
Document Clustering with Evolved Single Word Search
Queries

HIRSCH, Laurence <http://orcid.org/0000-0002-3589-9816>, DI NUOVO,
Alessandro <http://orcid.org/0000-0003-2677-2650> and PRASANNA,
Haddela

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/28567/

This document is the Accepted Version [AM]

Citation:

HIRSCH, Laurence, DI NUOVO, Alessandro and PRASANNA, Haddela (2021).
Document Clustering with Evolved Single Word Search Queries. In: 2021 IEEE
Congress on Evolutionary Computation (CEC). IEEE. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

978-1-7281-8393-0/21/$31.00 ©2021 Crown

Document Clustering with Evolved Single Word

Search Queries

Laurence Hirsch

Sheffield Hallam University

Sheffield, UK

0000-0002-3589-9816

Alessandro Di Nuovo

Sheffield Hallam Univeristy

Sheffield, UK

0000-0003-2677-2650

Prasanna Haddela

Sri Lanka Institute of Information

Technology

Colombo, Sri Lanka

0000-0002-6969-8772

Abstract— We present a novel, hybrid approach for clustering

text databases. We use a genetic algorithm to generate and evolve

a set of single word search queries in Apache Lucene format.

Clusters are formed as the set of documents matching a search

query. The queries are optimized to maximize the number of

documents returned and to minimize the overlap between clusters

(documents returned by more than one query in a set). Optionally,

the number of clusters can be specified in advance, which will

normally result in an improvement in performance. Not all

documents in a collection are returned by any of the search queries

in a set, so once the search query evolution is completed a second

stage is performed whereby a KNN algorithm is applied to assign

all unassigned documents to their nearest cluster. We describe the

method and compare effectiveness with other well-known existing

systems on 8 different text datasets. We note that search query

format has the qualitative benefits of being interpretable and

providing an explanation of cluster construction.

Keywords— document clustering, search query, genetic

algorithm, Lucene

I. INTRODUCTION

Document clustering is considered one of the most important
problems in unsupervised learning. Clustering algorithms group
a collection of documents into subsets or clusters to enable users
to explore, organise, summarise and visualise large volumes of
text. Documents within a cluster should be similar to each other
(cohesion) whilst documents in different clusters should be
dissimilar (separation) [1].

For automated clustering, documents are traditionally
represented by a multi-dimensional feature vector where each
dimension corresponds to a weighted value of a term within the
document collection [2]. Various similarity or distance measures
have been proposed and are a central component of most text
clustering algorithms. Using such a method it is often difficult
for a human to understand how the clustering is performed.
Indeed, we should note that there has been criticism of the black
box nature of many successful machine learning models due to
a lack of transparency, and little or no information about how
algorithms arrive at their predictions [3]. Work has been done
on alternative models which recognise word order such as using
lexical chains to preserve the semantic relationships between
words, for example by using WordNet [4]. Efforts have also
been made to generate a set of human interpretable rules from
‘black box’ systems such as support vector machines as in [5]

In their seminal work Manning et al [6] assert the cluster
hypothesis:

 “if there is a document from a cluster that is relevant to a
search request, then it is likely that other documents from the
same cluster are also relevant.” [6]

Following this hypothesis, we have developed a system,
called eSQ (evolved Search Queries), which uses a Genetic
Algorithm (GA) for evolving a set of search queries (requests).
Each query is a single word and a cluster is defined as the set of
documents which contain that word.

The overall objective of eSQ is to develop an effective
clustering system with a natural fit for information retrieval
needs and with the following desirable characteristics:

1. easily interpreted by a human.

2. modifiable by a human.

3. provide a causal explanation of cluster construction.

Many algorithms have been proposed to achieve document
clustering. We compare the eSQ system with several widely
used alternatives which we briefly summarise here.

Although originating in the 1950s K-means is still one of the
most popular clustering algorithms and together with its variants
is used in a wide variety of modern day clustering algorithms
(e.g. [10]). K-means begins with k arbitrary centres, typically
chosen uniformly at random from the data points (often actual
documents in the collection). Each point is then assigned to the
nearest centre, and each centre is recomputed as the centre of
mass of all points assigned to it. These two steps are repeated
until the process stabilizes.

K-means has been shown to be highly sensitive to the initial
centres and much of the research effort in document clustering
has been focused on optimizing this aspect. K-means++ is an
enhanced version of the k-means algorithm and uses a
randomised seeding technique which is a specific way of
selecting initial centres [7] [8]. Farthest first traversal is another
alternative initialization method used in k-means algorithm [8].
Expectation-Maximization Clustering is a parametric
probability distribution and the entire data set is a mixture of
these distributions. Therefore, it is possible to cluster the dataset
using a finite mixture density model of k probability
distributions and identify clusters. The Expectation-

Maximization (EM) algorithm can find the best fitting
parameters using iterative refinement algorithm [9]. With
Agglomerative hierarchical clustering, from the beginning each
data point is a cluster. Next, two nearest points are joined
repeatedly until it forms a single cluster [1].

The genetic algorithm (GA) is a stochastic global
optimisation technique which mimics the process of Darwinian
evolution such that the search for solutions is guided by the
principles of selection and heredity [10]. GAs have proved to
be an effective computational method, especially in situations
where the search space is un-characterized (mathematically), not
fully understood, or highly dimensional [11]. Text clustering is
a problem that fits these characteristics, and GAs have been used
in this area, mostly as a means of optimizing the allocation of
cluster centres [12-15]. Typically, each chromosome specifies a
combination of centres, which represent the candidate solution
to the clustering problem.

 GAs have also been used to generate rules for text
classification [16-19] and clustering [20], which have the
advantage of being transparent and explainable. The eSQ system
presented here has a novel fitness test based entirely on the count
of unique query hits. Furthermore, this is the first time that a
query-based clustering system has been combined with a second
stage where a KNN algorithm is used to assign documents which
do not contain any of the search query words to their nearest
cluster.

 Most text clustering systems require that the user provide
the number of expected clusters (k) in advance. However, k is
often not known. We also present a solution to the harder
problem of discovering k as well as defining clusters.

II. MATERIALS

A. Apache Lucene

Apache Lucene (https://lucene.apache.org/) [21] is a high-
performance full-text indexing and searching software library
written in Java. Evolutionary computation is notoriously
resource-intensive, and we find that using Lucene to store and
query the document collections is a significant boost to the
performance of the system. Lucene also includes
implementations of various classifiers.

B. Document Collections

Different clustering algorithms can produce divergent results
when compared to each other on different datasets. We,
therefore, ran our experiments on 8 different datasets selected
from 4 document collections containing very different types of
document. We have tried to match the datasets as closely as
possible in terms of size and categories, to those reported
previously when evaluating text clustering systems. Each
dataset is labelled in bold.

1) CrisisLex
An increasing number of short texts are being generated. It

has been noted that in a short text environment the situation is
complicated by sparsity and high dimensionality, meaning that
the vector space model and classic text clustering methods may
not work so well [22]. CrisisLex.org is a repository of crisis-
related social media data and tools [23]. The ‘CrisisLexT6’
collection2 contains tweets collected in 2012-13 in different

crisis situations. We use 500 of the tweets from each of the three
of the sets: Colorado wildfires, Boston bombings and
Queensland floods (Crisis3).

2) Classic 4
The Classic 4 dataset contains 7095 documents, where each

document belongs to one of the four distinct collections: CACM
(titles and abstracts from the journal Communications of the
Association of Computing Machinery), CISI (information
retrieval papers), CRANFIELD (aeronautical system papers),
MEDLINE (medical journals). We take the commonly used
approach (e.g. [24]) and randomly select 500 documents from
each category (Classic4).

3) 20 Newsgroups
In the 20 Newsgroups collection [25] documents are

messages posted to Usenet newsgroups, and the categories are
the newsgroups themselves. The data on this set is considered
particularly noisy and as might be expected does include
complications such as duplicate entries and cross postings. We
create three datasets from this collection by randomly selecting
100 documents from each of the categories. NG3 is created
from: rec.sport.hockey, sci.space and soc.religion.christian.
NG5 is from: comp.os.ms-windows.misc, misc.forsale,
rec.sport.hockey, sci.space, soc.religion.christian. NG6 is from:
comp.graphics, rec.sport.hockey, sci.crypt, sci,space,
soc.religion.christian, talk.politics .gun as used in [14].

4) Reuters-21578
Reuters-21578 news collection contains news articles

collected from the Reuters newswire in 1987. We create three
datasets using 100 documents from each category. R4 contains
documents from crude, earn, grain, money-fx. R5 contains
documents from: coffee, crude, interest, sugar, trade. R6
contains documents from acq, crude, earn, grain, money-fx and
ship as used in [15]

III. METHOD

We use a GA to specify a set of search queries where the set
size k is equal to the number of clusters. A simplified example
based on the problem of clustering documents in the Newsgroup
5 (NG5) dataset is used to assist the explanation.

Step 1: pre-processing

Before we start evolving queries, all the text is placed in
lower case and a small stop set is used to remove common words
with little semantic weight. For each dataset, a Lucene index is
constructed from the collection of documents, and each
document labelled (using Lucene fields) according to its pre-set
category. Of course, the GA has no access to the category label
which is only used to evaluate the effectiveness of the clustering
once all the stages have completed.

Step 2: create a wordlist

In the second step, we create an ordered list of significant
words which is used by the GA for building queries. To
construct the list, the TF*IDF (term frequency * inverse
document frequency) [2] value for each term in the collection is
calculated. TF-IDF (often used in term weighting) is used to
identify terms that are concentrated in particular documents and
may therefore be of more significance in a collection. TF is the

number of occurrences of a term in a document and IDF is the
inverse of the number of documents in which the term occurs.
For each term in the index, we determine TF*IDF values
occurring in each document as indicated in the groovy style
pseudo code below, where terms is the set of terms and
documents is the set of documents in the index.

Map<Term, Double> tMap = [:]

terms.each {term ->

 double tfidfTotal = 0

 documents.each {doc ->

 tfidfTotal += tf * idf

 }

 tMap.put(term, tfidifTotal)

}

TermList tList= tMap.sort{it.value}.keySet

Terms are sorted by their overall TF*IDF value and the top
100 words are selected for use in query building. This step is
only required once for each index before the start of the
evolution, after which the list is fixed. The integer index is
simply the words place in the TF*IDF ordering. In the example
shown in Table I the length of the list is only 8.

TABLE I. EXAMPLE LIST OF WORDS FOR QUERY CONSTRUCTION

0 1 2 3 4 5 6 7

space nasa god windows hockey file sale game

Step 3: create generation 0

Table II shows a sample chromosome from the population
of generation 0. Chromosomes have an integer representation
where the values can be in the range [0 .. 100] (the maximum
size of the wordlist). In the example below each gene defines a
single word search query (SQ) and each search query defines the
cluster as those documents which contain that word.

TABLE II. CREATING SINGLE WORD SEARCH QUERIES (SQ).

 SQ0 SQ1 SQ2 SQ3 SQ4

Chromosome 0 4 5 1 7

Query Word space hockey file nasa game

In the example above, the number of clusters (k) is
determined from the known number of categories before the
start of the evolution. However, we can optionally add another
gene in the chromosome to set a value for k (the number of
clusters) where k can be in the inclusive range [2 .. 9] (8 possible
cluster sizes).

Step 4: fire each query in the set.

 In our example, five search queries are generated for the
NG5 dataset. For each individual in the population fire each of
the search queries in its set and determine its fitness by
examining the clusters of documents returned by the queries and
counting the number of documents returned which occur in only
1 cluster (see fitness calculation below).

Step 5: Apply genetic operators to create a new generation.

Step 6: Repeat steps 4-5 for 300 generations (termination
criteria) and select the individual with the highest fitness.

Step 7: KNN

The selected individual at the end of a run will produce a set
of single word search queries and a cluster will be the set of
documents containing a search query word. However, many
documents in the collection may not contain any of the query
words. We have found that we can increase effectiveness by
applying a final stage to assign the unassigned documents to
their nearest search query defined clusters. We use the Lucene
implementation of the K-Nearest Neighbour (KNN) algorithm
to add each unassigned document to its closest cluster.

Once a run is complete, we can measure the final F1 value
of the expanded clusters with reference to the original category
labels. A GA contains many random elements, so we therefore
repeat each run 11 times.

A. Fitness Calculation

Text clustering aims to return sets of documents which are
related to each other but not to documents in other clusters. We
have created and tested two fitness functions that aim to partition
a document collection into clusters by generating a set of search
queries. The first fitness function is for the case where the
desired number of clusters (k) is known in advance. In the
second case, the GA will attempt to determine the optimal value
for k.

When calculating fitness from a set of queries generated by
a chromosome, we define uniqueHits as the count of documents
returned by exactly one query in the set of queries and totalHits
as the count of documents returned by any query in the set.

Let Q be a set of queries, let D be a set of documents. Let M
⊆ Q X D be the set of pairs (q, d) where query qϵQ matches
document dϵD

uniqueHits: |{dϵD∶ qϵQ,∃!(q,d)ϵM| (1)

totalHits: |{d ϵ D∶qϵQ,∃q (q,d)ϵM}| (2)

For the case where k is known in advance, we have found
that uniqueHits is a good fitness measure where the higher the
value (the size of the set of documents returned by only one
query) the better the fitness. However, we have noticed that in
the case where k is set in the chromosome the GA often produces
solutions with too many categories with respect to the labelled
collections. Introducing a slight penalty as in the second fitness
test (below) improved effectiveness. We have found a suitable
penalty value to be 0.04 (see results section below).

uniqueHits * (1 - (k * penalty)) (3)

Below we show Groovy style pseudo code to calculate
uniqueHits for a set of queries generated from a chromosome.
Note that in Apache Lucene ‘SHOULD’ behaves like an OR and
‘MUST_NOT’ is used to indicate that the term MUST NOT
occur if a query is to return a document
(https://lucene.apache.org/core/8_4_1/core/org/apache/lucene/s
earch/package-summary.html#query).

Set queries = [q0..qk]

int uniqueHits = 0

queries.each {q ->

 BooleanQuery uniqueQ= new BooleanQuery()

 uniqueQ.add(q, SHOULD)

 Set otherQueries = queries.minus(q)

 otherQueries.each {otherQ ->

 uniqueQ.add(otherQ, MUST_NOT)

 }

 uniqueHits += search(uniqueQ).size

}

B. Parameters

We used a fixed set of standard GA parameters in all our
experiments which are summarised in Table III. We use an
island model with 4 subpopulations to increase diversity and
exchange 3 individuals every 50 generations.

TABLE III. GA PARAMETERS

Parameter Value

Selection Type Tournament

Tournament Size 5

Subpopulations 4

Population Size 512

Generations 300

Crossover Probability 0.8

Mutation Probability 0.1

Elitism Best 2 individuals

C. Effectiveness Measures

Effectiveness is determined by referring to the original
category labels from the document collection. The relevant
category is determined by computing the most frequent category
occurring in the cluster. We then compute precision (p), which
is defined as the portion of relevant instances that are retrieved,
and recall (r), which is the share of relevant instances retrieved
by the algorithm. Finally, the main effectiveness measure we
use is the F1 score (sometimes known as Pairwise F-Measure
(PFM)) [1] to measure the overall accuracy. The F1 measure has
the advantage of giving equal weight to precision and recall and
is given by:

 𝐹1 =
2pr

p+r
 ()

In our example shown in Table II above Search Query 0
(SQ0) will return all documents in the dataset which contain the
word ‘space’. On its own this is likely to produce a reasonable
cluster as measured by F1 since it will retrieve documents
mostly in the space category. However, looking at all five
clusters, both the fitness of the individual and the final average
F1 across all categories is likely to be low since we also have a
cluster based on the word ‘nasa’ which overlaps the ‘space’
cluster to a significant degree. We also have a cluster based on
the word ‘hockey’ and another based on the word ‘game’ which
will both retrieve documents mainly from the hockey category,

therefore making the unique hits count low. Also, none of the
search queries in the set are likely to return documents mainly
from the christian category.

In the experiments, we consider the case of the GA
discovering the number of clusters k, thus, we also calculate the
cluster count error as a measure of how effective the GA is in
selecting k. The cluster count error is the absolute value of the
number of clusters generated by the GA minus the number of
categories in the original data set.

IV. RESULTS AND DISCUSSION

A. Penalty for more clusters

In the situation where k is not known in advance, the number
of clusters produced by the GA is typically higher than the
number of categories existing in the original collection. This
higher fragmentation leads to weaker results and we found
effectiveness could be improved by introducing a small penalty
into the fitness test based on the number of clusters:

fitness = uniqueHits * (1 - (penalty * k)) (5)

We investigated various values for the penalty. The effect of
a range of sizes for the penalty is evaluated both in terms of the
average F1 Score (Fig. 1) and the cluster count error (Fig. 2).
Results of both analyses indicate that 0.04 is a good value for
the penalty across the datasets we have investigated here.

Fig. 1: Average F1 for varying fitness penalty values.

Fig. 2: Average Cluster Count Error with varying fitness
penalty values

Following these results, we selected a penalty of 0.04 in the
experiments described in the effectiveness section below for the
case where k is not known in advance.

B. Interpretability

One of the important, qualitative advantages of the search
query method is that the queries which define the clusters are
human readable. As examples of this feature, Table IV and
Table V show queries produced by the best individual at the end
of a run for the Crisis3 and NG5 datasets. Queries will return
documents which contain the query words. The category is
identified as the most frequently occurring among the
documents returned by the query.

TABLE IV. CRISIS 3 QUERY SET (F1 FOR QUERY SET: 0.74)

Category Search Query F1

Boston bombing boston 0.74

Colorado wildfires colorado 0.88

Queensland floods bigwet 0.61

TABLE V. NG5 QUERY SET (F1 FOR QUERY SET: 0.68)

Category Search Query F1

soc.religion.christian god 0.65

comp.os.ms-windows.misc windows 0.78

rec.sport.hockey nhl 0.58

sci.space space 0.70

misc.forsale sale 0.71

The GA has found the query words which are the
distinguishing features of the categories. The fitness test
promotes a set of query words which return the maximum
number of documents occurring in only one cluster. Commonly
the original category label (or a variant) is the query word. As
well as acting as labels for the categories, the query words can
give the analyst additional useful information. For example,
regarding the Queensland floods the generated search query
indicates that ‘bigwet’ is an important term used by people
tweeting in the crisis. In fact, ‘bigwet’ became the informal name
of the disaster. Similarly, ‘nhl’ refers to the ‘National Hockey
League’ which is the topic of most posts in the NG5
rec.sport.hockey category

C. Cluster Expansion using KNN

The clusters produced by the eSQ system have the
characteristic of high precision but low recall with respect to the
original labelled categories. On average, across all the datasets
eSQ achieves precision of 0.87 and recall of 0.55. The recall is
so low mainly because many of the documents are not returned
by any query. We have found it useful to use a KNN classifier
to assign each of these documents to their nearest cluster. In
other words, after the GA driven clustering stage we add a
second classification stage in which the document clusters
returned by the search queries are used as a training set for the
KNN classifier. Fig. 3 shows the NG3 collection where an X
represents a document which has been assigned to a category.
For example, cluster A shows all the documents which contain
the word ‘god’. Y indicates a document which does not contain
any of the search query words (‘god’, ‘hockey’ or ‘nasa’) and
are therefore not included in any cluster. The arrows represent
the process whereby the Lucene implementation of KNN

assigns a document Y to its nearest cluster. We use a Euclidean
distance measure with a K value of 10.

Fig. 3: KNN cluster expansion stage

To demonstrate the effectiveness of the proposed technique

over the standard exploration, we compared the result before
(eSQ) and after (eSQ+KNN) the application of KNN. For every
index the KNN stage improves effectiveness with an average
0.167 improvement to the F1 scores after the KNN stage.

Fig. 4: F1 for eSQ and eSQ+KNN

D. Effectiveness Comparison

As discussed above we present two versions of the evolved
Search Query (eSQ) here. In the first case the algorithm is given
the required number of clusters in advance (eSQ-k-predefined)
and in the second case the number of clusters must be discovered
(eSQ-k-discovered).

Table VI presents the results of the eSQ and eSQ+KNN
explorations, with and without a predefined number of clusters.
Average and F1 scores [27] are reported as well as the standard
deviation. F1 is the average over 11 runs. In bold are
significantly better results (t-test p-value < 0.05). We consider
eSQ+KNN k-predefined the direct comparison for the standard
clustering algorithms, which all require the number of clusters
to be fixed and given in advance. However, eSQ+KNN k-
discovered must determine the number of clusters as well as
perform the clustering and should be considered a harder
problem.

TABLE VI. FINAL RESULTS OF THE GA (BEFORE KNN) AND ESQ EXPLORATIONS, THE LATTER WITH AND WITHOUT A PREDEFINED NUMBER OF CLUSTERS K. IT

PRESENTS ALSO THE DIFFERENCES (DIFF COLUMN) AND THEIR P-VALUE (STUDENT T-TEST). SIGNIFICANT DIFFERENCES (P<0.05) ARE IN BOLD

Collection

eSQ+KNN

k-predefined

eSQ+KNN

k-discovered

Predefined minus

Discovered

eSQ

k-predefined

eSQ+KNN minus

eSQ

k-predefined

F1 average std F1 average std Diff p F1 average std diff p

CLASSIC4 0.822 0.000 0.563 <0.001 0.259 <0.001 0.554 0.000 0.267 <0.001

CRISIS3 0.862 0.000 0.677 <0.001 0.185 <0.001 0.743 <0.001 0.119 <0.001

NG3 0.915 <0.001 0.702 0.000 0.213 <0.001 0.671 0.000 0.244 <0.001

NG5 0.895 0.000 0.895 0.000 0.000 1.000 0.685 0.000 0.211 <0.001

NG6 0.895 0.007 0.896 0.007 -0.001 0.682 0.637 <0.001 0.257 <0.001

R4 0.913 <0.001 0.913 <0.001 0.000 1.000 0.784 0.000 0.130 <0.001

R5 0.941 0.004 0.942 0.004 -0.001 0.400 0.887 0.000 0.054 <0.001

R6 0.672 <0.001 0.689 0.003 -0.017 <0.001 0.619 <0.001 0.053 <0.001

AVERAGE 0.864 0.785 0.080 0.697 0.167

TABLE VII. REFERENCE RESULTS WITH VARIOUS CLUSTERING ALGORITHMS (BENCHMARKS). K WAS PREDEFINED IN ALL CASES. BEST RESULTS ARE IN BOLD

Collection farthest first kmeans++ kmeans EM HieraClus

F1 std F1 std F1 std F1 std F1 std

CLASSIC4 0.780 0.000 0.742 0.100 0.750 0.100 0.916 0.036 0.347 0.000

CRISIS3 0.760 0.000 0.748 0.128 0.711 0.126 0.776 0.014 0.677 0.000

NG3 0.588 0.000 0.926 0.010 0.935 0.016 0.916 0.005 0.866 0.000

NG5 0.729 0.000 0.607 0.041 0.645 0.033 0.670 0.014 0.596 0.000

NG6 0.818 0.000 0.725 0.120 0.641 0.122 0.599 0.060 0.628 0.000

R4 0.758 0.000 0.763 0.143 0.771 0.117 0.693 0.048 0.687 0.000

R5 0.658 0.000 0.679 0.117 0.596 0.080 0.717 0.053 0.775 0.000

R6 0.651 0.000 0.660 0.045 0.653 0.101 0.602 0.049 0.606 0.000

TABLE VIII. PAIRWISE DIFFERENCES (DIFF) OF THE MEANS BETWEEN ESQ+KNN K-PREDEFINED AND THE BENCHMARKS, INCLUDING P-VALUE OF THE

STUDENT T-TEST (2 TAILS). SIGNIFICANT DIFFERENCES (P<0.05) ARE IN BOLD

Collection farthest first kmeans++ kmeans EM HieraClus

diff p diff p diff p diff p diff p

CLASSIC4 0.042 <0.001 0.079 0.033 0.072 0.049 -0.094 <0.001 0.475 <0.001

CRISIS3 0.102 <0.001 0.113 0.021 0.151 0.004 0.085 <0.001 0.185 <0.001

NG3 0.327 <0.001 -0.011 0.007 -0.020 0.004 -0.002 0.369 0.049 <0.001

NG5 0.166 <0.001 0.288 <0.001 0.251 <0.001 0.225 <0.001 0.299 <0.001

NG6 0.077 <0.001 0.170 0.002 0.253 <0.001 0.296 <0.001 0.267 <0.001

R4 0.155 <0.001 0.150 0.009 0.142 0.004 0.221 <0.001 0.226 <0.001

R5 0.283 <0.001 0.262 <0.001 0.345 <0.001 0.224 <0.001 0.166 <0.001

R6 0.021 <0.001 0.012 0.421 0.019 0.568 0.070 0.002 0.066 <0.001

Table VI shows that predefining the number of clusters
makes the GA exploration easier and the results are significantly
better on average. However, we can see that the eSQ+KNN k-
discovered is as good as the predefined version in the databases
with more than 4 clusters. In particular, the average F1 of the
eSQ+KNN k-discovered is significantly the best for the database
R6. This suggests that the eSQ+KNN k-discovered has the
potential to achieve better results in the exploration, even
without the additional information of the number of clusters, but
further investigation is needed in order to identify the best
combination of fitness function and parameters to guide the
exploration toward the maximum value more frequently.

We also give results using 5 widely used alternative
strategies for document clustering namely farthest first, k-
means, kmeans++, Expectation Maximization (EM) and
Hierarchical Clustering [1]. We should note that although some
of these techniques were developed many years ago they are still
used regularly in a broad range of applications (e.g. [28][29]).
Table VII presents the reference results of the clustering
algorithms considered as a benchmark to evaluate the
eSQ+KNN performance. Average F1 scores and the standard
deviation is provided for each one. Note that in some cases,
where there is not a random initialisation, the standard deviation
is, of course, 0, while in the other cases there is variance due to
the random initialisation. Each of the algorithms in Table VII
are given the required number of clusters in advance. Table VII
shows that each algorithm considered achieves the best average
F1 score at least for one database. Best F1 averages for each
database are in bold - where algorithms have a random
initialisation F1 is the average of 11 runs.

Table VIII presents the paired comparison between the
eSQ+KNN k-predefined and the benchmark clustering
algorithms, in practice values in Table VIII are calculated
subtracting the values in Table VII to the values in Table VI.
Positive values mean that eSQ+KNN k-predefined is better.

Table VIII gives the average difference and the p-value obtained
with the Student t-test.

We remark that the comparisons are made among all
algorithms that use a predefined number of clusters for their
optimisations.

In comparison with other clustering algorithms, the
eSQ+KNN k-predefined consistently shows a better overall
performance than EM and the Hierarchical Clustering. Indeed,
the eSQ+KNN k-predefined achieves a statistically significant
higher average F1 score than the Hierarchical Clustering in each
case. The eSQ+KNN k-predefined outperforms the EM
algorithm in 6 collections where positive differences are
statistically significant (CRISIS3, NG5, NG6, R4, R5, R6), vice
versa, the EM is significantly better than the GA in only one case
(CLASSIC4), they are the same for NG3. Similarly, the
eSQ+KNN k-predefined significantly outperforms the farthest
first and the Hierarchical clustering algorithms in all collections.
With respect to k-means and k-means++, eSQ+KNN k-
predefined is the best in 6 collections, while its F1 score is
significantly lower in only one collection, NG3, they are the
same for R6. Looking at the overall results, the performance of
the eSQ+KNN k-predefined is always the best in 5 collections
CRISIS3, NG5, NG6, R4, R5, and it achieves always a higher
F1 score, but not always statistically significant, in the collection
R6

V. CONCLUSIONS

In this article, we presented a hybrid approach (eSQ+KNN)
for clustering text databases by evolving a set of single word
search queries to create the initial clusters then by applying a
KNN algorithm to assign all unassigned documents to their
nearest cluster.

The experimental results with 8 data sets show that the
proposed eSQ+KNN algorithm clearly outperforms two of the

classic clustering algorithms (farthest first and Hierarchical) in
all collections considered, while it achieves better results than
EM, kmeans and kmeans++ algorithm in all except 2 collections
(1 is significantly lower and 1 is not statistically different).

We have shown that eSQ can create human readable
clustering queries without compromising effectiveness. Unlike
other methods, the search query format is not reliant on a
similarity measure between documents. Search queries can act
as labels for each cluster and give a human-readable explanation
for cluster creation, meaning that there is no need to extract a
label as a final stage [30]. Clustering can be framed as a search
for the cluster centres, which can be points in a multi-
dimensional space or actual documents in the space. Here we
use simple, human understandable search queries as cluster
centres.

In future work, we will explore the possibility of using the
evolved search queries as a way of clustering images or other
media. We also aim to examine the effectiveness of multi-word
search queries, other query types such as AND, NOT and
advanced query types as used in [19].

REFERENCES

[1] C. C. Aggarwal, and C. Zhai, “A survey of text clustering algorithms,” in
Mining text data, Boston, MA, Springer, 2012, pp. 77-128

[2] G. Salton and C. Buckley, “Term-weighting approaches in automatic text
retrieval,” Information Processing and Management, vol. 24, no. 5, pp.
513-523, 1988.

[3] W. Samek, T. Wiegand and K. Müller, “Explainable Artificial
Intelligence: Understanding, Visualizing and Interpreting Deep Learning
Models,” ITU Journal: ICT Discoveries, Special Issue The Impact of AI
on Communication Networks and Services, vol. 1, pp. 1-10, 2017.

[4] T. Wei, Y. Lu, H. Chang, Q. Zhou and X. Bao, “A semantic approach for
text clustering using WordNet and lexical chains.,” Expert Systems with
Applications,, vol. 42, no. 4, pp. 2264-2275., 2015.

[5] N. Allahverdi , H. Kahramanli and M. Koklu , “Rule extraction from
linear support vector machines,” in Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data
Mining, 2005.

[6] C. D. Manning, R. Raghavan and H. Schultze, Introduction to Infromation
Retrieval, Cambridge University Press, 2008

[7] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding.,” in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, 2007.

[8] S. Dasgupta and P. M. Long, “Performance guarantees for hierarchical
clustering.,” Journal of Computer and System Sciences, vol. 70, no. 4, pp.
555-569., 2005.

[9] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm.,” Journal of the royal statistical
society, pp. 1-38, 1997.

[10] J. H. Holland, “Genetic Algorithms,” Scientific American, vol. 267, no.
1, pp. 66-72, 1992.

[11] E. R. Hruschka, R. J. Campello and A. A. Freitas, “A survey of
evolutionary algorithms for clustering,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 39, no. 2, pp. 133-155, 2009.

[12] A. Abraham, S. Das and A. Konar, “Document Clustering using
differential evolution,” in IEEE congress on evolutionary computation,
2006.

[13] A. G. Di Nuovo, and V. Catania, “An evolutionary fuzzy c-means
approach for clustering of bio-informatics databases.,” in Proceedigns of
the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
2008.

[14] W. Song, Y. Qiao, S. C. Park and X. Qian, “A hybrid evolutionary
computation approach with its application for optimizing text document
clustering,” Expert Systems with Applications, vol. 42, no. 5, pp. 2517-
2524, 2015.

[15] D. Mustafi, A. Mustafi, and G. Sahoo. “A novel approach to text
clustering using genetic algorithm based on the nearest neighbour
heuristic”. International Journal of Computers and Applications, 1-13,
2020

[16] C. Clack, J. Farringdon, P. Lidwell and T. Yu, “Autonomous document
classification for business,” in Proceedings of the first international
conference on Autonomous agents, 1997.

[17] L. Hirsch, “Evolved Apache Lucene SpanFirst queries are good text
classifiers,” in Evolutionary Computation (CEC), IEEE Congress on
Evolutionary Computation., Barcelona, 2010.

[18] A. Pietramala , V. Policicchio , P. Rullo and I. Sidhu, “A Genetic
Algorithm for Text Classification Rule Induction,” in Proc. European
Conf. Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD ’08), 2008.

[19] L. Hirsch and T. Brunsdon, “A comparison of Lucene search queries
evolved as text classifiers,” Applied Artificial Intelligence, vol. 32, no. 7,
pp. 768-784., 2018.

[20] L. Hirsch and A. Di Nuovo, “Document Clustering with Evolved Search
Queries,” in Evolutionary Computation (CEC), IEEE Congress on.,
Donostia - San Sebastián, 2017

[21] K Koitzsch, Advanced Search Techniques with Hadoop, Lucene, and
Solr. In Pro Hadoop Data Analytics (pp. 91-136). Apress, Berkeley, CA,
2017.

[22] C. Jia, M. B. Carson, X. Wang and J. Yu, “Concept decompositions for
short text clustering by identifying word communities,” Pattern
Recognition, vol. 76, pp. 691-703, 2018.

[23] A. Olteanu, S. Vieweg and C. Castillo, “What to expect when the
unexpected happens: Social media communications across crises,” in
Proceedings of the 18th ACM conference on computer supported
cooperative work & social computing, 2015.

[24] K. k. Bharti and P. K. Singh, “Hybrid dimension reduction by integrating
feature selection with feature extraction method for text clusterin,” Expert
Systems with Applications, vol. 42, no. 6, pp. 3105-3114, 2015.

[25] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of the
Twelfth International Conference on Machine Learning., 1995.

[26] L. Hirsch and A. Di Nuovo, “Document Clustering with Evolved Search
Queries,” in Evolutionary Computation (CEC), IEEE Congress on.,
Donostia - San Sebastián, 2017.

[27] C. Goutte and E. Gaussier, “A probabilistic Interpretation of Precision,
Recall and F-score, with Implication for Evaluation,” in Advances in
Information Retrieval, vol. 3408, D. E. Losada and J. M. Fernandez-Luna,
Eds., Berlin Heidelberg New York, Springer, 2005, pp. 345-359.

[28] Nguyen, H., Bui, X. N., Tran, Q. H., & Mai, N. L. (2019). A new soft
computing model for estimating and controlling blast-produced ground
vibration based on hierarchical K-means clustering and cubist algorithms.
Applied Soft Computing, 77, 376-386.

[29] Devi, R. D. H., Bai, A., & Nagarajan, N. (2020). A novel hybrid approach
for diagnosing diabetes mellitus using farthest first and support vector
machine algorithms. Obesity Medicine, 17, 100152.

[30] G. Fung, S. Sandilya and R. B. Rao, “Rule extraction from linear support
vector machines,” in Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, 2005

