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Abstract: Abnormal heart rhythms, also known as arrhythmias, can be life-threatening. AFIB and
AFL are examples of arrhythmia that affect a growing number of patients. This paper describes
a method that can support clinicians during arrhythmia diagnosis. We propose a deep learning
algorithm to discriminate AFIB, AFL, and NSR RR interval signals. The algorithm was designed with
data from 4051 subjects. With 10-fold cross-validation, the algorithm achieved the following results:
ACC = 99.98%, SEN = 100.00%, and SPE = 99.94%. These results are significant because they show
that it is possible to automate arrhythmia detection in RR interval signals. Such a detection method
makes economic sense because RR interval signals are cost-effective to measure, communicate, and
process. Having such a cost-effective solution might lead to widespread long-term monitoring, which
can help detecting arrhythmia earlier. Detection can lead to treatment, which improves outcomes
for patients.

Keywords: arrhythmia detection; heart rate; RR interval; atrial fibrillation; atrial flutter; deep
learning; residual neural network; detrending

1. Introduction

In 2015, the United Nations reported that the world population is, on average, aging [1].
It is predicted that the number of people older than 60 years will grow from 901 million to
1.4 billion by 2030 and will have doubled to 2.1 billion by 2050 [1]. As humans age, the car-
diovascular system weakens, and it becomes more susceptible to disease [2]. Moreover, the
arteries stiffen, and the left ventricular muscle wall thickens [3], reducing muscle compliance
and affecting function adversely. The accompanying structural and electrical changes in the
heart increase the risk of arrhythmia development [3]. As such, arrhythmias are abnormal
rhythms of the heartbeat. These abnormal rhythms can be harmless, but some of them are
critical. The most frequent type of arrhythmia is AFIB, which is manifested by uncoordinated
atrial activation due to the development of a critical number of ectopic foci that initiate
electrical stimuli independent of the SAN [4]. The AVN receives electrical stimuli from the
atria at irregular intervals, conducting these stimuli to the ventricles, which results in an
irregular QRS complex and pulse. Re-entry occurs when an impulse fails to die out after
normal activation of the heart and continues to re-excite the heart. The greater the number of
ectopic foci, the higher the risk of reentry, which underpins the progression from paroxysms
of AFIB, to chronic AFIB [5,6]. The ECG rhythm of AFIB is chaotic and fast, at 150–220 beats
per minute. Characteristically, AFIB has an abnormal RR interval, irregular rapid ventricular
contraction, and the absence of a P wave in ECG. AFL occurs in a macroreentrant circuit and
has a typical underlying electrophysiologic mechanism [7]. The electrical circuit in the atrium
is circular and conducts rapidly leading to an atrial contraction rate of between 240 and 360
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beats per minute, which gives a replicating, sawtooth waveform on ECG monitoring called
a flutter wave. The AVN may transmit impulses to the ventricles regularly or irregularly,
meaning that the pulse in AFL can be regular or irregular [8]. There is often significant
overlap between AFIB and AFL [5,6]. Both conditions have an impact on morbidity and
mortality independent of one another.

Currently, ECG measurements constitute the standard way for collecting evidence,
which underpins the diagnosis of AFIB or AFL. The ECG signals could be measured as
part of a screening regime that is aimed at stroke survivors, or they could be measured
for symptom investigation, such as to increase our knowledge about palpitations. As
such, ECG documents the electrical activity of the human heart by recording the heart
polarization vector [9]. The signal is captured by placing electrodes on the human body
via standardized measurement protocols. In general, more electrodes will result in a
higher signal-to-noise ratio, which usually results in a better signal quality [10]. A good
ECG signal quality is needed to analyze cardiac activity [11]. In order to extract disease
relevant information, it is necessary to detect unambiguous signal features that describe
the heartbeat. These features are the P wave, QRS complex, and T wave [12]. It is difficult
to differentiate between AFIB and AFL because ECG features are often similar. Unexpected
artifacts and faint manifestation of symptoms might lead to misclassifying the rhythm or
overlooking important sections. That leads to intra- and inter-observer variability. CAD
may be a feasible technique to reduce that variability and to limit tedious signal analysis. It
might also improve preselecting signal sequences for human interpretation. Furthermore,
acquisition and analysis of ECG signals requires significant data storage capacity. The
ability to differentiate between AFIB and AFL using RR interval analysis will allow us
to record longer signal traces for automated rhythm analysis. This will increase both the
detection rate and diagnosis accuracy.

With this paper, we present a technical solution that automates AFIB and AFL detec-
tion based on RR intervals. That technical solution takes the form of a signal processing
system, which uses AI for medical decision support. The system was designed and tested
with benchmark data, and the results were established according to the rules of 10-fold
cross-validation. During preprocessing, we ensured that training and testing data came
from mutually exclusive patient groups. This ensures fully independent test sets that have
not been seen during the learning phase. Hence, avoiding bias that might be introduced
by training and testing the classifier with data from the same patient. The classification
was done with a ResNet DL algorithm. This algorithm could differentiate AFIB, AFL,
and NSR with an ACC of 97.96% and a SEN of 97.58%, as well as SPE of 98.50%. We
have also established the classification performance for arrhythmia detection. For this
arrhythmia/non-arrhythmia problem, the system achieved ACC = 99.98%, SEN = 100.00%,
and SPE = 99.94%. Having a sound technical solution for the AFIB and AFL detection
problem might lay the foundation for healthcare technology that improves outcomes
for patients through longer observation duration and reduced intra- and inter-observer
variability. We envision medical devices that can deliver real-time medical diagnosis by
combining internet of medical things technology with advanced AI algorithms, such as the
arrhythmia detection system proposed in this paper.

To support our thesis about the efficacy of the proposed arrhythmia detection method,
we have structured the reminder of this manuscript as follows. The next section provides
some medical background on arrhythmias. We discuss the disease symptoms and the
standard measurements that are used for diagnosis. This information is relevant to appre-
ciate the methods introduced in Section 2. In that technical part, we focus on the thought
processes that gave rise to the processing structure used to train and test the deep learning
network. Section 3 provides the performance measurement results for the arrhythmia
detection system. These results do not stand in isolation, they were achieved by pushing
the envelope of our current understanding of arrhythmia detection with physiological
signals. The Discussion section highlights this point by introducing relevant research work
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and comparing our findings with the established knowledge. Section 5 concludes the paper
with final thoughts about the work and its relevance for the medical domain.

2. Methods

This section outlines the methods used to support our claim that automated detection
of arrhythmias in RR interval signals is possible. The methods were employed to construct
a signal processing system that trains and tests a ResNet deep learning algorithm with
benchmark data. Augmenting [13] and balancing [14] the dataset were two goals that
guided the design strategy. Balancing a dataset means creating the same amount of training
data for each class. The benchmark data for AFL had the least number of beats; hence, we
employed a scrambling technique to augment the dataset. Round robin windowing was
used as an augmentation technique to increase the amount of data for all signal classes. In
a final step, puncturing was used to balance the dataset.

Figure 1 shows an overview block diagram of the data processing system. The pro-
cessing starts with mapping the available ECG datasets from the benchmark database
into three distinct classes, namely NSR, AFL, and AFIB. Subsequently, the beat-to-beat
interval was extracted to form the RR interval signal. These beat-to-beat interval signals
were processed such that they can be used to train and test the ResNet model. The model
was evaluated with performance measures derived from a confusion matrix and ROC. The
following sections introduce both data and processing steps in more detail.

ECG data de-noised

NSR filter AFIB filter AFL filter

RR
ECG

QRS detection QRS detectionQRS detection

Partitioning PartitioningPartitioning

Patient scrambling

RR_DT
RRDetrending DetrendingDetrending

data vector

RR_DTRound
robin win-
dowing

Round
robin win-
dowing

Round
robin win-
dowing

Puncturing

RESNET 10 fold cross-validation

Result analysis with: Confusion-matrix, ACC, SPE, SEN, and ROC

AFIB AFLNSR

Figure 1. Block diagram of the study setup.

2.1. Electrocardiogram Data

Figure 1 shows one database that sources the benchmark data to train and test the
ResNet algorithm. The ‘ECG data de-noised’ (Web page: https://figshare.com/collections/
ChapmanECG/4560497/2; accessed on 7 August 2021) database contained 12-lead ECG
signals from 10,646 patients. A total of 4690 of the study participants were female, and

https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
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the remaining 5956 were male. The following list provides the most prevalent age groups
together with the relative number of participants in percent:

• 51–60 years representing 19.82%;
• 61–70 years representing 24.38%;
• 71–80 years representing 16.90%.

From each patient, a 10 s ECG signal was captured with a sampling frequency of
500 Hz. The signals were measured at Chapman University and Shaoxing People’s Hospital
(Shaoxing Hospital Zhejiang University School of Medicine) [15]. Each signal was labeled
by a cardiologist to indicate one of 11 common rhythms. The labels came in the form of a
table that links the disease label and ECG signal file name. Based on that table, we selected
all ECG signal files labeled as NSR, AFIB, and AFL. The database contained 1826 NSR,
445 AFL, and 1780 AFIB signal files. Table 1 shows the number of patients for each signal
class and the accumulated (over the individual patient signals within a class) ECG signal
duration. As such, the table entries for ECG duration reflect the fact that all ECG signals
had a length of 10 s. The ECG signal from each patient forms one data block. One such
ECG data block contains an array of 12× 5000 samples, where 12 indicates the number
of leads and 5000 is the number of samples captured within 10 s. The term data block is
used, in the description of subsequent processing steps, to denote the data from one patient.
Figure 2 depicts example signals for AFIB, AFL, and NSR. There are three distinct signals
for each signal class. The first of these signals depicts the 10 s ECG signal.

2.2. QRS Detection

The QRS detection step extracts the beat-to-beat interval from the ECG data blocks. As
such, QRS is the main structural element in ECG. It is caused by ventricular depolarization
that occurs when the heart muscle contracts during the heartbeat. Within the QRS complex,
the R wave marks the peak, and the time location of that peak represents the time location
of the heartbeat. One RR interval is the time from one R peak to the next. We have used the
well-known ecg-kit, a MATLAB toolbox for ECG processing [16], for QRS detection. Within
the ecg-kit framework, the wavedetect algorithm was used [11]. The resulting RR interval
sequences were saved, such that the block structure was maintained. Table 1 shows the
number of RR intervals for each signal class. As such, this step constitutes a significant
data reduction. The following example illustrates the data reduction. There were 1826 NSR
ECG data blocks, which contained 109,560,000 samples. After QRS detection, there were
only 33,976 RR intervals. Hence, the compression ratio achieved by the QRS detection step
was 3224.6291.

Table 1. Data properties for the three signal classes. The ‘ECG Duration (s)’ column provides the time duration of all ECG
signal blocks for each individual class. After that, the two columns to the right provide the number of RR intervals and the
number of RR_DT samples, respectively. The last two columns on the right provide the number of blocks and number of
patients for each signal class.

Class

Property
ECG Duration (s) RR Intervals RR_DT Samples Number of Blocks Number of Patients

NSR 18,260 33,976 33,976 1826 1826

AFIB 17,800 25,995 25,995 1780 1780

AFL 4450 7536 7536 445 445

Total 40,510 67,507 67,507 4051 4051

Figure 2 shows the extracted RR intervals for the example signals. The y-axis scale
indicates the RR interval duration, and the x-axis scale indicates the RR interval location,
i.e., the time location where the RR interval ends. Based on visual inspection, it seems that
the QRS detection algorithm has inserted an additional beat for the AFIB example signal.
We have highlighted the RR interval with a black circle in Figure 2.
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Figure 2. Example plots from AFIB, AFL, and NSR signal classes. The ECG signal was measured
with the aVL lead. The RR intervals, plotted as RR intervals over time, were derived from the ECG
via QRS detection. The detrended RR intervals were plotted as RR_DT over time. Visual inspection
indicates that the AFIB RR (s) signal shows an additional beat, which has been encircled with a
dashed ellipse.

2.3. Data Partitioning and Patient Scrambling

Ten-fold cross-validation involves dividing the available data into 10 parts of approxi-
mately equal size [17]. The parts were created by splitting the data along RR interval blocks.
This strategy is equivalent to generating the parts along subjects. In other words, the data
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from one specific patient can only be found in one part. Table 2 documents this activity by
reporting the number of RR intervals for NSR, AFIB, and AFL.

Table 2. The number of RR intervals per signal class in each part. AFLSC denotes the scrambled
AFL dataset.

Class
Part

1 2 3 4 5 6 7 8 9 10

NSR 2015 1980 1980 2029 2020 1973 1992 2017 1975 1975

AFIB 2651 2667 2584 2566 2633 2649 2594 2512 2604 2535

AFL 742 759 786 784 762 766 727 702 721 787

AFLSC 2226 2277 2358 2352 2286 2298 2181 2106 2163 2361

In all parts, the number of AFL RR intervals is more than three times lower when
compared to AFIB. To adjust that imbalance, we have used patient scrambling to augment
the AFL data. The patient scrambling concept is based on the fact that the part generation
algorithm uses the order in which the RR interval block appears in the dataset to establish
the part data. This order impacts on the data vectors, which were created through round
robin windowing (see Section 2.5), because the window length is longer than the amount
of RR intervals in any particular data block. Each data vector contains 100 detrended RR
intervals from different patients, as outlined in the next section. Hence, a different sequence
of patients in the part will result in different vectors after the windowing. In the scrambling
step, we use this property to generate more AFL data. To be specific, we generated three
permutations of the sequence in which the individual patient data appeared in the training
and testing datasets for each part. AFLSC was the result of these efforts. Table 2 shows that
the number of RR intervals for AFLSC is exactly three times greater than the number of
AFL RR intervals for the same part.

2.4. Detrending

Detrending removes the DC offset from RR interval signals. Applying that processing
method benefits the deep learning step by reducing both required network complexity
and training time [18]. For our study, we have used the detrending and low-pass filter
proposed by Fisher et al. [19]. The filter combination is based on an Ornstein–Uhlenbeck
third-order Gaussian process, which acts on the RR interval signal directly [20,21]. After
detrending, the datasets contain RR_DT samples. Table 1 shows the number of RR_DT
samples. As such, the detrending step does not change the amount of data, hence the
number of RR_DT samples is the same as the RR intervals. Figure 2 shows the detrended
version of the RR (s) signal for each signal class. The signal graphs show that the DC bias
is significantly reduced.

2.5. Round Robin Windowing and Puncturing

Round robin windowing augments the data by generating one data vector with
100 elements for each RR_DT sample. That method increases the data volume 100-fold.
The vectors were generated by subjecting the class specific data for each part to a window
length of 100. This window was slid over the RR_DT signal one sample at a time. Round
robin refers to the fact that the first 100 RR_DT samples for each dataset were copied at the
end, before applying the window. That extension allows us to create one data vector for
each RR_DT sample.

After windowing, we have used puncturing to adjust the data size for both AFIB
and AFLSC datasets. The puncturing algorithm removes equidistant data vectors. This
technique ensures that the number of training data for each of the three classes in a part
is equal. Table 3 shows that NSR has the lowest number of data vectors in any given part
when compared with AFIB and AFLSC. Therefore, we have used the number of NSR data
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vectors as a target for puncturing AFIB and AFLSC. To be specific, the puncturing algorithm
will reduce the number of data vectors such that it is the same as the number of NSR data
vectors in the same part. For example, the number of NSR data vectors in Part 1 is 2015.
After puncturing, the number of AFLP and AFIBP is equal to the number of NSR data
vectors. The data vectors NSR, AFLP, and AFIBP were used to train the network. The data
vectors AFLSC, NSR, and AFIB were used to test the network.

Table 3. The number of data vectors per signal class in each part. AFLP and AFIBP denote the
punctured datasets for NSR and AFIB, respectively.

Class
Part

1 2 3 4 5 6 7 8 9 10

AFIB 2651 2667 2584 2566 2633 2649 2594 2512 2604 2535

AFLSC 2226 2277 2358 2352 2286 2298 2181 2106 2163 2361

NSR 2015 1980 1980 2029 2020 1973 1992 2017 1975 1975

AFLP 2015 1980 1980 2029 2020 1973 1992 2017 1975 1975

AFIBP 2015 1980 1980 2029 2020 1973 1992 2017 1975 1975

2.6. ResNet 10-Fold and Cross-Validation

Overfitting is the main problem for physiological signal classification with deep
learning. The term refers to the fact that the deep learning network can memorize the
signals itself rather than the signal properties that indicate disease symptoms. In practice,
overfitting occurs when the model classifies training data correctly but fails to do so with
testing data. There are a range of techniques to avoid or at least reduce overfitting. Model
selection plays an important role in that process. For this study, we followed the findings
by Fawaz et al. [22]. In their review on deep learning for time series classification, they
found that ResNet outperforms all the other tested deep learning models. Figure 3 shows
the data flow structure used to establish the ResNet model. The data flow diagram is
composed from standard components that have a direct correspondence in the Python
API Keras [23] for the Deep learning framework tensorflow [24]. The data flow structure
shows three shortcut connections that allow information to skip the processing block. Such
a structure is known as residual block. This structure can be used to address another
limitation of deep learning models, namely the vanishing/exploding gradient problem
[25]. From a practical perspective, this problem occurs when more network layers result in
lower training accuracy, and therefore, this problem category is distinct from the general
overfitting problem.

Once the network is selected, the hyperparameters need tuning. We have used a
trial-and-error method to narrow down the optimal parameters. To be specific, we adopted
an interactive process, which was governed by a growing understanding of the interplay
between signal processing and the classification model.
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Figure 3. ResNet structure used for training and testing: (a) Network super structure; (b) Block structure.

Table 4 provides the number of data vectors used to train and test the ResNet. In a final
step, these data vectors were used to form 10-folds that contain train and test sets. Table 3
provides the parameters for these datasets. They were arranged by selecting one part for
testing and using the data vectors in the remaining parts for training. That process was
repeated until every part was used for testing. The fact that the number of class-specific
data vectors is equal within each part (see Table 4) leads to perfectly balanced training
datasets. That means for any given Test part, the number of data vectors for NSR, AFIB,
and AFL is the same. To document the data arrangement process, Column 1 in Table 4
indicates the fold and the remaining columns on the right indicate the number of training
and testing data vectors. For example, for fold 1, part 1 was used for testing, and hence,
parts 2 to 10 were used for training. Based on that setup, the amount of training and testing
data follows from the number of class specific data vectors in each part, as provided in
Table 4. For fold 1, the network was trained with all the data vectors (53,823) from AFLSC
(17,941), AFLP (17,941), and AFIBP (17,941). The network was tested with all data vectors
in part 1 (8275): AFLSC (2226), NSR (2015), and AFIB (2651).
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Table 4. The number of data vectors used for training and testing during 10-fold cross-validation.

Fold
Training Data Testing Data

NSR AFIB AFL Total NSR AFIB AFL Total

1 17,941 17,941 17,941 53,823 2015 2651 2226 6892

2 17,976 17,976 17,976 53,928 1980 2667 2277 6924

3 17,976 17,976 17,976 53,928 1980 2584 2358 6922

4 17,927 17,927 17,927 53,781 2029 2566 2352 6947

5 17,936 17,936 17,936 53,808 2020 2633 2286 6939

6 17,983 17,983 17,983 53,949 1973 2649 2298 6920

7 17,964 17,964 17,964 53,892 1992 2594 2181 6767

8 17,939 17,939 17,939 53,817 2017 2512 2106 6635

9 17,981 17,981 17,981 53,943 1975 2604 2163 6742

10 17,981 17,981 17,981 53,943 1975 2535 2361 6871

2.7. Result Analysis Methods

The result analysis starts with establishing the confusion matrix based on the valida-
tion results. Table 5 defines the confusion matrix in terms of the number of beats with a
true and a predicted label: Npredicted label, true label. The predicted label was established with
the ResNet classification model. Combining the 3 predicted and 3 true labels results in a
confusion matrix with 3× 3 = 9 beat labels. Table 5 shows the arrangement of these beat
labels in the confusion matrix.

Table 5. The confusion matrix for AFIB, AFL, and NSR.

Predicted Label

AFIB AFL NSR

True Label

AFIB NAFIB, AFIB NAFL, AFIB NNSR, AFIB

AFL NAFIB, AFL NAFL, AFL NNSR, AFL

NSR NAFIB, NSR NAFL, NSR NNSR, NSR

Both AFIB and AFL are arrhythmias. Therefore, it is reasonable to combine AFIB and
AFL beats to form an arrhythmia class. The NSR beats form a non-arrhythmia class. The
confusion matrix in Table 6 reflects these considerations.

Table 6. The confusion matrix for arrhythmia and non-arrhythmia.

Predicted Label

Arrhythmia Non-Arrhythmia

True Label
Arrhythmia NAFIB, AFIB + NAFL, AFIB NNSR, AFIB

+NAFIB, AFL + NAFL, AFL +NNSR, AFL

Non-Arrhythmia NAFIB, NSR + NAFL, NSR NNSR, NSR
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Based on the confusion matrix (cm), we define TP, TN, FP, and FN for a specific class
(cl) as follows:

TPcl = Ncl,cl (1)

TNcl =

(
∑

i∈Class set
Ni,i

)
− Ncl,cl (2)

FPcl =

(
∑

i∈Class set
Ni,cl

)
− Ncl,cl (3)

FNcl =

(
∑

i∈Class set
Ncl,i

)
− Ncl,cl (4)

where cl ∈ {Class set} and Class set is either {AFIB, AFL, NSR} or {Arrhythmia,
Non-arrhythmia}.

These definitions were used to establish the performance measures of ACC, SPE, and
SEN for the individual class:

ACCcl =
TPcl + TNcl

TPcl + TNcl + FPcl + FNcl
(5)

SENcl =
TPcl

TPcl + FNcl
(6)

SPEcl =
TNcl

TNcl + FPcl
(7)

Ten-fold cross-validation results in 10 individual performance measures. These indi-
vidual performance measures were combined to establish the overall performance. For
the confusion matrix, that combination took the form of accumulating the matrix ele-
ments at the same position. The confusion matrix in Table 7 reflects these considerations.
Equations (1)–(7) can be used to determine the overall performance measures.

Table 7. The average cross-validation confusion matrix. ∑
〈Test Fold〉

indicates the sum over all Test Folds.

Predicted Label

AFIB AFL NSR

True Label

AFIB ∑
〈Test Fold〉

{
NAFIB, AFIB

}
∑

〈Test Fold〉

{
NAFL, AFIB

}
∑

〈Test Fold〉

{
NNSR, AFIB

}
AFL ∑

〈Test Fold〉

{
NAFIB, AFL

}
∑

〈Test Fold〉

{
NAFL, AFL

}
∑

〈Test Fold〉

{
NNSR, AFL

}
NSR ∑

〈Test Fold〉

{
NAFIB, NSR

}
∑

〈Test Fold〉

{
NAFL, NSR

}
∑

〈Test Fold〉

{
NNSR, NSR

}
A ROC curve illustrates how the threshold level influences the diagnostic ability

of a binary classifier [26]. The area under the ROC curve indicates the general perfor-
mance of the classifier, i.e., an area closer to 1 indicates a better classification performance.
Equations (6) and (7) were used to calculate the class-specific True Positive Rate and False
Positive Rate, respectively. The micro-average is the mean of the individual results for the
three classes. The macro-average is calculated by aggregating all False Positive Rates (Web
page: https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html; ac-
cessed on 7 August 2021).

3. Results

The results presented in this section document the classification performance of the
ResNet model. To establish that performance, 10-fold cross-validation was used to train

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
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and test the model. Table 4 details the properties of the training and testing data. As such,
the table shows 10 Test Folds requiring 10 separate training and testing iterations. The
training was done in 50 epochs with a batch size of 16. Categorical cross-entropy [27] was
used as a loss function, and Adam [28] was used as an optimizer. For each training and
testing iteration, the model with the highest testing accuracy was used to establish the
confusion matrix with the methods discussed in Section 2.7. The confusion matrix results
are detailed in Table 5. Having established the individual confusion matrices, we are in
a position to determine the overall confusion matrix, as defined in Table 7. Equations (
5)–(7) were used to calculate ACCcl , SENcl , and SPEcl , where cl ∈ {AFIB, AFL, NSR}.
Calculating the performance measures for each cl results in a 3× 3 matrix for each fold.

Table 8 details the classification quality measures ACC, SPE, and SEN, as well as
the confusion matrix for the 10 individual folds and overall folds. As such, all the av-
erage performance measures, detailed in the last Row of Table 8, are above 95%. This
indicates how well the proposed ResNet model was able to classify AFL, AFIB, and NSR
RR interval signals.

Table 8. Analysis results for the individual and all folds.

Fold cl ACCcl (%) SENcl (%) SPEcl (%) Confusion Matrix

1
AFIB 97.16 92.72 99.27 2064 162 0
AFL 97.16 98.72 96.18 34 2617 0
NSR 100.00 100.00 100.00 0 0 2015

2
AFIB 99.87 99.60 100.00 2268 9 0
AFL 99.87 100.00 99.79 0 2667 0
NSR 100.00 100.00 100.00 0 0 1980

3
AFIB 95.81 87.70 100.00 2068 290 0
AFL 95.81 100.00 93.31 0 2584 0
NSR 100.00 100.00 100.00 0 0 1980

4
AFIB 96.95 91.11 99.93 2143 209 0
AFL 96.95 99.88 95.23 3 2563 0
NSR 100.00 100.00 100.00 0 0 2029

5
AFIB 98.83 96.98 99.74 2217 69 0
AFL 98.83 99.54 98.40 12 2621 0
NSR 100.00 100.00 100.00 0 0 2020

6
AFIB 100.00 100.00 100.00 2298 0 0
AFL 99.96 100.00 99.93 0 2649 0
NSR 99.96 99.85 100.00 0 3 1970

7
AFIB 96.81 90.10 100.00 1965 216 0
AFL 96.81 100.00 94.82 0 2594 0
NSR 100.00 100.00 100.00 0 0 1992

8
AFIB 94.32 83.05 99.56 1749 357 0
AFL 94.32 99.20 91.34 20 2492 0
NSR 100.00 100.00 100.00 0 0 2017

9
AFIB 98.28 95.42 99.63 2064 99 0
AFL 98.15 99.35 97.39 17 2587 0
NSR 99.86 99.54 100.00 0 9 1966

10
AFIB 100.00 100.00 100.00 2361 0 0
AFL 100.00 100.00 100.00 0 2535 0
NSR 100.00 100.00 100.00 0 0 1975

All
AFIB 97.82 93.76 99.81 21,197 1411 0
AFL 97.80 99.67 96.66 86 25,909 0
NSR 99.98 99.94 100.00 0 12 19,944

From a medical perspective, the binary problem of Arrhythmia vs. Non-Arrhythmia
is also important. Therefore, we have used the definition provided in Table 6 to refine the
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All Test Fold confusion matrix, detailed in the last row of Table 8. With that step, we have
generated the two-class results, as shown in Table 9.

Table 9. Overall classification, where cl = Arrhythmia.

ACCcl (%) SENcl (%) SPEcl (%) Confusion Matrix

99.98 99.94 100.00 48,603 0
12 19,944

The ROC curve shown in Figure 4 provides a graphical representation of the classifi-
cation results. The large area under the curve is a direct result of the good classification
performance indicated by the performance measures stated in Tables 8 and 9.
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Figure 4. ROC curve based on the results from all 10 folds.

Figure 4. ROC curve based on the results from all 10 folds.

4. Discussion

The current study investigates the problem of classifying AFIB, AFL, and NSR RR
interval signals. This problem has been addressed in numerous studies, which extracted
information from ECG signals. The morphology of ECG signals has dominant structural
elements, such as the QRS complex, which aids the classification efforts. Human experts
use distinct changes in ECG morphology for arrhythmia diagnosis. These structures are
stripped away during QRS detection, which is used to extract the RR interval sequence.
The RR interval reflects only the rhythm with which the heart beats. That rhythm is distinct
for NSR and AFIB. Therefore, arrhythmia research based on RR interval sequences has
focused on differentiating AFIB and NSR. Only Ivanovic et al. [29] address the three-class
problem of AFIB, AFL, and NSR. Direct competition with this study is difficult because
the authors have used a private dataset. To be specific, we could not apply the ResNet
algorithm to their dataset, and therefore, we can only compare the performance results
achieved with different datasets. A numerical comparison reveals that the LSTM-based
detection method, proposed by Ivanovic et al., has a ≈10% lower accuracy compared to
our ResNet approach. Table 10 provides an overview of arrhythmia detection studies based
on ECG and RR interval signals.
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Table 10. Selected arrhythmia detection studies using RR intervals and ECG. pDB used were: MIT-BIH Atrial Fibrillation
Database (afdb), MIT-BIH Arrhythmia Database (mitdb), MIT-BIH Malignant Ventricular Arrhythmia Database (vfdb),
Creighton University Ventricular Tachyarrhythmia Database (cudb), MIT-BIH Normal Sinus Rhythm Database (nsrdb),
MIT-BIH Long Term Database (ltdb), European ST-T Database (edb), and ecgdb. Hospital data come from non-publicly
accessible databases.

Author Year Method
Data Performance

Type DB Rhythm ACC SPE SEN

Current Detrending, ResNet RR ecgdb AFIB AFL NSR 99.98 100.00 99.94

Faust and Acharya 2021 [30] Detrending, ResNet RR ecgdb
SVT, ST, SB,
AFIB, AFL,
NSR

98.55 94.30 99.40

Ivanovic et al. 2019 [29] CNN, LSTM RR Hospital NSR, AFIB
AFL 88 87.09

Fujita et al. 2019 [31] CNN with
normalization ECG afdb, mitdb,

vfdb
AFIB, AFL,
VFIB, NSR 98.45 99.87 99.27

Faust et al. 2018 [32] LSTM RR afdb AFIB NSR 98.39 98.32 98.51

Acharya et al. 2017 [33] CNN with Z-score ECG afdb, mitdb,
vfdb

AFIB, AFL,
VFIB, NSR 92.50 98.09 93.13

Henzel et al. 2017 [34]
Statistical features
with generalized
Linear Model

RR afdb AFIB NSR 93 95 90

Desai et al. 2016 [35]

RQA with
DecisionTree,
RandomForest,
RotationForest

ECG afdb, mitdb,
vfdb

AFIB, AFL,
VFIB, NSR 98.37

Acharya et al. 2016 [36]

Thirteen nonlinear
features with
ANOVA with KNN
and DT

ECG afdb, mitdb,
vfdb

AFIB, AFL,
VFIB, NSR 97.78 99.76 98.82

Hamed et al. 2016 [37] DWT, PCA and SVM ECG afdb AFIB, AFL,
NSR 98.43 96.89 98.96

Xia et al. 2018 [38] STFT/SWT with
CNN ECG afdb AFIB 98.63 98.79 97.87

Petrenas et al. 2015 [39] Median filter with
threshold RR nsrdb, afdb AFIB NSR 98.3 97.1

Zhou et al. 2014 [40]
Median filter &
Shannon entropy
with threshold

RR ltafdb, afdb,
nsrdb AFIB NSR 96.05 95.07 96.72

Muthuchudar et al. 2013 [41] UWT NN ECG afdb AFIB, VFIB,
NSR 96

Yuan et al. 2016 [42]
Unsupervised
autoencoder NN
Softmax regression

ECG afdb, nsrdb,
ltdb, hospital AFIB 98.18 98.22 98.11

Dinakarrao et al. 2018 [43]
Daubechies-6 with
counters Anomaly
detector

ECG mitdb AFIB, VFIB 99.19 98.25 78.70

Salem et al. 2018 [44] Spectogram with
CNN ECG afdb nsrdb

vfdb edb
AFIB, AFL
VFIB NSR 97.23

In general, ECG-based arrhythmia detection achieves better accuracy values when
compared to RR interval-based detection. We believe that this holds true, even though a
direct comparison is not possible because different datasets were used to establish the per-
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formance results. ECG holds all the information about the electrical activity of the human
heart. As such, the RR interval is part of this information. Hence, during the process of
extracting the RR intervals, we lose all information contained in the morphology of the
ECG. However, when we compare the accuracy performance reported by Fujita et al. [31]
with the ResNet accuracy, we find that our performance is just 0.49% lower. The small
performance benefit might not justify the increased measurement effort and significantly
higher data rate of ECG signals when compared to RR interval signals. The increased
measurement effort results in the fact that ECG monitors require expert instrumentation,
i.e., the sensors must be attached by a qualified nurse. In contrast, RR intervals can be
measured with sensors that were placed by patients [45]. State-of-the-art ECG sensors de-
liver 250 samples per second. In contrast, the heart beats around once a second, producing
about one RR interval value per second. The fact that RR interval signals have a 250 times
lower data rate when compared to ECG signals leads to significant cost savings when it
comes to communication, storage, and processing [46].

RR interval-based arrhythmia detection becomes even more important when we move
away from the electrical activity of the human heart and consider RR intervals extracted from
pulse signals [47]. Pulse sensors are less expensive and more readily available when compared
to RR interval sensors that measure the electrical activity of the human heart [48]. Therefore,
pulse sensors can be used in wearable devices, such as smart watches. Coupled with the
low data rate of RR interval signals, wearable technology may facilitate low barrier and
low-cost arrhythmia detection systems. Such systems are governed by the laws of big data,
where individual beat classifications become less significant when compared to accumulated
evidence. Furthermore, big data helps to diversify and to improve classification results.
This may lead to a better understanding and detection of early-stage arrhythmia. Fuzzy
logic might play a role to support the analysis task by mitigating uncertainties and reducing
inaccuracies [49–51].

4.1. Limitations

The ECG signals were measured from a large number of patients. However, the
signal duration is only 10 s. Longer data sequences are needed to validate and potentially
redesign arrhythmia detection functionality. Associated with the available signal source
is another limitation of the study, namely the RR intervals were extracted from ECG. The
process of establishing the RR intervals is likely to be different in a practical setting because
of the economic cost and the infrastructure requirements of ECG recording. To be specific,
cost-effective heart rate monitors, such as sensors worn on chest and wrist, use different
methods to establish the RR intervals. Hence, testing out the data acquisition is required
before our results can be used to create practical systems that improve clinical practice.

The suspected surplus RR interval shown in Figure 2 provides a poignant reminder
that errors can occur during physiological signal processing. QRS detection is no exception
to that rule, and therefore, RR interval signals may contain errors. Correcting these errors
through visual inspection by a human expert is impractical, and it would distort the
signal interpretation results. Impracticality follows directly from the large amounts of data
that would need to be verified. That verification process would significantly diminish
the feasibility of any problem solution based on RR interval signals. Hence, a practical
arrhythmia detection system must be able to cope with errors in the RR interval signals,
and the ability to do so should be documented during the design time. Therefore, it would
be counterproductive to remove these errors from the training and testing data. Hence, we
require that a signal interpretation method, such as the proposed arrhythmia detector, must
deliver robust results even in the presence of error. This robustness can only be ensured by
keeping the error in the RR interval signals.

4.2. Future Work

In this paper, we showed that a ResNet model can discriminate between AFL, AFIB,
and NSR RR interval signals. In the future, we need to determine how the ResNet model
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performs in a practical medical decision support scenario. Such a study could provide
deeper insight into the role of benchmark data for arrhythmia detection. However, more
and longer measurement data are needed to address the limitations outlined in the previous
section. Fuzzy logic [52,53] for QRS detection might help to reduce errors and thereby
improve the practical relevance of the proposed arrhythmia detection method.

5. Conclusions

With this study we showed that the presence of AFIB and AFL manifests itself in
RR interval signals. The medical need for this study comes from the fact that arrhythmia
increases the risk of morbidity and mortality due to AFIB-related complications, such as
stroke. Currently, most arrhythmias are detected based on manual interpretation of ECG
signals. This process is time-consuming and expensive, which limits both the number of
observations and the observation duration. To detect more arrhythmias, it is necessary
to address both shortcomings with a cost-effective solution. We put forward that RR
interval measurements could underpin such a cost-effective detection solution because
these signals require only a simple measurement setup and have a low data rate. Hence,
detection systems based on RR intervals have the potential to be significantly less expensive
when compared to ECG-based arrhythmia detection. However, computer support for RR
interval signal-based arrhythmia detection is mandatory, whereas computer support for
ECG-based arrhythmia detection is optional, but it is desired to reduce the cost.

Our ResNet deep learning algorithm can discriminate AFIB, AFL, and NSR with
ACC = 99.98%, SEN = 100.00%, SPE = 99.94%. These results were obtained with 10-fold
cross-validation. The fact that the performance was similar over all folds supports our
claim that the developed algorithm is robust. This robustness is important when we transit
from the theoretical setting in the data science lab to practical applications in a clinical
setting. In such a clinical setting, the proposed algorithm becomes an adjunct tool that can
support a cardiologist during the diagnostic procedure. We envision a two-stage diagnostic
process where machine algorithms and human experts work cooperatively to achieve good
outcomes for patients. To be specific, the proposed deep learning algorithm can be used
to analyze RR interval signals in real time. The human practitioner verifies the detection
result and thereby establishes a diagnosis. That approach utilizes the diligence of the deep
learning algorithm and the ability of human experts to combine knowledge about the
patient together with measurement evidence to reach a sound diagnosis.
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CAD Computer-Aided-Diagnosis
DL Deep Learning
DB Database
DL Deep Learning
ECG Electrocardiogram
FN False Negative
FP False Positive
LSTM Long Short-Term Memory
NSR Normal Sinus Rhythm
ResNet Residual Neural Network
ROC Receiver Operating Characteristic
SAN SinoAtrial Node
SEN Sensitivity
SPE Specificity
TN True Negative
TP True Positive

References
1. Desa. United nations department of economic and social affairs, population division. world population prospects: The 2015

revision, key findings and advance tables. In Technical Report: Working Paper No. ESA/P/WP. 241; United Nations: New York, NY,
US , 2015.

2. Najarian, K.; Splinter, R. Biomedical Signal and Image Processing; CRC Press: Boca Raton, FL, USA, 2005.
3. Chow, G.V.; Marine, J.E.; Fleg, J.L. Epidemiology of arrhythmias and conduction disorders in older adults. Clin. Geriatr. Med.

2012, 28, 539–553. [CrossRef] [PubMed]
4. Kurian, T.; Ambrosi, C.; Hucker, W.; Fedorov, V.V.; Efimov, I.R. Anatomy and electrophysiology of the human AV node.

Pacing Clin. Electrophysiol. 2010, 33, 754–762. [CrossRef]
5. Waldo, A.L. Atrial fibrillation and atrial flutter: Two sides of the same coin! Int. J. Cardiol. 2017, 240, 251–252. [CrossRef]

[PubMed]
6. Waldo, A.L.; Feld, G.K. Inter-relationships of atrial fibrillation and atrial flutter: Mechanisms and clinical implications. J. Am.

Coll. Cardiol. 2008, 51, 779–786. [CrossRef]
7. Rahman, F.; Wang, N.; Yin, X.; Ellinor, P.T.; Lubitz, S.A.; LeLorier, P.A.; McManus, D.D.; Sullivan, L.M.; Seshadri, S.; Vasan, R.S.; et

al. Atrial flutter: Clinical risk factors and adverse outcomes in the Framingham Heart Study. Heart Rhythm 2016, 13, 233–240.
[CrossRef] [PubMed]

8. Acharya, U.R.; Krishnan, S.M.; Spaan, J.A.; Suri, J.S. Advances in Cardiac Signal Processing; Springer: Berlin/Heidelberg,
Germany, 2007.

9. Silverman, M.E.; Willis Hurst, J. Willem Einthoven—The father of electrocardiography. Clin. Cardiol. 1992, 15, 785–787. [CrossRef]
10. Wenger, W.; Kligfield, P. Variability of precordial electrode placement during routine electrocardiography. J. Electrocardiol.

1996, 29, 179–184. [CrossRef]
11. Martínez, J.P.; Almeida, R.; Olmos, S.; Rocha, A.P.; Laguna, P. A wavelet-based ECG delineator: Evaluation on standard databases.

IEEE Trans. Biomed. Eng. 2004, 51, 570–581. [CrossRef] [PubMed]
12. Xu, X.; Liu, Y. ECG QRS complex detection using slope vector waveform (SVW) algorithm. In Proceedings of the 26th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 200 ;
Volume 2, pp. 3597–3600.

13. Lashgari, E.; Liang, D.; Maoz, U. Data Augmentation for Deep-Learning-Based Electroencephalography. J. Neurosci. Methods
2020, 346, 108885. [CrossRef]

14. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [CrossRef]
15. Zheng, J.; Zhang, J.; Danioko, S.; Yao, H.; Guo, H.; Rakovski, C. A 12-lead electrocardiogram database for arrhythmia research

covering more than 10,000 patients. Sci. Data 2020, 7, 48. [CrossRef]
16. Demski, A.; Soria, M.L. Ecg-kit: A Matlab toolbox for cardiovascular signal processing. J. Open Res. Softw. 2016, 4, e8.
17. Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21, 137–146. [CrossRef]
18. Faust, O.; Barika, R.; Shenfield, A.; Ciaccio, E.J.; Acharya, U.R. Accurate detection of sleep apnea with long short-term memory

network based on RR interval signals. Knowl.-Based Syst. 2021, 212, 106591 [CrossRef]
19. Fisher, A.C.; Eleuteri, A.; Groves, D.; Dewhurst, C.J. The Ornstein–Uhlenbeck third-order Gaussian process (OUGP) applied

directly to the un-resampled heart rate variability (HRV) tachogram for detrending and low-pass filtering. Med. Biol. Eng. Comput.
2012, 50, 737–742. [CrossRef]

http://doi.org/10.1016/j.cger.2012.07.003
http://www.ncbi.nlm.nih.gov/pubmed/23101570
http://dx.doi.org/10.1111/j.1540-8159.2010.02699.x
http://dx.doi.org/10.1016/j.ijcard.2017.02.146
http://www.ncbi.nlm.nih.gov/pubmed/28606679
http://dx.doi.org/10.1016/j.jacc.2007.08.066
http://dx.doi.org/10.1016/j.hrthm.2015.07.031
http://www.ncbi.nlm.nih.gov/pubmed/26226213
http://dx.doi.org/10.1002/clc.4960151020
http://dx.doi.org/10.1016/S0022-0736(96)80080-X
http://dx.doi.org/10.1109/TBME.2003.821031
http://www.ncbi.nlm.nih.gov/pubmed/15072211
http://dx.doi.org/10.1016/j.jneumeth.2020.108885
http://dx.doi.org/10.1186/s40537-019-0192-5
http://dx.doi.org/10.1038/s41597-020-0386-x
http://dx.doi.org/10.1007/s11222-009-9153-8
http://dx.doi.org/10.1016/j.knosys.2020.106591
http://dx.doi.org/10.1007/s11517-012-0928-2


Diagnostics 2021, 11, 1446 17 of 18

20. Clifford, G.D.; Azuaje, F.; Mcsharry, P. ECG statistics, noise, artifacts, and missing data. Adv. Methods Tools Ecg Data Anal.
2006, 6, 18.

21. Laguna, P.; Moody, G.B.; Mark, R.G. Power spectral density of unevenly sampled data by least-square analysis: performance and
application to heart rate signals. IEEE Trans. Biomed. Eng. 1998, 45, 698–715. [CrossRef]

22. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review.
Data Min. Knowl. Discov. 2019, 33, 917–963. [CrossRef]

23. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 7 August 2021 .
24. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 7 August 2021).
25. Hanin, B. Which neural net architectures give rise to exploding and vanishing gradients? arXiv 2018, arXiv:1801.03744.
26. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
27. Gómez, R. Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss

and All Those Confusing Names. 2018. Available online: https://gombru.github.io/2018/05/23/cross_entropy_loss/ (accessed
on 29 March 2019).

28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
29. Ivanovic, M.D.; Atanasoski, V.; Shvilkin, A.; Hadzievski, L.; Maluckov, A. Deep Learning Approach for Highly Specific Atrial

Fibrillation and Flutter Detection based on RR Intervals. In Proceedings of the 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1780–1783.

30. Faust, O.; Acharya, U.R. Automated classification of five arrhythmias and normal sinus rhythm based on RR interval signals.
Expert Syst. Appl. 2021, 181, 115031. [CrossRef]

31. Fujita, H.; Cimr, D. Computer aided detection for fibrillations and flutters using deep convolutional neural network. Inf. Sci.
2019, 486, 231–239. [CrossRef]

32. Faust, O.; Shenfield, A.; Kareem, M.; San, T.R.; Fujita, H.; Acharya, U.R. Automated detection of atrial fibrillation using long
short-term memory network with RR interval signals. Comput. Biol. Med. 2018, 102, 327–335. [CrossRef]

33. Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different
intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017, 405, 81–90. [CrossRef]

34. Henzel, N.; Wróbel, J.; Horoba, K. Atrial fibrillation episodes detection based on classification of heart rate derived features. In
Proceedings of the 2017 MIXDES-24th International Conference Mixed Design of Integrated Circuits and Systems, Bydgoszcz,
Poland, 22–24 June 2017; pp. 571–576.

35. Desai, U.; Martis, R.J.; Acharya, U.R.; Nayak, C.G.; Seshikala, G.; Shetty, K.R. Diagnosis of multiclass tachycardia beats using
recurrence quantification analysis and ensemble classifiers. J. Mech. Med. Biol. 2016, 16, 1640005. [CrossRef]

36. Acharya, U.R.; Fujita, H.; Adam, M.; Lih, O.S.; Hong, T.J.; Sudarshan, V.K.; Koh, J.E. Automated characterization of arrhythmias
using nonlinear features from tachycardia ECG beats. In Proceedings of the 2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 000533–000538.

37. Hamed, I.; Owis, M.I. Automatic arrhythmia detection using support vector machine based on discrete wavelet transform. J. Med.
Imaging Health Inform. 2016, 6, 204–209. [CrossRef]

38. Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med.
2018, 93, 84–92. [CrossRef]
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