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Abstract— We present a novel, hybrid approach for clustering 

text databases. We use a genetic algorithm to generate and evolve 

a set of single word search queries in Apache Lucene format.  

Clusters are formed as the set of documents matching a search 

query. The queries are optimized to maximize the number of 

documents returned and to minimize the overlap between clusters 

(documents returned by more than one query in a set).  Optionally, 

the number of clusters can be specified in advance, which will 

normally result in an improvement in performance.  Not all 

documents in a collection are returned by any of the search queries 

in a set, so once the search query evolution is completed a second 

stage is performed whereby a KNN algorithm is applied to assign 

all unassigned documents to their nearest cluster.  We describe the 

method and compare effectiveness with other well-known existing 

systems on 8 different text datasets.  We note that search query 

format has the qualitative benefits of being interpretable and 

providing an explanation of cluster construction. 

Keywords— document clustering, search query, genetic 

algorithm, Lucene 

I. INTRODUCTION 

Document clustering is considered one of the most important 
problems in unsupervised learning. Clustering algorithms group 
a collection of documents into subsets or clusters to enable users 
to explore, organise, summarise and visualise large volumes of 
text.  Documents within a cluster should be similar to each other 
(cohesion) whilst documents in different clusters should be 
dissimilar (separation) [1]. 

For automated clustering, documents are traditionally 
represented by a multi-dimensional feature vector where each 
dimension corresponds to a weighted value of a term within the 
document collection [2]. Various similarity or distance measures 
have been proposed and are a central component of most text 
clustering algorithms. Using such a method it is often difficult 
for a human to understand how the clustering is performed.  
Indeed, we should note that there has been criticism of the black 
box nature of many successful machine learning models due to 
a lack of transparency, and little or no information about how 
algorithms arrive at their predictions [3].  Work has been done 
on alternative models which recognise word order such as using 
lexical chains to preserve the semantic relationships between 
words, for example by using WordNet [4].  Efforts have also 
been made to generate a set of human interpretable rules from 
‘black box’ systems such as support vector machines as in [5] 

In their seminal work Manning et al [6] assert the cluster 
hypothesis: 

   “if there is a document from a cluster that is relevant to a 
search request, then it is likely that other documents from the 
same cluster are also relevant.” [6] 

Following this hypothesis, we have developed a system, 
called eSQ (evolved Search Queries), which uses a Genetic 
Algorithm (GA) for evolving a set of search queries (requests).  
Each query is a single word and a cluster is defined as the set of 
documents which contain that word. 

The overall objective of eSQ is to develop an effective 
clustering system with a natural fit for information retrieval 
needs and with the following desirable characteristics: 

1. easily interpreted by a human. 

2. modifiable by a human. 

3. provide a causal explanation of cluster construction. 

Many algorithms have been proposed to achieve document 
clustering. We compare the eSQ system with several widely 
used alternatives which we briefly summarise here.   

Although originating in the 1950s K-means is still one of the 
most popular clustering algorithms and together with its variants 
is used in a wide variety of modern day clustering algorithms 
(e.g. [10]). K-means begins with k arbitrary centres, typically 
chosen uniformly at random from the data points (often actual 
documents in the collection). Each point is then assigned to the 
nearest centre, and each centre is recomputed as the centre of 
mass of all points assigned to it. These two steps are repeated 
until the process stabilizes.   

K-means has been shown to be highly sensitive to the initial 
centres and much of the research effort in document clustering 
has been focused on optimizing this aspect.  K-means++ is an 
enhanced version of the k-means algorithm and uses a 
randomised seeding technique which is a specific way of 
selecting initial centres [7] [8]. Farthest first traversal is another 
alternative initialization method used in k-means algorithm [8]. 
Expectation-Maximization Clustering is a parametric 
probability distribution and the entire data set is a mixture of 
these distributions. Therefore, it is possible to cluster the dataset 
using a finite mixture density model of k probability 
distributions and identify clusters. The Expectation-



Maximization (EM) algorithm can find the best fitting 
parameters using iterative refinement algorithm [9]. With 
Agglomerative hierarchical clustering, from the beginning each 
data point is a cluster. Next, two nearest points are joined 
repeatedly until it forms a single cluster [1].   

The genetic algorithm (GA) is a stochastic global 
optimisation technique which mimics the process of Darwinian 
evolution such that the search for solutions is guided by the 
principles of selection and heredity [10].  GAs have proved to 
be an effective computational method, especially in situations 
where the search space is un-characterized (mathematically), not 
fully understood, or highly dimensional [11]. Text clustering is 
a problem that fits these characteristics, and GAs have been used 
in this area, mostly as a means of optimizing the allocation of 
cluster centres [12-15]. Typically, each chromosome specifies a 
combination of centres, which represent the candidate solution 
to the clustering problem.  

 GAs have also been used to generate rules for text 
classification [16-19] and clustering [20], which have the 
advantage of being transparent and explainable. The eSQ system 
presented here has a novel fitness test based entirely on the count 
of unique query hits.  Furthermore, this is the first time that a 
query-based clustering system has been combined with a second 
stage where a KNN algorithm is used to assign documents which 
do not contain any of the search query words to their nearest 
cluster. 

   Most text clustering systems require that the user provide 
the number of expected clusters (k) in advance.  However, k is 
often not known. We also present a solution to the harder 
problem of discovering k as well as defining clusters. 

II. MATERIALS 

A. Apache Lucene 

Apache Lucene (https://lucene.apache.org/ ) [21] is a high-
performance full-text indexing and searching software library 
written in Java. Evolutionary computation is notoriously 
resource-intensive, and we find that using Lucene to store and 
query the document collections is a significant boost to the 
performance of the system.  Lucene also includes 
implementations of various classifiers. 

B. Document Collections 

Different clustering algorithms can produce divergent results 
when compared to each other on different datasets.  We, 
therefore, ran our experiments on 8 different datasets selected 
from 4 document collections containing very different types of 
document.  We have tried to match the datasets as closely as 
possible in terms of size and categories, to those reported 
previously when evaluating text clustering systems.  Each 
dataset is labelled in bold. 

1) CrisisLex 
An increasing number of short texts are being generated.  It 

has been noted that in a short text environment the situation is 
complicated by sparsity and high dimensionality, meaning that 
the vector space model and classic text clustering methods may 
not work so well [22].  CrisisLex.org is a repository of crisis-
related social media data and tools [23]. The ‘CrisisLexT6’ 
collection2 contains tweets collected in 2012-13 in different 

crisis situations. We use 500 of the tweets from each of the three 
of the sets: Colorado wildfires, Boston bombings and 
Queensland floods (Crisis3). 

2) Classic 4 
The Classic 4 dataset contains 7095 documents, where each 

document belongs to one of the four distinct collections: CACM 
(titles and abstracts from the journal Communications of the 
Association of Computing Machinery), CISI (information 
retrieval papers), CRANFIELD (aeronautical system papers), 
MEDLINE (medical journals). We take the commonly used 
approach (e.g. [24]) and randomly select 500 documents from 
each category (Classic4). 

3) 20 Newsgroups 
In the 20 Newsgroups collection [25] documents are 

messages posted to Usenet newsgroups, and the categories are 
the newsgroups themselves. The data on this set is considered 
particularly noisy and as might be expected does include 
complications such as duplicate entries and cross postings.   We 
create three datasets from this collection by randomly selecting 
100 documents from each of the categories. NG3 is created 
from: rec.sport.hockey, sci.space and soc.religion.christian.  
NG5 is from: comp.os.ms-windows.misc, misc.forsale, 
rec.sport.hockey, sci.space, soc.religion.christian.  NG6 is from: 
comp.graphics, rec.sport.hockey, sci.crypt, sci,space, 
soc.religion.christian, talk.politics .gun as used in [14]. 

4) Reuters-21578 
Reuters-21578 news collection contains news articles 

collected from the Reuters newswire in 1987. We create three 
datasets using 100 documents from each category.  R4 contains 
documents from crude, earn, grain, money-fx.  R5 contains 
documents from: coffee, crude, interest, sugar, trade.  R6 
contains documents from acq, crude, earn, grain, money-fx and 
ship as used in [15] 

III. METHOD 

We use a GA to specify a set of search queries where the set 
size k is equal to the number of clusters.  A simplified example 
based on the problem of clustering documents in the Newsgroup 
5 (NG5) dataset is used to assist the explanation. 

Step 1: pre-processing 

Before we start evolving queries, all the text is placed in 
lower case and a small stop set is used to remove common words 
with little semantic weight. For each dataset, a Lucene index is 
constructed from the collection of documents, and each 
document labelled (using Lucene fields) according to its pre-set 
category.  Of course, the GA has no access to the category label 
which is only used to evaluate the effectiveness of the clustering 
once all the stages have completed.  

Step 2: create a wordlist 

In the second step, we create an ordered list of significant 
words which is used by the GA for building queries. To 
construct the list, the TF*IDF (term frequency * inverse 
document frequency) [2] value for each term in the collection is 
calculated. TF-IDF (often used in term weighting) is used to 
identify terms that are concentrated in particular documents and 
may therefore be of more significance in a collection.  TF is the 



number of occurrences of a term in a document and IDF is the 
inverse of the number of documents in which the term occurs.  
For each term in the index, we determine TF*IDF values 
occurring in each document as indicated in the groovy style 
pseudo code below, where terms is the set of terms and 
documents is the set of documents in the index. 

Map<Term, Double> tMap = [:] 

terms.each {term -> 

  double tfidfTotal = 0 

  documents.each {doc -> 

    tfidfTotal += tf * idf 

  } 

  tMap.put(term, tfidifTotal) 

} 

TermList tList= tMap.sort{it.value}.keySet 

 

Terms are sorted by their overall TF*IDF value and the top 
100 words are selected for use in query building. This step is 
only required once for each index before the start of the 
evolution, after which the list is fixed. The integer index is 
simply the words place in the TF*IDF ordering.  In the example 
shown in Table I the length of the list is only 8.   

TABLE I.  EXAMPLE LIST OF WORDS FOR QUERY CONSTRUCTION 

0 1 2 3 4 5 6 7 

space nasa god windows hockey file sale game 

 

Step 3: create generation 0 

Table II shows a sample chromosome from the population 
of generation 0.  Chromosomes have an integer representation 
where the values can be in the range [0 .. 100] (the maximum 
size of the wordlist).  In the example below each gene defines a 
single word search query (SQ) and each search query defines the 
cluster as those documents which contain that word.  

TABLE II.  CREATING SINGLE WORD SEARCH QUERIES (SQ). 

 SQ0 SQ1 SQ2 SQ3 SQ4 

Chromosome 0 4 5 1 7 

Query Word space hockey file nasa game 

 

In the example above, the number of clusters (k) is 
determined from the known number of categories before the 
start of the evolution.  However, we can optionally add another 
gene in the chromosome to set a value for k (the number of 
clusters) where k can be in the inclusive range [2 .. 9] (8 possible 
cluster sizes).   

Step 4: fire each query in the set. 

 In our example, five search queries are generated for the 
NG5 dataset. For each individual in the population fire each of 
the search queries in its set and determine its fitness by 
examining the clusters of documents returned by the queries and 
counting the number of documents returned which occur in only 
1 cluster (see fitness calculation below). 

Step 5:  Apply genetic operators to create a new generation. 

Step 6: Repeat steps 4-5 for 300 generations (termination 
criteria) and select the individual with the highest fitness.  

Step 7: KNN 

The selected individual at the end of a run will produce a set 
of single word search queries and a cluster will be the set of 
documents containing a search query word.  However, many 
documents in the collection may not contain any of the query 
words. We have found that we can increase effectiveness by 
applying a final stage to assign the unassigned documents to 
their nearest search query defined clusters.  We use the Lucene 
implementation of the K-Nearest Neighbour (KNN) algorithm 
to add each unassigned document to its closest cluster.   

Once a run is complete, we can measure the final F1 value 
of the expanded clusters with reference to the original category 
labels. A GA contains many random elements, so we therefore 
repeat each run 11 times. 

A. Fitness Calculation 

Text clustering aims to return sets of documents which are 
related to each other but not to documents in other clusters. We 
have created and tested two fitness functions that aim to partition 
a document collection into clusters by generating a set of search 
queries. The first fitness function is for the case where the 
desired number of clusters (k) is known in advance.  In the 
second case, the GA will attempt to determine the optimal value 
for k.  

When calculating fitness from a set of queries generated by 
a chromosome, we define uniqueHits as the count of documents 
returned by exactly one query in the set of queries and totalHits 
as the count of documents returned by any query in the set. 

Let Q be a set of queries, let D be a set of documents. Let M 
⊆ Q X D be the set of pairs (q, d) where query qϵQ matches 
document dϵD 

uniqueHits: |{dϵD∶ qϵQ,∃!(q,d)ϵM|     (1) 

totalHits: |{d ϵ D∶qϵQ,∃q (q,d)ϵM}|  (2) 

For the case where k is known in advance, we have found 
that uniqueHits is a good fitness measure where the higher the 
value (the size of the set of documents returned by only one 
query) the better the fitness.  However, we have noticed that in 
the case where k is set in the chromosome the GA often produces 
solutions with too many categories with respect to the labelled 
collections. Introducing a slight penalty as in the second fitness 
test (below) improved effectiveness. We have found a suitable 
penalty value to be 0.04 (see results section below). 

uniqueHits * (1 - (k * penalty))   (3) 

Below we show Groovy style pseudo code to calculate 
uniqueHits for a set of queries generated from a chromosome.  
Note that in Apache Lucene ‘SHOULD’ behaves like an OR and 
‘MUST_NOT’ is used to indicate that the term MUST NOT 
occur if a query is to return a document 
(https://lucene.apache.org/core/8_4_1/core/org/apache/lucene/s
earch/package-summary.html#query). 

 

 

 



Set queries = [q0..qk] 

int uniqueHits = 0  

queries.each {q ->   

  BooleanQuery uniqueQ= new BooleanQuery() 

  uniqueQ.add(q, SHOULD) 

  Set otherQueries = queries.minus(q) 

 

  otherQueries.each {otherQ -> 

   uniqueQ.add(otherQ, MUST_NOT) 

  } 

 

  uniqueHits += search(uniqueQ).size 

} 

B. Parameters 

We used a fixed set of standard GA parameters in all our 
experiments which are summarised in Table III. We use an 
island model with 4 subpopulations to increase diversity and 
exchange 3 individuals every 50 generations. 

TABLE III.  GA PARAMETERS 

Parameter Value 

Selection Type Tournament 

Tournament Size 5 

Subpopulations 4 

Population Size 512 

Generations 300 

Crossover Probability 0.8 

Mutation Probability 0.1 

Elitism Best 2 individuals 

 

C. Effectiveness Measures 

Effectiveness is determined by referring to the original 
category labels from the document collection.  The relevant 
category is determined by computing the most frequent category 
occurring in the cluster. We then compute precision (p), which 
is defined as the portion of relevant instances that are retrieved, 
and recall (r), which is the share of relevant instances retrieved 
by the algorithm.  Finally, the main effectiveness measure we 
use is the F1 score (sometimes known as Pairwise F-Measure 
(PFM)) [1] to measure the overall accuracy. The F1 measure has 
the advantage of giving equal weight to precision and recall and 
is given by: 

              𝐹1 =
2pr

p+r
         () 

In our example shown in Table II above Search Query 0 
(SQ0) will return all documents in the dataset which contain the 
word ‘space’.  On its own this is likely to produce a reasonable 
cluster as measured by F1 since it will retrieve documents 
mostly in the space category.  However, looking at all five 
clusters, both the fitness of the individual and the final average 
F1 across all categories is likely to be low since we also have a 
cluster based on the word ‘nasa’ which overlaps the ‘space’ 
cluster to a significant degree.  We also have a cluster based on 
the word ‘hockey’ and another based on the word ‘game’ which 
will both retrieve documents mainly from the hockey category, 

therefore making the unique hits count low.  Also, none of the 
search queries in the set are likely to return documents mainly 
from the christian category. 

In the experiments, we consider the case of the GA 
discovering the number of clusters k, thus, we also calculate the 
cluster count error as a measure of how effective the GA is in 
selecting k. The cluster count error is the absolute value of the 
number of clusters generated by the GA minus the number of 
categories in the original data set.  

IV. RESULTS AND DISCUSSION 

A. Penalty for more clusters 

In the situation where k is not known in advance, the number 
of clusters produced by the GA is typically higher than the 
number of categories existing in the original collection. This 
higher fragmentation leads to weaker results and we found 
effectiveness could be improved by introducing a small penalty 
into the fitness test based on the number of clusters:   
 

fitness = uniqueHits * (1 - (penalty * k))  (5) 
 

We investigated various values for the penalty. The effect of 
a range of sizes for the penalty is evaluated both in terms of the 
average F1 Score (Fig. 1) and the cluster count error (Fig. 2). 
Results of both analyses indicate that 0.04 is a good value for 
the penalty across the datasets we have investigated here. 

 

Fig. 1: Average F1 for varying fitness penalty values.  

 

 

Fig. 2: Average Cluster Count Error with varying fitness 
penalty values 

Following these results, we selected a penalty of 0.04 in the 
experiments described in the effectiveness section below for the 
case where k is not known in advance. 



B. Interpretability 

One of the important, qualitative advantages of the search 
query method is that the queries which define the clusters are 
human readable.  As examples of this feature, Table IV and 
Table V show queries produced by the best individual at the end 
of a run for the Crisis3 and NG5 datasets.  Queries will return 
documents which contain the query words. The category is 
identified as the most frequently occurring among the 
documents returned by the query. 

TABLE IV.  CRISIS 3 QUERY SET (F1 FOR QUERY SET: 0.74) 

Category Search Query F1 

Boston bombing boston 0.74 

Colorado wildfires colorado 0.88 

Queensland floods bigwet 0.61 

 

TABLE V.  NG5 QUERY SET (F1 FOR QUERY SET: 0.68) 

Category Search Query F1 

soc.religion.christian  god  0.65 

comp.os.ms-windows.misc windows 0.78 

rec.sport.hockey nhl 0.58 

sci.space space  0.70 

misc.forsale sale 0.71 

 

The GA has found the query words which are the 
distinguishing features of the categories.  The fitness test 
promotes a set of query words which return the maximum 
number of documents occurring in only one cluster.  Commonly 
the original category label (or a variant) is the query word.  As 
well as acting as labels for the categories, the query words can 
give the analyst additional useful information.  For example, 
regarding the Queensland floods the generated search query 
indicates that ‘bigwet’ is an important term used by people 
tweeting in the crisis. In fact, ‘bigwet’ became the informal name 
of the disaster. Similarly, ‘nhl’ refers to the ‘National Hockey 
League’ which is the topic of most posts in the NG5 
rec.sport.hockey category 

C. Cluster Expansion using KNN 

The clusters produced by the eSQ system have the 
characteristic of high precision but low recall with respect to the 
original labelled categories.  On average, across all the datasets 
eSQ achieves precision of 0.87 and recall of 0.55.  The recall is 
so low mainly because many of the documents are not returned 
by any query. We have found it useful to use a KNN classifier 
to assign each of these documents to their nearest cluster.  In 
other words, after the GA driven clustering stage we add a 
second classification stage in which the document clusters 
returned by the search queries are used as a training set for the 
KNN classifier. Fig. 3 shows the NG3 collection where an X 
represents a document which has been assigned to a category.  
For example, cluster A shows all the documents which contain 
the word ‘god’.  Y indicates a document which does not contain 
any of the search query words (‘god’, ‘hockey’ or ‘nasa’) and 
are therefore not included in any cluster.  The arrows represent 
the process whereby the Lucene implementation of KNN 

assigns a document Y to its nearest cluster. We use a Euclidean 
distance measure with a K value of 10. 

 

Fig. 3: KNN cluster expansion stage 

 
To demonstrate the effectiveness of the proposed technique 

over the standard exploration, we compared the result before 
(eSQ) and after (eSQ+KNN) the application of KNN. For every 
index the KNN stage improves effectiveness with an average 
0.167 improvement to the F1 scores after the KNN stage. 

 

Fig. 4: F1 for eSQ and eSQ+KNN  

D. Effectiveness Comparison  

As discussed above we present two versions of the evolved 
Search Query (eSQ) here.  In the first case the algorithm is given 
the required number of clusters in advance (eSQ-k-predefined) 
and in the second case the number of clusters must be discovered 
(eSQ-k-discovered).   

Table VI presents the results of the eSQ and eSQ+KNN 
explorations, with and without a predefined number of clusters. 
Average and F1 scores [27] are reported as well as the standard 
deviation. F1 is the average over 11 runs. In bold are 
significantly better results (t-test p-value < 0.05). We consider 
eSQ+KNN k-predefined the direct comparison for the standard 
clustering algorithms, which all require the number of clusters 
to be fixed and given in advance.  However, eSQ+KNN k-
discovered must determine the number of clusters as well as 
perform the clustering and should be considered a harder 
problem. 



 

TABLE VI.  FINAL RESULTS OF THE GA (BEFORE KNN) AND ESQ EXPLORATIONS, THE LATTER WITH AND WITHOUT A PREDEFINED NUMBER OF CLUSTERS K. IT 

PRESENTS ALSO THE DIFFERENCES (DIFF COLUMN) AND THEIR P-VALUE (STUDENT T-TEST). SIGNIFICANT DIFFERENCES (P<0.05) ARE IN BOLD 

Collection 

eSQ+KNN  

k-predefined 

eSQ+KNN  

k-discovered 

Predefined minus 

Discovered 

eSQ  

k-predefined 

eSQ+KNN minus 

eSQ  

k-predefined 

F1 average std F1 average std Diff p F1 average std diff p 

CLASSIC4 0.822 0.000 0.563 <0.001  0.259 <0.001  0.554 0.000 0.267 <0.001  

CRISIS3 0.862 0.000 0.677 <0.001  0.185 <0.001  0.743 <0.001  0.119 <0.001  

NG3 0.915 <0.001  0.702 0.000 0.213 <0.001  0.671 0.000 0.244 <0.001  

NG5 0.895 0.000 0.895 0.000 0.000 1.000 0.685 0.000 0.211 <0.001  

NG6 0.895 0.007 0.896 0.007 -0.001 0.682 0.637 <0.001  0.257 <0.001  

R4 0.913 <0.001  0.913 <0.001  0.000 1.000 0.784 0.000 0.130 <0.001  

R5 0.941 0.004 0.942 0.004 -0.001 0.400 0.887 0.000 0.054 <0.001  

R6 0.672 <0.001  0.689 0.003 -0.017 <0.001  0.619 <0.001  0.053 <0.001  

AVERAGE 0.864   0.785   0.080   0.697   0.167   
 

 

 

 

TABLE VII.  REFERENCE RESULTS WITH VARIOUS CLUSTERING ALGORITHMS (BENCHMARKS). K WAS PREDEFINED IN ALL CASES.  BEST RESULTS ARE IN BOLD 

Collection farthest first kmeans++ kmeans EM HieraClus 

F1 std F1 std F1 std F1 std F1 std 

CLASSIC4 0.780 0.000 0.742 0.100 0.750 0.100 0.916 0.036 0.347 0.000 

CRISIS3 0.760 0.000 0.748 0.128 0.711 0.126 0.776 0.014 0.677 0.000 

NG3 0.588 0.000 0.926 0.010 0.935 0.016 0.916 0.005 0.866 0.000 

NG5 0.729 0.000 0.607 0.041 0.645 0.033 0.670 0.014 0.596 0.000 

NG6 0.818 0.000 0.725 0.120 0.641 0.122 0.599 0.060 0.628 0.000 

R4 0.758 0.000 0.763 0.143 0.771 0.117 0.693 0.048 0.687 0.000 

R5 0.658 0.000 0.679 0.117 0.596 0.080 0.717 0.053 0.775 0.000 

R6 0.651 0.000 0.660 0.045 0.653 0.101 0.602 0.049 0.606 0.000 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 



TABLE VIII.   PAIRWISE DIFFERENCES (DIFF) OF THE MEANS BETWEEN ESQ+KNN K-PREDEFINED AND THE BENCHMARKS, INCLUDING P-VALUE OF THE 

STUDENT T-TEST (2 TAILS). SIGNIFICANT DIFFERENCES (P<0.05) ARE IN BOLD 

 
Collection farthest first kmeans++ kmeans EM HieraClus 

diff p diff p diff p diff p diff p 

CLASSIC4 0.042 <0.001 0.079 0.033 0.072 0.049 -0.094 <0.001 0.475 <0.001 

CRISIS3 0.102 <0.001 0.113 0.021 0.151 0.004 0.085 <0.001 0.185 <0.001 

NG3 0.327 <0.001 -0.011 0.007 -0.020 0.004 -0.002 0.369 0.049 <0.001 

NG5 0.166 <0.001 0.288 <0.001 0.251 <0.001 0.225 <0.001 0.299 <0.001 

NG6 0.077 <0.001 0.170 0.002 0.253 <0.001 0.296 <0.001 0.267 <0.001 

R4 0.155 <0.001 0.150 0.009 0.142 0.004 0.221 <0.001 0.226 <0.001 

R5 0.283 <0.001 0.262 <0.001 0.345 <0.001 0.224 <0.001 0.166 <0.001 

R6 0.021 <0.001 0.012 0.421 0.019 0.568 0.070 0.002 0.066 <0.001 

Table VI shows that predefining the number of clusters 
makes the GA exploration easier and the results are significantly 
better on average. However, we can see that the eSQ+KNN k-
discovered is as good as the predefined version in the databases 
with more than 4 clusters. In particular, the average F1 of the 
eSQ+KNN k-discovered is significantly the best for the database 
R6. This suggests that the eSQ+KNN k-discovered has the 
potential to achieve better results in the exploration, even 
without the additional information of the number of clusters, but 
further investigation is needed in order to identify the best 
combination of fitness function and parameters to guide the 
exploration toward the maximum value more frequently.  

We also give results using 5 widely used alternative 
strategies for document clustering namely farthest first, k-
means, kmeans++, Expectation Maximization (EM) and 
Hierarchical Clustering [1].  We should note that although some  
of these techniques were developed many years ago they are still 
used regularly in a broad range of applications (e.g. [28][29]). 
Table VII presents the reference results of the clustering 
algorithms considered as a benchmark to evaluate the 
eSQ+KNN performance.  Average F1 scores and the standard 
deviation is provided for each one. Note that in some cases, 
where there is not a random initialisation, the standard deviation 
is, of course, 0, while in the other cases there is variance due to 
the random initialisation. Each of the algorithms in Table VII 
are given the required number of clusters in advance. Table VII 
shows that each algorithm considered achieves the best average 
F1 score at least for one database. Best F1 averages for each 
database are in bold - where algorithms have a random 
initialisation F1 is the average of 11 runs.  

Table VIII presents the paired comparison between the 
eSQ+KNN k-predefined and the benchmark clustering 
algorithms, in practice values in Table VIII are calculated 
subtracting the values in Table VII to the values in Table VI. 
Positive values mean that eSQ+KNN k-predefined is better. 

Table VIII gives the average difference and the p-value obtained 
with the Student t-test.  

We remark that the comparisons are made among all 
algorithms that use a predefined number of clusters for their 
optimisations. 

In comparison with other clustering algorithms, the 
eSQ+KNN k-predefined consistently shows a better overall 
performance than EM and the Hierarchical Clustering. Indeed, 
the eSQ+KNN k-predefined achieves a statistically significant 
higher average F1 score than the Hierarchical Clustering in each 
case. The eSQ+KNN k-predefined outperforms the EM 
algorithm in 6 collections where positive differences are 
statistically significant (CRISIS3, NG5, NG6, R4, R5, R6), vice 
versa, the EM is significantly better than the GA in only one case 
(CLASSIC4), they are the same for NG3. Similarly, the 
eSQ+KNN k-predefined significantly outperforms the farthest 
first and the Hierarchical clustering algorithms in all collections. 
With respect to k-means and k-means++, eSQ+KNN k-
predefined is the best in 6 collections, while its F1 score is 
significantly lower in only one collection, NG3, they are the 
same for R6. Looking at the overall results, the performance of 
the eSQ+KNN k-predefined is always the best in 5 collections 
CRISIS3, NG5, NG6, R4, R5, and it achieves always a higher 
F1 score, but not always statistically significant, in the collection 
R6 

V. CONCLUSIONS 

In this article, we presented a hybrid approach (eSQ+KNN) 
for clustering text databases by evolving a set of single word 
search queries to create the initial clusters then by applying a 
KNN algorithm to assign all unassigned documents to their 
nearest cluster.   

The experimental results with 8 data sets show that the 
proposed eSQ+KNN algorithm clearly outperforms two of the 



classic clustering algorithms (farthest first and Hierarchical) in 
all collections considered, while it achieves better results than 
EM, kmeans and kmeans++ algorithm in all except 2 collections 
(1 is significantly lower and 1 is not statistically different).  

We have shown that eSQ can create human readable 
clustering queries without compromising effectiveness.  Unlike 
other methods, the search query format is not reliant on a 
similarity measure between documents. Search queries can act 
as labels for each cluster and give a human-readable explanation 
for cluster creation, meaning that there is no need to extract a 
label as a final stage [30]. Clustering can be framed as a search 
for the cluster centres, which can be points in a multi-
dimensional space or actual documents in the space. Here we 
use simple, human understandable search queries as cluster 
centres. 

In future work, we will explore the possibility of using the 
evolved search queries as a way of clustering images or other 
media. We also aim to examine the effectiveness of multi-word 
search queries, other query types such as AND, NOT and 
advanced query types as used in [19]. 

REFERENCES 

[1] C. C. Aggarwal, and C. Zhai, “A survey of text clustering algorithms,” in 
Mining text data, Boston, MA, Springer, 2012, pp. 77-128 

[2] G. Salton and C. Buckley, “Term-weighting approaches in automatic text 
retrieval,” Information Processing and Management, vol. 24, no. 5, pp. 
513-523, 1988.  

[3] W. Samek, T. Wiegand and K. Müller, “Explainable Artificial 
Intelligence: Understanding, Visualizing and Interpreting Deep Learning 
Models,” ITU Journal: ICT Discoveries, Special Issue The Impact of AI 
on Communication Networks and Services, vol. 1, pp. 1-10, 2017. 

[4] T. Wei, Y. Lu, H. Chang, Q. Zhou and X. Bao, “A semantic approach for 
text clustering using WordNet and lexical chains.,” Expert Systems with 
Applications,, vol. 42, no. 4, pp. 2264-2275., 2015. 

[5] N. Allahverdi , H. Kahramanli and M. Koklu , “Rule extraction from 
linear support vector machines,” in Proceedings of the Eleventh ACM 
SIGKDD International Conference on Knowledge Discovery in Data 
Mining, 2005.  

[6] C. D. Manning, R. Raghavan and H. Schultze, Introduction to Infromation 
Retrieval, Cambridge University Press, 2008 

[7] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful 
seeding.,” in Proceedings of the eighteenth annual ACM-SIAM 
symposium on Discrete algorithms, 2007. 

[8] S. Dasgupta and P. M. Long, “Performance guarantees for hierarchical 
clustering.,” Journal of Computer and System Sciences, vol. 70, no. 4, pp. 
555-569., 2005. 

[9] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum likelihood from 
incomplete data via the EM algorithm.,” Journal of the royal statistical 
society, pp. 1-38, 1997. 

[10] J. H. Holland, “Genetic Algorithms,” Scientific American, vol. 267, no. 
1, pp. 66-72, 1992. 

[11] E. R. Hruschka, R. J. Campello and A. A. Freitas, “A survey of 
evolutionary algorithms for clustering,” IEEE Transactions on Systems, 
Man, and Cybernetics, vol. 39, no. 2, pp. 133-155, 2009.  

[12] A. Abraham, S. Das and A. Konar, “Document Clustering using 
differential evolution,” in IEEE congress on evolutionary computation, 
2006.  

[13] A. G. Di Nuovo, and V. Catania, “An evolutionary fuzzy c-means 
approach for clustering of bio-informatics databases.,” in Proceedigns of 
the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 
2008.  

[14] W. Song, Y. Qiao, S. C. Park and X. Qian, “A hybrid evolutionary 
computation approach with its application for optimizing text document 
clustering,” Expert Systems with Applications, vol. 42, no. 5, pp. 2517-
2524, 2015.  

[15] D. Mustafi,  A. Mustafi, and G. Sahoo. “A novel approach to text 
clustering using genetic algorithm based on the nearest neighbour 
heuristic”. International Journal of Computers and Applications, 1-13, 
2020 

[16] C. Clack, J. Farringdon, P. Lidwell and T. Yu, “Autonomous document 
classification for business,” in Proceedings of the first international 
conference on Autonomous agents, 1997.  

[17] L. Hirsch, “Evolved Apache Lucene SpanFirst queries are good text 
classifiers,” in Evolutionary Computation (CEC), IEEE Congress on 
Evolutionary Computation., Barcelona, 2010.  

[18] A. Pietramala , V. Policicchio , P. Rullo and I. Sidhu, “A Genetic 
Algorithm for Text Classification Rule Induction,” in Proc. European 
Conf. Machine Learning and Principles and Practice of Knowledge 
Discovery in Databases (ECML/PKDD ’08), 2008.  

[19] L. Hirsch and T. Brunsdon, “A comparison of Lucene search queries 
evolved as text classifiers,” Applied Artificial Intelligence, vol. 32, no. 7, 
pp. 768-784., 2018.  

[20] L. Hirsch and A. Di Nuovo, “Document Clustering with Evolved Search 
Queries,” in Evolutionary Computation (CEC), IEEE Congress on., 
Donostia - San Sebastián, 2017 

[21] K Koitzsch,  Advanced Search Techniques with Hadoop, Lucene, and 
Solr. In Pro Hadoop Data Analytics (pp. 91-136). Apress, Berkeley, CA, 
2017. 

[22] C. Jia, M. B. Carson, X. Wang and J. Yu, “Concept decompositions for 
short text clustering by identifying word communities,” Pattern 
Recognition, vol. 76, pp. 691-703, 2018.  

[23] A. Olteanu, S. Vieweg and C. Castillo, “What to expect when the 
unexpected happens: Social media communications across crises,” in 
Proceedings of the 18th ACM conference on computer supported 
cooperative work & social computing, 2015.  

[24] K. k. Bharti and P. K. Singh, “Hybrid dimension reduction by integrating 
feature selection with feature extraction method for text clusterin,” Expert 
Systems with Applications, vol. 42, no. 6, pp. 3105-3114, 2015.  

[25] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of the 
Twelfth International Conference on Machine Learning., 1995.  

[26] L. Hirsch and A. Di Nuovo, “Document Clustering with Evolved Search 
Queries,” in Evolutionary Computation (CEC), IEEE Congress on., 
Donostia - San Sebastián, 2017.  

[27] C. Goutte and E. Gaussier, “A probabilistic Interpretation of Precision, 
Recall and F-score, with Implication for Evaluation,” in Advances in 
Information Retrieval, vol. 3408, D. E. Losada and J. M. Fernandez-Luna, 
Eds., Berlin Heidelberg New York, Springer, 2005, pp. 345-359. 

[28] Nguyen, H., Bui, X. N., Tran, Q. H., & Mai, N. L. (2019). A new soft 
computing model for estimating and controlling blast-produced ground 
vibration based on hierarchical K-means clustering and cubist algorithms. 
Applied Soft Computing, 77, 376-386. 

[29] Devi, R. D. H., Bai, A., & Nagarajan, N. (2020). A novel hybrid approach 
for diagnosing diabetes mellitus using farthest first and support vector 
machine algorithms. Obesity Medicine, 17, 100152. 

[30] G. Fung, S. Sandilya and R. B. Rao, “Rule extraction from linear support 
vector machines,” in Proceedings of the Eleventh ACM SIGKDD 
International Conference on Knowledge Discovery in Data Mining, 2005 

 

 


