Sheffield
Hallam _
University

Active Semantic Relations in Layered Enterprise
Architecture Development

BAXTER, M <http://orcid.org/0000-0001-5981-8091>, POLOVINA, Simon
<http://orcid.org/0000-0003-2961-6207>, LAURIER, W <http://orcid.org/0000-
0002-9448-248X> and ROSING, MV <http://orcid.org/0000-0003-2183-7646>

Available from Sheffield Hallam University Research Archive (SHURA) at:
https://shura.shu.ac.uk/28722/

This document is the Published Version [VOR]
Citation:

BAXTER, M, POLOVINA, Simon, LAURIER, W and ROSING, MV (2021). Active
Semantic Relations in Layered Enterprise Architecture Development. In: COCHEZ,
M, CROITORU, M, MARQUIS, P and RUDOLPH, S, (eds.) Graph Structures for
Knowledge Representation and Reasoning. 6th International Workshop, GKR 2020
Virtual Event, September 5, 2020 Revised Selected Papers. Lecture Notes in
Artificial Intelligence (12640). Cham, Switzerland, Springer International Publishing,
3-16. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

®

Check for
updates

Active Semantic Relations in Layered
Enterprise Architecture Development

(=)

Matt Baxter!®, Simon Polovina , Wim Laurier?®,

and Mark von Rosing®

L Conceptual Structures Research Group, Sheffield Hallam University, Sheffield, UK
a7033771@my.shu.ac.uk, S.Polovina@shu.ac.uk
2 Université Saint-Louis, Brussels, Belgium
wim.laurierQusaintlouis.be
3 LEADing Practice, Dronningmglle, Denmark
mvr@leadingpractice.com

Abstract. Enterprise Architecture (EA) metamodels align an organ-
isation’s business, information and technology resources so that these
assets best meet the organisation’s purpose. The Layered EA Develop-
ment (LEAD) Ontology enhances EA practices by a metamodel with lay-
ered metaobjects as its building blocks interconnected by semantic rela-
tions. Each metaobject connects to another metaobject by two semantic
relations in opposing directions, thus highlighting how each metaobject
views other metaobjects from its perspective. While the resulting two
directed graphs reveal all the multiple pathways in the metamodel, more
desirable would be to have one directed graph that focusses on the depen-
dencies in the pathways. Towards this aim, using CG-FCA (where CG
refers to Conceptual Graph and FCA to Formal Concept Analysis) and
a LEAD case study, we determine an algorithm that elicits the active
as opposed to the passive semantic relations between the metaobjects
resulting in one directed graph metamodel. We also identified the gen-
eral applicability of our algorithm to any metamodel that consists of
triples of objects with active and passive relations.

Keywords: Enterprise architecture frameworks - Layered enterprise
architecture development - Business-IT alignment - Ontology -
Semantics and reasoning * Conceptual structures - Model verification
and validation

1 Introduction

Enterprise Architecture (EA) is a comprehensive approach to the documenta-
tion and understanding of organisational composition to promote alignment of its
business, information and technology assets [9]. The Layered Enterprise Archi-
tecture Development (LEAD) Ontology includes a metamodel that is under-
pinned by building blocks consisting of 91 metaobjects organised in layers and
sub-layers [7,14]. Semantic relations link the metaobjects thereby integrating

© The Author(s) 2021
M. Cochez et al. (Eds.): GKR 2020, LNAI 12640, pp. 3-16, 2021.
https://doi.org/10.1007/978-3-030-72308-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72308-8_1&domain=pdf
http://orcid.org/0000-0001-5981-8091
http://orcid.org/0000-0003-2961-6207
http://orcid.org/0000-0002-9448-248X
http://orcid.org/0000-0003-2183-7646
https://doi.org/10.1007/978-3-030-72308-8_1

4 M. Baxter et al.

all aspects of business, information, and technology for any organisation. These
multiple relations highlight the inbuilt interconnections and the interdependen-
cies between the elements in an enterprise. Conceptual Graphs (CG) are a for-
malised method of knowledge representation based on concepts and their rela-
tions [11,12]. Formal Concept Analysis (FCA) is a principled approach to deter-
mining a conceptual hierarchy of objects and their attributes [15]. FCA interre-
lates objects through their related attributes, thus enabling FCA to determine
and visualise a conceptual hierarchy [3]. A CG can visually display LEAD’s
metaobjects and their semantic relations by linking each concept to another via
these relations; however, validation can be difficult due to the manual nature
of the task [1]. Subsequently, processing these ‘triples’ (metaobject—relation—
metaobject) via FCA can highlight gaps in the model, revealing an organisational
gap or human error in the modelling process. Thus, while a manual review of
the LEAD artefacts can identify organisational gaps, an element of mathemati-
cal rigour can be applied to the process thereby complementing LEAD through
the application of CG and FCA [6,8].

2 The Metamodel Diagram

To illustrate the contribution of CG and FCA, Fig. 1 acts as our starting point.
This figure represents the metamodel of a warehouse pick pack process of a UK
manufacturer, based on the LEAD Enterprise Ontology referred to earlier (i.e.
LEAD ID#-ES20001ALL) [13]. The metamodel was created using the Enterprise
Plus (E+) software (www.enterpriseplus.tools) from LEADing Practice, a not-
for-profit body of LEAD industry practitioners (www.leadingpractice.com). E4+
is a comprehensive repository of LEAD reference content, including its arte-
facts, metaobjects, and semantic relations. The semantic relations in Fig. 1 go in
two directions between each metaobject. This duality is intended in many EA
metamodels, including LEAD. That is because it reveals how each metaobject
views itself in relation to each other directly, and indirectly through intermediate
metaobjects; hence LEAD metamodels are two-way directed graphs [9].

3 Activating the Metamodel

The CGtoFC A algorithm converts the inherent ternary relations of CGs to the
binary relations required for FCA [1]. This algorithm can also apply to other
directed graph triples, including LEAD metamodels as illustrated by Fig.1 [9].
The formal concepts can then appear in a Formal Concept Lattice (FCL). The
CG-FCA software based on CGtoF C A thus facilitates an improved understand-
ing of LEAD metamodels in tandem with highlighting human errors in the man-
ual modelling process [1,9]. Further to that previous work, and in search of
the metaobjects’ dependence on each other, the proposed algorithm shown in
Fig. 2 distinguishes the active and passive semantic relations. An active rela-
tion depicts a situation whereby a metaobject directs another, with the latter
metaobject dependent on it, i.e. the passive relation. Following the identification

www.enterpriseplus.tools
www.leadingpractice.com

Active Semantic Relations in Layered Enterprise Architecture Development

. organisation
owms
owned by
<
X Despatch
CAPABILITY executed by
ARCHITECTURE
participates in
specifies placement of m
Wareh: ol P
@ warenouse operates 1| 4 Role | oduced bylconsumedby| Business Object
—
g generalisation of
=
©
w
=
5 AL Warehouse
€ at Product specialisation of
@
o transforms/accountable for value of
<
3
=
o
transforms/accountable for value of
SERVICE {83Warehouse
ARCHITECTURE Bu¥iness Service
delivered by
delivered by
PROCESS (i>Warehouse Pick <>warehouse
ARCHITECTURE Pack Process indicates Gateway
options/choices in
‘partially or fully automates
partially or fully automates
[E-warehouse
Application Service by | Application Function
APPLICATION parially or fully automates| implemented by
ARCHITECTURE
I i : provides %
partially or fully automated by | Information Object | provided by Application Task [implements
interacts vith
interacts with
T warenouse Data Plassifed by the type of | [~ warehouse Data |Incluces B Warenouse pata
‘Component generalisation of included in Entity
distributed througn encapsulated by logically specifies
distributes encapsulates specified by
DATA
Network means of distribution is| in
ARCHITECTURE |Esmxcmre Imeans of distribution for Service instantiated in
Uses Speciied by
used by
he
ostedon | & warehouse Data
Speciies
—
hosts
2 PLATFORM [Warehouse Piatform [Provids the specificaton tor| (@ warenouse Piatform
[ARCHITECTURE ‘specified by Component
2 specifies
3]
4
<
>
o
o specified by
% behaviour instantiated as
Fll INFRASTRUCTURE B server
p ARCHITECTURE instantiates benaviour of

Fig. 1. Warehouse pick pack metamodel (from LEAD ID#-ES20001ALL)

6 M. Baxter et al.

of all the active relations, the algorithm incrementally rebuilds the model and
removes unwanted semantic cycles before being visualised in an FCL.

3.1 Methodology

Using the algorithm depicted by Fig.2, we identify and analyse the active
semantic relations towards our goal of attaining an active direction graph, thus
highlighting the metaobject dependencies. Strictly-speaking, our algorithm is
presently more of a ‘pseudo-algorithm’ as it requires human interpretation. For
example, in line 19 isTransitive(v) we could debate this step, with one possibil-
ity that we should just invert the relation. Formalising the algorithm so that it
can be computer-executed is the subject of our ongoing work. Meanwhile, Fig. 2
fits the present purpose of our claims.

1 begin

2 A=10

3 M=

4 foreach (o,v,s) € B do

5 -Joe M|M =MUo

6 | | ~FseMM=MUs

7 foreach o € M do

8 foreach (o,v,s) € B do

9 if isPassive(v) then
10 L —3(s,v",0) € A|JA = AU (5,7',0)
11 else
12 L —3(o,v,s) € A|JA =AU (o,v,s)
13 C = triplesInCycles(A)
14 if C # () then
15 foreach (o0,v,s) € C do
16 if isImplicityPassive(v)) then
17 A= A\(o,v,s)
18 —=3(s,v’,0) € A|JA= AU (s,v,0)
19 if isTransitive(v)) then
20 L A= A\(o,v,s)
21 if inMultipleCycles(o,v, s)) then
22 A= A\(o,v,s)
23 —=3(s,v’,0) € A|JA = AU (s,v,0)
24 end

Fig. 2. Active semantic relations algorithm

Following Fig. 2, we reviewed each two-way semantic relation to determine
which should be assigned active or passive status and created an initial active

Active Semantic Relations in Layered Enterprise Architecture Development 7

model. We examined the semantics in the narrative of the relations and identified
which metaobject was directing the other and vice versa. We then rebuilt the
model by reviewing each concept in turn to remove semantic cycles [9]. Where
both a direct and indirect pathway exists between two metaobjects, we removed
the former, as the latter illustrates the mediating metaobjects. This step enabled
a deeper understanding of the interdependencies. The ternary relations were
compiled as 3-column CSV files and processed by the CG-FCA application to
create the binary concepts. The operations and outcomes for each metaobject
CSV file were recorded in a table to document the steps taken. After successfully
refactoring each concept, we generated the FCL.

3.2 Findings

Following the selection of the active semantic relations in the one hundred forty-
seven pairs of relations, the 00ActiveAll.csv file was unable to be processed by the
CG-FCA application despite multiple attempts. The final attempt was aborted
with the ‘00ActiveAll_report’ file having amassed a size of over 10 GB after
nearly eighty-eight hours of processing time. This first experiment prevented the
creation of an FCL for the initial active model.

Table 1. Refactoring the Capability sublayer of the metamodel — Active Organisation,
Role, and Organisational Function.

File Operation & Outcomes

01ActiveOrganisation.csv Operation: Adding all active (o, v, s)
€ 00ActiveAll.csv with o or s = Organ-
isation to empty file

Outcome: No semantic cycles in
01ActiveOrganisation_report.txt

02ActiveRole.csv Operation: Adding all active (o, v, s)
€ 00ActiveAll.csv with o or s = Role to
01ActiveOrganisation.csv

Outcome: No semantic cycles in
02ActiveRole_report.txt

03ActiveOrganisationalFunction.csv Operation: Adding all active (o, v, s)
€ 00ActiveAll.csv with o or s = Organ-
isational Function to 02ActiveRole.csv
Outcome: No semantic cycles in
03ActiveOrganisationalFunc-
tion_report.txt

Identifying the source of this seemingly infinite processing run was there-
fore attempted by employing an iterative approach and gradually increasing the
number of triples included in 00ActiveAll.csv; however, we then encountered fur-
ther issues. For example, in the case of 00ActiveAllDataObjectl.csv (comprised
of all 00ActiveAll triples up to and including the first instance of a Data Object

8 M. Baxter et al.

triple), the processing time totalled just over twelve hours. Hence, there exists
an issue of practicality in attempting to identify the triple that is causing the
seemingly infinite compilation. We thus judged when to abort the processing
due to uncertainty surrounding whether the processing run will not complete
or whether it is only taking longer than expected compared to the previous
iteration. The difficulty of the decision became exacerbated as processing time
appears dependent on both the triple inserted and existing triples in the file,
in the sense that one triple could cause a minimal increase in processing time
while the impact of another could be significant. This intractability could reflect
a combinatorial explosion: the number of input values increases exponentially
with the number of potential outputs [2]. Nonetheless, and in light of the above
experiences, we were able to proceed.

Table 2. Refactoring the data sublayer of the metamodel — Active Data Object.

File Operation & Outcomes

16ActiveDataObject.csv Operation: Adding all active (o, v, s) €
00ActiveAll.csv with o or s = Data Object
to 15ActiveDataComponent.csv

Outcome: Two hundred thirty-five semantic
cycles in 16 ActiveDataObject_report.txt

16v2ActiveDataObject.csv Operation: Deletion of transitive relation
‘Data Object - influences the design of - Appli-
cation Service’

Outcome: One hundred twelve semantic
cycles in 16v2ActiveDataObject_report.txt

16v3ActiveDataObject.csv Operation: Deletion of transitive relation
‘Data Service — encapsulates — Data Object’
Outcome: Three semantic cycles in
16v3ActiveDataObject_report.txt

16v4ActiveDataObject.csv Operation: Deletion of transitive relation
‘Data Object - influences the design of - Appli-
cation Task’
Operation: Deletion of transitive relation
‘Data Object - assumes or specifies - Platform
Component’

Outcome: No semantic cycles in
16v4ActiveDataObject_report.txt

The first five metaobject CSV files contained no cycles, three of which are
detailed in Table 1. Subsequently, five cycles appeared in 06ActiveLocation.csv.
The decision to replace ‘Product - at - Location’ with ‘Location - at - Product’
resolved all cycles!.

We also encountered cycles in the LEAD Data sublayer, with cycles ranging
from one to two hundred and seventy-nine. Table2 shows the three iterations

! Not all the metaobjects and semantic relations appear in Fig. 1, including these
two-way metaobjects and semantic relations, to maintain the figure’s readability.

Active Semantic Relations in Layered Enterprise Architecture Development 9

required to resolve all cycles initially presented in 16ActiveDataObject.csv. Due
to space considerations, we do not list these cycles. We identified ‘Platform
Component — serves — Location’ as a common triple across cycles; however,
an alternative pathway remained undiscovered. ‘Location —has — Process — pro-
duces/consumes — Data Object’ exists as a more indirect pathway. However, we
deleted it as part of an operation for 08v2ActiveProcess.csv, which highlights
the cumulative effect of the decisions made at each stage of refactoring. Con-
sequently, we made alternative choices. Considering the vast number of initial
cycles presented (two hundred and thirty-five) and the manual nature of the
activity, it is possible that a more indirect pathway does exist but overlooked by
a human modeller.

3.3 Formal Concept Lattice

To visualise the output of CG-FCA, we created the FCL for 25Activelnfras-
tructureService.csv, displayed in Fig. 3. The FCL lucidly exhibits the dependen-
cies and driving metaobjects. A salient example is Product illustrated as being
dependent on Process, which in turn is dependent on Role. In the context of the
warehouse pick pack process, this dependency suggests that the product that is
picked and packed is dependent on the process for doing so, which in turn is
dependent on the employee that executes the process. Perhaps the most initially
striking element of the FCL is the presence of Platform Component within the
top-most formal concept, implying all objects below it in the diagram, i.e. its
extent, are in some way dependent on it. While we might expect that technology
ought to be driven by business, technology can drive business. For example, in
recent years, the rise of cloud computing (a Platform Component) has driven
a proliferation of decentralised business models. Accordingly, remote working is
the norm and the presence of physical business components (Business Object,
Location) is either minimised or eschewed entirely dependent on the industry.

A further interesting element elucidated in the FCL is ‘Platform Device
— hosts — Application/System’, which implies that an Application/System is
dependent on a Platform Device. This active pathway suggests that Platform
Devices are the starting points, with the Application/System developed based
on the specifications, constraints, and existence of the Platform Devices. While
this makes sense, so does the opposing view, whereby Platform Device should
be dependent upon Application/System because without an application to run,
for what purpose does the device exist?

The presence of an empty formal concept close to the top of the lattice is
also notable, and several potential explanations exist. Firstly, it could merely be
a mistake in the modelling process, a probability which is heightened by the vast
number of cycles encountered at some stages of the refactoring. Secondly, it could
also be that the empty formal concept is irrelevant, as it exists purely as a vehicle
for the facilitation of human understanding. Thirdly, and most speculatively, it
could be pointing to a hitherto unnamed formal concept object, which in turn
could potentially indicate a new metaobject arising from the other metaobjects
and semantic relations, already validated by the LEADing Practice community.

10 M. Baxter et al.

Applicaten Function

Fig. 3. 25ActivelnfrastructureService lattice

Active Semantic Relations in Layered Enterprise Architecture Development

Fig. 4. 25v2ActivelnfrastructureService lattice

11

12 M. Baxter et al.

To remedy Platform Component’s presence in the top-most formal concept,
we reviewed the FCL and identified the source as ‘Platform Component — serves
— Location’. For convenience, the triple was substituted with the passive triple,
as were the two further triples containing the ‘serves’ semantic relation. Figure 4
displays the resultant FCL.

The revised FCL arguably presents a more intuitive model in the context of
the warehouse pick pack process, with Location preceding Platform Component
and much of the lattice being dependent upon the former. As pick pack represents
the physical process of picking and packing goods at a location — a concept that
pre-dates technology platforms, the revised interpretation offers a more lucid
model. However, we note that due to the manual and interpretative nature of
the exercise, other modellers could feasibly reach different conclusions.

4 Discussion

4.1 Implications

We have demonstrated that an active direction graph can be attained via the
identification of active semantic relations, rebuilding of concepts, and visualisa-
tion via an FCL. The proposed algorithm depicted by Fig. 2 enabled us to elab-
orate on the identification and rebuilding stages, supported by the CGtoF'C A
algorithm implemented in the CG-FCA application. The ensuing FCL presented
a clear view of metaobject dependency and driving forces, consequently provid-
ing a deeper understanding of the LEAD framework both generally and in the
context of a warehouse pick pack process.

Furthermore, the presence of an unnamed concept in the 25Activelnfrastruc-
tureService lattice could prompt a further, deeper examination of the semantics,
potentially leading to refined semantic relations or a new metaobject. These
enhancements would underpin the rigour of LEAD, by revealing which metaob-
jects are consistently driving others due to their active and passive semantic rela-
tions. It is in this scenario where the active-directed graphs visualised as FCLs
provide value, due to their explicit ordering of driving forces and dependencies.
It is conceivable that such diagrams could, due to their facilitation of more in-
depth understanding, provide business users with direction when attempting to
resolve issues or enact continuous improvement. For example, for an organisation
wishing to improve the KPIs of a Business Service, the active FCL outlines all
other metaobjects on which the Business Service is dependent, and highlighted
by Fig. 5.

In the context of the warehouse pick pack process, if we consider the ‘pick-
ing’ Business Service, the active FCL suggests this is dependent upon Process.
Review of the decomposition of the Process metaobject shows the various process
steps undertaken by the Warehouse Admin. Many of these steps must be com-
pleted before the Picker can begin picking, which supports the notion that the
picking Business Service’s KPIs, e.g. picks per hour, could be adversely impacted
by the process on which it depends.

Active Semantic Relations in Layered Enterprise Architecture Development 13

Infrastructure Service hosted on
Data Ohject enables
Application Service automates

Process delivered by
Product transforms/accountahle for value of

Organisational Function bounds

| Business Senice |

Fig. 5. Activated Business Service object and attributes

4.2 Current Limitations

We are aware that our choice of semantic relations from E+ might question
the external validity of the work. From our experiments, we can quantify the
scale of absent semantic relations as fifty-four out of two hundred ninety-four for
the selected metaobjects. However, the number of incorrectly identified semantic
relations (e.g. process — delivered by — Business Service) is unknown at this time.
Both issues affect the selection process, as potentially erroneous assumptions
for the former and the latter are uncertain by nature. These considerations are
pertinent as they influence the active vs. passive selection, which in turn impacts
all pathways associated with the triple. Inclusion of a triple from all one hundred
forty-seven pairs of semantic relations potentially contributed to the issues with
the CG-FCA application, reflecting the combinatorial explosion.

Similarly, the inclusion of triples with identical two-way semantic relations,
e.g. Application Task and Data Table, increased the complexity of the task,
subsequently increasing the likelihood of errors. While we based our approach
on the proposed algorithm and selecting the TDV relation in these instances
based on sound logic, alternative methods may exist. The omission of all iden-
tical two-way semantic relations would provide consistency but also prevent the
explication of all pathways containing those triples. The manual nature of the
exercise should also be considered, especially in the case of where many cycles
occur. Determining which triple is most common across cycles by eye is imprecise
when reviewing such a substantial data set.

Furthermore, we chose pathways based upon our intuitive knowledge of the
LEAD framework. For example, during refactoring of 08 ActiveProcess.csv, three
triples were deleted (‘Process — produces/consumes — Data Object’, ‘Process —
produces/consumes — Information Object’, and ‘Application Task — partially or

14 M. Baxter et al.

fully automates — Process’) based on the assumption that other pathways with
more mediating metaobjects existed. This decision was based on the distance
between the metaobjects in the LEAD layers and was later validated with the
discovery of ‘Data Object — influences the design of — Application Task — uses —
Data Table — encapsulates — Information Object — specialises as — Application
Function — describes the automation of — Process’ in 16 ActiveDataObject_report.

However a more precise approach might be preferable, such as a tool that
accepts an input and output metaobject in addition to all other metaobjects
within the set, before returning a list of pathways in descending length order.
If an algorithm comprises both logic and control, we can improve its control
element [5]. The modeller acting as a ‘manual’ control by 1) being aware of
the effect of a more significant number of triples and therefore limiting them,
and 2) determining triple commonality across cycles by eye, is not optimal.
As we have demonstrated, the proposed algorithm significantly assisted, thus
based on our experiences, there are routes to refine it further. Therefore, the
approach could be improved if the refined version complemented the CGtoFCA
algorithm implemented in the CG-FCA application. Hence, the refined version
duly implemented alongside CG-FCA can account for one or both these issues.

4.3 Future Research

We started with a(n) (ontology-based) metamodel, composed of concepts that
were related by two-way, or bidirectional, relationships. The large majority of
these bidirectional relationships seemed to be active in one direction and pas-
sive in the other. The LEAD metamodel reveals which aspects of business (the
concepts) act upon or impact on others. In the context of change management
(but also of the day-to-day management of a company) it is important to be able
distinguish between the causes (active) and the effects (passive) of management
issues (in day-to-day management) and identify the levers (active) needed to
“pull” in order to realise the wanted change, while accounting for the passive
effects that pulling the levers might have.

In case semantic relationships were two-way active or two-way passive, we
needed to evaluate whether they could be reformulated as active-passive cou-
ples, i.e. the presently pseudo-algorithm (Fig.2) into one that can be computer-
implemented. With help from software libraries or web services that for exam-
ple allow us to identify and rephrase passive and active relationships—e.g.
Grammarly (www.grammarly.com) or DeepL (www.deepl.com)—the pseudo-
algorithm could be automated as real executable code.

Our formal analysis of the metamodel has two main objectives. First, optimis-
ing the hands-on nature of the metamodel as a management tool: by separating
the active from the passive semantics it is easier to find causes of a management
issue and the levers that act upon this problem (that needs to be addressed)
using the active semantics. Additionally, the passive semantics allow for identi-
fying the effects of this management issue (and building the business case for the
change). Moreover, the passive semantics will allow for identifying the (positive
and negative) side-effects of the change, as the levers that are chosen or pulled

www.grammarly.com
www.deepl.com

Active Semantic Relations in Layered Enterprise Architecture Development 15

will have an impact on the change goal, but also on other aspects of management
that are actively affected. As such this clear “chain of command” is expected to
both help identify the levers to obtain a desired change and minimise its adverse
effects. Second, in ontology engineering there is an expectation that directed
graphs with active and passive semantic relations should be isomorphic, i.e. a
passive directed graph is the flip side of an active one. However, where they are
not, there needs to be an elaboration. Is the “chain of command” thus asymmet-
ric, and why, or are there missing concepts? As such this formal approach could
be combined with OntoClean, METHONTOLOGY or other ontology engineering
approaches [4,10].

5 Conclusion

We have shown that by distinguishing the active semantic relations in bidi-
rectional (two-way directed) graphs that we can identify the dependencies in
metamodels from their metaobject and semantic relation building blocks. Fur-
thermore, we outlined how our approach provides value to industry practice, thus
promoting a deeper and more widespread understanding of Layered Enterprise
Architecture Development (LEAD) and the LEAD Enterprise Ontology.

References

1. Andrews, S., Polovina, S.: Exploring, reasoning with and validating directed graphs
by applying formal concept analysis to conceptual graphs. In: Croitoru, M., Mar-
quis, P., Rudolph, S., Stapleton, G. (eds.) GKR 2017. LNCS (LNAI), vol. 10775,
pp- 3-28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78102-0-1

2. Butterfield, A., Ngondi, G.E., Kerr, A. (eds.): A Dictionary of Computer Science,
7th edn. Oxford Quick Reference. Oxford University Press, Oxford, England (2016)

3. Formica, A.: Ontology-based concept similarity in formal concept analysis. Inform.
Sci. 176(18), 2624-2641 (2006)

4. Guarino, N., Welty, C.A.: An Overview of OntoClean, pp. 151-171. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2004)

5. Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424-436 (1979)

6. Polovina, S., Scheruhn, H., Weidner, S., Von Rosing, M.: Highlighting the gaps in
enterprise systems models by interoperating CGS and FCA. In: Andrews, S., Polov-
ina, S., (eds.), 22nd International Conference on Conceptual Structures (ICCS
2016), 5th-7th July, pp. 46-54. Tilburg University, 12 Jul 2016

7. Polovina, S., von Rosing, M., Etzel, G.: Leading the practice in layered enterprise
architecture. CEUR Workshop Proc. 2574, 62-69 (2020)

8. Polovina, S., von Rosing, M., Laurier, W.: Conceptual structures in LEADing and
best enterprise practices. In: Hernandez, N., Jaschke, R., Croitoru, M. (eds.) ICCS
2014. LNCS (LNAI), vol. 8577, pp. 293-298. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08389-6_25

9. Polovina, S., von Rosing, M., Laurier, W., Etzel, G.: Enhancing layered enterprise
architecture development through conceptual structures. In: Endres, D., Alam, M.,
Sotropa, D. (eds.) ICCS 2019. LNCS (LNAI), vol. 11530, pp. 146-159. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23182-8_11

https://doi.org/10.1007/978-3-319-78102-0_1
https://doi.org/10.1007/978-3-319-08389-6_25
https://doi.org/10.1007/978-3-319-08389-6_25
https://doi.org/10.1007/978-3-030-23182-8_11

16

10.

11.

12.
13.

14.

15.

M. Baxter et al.

Sawsaa, A., Lu, J.: Building information science ontology (OIS) with methontology
and protégé. J. Internet Technol. Secur. Trans. (JITST) 1(3/4) (2012)

Sowa, J.F.: Conceptual graphs for a data base interface. IBM J. Res. Develop.
20(4), 336-357 (1976)

Sowa, J.F.: Conceptual graphs. Found. Artif. Intell. 3, 213-237 (2008)

von Rosing, M., Laurier, W.: An introduction to the business ontology. Int. J.
Concept. Struct. Smart Appl. (IJCSSA) 3(1), 20-41 (2015)

von Rosing, M., von Scheel, H.: Using the business ontology to develop enterprise
standards. Int. J. Concept. Struct. Smart Appl. (IJCSSA) 4(1), 48-70 (2016)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts Ordered Sets. In: Proceedings of the NATO Advanced Study Institute held
at Banff, Vol. 83, Canada, August 28 to September 12, 1981, pp. 445-470 (1982)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Active Semantic Relations in Layered Enterprise Architecture Development
	1 Introduction
	2 The Metamodel Diagram
	3 Activating the Metamodel
	3.1 Methodology
	3.2 Findings
	3.3 Formal Concept Lattice

	4 Discussion
	4.1 Implications
	4.2 Current Limitations
	4.3 Future Research

	5 Conclusion
	References

