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Abstract

We find the structure of a model discotic liquid crystal (DLC) confined between symmetric walls

of controllable penetrability. The model consists of oblate hard Gaussian overlap (HGO) particles.

Particle-substrate interactions are modelled as follows: each substrate sees a particle as a disc of

zero thickness and diameter D less than or equal to that of the actual particle, σ0, embedded inside

the particle and located halfway along, and perpendicular to, its minor axis. This allows us to

control the anchoring properties of the substrates, from planar (edge-on) for D ∼ 0 to homeotropic

(face-on) for D ∼ σ0. This system is investigated using both Monte Carlo simulation and density-

functional theory, the latter implemented at the level of Onsager’s second-virial approximation with

Parsons-Lee rescaling. We find that the agreement between theory and simulation is substantially

less good than for prolate HGOs; in particular, the crossover from edge-on to face-on alignment

is predicted by theory to occur at D ∼ 0.65σ0, but simulation finds it for D ∼ 0.55σ0. These

discrepancies are likely a consequence of the fact that Onsager’s theory is less accurate for discs

than for rods. We quantify this by computing the bulk isotropic-nematic phase diagram of oblate

HGOs.

Liquid crystal films; anchoring transitions; density-functional theory; Monte Carlo simulation
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I. INTRODUCTION

Liquid crystal (LC) devices (LCDs) are now literally in every pocket: indeed, they have

become so common we hardly notice them anymore. All current LCDs rely, for their oper-

ation, on the competing actions of bounding surfaces, known as anchoring, and of applied

fields on the preferred orientation of the particles making up the LC. The fundamental

problem at the heart of LC applications is to understand how a given bounding surface

modifies the properties of a given LC to induce a resultant alignment. Most theoretical and

simulation-based studies on confined LCs to date have focused on rod-like particles, such as

hard ellipsoids (HEs) [1, 2] or hard spherocylinders (HSCs) [3–5]. This reflects the fact that

the traditional building blocks of LC phases are elongated objects, either at the molecular

or colloidal level [6]. However, it is now possible to synthesise a huge variety of molecular

shapes, including plates and discs [7]. Such discotic LCs (DLCs) are also realised in colloidal

dispersions, e.g., of gibbsite [8] or clay [9] particles. DLCs may exhibit semiconducting prop-

erties, with promising applications in the photovoltaic industry [10]. They are also effective

as lubricants, outperforming hydrocarbons in some conditions [11]. This, as well as sheer

curiosity, has spawned a number of theoretical, computational and experimental studies of

DLCs at surfaces and interfaces.

Harnau and Dietrich used extensions of Onsager’s second-virial theory to study infinitely-

thin hard discs with continuous orientations [12] and binary mixtures of hard platelets with

restricted orientations [13], at a hard wall. They found that (face-on) ordering effects are

significant already at fairly low densities. Schmidt and co-workers developed a fundamental-

measure (FM) density-functional theory (DFT) of infinitely thin hard platelets, both pure

and mixed [14]. They then applied this to the isotropic-nematic (I–N) interface of suspen-

sions of colloidal platelets [15, 16], with results superior to those of Onsager’s second-virial

theory. They also investigated the capillary nematisation of thin hard discs between parallel

hard walls, and concluded that the I–N transition of plates is suppressed much less strongly

by confinement than that of rods [17]. More recently, Kapanowski and Abram [18] found,

on the basis of Onsager’s second-virial theory, that hard platelets prefer to lie flat at a hard

wall and will order biaxially only if the bulk phase itself is biaxial.

On the in silico front, Piñeiro et al. [19] have performed NPT and Gibbs ensemble Monte

Carlo (MC) simulations of hard cut spheres of aspect ratio L/D = 0.1 in a slab geometry,
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between either hard walls that exclude the particles completely, or adsorbent walls that

exclude only the particles’ centres-of-mass. Hard walls were revealed to induce homeotropic

(face-on) anchoring and stabilise the N phase, whereas adsorbent walls promoted planar

(edge-on) alignment and a more disordered bulk. Avendaño et al. [20] have reported what

is, to our knowledge, the only computer simulation of a non-convex DLC composed of soft-

repulsive rings between parallel, soft-repulsive walls. These tend to align edge-on, forming

low-density smectic layers with anti-nematic order and no biaxiality, in stark contrast to the

behaviour of convex DLCs. Finally, other numerical studies of confined DLCs have employed

the popular Gay-Berne (GB) model and more complex wall-particle interactions [21–25].

In spite of all the above, more work is needed to establish the design principles for DLCs

in confined environments. In particular, we are missing a simple, preferably (for ease of use

and generality) hard-body, model that would allow one to switch between different types

of anchoring in either symmetric or hybrid systems, by tuning a physically transparent

parameter. Our purpose here is to develop such a model and interrogate how effective DFT

and MC simulation are at representing the range of behaviours accessible to such systems.

This will then provide foundations for potentially more ambitious investigations involving

more sophisticated combinations of substrates and model mesogens.

This paper is organised as follows: in section II we summarise our model and theory, which

have been described in detail in previous papers. Section III gives details of the computer

simulations performed to validate our calculations. Results from theory and simulation are

then compared in section IV. Finally we conclude in section V.

II. THEORY

As in earlier work [26, 28–30], we consider a purely steric microscopic model of uniaxial

particles represented by the hard Gaussian overlap (HGO) potential [31]. but which are

now disc-shaped, i.e., of length-to-breadth ratio κ = σL/σ0 < 1. For moderate κ, the HGO

particles are a good approximation to hard ellipsoids (HEs) [32–34]; furthermore, their virial

coefficients (and thus their equations of state, at least at low to moderate densities) are very

similar [35, 36]. From a computational point of view, HGOs have the considerable advantage

over HEs that the distance of closest approach between two particles is given in closed form

[37]. Particle–substrate interactions are now modelled, as in [17], by a hard disc–wall (HDW)
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potential (see figure 1):

βVHDW (z, θ) =











0 if |z − zα0 | ≥
1
2
D sin θ

∞ if |z − zα0 | <
1
2
D sin θ

(1)

where β = 1/kBT and the z-axis has been chosen to be perpendicular to the substrates,

located at z = zα0 (α = 1, 2). According to equation (1), particles see each other as HGOs,

but the substrates see a particle as an infinitely thin disc of diameter D (which need not

be the same at both substrates, or in different regions of each substrate [38, 39]). This

is the oblate-particle version of the hard needle-wall potential of our earlier work [27–30]:

physically, 0 < D < σ0 means that the particles are able to embed their side- and end

groups, but not the whole width of their cores, into the bounding walls. In an experimental

situation, this might be achieved by manipulating the density, orientation or chemical affinity

of an adsorbed surface layer. In what follows, the substrate is characterised using the

dimensionless parameter Ds = D/σ0; as shown in [27, 28], this allows us to set the anchoring

at either wall as either homeotropic (face-on) for Ds
<
∼
1, or planar degenerate (edge-on) for

Ds ≪ 1), although anchoring strengths cannot be finely controlled thus.

Because, for unpatterned substrates, the HDW interaction only depends on z and θ, it is

reasonable to assume that there is no in-plane structure, so that all quantities are functions

of z only. The grand-canonical functional [40] of an HGO film of bulk (i.e., overall) number

density ρ at temperature T is then written, in our usual approximations [26, 28–30],

βΩ [ρ(z, ω)]

Sxy

=
∫

ρ(z, ω) [log ρ(z, ω)− 1] dzdω

−

(

1− 3
4
ξ
)

ξ

2(1− ξ)2

∫

ρ(z1, ω1)Ξ(z1, ω1, z2, ω2)ρ(z2, ω2) dz1dω1dz2dω2

+ β
∫

[

2
∑

α=1

VHDW (|z − zα0 |, θ)− µ

]

ρ(z, ω) dzdω, (2)

where ωi = (θi, φi) denote the polar and azimuthal angles describing the orientation of the

long axis of a particle, Sxy is the interfacial area, µ is the chemical potential, ξ = ρv0 =

(π/6)κρσ3
0 is the bulk packing fraction, Ξ(z1, ω1, z2, ω2) is the area of a slice (cut parallel to

the bounding plates) of the excluded volume of two HGO particles of orientations ω1 and

ω2 and centres at z1 and z2 [41], for which an analytical expression has been derived [37].

ρ(z, ω) is the density-orientation profile in the presence of the external potential VHNW (z, θ):

it is related to the probability that a particle positioned at z has orientation between ω and

ω + dω.
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Three remarks are in order. Firstly, note that each surface particle experiences an environ-

ment that has both polar and azimuthal anisotropy, as a consequence of the excluded-volume

interactions between the particles in addition to the ‘bare’ wall potential. Secondly, because

we are dealing with hard-body interactions only, for which the temperature is an irrelevant

variable, we can set β = 1/kBT = 1 in all practical calculations (it is retained in the for-

mulae for generality). Thirdly, and finally, the prefactor multiplying the second integral in

equation (2) is a simplified implementation of the Parsons-Lee density re-scaling [42, 43],

which amounts to (approximately) summing the higher virial coefficients. In the spirit of

[44, 45], this prefactor is a function of the bulk density, and not of the local density, which

should be valid provided the density does not exhibit sharp spatial variations. Equation (2)

is therefore the ‘corrected’ Onsager approximation to the free energy of the confined HGO

fluid, which is expected to perform better for particle elongations κ ≪ ∞ to the extent that

structure is determined by location in the phase diagram. However, because this is a simple

re-scaling of the density, no new structure that is not captured by the Onsager approxima-

tion is expected. More sophisticated approaches exist (see, e.g.,[46, 47]), but the purpose

here, as stated above, is to look at the qualitative features of phenomena arising in the

vicinity of the I–N transition of oblate hard particles, so the simplest possible microscopic

treatment of anchoring is used that yields fairly good results for prolate HGOs [26, 28–30].

From minimisation of the grand canonical functional, equation (2),

δΩ [ρ(z, ω)]

δρ(z, ω)
= 0, (3)

we obtain the Euler-Lagrange equation for the equilibrium density-orientation profile,

log ρ(z, ω) = βµ−

(

1− 3
4
ξ
)

(1− ξ)2

∫ ′

Ξ(z, ω, z′, ω′)ρ(z′, ω′) dz′dω′, (4)

where the effect of the wall potentials, given by equation (1), has been incorporated through

restriction of the range of integration over θ:

∫ ′

dω =
∫ 2π

0
dφ

∫ θm

π−θm
sin θ dθ =

∫ 2π

0
dφ

∫ cos θm

− cos θm
dx, (5)

with

sin θm =











1 if |z − zα0 | ≥
D
2

|z−z0|
D/2

if |z − zα0 | <
D
2

, (6)

zα0 being, we recall, the position of substrate α.
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Once ρ(ω, z) has been found, we can integrate out the angular dependence to get the

density profile,

ρ(z) =
∫

ρ(z, ω) dω, (7)

and use this result to define the orientational distribution function (ODF) f̂(z, ω) =

ρ(z, ω)/ρ(z), from which we can calculate the orientational order parameters in the

laboratory-fixed frame [48]:

η(z) = 〈P2(cos θ)〉 = Qzz, (8)

ε(z) = 〈sin 2θ sinφ〉 =
4

3
Qyz, (9)

ν(z) = 〈sin 2θ cosφ〉 =
4

3
Qxz, (10)

ς(z) = 〈sin2 θ cos 2φ〉 =
2

3
(Qxx −Qyy), (11)

τ(z) = 〈sin2 θ sin 2φ〉 =
4

3
Qxy, (12)

where 〈A〉 =
∫

Af̂(z, ω) dω. These equations allow us to write down the five independent

components of the nematic order parameter tensor, Qαβ = 〈1
2
(3ω̂αω̂β− δαβ)〉, in terms of the

order parameters in the laboratory-fixed frame:

Qxx = −
1

2
η +

3

4
ς, (13)

Qyy = −
1

2
η −

3

4
ς, (14)

Qzz = η, (15)

Qxy =
3

4
τ, (16)

Qyz =
3

4
ε, (17)

Qxz =
3

4
ν. (18)

Qαβ give the fraction of molecules oriented along the z-axis (Qzz); along the bisectors of the

yz-, xz- and xy-quadrants (Qyz, Qxz and Qxy, respectively); and the difference between the

fractions of molecules oriented along the x- and y-axes (Qxx −Qyy).

In an earlier paper [30], we characterised the overall nematic order (both uniaxial and

biaxial) and the biaxial order of the film using the two scalar order parameters q and β2 [30,

equations (19) and (20)], originally proposed by Hess [49]. However, in the present work

we found that β2 is very noisy when TrQ ∼ 0, i.e., in weakly-ordered regions, which may
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obscure any truly biaxial behaviour. As we shall see in section IV, the Q tensor we obtain,

be it from theory or from simulation, is almost always approximately diagonal, hence it is

appropriate to characterise biaxiality using Qxx −Qyy instead.

III. SIMULATIONS

To find the phase diagram of oblate HGOs, we ran 10 different bulk NV T MC simulation

sequences, for particles with length-to-breadth ratios κ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.345, 0.35, 0.4 and 0.45. All simulations were performed using N = 864 particles. Periodic

boundary conditions were applied in all three directions. The simulation box height was

set to LZ = 6σ0 and kept constant during each simulation sequence. The simulation box

lengths in the other directions were determined, for each imposed value of the dimensionless,

or reduced, number density ρ∗ = ρσ3
0, by the relationship Lx = Ly = (Nσ3

0/ρ
∗Lz)

1/2. Each

system studied was compressed from the isotropic phase (ρ∗ = 1.5) into the nematic density

range by increasing the number density by δρ∗ = 0.1 after each run. At each density,

run lengths of one million MC sweeps (where one sweep represents one attempted move

per particle) were performed, averages being accumulated for the final 500 000 sweeps.

The phases can be characterised partly through the long-range orientational order of the

particles. Ideally, this order parameter should equal zero for an isotropic distribution of

particle orientations and one for a perfectly-aligned phase. We define P2 as the nematic

order parameter: it is the average over all particles of the second Legendre polynomial in

cosα, where α is the angle between the (in the case of oblates) short particle axis and the

nematic director n:

P2 = 〈P2(cosα)〉 =
〈

3

2

(

cos2 α
1

2

)〉

. (19)

P2 was calculated as an average of 500 values for each reduced density ρ∗ during the pro-

duction run of each simulation. From these, the density at which the I–N phase transition

occurs for each κ could be determined. Figure 2 plots P2 vs ρ
∗ for five representative particle

elongations. Because P2 is a continuous function of ρ∗, we resort to two approximate meth-

ods to find the I–N coexistence densities, ρ∗I and ρ∗N , as described below. These methods are

illustrated in figure 3, where we chose κ = 0.1 for clarity of presentation only.

Method 1: For each κ, we fit the P2 data in the lower and higher reduced density ranges to

straight lines (shown as solid blue lines in the top panel of figure 3). Then ρ∗I (ρ∗N) is
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defined as the highest (lowest) reduced density for which P2 remains within 5% of its

lower- (upper-) density-range linear fit. As can be seen from the snapshots in figure

3, the system is uniformly isotropic in the lower-density linear range, clearly nematic

in the upper-density linear range, and comprises a mixture of isotropic and nematic

domains in the intermediate-density range.

Method 2: We use the fact that the distribution of P2 should be Gaussian in any one-phase

region (except when disordered, since P2 cannot be negative), but not in a two-phase

region. We use the skewness of the distribution, which is based on its third moment

about the mean, as a measure of deviation from Gaussian behaviour: for each κ we

construct the histograms of P2 at all densities simulated and compute the skewness as

follows:

Skewness =
∑

i

w
3/2
i z3i

Nw

(Nw − 1)(Nw − 2)
, (20)

where zi = (xi − x̄) /s, wi is the weight of the ith value, s the weighted standard

deviation, x̄ is the weighted mean of the values and Nw is the number of weights that

are non-zero. We then identify ρ∗I as the density at which the gradients of both P2

and the skewness are positive and maximal, and ρ∗N as the highest density above ρ∗I

for which the skewness is negative. See the bottom panel in figure 3.

The resultant sets of coexistence densities are plotted, as a function of κ, in figure 4.

The effect of confinement was then studied by performing NV T MC simulations of N =

864 HGO particles of length-to-breadth ratio κ = 0.345, sandwiched between two symmetric

substrates a distance Lz = 6σ0 apart. Periodic boundary conditions were imposed in the

x and y directions. For this system, the bulk (reduced) isotropic and nematic coexistence

densities are ρ∗I = 2.2 and ρ∗N = 3.0 (method 1) or ρ∗I = 2.2 and ρ∗N = 2.5 (method 2).

Each system was initialised at a low density (ρ∗ = 1.5) and gently compressed by decreasing

the box dimensions Lx and Ly while keeping the substrate separation Lz fixed. Analysis

was performed by dividing the stored system configurations into 100 equidistant constant-z

slices and, in the production phase, performing averages of relevant observables in each slice.

This yields profiles of quantities such as the number density ρ∗(z), from which structural

changes can be assessed. Orientational order parameter profiles have also been calculated,
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particularly

Qzz(z) =
1

N(z)

N(z)
∑

i=1

(

3

2
u2
i,z −

1

2

)

, (21)

which measures the variation across the confined films of orientational order measured with

respect to the substrate normal. Here N(z) is the instantaneous occupancy of the relevant

slice.

IV. RESULTS

We started by calculating the phase diagram of HGOs, oblate as well as prolate, to check

the quality of the Parsons-Lee density re-scaling of Onsager’s theory. From the bulk version

of equation (2) (i.e., with all spatial integrations extended to ±∞ and VHDW (z, θ) = 0),

we found the pressure and the chemical potential of the I and N phases and performed

the standard double-tangent construction. Both the angle-averaged second virial coefficient

(for the I phase) and the angle-dependent excluded volume (for the N phase) are known

analytically (see, e.g., [50]). The remaining integrations over ωi were carried out by 16-point

Gauss-Legendre quadrature.

Figure 4 shows the phase diagram, in terms of the packing fraction ξ versus elongation

κ. For oblate particles (κ < 1), the coexistence points were determined from simulation as

described in section III; for completeness, we have also included de Miguel and del Rio’s

Gibbs-Duhem integration results from simulation of prolate particles (κ > 1) [51]. It is seen

that our theory performs systematically better for prolate than oblate HGOs: presumably,

this is a consequence of the fact that the virial coefficients of oblate particles decrease

more slowly with increasing order than do those of prolate particles. This was originally

predicted by Onsager himself [52] and confirmed by the first MC simulations of hard discs

[53, 54]. Theory clearly overestimates the I–N transition density for all elongations: e.g.,

for κ = 0.345, which was used in our study of the confined fluid, the transition is predicted

to occur around ρ∗ ∼ 2.9, whereas simulation gives ρ∗ ∼ 2.5. This shortcoming of the

(Parsons-Lee uncorrected) Onsager approximation is consistent with what was originally

reported by Schmidt and co-workers for infinitely thin discs (the κ → 0 limit of our model)

[14]. Moreover, simuation finds that the packing fraction gap between coexisting I and N

phases is fairly κ-independent, whereas theory predicts it clearly to decrease as κ → 1.

For the confined systems, equation (4) was solved iteratively for ρ(z, ω) by the Picard
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method, with an admixture parameter of 0.9 (i.e., 90% of ‘old’ solution in each iteration),

starting from a uniform and isotropic profile. Following Chrzanowska [55], all integrations

were performed by Gauss-Legendre quadrature using 64 z-points (the minimum necessary to

resolve the structure of the profiles at the higher densities considered) and 16× 16 ω-points

(for consistency with the bulk calculation). Convergence was deemed to have been achieved

when the error, defined as the square root of the sum of the squared difference between

consecutive iterates at 64 × 16 × 16 = 16384 points, was less than 10−4. The density and

order parameter profiles were then calculated from equations (7) and (8)–(12), respectively.

All results presented are for κ = 0.345 and substrate separation Lz = 6σ0. Figure 5

shows the reduced density ρ∗(z), order parameter Qzz(z) and biaxiality order parameter

Qxx(z) − Qyy(z) for Ds = 1.0, corresponding to the most impenetrable substrate case. As

might be intuitively expected, and as reported by Reich and Schmidt [17] for infinitely thin

disks, the preferred particle alignment is homeotropic, or face-on (Qzz(z) > 0) and there

is no biaxiality (Qxx(z) − Qyy(z) ∼ 0). At low densities there are only two density peaks,

located ∼ 0.5σ0 = D/2 from either substrate, corresponding to freely rotating HGOs. As ρ∗

is increased, two new density peaks appear, a distance ∼ 0.1σ0 from either substrate, which

eventually grow higher than the original peaks. This is qualitatively the same behaviour as

for prolate HGOs between symmetric impenetrable walls [28]. Agreement between theory

and simulation begins to deteriorate at a fairly low bulk density (ρ∗ = 1.6), i.e., substantially

lower than that of the bulk I–N transition. At the highest bulk density considered (ρ∗ = 3.1),

theory fails to predict the positions of the first two density peaks at the substrates. At the

intermediate bulk density (ρ∗ = 2.5), the film is ordered according to simulation, but not

according to theory (cf. figure 4). At this bulk density, however, our density profiles (from

theory as well as simulation) exhibit a rather richer structure than those calculated by Reich

and Schmidt for infinitely thin discs at I–N coexistence [17]. Also unlike theirs, our order

parameter profiles always reach a maximum (equal to unity) right at the substrates. This is

a consequence of the almost trivial fact that a particle with Ds = 1.0 can only get arbitrarily

close to a substrate by being perfectly face-on aligned.

Figure 6 shows the same quantities for Ds = 0.0, corresponding to the maximally-

penetrable substrate that excludes only the particles’ centres of mass. Now the highest-

density peaks occur right at the substrates, and the preferred alignment is planar, or edge-on

(Qzz(z) < 0). Furthermore, there is strong biaxiality (|Qxx(z)−Qyy(z)| ≫ 0) at the higher
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(N) densities, as the nematic director – the mean direction of the particles’ minor axes –

adopts one particular orientation in the xy-plane. Unlike for Ds = 1.0, at the two lower

densities (ρ∗ = 1.6 and ρ∗ = 2.5) theory and simulation agree that the system is isotropic.

At the highest density (ρ∗ = 3.1) both theory and simulation show strong layering, but the

two approaches give differing numbers of layers: the amplitudes of both the density and the

order parameters peaks are underestimated by theory, whereas the density peak spacing is

overestimated. This leads to a prediction of only five peaks (against simulation’s six) at

z-positions that are integer multiples of σ0, i.e., no layer intercalation.

Clearly there will be a crossover from edge-on to face-on alignment at some value of Ds

between 0 and 1. For Ds = 0.5 (figure 7) both theory and simulation agree that the first

density peaks lie ∼ 0.25σ0 = D/2 from either substrate and that anchoring is still edge-on.

However, whereas theory predicts a rather large biaxiality in the N phase (ρ∗ = 3.1), none

is borne out by simulation. This is a result of strong director fluctuations: although the

minor axes of particles are instantaneously aligned along some direction in the xy-plane,

that direction itself changes on the scale of a few MC steps, leading to Qxx(z)−Qyy(z) ∼ 0.

In contrast, for Ds = 0.55 (figure 8) theory predicts edge-on alignment with biaxiality and

very strong layering, whereas simulation yields uniaxial face-on alignment with only very

moderate layering close to the substrates. Finally for Ds = 0.7 theory and simulation again

agree that the preferred alignment is face-on (figure 9). We thus conclude that the crossover

from edge-on to face-on anchoring occurs for 0.5 ≤ Ds ≤ 0.55, but our theory predicts it for

0.65 ≤ Ds ≤ 0.7.

Figure 10 shows snapshots of the simulated systems in figures 5 and 7–9. At the inter-

mediate density ρ∗ = 2.5, the homeotropic (face-on) films are more strongly aligned than

the planar (edge-on) ones: this is consistent with the finding of Piñeiro et al. [19] that a

first layer of adsorbed edge-on particles at a substrate acts as a rough hard wall for subse-

quent particles, thus promoting disorder. Interestingly, when the substrates favour edge-on

anchoring, we do not see a mismatch between the orientations of the particles’ minor axes

in the N layers growing at either substrate as the I–N transition is approached, leading to

a disclination near the midplane of the film, as reported for oblate GB particles in [21, 24].

This may be because these authors performed MD, rather than MC, simulations, for which

the system can get trapped in a dynamically-arrested state.
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V. CONCLUSIONS

In this paper we have presented a combined MC simulation and DFT treatment of an

oblate HGO particle fluid confined between identical parallel substrates. The anchoring can

be tuned by varying the extent to which a particle is allowed to penetrate the substrates. The

Onsager approximation, combined with a simple Parsons-Lee density re-scaling, previously

applied to confined prolate HGO particle fluids, can in some cases yield semi-quantitative

predictions for (i) the bulk phase diagram, and (ii) the density and orientational distribution

for elongations as large as κ = 0.345. Many of our density profiles exhibit fairly strong

oscillations, which are indicative of layering phenomena and are expected if the density is

not very low, i.e., deeper into the N phase than the immediate vicinity of the I–N transition.

However, we find no clear evidence of columnar phases at the densities investigated. This is

consistent with the fact that no translationally-ordered mesophases of hard ellipsoids have

been observed to date [2].

So far we have considered only symmetric confinement, i.e., where the two substrates

induce the same type of anchoring. It is nevertheless straightforward to generalise this to

hybrid confinement, by allowing the substrates to have different enough penetrabilities. As

is the case with prolate HGOs [27, 29, 30], hybrid oblate HGO films will exhibit much richer

structures, and may be technologically more relevant. This work is in progress and will be

published elsewhere.

Although our theory is qualitatively reliable, quantitatively it performs rather more

poorly for oblate than for prolate paticles. We are currently implementing the more accurate

Schmidt’s FM-DFT [14] of infinitely-thin hard discs for our particular choice of substrates.
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FIG. 1: The HDW potential: the wall sees a particle as a hard disc of diameter D, which need

not equal σ0 Varying D between 0 and σ0 is equivalent to changing the degree of side-group

penetrability into the confining substrates, and hence the substrate’s anchoring properties.
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FIG. 2: P2 vs ρ∗ = ρσ3
0 from NV T MC simulation (lines with symbols) and theory (lines without

symbols), for a few particle elongations. Simulation results show a continuous variation, whereas

the theory curves exhibit a jump at the first-order I–N transition.
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FIG. 3: Illustration of the two methods used to find the coexisting I and N densities from NV T

MC data. For clarity we choose κ = 0.1 and plot P2 vs ρ∗ = ρσ3
0 (solid black lines). In the top

panel (method 1), the dashed red line is the numerical dP2/dρ
∗ and the blue straight lines are

linear fits in the low (left) and high (right) density ranges. Included are also snapshots of typical

configurations in each range (top panel), as well as of the P2 distribution (bottom panel). In the

bottom panel (method 2), the dashed red line is the skewness. In both panels, the low-density

(I) range is shaded blue, the high-density (N) range is shaded pink, and the intermediate-density

(I–N) range is shaded purple. See the text for details.
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the eye.
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FIG. 5: Reduced density ρ∗(z) (top), order parameter Qzz(z) (middle), and biaxiality order pa-

rameter Qxx −Qyy (bottom) profiles from DFT (lines) and simulation (symbols), for a symmetric

film of HGO particles of elongation κ = 0.345 and inner disc diameter Ds = 1.0, for reduced bulk

densities ρ∗ = 1.6 (solid line and filled circles), 2.5 (dashed line and open triangles), and 3.1 (dot-

dashed line and stars). The lowest density lies in the I phase, the intermediate density in the I–N

transition region, and the highest density in the N phase. In the top panel, the data for ρ∗ = 2.5

and ρ∗ = 3.1 have been shifted upwards by 1 and 4 units, respectively, for better readability.
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FIG. 6: Same as figure 5, but for Ds = 0.0
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FIG. 7: Same as figure 5, but for Ds = 0.5

24



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
z/σ

0

-1.0

-0.5

0.0

0.5

1.0

Q
x
x
(z

)-
Q

y
y
(z

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
-0.5

0.0

0.5

1.0

Q
z
z
(z

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

4

8

12

16

20
ρ(

z
)σ

0

3

FIG. 8: Same as figure 5, but for Ds = 0.55
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FIG. 9: Same as figure 5, but for Ds = 0.7
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FIG. 10: Configuration snapshots of symmetrically-confined oblate HGO films. First row: Ds =

0.0; second row: Ds = 0.5; third row: Ds = 0.55; fourth row: Ds = 1.0. Left column: ρ∗ = 1.6

(I); middle column; ρ∗ = 2.5 (I+N); right column: ρ∗ = 3.1 (N). The substrates (not shown) are

at the top and bottom box faces. Colours give the orientation of a particle’s short axis: along x

(red), along y (green), or along z (blue).
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