advice and support, a 

multidisciplinary team (MDT) should be involved in the diagnosis and discussion of likely 

outcome. The most appropriate professionals should then provide counselling in easy-to-

understand language, discussing management options for the pregnancy, as well as 

postnatal interventions and follow-up. Support should also be available from psychologists 

and social workers.  

 

Part two of our review provides pragmatic information on aetiologies and risks of atypical 

developmental outcome for common brain anomalies in the fetus. Although we discussed in 

part one that fractions, with similar denominators, are better for comparing risk than 

percentages, we use percentages for clarity here. 

 

PREPARATION FOR COUNSELLING 

Before starting counselling, health care professionals should collect as much information as 

they can from a range of  sources, including the prospective parents, including:  

• any family history of developmental problems, miscarriages, or deaths in early 

childhood 

• additional fetal abnormalities 

• whether the abnormality has changed over time 

• fetal growth pattern   

• head size and shape   

• results of congenital infection screen 
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results of genetic testing.  

 

For most indications, karyotype analysis has been superceded by chromosomal microarray, 

which detects an additional 4-10% copy number changes (microdeletions and 

microduplications) in fetuses,2-8 but does not detect balanced rearrangements. More 

recently, next generation sequencing has become more available in prenatal care, which 

has allowed large numbers of genes to be sequenced in parallel. For some indications with a 

relatively defined phenotype, gene panels can be interrogated, but for less well defined 

phenotypes or those that may have diverse aetiologies, whole exome or whole genome 

analysis can be undertaken.9 The PAGE study found whole exome sequencing revealed an 

aetiology in 8.5% of fetal anatomical abnormalities where karyotype and microarray were 

normal, and 15.4% in multi-system involvement, with multiple anomalies and those affecting 

the heart and skeletal system having the highest yield.10 Other studies have found exome 

studies to be similarly useful,11; 12 depending on cohort size, inclusion criteria, family cases, 

and consanguinity. A recent meta-analysis suggests a weighted average for diagnostic rate 

of 19%, with the data too limited for nervous system abnormalities.7 The rates of genetic 

abnormalities of unknown significance are around 9-20% for all fetal anomalies.7; 12; 13 Health 

economic analysis suggests it is more cost-effective to perform exome sequencing after 

microarray, rather than abandon chromosomal studies altogether.14 The data on prenatal 

genome studies is more limited, but it may detect more pathogenic abnormalities than 

exome sequencing.15; 16 

 

There are a number of challenges presented by exome sequencing: there is less phenotypic 

information available in the fetus compared to a child to decipher the significance of genetic 

abnormalities; databases for fetuses are not well established; there is no agreement on 

whether to report variants of unknown significance; phenotypic variation in single gene 

disorders can make prognostication difficult; and unrelated abnormalities of clinical 

significance may be found.6; 7; 17; 18 Health care professionals should be aware of the stress 
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caused by an abnormal fetal exome result,19 and ensure appropriate genetic counselling and 

psychological support is available. In reality, not all of this information may be available at 

the time of counselling. Counselling should then take a stepwise approach, with further 

discussions held as more information is obtained. 

 

It is important to consider the baseline population rate of developmental problems: 10% of 

children have developmental difficulties, including specific learning difficulties, attention 

problems, autistic spectrum disorders, and developmental coordination disorder;20 2-3% 

have early developmental impairment (EDI), defined as developmental skills >2 standard 

deviations (SD) below the population mean in 2 or more developmental domains.20 The 

problems with fetal outcome studies are that most are retrospective, at high-risk of selection 

bias, only provide short-term outcome data, and do not use standardised developmental 

assessments. Existing studies may involve health care professionals, who have not received 

training in child development, telephoning families to ask how their child is.  Where 

standardised tests are used, different definitions of atypical development and descriptive 

terms are used; for example, a child with a developmental ability in the low normal range 

may be described as mildly, moderately, or severely “abnormal” in different studies. Data on 

rates of “adverse outcome” may also include terminations of pregnancies, stillbirth and/or 

perinatal deaths. Therefore, health care professionals should be cautious about what figures 

they use. 

 

VENTRICULOMEGALY 

Fetal ventriculomegaly (VM) is defined as the ventricles being larger than 10mm at the level 

of the atria, i.e. 3-4SD above the population mean. It can be sub-classified as: 

• Mild 10-15mm, severe ≥15mm, or 

• Mild 10-12mm, moderate 13-15mm, severe ≥15mm. 

• Borderline 10-12mm, mild 13-15mm. 
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These terms ignore important information, such as aetiology, presence or absence of  other 

abnormalities, and whether ventricular size changes as the pregnancy progresses. 

 

Ventriculomegaly occurs because of a range of processes: 

1) a normal variant 

2) cerebral atrophy from degenerative abnormalities (e.g. metabolic disease, 

congenital infection, infarction, single gene disorders) 

3) obstruction to cerebrospinal fluid (CSF) flow, such as aqueductal stenosis, 

Arnold Chiari malformations, intracranial haemorrhage, congenital infection 

4) impaired absorption of CSF, such as following intracranial haemorrhage or 

congenital infection 

5) increased CSF production from choroid plexus papilloma 

6) other causes, including single gene or chromosomal abnormalities, structural 

abnormalities affecting the shape of the brain and ventricles. 

The results of  large cohort studies of fetuses with VM are shown in table 1, and a flow chart 

to aid counselling in figure 1. 

 

Ventriculomegaly measuring <15mm 

The risk of adverse developmental outcome with fetal VM 10-15mm and additional 

abnormalities depends on the nature of the abnormalities, so pooled prevalence figures are 

of limited value: health care professionals should use their experience to determine the 

significance of these findings. There is more outcome data for isolated fetal 

ventriculomegaly. The definitions and inclusion criteria for “isolated VM” (iVM) vary between 

studies, and include: 

• absence of other central nervous system (CNS) abnormalities 

• absence of abnormalities in other CNS structures and body systems 

• absence of other abnormalities and normal fetal karyotype and congenital infection 

screen, with exclusion of women who declined amniocentesis for karyotype 
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• absence of other abnormalities and normal karyotype and congenital infection 

screen, with inclusion of women who declined karyotype. 

A meta-analysis of 1213 fetuses with iVM found abnormal karyotypes in 4.7%, and atypical 

developmental outcome in 7.6% at a mean age of 27 months.21. More recent studies agree 

with this figure.22-25 Developmental outcome is similar in iVM 12-15mm compared to 10-

12mm,22-24; 26, and our view is the term “moderate VM” can cause unnecessary anxiety and 

should be abandoned. Unilateral VM (one ventricle is >10mm and ≥2mm difference 

between the size of the lateral ventricles) and asymmetrical VM (both lateral ventricles 

>10mm, but least a 2mm difference between sides) have similar outcomes to bilateral VM. 27-

31  

 

Based on this evidence, it is worth questioning whether isolated VM 10-15mm increases the 

risk of early developmental impairment. Our answer is “probably not”. The baseline risk of 

EDI is 2-3%, but few studies use this strict definition and include children with milder 

developmental abnormalities.22; 23; 32-35 When comparing the published data in isolated VM 

10-15mm to the 10% general population prevalence of developmental difficulties, the figures 

are equivalent. 

 

Ventriculomegaly measuring >15mm 

A meta-analysis of outcomes of 110 fetuses with iVM >15mm showed the pooled proportion 

of stillbirth or perinatal death was 12.1%. Of the surviving babies, developmental outcome 

was normal in 42.4%, mild/moderate abnormal outcomes in 18-30% (defined as 

developmental scores 1-2SD below the mean), and severely abnormal in 30-40%.22; 36 The 

rates of ventriculo-peritoneal shunt insertion (VPS) were 21.4-29.5%.26; 37 Larger and 

progressive ventriculomegaly are the most likely to require neurosurgical intervention and 

usually have adverse developmental outcome.31 
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Key points: Isolated VM <15mm is associated with developmental difficulties in around 7-

8% cases, which is either the same or slightly higher than the general population. VM 

>15mm is associated with a “severely atypical developmental outcome” in 30-40%, and the 

rate of VP shunt insertion is 20-30%. Larger degree of VM, progressive increases in 

ventricular size, and additional abnormalities are associated with worse outcomes.  

 

AGENESIS OF THE CORPUS CALLOSUM (ACC) 

Abnormalities of the corpus callosum (CC) are “isolated” in 50% of cases and associated 

with other abnormalities in the other 50%.38 Repeated MRI in the third trimester may detect 

subtle additional abnormalities invisible on earlier imaging. ACC may be complete or partial. 

Hypoplasia, where CC has formed but is thin, may also be included in follow-up studies. The 

relative proportions of these subgroups are similar between isolated and non-isolated ACC 

groups: 55-60% are complete ACC, 15-25% partial,  12-15% hypoplastic.38  Chromosomal 

abnormalities are seen in between 5-10% of ACC on microarray.39 The definition and 

significance of a short corpus callosum is unclear.  

 

The ranges of aetiologies and developmental outcomes in ACC are vast, ranging from 

normality to stillbirth, perinatal death, or profound developmental disabilities. It is diff icult to 

give an accurate prognosis for any individual fetus unless the aetiology is known to have a 

poor prognosis. The main outcome studies into ACC are summarised in table 2 and figure 2. 

A meta-analysis of 53 fetuses with isolated complete ACC showed normal developmental 

outcome in 76%, borderline/moderate difficulties in 16%, severe developmental 

abnormalities in 8%; 7% had epilepsy. The rates of developmental difficulties with partial 

ACC were similar.39 Data on ACC and other associated abnormalities is limited, with atypical 

developmental outcome noted in 75% of 8 infants.40  

 

Most of the studies included do not assess outcome beyond childhood: subtle cognitive 

diff iculties, including difficulties with attention, and other executive functions, are known to 
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occur in ACC.41-43 The prevalence of ASD in ACC is unknown, but studies of community 

diagnoses of ACC have suggested rates of 45% in children, 35% adolescents, and 18% 

adults on screening questionnaires.44 These is likely to be an over-estimate. Studies 

comparing children with ACC to those with ASD and normal corpus callosum, suggest 

children with ACC have milder autistic traits, which are typically seen after age 6 years, and 

less attentional, anxiety, depressive symptoms, social difficulties, unusual thoughts, and 

repetitive / restrictive behaviours than children with ASD.45 Prospective parents should be 

advised to seek medical and psychological assessment if they become concerned about 

their child’s academic progress and behaviour at school age. It is also recommended that 

postnatal developmental follow-up is offered, preferably until at least school age, to allow for 

early diagnosis and support. 

Key points: around 50% of fetuses with ACC are associated with other abnormalities, and 

50% are isolated. In isolated cases, normal outcome is seen in around 76% of cases and 

severely atypical developmental outcomes in 8%. Subtle cognitive difficulties and autistic 

traits may not become apparent until school age.  

 

 

MICRO- AND MACROCEPHALY 

There is disagreement on the definition for microcephaly, with both >2 and >3SD below the 

population mean for the occipito-frontal diameter proposed. An unusual head shape can 

yield a small head circumference, which is why biparietal diameters should not be used on 

their own to diagnose microcephaly. Unusual head shapes in the vertical plane, such as in 

craniosynostosis, can be excluded using the foramen magnum-to-cranium distance (FCD).46 

Whatever values are used, over-diagnosis of fetal microcephaly remains a significant 

problem.47-49 The rate of head growth is also important, with head circumference (HC) falling 

off the centiles being more significant than a small head tracking along a lower centile,50 so 

repeated imaging is important.  
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In paediatrics, the definition of >3SD below the mean HC is recommended because 

outcomes are usually normal and genetic diagnoses rare between 2-3SD below the mean.50 

This is consistent with a single study of 19 fetuses whose HC were 2-3SD below the mean, 

all of whom had normal outcomes, although behavioural problems were common.48.  

 

For “isolated” cases >3SD below the mean, and those falling off the centiles, there is no 

high-quality data to estimate the risk of adverse outcome, but it is likely to be high. Health 

care professionals can struggle to find published figures on how many SD a fetus’ HC lies 

below the mean, so we have generated these values in table 3 from Chitty et al’s data,51 

which is used routinely in the UK. Other published values exist, including recent data from 

the Intergrowth-21st study.52; 53 Population specific values should be used. Where other 

structural, genetic, or infective abnormalities are found, clinicians need to tailor their 

prognostication to the nature of these findings. 

 

Macrocephaly is diagnosed when the fetal HC is either 2SD above the population mean for 

gestational age or above the 95th centile and is differentiated from hydrocephalus by 

ventricular size. Most cases are familial in origin, and it is worth measuring and plotting the 

biological parents’ HCs to determine if  their head sizes are large. Reported developmental 

outcomes from small studies are usually normal in isolated cases.54-56  

 

Where there are other malformations, possible aetiologies include Sotos syndrome (NSD1 

gene), mutations in the NFIX gene, Neurofibromatosis type 1 (NF1), Klippel-Trenaunay 

Syndrome, conditions associated with capillary malformations, including the macrocephaly-

capillary-malformation syndrome, and Cowden syndrome, which is associated with 

hamartomas and mutations in the PTEN gene.57; 58 Other aetiologies include fetal tumours, 

expanding intracranial cysts, megalencephaly, and Glutaric Aciduria Type 1. Therefore, a 

detailed search should occur for other abnormalities, including limb overgrowth, abnormal 
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shape to the Sylvian fissures, polydactyly, cardiac and kidney abnormalities, ascites, and 

facial anomalies. 

Key points: isolated microcephaly 2-3 SD below the mean is likely to be associated with 

normal outcome. Microcephaly >3SD below the mean, when associated with other 

abnormalities, and where the fetal head circumference is progressively falling away from the 

centiles, are likely to have atypical developmental outcome. Isolated macrocephaly is likely 

to be associated with normal outcome. 

 

 

HOLOPROSENCEPHALY (HPE) 

Holoprosencephaly is a failure of forebrain division into the two cerebral hemispheres, deep 

grey matter (basal ganglia and thalami), olfactory and optic bulbs and nerves. It is a 

spectrum of abnormalities: 

• Alobar HPE, the most common and severe form, with no separation of the cerebral 

hemispheres or formation of the CC; a single large ventricle; cyclopia, hypotelorism, 

anopthalmia, or microopthalmia; proboscis; and cleft lip and palate   

• Semilobar holosprosencephaly involves fusion of the frontal and parietal lobes with 

likely abnormal facial features.  

• Lobar holoprosencephaly involves fusion of only the frontal lobes, sometimes with 

involvement of the deep grey matter, and may or may not be associated with closely 

spaced eyes, depressed nasal ridge, and cleft lip and palate.59-63  

• Mild interhemispheric variant (syntelencephaly) where the posterior frontal and 

parietal lobes fail to separate, with or without fusion of the deep grey matter , and 

absence of the body of the CC.64; 65 

 

Chromosomal abnormalities are seen in 24-54% of HPE, typically trisomy 13,59; 62; 66, and at 

least 10% will have microdeletions or microduplications on microarray,66; 67;  19-25% have a 
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single gene disorder, with autosomal dominant, autosomal recessive, and X-linked 

inheritance patterns described.66 Alobar HPE has traditionally been associated with stillbirth 

or death in the neonatal period. Health care professionals should avoid counselling families 

that “all” babies die shortly after birth because a proportion do not: 50% of babies with alobar 

HPE and a relatively normal face die within 5 months of age, 20-30% live at least a year, 

and survival to 11 years is described.59; 61 In semi-lobar HPE, one study found  2/11 (18.2%) 

died in the first week, 3 (27.3%) died by 6 months, 5 (45.5%) by 3 years, and 4 (36.3%) were 

alive beyond 4 years of age.59 Survival into adulthood is known.61 

 

Children with HPE have developmental diff iculties.59; 61; 63 Children with alobar 

holoprosencephaly do not sit, mobilise, reach for objects, or speak, and may have mild 

hypotonia or spasticity.61 56% require treatment for epilepsy.63 They may be able to hear and 

react to noises and, if they have eyes, may fix, follow, and recognise familiar faces. Other 

diff iculties include feeding problems, drooling, gastrointestinal reflux disease, aspiration, 

respiratory tract infections, abnormal high-pitched crying, behavioural and sleep problems, 

irregular breathing, heart rate, and temperature control.61; 63 Children with semi-lobar HPE 

may have profound learning difficulties, but some children will walk a few assisted steps, 

have comprehension of single word phrases, and a small repertoire of single spoken 

words.60; 63 In lobar HPE, 50% of children walk, hand function may be mildly impaired, and 

children may speak in single word or short phrases.60; 63 The middle interhemispheric variant 

of HPE have outcomes similar to lobar HPE.64  

 

Children with HPE are at risk of diabetes insipidus and other endocrinopathies.59; 61; 63 

Hydrocephalus may present, especially in alobar and semilobar HPE associated with a 

dorsal cyst, and 16% require a VPS.63  

Key points: HPE is strongly associated with chromosomal and genetic abnormalities, 

particularly trisomy 13. Fetuses with facial abnormalities are more likely to die in the 
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perinatal period or have more severe developmental difficulties, but even those with a 

normal face are likely to have atypical developmental outcomes.  

 

  

MALFORMATIONS OF CORTICAL DEVELOPMENT 

The brain has few sulci and gyri in early gestation, and these develop in an organised 

manner in the second and third trimester. The introduction of in-utero MRI (iuMRI) means 

that identif ication of cortical and migration abnormalities is better, but false positives and 

negatives still occur. Repeated iuMRI in the third trimester may be needed identify subtle 

abnormalities.68; 69 Abnormalities include hemimegalencephaly, lissencephaly, cobblestone 

malformation, polymicrogyria, and heterotopia.  

 

Hemimegalencephaly, which may also be associated with brainstem and cerebellum 

anomalies,70 often results from single gene disorders, including mutations in the PI3K-ATK-

MTOR pathways and associated tuberous sclerosis complex, NF1, Sturge Weber, Klippel-

Trenaunay Syndrome, and other neurocutaneous disorders.71; 72 Developmental outcome is 

poor, with motor diff iculties including cerebral palsy, learning difficulties, and refractory 

epilepsy, although early hemispherectomy may benefit 50-60%.73-75 

 

Lissencephaly, in which neuronal migration is impaired and either an absence (agyria) or 

reduction (pachygyria) in gyral formation results, can be an isolated finding or associated 

with other features. Many genes can be associated with lissencephaly.76 The commonest 

are PAFAH1B1 (OMIM 607432) and DCX (OMIM 300067, also associated with ACC), both 

of which may also be associated with subcortical band heterotopia. Other genes include 

ARX (OMIM 300215) and TUBA1A (OMIM 611603). Miller-Dieker syndrome (OMIM 247200) 

should be considered where there is facial dysmorphia, a prominent forehead, midface 

hypoplasia, small nose and jaw, low set ears, renal or cardiac abnormalities, or 

omphalocele. The presence of cerebellar dysgenesis, basal ganglia dysmorphia, and 
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brainstem abnormalities raises the possibility of tubulinopathies, whilst cerebellar hypoplasia 

suggests CDK5 (OMIM 616342) and RELN mutations (OMIM 257320).76 Where intracranial 

calcification, white matter hyperintensity, or temporal lobe cysts are seen, congenital CMV is 

likely.77 Whatever the cause, the likelihood of developmental difficulties and epilepsy will be  

high, and dependent on the degree of cortical abnormality.  

  

Cobblestone malformation, in which sulcation is preserved but the cortex is “bumpy”, is 

associated with congenital muscular dystrophies, including dystroglycanopathies like FKTN 

(OMIM 253800), B3GALNT2 (OMIM 615181), FKRP (OMIM 613152), POMT1 (OMIM 

236670), and POMT2 (OMIM 613150) mutations. These are associated with eye 

abnormalities, contractures, ventriculomegaly, cerebellar hemisphere and vermis hypoplasia 

or cysts, kinked brainstem, or a bifid pons.78 Neonates with these conditions usually die 

within the first year or have a range of developmental difficulties, including epilepsy, 

weakness, poor respiratory function, feeding problems, and contractures, all of which will 

require multidisciplinary care.79; 80  

 

Polymicrogyria can be focal, multifocal, or diffuse and can affect one or both hemispheres. 

The aetiology can be primary genetic or a result of an insult occurring between 16 and 24 

weeks gestation, such as congenital CMV and Fetal Alcohol Syndrome.81 There is a wide 

range of genetic causes,82 including metabolic conditions like peroxisomal disorders.83 

Tubulinopathies, as with all the other forms of cortical malformation, are a potential cause, 

and may include dysmorphic basal ganglia.84 Outcome will be dependent on the aetiology 

and extent of the cortical abnormality. 

 

Heterotopia can be nodular in the periventricular region, subcortical or band-like. 

Periventricular nodular heterotopia may be isolated or diffuse, and can be associated with 

other abnormalities, such as ACC, cerebellar, or brainstem abnormalities. Although genetic 

aetiologies are known, it is unusual to find an aetiology antenatally, and there should be a 
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careful search for other structural abnormalities in the fetus, including signs of tuberous 

sclerosis.80 Outcome may be normal for cases of isolated nodular heterotopia, and our 

experience is that incidental isolated heterotopia can be found in well older children and 

adults undergoing neuroimaging for other reasons. With increasing number and severity of 

heterotopia, the risk and severity of developmental difficulties increases, but there is little 

high-quality data to help delineate outcome in more detail.  

Key points: cortical malformations have a wide variety of causes, severity and outcomes. 

Outcome is dependent on the extent of the lesion, regions of the brain affected, presence of 

other abnormalities and, if found, aetiology.  

 

 

POSTERIOR FOSSA ABNORMALITIES 

Cerebellar agenesis, hypoplasia, or atrophy 

It can be hard to differentiate cerebellar hypoplasia and atrophy, unless there is evidence of 

a normal cerebellum early in pregnancy.85 Potential causes include: 

• chromosomal abnormalities, with one study finding 6/11 (54.6%) fetuses with 

cerebellar hypoplasia having a significant abnormality on microarray (33.3% for 

isolated and 88.9% for additional abnormalities)86  

• single gene disorders, such as ciliopathies, dystroglycanopathies, tubulinopathies 

• syndromic causes, including PHACES association (posterior fossa abnormalities, 

haemangioma, arterial lesions, cardiac abnormalities, eye problems, and sternal 

notch or dimple) 

• metabolic disorders, including carbohydrate deficient glycoprotein disorders 

• fetal exposure to toxins like fetal alcohol syndrome 

• congenital infection, especially CMV 

• haemorrhage.87  
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Fetuses with isolated cerebellar hypoplasia or atrophy are at high risk of developmental 

diff iculties,88 but there are few follow-up studies to provide figures. A review of children with 

pre and postnatally diagnosed cerebellar disorders noted that bilateral cerebellar hypop lasia 

was associated with cognitive/developmental impairment in 60-100% of cases, language 

diff iculties in 44-89%, and behavioural problems were also common.89 To complicate 

matters, we have also seen fetuses with small cerebellums at 20-22 weeks, where growth 

has continued throughout pregnancies and the cerebellum has appeared normal in the third 

trimester. 

 

Unilateral hypoplasia or atrophy is postulated to be related to cerebellar haemorrhage.  The 

range of potential outcomes is broad: Poretti et al studied 7 children and found 2 had normal 

outcome apart from minimal ataxia, 3 had mild learning disabilities, and 2 children with 

cognitive abilities in the normal range had either expressive language difficulties or ataxia. 

None had severe or profound learning disabilities or motor deficits.90 A review of children 

with pre and postnatally diagnosed cerebellar disorders noted that unilateral cerebellar 

hypoplasia was associated with cognitive impairment in 17-50% of cases, and language 

diff iculties in 17-100%.89 

 

Dandy Walker Complex  

Dandy Walker Complex (DWC) is defined as the presence of three features: cystic dilatation 

of the fourth ventricle, hypoplastic cerebellar vermis, and elevation of the tentorium. DWC 

may be isolated, or associated with other CNS abnormalities in 13-67%, and non-CNS 

abnormalities in 9-44% of cases.89 A meta-analysis including 13 infants with isolated DWC 

and normal karyotype estimated the rate of developmental difficulties to be 58.2%, and the 

rate of VPS insertion 62.7%.91 Studies of pre and postnatally diagnosed DWC are larger but 

vary in their definitions of DWC, and report up to a third of children having normal outcome, 

with normal lobulation of the vermis associated with better cognitive abilities. All children 
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who had normal lobulation and learning diff iculties had other structural abnormalities in 

addition to DWC.89 

 

Isolated cerebellar vermis hypoplasia 

A meta-analysis involving 18 fetuses with vermian hypoplasia found developmental 

diff iculties in between 0-33%. None required VPS.91 One of the studies provided data up to 

school age, noting children with isolated vermian hypoplasia had normal outcomes.92 In 

studies of cases diagnosed pre and postnatally, normal outcome was seen in 77%; affected 

children displayed gross and fine motor difficulties, social-communication disorders, and 

behavioural diff iculties.89 

 

Mega cisterna magna (MCM) 

The MCM  abnormality is defined as an enlarged cisterna magna with normal fourth 

ventricle, cerebellar hemispheres, and vermis.85; 89 The rate of adverse developmental 

outcome in MCM is estimated around 13.8%, with study rates ranging from 0-50%.91 A 

meta-analysis suggests adverse outcome in 8% of children,89 although adult series suggest 

higher cognitive functions, including executive and language functions, may be affected.85 

As with other conditions, the outcome of fetuses with MCM and additional abnormalities will 

depend on the nature of those abnormalities, but a rule-of-thumb is that around 66% will not 

have developmental difficulties.85; 89.  MCM may be the presenting feature of Joubert’s 

syndrome where the cerebellar peduncles are prominent and there is a cleft in the midbrain, 

described as the “molar tooth sign”, on ultrasound or MRI.93 

 

Blake’s Pouch Cyst 

This abnormality is defined as a communication between the fourth ventricle and the 

posterior fossa with a normal vermis, and may reflect delayed closure of the vermis. 85 Where 

this is an isolated finding, developmental outcome is good and the risk of difficulties is similar 

to the normal population.91 
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Rhombencephalosynapsis 

This rare disorder is characterised by fusion of the cerebellar hemispheres with differing 

degrees of vermian agenesis. It can occur in isolation or with other abnormalities, including 

Gomez-Lopez-Hernandez Syndrome (OMIM 601853), a condition associated with 

craniosynostosis, alopecia, corneal clouding, moderate to severe learning disabilities, head 

nodding, behavioural and sleep difficulties, and hydrocephalus. In isolated 

rhombencephalosynapsis, data on developmental outcome is limited. Cognitive outcomes 

range from normal outcome to severe learning difficulties; motor outcome is usually 

abnormal, including ataxia, spasticity, poor balance, and oculomotor abnormalities.89  

Key points: the outcome data on posterior fossa abnormalities is lacking. Bilateral 

cerebellar hypoplasia and lesions associated with other fetal anomalies are more likely to be 

associated with significant developmental difficulties. DWC is associated with developmental 

diff iculties in up to 60% of fetuses, whilst the Blake Pouch cyst gives a similar risk to the 

general population. A small cerebellum in early gestation may exhibit catch-up growth and 

appear normal later in pregnancy. 

 

MYELOMINGOCELE (MMC) 

Myelomeningocele is associated with a range of difficulties, so counselling requires a 

multidisciplinary approach.   

 

Motor outcomes 

The chance of ambulation in MMC is linked to the lesion level (table 4), although the 

functional level of a lesion may differ from its visual level on antenatal USS and iuMRI.94-96 

Overall, 63-73% of children walk to some degree, 97-99 but this may not be “normal walking”: 

muscle weakness, spasticity, joint abnormalities, and ataxia mean ambulation may be slow, 

with frequent trips or falls. 11% walk without aids, splints or orthotic support 97 and 37% of 

children are wholly reliant on a wheelchair.97 Later in life, ambulant children may become 
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non-ambulant because of weakness, spasticity, contractures, neuropathic osteoarthropathy, 

obesity, progressive spinal problems like kyphoscoliosis, or because it  is simply faster and 

easier to keep up with their peers. At 25 years of age, 33% are ambulant, reducing to 21% 

by 50 years. Babies with motor or sensory levels below L3 and those with quadriceps activity 

at birth are more likely to be walking at 50 years of age than those with higher lesions.100 

Upper limbs can be affected by weakness, poor dexterity, reduced motor speed and 

planning, and poor bimanual coordination, probably because of hydrocephalus, brainstem or 

cerebellar abnormalities, visual impairment, impaired trunk control, or scoliosis.101 

 

Arnold Chiari malformation type 2, hydrocephalus, and abnormal brainstem function 

Arnold-Chiari Type 2 malformations (ACM2) occur in 80-90%99; 102 of children with MMC, and 

hydrocephalus in 77-84%.102; 103 The rates of VPS insertion are 51-72%.99; 102-105, of whom 

37% require a revision in the first year of life.97 ACM2 and hydrocephalus can compress the 

brainstem leading to dysphagia, stridor, aspiration, centrally-mediated apnoeas, and motor 

signs.106 These can be addressed by treating the hydrocephalus in most cases, but 5-11% 

require ACM decompression.97; 102; 106 Surgical treatment is 4 times more likely in thoracic 

than sacral lesions.106 1% of people with ACM2 require tracheostomy. Brainstem dysfunction 

can be seen in the absence of ACM2 and hydrocephalus, and may be life-limiting.106  

 

Cognition and schooling 

Children and adults with myelomeningocele have lower cognitive scores on testing of 

general cognitive abilities than the general population, but scores are typically in the normal 

or borderline learning difficulties range: mean IQ scores range from 71.9 - 96.6.101; 107-110 The 

key factor is hydrocephalus: average IQ scores without hydrocephalus are 97.6-103.0, 

compared to 75-89.7 for shunted hydrocephalus.107; 108 Around 80% of children will attend 

mainstream school, 20% require special school education.111 For those with general 

cognitive abilities in the normal range, additional educational support in the classroom may 

be required because of subtle learning difficulties, poor attention/concentration,109; 110; 112-114 
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short and long term memory problems, impaired visuo-spatial/visuo-memory, and executive 

functioning skills.108; 115 

 

Bowel and bladder function 

Urinary diff iculties related to neurogenic bladder are frequent, and counselling should 

include a discussion on the likely bladder management plan.  Long term, 76.8% of adults 

use intermittent catheterisation and 45% achieve some form of continence with or without 

catheterisation.116-118 33.3% of young adults with MMC never have urinary accidents, 12.5% 

less than once a month, 27.1% at least once a month but less than once a week, 14.6% 

once a week but not every day, and 15.0% every day. Lower lesions are associated with 

less accidents than higher lesions.119  

 

Faecal incontinence and constipation are also common: 48.9% achieve bowel continence, 

17.4% will require an antegrade colonic enema procedure, 5.1% a cecostomy button, and 

2.9% a colostomy or ileostomy. Laxatives, enemas and digital stimulation or extraction may 

be required.120 Faecal incontinence is strongly associated with quality of life, participation, 

travelling, socialising, family emotions/relationships, and finances.121-123  

 

Other comorbidities 

80% of individuals with MMC develop contractures that require orthopaedic intervention, 124 

15-22% have a latex allergy,125-127, sleep-disordered breathing can be seen,128 and 

progressive spinal problems may affect respiratory function.129 

 

Relationships, sexual function, and fertility 

23-28% of individuals with MMC will marry and 52% will not form a long-term relationship.114; 

130 Between 24-51% of adults with MMC have sex regularly,131-133 but sexual activity is less 

likely with higher spinal lesions. Erectile dysfunction is reported in 12-75% 134-136 and is more 

common in lesions above T10.137 Sildenafil may help.138 Sperm counts and morphology are 
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abnormal, with hydrocephalus a significant risk factor, so fertility may be impaired.134 55.5% 

of women report sexual dysfunction.139; 140 Evidence shows the relationship between sexual 

function and health-related quality of life is weak or non-existent.131; 133 

 

Adulthood  

Around 94% attain high school qualif ications or equivalent 114, and 8-56% complete a higher 

degree or technical qualif ication.114; 130 Rates of employment range from 44-85%,114; 130 but 

half of adults with MMC work part time because of their health, and salaries are below the 

national average.114 21-51% will live independently with or without some form of 

assistance.100; 114; 130 The presence of hydrocephalus reduces the chance of independent 

living.100; 114; 130 Functionally, 85% of adults with MMC can dress themselves, 65% shop for 

themselves, and 54% drive.130 Overall life satisfaction is equivalent to the general 

population, but lower scores are found for employment, contact with friends, self-care, 

relationships, physical and mental health.114 

 

Fetal surgery  

Fetal surgery of myelomeningocele reduces the risk of hindbrain herniation and VPS 

insertion at both 12 months and between 5-10 years of age, improves motor function, self-

care, quality of life, and family impact scores. There is no apparent benefit on adaptive 

behaviour or cognition.141-143 Health care professionals should be aware of the location and 

referral criteria for their fetal surgery centre. 

Key points: counselling of MMC should involve a multidisciplinary team with knowledge of 

the long-term outcomes including motor, cognition, bowel and bladder functions, educational 

abilities, and ability to live independently, sexual function and fertility. Advice on disability 

and quality of life should not be incorrectly catastrophic. Fetal surgery should be offered 

where appropriate. 

 

CONCLUSIONS 
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There is limited evidence on neurodevelopmental outcomes of CNS abnormalities 

diagnosed prenatally. Predicting an individual fetus’ risk for developmental difficulties is 

diff icult. Repeated neuroimaging, viral, and genetic studies may reveal useful information, so 

counselling may have to occur in a stepwise manner. When giving prognostic information, 

health care professionals should avoid using emotive language and inappropriately 

catastrophic outcomes, focussing instead on best and worse-case scenarios and functional 

outcomes. Where prognosis is unclear, the wider multidisciplinary team or health care 

community may have more experience and information, which could avoid medicolegal 

proceedings for wrongful life or termination. Local laws on termination of pregnancy differ 

between countries, and health care professionals should know the laws in their own area. 

Discussions about termination of pregnancy should be even-handed, and any decisions 

prospective parents make should be respected. 
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Table 1: Results of selected published studies on developmental outcome in at least 100 fetuses with ventriculomegaly 

Author, Year 
of 

publication 
(Reference) 

Methodology Definition of 
ventriculomegaly 

N with follow-
up data 

Age at 
developmental 

assessment 

Methods and definitions used Results 

Systematic review and meta-analyses 

 

Carta et al 
(2018)

36
 

Systematic 
review and 

meta-analysis 

Isolated severe VM 

≧15.0mm without intra- 
or extra-cranial 
abnormalities, 

chromosomal 
abnormality, or fetal 

infections 

110 3-216mo Developmental outcomes were defined as 
per original authors. 

 
Severe motor disability: no independent 

function 
 

Children not fitting into normal or severe 
groups were labelled mild / moderate 

Pooled proportion of deaths (stillbirth or 
perinatal) - 12.1%. 

 
Outcome in survivors: 

• Normal outcome in 41/95 (43.2%) 

• Mild / moderate disability 17/95 
(17.9%) 

• Severe disability in 37/95 (38.9%) 
Pagani et al, 

2014
21

 
 

Systematic 

review and 
meta-analysis 

Mild VM 10-15mm 

without other structural 
abnormalities, abnormal 

karyotype, or congenital 
infection 

652  Median 30 

months (range 
3-151mo). 

Developmental outcomes were defined as 

per original authors. 
 

Developmental delay in 67/652 (7.9%). 

 

Devaseelan 

et al (2010)
31

 

Systematic 

review and 
meta-analysis 

10.1 - 15.0mm VM 10.1 – 

15mm n=586 
 

VM 10.1 - 
12.0mm 

n=319 

Median 30 

months (range 
2-72mo) 

Neurological abnormality defined as: 

 
Mild - delayed motor skills, nystagmus, mild 

speech impairment 
 

Severe - cerebral palsy, urinary 
incontinence, blindness, “mental 

retardation” 

VM 10.1 - 15.0mm:  

• 5% abnormal karyotype 

• 1.5% positive infection screen 
 

• All VM: abnormal outcome in 14% 

• If infection screen and karyotype 
normal: abnormal outcome in 12% 

 

• Risk of abnormal development in 
stable VM was lower than 

progressive (OR 0.29).  
 

• No different in developmental 
outcome between all symmetrical or 
asymmetrical VM (OR 0.91).  

 
VM 10.1 - 12.0mm 

• 0.4% positive infection screen 

• 3% abnormal karyotype 

• Abnormal developmental outcome in 
4% 

Scala et al 
(2017)

27
 

Systematic 
review and 

meta-analysis 

Isolated unilateral VM 
10-15mm. 

 
“Apparently isolated”: 

Apparently 
isolated 

unilateral VM:  
 

Apparently 
isolated 

unilateral VM: 
Median 30.3mo 

Developmental outcomes were defined as 
per original authors. 

 

Apparently isolated unilateral VM <15mm 

• Prevalence of abnormal karyotype 
0% 

• Prevalence of congenital infection 
8.2% 
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no intra- or extra-CNS 
structural abnormalities 

 
Truly isolated: no other 

structural abnormalities 
on pre or postnatal 

imaging, chromosomal 
abnormality or 

congenital infection. 
 

 

Truly isolated 
unilateral VM: 

198 

(range 24.3-
36.5mo) 

 
Truly isolated 

unilateral VM: 
Median 38.0 

(range 27.0-
49.8mo) 

• Prevalence of progression of VM 
5.4% 

• Prevalence of subsequent intra- or 
extra-CNS abnormalities 6.8% 

• Incidence of developmental 
abnormalities 5.4% 

 
Truly isolated unilateral VM <15mm 

• Incidence of developmental 
abnormalities 7.0% 

Selected individual studies reporting outcome  
 

Li et al 

(2019)
22

  

Prospective Group A 10.0-12.0mm 

 
Group B 12.1-15.0mm 

 
Group C 15.1mm+ 

 
Controls: normal fetuses 

 
Isolated - no other 

abnormalities on MRI.  

Group A 

n=113 
 

Group B n=37 
 

Group C n=10 

3, 6, 12,  18 mo Gesell Developmental Schedules 

 
Score >85: normal 

 
Score 75-85: moderately abnormal 

 
Score <75: severely delayed 

At 18months age: 

Group A:  

• 105/113 (92.9%) normal 

• 6/113 (5.3%) moderate delay 

• 2/113 (1.8%) severe delay 
Group B: 

• 30/37 (81.1%) normal 

• 4/37 (10.8%) moderate delay 

• 3/37 (8.1%) severe delay 
Group C 

• 4/10 (40.0%) normal 

• 3/10% (30.0%) moderate delay 

• 3/10 (30.0%) severe delay 
Controls 

• 46/50 (92/0%) normal 

• 3/50% (6.0%) moderate delay 

• 1/50 (2.0%) severe delay 
 

Statistically significant differences were seen 
only between Group C and Controls only. 

Thorup et al, 

2019
25

 

Retrospective, 

national 
database 

Isolated mild VM: 10-

15mm on USS, no 
evidence of other fetal 

abnormalities.  
 

Excluded if abnormal 
fetal MRI, karyotype, 

microarray, TORCH 
screen, thrombocyte 

107  2-7yrs Abnormality defined as intellectual 

disability, CP, ASD, epilepsy, impaired 
psychomotor development 

Normal outcome - 101 (94.4%) 

 
Developmental disorder - 6 (5.6%) 

• Intellectual disability 0 

• Cerebral palsy 0 

• ASD 1 (0.9%) 

• Epilepsy 2 (1.9%) 
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antibodies, postnatal 
structural brain or 

genetic diagnoses.  

• Impaired psychomotor development 
3 (2.8%) 

OR for poor outcome 2.64 (1.16 - 6.02 95% CI) 

Bar-Yosef et 

al (2017)
23

 

Prospective Mild VM 10mm-11.9 

Moderate VM 12.0-
14.9mm 

Severe VM ≧15mm  
 

Asymmetry: ≧2mm 
difference between sides 
 

Exclusions: Toxoplasma 
or CMV infection; other 

abnormalities on fetal 
MRI, abnormal 

karyotype or microarray 

N=133 

 
Mild: 108 

Moderate: 24 
Severe: 1 

 
Asymmetrical: 

112 

Median 25mo 

(IQR 21-26mo) 

Vineland Adaptive Behaviour Scales 

(VABS) scores 
 

Abnormal if <85 (below 1SD from mean) 

5/133 (3.8%) had scores <85 

 
No statistical differences in VABS scores 

between mild and moderate VM groups, nor 
symmetrical and asymmetrical VM.  

 
 

Chu et al 

(2016)
24

 

Prospective Mild 10.0 to <12.0mm 

Moderate 12.0 to <15.0 

Severe ≥15.0mm 
 
Isolated - no intracranial 

or extracranial 
abnormalities, negative 

TORCH screening and 
karyotype (or if parents 

declined) 

N=151 

 
Outcome data 

in 66 isolated 
VM (41 mild, 

17 moderate, 
8 severe) and 

85 non-
isolated VM 

16mo – 9yrs Developmental review by paediatrician and 

telephone interview with parents 
 

Abnormal outcome defined as death, 
structural malformations, poor locomotor, 

speech or social skills, abnormal hearing or 
visual function, developmental or “other” 

anomalies 

Isolated VM 

38/41 mild IVM (92.7%), 16/17 (94.1%) 
moderate IVM and 5/8 (62.5%) severe IVM had 

normal outcome 
 

Outcome was statistically better in fetuses 
where VM improved. 

 
Non-isolated VM 

55/64 (85.9%) mild VM, 12/13 (92.3%) 
moderate, 5/8 (62.5%) severe had normal 
outcome 

 

Ouahba et al 

(2006)
144

 

Retrospective  Mild VM 10-15mm 

 
Excluded if 

abnormalities on fetal 
MRI, TORCH screen, 

karyotype 

N=101  

 
 

Mean 54.7mo 

(SD2.9mo, 
range 19-

127mo) 

Neurological examination by paediatric 

neurologist 
 

Brunet-Lezine Psychomotor Scale 1-2 yrs 
McCarthy Scales of Children’s Abilities 2-4 

yrs 
WPPSI over 4 yrs 

 
If formal assessment not performed, data 

collected from notes or parental 
questionnaire over telephone. Definitions 

for abnormality are not given. 

12 (11.9%) had developmental delay / disease 

 
89 (88.1%) normal development 

 
Outcome worse if VM >12mm, asymmetrical 

bilateral VM, or if VM progressed in pregnancy 
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Table 2: Results of selected published studies on developmental outcome in at least 20 fetuses with antenatally diagnosed abnormalities to the corpus callosum 

Author, Year of 

publication 
(Reference) 

Methodology N with follow-up data Age at 

developmental 
assessment 

Methods and definitions used Results 

Systematic reviews 
 

D’Antonia et al 

(2016)
39

 

Systematic 

review and meta-
analysis 

N=266 isolated complete ACC 

 
N=225 isolated partial ACC 

 

Not given Outcomes defined according to 

methodology used in original 
paper 

Isolated complete ACC (no other structural 

abnormalities) 

• 4.81% abnormal karyotype, 5.75 
microarray 

• Normal outcome 76.0% (pooled proportion) 

• Borderline / moderate abnormal outcome 
16.0% 

• Severely abnormal outcome 8.0% 
 
Isolated partial ACC (no other abnormalities) 

• 7.45% abnormal karyotype, 5.7% 
microarray 

• Normal outcome 71.4% (pooled proportion) 

• Borderline / moderate abnormal outcome 
14.9% 

• Severely abnormal outcome 12.5% 

 
Complete or partial isolated ACC with normal 

karyotype 

• 5.74% clinically significant copy number 
variants with microarray 

Sotiriadis et al 

(2012)
40

 

Systematic 

review and meta-
analysis 

N=132 ACC 

 
Where studies subdivided 

according to anatomy: 
Complete ACC N=70 

Partial ACC N=29 

Not given Outcomes defined according to 

methodology used in original 
paper 

Developmental outcome in all ACC 

• Normal outcome: 71.2% 

• Borderline / moderate abnormal outcome: 
13.6% 

• Severely abnormal outcome: 15.2% 
 
Complete ACC: 

• Normal outcome: 74.3% 

• Borderline / moderate abnormal outcome: 
14.3% 

• Severely abnormal outcome: 11.4% 
 
Partial ACC: 

• Normal outcome: 65.5% 

• Borderline / moderate abnormal outcome: 
6.9% 

• Severely abnormal outcome: 27.6% 

Selected individual studies reporting outcome  
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Folliot-Le 
Doussal et al 

(2018)
145

 

Retrospective   
 

 

N=25 isolated ACC  
 

Exclusions: antenatal exposure to 
alcohol, parental consanguinity, 

ventriculomegaly >20mm, children 
under 2yrs or lost to follow-up 

before 6yrs 

“Average” 8 +/- 5 
years (range 2-

16yrs) 

Information from reviews by 
paediatrician. 15 had WISC-III, 

WISC-IV or WPPSI-III 
 

Normal: no cognitive, behavioural 
or motor impairments and school 

level appropriate 
 

Mild: Specific cognitive disorders 
with a full scale, verbal, or 

performance IQ 70-85, motor 
disorders or language disorders.  

 
Moderate / severe: CP, cognitive 

disorders with an IQ score< 70 or 
autism spectrum disorders 

Normal: 9/25 (36.0%): 6 complete ACC, 3 partial.  
 

Mild: 13/25 (52.0%): (8 completed ACC, 2 partial 
ACC, 3 hypoplasia CC). All had speech delay, 5 

(20%) attentional problems, 9 (36%) specific learning 
difficulties, 3 (12%) gross motor disorder. Verbal 

comprehension scores were <85 in 60%. 
 

Moderate / severe: 3/25 (12%), all complete ACC. 
All had IQ<70 and speech delay. 2 had motor delay, 

1 epilepsy and ASD.  
 

 
 

Yeh et al 

(2018)
146

 

Retrospective  N=40 (12 isolated  

28 additional abnormalities) 
 

 

Median 24.8mo 

(range 10-60mo) 

Information from review by 

paediatrician. Bayley Scales of 
Infant Development-2 (BSID-2) or 

Korean Infant and Child 
Development Test (KICDT) 

 

Normal: Score ≥85 on BSID-2 or 

≥80 KICDT 
Moderate to severe: Score <70 
on either BSID-2 or KICDT 

Normal: 18/40 (45.0%) 

Moderate / severe: 22 (55.0%)  
 

Isolated ACC: 7/12 (58.3%) normal outcome. Those 
who were not normal had predominately language 

delay. 1 had motor delay. 
Non-isolated ACC: 11/28 (39.3%) normal outcome. 

des Portes et al 

(2018)
147

 

Prospective   N=34 isolated ACC 

26 had complete ACC, 8 had 
partial ACC 

 

Range 3-7yrs Variety of outcome measures and 

formal psychological assessments 
depending on age. 

 

Normal: 22 (64.7%)  

Learning disabilities and borderline intellectual 
function (IQ 70-85):10 (29.4%) -  

Severe intellectual disability (IQ<70): 2 (5.9%) 

Mangione et al 

(2011)
38

 

Prospective with 

matched controls 

N=26 isolated ACC Median 50mo 

(range 30-74) 

Outcome measures: examination 

by paediatrician and I Child 
Developmental Inventory 

Developmental delay: <79 
Borderline: 70-79 

Learning difficulties: <70 

Normal developmental outcome: 19/26 (73.1%) 

Developmental abnormality: 7/26 (26.9%), of whom 
5/26 (19.2%) had learning difficulties and 2/26 (7.8%) 

borderline learning difficulties 
 

Chadie et al 
(2008)

148
 

Retrospective  N=20 with isolated ACC Mean 6yrs (range 
3-16yrs) 

Case note review from paediatric / 
psychology follow-up   

Moderate disabilities: hypotonia, 
subtle cognitive disorders e.g. 

dyslexia, visuo-spatial or attention 
deficits, learning disabilities 

Severe disabilities: CP, IQ<70 

Normal: 11/20 (55.0%) 
Moderate disabilities: 5/20 (25.0%) 

Severe disabilities: 4/20 (20.0%) 
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Table 3: Mean head fetal measurements according to gestational age, and calculated cut-off points for 2, 3, and 4 standard deviations below 
the mean, generated from the data produced by Chitty et al.51 
 

Gestation 
weeks 

Biparietal Diameter Measurements (BPD 
outer-outer) in mm 

Occipito-Frontal Diameter Measurements 
(OFD) in mm 

Head Circumference Measurements in 
mm 

4SD  3SD  2SD  Mean SD 4SD  3SD  2SD  Mean SD 4SD  3SD  2SD  Mean SD 

20 38.0 40.7 43.4 48.8 2.7 49.7 52.8 55.9 62.1 3.1 140.1 148.7 157.3 174.5 8.6 

21 41.0 43.8 46.6 52.2 2.8 54.1 57.2 60.3 66.5 3.1 151.4 160.2 169.0 186.6 8.8 

22 44.3 47.1 49.9 55.5 2.8 58.0 61.2 64.4 70.8 3.2 162.5 171.5 180.5 198.5 9.0 

23 47.1 50.0 52.9 58.7 2.9 61.7 65.0 68.3 74.9 3.3 172.8 182.1 191.4 210.0 9.3 

24 50.2 53.1 56.0 61.8 2.9 65.4 68.8 72.2 79.0 3.4 183.2 192.7 202.2 221.2 9.5 

25 52.8 55.8 58.8 64.8 3.0 68.9 72.4 75.9 82.9 3.5 193.3 203.0 212.7 232.1 9.7 

26 55.4 58.5 61.6 67.8 3.1 71.8 75.5 79.2 86.6 3.7 202.6 212.6 222.6 242.6 10.0 

27 58.2 61.3 64.4 70.6 3.1 75.1 78.9 82.7 90.3 3.8 211.9 222.1 232.3 252.7 10.2 

28 60.6 63.8 67.0 73.4 3.2 77.7 81.7 85.7 93.7 4.0 220.9 231.3 241.7 262.5 10.4 

29 63.2 66.4 69.6 76.0 3.2 80.7 84.8 88.9 97.1 4.1 229.0 239.7 250.4 271.8 10.7 

30 65.4 68.7 72.0 78.6 3.3 83.0 87.3 91.6 100.2 4.3 237.1 248.0 258.9 280.7 10.9 

31 67.8 71.1 74.4 81.0 3.3 85.2 89.7 94.2 103.2 4.5 244.8 255.9 267.0 289.2 11.1 

32 69.7 73.1 76.5 83.3 3.4 87.3 92.0 96.7 106.1 4.7 251.7 263.1 274.5 297.3 11.4 

33 71.5 75.0 78.5 85.5 3.5 88.7 93.7 98.7 108.7 5.0 258.5 270.1 281.7 304.9 11.6 

34 73.6 77.1 80.6 87.6 3.5 90.4 95.6 100.8 111.2 5.2 264.8 276.6 288.4 312.0 11.8 

35 75.2 78.8 82.4 89.6 3.6 91.5 97.0 102.5 113.5 5.5 270.3 282.4 294.5 318.7 12.1 

36 77.1 80.7 84.3 91.5 3.6 92.4 98.2 104.0 115.6 5.8 275.6 287.9 300.2 324.8 12.3 

37 78.4 82.1 85.8 93.2 3.7 93.1 99.2 105.3 117.5 6.1 280.4 292.9 305.4 330.4 12.5 

38 79.6 83.4 87.2 94.8 3.8 93.5 99.9 106.3 119.1 6.4 284.3 297.1 309.9 335.5 12.8 

39 81.0 84.8 88.6 96.2 3.8 93.8 100.5 107.2 120.6 6.7 288.0 301.0 314.0 340.0 13.0 

40 81.9 85.8 89.7 97.5 3.9 93.9 100.9 107.9 121.9 7.0 291.2 304.4 317.6 344.0 13.2 

41 83.1 87.0 90.9 98.7 3.9 93.4 100.8 108.2 123.0 7.4 293.4 306.9 320.4 347.4 13.5 

42 83.7 87.7 91.7 99.7 4.0 93.0 100.7 108.4 123.8 7.7 295.5 309.2 322.9 350.3 13.7 
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Table Four: Rates of walking according to lesion of myelomeningocele (data from Williams 

et al, 1999)98 

 

Level of lesion 

(number of 

participants) 

Walked (%) Average Age 

walked 

Number who 

stopped 

walking (age) 

Never walked 

(%) 

Thoracic (35) 7 (20%) 4yr 6mo 3 (6yr 9mo) 28 (80%) 

High Lumbar 

(10) 

5 (50%) 5 yr 2mo 3 (6yr 11mo) 5 (50%) 

Mid lumbar (15) 9 (60%) 5 yr 0mo 3 (7yr 0mo) 6 (40%) 

Low Lumbar 

(45) 

38 (84%) 3yr 10mo 5 (9yr 1mo) 7 (16%) 

Sacral (68) 68 (100%) 2 yr 2mo 0 0 (0%) 
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FIGURE LEGENDS 
 
 
Figure 1: Flowchart outlining the rates of other abnormalities and developmental outcome in 
a) ventriculomegaly 10-15mm and b) ventriculomegaly >15mm 
 
 
Figure 2: Flowchart outlining the rates of other abnormalities and developmental outcome in 
agenesis of the corpus callosum 
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