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In this paper, a new approach is proposed to include para-
metric uncertainties in the analysis of the transient stability
of power systems by using intervals. Two methodologies
based on the interval uncertainties were developed and im-
plemented: i) a robust extension of the PEBS method com-
bined with interval arithmetic and ii) an optimization formu-
lation for the transient stability problem. The interval uncer-
tainties enable one to obtain closed-form expressions for
stability assessment of uncertain systems, allowing a faster
analysis. The results show that both methodologies can be
used to find an accurate estimate of the critical clearing
time for uncertain power systems more quickly than using
the classical Monte Carlo approach.
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2 Raphael Fortulan
1 | INTRODUCTION

The use of renewable energy is steadily growing, in the following years alone the global renewable energy market
value is expected to reach $1.5 trillion [1]. The European Union, for example, aims to be carbon-free by 2050 [2, 3].
Given this new environment, the grid operator cannot anymore ignore the influence of renewable generation in the
control and operation of power systems. These sources of energy, given their intrinsically intermittent and variable
nature, contribute to an increasing level of uncertainties in operation. Consequently, it is imperative to consider these
uncertainties in the analysis and operation of power systems. In this paper, the problem of considering parametric
uncertainties in transient stability analysis of power systems is examined.
The classical method for transient stability analysis of power systems is based on the numerical integration of a set of
differential equations to obtain the so-called critical clearing time—the largest time interval over which the protection
can act so the post-disturbance system is stable. When dealing with uncertain systems, the classical method is usually
combined with a Monte Carlo simulation to obtain the probability distribution for the system stability and critical
clearing time. Despite generating complete and precise results, this approach demands a vast amount of information
about the system and many iterations for its execution. Thus, with the increasing complexity and size of power
systems, its application is restricted and not adequate to assess the transient stability of electric power systems in
real-time.
To overcome this challenging issue, in this paper, twomethodologies to assess the transient stability of power systems
considering uncertainties are proposed. The first is an extension of the directmethod PEBS (potential energy boundary
surface) [4] presented in [5] with an interval arithmetic formulation for deriving an energy function that includes
parametric uncertainties. Interval arithmetic enables one to include uncertainties in the analysis and obtain closed-
form expressions for stability assessment, allowing a faster analysis. Further, this formulation allows for a general set of
uncertainties to be included in the assessment. Conversely, in [5], a new energy functionmust be found for each set of
uncertainties. The second is the formulation of the stability assessment problem as an optimization problem to obtain
an estimate of the critical clearing time considering parametric uncertainties comparable to the value obtained by
the classical approach. This second approach formulates the problem of transient stability analysis with uncertainties
as a constrained minimisation problem. While both methodologies are faster than the Monte Carlo method, they
have advantages and disadvantages. The PEBS extension is faster to analyse the transient stability for a larger set of
uncertain parameters, but it can lead to conservative results; the optimization formulation provides less conservative
results as compared to the first methodology, but it can be slower to execute.
A research effort has already been made to tackle the problem of stability of uncertain power systems, by using Fuzzy
based control [6], selecting the critical parameters in the stability analysis to measure the level of uncertainty in the
system [7], robust control based on the change critical clearing time due to a small variation in the output active
power [8], or even assessing the stability using the maximum angle difference between two machines in the power
system in a probabilistic scenario [9]. In this paper, we differ from these articles as we developed a formulation that
can include all possible combination of uncertainties present in a given power system and assess the transient stability
in a feasible time. This paper is organised as follows:

• In section 2, a brief literature review of the treatment of uncertainties in transient stability analysis is presented;
• In section 3, the transient stability model of power systems and the PEBS method are reviewed;
• In section 4, the extension of the PEBS method using interval arithmetic is presented;
• In section 5, the proposed optimization scheme for transient stability analysis with uncertainties is presented ;
• In section 6, the methods proposed in this paper are applied to the IEEE 14 bus and 39 bus systems and their
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results are compared to the ones obtained using a Monte Carlo simulation;

• Lastly, in section 7, conclusions are drawn from the results.

2 | LITERATURE REVIEW

There are two distinct approaches to deal with uncertainties in transient stability analysis of power systems. The
first is denominated probabilistic, in which a probability distribution is calculated for the critical clearing time. The
second one is designated deterministic, in which the critical clearing time for the worst-case scenario is calculated
and adopted as a measure of robustness for the system.
Following the first approach, Monte Carlo based methodologies were proposed to assess the transient stability of a
power system with uncertainties. Despite generating accurate and complete results, these methodologies require a
vast amount of simulations [10, 11, 12]. Thus, they are suitable for generating reference results, rather than real-time
analysis.
In the same vein, several papers in literature explored statistical properties to study the transient stability problem [13].
In [14], for example, an approximation for the probability distribution of the critical clearing time based on its sensi-
tivity with respect to fluctuations in system load was proposed.
In [15, 16], an analytical formulation for calculating the probability of a power system, with uncertainties in loads, to
be stable given the occurrence of a three-phase fault was developed by using a logarithmic approximation between
the critical clearing time and the system load. More recently, a polynomial approximation to the boundary of the sta-
bility region together with the load covariance matrix and the system stability margin sensitivity to active and reactive
powers; angles; and bus voltages was employed to evaluate the risk for a contingency [17]. Also, in [18], a probability
measure of transient stability is presented and analytically solved by stochastic averaging, considering that the power
system uncertainties are stochastic continuous disturbances.
On the other hand, following the second approach, the papers [19, 20] provided a measure of the robustness of an
electric power system via an analysis of the most severe disturbance that can occur on the system, in a particular
configuration using a transient stability index.
In [21], a polynomial approximation of the differential equations of the power system together with a sum of squares
(SOS) optimization algorithm were employed to find a robust estimate for the critical compensation time. More re-
cently, in [22], the authors have analysed the transient stability problem using a Lyapunov function constructed using
an SOS optimization scheme. The main issue of the methods proposed in both papers is that every time a new uncer-
tainty is included, the optimization problem must be executed from the beginning.
This paper follows the second approach since it proposes to find the lowest critical clearing time considering all
uncertainties—the worst-case scenario. The main advantage of the methods proposed in this paper is speed. The
proposed Robust PEBS method, since it is based on direct methods and interval analysis, can perform a fast analy-
sis without resorting to expensive simulations. Given the conservative nature of the PEBS method, this paper also
proposes a model to study transient stability using optimization algorithms (Simulated Annealing and Differential Evo-
lution), which gives the same result as the Monte Carlo method but in a fraction of time.

3 | PEBS METHOD

In this section, we review the formulation of the PEBS method as proposed in [23]. We begin by presenting the
mathematical formulation of the transient stability analysis problem.
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3.1 | Transient Stability Model

A power system experiencing a disturbance can be modelled by a set of three differential equations:
¤xpr f (t ) = f pr f

(
xpr f (t )

)
t ∈ (−∞, 0], (1)

¤xf (t ) = f f (xf (t )) t ∈ (0, tcl ], (2)
¤xpf (t ) = f pf

(
xpf (t )

)
t ∈ (tcl ,∞), (3)

where xpr f , xf , xpf and f pr f , f f , f pf are, respectively, the state variables and the dynamical equations of the system
at pre-fault; fault-on and post-fault periods; and tcl is the fault clearing time.
The model assumes that the system is operating in an equilibrium (pre-fault period) when at t = 0 a fault occurs and
the dynamics change from the one driven by f pr f to f f . For t ∈ (0, tcl ], the fault-on period, the system dynamics is
ruled by f f . When protection acts and the faults are cleared, the post-fault period initiates and the system is governed
by f pf . Following this model, xf (0) = xpr f since the system is at equilibrium at the pre-fault period, and the initial
condition for the post-fault system is xf (tcl ) .
Now, let xe be an equilibrium point of the post-fault system (3). A reasonable question then is: will the trajectory
xpf (t ) , with initial condition xf (tcl ) , converges to xe as t goes to infinity? The largest value of tcl for which that re-
mains true is denominated the critical clearing time tcr . Finding tcr is, therefore, the main goal of a transient stability
assessment.
To precisely define the discussion above, a review the definition of stability regions and the Krasovskii-LaSalle invari-
ance principle [24] must be made:
Stability Region The stability region of an asymptotically stable equilibrium point xe is the set of states x0 such that
lim
t→+∞

x (t ) = xe , x (0) = x0. Compactly:

A (xe ) := {
x0 ∈ Òn : lim

t→+∞
x (t ) = xe , x (0) = x0

}
. (4)

Theorem 1 (Krasovskii-LaSalle Invariance Principle) Let Ω ⊂ D ⊂ Òn be a compact positively invariant set with respect
to ¤x = f (x ) . LetV : Òn → Ò be a continuously differentiable function such that ¤V (x ) 6 0 in Ω. Let E ⊂ Ω be the set of all
points in Ω where ¤V (x ) = 0. Let M ⊂ E be the largest invariant set in E . Then, every solution starting in Ω approaches M
as t →∞, i.e.,

lim
t→∞

( inf
z∈M
‖x (t ) − z ‖︸        ︷︷        ︸
dist(x (t ) ,M )

)
= 0, [x (0) ∈ Ω

Note that the inclusion of the sets in the theorem isM ⊂ E ⊂ Ω ⊂ D ⊂ Òn

The definition above shows that if a good estimate of the stability region of the post-fault stable equilibrium point xe
is obtained, then tcr can be found as the time when the trajectory of (2) crosses the stability region boundary at x ∗.
Evaluating the stability region is, however, a difficult process, which requires several simulations of a complex system.
Theorem 1 can be employed to find an estimate for the stability region. Let L be a constant, such that the level set
ΩL = {x ∈ D : V (x ) 6 L } contains the equilibrium of ¤x = f (x ) and it is contained in Ω. Then, by Theorem 1,
every solution starting in ΩL approaches M as t → ∞. In particular, if ΩL is contained in the stability region of the
equilibrium point, then ΩL is an estimate for the stability region. In transient stability,V (x ) is called energy function
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and it is constructed for the post-fault system whose stability region we are trying to estimate and L is known asVcr
or critical energy.

3.2 | Power System Model – PEBS Method

The differential equation that models the power system as described in the subsection above, known as the swing
equation, for the i -th machine is as follows:

Mi
¥θi = Pmi − E

2
i Gi i −

n∑
j=1
,i

[
EiEj Bi j sin(θi − θj ) + EiEjGi j cos(θi − θj ) ] − Mi

MT
PCOI i = 1, . . . , n, (5)

where n is the number of generators; θi and ω̃i = ¤θi are, respectively, the generator rotor angle deviation in respect
to the centre of inertia angle and frequency deviation in respect to the centre of inertia frequency; Mi is the machine
moment of inertia; MT =

∑n
i=1Mi ; Pmi is the mechanical power injected into the machine; Ei is the machine electro-

motive force; PCOI = ∑n
i=1

[
Pmi − E 2i Gi i

]
− 2∑n−1

i=1

∑n
j=i+1 EiEjGi j cos(θi − θj ) is the power of the centre of inertia; Bi jand Gi j are, respectively, the imaginary and real parts of the i j -th entry of the power systems reduced admittance

matrix.
The energy function for the power system is as follows:

V (θ, ω̃) = 1

2

n∑
i=1

Mi ω̃
2
i︸        ︷︷        ︸

Kinetic EnergyVk (ω̃)

+

−
n∑
i=1

Pi (θi − θei ) −
n−1∑
i=1

n∑
j=1+1

[
Ci j (cos θi j − cos θei j ) −

∫ θi +θj

θe
i
+θe
j

Di j cos θi j d(θi + θj )
]

︸                                                                                                               ︷︷                                                                                                               ︸
Potential EnergyVp (θ)

, (6)

where θi j = θi − θj ; Ci j = EiEj Bi j ; Di j = EiEj Bi j ; and Pi = Pmi − E 2i Gi i . The path-dependent integral of (6) can be
approximated by: (

θu
i
− θe

i

)
+

(
θu
j
− θe

j

)(
θu
i
− θe

i

)
−

(
θu
j
− θe

j

) Di j [ sin(θui − θuj ) − sin(θei − θej ) ] . (7)

The procedure for executing the PEBSmethod is described below. The general idea is to find the first potential energy
maximum and considerate it as the critical energy for the system. In sequence, the time at which the total energy,
potential and kinetic, equates the critical energy is found. This time is an estimate for the critical clearing time tcr .

• Integrate the fault-on trajectory untilVp reaches a maximum,Vmax
p along the fault-on trajectory. LetVcr =Vmax

p ;
• From the fault-on trajectory [θ (t ), ω̃ (t ) ]T, find the time at which V (θ (t ), ω̃ (t )) = Vcr . This time is an estimate

for tcr .

This classical formulation for the transient stability problem using energy functions does not allow for the inclusion
of uncertainties in the analysis. To overcome this limitation, a uniform version of the Krasovskii-LaSalle invariance
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principle (proposed in [5]) was employed to introduce parametric variables in the stability assessment. This modified
version of the PEBS method was named Robust PEBS.

4 | ROBUST PEBS

Let us consider the following autonomous system:
¤x = f (x , λ), (8)

where λ ∈ Λ ⊂ Òm is a parameter vector and x ∈ Òn is the state vector. Set Λ—whichmodels parameter uncertainties—
is constructed as being Λ =

[
λmin
1 , λ

max
1

]T × [
λmax
2 , λmin

2

]T × · · · × [
λmin
m , λ

max
m

]T, in which λmin
1 , λ

min
2 , ..., λ

min
m and

λmax
1 , λmax

2 , ..., λmax
m represent, respectively, minimum and maximum values of each parameter λ1, λ2, ..., λm .

The Uniform Invariance Principle is defined as:
Theorem 2 (Uniform Invariance Principle [5]) Suppose f : Òn × Λ → Òn andV : Òn × Λ → Ò are continuously differen-
tiable functions and a, b, c : Òn → Ò are continuous functions. Assume that for any [x , λ ]T ∈ Òn × λ, one has:

a (x ) 6 V (x , λ) 6 b (x ), − ¤V (x , λ) > c (x ) . (9)
For L > 0 let AL := {x ∈ Òn : a (x ) < L }. Assume that AL is non-empty and bounded.
Consider the sets

BL := {x ∈ Òn : b (x ) < L },C := {x ∈ Òn : c (x ) < 0}, and EL := {x ∈ AL : c (x ) = 0}. (10)
Suppose now that supx∈C b (x ) 6 l < L and define the sets

Al := {x ∈ Òn : a (x ) 6 l } and B l := {x ∈ Òn : b (x ) 6 L }. (11)
If λ is a fixed parameter in Λ and all the previous conditions are satisfied, then for x0 ∈ BL the solution φ (t , x0, λ) is defined
in [0,∞) and the following holds:

I. if x0 ∈ B l then φ (t , x0, λ) ∈ Al , for t > 0 and φ (t , x0, λ) tends to the largest invariant set of (8) contained in Al , as
t →∞;

II. if x0 ∈ BL \ B l then φ (t , x0, λ) tends to the largest invariant set of (8) contained in Al ∪ EL .

Following the first conclusion of Theorem 2 and the procedure of the classical PEBS, the Robust PEBS is described by
the following steps:
• Integrate the fault-on trajectory until ap reaches a maximum, amax

p in time. LetVcr = amax
p ;

• From the fault-on trajectory find when b =Vcr . This is an estimate for tcr .
To use the Robust PEBS method for stability analysis, a (δ, ω̃) and b (δ, ω̃) are needed. In general, for larger systems
finding these functions is not an easy task since a (δ, ω̃) 6 V (δ, ω̃, λ) 6 b (δ, ω̃), [λ ∈ Λ. In this paper, the strategy
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employed to find both functions was to consider that parametric and operational uncertainties can be represented
using intervals and to use interval arithmetic to find an interval extension to the energy function.

4.1 | Interval Extension of Energy Function

4.1.1 | Interval Arithmetic

Formally, an interval can be defined as [25]:
X = [x , x ] = {x ∈ Ò : x 6 x 6 x }. (12)

The usual sum and difference between two intervals X eY can be written as follows:
X +Y = {x + y : x ∈ X , y ∈ Y } = [x + y , x + y ], (13)
X −Y = {x − y : x ∈ X , y ∈ Y } = [x − y , x − y ] . (14)

Likewise, multiplication and division are written as follows:
X ·Y = {minΥ,maxΥ}, where
Υ =

{
x · y , x · y , x · y , x · y

}
,

(15)
X /Y = {min Γ,max Γ}, where
Γ =

{
x · 1

y
, x · 1

y
, x · 1

y
, x · 1

y
·
}
e 0 <Y . (16)

Functions of intervals are also defined point-wise [25]:
f (X ) =

⋃
x∈X
{f (x ) }. (17)

Given the necessity of operating function f in the entire interval X to find f (X ) , it is unpractical to use functions
of intervals. Instead, interval extensions of f (x ) are usually employed, where the real variable x is replaced by the
interval variable X . The interval extension of f (x ) is denoted by F (X ) .
If F (X ) is obtained simply by substituting all real operations by its correspondent interval operations, then F (X ) is a
natural interval extension f (x ) and the following condition holds:

f (X ) ⊆ F (X ) . (18)
Equation (18) is known as the Fundamental Theorem of Interval Analysis [25].
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4.1.2 | Interval Extension Formulation

Consider that the power system has parametric uncertainties that can be represented by intervals. The uncertain
system dynamic can be described as:

¤Xf (t ) = f f (Xf (t ), Λ) t ∈ (0, tcl ],

Xf (0) = Xpr f ,

¤Xpf (t ) = f f
(
Xpf (t ), Λ

)
t ∈ (tcl ,∞),

Xpf (tcl ) = Xf (tcl ), (19)
where Xf ,Xpf ∈ Én and f f , f pf : Én × Ém → Én are, respectively, the interval state vector and the interval differential
equations of the system at fault-on and post-fault periods; Λ ∈ Ém is the interval parameter vector; Xpr f ∈ Én is the
pre-fault interval state vector; and tcl is the fault clearing time.
In this general model, it is possible to consider the whole set of parameters as uncertain or just a subset of them
(since any scalar parameter p can be represented as an interval p = [p, p ]). Usually, in the transmission system, the
line parameters are the most uncertain [26] due to temperature variation [27] or inaccurate specifications. With the
increasing use of smart grids, local generation and even electric cars, loads will also contain uncertainties; the reason
for this is: loads can represent a system with distributed generation and since this type of generation has low inertia
or is controlled by power electronics—which have a faster dynamic than the transient stability analysis—they can be
modelled as a static generation with an uncertainty.
Since the power system has uncertainties at all periods, not only the fault-on and post-fault ordinary differential
equations became interval differential equations, but also the power flow solution for the pre-fault period is an interval
vector. Thus, both arguments of the energy function evaluated at the fault-on trajectory are intervals. Assuming, that
Xf =

[
Θ, Ω̃

]T, the previous statement can be mathematically written as:
V (Θ, Ω̃, Λ) . (20)

Thus,V : Òn × Ém → É is an interval function and its interval extension is:

V(Θ, Ω̃, Λ) = 1

2

n∑
i=1

Mi · Ω̃2i −
n∑
i=1

[
Pi , Pi

]
· (Θi − Θei ) (21)

−
n−1∑
i=1

n∑
j=1+1

[ [
Ci j ,Ci j

]
·
(cosΘi j − cosΘei j ) (22)

−
[
Di j ,Di j

]
·
Θi + Θj − Θei − Θ

e
j

Θi − Θj − Θei + Θ
e
j

·
(sinΘi j − sinΘei j ) ]

. (23)

Since the expression of (23) was obtained by changing every real variable by an interval variable and every real op-
eration by its equivalent interval operation, function (23) is a natural interval extension of (6), from the Fundamental
Theorem of Interval Analysis (18):

V(Θ,Ω, Λ) 6 V (Θ,Ω, Λ) 6 V(Θ,Ω, Λ) . (24)
The inequalities in 24 show that V(Θ,Ω, Λ) can be chosen as a and V(Θ,Ω, Λ) as b for Theorem 2.
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5 | OPTIMIZATION FORMULATION

Considering that the power system parameters are intervals, then it is possible to model the problem of finding the
minimum critical clearing time as a minimisation problem. Differently, from the usual optimization problems, the
function that is being minimised is not a mathematical function per se, but a computational one that evaluates the
critical clearing time given a set of parameters. This formulation aims to provide a balance between the Robust PEBS
execution speed and the Monte Carlo precision.
Mathematically, this minimisation problem can be written as:

minimize
λ

f (λ)

subject to λmin
i 6 λi 6 λ

max
i , i = 1, 2, . . . ,m .

, (25)

where f : Òm → Ò represents the computational function that evaluates the critical clearing time; λ ∈ Λ ⊂ Òm is the
parameter vector; and λmin

i
, λmax
i

are, respectively the maximum and minimum of the i -th parameter.
The function f (λ) does not have an analytical derivative, so methods such as Broyden–Fletcher–Goldfarb–Shanno
(BFGS) that requires +f (λ) cannot be used to find a solution in a feasible time. Conversely, heuristic methods such as
Simulated Annealing [28] and Differential Evolution [29] are derivative-free and global, thus are preferable and were
adopted in this paper.

6 | RESULTS

The IEEE 14 bus system [30]—illustrated in Figure 1—and the IEEE 39 bus system [4]—illustrated in Figure 2—were
employed for testing the proposed methodologies—Robust PEBS and optimization algorithms. In parallel, the critical
clearing time was evaluated using a Monte Carlo simulation—the number of iterations were determined as discussed
in [31]—and compared the results. All algorithms were programmed in Python using the Numba [32], NumPy [33],
and SciPy [34] libraries. The Robust PEBS method used the PyInterval [35] library. All simulations were executed on
an AMD Ryzen™ 7 1700 processor.
This section presents the transient stability assessment for the IEEE 14 bus system in three different cases:
1. A small set of transmission line parameters with uncertainties;
2. A large set of transmission line parameters with uncertainties;
3. A small set of loads with uncertainties.
In addition, a transient stability case for the IEEE 39 bus system is also presented.
These cases were purposely chosen to demonstrate that both optimization algorithms and the Robust PEBS method
outperform the Monte Carlo method in several situations.
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F IGURE 1 IEEE 14 bus system diagram
Source: Retrieved from https://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm

F IGURE 2 IEEE 39 bus system diagram
Source: Retrieved from https://icseg.iti.illinois.edu/ieee-39-bus-system/
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6.1 | Case 1 - 14 bus

Uncertainties as depicted in Table 1 and a solid three-phase short-circuit occurs at bus 1 and the fault is cleared by
opening line 1-5.
TABLE 1 Uncertainties Case 1 - 14 bus

Line Parameter Uncertainty (%)
From Bus To Bus R X B/2
1 2 10 10 1
2 4 0.1 0 0
3 4 1 0 0
6 13 1 0 0
9 10 1 0 0
12 13 0.1 0 0

For the first case, we have obtained the following results:
TABLE 2 Case 1 - 14 bus Results

Method Critical Clearing Time (ms)
Robust PEBS 296
Simulated Annealing 299
Differential Evolution 292
Monte Carlo 299

TABLE 3 Case 1 - 14 bus Execution Time
Method Time (min)
Robust PEBS 41
Simulated Annealing 85
Differential Evolution 66
Monte Carlo 283

Table 2 shows that the Robust PEBS method provided comparable results to the Monte Carlo method. Both optimiza-
tion methods also provided similar results. They, however, performed slower than the Robust PEBS.

6.2 | Case 2 - 14 bus

Uncertainties of the case are depicted in Table 4 and a solid three-phase short-circuit occurs at bus 1 and the fault is
cleared by opening line 1-5.
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TABLE 4 Uncertainties Case 2 - 14 bus

Line Parameter Uncertainty (%)
From Bus To Bus R X B/2
1 2 10 10 1
1 5 10 10 0
2 4 0.1 0 0
2 5 0 10 0
3 4 1 0 0
4 7 1 0 0
4 9 0 8 5
5 6 0 0 5
6 11 4 1.5 0
6 12 0 1 0
6 13 1 0 2
7 8 0 5 0
7 9 1 0 30
9 10 1 0 0
9 14 0 5 0
10 11 0 5 0
12 13 0.1 0 0
13 14 5 0 5

For the second case, we have obtained the following results:
TABLE 5 Case 2 - 14 bus Results

Method Critical Clearing Time (ms)
Robust PEBS 281
Simulated Annealing 288
Differential Evolution 285
Monte Carlo 285

TABLE 6 Case 2 - 14 bus Execution Time
Method Time (min)
Robust PEBS 48
Simulated Annealing 212
Differential Evolution 193
Monte Carlo 848
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Looking at Table 5, we can see that the proposed Robust PEBS method was able to provide a result close to the
Monte Carlo method benchmark. Likewise, the optimization methods also provided good results, but with a higher
computational cost.

6.3 | Case 3 - 14 bus

Uncertainties of Case 3 - 14 bus are depicted in Table 7 and a solid three-phase short-circuit occurs at bus 1 and the
fault is cleared by opening line 1-5.
TABLE 7 Uncertainties Case 3 - 14 bus

Parameter Uncertainty (%)
Bus PL QL

2 50 40
3 25 0

For the third case, we obtained the following results:
TABLE 8 Case 3 - 14 bus Results

Method Critical Clearing Time (ms)
Robust PEBS 288
Simulated Annealing 297
Differential Evolution 297
Monte Carlo 297

TABLE 9 Case 3 - 14 bus Execution Time
Method Time (min)
Robust PEBS 51
Simulated Annealing 48
Differential Evolution 204
Monte Carlo 695

Looking at Table 8, we can again verify that our proposed methodology found a close result to the one obtained
using the Monte Carlo method, but in a fraction of time. Likewise, both optimization methods also provided good
results.
In all cases, the execution time of the Robust PEBS is similar, as this method assumes that all numbers are intervals.
Thus, the number of interval operations remains unchanged, from a small set of uncertainties to a larger set. This
particularity of the method can be both advantageous and disadvantageous. For a small set of uncertainties, Robust
PEBS can be slower than optimization algorithms, making the use of the latter preferable. For a larger set, however,
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Robust PEBS will be faster, which makes it preferable.

6.4 | IEEE 39 bus

Uncertainties for the 39 bus system are depicted in Table 10 and a solid three-phase short-circuit occurs at bus 2 and
the fault is cleared by opening line 2-3.
TABLE 10 Uncertainties - 39 bus

Parameter Uncertainty (%)
Bus PL QL

3 50 50
16 25 25

For the IEEE 39 bus system, the following results were obtained:
TABLE 11 Results - 39 bus

Method Critical Clearing Time (ms)
Robust PEBS 293
Simulated Annealing 300
Differential Evolution 300
Monte Carlo 300

TABLE 12 Execution Time - 39 bus
Method Time (min)
Robust PEBS 67
Simulated Annealing 89
Differential Evolution 252
Monte Carlo 767

As seen Tables 11 and 12, the methodologies proposed in this article surpass the Monte Carlo approach by obtaining
a fast, accurate result. Further, looking at Table 12, it can be seen that the methodologies can be used to assess the
transient stability of larger systems.

7 | CONCLUSIONS

In this paper, we employed an extension of the PEBS method using interval arithmetic to assess transient stability
of a power system considering uncertainties. We also proposed and tested algorithms to find a robust estimate of
the critical clearing time of a multi-machine system. The proposed methodologies seem to be very promising in the
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studies of stability analysis.
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GRAPHICAL ABSTRACT

In this paper, interval arithmetic is
employed to include uncertainties in
the classic model for power systems
transient assessment.


