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Abstract: Data-driven solutions to societal challenges continue to bring new dimensions to our daily
lives. For example, while good-quality education is a well-acknowledged foundation of sustainable
development, innovation and creativity, variations in student attainment and general performance
remain commonplace. Developing data -driven solutions hinges on two fronts-technical and appli-
cation. The former relates to the modelling perspective, where two of the major challenges are the
impact of data randomness and general variations in definitions, typically referred to as concept
drift in machine learning. The latter relates to devising data-driven solutions to address real-life
challenges such as identifying potential triggers of pedagogical performance, which aligns with the
Sustainable Development Goal (SDG) #4-Quality Education. A total of 3145 pedagogical data points
were obtained from the central data collection platform for the United Arab Emirates (UAE) Ministry
of Education (MoE). Using simple data visualisation and machine learning techniques via a generic
algorithm for sampling, measuring and assessing, the paper highlights research pathways for educa-
tionists and data scientists to attain unified goals in an interdisciplinary context. Its novelty derives
from embedded capacity to address data randomness and concept drift by minimising modelling
variations and yielding consistent results across samples. Results show that intricate relationships
among data attributes describe the invariant conditions that practitioners in the two overlapping
fields of data science and education must identify.

Keywords: artificial neural networks (ANNs); Big Data; concept drift; data science; supervised
modelling; sustainable development goals; unsupervised modelling

1. Introduction

Many studies have been carried out to try and establish the right breaking point for
university pedagogy innovations, using a combination of tools, techniques and skills [1].
The data deluge is producing more challenges and opportunities in these areas, as the
sectoral data generation typically outpaces processing capacities. In higher education,
research has focused on identifying the triggers of pedagogical performance [2] while in
the machine learning field, studies have widely varied-from observational [3,4] to utilising
limited information to predict performance [5]. In both cases, the basic hypotheses have
been to seek potential solutions from multiple data attributes-some undiscernible, hidden
in prior and posterial learning environment, outcome and purpose, which can be uncov-
ered through a combined technical and soft interdisciplinary approach. Migueis et al. [5]
proposed a two-stage model, based on information at the end of the students’ first academic
year to predict their overall academic performance. The downside in their approach was
that the study was confined to a single Engineering School and also that using information
at the end of the year as a single predictor could not be justified for robustness. A number of
interdisciplinary studies involving pedagogy and machine learning have addressed varia-
tions associated with datasets, human intervention and artificial intelligence algorithms [6].
Such variations arise from data sampling and they can have a negative impact on predictive
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modelling results as they tend to degrade model performance, if static relationships are
assumed [7].

We propose a novel approach to extracting pedagogical performance data from
a cross section of university students, via addressing data randomness and concept
drift [8]-changes in underlying data relationships over time. Unlike in Brooks et al. [4]
and Hua Leong and Marshall [3], who applied machine learning techniques to monitor
students’ engagement in class, we shall be taking a more robust approach to searching
for patterns in historical data. We apply machine learning techniques with data from the
United Arab Emirates (UAE) and we demonstrate how discovering such information helps
educationists, researchers and other stakeholders to forge unified efforts in uncovering and
analysing relevant data in an interdisciplinary context. Pedagogical data were obtained
from CHEDS [9]-a central data collection platform for the United Arab Emirates (UAE)
Ministry of Education (MoE) in a standard Relational Database format used for storing
and accessing very large datasets. A crucial aspect of this work relates to the intricate
relationships among data attributes that practitioners in the two overlapping fields of data
science and education must identify. In particular, it presents two scenarios of the same
target variable, based on slightly different definitions and hence highlighting the impact of
concept drift [10,11], a well-documented issue in machine learning.

The application aligns with the path for the UAE’s Commission for Academic Accred-
itation (CAA), a body within the Ministry of Education (MoE), which is responsible for
licensing academic institutions across the Emirates. It is responsible for study programs
and awarding academic qualifications in accordance with the Standards for Institutional
Licensure and Program Accreditation (SILPA) [12]. Among its stipulations, SILPA requires
that workload assignments be equitable and reasonable and that they include the entire
range of a faculty member’s responsibilities, such as instruction, advising, project supervi-
sion, internship supervision, independent study, committee work, thesis or dissertation
supervision, guidance of student organisations, research, service, and curriculum devel-
opment. Through career service centres, students are supported in multitasking their
learning experiences as well as their internship while ensuring that a good relationship is
maintained between the industry and the community.

This study is planned and executed in accordance with the rules laid down by the
CAA and it is organised as follows. Section 1 presents the study background, motivation,
objectives, gap challenges and a brief review of the relevant literature. Section 2 details
the proposed approach, data sources, randomness and concept drift. It also features the
learning algorithm used in this study, with illustrations of unsupervised and supervised
modelling. Section 3 presents analyses, results and evaluation based on data visualisation,
unsupervised and supervised modelling. Section 4 outlines the paper’s novelty and
discussions and finally, Section 5 presents concluding remarks.

1.1. Motivation

Recent developments in data generation and processing have ignited new dimensions
in tackling the challenges we face, which, in the education sector, typically hinge on the
variations in attainment and performance among learners. Data attributes on learning and
assessment dynamically interact with other multi-faceted data attributes that are often
hidden in the learners’ prior and posterior learning environment, outcome and purpose.
CHEDS [9], a data store that provides a central data collection platform for the MoE,
requires universities that were accredited by the CAA [12] to constantly submit their data
to them. In particular, it requires that internship data be collected at the end of each fall
semester, using an especially designed template providing information about each intern
during the academic year.

1.2. Underlying Problem, Aim and Objectives

The aim and objectives of this work were inspired by a technical data science per-
spective on the one hand, and educational performance and its related impact on society
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on the other. More specifically, it seeks to uncover an interdisciplinary approach to ad-
dressing issues of data randomness [7,13] and concept drift [11] in education, by exploring
different scenarios of using multiple data samples from the same source. Data generation,
acquisition, storage, analytics, visualisation and utilisation for performance enhancement
appear as key attributes of studies in various sectors [14–16]. Consequently, the work will
be highlighting paths towards a meaningful application of data analytics techniques-from
simple data visualisation (DV) to complex machine learning applications—via an inte-
grated generic algorithm and educational performance data attributes. Its key objectives
are as follows:

1 To address data randomness and concept drift in a real-life application;
2 To apply the sample–measure–assess (SMA) algorithm for unsupervised and super-

vised model optimisation;
3 To highlight pathways for educationists, data scientists and other researchers to follow

in engaging policy makers, development stakeholders and the general public in
putting generated data to use.

4 To motivate an unified and interdisciplinary understanding of data-driven decisions
across disciplines.

1.3. Gap Challenges

Application of tools and techniques in addressing societal challenges has always
been part and parcel of human development. Enhancement in the ways we generate and
consume data provide both challenges and opportunities for researchers, constantly filling
and opening knowledge gaps. The paper seeks to address knowledge gaps in both the
broad area of managing higher education through data-driven solutions and in predictive
modelling. Modelling pedagogical performance feeds into Sustainable Development Goal
(SDG) #4-Quality Education-while addressing data randomness and concept drift hinges
on model optimisation-a classical challenge in making data-driven decisions [7]. In the next
section, we outline the proposed modelling approach that seeks to bridge these challenges.

2. Proposed Approach

The efficacy of data-driven decision making is conditional on a wide range of factors.
Typically, data, tools, techniques and skills combine to provide the ability to research
and identify what is working well and what is not. This section describes the approach
adopted in this study-a coherent combination of the foregoing factors. Most importantly, it
highlights the underlying variations in the general behaviour of both data and methods, as
used in real-life applications.

2.1. Data Sources

Table 1 presents the data attributes used in this work. The original data, consisting
of 3145 observations on 19 variables, came from a university data repository [9] in the
UAE over an 11-year period (2005–2016). Students were from different countries across
the Middle East, with the majority being from the United Arab Emirates (56%) and Oman
(28%). Other nationalities included Palestine (3.7%), Jordan (3%), Syria (3.2%), Yemen
(1.5%), Egypt (1%), Iraq (1%) and a few from Lebanon, Somalia, Qatar and the UK. About
99.2% were from the Middle East.

Business administration, education, engineering and information technology, law,
pharmacy and early years teaching, constituted 19.8%, 24.9%, 1.1%, 45.8%, 4.4% and
4.0% of the courses undertaken by the students, respectively. Note that while the data
cover a period long enough to represent reliable and stable patterns, this does not rule
out significant data dynamics in the future-which are very likely under current Big Data
conditions. The data attributes in Table 1 are static, linked to a known population under
study-in this case, the university superset in the UAE, in which the overall behaviour of
pedagogical performance is presumed to be known (hypothesised). This population will
typically generate and consume a lot of data which can be used to test the dynamics of
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their overall behaviour over time. We highlighted the potential new research directions
in Section 5 to be guided by such dynamics. For the purpose of supervised modelling,
the variable CLS in Table 1 was added as a discretisation of GPA performance, giving two
instances—binary and trinomial. This discretisation results in class labels and its general
implication is that it becomes informative of the natural groupings in the data.

Table 1. Selected students’ data attributes.

Code Variable Type Description Summaries

IST Institution String University One with two campuses
GDR Sex Binary Sex Female (55%); Male (45%)
NTA Nationality String Home country UAE (56%) Oman (28%)

CPS TYP Type String Start or cont/trans Bach (74%); Dip (25.7%); Master’s (0.3%)
LVL Level String Diploma, first or post 3 different levels
SPC Specialisation String Broad specialisation 5 different specialisations
MJR Major String Specific field 43 different major subjects
INT InternSector String Internship sector 60 different sectors
PCD ProgramCredits Numeric Total credits to grad. Q1 = 24 Med = 129 Mean = 102 Q3 = 129
RCP RegCreditsPrev Numeric Reg. Spring credits Q1 = 12 Med = 15 Mean = 14 Q3 = 16
PVC PrevCreditsComplete Numeric Comp. spring credits Q1 = 12 Med = 15 Mean = 13.1 Q3 = 15
RGC RegCredits Numeric Reg. Curr. credits Q1 = 9 Med = 15 Mean = 12.6 Q3 = 16
CMC CumulativeCredits Numeric Cumulative credits Q1 = 15 Med = 93 Mean = 76 Q3 = 108
CGP CumulativeGPA Numeric Cumulative GPA Q1 = 2.2 Med = 2.6 Mean = 2.7 Q3 = 3.1
QES QualifyingExitScore Percentage Score from Q-Award Q1 = 65 Med = 74 Mean = 68 Q3 = 82
BSG BeforeSemGPA Numeric GPA Before internship Q1 = 2.2 Med = 2.8 Mean = 2.7 Q3 = 3.4
ISG InSemGPA Numeric In-semester GPA Q1 = 2.7 Med = 3.1 Mean = 3.1 Q3 = 3.6
ASG AfterSemGPA Numeric GPA After internship Q1 = 2.3 Med = 3.0 Mean = 2.8 Q3 = 3.5
CLS Class Binary Tweaked GPA ≥Mean (49%) and <Mean (51%)

2.2. Data Randomness and Concept Drift

Table 2 exhibits allocation rule errors due to data randomness. The first column
represents the presumed population error which a trained model seeks to reproduce
by learning a rule from the training data (column 2), validating it on validation data
(column 3) and testing it on newly previously unseen data (column 4). Randomness in
training, validation and test data is quite crucial while dealing with large datasets, since
it makes model optimisation a natural challenge to data modelling [7,13]. The impact
of the variable CLS in Table 1 on the decision-making process depends on the way it
was done, the reasoning behind it and its potential consequences. It reflects concept drift
in the sense that discretisation criteria may change over time, and as such, it must be
accomplished with a thorough and comprehensive anticipation of its consequences. While
its definition will typically be guided by expert knowledge, variations may arise due to
different circumstances, rendering it inherently random.

Table 2. Allocation rule errors due to data randomness.

Population Error Training Error Cross Validation Error Test Error

ψD,POP ψD,TRN ψD,XVD ψD,TEST
Actual population error From random training From random validation From random testing

The process of converting data to knowledge naturally derives from standard statis-
tical sampling, modelling and evaluation [17,18]. This paper shall be applying multiple
models, based on Algorithm 1 [19] to address the randomness in Table 2. In line with objec-
tive #2 in Section 1.2, the algorithm was designed to lead to a generalised strategy aimed at
striking a balance between model accuracy and reliability across samples and applications.
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2.3. Learning Rules from Data by Sampling, Measuring and Assessing

This section describes Algorithm 1, the mechanics of which were previously published
in related work [19–21]. The algorithm was designed to address data randomness based on
built mechanics for minimising variation and its potential to yield consistent results across
samples. Without loss of generality, the algorithm assumes a relational database model in
which the data source X =

[
xi,j
]

is organised in rows and columns. The algorithm operates
on the designated accessible dataset X =

[
xi,j
]

in Table 1, applying any relevant learning
model, typically defined as

F(φ) = P︸︷︷︸
x,y∼D

[φ(x) 6= y] (1)

where D is the underlying distribution and P[φ(x) 6= y] denotes the probability of a
predicted value not being equal to the true value. The model in Equation (1) describes a
supervised case scenario, but it can also take an unsupervised form by removing the class
label and focusing on the similarity and/or dissimilarity of the data points in X =

[
xi,j
]
.

In both cases, allocation rules are learnt through Algorithm 1 below. Initialisation of s
as a percentage of [xν,τ ], and the choice of K is application specific, to be decided by the
investigator. The constant κ used here is a free parameter, determined by the user. The
main idea of the algorithm is to generate random samples for model training, validation
and testing purposes, varying key parameters from sample to sample as outlined below.

Algorithm 1 SMA—Sample, Measure, Assess

1: procedure SMA
2: Set X =

[
xi,j
]

: Accessible Data Source
3: Learn F(φ) = P︸︷︷︸

x,y∼D

[φ(x) 6= y] based on a chosen learning model

4: Set the number of iterations to a large number K
5: Initialise: Θtr := Θtr(.) : Training Parameters
6: Initialise: Θts := Θts(.) : Testing Parameters
7: Initialise: Πcp := Πcp(.) : Comparative Parameters
8: Initialise: s as a percentage of [xν,τ ], say 1%
9: str : Training Sample [xν,τ ]←

[
xi,j
]

extracted from X =
[
xi,j
]

10: sts : Test Sample [xν̄,τ ]←
[

xl 6=i,j

]
extracted from X =

[
xi,j
]

11: for i := 1→ K do: Set K large and iterate in search of optimal values
12: while s ≤ 50% of [xν,τ ] do Vary sample sizes to up to the nearest integer 50%

of X
13: Sampling for Training: str ← X
14: Sampling for Testing: sts ← X
15: Fit Training and Testing Models L̂tr,ts ∝ Φ(.)tr,ts with current parameters
16: Update Training Parameters: Θtr(.)← Θtr
17: Update Testing Parameters: Θts(.)← Θts
18: Compare: Φ(.)tr with Φ(.)ts : Plotting or otherwise
19: Update Comparative Parameters: Π(.)cp ← Φ(.)tr,ts
20: Assess: P(ΨD,POP ≥ ΨD,TRN) = 1⇐⇒ E[ΨD,POP −ΨD,TRN ] = E[∆] ≥ 0
21: end while
22: end for
23: Output the Best Models L̂tr,ts based on E[∆] ≥ 0
24: end procedure

The notations Θtr := Θtr(.) in step 5 and Θts := Θts(.) in step 6 are model-specific
and they represent the initialisation of model-specific parameters. For example, initial
training parameters for a finite mixture model of two normals with different variances
would be Θtr = {µ1, µ2; σ1, σ2}. For an artificial neural network model, it may include
model architecture-related parameters such as the number of layers, neurons, learning
rate, etc., while for a decision tree, it could be the tree depth, splitting criterion, measure
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of purity, etc. In the general context of predictive modelling, Θtr would be assigned prior
probabilities of class membership and respective distributional densities of the classes.
More specifically, Θtr := Θtr(.) denotes the assignment of initial training parameters
to Θtr and Θtr(.) denotes the source of such parameters-as a function of expert domain
knowledge, prior information or exploratory data analysis.

While Algorithm 1 clearly follows the standard machine learning pipelining, i.e.,
data processing, learning, evaluation and prediction [22], novelty lies in its ability to
address data randomness through its mechanics. More specifically, the updating of the
training and testing parameters [Θtr(.)← Θtr and Θts(.)← Θts] occur alongside randomly
drawn samples, [xν,τ ] ←

[
xi,j
]

and [xν,τ ] ←
[

xl 6=i,j

]
at steps 8 through 10. The samples

are random and remain stateless across all iterations. Multiple machine learning models
L̂tr,ts ∝ Φ(.)tr,ts are fitted, compared and updated over iterations 11–19. At step 20, the best
performing model was selected based on the comparison between the probability of the
population error and that of the training error [P(ΨD,POP ≥ ΨD,TRN)].

In addressing issues of data randomness, Algorithm 1 draws from existing modelling
techniques such as the standard variants of cross-validation [23] and permutation feature
importance [24]. It is also comparable to various models of bagging and bootstrapping.
It is known that the aggregation of classifiers based on a generic bagging procedure may
not always lead to the best solutions while bootstrapping without an underlying model
but only relying on sample representativeness which may not always be guaranteed [25].
Unlike these methods, Algorithm 1 has a built–in mechanism that allows it to handle data
randomness more efficiently, as evidenced by its previous applications [19,25].

2.4. Experimental Setup

Exactly how we deal with the data attributes in Table 1 will depend on the data types
and our initial position of what we are looking for in the data. This understanding is
guided by the problem space and study objectives-the general rule of thumb is that it
requires a strong understanding of the system being investigated. This section summarises
the experimental setup based on three scenarios-data visualisation, unsupervised and
supervised learning.

2.4.1. Data Visualisation

Data visualisation is a prolific way for gaining insights into the distributional be-
haviour of the data used in any analysis. Visually conveying patterns of interest from our
data leverages analyses and interpretations that follow. Data visualisation is becoming
increasingly popular in the modern era of Big Data, as a tool for gaining insights into large
volumes of data we generate every day. Visualising patterns and trends helps internalise
the situation, curating data into a form easier to understand and highlighting blind spots
for analyses. Thus, we will be visualising the data in Table 1 as the first step in order to gain
a good understanding of its behaviour. The objectives in Section 1.2, the gap challenges in
Section 1.3 and the visual patterns from the data in Table 1 help to determine the level of
detail and validity of results from unsupervised and supervised modelling, the mechanics
of which are outlined below.

2.4.2. Unsupervised Modelling

We use principal component analysis (PCA), a dimensional reduction technique, to
illustrate how Algorithm 1 can learn rules from unlabelled data. We used ten numeric
variables in Table 1 and PCA to repeatedly sample GPA and students’ credits data to reduce
the data dimensionality and be evaluated on any of the other attributes as follows:

I = {PCD, RCP, PVC, RGC, CMC, CGP, QES, BSG, ISG, ASG} ⊂ Rn (2)

Given the ten variables in Equation (2) as numerical performance indicators, we can
apply PCA to extract a maximum of 10 random components, irrespective of the sample
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sizes. In this sense, each extracted component is therefore a random linear combination of
all variables-an estimated weighted sum such that:

PCk = {wkPCD, wkRCP, wkPVC, wkRGC, wkCMC, wkCGP, wkQES, wkBSG, wkISG, wkASG} (3)

where k = 1, 2, 3, ...., 10. The vectors wik are chosen such that the following conditions
are met:

1. Each of the determinants equals 1, ‖wk‖ = 1;

2. Each of the PCk, maximises the variance V
{

w
′
kIk

}
; and

3. The covariance COV
{

w
′
kIk wr

′Ir

}
= 0, ∀k < r.

In this section, PCA is applied in establishing the underlying components in the data,
created through linear combinations of the variables in Table 1. The application is designed
to provide insights into naturally arising structures in data alongside other DV results, as a
precursor to predictive modelling, without running through the SMA algorithm.

2.4.3. Supervised Modelling

As mentioned above, a discretised variable, CLS, was added to the data in Table 1,
giving a discretised vector of GPA performance, as binary and trinomial. The two class
labels were created based on the rule in Equation (4):

CLS =

{
High: If ∑N

i Vi(BSG, ISG, ASG >) / LengthVi ≥ MeanVi

Low: Otherwise
(4)

Equation (4) creates a binary case of class labels, yielding High if each of the data
entries in the vector variable is more or less than the vector average and Low otherwise.
This discretisation can be extended to any multinomial case and variable, depending on
the problem at hand. In this case, the decision was based on the rationale gained from the
findings in Sections 3.1 and 3.2. The trinomial instance, in Equation (5), followed a similar
rule, except that rather than using the mean as the cut-off point, quartiles were used:

CLS =


High: If ∑N

i Vi(BSG, ISG, ASG >) / LengthVi ≥ Quartile3Vi

Medium: If Quartile1Vi ≤ ∑N
i Vi(BSG, ISG, ASG >) / LengthVi < Quartile3Vi

Low: If ∑N
i Vi(BSG, ISG, ASG >) / LengthVi < Quartile1Vi

(5)

The choice of the variable and form of discretisation will depend on the underlying
problem, and most importantly, on the initial insights gained from either expert knowledge,
exploratory data analysis (EDA), data visualisation (DV), unsupervised modelling or a
combination of each. For supervised analyses, the simplest rule would be to average the
GPA-related variables BSG, ISG and ASG to create a binary class variable, describing each
student’s GPA attainment as above average (A) and below average (B) or a multinomial
class. The 32 different levels of INT can be discretised by combining sectors-e.g., technology,
business and law enforcement. For both unsupervised and supervised modelling purposes,
the levels for this class variable can be varied as a yardstick for measuring associations
among the 19 data attributes, hence providing insights into the tuning parameters that
education policy makers need to focus on.

Now, if we set CLS ∝ F(φ) in SMA Algorithm 1, we can adopt the Bayesian approach
to use existing prior knowledge to learn more about the data and generate new (posterior)
knowledge-i.e, we are interested in the posterior probability of a particular event, e.g.,
belonging to the kth class given evidence in the data as in Equation (6):

f (CLS = k|x) = f (CLS|x)πk
∞∫
−∞

f (CLS|x)πkdCLS
∝

fk(x)πk

∑K
k=1 fk(x)πk

∝ P(CLS|x) = P(x|CLS)P(CLS)
P(x)

(6)

where f (x) and πk are the data density and class priors, proportional to P(x|CLS) and
P(CLS), respectively, both of which are estimated from data and thus inevitably generating
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the errors in Table 2. Equation (6) represents the Bayesian rule which we can use to define
the overall misclassification error for each one of the errors in Table 2 as the sum of the
weighted probabilities of observing data belonging to a particular class given that we are
not in that class-meaning that:

ΨD,XVD =
k

∑
j

n

∑
i

πjP
(

xi ∈ CLSj|CLSi
)

(7)

Any adopted machine learning model can be optimised by harmonising data vari-
ability through cross-validation using the SMA Algorithm [20,21], which learns a model
F(φ) = P︸︷︷︸

x,CLS∼D

[φ(x) 6= CLS], where D is the underlying distribution, and it provides

the mechanics for assessing the models. Given labelled data, its outputs provide great
insights into the overall behaviour of the data, particularly how the attributes relate to the
target variable.

In Section 3.3, we apply artificial neural network (ANN) [26,27] deep learning to the
data-i.e., training and testing on random samples str = [xν,τ ] ←

[
xi,j
]

and sts = [xν,τ ] ←[
xl 6=i,j

]
, respectively. The simplest form of the model is:

F(φ) = w1x1 + w2x2 + ... + wnxn + wnxn+1 =
n

∑
i=1

wixi = λ (8)

where λ is a constant, wi are weights on the feature vector xi, and each feature vector
satisfies one of the three conditions: F(φ) > λ, F(φ) = λ and F(φ) < λ. The summation in
Equation (8) combines weights and feature vectors to produce an outcome, which describes
the standard linear discriminant network. If we denote the corresponding threshold by
t1, then we can re-write the weighted sum in Equation (8) as f (φ) = ∑n∗

i=0 w1ixi where
f (φ) = u1 − t1 and the output F(φ) = f (θ1 − t1), with added new synaptic link with
x0 = −1 and w10 = t1. However, real-life applications are rarely linear in nature and hence,
the examples in Section 3.3 are non-linear, typically tracking the linear gradient descent in
search of local minima by updating the weights wi at each step.

The transition from linearity to non-linearity is achieved via activation functions—one
of the most popular being the sigmoid, in its logistic form f (φ) = 1

1+exp(−αx) . Varying
the slope parameter α yields sigmoid functions of different slopes, continuous and hence
differentiable in all points over the interval [0, 1]. As the weights (wi) increase, there is
a gradual drift from a linear to a non-linear model, i.e., via the function, ANN have an
embedded mechanism for coping with linear, near-linear and non-linear problems—a
statistically appealing property. Thus, a univariate quantitative approximation of CLS can
be approximated from the logarithmic sigmoidal function in Equation (9):

Nn(x) =
n

∑
j=0

cjσ
[〈

αj . x
〉
+ β j

]
, x ∈ Rs s ∈ N (9)

where for 0 ≤ j < n, βj ∈ R are the thresholds, αj ∈ Rs are the connection weights, cj ∈ R
are the coefficients,< αj . x > is the inner product of αj and x and σ is the activation function
of the network. A major challenge in ANN applications is determining the architecture,
i.e., the number of hidden layers and the number of neurons. Prediction accuracy changes
profoundly with changes in these parameters. It is in this context that the SMA Algorithm
is relevant. Through the algorithm, we seek to approximate this function to a high degree
of accuracy and reliability, by considering the general case of n, η and ρ neurons in the
input, hidden and output layers, respectively. The weights wik k = 1, 2, . . . , η link the input
to the hidden layer nodes, while zkj k = 1, 2, . . . , ρ link the hidden layer nodes to the output
layer nodes. If we denote the hidden layer output by ηk = f (x, wk), we can define the final
output as
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CLS ∝ F(φ) = g

(
η

∑
k=1

ηkzki

)
= g

[
η

∑
k=1

zki f

(
n

∑
i=1

xiwik

)]
(10)

In the next exposition, we carry out a sequence of analyses from EDA through unsu-
pervised to supervised modelling.

3. Analyses, Results and Evaluation

For the analyses, we follow Reyes [15] who points to the hierarchy of information
flow from students to other stakeholders who are capable of providing inputs into the
enhancement of the learning processes. We also adapt the Big Data modelling of Sustainable
Development Goals (BDMSDG) [20,21], in a down-scaled context for modelling large
datasets. Both pathways home in towards efficient decision making by highlighting the
potentially useful information in the 19 attributes that stakeholders can meaningfully
utilise, hence jointly fulfilling the objectives in Section 1.2.

3.1. Data Visualisation

The top two panels in Figure 1 exhibit the total number of credits on students’ tran-
script counting towards graduation (PCD), with the density plot, on the right hand side
panel, showing three or four clear groupings. The bottom panels represent the qualifying
exit score (QES), i.e., the students’ pre-university GPA. Students captured within these
structures are associated with each of the attributes in Table 1, each with its own structure,
forming a complex web of cross-attribute relationships. Notice that these patterns are likely
to vary widely across samples. Using machine learning techniques, educators and potential
employers can uncover more fine-grained patterns and make timely informative decisions.

3.1 Data Visualisation

Figure 1: Total credits (PCD) [top panels] and the qualifying exit score (QES) [bottom panels]

Visualising data in this way provides useful insights for modellers in deciding on the choice of modelling techniques
and ultimately interpretations. At a more granular level we can examine individual states of each student based on
these patterns alongside other data points. However, due to the sampling–dependent randomnsess in Table 2, attaining
such goals presents both challenges and opportunities to the stakeholders, from both technical and non–technical
perspectives, hence the need for adopting interdisciplinary approaches to analyses[16].

Figure 2: Multi–modal registered credits (RGC) (top) and bi–modal cumulative credits(CMC) bottom.

In addition to randomness, data overlap provides another challenge. Many real–life applications present far more
overlapping cases than these, hence constituting a modelling challenge, the outcomes of which inevitably require a
combined modelling and domain knowledge to comprehend. Figure 2 illustrates cases of data swamping and mask-
ing–widely studied and well–documented challenges in statistical outlier detection [28, 29]. The top two panels in
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Figure 1. Total credits (PCD) (top panels) and the qualifying exit score (QES) (bottom panels).

Visualising data in this way provides useful insights for modellers in deciding upon
the choice of modelling techniques and ultimately interpretations. At a more granular level,
we can examine the individual states of each student based on these patterns alongside
other data points. However, due to the sampling-dependent randomness in Table 2,
attaining such goals presents both challenges and opportunities to the stakeholders, from
both technical and non-technical perspectives, hence the need for adopting interdisciplinary
approaches to analyses [16].

In addition to randomness, data overlap provides another challenge. Many real-life
applications present far more overlapping cases than these, hence constituting a modelling
challenge, the outcomes of which inevitably require a combined modelling and domain
knowledge to comprehend. Figure 2 illustrates cases of data swamping and masking,
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widely studied and well-documented challenges in statistical outlier detection [28,29]. The
top two panels in Figure 2 correspond to the credits registered for during the current aca-
demic period (RGC), which are clearly multi-modal. The bottom two panels correspond to
the cumulative credits over semesters (CMC) and while they exhibit a bi-modal behaviour,
there are many cases which may or may not belong to either mode. In both unsupervised
and supervised modelling, the separation of similar from dissimilar cases is central to the
performance of the adopted models.

3.1 Data Visualisation

Figure 1: Total credits (PCD) [top panels] and the qualifying exit score (QES) [bottom panels]

Visualising data in this way provides useful insights for modellers in deciding on the choice of modelling techniques
and ultimately interpretations. At a more granular level we can examine individual states of each student based on
these patterns alongside other data points. However, due to the sampling–dependent randomnsess in Table 2, attaining
such goals presents both challenges and opportunities to the stakeholders, from both technical and non–technical
perspectives, hence the need for adopting interdisciplinary approaches to analyses[16].

Figure 2: Multi–modal registered credits (RGC) (top) and bi–modal cumulative credits(CMC) bottom.

In addition to randomness, data overlap provides another challenge. Many real–life applications present far more
overlapping cases than these, hence constituting a modelling challenge, the outcomes of which inevitably require a
combined modelling and domain knowledge to comprehend. Figure 2 illustrates cases of data swamping and mask-
ing–widely studied and well–documented challenges in statistical outlier detection [28, 29]. The top two panels in
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Figure 2. Multi-modal registered credits (RGC) (top) and bi-modal cumulative credits (CMC) (bottom).

The other important metrics of the data in Table 1 are the GPAs. Figure 3 presents
the cumulative GPA from the beginning to the latest enrolment (CGP) as well as the
GPAs recorded before the internship, in-semester and after internship, i.e., BSG, ISG and
ASG, respectively. The four plots show that there is only a marginal variation among the
individually recorded GPAs. Figures 1–3 indicate the typical modelling challenges that real
data can present, highlighting the impact of the overall data behaviour on the performance
of machine learning techniques. For example, while cases in Figure 1 are well separated,
those in Figure 2 are not. Various techniques and approaches are currently in use to iron
out the fuzziness, but their adaptation across applications has remained a major challenge.
The choice of modelling methods and the interpretation of results are both functions of the
randomness in Table 2. In the next sub-section, we apply some of the machine learning
methods via the SMA algorithm [20,21].

3.2 Unsupervised Modelling

Figure 2 correspond to the credits registered for in the current academic period (RGC), which are clearly multi–modal.
The bottom two panels correspond to the cumulative credits over semesters (CMC) and while they exhibit a bi–modal
behaviour, there are many cases which may or may not belong to either mode. In both unsupervised and supervised
modelling, separation of similar from dissimilar cases is central to the performance of the adopted models.

Figure 3: GPA density plots for cumulative, before semester, in semester and post–internship GPAs

The other important metrics of the data in Table 1 are the GPAs. Figure 3 presents the cumulative GPA from the
beginning to the latest enrolment (CGP) as well as the GPAs recorded before internship, in–semester and after intern-
ship–i.e., BSG, ISG and ASG respectively. The four plots show that there is only a marginal variation among the
individually recorded GPAs. Figures 1 through 3 indicate the typical modelling challenges that real data can present,
highlighting the impact of the overall data behaviour on the performance of machine learning techniques. For example,
while cases in Figure 1 are well separated, those in Figure 2 aren’t. Various techniques and approaches are currently
in use to iron out the fuzziness, but their adaptation across applications has remained a major challenge. The choice
of modelling methods and the interpretation of results are both functions of the randomness in Table 2. In the next
sub–section, we apply some of the machine learning methods via the SMA algorithm[21, 20].

3.2 Unsupervised Modelling
Equation 5 in Section 2.4.2, generates a total of ten principal components–i.e., natural groupings of the ten numeric
variables in Equation 4. The four panels in Figure 4 exhibit bi–plots of the first and second components with respect
to GDR, LVL, CLS and SPC with the first three components have eigenvalues 2.68 1.69 1.53 respectively.
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Figure 3. GPA density plots for cumulative, before semester, in-semester and post-internship GPAs.
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3.2. Unsupervised Modelling

Equation (3) in Section 2.4.2 generates a total of ten principal components, i.e., natural
groupings of the ten numeric variables in Equation (2). The four panels in Figure 4 exhibit
bi-plots of the first and second components with respect to GDR, LVL, CLS and SPC with
the first three components having eigenvalues of 2.68 1.69 1.53, respectively.

3.2 Unsupervised Modelling

Figure 4: Patterns for the first and second PCA based on gender for the numeric variables in Table 1

The contribution of each variable in the formation of these groupings is captured via the components’ loadings which,
effectively, reduces the dimension of the data in Table 1, providing insights into the variation accounted for by com-
bined variables. Figure 4 indicates three directions for the variables–each with an arrow pointing towards its increasing
values. The variables CGP, RCP and PVC point towards high values of the first component–implying that the higher
the value of the component, the higher the variables. The three variables BSG, ISG and ASG point towards mid–values
of the first component and all the remaining arrows point towards lower values of the component–implying that the
lower the value of the component, the higher the variables. Thus, the value of the first component is high if the vari-
ables CGP, RCP and PVC are highly scored and it is low if the other variables (except RGC) are highly scored. These
directions are reflective of the component loadings (eigenvectors) given in Table 3.
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Figure 4. Patterns for the first and second PCA based on sex for the numeric variables in Table 1.

The contribution of each variable in the formation of these groupings is captured
via the components’ loadings which effectively reduces the dimension of the data in
Table 1, providing insights into the variation accounted for by combined variables. Figure 4
indicates three directions for the variables—each with an arrow pointing towards its
increasing values. The variables CGP, RCP and PVC point towards high values of the first
component, implying that the higher the value of the component, the higher the variables.
The three variables BSG, ISG and ASG point towards mid-values of the first component
and all the remaining arrows point towards lower values of the component—implying that
the lower the value of the component, the higher the variables. Thus, the value of the first
component is high if the variables CGP, RCP and PVC are highly scored and it is low if
the other variables (except RGC) are highly scored. These directions are reflective of the
component loadings (eigenvectors) given in Table 3.
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Table 3. PCA rotations for the ten numeric columns in Table 1.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

−0.566 0.015 −0.146 0.032 0.142 −0.004 −0.008 −0.140 −0.144 0.772
0.182 −0.049 −0.662 −0.067 0.157 −0.012 −0.064 −0.207 0.667 0.069
0.248 −0.044 −0.610 −0.053 0.258 −0.005 0.018 0.231 −0.662 −0.060
−0.100 −0.011 −0.286 −0.360 −0.872 −0.015 0.045 −0.063 −0.106 0.017
−0.535 0.020 −0.172 0.123 0.114 −0.037 0.026 −0.547 −0.146 −0.577
0.165 −0.015 −0.140 0.906 −0.332 0.038 0.067 −0.074 −0.043 0.098
−0.507 0.013 −0.183 0.154 −0.039 0.034 −0.107 0.753 0.230 −0.227
0.001 −0.573 0.052 0.044 −0.036 −0.664 −0.473 −0.011 −0.039 0.008
−0.063 −0.582 0.013 −0.024 0.049 −0.075 0.799 0.072 0.071 −0.006
−0.018 −0.572 0.034 −0.018 −0.015 0.741 −0.339 −0.064 −0.040 −0.011

Alongside Figures 1–3, the extracted components provide insights into potential
predictors of any attribute relating to the data in Table 1. Each of the four panels in
Figure 4 exhibits clear cases of overlapping which, as noted earlier, potentially lead to
data swamping, masking, model over-fitting or under-fitting. In the next sub-section, we
demonstrated how these issues can be addressed via the SMA algorithm.

3.3. Supervised Modelling

For supervised modelling, we deploy ANN using standard back-propagation, allow-
ing for flexibility in settings such as the threshold and the learning rate and influencing the
values of L̂tr,ts and E[∆] in SMA Algorithm 1. As noted above, the target variable, CLS, was
tweaked to give two instances—binary and trinomial. Equation (8) takes a non-linear form,
with λ representing CLS. Its weights are initialised to small random values and updated
via an optimisation algorithm in response to estimates of error on both the training and
test datasets and all ten inputs were appropriately scaled. Two ANN models were trained:
one on binary and the other on a trinomial class instance.

Each of the two models was trained and tested multiple times on random samples
via the SMA Algorithm in search of optimal solutions. Two of the key parameters of an
ANN model are the threshold and the learning rate. The former is a numeric value that
specifies the stopping criteria based on the threshold for the partial derivatives of the
error function. The smaller this value is, the deeper the model learns from the current
training data, hence risking over-fitting the data. The latter describes the rate at which the
weights are updated during the training process. Again, the gap between wi and wi+1 has
an impact on the output of the model. In the next sub-section, we explore the impact of
these parameters on ANN modelling and we demonstrate the applicability of the SMA
algorithm in model selection.

3.3.1. Thresholding and Learning Rate

Table 4 presents selected results from multiple ANN models based a range of thresh-
olds and different training and testing samples. The decision on the value of the threshold
to use in any particular application requires a good understanding of the data as well as
the underlying domain knowledge. Usually, the classification of degree awards would
be done by a specially delegated body, such as SILPA [12], which in this case will have
influenced the outcomes of how the CLS variable is defined. One way to assess the impact
of such decisions is to look at the predictive patterns based on the current segmentation. It
is for that purpose that we deploy the SMA Algorithm.

To further illustrate foregoing assertions, we consider the training and testing errors
in Table 4. Typically, we expect to see the relationship ψD,TEST � ψD,TRN holding, i.e., a
positive E[∆]. Across the six samples in the table, the two panels in Figure 5 align with this
position for the two-class case and diverge in three places for the three-class case.
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Table 4. Selected model performances from competing models through the SMA algorithm.

Model (L̂tr,ts) Threshold ψD,TRN ψD,TEST E[∆] Sample [xν,τ ] Sample [xν̄,τ ]

ANN−Bin−1 0.50 0.02926 0.02764 −0.001618 Str = 2529 Sts = 615
ANN−Tri−1 0.50 0.28143 0.31159 0.030157 Str = 3006 Sts = 138
ANN−Bin−2 0.40 0.01979 0.03074 0.010950 Str = 2526 Sts = 618
ANN−Tri−2 0.40 0.27945 0.29552 0.016063 Str = 2809 Sts = 335
ANN−Bin−3 0.25 0.02228 0.02852 0.006242 Str = 2513 Sts = 631
ANN−Tri−3 0.25 0.28689 0.25738 −0.029507 Str = 2670 Sts = 474
ANN−Bin−4 0.10 0.00913 0.01757 0.008437 Str = 2518 Sts = 626
ANN−Tri−4 0.10 0.28283 0.26737 −0.015464 Str = 2482 Sts = 662
ANN−Bin−5 0.05 0.00434 0.00652 0.0021791 Str = 2531 Sts = 613
ANN−Tri−5 0.05 0.27599 0.29562 0.019636 Str = 2366 Sts = 778
ANN−Bin−6 0.01 0.00201 0.01801 0.016000 Str = 2478 Sts = 666
ANN−Tri−6 0.01 0.28493 0.26580 −0.019129 Str = 2211 Sts = 933

3.3 Supervised Modelling
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To illustrate foregoing assertions further, consider the training and testing errors in Table 4. Typically, we expect to
see the relationship ψD,TEST � ψD,TRN holding–i.e., a positive E [∆]. Across the six samples in the table, the two
panels in Figure 5 align with this position for the two class case and diverge in three places for the three class case.

Figure 5: Training and testing error patterns for the two classes (LHS) and three classes (RHS)

The best results for the two class case are given in Figure 6, showing the performance at both the hidden layer and
output levels with the two classes clearly separated. This performance does not necessarily reflect the optimal archi-
tecture for the ANN, it is only that it presents a clear demarcation of the classes as defined. Significantly increasing
the number of samples and assessing through the SMA Algorithm, more consistent patterns can be obtained.
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The best results for the two-class case are given in Figure 6, showing the performance
at both the hidden layer and output levels with the two classes clearly separated. This
performance does not necessarily reflect the optimal architecture for the ANN, it is only
that it presents a clear demarcation of the classes as defined. Significantly increasing the
number of samples and assessing through the SMA Algorithm, more consistent patterns
can be obtained.

Creating an additional GPA class, based on Equation (5), yielded the two panels in
Figure 7. Like in the binary case above, they illustrate the performance of the testing model
at the hidden layer and output node levels. The misclassification error for the test model
in this case was 28%, which can be inferred from the separation in both panels. As noted
above, the decision to discretise the variable CLS into three categories has a direct impact
on the training and testing errors. The massive difference in accuracy between the two-
and three-class cases underlines the importance of adopting interdisciplinary approaches
for educationists and data scientists to work together.

In both cases—binomial and trinomial—the main concern, as is with all cases of pre-
dictive modelling, is data over-fitting or indeed, data under-fitting. Setting the parameters
at steps 4, 8 and 10 as well as deciding on the sizes of Str and Sts at steps 9 and 10 and
setting the magnitude of E[∆] at step 20 all have a direct impact on model complexity.
While there was no computational stress on this application, due to the relatively small
data dimension, other applications with significantly higher numbers of observations and
attributes are likely to demand more computational resources.
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Figure 6: Neural network two–class test results
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above, they illustrate the performance of the testing model at the hidden layer and output node levels. The misclassi-
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noted above, the decision to discretise the variable CLS into three categories has a direct impact on the training and
testing errors. The massive difference in accuracy between the two and three class cases underlines the importance of
adopting interdisciplinary approaches for educationists and data scientists to work together.
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or indeed, under–fitting. Setting the parameters at steps 4, 8 and 10 as well as deciding on the sizes of Str and Sts
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with significantly higher numbers of observations and attributes are likely to demand more computational resources.
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4. Contribution to Knowledge and Discussion

This paper’s novelty is two-fold, technical and application based. Model optimisation
continues to be the focal point for researchers across applications. As stated in Section 2.2,
model outcomes are conditional on the data used, the robustness of the statistical analysis
and the interpretation of the results, as these combine to form a tool for knowledge extrac-
tion from data. On the other side, while good quality education is a well-acknowledged
foundation of sustainable development, innovation and creativity, there is still no consen-
sus around the world as to how such goals are to be attained. Hence, the search for what
is the right breaking point for university pedagogy innovations continues to attract the
attention of educationists and other researchers in both natural and social sciences. It is in
this context that the novelty of this paper is attributed to an interdisciplinary approach—
combining the pedagogy and data analytics. The results in Section 3 are presented to reflect
the aims and objectives outlined in Section 1.2 and the gap challenges in Section 1.3. The
paper’s contribution to knowledge and general discussions are summarised below.

4.1. Contribution to Knowledge

The technical side of contribution to knowledge is embedded in the SMA algorithm’s
potential to address data randomness and concept drift. By minimising such variations and
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yielding consistent results across samples, the algorithm provides enhanced steps towards
the application of machine learning techniques in studying students’ performance. The
latter relates to identifying potential triggers of pedagogical performance, which aligns
with SDG #4—Quality Education—and provides insights into the attainment levels of other
SDGs in the UAE.

Findings from the paper are likely to draw the attention of CHEDS [9], the Stan-
dards for Institutional Licensure and Program Accreditation [12] and other education
stakeholders in the UAE and elsewhere, to constantly monitor the dynamic nature of the
relationships between input and output variables, through interdisciplinary engagements.
Furthermore, while this application focused on knowledge gaps in higher education man-
agement and pedagogy, in the UAE, its approach is readily adaptable to applications
outside the education sector and beyond the UAE.

4.2. Discussion

The SMA algorithm was presented in an adaptable form to handle both unsupervised
and supervised modelling, in a setting that allows data randomness and concept drift
to be captured, measured and assessed within the modelling process. The binomial
and trinomial scenarios in Section 2.4.3 were selected via cross-validation involving a
range of discretisation levels from 2 to 7, based on the assessment criterion at step #20
of the algorithm. Since the algorithm is data-dependent, we recommend that different
applications experiment with as many adjustable parameters as possible. The influence of
the initial parameters should be monitored via steps #5–#6 and step #20 for the final results.

Set to address the practical issues that practitioners encounter while making data-driven
decisions and the intricacy of relationships among data attributes in the BD era [20,30], this
paper focused on a real-life scenario of the challenges and opportunities we face in what
is an increasingly interdisciplinary and globalised environment. This paper sought to
highlight paths towards a meaningful application of data analytics techniques from simple
to complex settings. The intricate relationships among attributes describe the invariant
conditions that practitioners in the two overlapping fields of data science and education
must identify, as they epitomise the meaningfulness of the concept of learning rules from
data. The disparate performance accuracies in the two models, exhibited in Table 4 and the
related graphical illustrations, reflect the well-documented issue of concept drift [10,11]—
an expression referring to changes in the statistical properties of the target variable, such as
CLS, over time. It is expected that the findings of this paper will inspire interdisciplinary
engagements and provide good input to education stakeholders both within the UAE and
beyond. This work is also expected to stimulate further discussions on a wide range of
topics, such as the impact of internships on performance and employability, performance
differentiation-based specialisation or mode of study.

Students’ performance continues to attract the interests of many researchers, both
within and outside the education sector. In the education sector, the main focus has been
on student retention and satisfaction [31], on the one side, and employability, i.e., building
bridges with the industry on the other [32]. Industrialists are keen to establish the type
of apprenticeships that best suit their core businesses [33,34]. Between the two sectors,
academic engagement and the ultimate impact of the relationship between the academia
and the labour market has been central. The two sectors are both vulnerable to concept
drift—a direct or indirect consequence of changing definitions or data properties over time,
causing predictions based on previous or current definitions to become less accurate over
time. It is imperative that educationists identify performance triggers among students,
a knowledge that impinges not only on the students’ employability, but also on their
potential productivity. For example, apprenticeships can be directly linked to internships
in that students on placement provide managers with exemplars that they may want to
sustain [33]. Innovative undergraduate programs in Data Science have the potential to
expand the horizon of learners in many ways.
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This work was motivated by recent developments in data generation, processing and
their impact on tackling societal challenges, particularly in the education sector. Its aims
and objectives in Section 1.2 were inspired by the scientific quest to address issues of data
randomness and concept drift in education. The applications in Section 3 focused on data
visualisation, unsupervised modelling and supervised modelling. The ultimate purpose of
these applications was to uncover hidden information in education data and potentially
utilise this knowledge in enhancing decision making in the sector. Data visualisation
exhibited patterns that tell stories about various aspects of the data in Table 1—quite useful
information for end users and decision makers, who typically prefer interpretable and
understandable solutions.

The title of the paper reflects the complexity of making inference based on datasets.
As it is conventional in statistical hypothesis testing, where we construct and verify hy-
potheses by investigating available data before drawing inferences, unsupervised and
supervised modelling relied on the absence or presence of prior information on the under-
lying structures in the data in Table 1. Without the tweaked variable CLS, we applied the
SMA algorithm to identify naturally arising components in the students’ data. This kind of
natural grouping provides insights into the overall patterns across the sector. Again, the in-
terpretability and understandability of these patterns to end users and decision makers are
crucial. Labelling the historical data in Table 1 made it possible to use the SMA algorithm
with a predictive modelling technique, such as the ANN, to make performance predictions.
Again, these predictions can be quite useful for end users and decision makers, as they
provide a benchmark for evaluating the education sector, not only by looking at how they
compare with actual performance, but also by guiding interim decisions and policies.

It is also imperative to highlight this study’s limitations and some of its potential issues.
The study used 3144 observations gathered over the time period 2005–2016. CHEDS [9]
statistics show that the UAE higher education sector has over 100 higher and further
education providers, enrolling approximately 140,000 students. The federal government
institutions—United Arab Emirates University (UAEU), Zayed University and the Higher
Colleges of Technology—account for approximately 30% of total student enrolment (ap-
proximately 43,000 students). In comparison to the sample used in the study, it is clear
that given the dynamics in the sector, regular pedagogical analyses need to be carried out.
Most importantly, COVID-19 appears to have had a lasting impact on the way education is
delivered, which might invalidate some of the findings of this study. However, going for-
ward, data randomness and concept drift will continue to hinge on model optimisation—a
classical challenge in making data-driven decisions [7]. Hence, enhancements of the main
ideas of this paper derive from the premises that the foregoing relationships constitute a
potential source of Big Data (BD) flowing and shared across sectors. Finally, as the Big Data
era promotes more trust in data and algorithms than human judgment, we are called upon
to address ethical and privacy issues, which this study has not addressed.

5. Concluding Remarks

This paper sought to address the problem space in Section 1.2 via the four objectives.
An ANN model was applied to learn the rules for mapping the numerical (credit and GPA)
inputs to two types of output variables—in two–three-class cases. The SMA Algorithm
was applied to improve the learning process, i.e., to avoid exploding gradients. This
paper set off from the premises that since education generates large volumes of data, its
interpretations and proper utilisation have a direct impact on societal innovation and
productivity. The first three objectives were clearly met and it is expected that the fourth
objective, set to motivate unified initiatives of educationists and data scientists towards
interdisciplinary applications of this nature and others, will be fulfilled in the course
of time.

Whilst our interests are increasingly drawn to the unification of concepts in computing
and statistics, our findings reveal natural links among different majors in the students’
data. These findings should be pooled back into curriculum designs in order to provide
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students with the necessary skills to comprehend their learning habitat, purpose and
outcome. It is expected that this work will lead to comparative studies across universi-
ties in the Emirates, providing an opportunity for data sharing. It is expected that the
paper’s findings will inspire interdisciplinary engagements and provide good input to
education stakeholders, including the relevant authorities in the UAE, to constantly moni-
tor the dynamic nature of the relationships between input and output variables, through
interdisciplinary engagements.

In the modern era of Big Data, there is scope for extending this study into a range of
potential future directions. For example, ideas from metaheuristic optimisation techniques
such as particle swarm optimisation [35,36] could be adapted to capture students’ perfor-
mances on shorter and more regular periodic intervals. Apparently, capturing progress in
this way would require curricula adaptation, possibly with universities or departments
setting targets and treating every student’s performance as a “particle”, moving at pre-
determined velocity during studies.
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