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ABSTRACT 

Multimedia transmission over wired and wireless (hybrid) networks is increasingly needed as new 
services emerge and hybrid networks become more diverse and reliable. Quantifying quality of 
multimedia applications transmitted over hybrid networks is valuable for measuring network 
performance and its optimisation. For video, the process involves examining the images that make 
up the video, by quantifying distortion, noise, and complementing them with traffic parameters 
characterised by packet delay, delay variation (jitter) and percentage of packet loss ratio (%PLR). 

Processing all received packets to evaluate the quality of received application is computationally 

intensive. The study developed a new multi-input adaptive sampling method that allowed a subset 

of transmitted packets to be chosen according to variations in three synchronised traffic parameters 

inputs. The method integrated fuzzy logic and regression modelling of traffic parameters and 

adaptively adjusted the number of packets selected for processing.  

Statistical and neural networks methods were developed to evaluate quality of service (QoS) for 
video streaming and Voice over Internet Protocol (VoIP) transmitted over hybrid networks. The 
traffic parameters for QoS evaluations were delay, jitter and %PLR. The work involved, Bayesian 
classification and probabilistic neural network (PNN) based methods to process traffic parameters. 
QoS. This allocation conformed to the International Telecommunication Union (ITU) 
recommendations. Overall, the performance of Bayesian method was better than PNN when 
determining QoS for VoIP. In addition, the developed methods were successfully used in practical 
tests to analyse QoS in the wireless standards IEEE 802.11ac and IEEE 802.11n. 

QoS reflects provides information that indicates the extent the traffic parameters for an application 
are within the expected bounds. However, the user's perception of the received application is also 
relevant. This evaluation can be performed through quality of experience (QoE) analysis. For video, 
QoE considers issues such as image distortion and noise that in this study were quantified by 
structural similarity index measure (SSIM), peak signal to noise ratio (PSNR) and image difference 
(ID). A modular fuzzy logic-based system that individually determined QoS and QoE, then combined 
them to determine the overall quality of a wirelessly transmitted video was developed. The 
performance of the devised video quality evaluation system was compared against the subjective 
evaluation performed by 25 participants (i.e. mean opinion scores) and consistent results were 
observed. A further evaluation of the video quality evaluation system was carried by comparing its 
results against a recently reported video quality assessment method known as the spatial efficient 
entropic variation quality assessment. Again, comparable results were obtained between the two 
methods. The QoE evaluations were carried out both in a network laboratory and over an 
institutional network.  

The study resulted in development a multi-input adaptive sampling method and artificial intelligence 
and statistical based QoS and QoE evaluation methods. The proposed schemes improved the QoS 
and QoE assessments for multimedia applications. The devised adaptive sampling model in 
comparison with random, stratified and systematic non-adaptive sampling methods was more 
effective as it represented the traffic more precisely. The developed two probabilistic QoS methods 
showed consistency in their classifications. Both models successfully classified the received VoIP 
packets into their corresponding low, medium, and high QoS types. Furthermore, QoE with image 

partitioning approach has improved QoE evaluation as partitioned image approach provided more 
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accurate results than full image approach. The proposed integration approach of three multimedia 
parameters SSIM, PSNR and ID improved accuracy of overall QoE assessments compared to single 
parameter approaches.   
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Chapter 1 Introduction 

An ability to determine the quality of an audio or video sent over a hybrid (wired and 

wireless) network is valuable as it can assist network engineers to better allocate resources 

and provide network users with measures that indicate the performance of network services 

they receive for multimedia applications (Martin et al., 2018). For multimedia (i.e. VoIP and 

video) transmission, Quality of Service (QoS) is an indicator of conformance of traffic 

parameters such as delay, jitter, throughput and percentage packet loss ratio (%PLR) to their 

expected bounds for the applications (Barman and Martini, 2019) and (Díaz Zayas et al., 

2018). However, the user perceptions of the quality of the received audio and video 

applications are also important as they are a more direct indicator of performance (Danish, 

2016) and (Nourikhah and Akbari, 2016). Quality of experience (QoE) represents the user's 

perception of issues related to noise and image distortion during transmission. QoS 

parameters can be interrelated, for example insufficient bandwidth could increase delay, jitter 

and %PLR and they do not quantify noise and distortion that negatively affects a user's 

perception of applications (Tsolkas et al., 2017). According to Perlman and Wechsler (2019) 

and Kim and Choi (2014), when determining the performance of a hybrid network for 

multimedia transmission, it can be more effective to combine QoS and QoE into a single 

overall quality measure. In addition, networks generate a large number of packets and have a 

dynamic behaviour, especially for multimedia streaming (Hasan et al., 2017). Analysing each 

packet requires intensive processing and storage. Therefore, solutions to reduce the amount of 

processing by considering the dynamic changes in the network behaviour are needed (Silva et 

al., 2017b, 2017c, and 2014). The core effort of the study is to propose approaches associated 

with traffic sampling, determining QoS and QoE, and integrating QoS/QoE assessment 

processes for multimedia transmission over hybrid networks.  

The focus of this chapter is to introduce a summary of the study. The motivation for the study 

is presented in section 1.1. Section 1.2 outlines the aim and objectives. Section 1.3 provides 

the main contributions, while section 1.4 outlines the organization of the research thesis.  

1.1 Research Motivations 

The popularity of multimedia applications supported by the exponential growth in the 

Internet usage has resulted in the need to improve methods of evaluating QoS and QoE for 

multimedia applications. According to Goścień (2019) global IP traffic will increase three 
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folds from 2017 to 2022 and by 2022, video will account for 82% of global IP traffic 

(Nosheen and Khan, 2019). Moreover, mobile data traffic will continue its growth and will 

reach 396 EB (Exa-Byte is equivalent to one billion gigabytes) per month by 2022 (Nachabe, 

2018) and (Cisco, 2019). This data traffic will be compelled by IPTV, video gaming and 

social networking. Furthermore, online mobile/smart devices continue to grow as the use of 

these devices increases. This circumstance is associated to the popularity of the Internet of 

Things (IoT) (Aazam et al., 2018). Service providers' focus will be on value added schemes. 

This trend needs to be associated with the growth of QoS and QoE assessments and 

assurances as offering better indicators for user's satisfaction which could lead to more 

competitive business and enhancing revenue (Janevski, 2019) and (Hamzei and Navimipour, 

2018). 

In addition, according to (Martinez Ballesteros, 2017) and (De Moor et al., 2015) there are 

three possible advantages that develop from combining QoE and QoS in the networks 

operation such as growth in the loyalty curve of the users with reduction customer churn, 

initiating innovative business operations integrated with customer experience administration 

services and cutting costs by exploiting the non-linear QoS and QoE relationship. 

Furthermore, (Nesse et al., 2015) claimed that service providers optimising their network for 

QoE distinguished services will increase their profit in the region of 10% to 15%. However, 

variations in QoE implementation make QoE estimate complex and unpredictable (Pokhrel et 

al., 2016). These trends result in focusing on multimedia QoS and QoE assessments (Pokhrel, 

2014). The motivation of this study is to address some important challenges related to 

evaluating QoS and QoE.  

In this study, the extent video and audio applications meet their transmission requirements are 

determined by analysing their transmission and user perception parameters. As there are 

challenges associated with quantifying QoS and QoE (Martinez Ballesteros, 2017), the 

following points summarise the issues that have been addressed in this study: 

i. Networks generate a large number of packets, analysing each packet, especially in real 

time is computationally too demanding or may be impractical. Therefore, suitable traffic 

sampling techniques were developed to appropriately select representative packets for 

analysis QoS and QoE. Improvements in QoS and QoE evaluation are important for 

multimedia networks (Silva et al., 2017b and 2014) and (Meng et al., 2017). However, 

networks have a dynamic behaviour and the sampling model must reflect traffic 
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behaviour so that when traffic variations are low, the traffic sampling rate 

correspondingly increase and vice versa (Clarke et al., 2017), (Afek et al., 2015), (Zhu et 

al., 2015) and (Dogman et al., 2011, and 2010). Existing non-adaptive sampling methods 

may produce biased samples which may not reflect the data trend or its behaviour well 

(Silva et al., 2017c). In addition, sampling model must consider measuring multiple 

synchronised network parameters such as delay, jitter and %PLR simultaneously to 

accurately determine QoS. Lack of a modular approaches such as multi-input in the 

existing sampling approaches reduces their accuracy in QoS assessment (Silva et al., 

2017b) and (Lin et al., 2014). This is because a single QoS parameter as input to the 

sampling method would not allow the transmission assessment of different multimedia 

applications to be considered adequately. 

ii. The time sensitivity of multimedia services signifies that when traffic parameters such as 

delay, jitter, throughput and %PLR exceed their accepted limits, user's experience and 

feedback can become unsatisfactory (Robitza et al., 2017). These parameters need 

assessment in an effective way. However, there are several issues in evaluating QoS in 

multimedia applications. These include dynamic behaviour of the traffic, high traffic 

throughput, limited resources, variability in transmission requirements of applications and 

quantifying resources for gathering and processing data (Al-Turjman and Radwan, 2017). 

The existing QoS evaluation methods operate either by analysis or measurement 

techniques (Malekzadeh and Ghani, 2019), (Beritelli et al., 2016), (Van Adrichem et al., 

2014) and (Jafari et al., 2012). There are limitations in the existing measurement tools, 

such as the process of monitoring QoS considered as complex, time consuming and do 

not provide an over-all transmission performance (Hoque et al., 2018), (Bujlow, 2014), 

(Dogman and Saatchi, 2014) and (Jafari et al., 2012). Some of these methods and 

techniques used the information that has been collected from headers of transmission 

packets which may not be enough to obtain precise QoS analysis (Robitza et al., 2017) 

and (Moore and Zuev, 2005). The approaches reported in (Dogman et al., 2012a, and 

2012b) use adaptive and neural networks which required computationally intensive 

learning phase.  

iii. The performance estimation of a lossy wireless network requires considering not just the 

physical network characteristics in the form of QoS, but also how they impact the 

customer’s applications (Zhang et al., 2018) and (Vega et al., 2014). Adaptation of QoE 
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feedback for multimedia applications would need methods to capture/collect QoE 

essential information (subjective approaches) and execution of resource management 

which increase the cost and consume more time (Martinez Ballesteros, 2017), (De Grazia 

et al., 2017) and (Kim et al., 2012). On the other hand, objective video transmission 

assessment approaches can reduce the time and cost of the evaluation operation (Zhao et 

al., 2016). A drawback of existing objective QoE techniques is that, most techniques are 

based on structural similarity index (SSIM), video quality metric (VQM) or peak signal to 

noise ratio (PSNR) which do not always provide consistent assessment (Usman et al., 

2018) and (Orosz et al., 2014) and (Kim and Choi, 2014). PSNR is the most widely used 

objective method in image and video transmission assessment. However, it has limited 

features and biased results (Preethi and Loganathan, 2018), (Pinki, 2016) and (Alvarez et 

al., 2011). Studies have illustrated that the PSNR is more sensitive to additive Gaussian 

noise than the SSIM, while the opposite is perceived for jpeg compression (Navarro and 

Molimard, 2019), (Ece and Mullana, 2011) and (Hore and Ziou, 2010). Both methods 

have similar responsivity to jpeg2000 compression and Gaussian blur. Furthermore, most 

objective QoE evaluation methods compare the received image to the original transmitted 

image to determine QoE. This operation requires availability of image sequence to 

compare the corresponding transmitted and received images accurately (Maimour, 2018). 

In addition, transmission impairments, aggravates frame loss which in turn leads to 

unpaired frame comparisons between the original and distorted images. Therefore, 

determining a score for an entire sequence become difficult (Sankisa et al., 2016), 

(Akramullah, 2014), (Pande, 2013), (Soares, 2013), (Feitor et al., 2013) and (Alvarez et 

al., 2011).  

iv. For multimedia transmission, QoS is an indicator of conformance of traffic parameters 

such delay, jitter and %PLR to their accepted limits (da Hora et al., 2018), (Majedi et al., 

2017) and (Alvarez et al., 2011). Nevertheless, the user perception of the quality is also 

relevant as it is a more direct indicator of quality (Chheda et al., 2018), (Zhang et al., 

2017), (Bampis and Bovik, 2017) and (Liu et al., 2015). QoS parameters can be 

interrelated, for example insufficient bandwidth could increase delay, jitter, throughput or 

packet loss and but do not express other communication factors such as noise that 

negatively affects a user's perception of a video (Robitza et al., 2017) and (Fiedler and 

Hoßfeld, 2010). According to Vega et al. (2014) while operating with wireless networks 

where wireless interference and other factors impact network applications, QoS 
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assessment on its own is insufficient and mostly inadequate. Consequently, the 

performance assessment of a lossy wireless network requires considering not only the 

physical network parameters QoS but also how these impact the customer's service 

(QoE). In order to assess the performance of multimedia streaming over hybrid network, 

it is more effective to combine QoS and QoE into a single measure (Zhang et al., 2018) 

and (Wang et al., 2016). 

v. Most previous multimedia transmission evaluation studies developed models based on 

simulators or emulations testbeds. Network simulations and emulation testbeds have 

several limitations related to their reliability, validation and scalability limits (Roshan, 

2018), (Castillo-Velazquez et al., 2017), (Riliskis and Osipov, 2013), (Petrioli et al., 

2015) and (Rampfl, 2013). This study will apply all developed techniques to an 

institutional network setting.  

1.2 Research Aim and Objectives  

The overall aim is to devise a multi-input adaptive approach to optimally sample packets 

from of multimedia traffic and to develop methods to determine QoS, QoE and integrate 

QoS/QoE for assessing quality of a video transmitted over wireless networks. The objectives 

of the study are to: 

i. Develop a multi-input adaptive sampling technique that can utilise traffic parameters; 

delay, jitter, and %PLR simultaneously to optimally select packets from a multimedia 

traffic. 

ii. Develop probabilistic and neural network based approaches that utilise Bayesian and 

probabilistic neural network PNN to classify transmitted multimedia traffic into three 

corresponding QoS types: low, medium and high. In addition, evaluate the developed 

QoS classification with IEEE 802.11ac and IEEE 802.11n wireless transmission 

protocols.  

iii. Develop a fuzzy logic-based QoE approach that utilises image difference (ID), Structural 

Similarity Index Measure (SSIM) and Peak Signal to Noise Ratio (PSNR) to quantify the 

quality of videos transmitted over hybrid networks.  

iv. Develop a fuzzy logic-based approach that combines QoS and QoE to provide an overall 

quality of videos transmission over hybrid network. 
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v. Evaluate the developed multi-input adaptive sampling, QoS, QoE and integrated 

QoS/QoE techniques in a network laboratory setting and over an institutional computer 

network, critically analysing the results. 

Table (1.1) maps the objectives and the method to achieve them to the relevant chapters. 

Table 1.1 Objective, network approach and its relevant chapter 

Objective  Description 
Assessment 

Approach 
Relevant Chapter 

(i) Multi-input adaptive sampling Simulation NS2 and 

Emulation testbed 
5 

(ii) QoS evaluation Emulation testbed 6 

(iii) Objective QoE evaluation Emulation testbed 7 

(iv) Integrated QoS/QoE evaluation Emulation testbed 7 

(v) 

 An adaptive sampling 

 QoS evaluation 

 QoE evaluation 

 QoS/QoE evaluation 

Large institutional 

network 
8 

1.3 Study's Intended Contributions  

In relation to the study's objective, the contributions made are: 

i. Developed a multi-input adaptive sampling approach that accurately represents 

multimedia traffic with a subset of transmitted packets according to variations of three 

synchronised traffic parameters inputs. The method was used to assess QoS for 

multimedia transmission over a hybrid network. The approach reduced the number of 

packets required to measure QoS. The effectiveness of the developed approach was 

compared against non-adaptive sample methods of random, stratified and systematic. 

ii. Developed probabilistic methods to determine QoS. A Bayesian based QoS measurement 

approach with three parallel classifiers and a probabilistic neural network (PNN) based 

approach to determine QoS in VoIP traffic were developed. They classified traffic 

packets of VoIP to their corresponding high, medium and low QoS types. The developed 

QoS assessment methods only needed one iteration to calibrate or train. As they relied on 

a small number of parameters, e.g. PNN needed just a smoothing parameter and the 

Bayesian approach required only the prior probabilities for each QoS types, they proved 

robust and trained quickly as compared to more complex classifiers such as multilayer 

perceptron. The two methods were used in practical scenarios to analyse QoS in the 

wireless standards IEEE 802.11ac and IEEE 802.11n.  
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iii. Developed an objective QoE evaluation that was applied to determine the quality of a 

video transmitted wirelessly. The approach combined the video parameters PSNR, and 

SSIM with image difference ID to objectively determine the QoE for a video transmission 

scenario. It used a Fuzzy Inference System (FIS) that required knowledge of video quality 

to be coded in a series of IF-THEN rules. As part of the evaluation, image labelling to 

deal with frame loss, and sampling were adapted to increase accuracy of the 

measurements and to reduce processing time. A novel approach where the images were 

partitioned to more precisely localise image distortion was devised. The results obtained 

were analysed. 

iv. Developed an integrated QoS/QoE system to compute the quality of a wirelessly 

transmitted video. For multimedia transmission, QoS is an indicator of conformance of 

traffic parameters such delay, jitter and %PLR. However, the user perception of the image 

quality is also important. For this propose a fuzzy inference system (FIS) was developed 

that combined the network QoS and objective QoE metrics. The FIS was devised to have 

a modular structure making its operation more transparent as well as allowing future 

alterations of its operation for other applications to more convenient. The results obtained 

when evaluating the approach on a wirelessly transmitted video streaming scenario were 

studied in details.  

v. Evaluated the devised QoS/QoE approaches in determining the quality of video 

transmission over an institutional network. As simulations and emulation testbeds have 

several limitations related to their reliability, validation and scalability limits. In this part 

of the study the earlier developed techniques were applied on a real network to assess 

their effectiveness. The analysis was conducted by video traffic under different 

transmission scenarios. The results were used to analysis the relationship between overall 

QoS based on (delay, jitter and %PLR) and QoE based on (PSNR, SSIM and ID). 

1.4 Thesis Organization 

Figure 1.1 illustrates the representation overview of the thesis. 
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Chapter 2 Literature Review 

2.1 Introduction 

New generation of computing system in the form of the Internet of Things (IoT) have 

established intopeople’severyday lives. In addition, the transmission of multimedia packets 

related with these multimedia services through hybrid networks has created demands on 

quality of service management and other resources (Roy et al., 2018). Various challenges 

such as an increase in traffic against network capability and dynamic change in traffic 

parameters such as delay, jitter and percentage packet loss ratio (%PLR) can decrease the 

network’s performance (Vega et al., 2014). In order to achieve users' expectations in an 

appropriate manner, functional properties of network services and its quality must be 

measured. To accurately and efficiently manage these networks for delivering anticipated 

services, suitable tools to assess their performance are required. System-level features of 

quality of service (QoS), like packet delay, throughput, jitter and %PLR can be used to 

compute and increase the QoS (de la Torre Díez et al., 2018) and (Nourikhah and Akbari, 

2016). Quality of experience (QoE) can be used to compare the performance from the user 

perspective. An improved QoE can enhance user experience and thus be beneficial to service 

providers (Kim et al., 2017) and (Chen et al., 2014). In addition, networks generate a large 

number of packets with dynamic behaviour. Therefore, performance evaluation of these data 

requires intensive processing and storage which require packet sampling solutions that can be 

used for performance evaluation and considering the dynamic change of the behaviour.  

In this chapter, the previous studies related to network packet sampling, managing QoS, QoE, 

and integrated QoS/QoE of multimedia network are reviewed.  

The structure of this chapter is: section 2.2 sampling approaches that were used to reduce the 

number of packets processed to analyse traffic are discussed. In section 2.3 network QoS 

evaluation approaches are explained. In section 2.4 Subjective and objective QoE analysis 

and assessment methods are explained. Section 2.5 provides an explanation of artificial 

intelligence techniques for QoS. Probabilistic approaches for QoS assessment are explained 

in section 2.6. Network evaluation approaches are explained in section 2.7. 
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2.2 Sampling Approaches for Measuring QoS  

2.2.1 The concept of sampling  

Sampling of network packets to analyse traffic behaviour is important to reduce 

computational and data storage load (Tan et al., 2018), (Robitza et al., 2017), (Hofstede et al., 

2014) and (Silva et al., 2013). Though multiple sampling approaches have been reported to 

support network engineering tasks, these approaches typically use a single traffic parameter 

such as delay thus not fully meeting the broad needs of multimedia applications. 

Probing is an approach for carrying out network measurements, where measurements are 

performed by considering samples at predefined time intervals. Once the measurements are 

made, the probe packets are assessed against the traffic metrics (Robitza et al., 2017) and 

(Chowdhury et al., 2014).  

The two types of samplings methods, namely passive and active measurements, have distinct 

features. Passive measurements adopt a nonintrusive approach, i.e. they only measure the 

actual network traffic for analysis. Passive probes do not typically disturb the flow of the 

traffic, but they monitor the traffic of interest (Robitza et al., 2017). A smaller time periods 

between probing packets provides finer insight into evaluating the traffic behaviour. In 

general, a larger number of packets provide more reliable probing results (Kaplan et al., 

2014). However, producing large number of probing packets may affect the flow of the 

original network traffic which in turn may reduce the accuracy of measurement results (Silva 

et al., 2014). Therefore, a high rate of the probing sampling can have a direct effect on the 

network performance. To overcome this challenge, several techniques have been described 

for active probing measurements. According to (Silva et al., 2017b and 2017c), early 

proposals for classifying traffic sampling methods (Amer and Cassel, 1989) were advanced 

and standardized within the Internet Engineering Task Force (IETF), rfc5475 (Zseby et al., 

2009). These proposals categorise the methods relating to the packet collection methods in 

use such as systematic or random sampling but ignore more developed sampling methods 

(Silva et al., 2017b). The use of packet sampling for network measurements is not a new 

research subject. Early efforts addressed sampling methods for statistical analysis that mainly 

concentrated on communication systems monitoring, traffic evaluation and classification 

(Tammaro et al., 2012) and (Cozzani and Giordano, 1998). According to Zseby et al. (2009) 

sampling techniques are categorised in content dependent and content independent 
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techniques. Their differences are related to the manner of gaining access to the packet data to 

make decision on capture/selection packets (Tammaro et al., 2012). 

2.2.2 Non-adaptive sampling 

The three conventional (non-adaptive) approaches used by network management for 

sampling (Meng et al., 2017), (Singh et al., 2013) and (Dogman et al., 2010, and 2011) are:  

 Systematic sampling: or periodic which samples data at a fixed time interval and 

sampling triggers are periodic. The first sampled unit is chosen randomly from the first k 

units in a population. The remainder of the sampling units in the sample consists of every 

k
th

 element in the population.  Sampling can be based on packet position (count based) or 

packet arrival time or packet contents (content based) (Singh et al., 2013) and (Tammaro 

et al., 2012). Figure 2.1 (a) presents systematic sampling with time interval (T).  

 Random sampling: is based on a random procedure to select n subset packets from the 

original population of N packets. It employs a random distribution function such as 

probabilistic to define when selection should be taken as shown in Figure 2.1 (b) (Shao, 

2016) and (Duffield, 2012). The delivery may be exponential, uniform, or Poisson, etc. 

The simple random sampling randomly selects a given number of objects from the entire 

population. Simple random sampling needs to guarantee each member of the population 

have to have the equal chance to be selected. 

 Stratified random sampling: is combination of the systematic sampling fixed interval 

with random sampling by compelling a single sample at a random point during a given 

time interval. It is a probability sampling method that divides the population into 

homogeneous subgroups, called strata and selects the sample from each strata separately 

by applying simple random sampling or systematic sampling. There should be no 

overlapping data items between any two strata. Figure 2.1 (c) illustrates stratified random 

sampling (Shao, 2016) and (Meng, 2013). 

Despite relative simplicity of non-adaptive sampling methods, they may produce biased 

samples which may not adequately reflect the data trend or behaviour (Silva et al., 2017b).  
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2.2.3 Adaptive sampling 

An approach for adaptive sampling is to dynamically adjust the sampling time period. When 

high activity occurs, a smaller period is engaged to compute the behaviour of the network 

with better accuracy. When a reduced traffic activity occurs, the interval is extended to 

decrease sampling overhead. Consequently, adaptive sampling allows the network 

management taking place in a less-intrusive ways by avoiding needless demands (Shao, 

2016) and (Silva et al., 2013). 

 

Figure 2.1 (a) Original packets (b) systematic (c) random (d) stratified random 

sampling with a time interval of T 

Under some traffic loads, non-adaptive simple periodic sampling may be poorly suited to the 

monitoring task (Yoon et al., 2017). To provide enough accuracy at a minimal overhead, 

adaptive sampling technique has been engaged to dynamically change the interval and to 

reduce overhead. According to (Silva et al., 2017b) adaptive approaches usually resort to 

fuzzy logic, linear prediction, or other strategies which deliberate traffic behaviour, packet 

data or network status for packet selection mechanism. Dogman et al. (2011, and 2010) 

developed techniques that adaptively adjusted the interval between two consecutive sampled 

sections; the developed sampling methods were developed based on simulated network. In 

both studies the results showed the efficiency of the approach in various scenarios. However, 
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both studies used a single input parameter at a time which reduced its usefulness in 

measuring QoS. 

2.2.4 Sampling usage in technologies 

Afek et al. (2015), Silva et al. (2013) and Duffield and Grossglauser (2001) summarised 

sampling involvement in computer networks. The applicability of sampling in computer 

networks is showed in Figure 2.2. 

 

Figure 0.2 Applications of traffic sampling 

Traffic sampling supports can be a part of a variety of network traffic analysis tasks. It has 

been used in traffic engineering to assist traffic characterization and classification (Tammaro 

et al., 2012). Network security such as intrusion detection, betnet, and DDoS service (Lima 

Filho et al., 2019), (Zhou et al., 2018), (Zhao et al., 2013) and (Androulidakis et al., 2009). 

Service level agreement compliance and QoS management for calculating traffic parameters 

such as delay, jitter, throughput and packet loss ratio (PLR) (Berec, 2019), (Jiménez et al., 

2015), (Gu et al., 2009) and (Hu et al., 2008). Sampling has been used for wireless sensors 

network in (Silva et al., 2017a) for its ability to analyse traffic behaviour and to reduce 

overhead of sensing events, without compromising accuracy.  

Several studies used sampling for network analysing and measurements (Clarke et al., 2017) 

and (Shao, 2016). According to Nikolopoulos et al. (2019) network components can deal with 

sampled packets better. The study proposed packet-sampling algorithm that enabled network 

assessment estimations with measurable accuracy and was robust to such components 

prioritization. The proposed algorithm produced receipts for small sampled packets, and an 

independent monitor collected and used themtoestimatethedomain’smeanpacketlossand

delay measurements. The algorithm optimised the biased samples to improve its perceived 

Quality of service 

Traffic engineering and analysis 

Management 

Security 

Sampling 
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performance. Gu et al. (2009) proposed a new estimation method that did not require any 

measurement infrastructure or new router features. It relied on use of the sampled flow level 

measurements that were consistently gathered in operative networks.  

Several studies have used sampling for traffic monitoring (Queiroz et al., 2019). For example, 

Braun et al. (2013) proposed an algorithm for traffic monitoring system and deep packet 

inspection (DPI) to analyse network traffic. The study proposed an adaptive sampling model 

that selected maximum number of packets that the DPI system was able to process, the model 

adapted the sampling rate based on currently observed network traffic and the number of 

packets that a monitoring application was able to process. The model overcame limitations by 

dynamic sampling limit. This sampling limit was automatically changed to match real-time 

events such as packet rate variation or packet consumption rates of the monitoring 

application. Hu et al. (2008) reported sampling in computation schemes to control memory 

consumption and reduce overhead processing. The study proposed adaptive sampling for 

passive measurement to address the issue of outsized gathered errors in analysing small-size 

flows. The proposed model improved the estimation accuracy while preserving memory and 

processing overhead. Another study for sampling in network monitoring, Lee et al. (2011) 

proposed a model Consistent NetFlow (CNF) for quantifying per-flow latency amounts 

within routers. The proposed CNF used the current NetFlow model that reported the initial 

and last timestamps of the flow, and it plans hash-based sampling to guarantee that two 

neighbour routers record the same flows. The proposed model estimates the intermediary 

delay samples from other related flows to enhance the per-flow delay.  

There were several studies to develop sampling in network security related applications such 

as denial of service attack (DOS). These include, (Wu et al., 2016), (Wu et al., 2015) and 

(Goldberg and Rexford, 2007). In a study regarding sampling for cyber security, Yoon et al., 

(2017) considered the practical problem concerning how to attain scalable traffic 

measurement using Software-Defined Networks (SDN) functionalities. As traditional 

network traffic monitoring has limited access to core and edge switches while less intrusive 

traffic monitoring can be done by using a packet sampling model that probabilistically 

captures packets at switches, then sampled packets is directed toward a traffic analyser like 

IDS on SDN. The study proposed a centrality quantitative in graph theory for deciding the 

packet sampling points among the switches. The study of SDN simulated testbed indicated 

that the proposed sampling point and its decision sampling rate methods improved the 
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intrusion detection performance of IDS for the malicious traffic flows in large-scale 

networks. 

Despite significant research in packet sampling, most existing schemes were intensive on 

detailed network computation tasks, for optimising accuracy estimation of a single network 

approach. This scenario impedes the progress of an encompassing computation methods 

based on traffic sampling that maintain enormous range of network management in a scalable 

manner. The existing studies on sampling typically consider the effect of packet sampling on 

numerous network monitoring events (Hofstede et al., 2014) and (Carela-Español et al., 

2011). The issues of applying sampling and analysing network measurements has been 

recognised (Su et al., 2018) and (Zseby et al., 2009) and effectiveness of traffic selection 

manners were reported (Silva et al., 2017b), (Tammaro et al., 2012), (Carela-Español et al., 

2011) and (Pescapé et al. , 2010). However, they generally do not consider new sampling 

methods like adaptive, which limit the analysis to the conventional methods. In addition, lack 

of modular adaptive methods when designating the components of traffic sampling methods 

also makes it challenging in their analysis. For example (Dogman et al., 2011, and 2010) 

adaptively sampled one traffic parameter at a time. However, to accurately measured network 

QoS, at least three synchronized main parameters should be considered, namely delay, jitter 

and packet loss. Providing a modular vision (such as multi-input) of sampling approaches and 

categorising their characteristics are therefore to improve the efficiency of the computation 

systems. 

The contribution of this study in this part is developing a multi-input adaptive sampling 

system that is an advancement of the existing methods. First an adaptive sampling method 

that deals with one input at a time was developed and published in (Salama et al., 2017b) and 

(Salama et al., 2017c). However, to increase accuracy of the sampling, a multi-input adaptive 

sampling method was then devised that could consider three synchronized inputs of network 

parameters simultaneously (i.e. delay, jitter and %PLR) (Salama et al., 2017a) and (Salama et 

al., 2018). 

2.3 Network QoS and QoE Evaluation Approaches  

2.3.1  Concept of quality 

Quality in the context of computer networks has been explained by different ways in 

literature.Themostaccepteddefinitionis“Qualityisthedegreetowhichperformancemeets
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expectations”(Mansouri et al., 2016). Another description accepted by the American Society 

forQuality(ASQ)is,“Qualitydenotesanexcellenceingoodsandservices,especiallytothe

degree they conform to requirements and satisfycustomers”(Nguyen, 2013). It can be said 

that the generally known perception of quality nowadays includes objective mechanisms of 

determining and guaranteeing dimensional constancy with detailed values, for example for a 

system, product or a business (Wang et al., 2016). In practical networks, the main parameters 

associated with the network performance are delay and packet loss (Juluri et al., 2015). 

2.3.2 Concept of quality of experience in telecommunications  

Over recent years, the term QoS emerged as key description for identifying the transmission 

quality of packets based switched network such as Internet Protocol (IP) networks and circuit 

switched networks (Stanojević et al., 2018). QoS classifications have been considered in 

numerous contexts. However, recently, many new models have been reported for interpreting 

quality in applicable sense that includes human perceptions (Nguyen, 2013). In general, most 

QoE explanations indicate that QoE is subjective based on human opinions. According to 

Information Resources Management Association (2017) “QoE, isasubjectivemeasureofa

customer’sexperienceswithavendor.Itisrelatedto,butdiffersfrom,QoS,whichattempts

toobjectivelymeasure the servicedeliveredby thevendor.”According to the International

TelecommunicationUnion(ITU)“QoE isdefinedastheuser’sperceptionoftheacceptability

ofanapplicationorservice” (Wang et al., 2016) and (BarakovićandSkorin-Kapov, 2013). 

 Thus, measurement of QoE may be prejudiced by a user’s pre-conceived concepts and 

expectations. Several studies implicate both subjectively and objectively of a user’s

observation measurements. For example, European Telecommunications Standards Institute 

(ETSI), indicates “QoE to be a measure of user performance based on both objective and 

subjective psychological measures of using an ICT service or product” (Mitra et al., 2014). 

However, recently many studies provided a more complex QoE description, in which the 

explanation is associated to specific areas like network transmission, content, device 

operations, different personality, etc. The view from the Qualinet Group is, “QoE is the

degree of delight or annoyance of the user of an application or service. It results from the 

fulfilment of his or her expectations with respect to the utility and / or enjoyment of the 

applicationorserviceinthelightoftheuser’spersonalityandcurrentstate.Inthecontextof

communication services, QoE is influenced by service, content, network, device, application, 

andcontextofuse” (Matulin and Mrvelj, 2013) and (BarakovićandSkorin-Kapov, 2013).  
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2.4 Subjective and Objective QoE Approaches 

2.4.1 Subjective approaches  

Subjective assessment for visual quality were specified in ITU-R Rec. BT.500 and ITU-T 

Rec. P.910 (Li et al., 2018) and (Chen and Zhang, 2018) which has suggested standard 

observing environments, criteria for the selection of viewers and test material, assessment 

procedures, and data analysis approaches (ITU-T, 2008). According to Mansouri et al. (2016) 

subjective testing has three major disadvantages. First, it involves high financial cost, time-

consuming and manual effort such as computer setup, specific software for video players, 

carefully select people, and software for gathering the results. In addition, many factors can 

affect the QoE, depending on the application and users’ expectations. To solve the issues of 

subjective test, objective models were developed. 

2.4.2 Objective approaches  

Many objective QoS parameters have been used that contribute to the user feedback quality 

and map the parameters to obtain QoE. Objective testing is conducted by computer software 

which calculates video quality (Lozano et al., 2015). Common methods are to compute the 

differences between the transmitted (original) and the received (distorted) video images, and 

then determine the errors according to temporal and partial features. Many objective quality 

methods use a subjective approach results to train their models (Lévêque et al., 2019). Most 

existing studies were achieved objectively based on peak signal-to-noise ratio (PSNR), video 

quality metric (VQM), or structural similarity index measure (SSIM) (Usman et al., 2018), 

(Juluri et al., 2015), (Wu et al., 2015) and (Mitra et al., 2014). Several studies assessed QoE 

using PSNR (Zheng et al., 2015) and SSIM (Zanforlin et al., 2014). A study has shown that 

the PSNR is more sensitive to additive Gaussian noise than the SSIM, while the opposite was 

perceived for jpeg compression. Both methods had similar sensitivity to Gaussian blur and 

jpeg2000 compression (Navarro and Molimard, 2019) and (Ece and Mullana, 2011). SSIM 

and PSNR are different on their image degradation sensitivity. PSNR is one of the most 

commonly used objective measures but it often has been criticised for providing results that 

are not fully consistent with subjective quality assessments (Stanojević et al., 2018) and 

(Lozano et al., 2015). However, its simple implementation and the ease of interpretation 

make it valuable (Alvarez et al., 2011). QoE assessment of videos with the SSIM index 

indicates the extent of the image degradation with regard to apparent structural information 
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changed, thus focusing on the inter-dependence between spatially alike pixels which enclose 

the data about the objects in the visual scene (Deng et al., 2015) and (Zanforlin et al., 2014). 

Current methods for obtaining similarity include SSIM, PSNR with mean squared error 

(MSE). These methods have some limitations: such as reliability, accuracy and computational 

cost (Hoque et al., 2018), (Bujlow, 2014), (Sadykova and James, 2017) and (Kipli et al., 

2012). In the study by Duanmu et al., (2018), a proposal to form a large-scale video database 

of time-varying quality and scheme, subjective testing to evaluate how humans react to 

compression amount, spatial and temporal resolution variations for video streaming over 

HTTP were reported. The study indicated that the proposed model had similar results as those 

with subjective opinions. First, innovative video quality assessment (VQA) models of SSIM, 

SSIM plus, MS-SSIM and VQM, all considerably performed better than PSNR measure.  

Zhao et al. (2016) used the SSIM to quantify video quality. They reported a SSIM based on 

error-resilient cross-layer enhancement system and optimised user's perceptual quality for 

video streaming over wireless. In their model, the optimum elements at each protocol layer 

were designated by decreasing the SSIM-based decoding distortion according to the 

transmission latency limit. The study results demonstrated with comparisons of both 

objective metrics of SSIM and PSNR and subjective measurements. 

A flexible video QoE method for determining different types of QoE was reported (Alvarez 

et al., 2011). It could synchronize the reference sequence with the distorted (received) videos 

to avoid erroneous match. Their proposed metric was compared with a subjective video 

images database and correlated with packet loss ratio and subjective quality. Video streaming 

over Radio-over-Fiber (RoF) networks were studied (Vega et al., 2014). They investigated 

the sensitivity of QoE to the main network parameters. Their results specified that delay of 

packets affect video quality less than jitter does and not cause a large reduction on the 

quality.  

A model developed on Random Neural Network (RNN) was proposed to assess the effect of 

many MAC-level factors on video QoE in 802.11n standard (Paudel et al., 2014). In their 

proposal subjective assessments were implemented to relate MAC-level elements like queue 

aggregation and size, load and error ratio with the customer’s perceived video QoE. The

developed RNN method was used to estimate the effect of these elements on the video QoE. 

The RNN model was trained with a subjective database for QoE quantities. The results 

indicated the estimated QoE were correlated with subjective QoE with realistic accuracy. 
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However the study did not investigate the impact of network factors such as delay, jitter 

and %PLR of the QoE.  

Most objective QoE evaluation software's and mechanisms compare received images to the 

original images to determine QoE. The mean opinion score (MSU) Video Quality 

Measurement Tool (MSU VQMT) is video quality measurements tool. The MSU VQMT 

supports many video formats (e.g., AVI, YUV, MPEG-4 and MP4) and QoE techniques (e.g., 

PSNR, VQM, MSE and SSIM) (Vatolin et al., 2019) and (Boavida et al., 2008). However, 

transmission impairments cause frame losses that lead to non-identical frame comparisons 

between original and distorted frames. This leads to indeterminate PSNR or SSIM values and 

therefore obtaining score for an entire sequence became difficult (Sankisa et al., 2016), 

(Akramullah, 2014), (Pande, 2013), (Alvarez et al., 2011) and (Canadell Pulido, 2008). 

According to Stanojevićet al. (2018) most video quality parameters use PSNR or SSIM for 

quality both they could generate different results. Very limited studies considered other video 

parameters such as image difference (ID) or entropy difference (ED) for video quality. These 

two parameters could be valuable for QoE measurements.  

Image difference (ID) is an image processing technique used to determine changes between 

images. The difference between two images is calculated by finding the difference between 

each pixel in each image, and generating an image based on the result. The image difference 

of two images is defined as the sum of the absolute difference at each pixel. 

The concept of information entropy describes how much randomness (or uncertainty) there is 

in a signal or an image; in other words, how much information is provided by the signal or 

image. If the uncertainty is measured before and after imaging, the reduction in the 

uncertainty, i.e., information entropy is a quantitative measure of the information transmitted 

by the image. The image quality then can be quantitatively compared when the transmitted 

information provided by the images areknown.From thephysicalmeasurement’spointof

view, the more information is transmitted, the better the image quality is. Entropy Difference 

(ED) is defined as; 𝑠𝑢𝑚 (𝑝 ×  𝑙𝑜𝑔2(𝑝)), where p contains the normalized histogram counts. 

In this study, frame labelling was used for accurate comparison of received frames and 

transmitted frames. Furthermore, full reference methods require extensive processing and 

storage to occupy all reference videos for transmission quality. The solution is to use a 

sampling approach to reduce the processing time and provide accurate quality. In addition, 
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image distortion usually appears on one side of the image, to accurately consider this effect, 

image partitioning method was introduced in this study. Furthermore, image difference (ID) 

and entropy difference (ED) was also used to enhance video quality evaluation (Salama and 

Saatchi, 2019a). 

2.4.3 Integrated QoS/QoE Approaches 

According to Barman and Martini (2019) and Alfayly et al. (2012) some work has been done 

on video QoE performance evaluation from the network parameters (such as delay, jitter and 

%PLR) but less with parameters such as PSNR and SSIM. Furthermore, the study reported in 

(Pokhrel, 2014) suggested a mathematical formula to estimate QoE by using QoS parameters 

like %PLR, burst loss, delay variation, delay, Group of Picture (GoP) length. However, it too 

did not consider users' perception.  

According to Vega et al. (2014) while operating with wireless networks where wireless 

interference and other factors impact network applications, QoS assessment is insufficient 

and mostly inadequate as images are affected by noise and distortion. Consequently, the 

performance assessment of a lossy wireless network requires considering not only the 

physical network parameters QoS but also how these impact the customer's service (QoE). In 

order to assess the performance of multimedia streaming over hybrid network, it is more 

effective to combine QoS and QoE into a single measure (Zhang et al., 2018) and (Wang et 

al., 2016). 

The relation between QoE and QoS has been examined (Nourikhah and Akbari, 2016) and 

(Dolezal and Kencl, 2012). In those studies, transmission delay was measured and images 

were evaluated. The models used a sampling approach to record the satisfaction levels of the 

users on a measure from one to five. The user judgement feedbacks were ordinal; thus, it was 

not important to deal with the gathered information as metric. To consider this matter, the 

model used Bayesian examination with a generalised linear model (GLM) to compute the 

overall approval in the form of the posterior distribution of opinions. The model proposed 

that the QoE can be represented by probabilistic opinion scores distribution (OSD) alternative 

to the MOS. 

A video QoE assessment technique using delay, jitter, %PLR and bandwidth Internet 

Protocol Television (IPTV) service has been reported (Hussain et al., 2013). It was found 

QoS/QoE to be closely associated with video quality degradation. An approach that 
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processed delay, bandwidth, delay variations and %PLR to compute four kinds of 

degradations on video quality was proposed in (Stanojević et al., 2018). The effect of 

degradation on subjective impressions was analysed. The proposed method used video 

dataset with available subjective scores. They showed subjective and objective assessments 

were consistent.  

An integrated QoE and QoS mechanism constructed on the combining fuzzy inference 

systems (FIS) with fuzzy evidence theory was reported in (Chen et al., 2018) and (Mansouri 

et al., 2016). The method used QoS as representation of service provider and QoE as the 

customer view of the service. The proposed approach allocated negative and positive QoE 

into two different types. A parameter was developed as quality, which is the total QoS 

according to the subjective and objective perspectives. The parameters mentioned above 

calculated by FIS. The proposed method assessed the quality of VoIP in three practical cases. 

The contribution of this part of the study is that the developed method relied on the 

combination of objective QoE metrics and network QoS (Salama and Saatchi, 2019a). 

However, the relationship between objective QoE and QoS is non-linear, is fuzzy and hard to 

compute. Therefore, to solve this matter intelligent algorithms (Fuzzy Inference System) have 

been proposed and used. 

2.5 Artificial Intelligence and Network QoS  

QoS evaluation and estimation based on analysing traffic factors needs techniques to process 

and analyse transmission of packets (Ruscelli et al., 2019), (Zhou et al., 2018), (Alanazi and 

Elleithy, 2015), (Toral-Cruz et al., 2013) and (Moore and Zuev, 2005). An example of a 

technique that presented prospective for QoS evaluation is artificial neural network (ANN) 

for real time protocol (RTP) packets has been developed (Dogman and Saatchi, 2014) and 

(Dogman et al., 2012a). In both studies the network communication ran over a simulation 

package (NS2). The network traffic factors were primarily categorised into three QoS 

categorises by an unsupervised learning, Kohonen neural network. The categorised data was 

then managed to compute the transmission's QoS using supervised learning multilayer 

perceptron (MLP). The QoS obtained by the method provided results that correlated with 

other QoS evaluation approaches which used regression analysis with fuzzy logic (Dogman 

and Saatchi, 2014) and (Dogman et al., 2012b). 



 

22 

 

A comparison of QoS assessments methods of fuzzy c-means (FCM) clustering, Kohonen 

neural network and FIS and MLP for QoS assessment and estimation was reported, and 

provided comparable results. FIS based technique needs prepared rules for knowledge base 

and to decide the parameters and types of membership functions for both inputs and outputs. 

Kohonen network and MLP based QoS methods require many iterations to train. MLP design 

needs a careful measurement of quantity of neurons in its pattern layer to reduce overfitting 

and to guarantee appropriate simplification. Kohonen result is a map that needs analysis by 

the user to compute groupings.  

2.6 Probabilistic Approaches and Computer Networks  

Probabilistic techniques have been used for many classifications associated network 

processes (Gacanin and Wagner, 2019) and (Batalla et al., 2018). Some of these techniques 

used the data that was gathered from headers of packets may not be appropriate for a precise 

QoS assessment. Several Bayesian approaches were proposed to categorise internet traffic 

(Moore and Zuev. 2005) and to estimate QoS assessment for web services. A Bayesian 

method that collected data about malicious users were developed (Yerima et al., 2014). 

Bayesian decision theoretic approach for QoE was proposed that deals with the prediction 

and computational matters of network traffic (Gacanin and Wagner, 2019) and (Batalla et al., 

2018). The traffic parameters used for measuring QoE involved location, %PLR, delay, jitter 

(delay variation) and customer satisfaction feedback. The approach was context aware and 

estimated QoE with 98.90% accuracy. An adaptive intelligent prioritization has revealed 

usefulness for QoS variation over wireless (Yuan, 2012). Bayesian classifier networks as 

prediction systems were developed for intrusion detection (ID) but they indicated some 

disadvantages (Xiao et al., 2014). The training information for Bayesian classifiers usually 

uses heuristic techniques. Bayesian classifiers are usually trained by big datasets which 

causes their learning time to be intense. Though, when the smaller training datasets is used, 

then the performance of a single Bayesian classifier could considerably decrease due to its 

incapability to sufficiently signify the input information probability distribution (Xiao et al., 

2014). Bayesian methods for monitoring and estimating mobile network irregularity (Lai et 

al., 2015) and ANNs for network intrusion detection (ID) (Raman et al., 2017) were reported. 

A probabilistic neural network (PNN) is principally a classifier that uses a supervised 

learning to improve probability density functions within a pattern layer (Ahmadlou and 

Adeli, 2010). The benefits of PNN is that it is often much faster to train as compared to 
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multilayer perceptron network (MLP), PNN accuracy can also be generally high. In addition, 

PNN networks are reasonably insensitive to outliers (Savchenko, 2019). 

Probabilistic methods such as Bayesian and PNN could be valuable in determining QoS for 

their speed and accuracy. Both methods require one iteration to provide their outputs. 

2.7 Network Evaluation Approaches  

Evaluation of wired and wireless networks is often performed either by simulation, 

emulation, or real (actual) world testing. All of these approaches have their particular 

advantages and disadvantages. Simulations usually adopt simplified models in idealized 

settings and conditions (Castillo-Velazquez et al., 2017) and (Petrioli et al., 2015). A network 

simulator replicates a large portion of the network operation in software. Since parts of the 

experiment are simulated, an experiment can be run without the need of physical equipment 

necessary to run the same experiment in the real world which reduces the cost. However, the 

biggest disadvantage of simulation is that the software method is only approximations of their 

real-world equipment's counterparts. Simulators often provide an inexpensive way to gather 

high-level views of a wireless networks' operation. Examples include NS2/NS3, GloMoSim 

and JiST/SWANS (Castillo-Velazquez et al., 2017), (Riliskis and Osipov, 2013) and 

(Burnett, 2008). In addition, to deal with the actual system’sdifficulty, the simulation needs 

simplifications and concepts, that in best-case do not have effect on the result (Gantenbein et 

al., 2010).  

Network emulation is the combination of a modelled network with actual computer hosts and 

services (Wang et al., 2013). It is a compromise between actual environment and a 

simulation. Depending on the network evaluation purpose, these methods can be sufficient. 

Network simulations are generally used for the early development of a new protocol. As soon 

as the system interaction requirements to be considered, network emulation delivers a more 

realistic assessment environment, and can often be an alternate to an expensive actual 

network testbeds (Petrioli et al., 2015). Emulations consider actual networks but allow some 

controlled traffic parameters such as delay, jitter, %PLR, and throughput. These elements are 

included in actual tests leading to a difficult environment and can involve labour intensive 

tests, but the conditions and the results will be practical.  

Unlike real-world (actual) networks, simulations imitate all network components, which 

include the communication channels and hosts in a virtual model. However, the 
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implementations of these components need functional simplifications to decrease the 

complexity. Table 2.1 provides a comparison between simulation, Emulation and real 

network testbed (Gantenbein et al., 2010) and (Kropff et al., 2006).  

Table 0.1 Real-world vs. emulation vs. simulation testbed (Gantenbein et al., 2010) 

 Simulation testbed Emulation testbed Real-world testbed 

Scenario setup (+) easy (+) easy (-) difficult 

Simplifications 
(-) high abstraction 

level 
(+) definable (+) none 

Scalability (+) high (+/-) depend on the setup (-) bad 

Reproducibility (+) easy (+) easy (-) difficult 

Costs (+) cheap 

(-) cheap (software-based) 

(+) expensive (hardware-

based) 

(-) very expensive 

Duration (-) variable (+) soft real-time (+) real time 

Limitations 
(+/-) processing 

power 
(+) none 

(-) hardware 

capabilities 

Network traffic (-) modelled (+) real or modelled (+) real 

In this study, the three evaluation approaches were combined for making the best advantage 

of each method. 

2.7.1 Network NS2 simulation and NetEm emulation testbed 

Network Simulator Version 2/3 (NS2/ NS3) is known as open source discrete event simulator 

developed explicitly for network and communication research (Kabir et al., 2014). NS2 was 

started and licensed in 1996-1997 for use under General Public License (GNU). It supports 

both wired/wireless simulation functions and several protocols like UDP, TCP, and RTP etc. 

NS2 is a very popular network simulator for its flexibility and modularity. It is based on 

Object-Oriented Tool Command Language (OTcl) and C++ (Rampfl, 2013). C++ defines the 

interior technique of simulation objects while OTcl is used by users to devise testing 

simulation scenarios and their events. Both the OTcl and C++ are associated together using 

TclCL. Tcl simulation script is used to setup a simulation. NS2 executes simulation different 

issues studies like protocol interface, congestion control, scalability etc. NAM (Network 

AniMator) tools are used to interpret the output NS2 text-based and provide graphically and 

interactively output (Kawai et al., 2017) and (Kabir et al., 2014). However, NS2 has many 

issues such as Credibility and Validation which are considerations using it in simulations. A 

network simulation considered to be useful only when its shown behaviour and results are 

equivalent to real networks. Another issue is the simulations scalability limits (Kabir et al., 
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2014). In addition, when moving from simulation to actual network testing, systems must be 

practically re-designed, reconfigured and optimised to work with actual hardware. Following 

such model simulation outputs can be diverse from what achieved through actual network 

testing (Petrioli et al., 2015). 

Several emulation tools have been used to examine many types of networks. For instance, 

(Le-Trung, 2017) and (Nussbaum and Richard, 2009) studies discussed network emulators 

that are suitable for different network types and sizes to meet precise needs. Beuran (2012) 

have discussed three most commonly used network emulators: NISTNet, Dummynet and 

NetEm. They reported pros and cons of each simulator. Although there were many network 

emulation tools including the ones shown in (Popescu, 2019) and (Nussbaum and Richard, 

2009), it was concluded that the use of NetEm would offer an improved flexibility with the 

research plans. Therefore, it was decided to use NetEm as the network emulation tool in the 

network scenarios.  

In this study, NS2 was used to develop the multi-input adaptive sampling model. NetEm was 

implemented in the actual laboratory testbed network to control relevant network traffic 

parameters, i.e. delay, jitter and %PLR, for sampling, QoS, objective QoE and integrated 

QoS/QoE assessments. However, as network simulations and emulation testbeds have several 

limitations related to their reliability, validation and scalability limits (Castillo-Velazquez et 

al., 2017), (Riliskis and Osipov, 2013), (Petrioli et al., 2015) and (Rampfl, 2013), this study 

applied the developed multi-input adaptive sampling, QoS, QoE and integrated QoS/QoE 

techniques to an institutional network setting in practical manner and critically analysing the 

results. 

2.8 Summary 

In this chapter an extensive literature review was provided that included prior studies in 

multi-input adaptive sampling, QoS evaluations of multimedia traffic transmission, QoE 

methods and techniques and integrated QoS/QoE methods. The issues of multimedia 

transmission over hybrid networks that require further improvements and investigations were 

discussed. Artificial Intelligence and probabilistic approaches were discussed. In addition, 

network evaluation approaches simulation, emulation and real network were reviewed. 
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Chapter 3 Relevant Theory and Background 

The purpose of this chapter is to explain the theories associated to the key challenges related 

to this study. Section 3.1 gives an overview of QoS requirements of multimedia applications. 

Section 3.2 includes definitions of delay, jitter and packet loss. Section 3.3 describes issues 

related to QoE. Sections 3.4 and 3.5 provide details of VoIP and video services, their formats, 

resolutions, components and signalling. Section 3.6 includes details of IEEE 802.11 as 

emerging WLAN standards. Section 3.7 introduces the theory of artificial intelligence models 

used in this study. Section 3.8 introduces the theory probabilistic classifiers. While section 

3.9 provides the relevant network tools that have been used in this study.  

3.1 QoS Requirements of Multimedia Applications 

QoS of multimedia services are considerably unlike other network applications. The services 

like email, file transfer and web service can be flexible with some network QoS parameter 

factors such as delay and delay variation (jitter) (Anand and de Veciana, 2016). However, the 

multimedia services and applications like video streaming and VoIP are very sensitive to 

traffic factors and needs a quicker reaction by the network components. A longer packet 

delays or jitter can extremely reduce the performance (Tanenbaum et al., 2018). The 

provision of usage bandwidth can be hard to compute for these services. This is because of 

several diverse factors like resolution, transmission activity and usage. In a hybrid network, 

some parameters limit an acceptable QoS. For example, a large amount of delay, jitter or 

packet loss can utterly decrease the QoS (Al-Shaikhli et al., 2016) and (Klaue et al., 2003). 

There are parameters that pose issues to prevent network deliver continuous QoS for 

transmitting services like congestion that include queueing and signal interference issues. 

Therefore, the QoS requirements for real time applications such as VoIP and Video need to 

be measured to deliver adequate QoS for the services. Table (3.1) reviews the QoS 

requirements for real time applications and insensitive time services as recommended by ITU 

(Pal and Triyason, 2018), (Khiat et al., 2017), (Dogman et al., 2012c) and (ITU-T, 2001). 
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Table 3.1 QoS requirements for video, voice and data as suggested by ITU (Pal and 

Triyason, 2018), (Khiat et al. (2017), (Dogman et al., 2012c) and (ITU-T, 2001) 

Class Application Typical bandwidth Delay Jitter 
Packet loss 

ratio 

Real-

time 

VoIP, 

videoconferencing 
16-128 kbps 

< 150 ms 

preferred 

< 1ms 

preferred 

< 3 % 

preferred 

Video streaming 16-384kbps 
< 150 ms 

preferred 

< 30ms 

preferred 

< 1 % 

preferred 

Non real-

time 
E-mail, file transfer, web browsing Minutes N/A Zero 

3.2 Network Traffic Parameters 

Quality usually describes level of performance with constrained delay, data loss, marginal 

jitter, and sufficient use of the network resources. Furthermore, quality can be reflected 

synonymous with predictability and reliability of the application. Santos (2016) has identified 

essential QoS parameters like bandwidth, application duration, maximum delay, maximum 

jitter and maximum loss rate. 

i. Delay 

Delay (Di) for the i
th

 packet is determined as in Equation (3.1) where Ri and Si are the time a 

packet that was received and transmitted respectively (Li and Cui, 2018).  

Di = Ri - Si                                                                 (3.1) 

For time sensitive traffic, a short delivery delay is required. A telephone call consumes a 

delay delivery between 10 or 100 msec which depends on echo cancellation method.  

ii. Jitter                                    

Jitter is known as the changes in delay in a period. Jitter (Ji) is determined using Equation 

(3.2) where Di and Di-1 are the delay measures of the present and prior packets respectively. 

The use of absolute value to guarantees jitter measurements positive (Callegari et al., 2018). 

Ji=abs (Di - Di-1)                   (3.2) 

Sensitive traffic like video streaming or audio on demand requires that any jitter to be 

controlled. The application service and the size of their sending buffers will define allowed 

maximum jitter. The QoS architecture use defined jitter to fix the service class. 
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iii. Packet loss ratio 

The percentage packet loss ratio (%PLRi) is computed by Equation (3.3) where Ri and Si are 

i
th

 packets that respectively received and sent at respective time unit. 

%𝑃𝐿𝑅𝑖 = (1 −
∑ 𝑅𝑖

∑ 𝑆𝑖
) × 100              (3.3) 

The percentage packet loss ratio is an indicator of the maximum tolerable packet loss. Some 

sensitive applications like VoIP can accept up to 10% of an unrecoverable loss rate. Some 

services could support certain amount of recoverable packet loss provided that upper layer 

protocol will retransmit lost packets such as a Real Server streaming. If a receiver measures a 

recoverable loss then the QoS will be needed in such a way to expand allocated bandwidth 

requirement a little more so that if application requires 1 Mbps throughput rate with about 

(10 %) of recoverable packet loss then QoS architecture allow for 1.1 Mbps allocated 

bandwidth when packet loss occurs (Desogus et al., 2019). 

iv. Throughput 

Throughput is a network parameter that is used to examine the ability of network to send 

dataset over certain duration of time (ITU-T, 2016). It is also known as the determined 

communication speed at a sustained level between two endpoints. It can be defined as the as 

the amount of received packets successfully in a predefined period (ITU-T, 2016). Equation 

(3.4) is used to compute the throughput: 

                                                   𝑇ℎ𝑖 (𝑡) =  
∑ 𝑃𝑖 (𝑡) 

𝑡𝑖
                                                           (3.4) 

Where 𝑇ℎ𝑖 is the calculated throughput in bps through the 𝑖𝑡ℎ period, ∑ 𝑃𝑖(𝑡) is the complete 

bits of well received packets through the 𝑖𝑡ℎ period whereas 𝑡𝑖 is the duration time of the 𝑖𝑡ℎ 

period.  

3.3 Quality of Experience (QoE)    

It is important to differentiate between the multimedia computed qualities called QoE with 

QoS parameters described above. QoE is obtained and measured by end users who have 

received multimedia streaming in destination side. User perception and measurements 

depends on many aspects such as resolution and video size, deep colour, brightness, contrast, 
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colour saturation naturalness of pictures, distortion, definition, pixel errors and full or partial 

lost frames. QoE measurement process is classified to subjective and objective (Pokhrel, 

2014) and (BarakovićandSkorin-Kapov, 2013). 

3.3.1 Multimedia traffic  

There are many parameters allied to transmission of multimedia data Santos (2016). They are 

described in this section. Bit rate is the number of bits processed per second. The videos seen 

on web are generally 1-2 Mbps while bitrate of a DVD video is between 4-8 Mbps, with a 

higher quality about four times than a web video (Petrangeli et al., 2019) and (King, 2009). 

However, a higher quality as a result of higher bit rate requires a larger file size which can be 

a limitation in some cases. Some related factors are:  

i. Encoding: To obtain maximize performance of the streaming signal the encoding system 

allocates a binary code to each sample. The most used method of encoding is PCM algorithm 

function which is sufficient at low volume signals (Vukobratovićet al., 2013) and (Pulkki, 

2007).  

ii. Compression: Most codec techniques use compression algorithms to optimize digitized 

signal and reduce utilized network bandwidth by compressing binary bits. There are 

considerations in compression such as speed of compression to avoid extra end to end 

communication delay especially in real time services (Suryakala and Mahesh, 2018) and 

(Dang and Chau, 2000). 

iii. Packetisation: During packet transmission through the network every packet will add its 

headers. Bandwidth (BW) utilization will increase with more data packets, thus the measured 

overall delay for a transmitted data packet will be enlarged when the size of the packets 

increased. In audio streaming, a balance between packet size and its latency is considered due 

to both the number of packets and the allocated BW can be reduced to low values (Li et al., 

2019) and (Benini and De Micheli, 2002). 

3.3.2 Subjective QoE 

QoS refers to subjective tests performed to determine human perception of a video under the 

specific laboratory situation. Participants (users) are specified chains of tested video clips; 

sent (original) and received (distorted) videos presented, and then asked to score values on 

the video quality. Video Quality Expert Group (VQEG) (Preethi and Loganathan, 2018) and 
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(Rohaly et al., 2000) has made the recommendations for conducting subjective tests. 

Subjective categorised into two single stimulus which the viewer is shown only one video at 

a time and double stimulus, two videos are presented simultaneously on a split-screen 

environment (Lévêque et al., 2019). The most famous subjective testing method is mean 

opinion score (MOS). 

i. Mean opinion score (MOS)  

One of designated subjective QoE approaches is the MOS model. Its testing performed by 

human perception directly by users’ evaluation score values in the specific laboratory 

conditions. Participants are given chains of video clips, original and distorted ones and then 

asked to score the quality. The idea of the MOS was produced in 1996 (ITU‐T, 1996) and it 

characterised the first subjective method to the computational of QoE. The approach is 

applied to real time applications like video, voice, and multimedia such as video streaming 

and video conferencing (Demirbilek and Grégoire, 2016) for instance, whereas users are 

viewers, audiences and listeners. For voice assessment, each listener is needed to provide 

opinion using a five scale point as: 5-Excellent, 4-Good, 3-Fair, 2-Poor, 1-Bad which are 

stated to“Imperceptible,”“Perceptiblebutnotannoying,”“SlightlyAnnoying,”“Annoying”,

and“VeryAnnoying”(Hoßfeld et al., 2016) and (Microsoft, 2017) as in Table (3.2).  

Table 3.2 MOS rating and their description for QoE measurements 

Scores Quality Impairment 

5 Excellent Imperceptible 

4 Good Perceptible, but not annoying 

3 Fair Slightly annoying 

2 Poor Annoying 

1 Bad Very annoying 

3.3.3 Objective QoE 

To overcome the higher cost of subjective tests, objective systems can be considered. Many 

objective QoS parameters have been used that contribute to user perceptual quality (such as 

PSNR and SSIM) and characterise user QoE. The common methods are to compute the 

variance between the original and distorted video. Most of existing studies were performed 

objectively with SSIM, VQM and PSNR (Tsolkas et al., 2017), (Hoßfeld et al., 2017) and 

(Patil and Patil, 2017).  
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Objective Reference Data Quality methods are categorised into no-reference, reduced-

reference and full-reference based on the size of data needed of the reference (original) video 

as provided in Figure 3.1 (Lahoulou et al., 2017), (Juluri et al. , 2015) and (Matulin and 

Mrvelj, 2013). Full-reference (FR) methods process a frame by frame contrast amongst the 

testing and reference video. Reduced-reference (RR) methods are hybrids between FR and 

NR methods. Examples used are spatial detail and quantity of motion. The well-known FR 

method is PSNR and SSIM. However, PSNR only has an approximate accuracy because it is 

a byte by byte contrast of the datasets without knowing what they really signify (Preethi and 

Loganathan, 2018).  

 

Figure 0.1 An overview of QoE assessment models 

3.4 Main Audio and Video Services 

i. Voice over IP (VoIP): This is like traditional telephony system but inserted into the IP 

network. As in traditional PSTN telephony, simply the 0 to 4 KHz period of signal 

frequencies equivalent to the human voice but digitally encoded. VoIP is a real time two-way 

directional application that needs a certain requirement of latency and jitter on both ends 

(Singh et al., 2014).  

ii. Video over Demand (VoD): This service is a unidirectional with requirements of high 

bandwidth relative to number of concurrent users. In VoD audio and video streaming 

transmitted at same time from a central video server to a client. Every client can connect at 

any time to the central server and download any available video. It is not a real time service 

thus the video can be buffered to be represented on the endpoint user side (Van Meggelen et 

al., 2019).  

Image QoE Assessment 

Subjective Objective 

Single stimulus Full Reference  Double stimulus No Reference  Reduce Reference  

Mathematical metrics HVS metrics Others (SSIM) Pixel-based: MSE, PSNR 
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iii. IP Television (IPTV): It is a unidirectional with requirements of high bandwidth depends 

on number of concurrent clients. The main difference is that all clients are receiving the same 

video stream, to save network bandwidth a multicast technique is used (Kua et al., 2017).  

iv. Video conference: This is like VoIP service; a real time bidirectional communication 

which incorporates video signal (Jang-Jaccard et al., 2016).  

v. Videogames: Online videogames are new multimedia applications on IP networks. Players 

in different sites of the world can interact, talk, connect and play. Therefore, these data 

packets must be treated as real time traffic, like video and audio streaming (Rao et al., 2018).  

3.4.1 Video formats/containers and codecs  

Videos have technically termed, containers, in various formats. A container contains audio 

and video data, and other data about the video like codec information to be used to play the 

video, required audio codec, and possibly metadata such as subtitle information and video 

title. The file extension of a video usually refers to the container used for the video. Some 

well-known containers are QuickTime (.mov or.qt) that established by Apple, Flash Video 

(.flv, .swf) designed by Macromedia, Audio Video Interleave (.avi) which was produced by 

Microsoft and Advanced Video Coding High Definition (AVCHD) developed in 

collaboration by Sony and Panasonic. Video codecs is dealing with representing analogue 

data in a digital form. A codec is referred as compression/decompression. The codec must 

provide a good quality video with a minimum size whilst utilising a lowest bit rate with 

keeping the data loss at a minimum (Video Codec, 2016). A codec can be software or a 

hardware device. Some of the popular codecs are (Imagen, 2019): 

 MPEG-1: from Moving Picture Expert Group, mostly used in VCD production.  

 MPEG-2: used widely in DVD production, and in HDTV broadcast.  

 MPEG-4: very popular with different formats ranging from full HD to the lowest sized 

mp4 videos.  

 H.264 (known as MPEG-4 AVC): used in digital video cameras and camcorders, can 

compress good quality videos for the web and equally for HD TVs.  

 WMA: used in video and audio streaming, supports 720 and 1080 high resolutions.  

 DivX (DivX-encoded Movie): offers video compression with a minimal loss in quality, 

supports high definition resolutions up to 1080.  
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3.4.2 Video resolution  

Resolution is a quantity of pixels, defining the number of pixels present in an image. Pixels 

are small dots with different colours; these dots make up the whole picture (Morris, 2019). In 

simple definition, video resolution describes how clear the video will be, once played on a 

video player. Video resolution is stated as length (in pixels) x height (in pixels. Figure 3.2 

illustrates picture where the resolution starts with 16x16 pixels and goes up to 512x512 

pixels. 

 

Figure 0.2 The concept of image/video resolution illustrated by Vimeo with their 

logo (Morris, 2019) 

The common video resolutions are SD with a resolution of 640x480, HD with a resolution of 

1280x720p, full HD with a resolution of 1920x1080, and 4K Videos with resolution in the 

range of 4000x2160 pixels. 

3.5 VoIP Components 

VoIP architect includes three key elements which are; Packetize, CODEC (Decoder 

/Encoder) and buffer. For the communication; the analogue audio voice is transformed into 

digital, compressed if permitted and then encoded into a format by standard CODEC method 

(Winkler, 2017). Figure 3.3 shows VoIP architecture. Many CODEC established by ITU-T 

for VoIP system such as G.729, G.723.1a and G.711 etc. Then, the Packetization method is 

controlled by fragment the previously encoded audio into packets with identical sizes (Sun et 

al., 2013) and (Srikanth and Divya, 2013). 
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Figure 0.3 VoIP Architecture (Alshakhsi and Hasbullah, 2012) 

TCP protocol is appropriate for datasets which need acknowledgment packet (ACK) to be 

sent by the receiver to the transmitter which causes extra delay as every packet need an ACK 

packet. Another manner of transmission data packet is using UDP which is more suitable for 

VoIP service as the receiver not required to report the transmitter of receiving the data (Khiat 

et al., 2017). During transmission, a changing of packets delay may happen which known as 

jitter. The playout buffer at receiver is used for smoothening playout and decrease delay 

variation (jitter) values. VoIP apply combined protocols at different OSI model layers like 

SIP, media CODECs in presentation layer and RTP in session layer. Figure 3.4 illustrates 

VoIP, SIP and RTP protocols in OSI model (Medhi and Ramasamy, 2017). 

 

 

Figure 0.4 OSI model and VoIP Protocol Stack (Srikanth and Divya, 2013) and 

(Liang et al., 2014) 
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3.5.1 VoIP signaling protocols 

The two known VoIP signalling are H.323 and the well-known Session Initiation Protocol 

(SIP). The signalling protocols are executed prior to forming the VoIP calls, between two 

clients, and also at the end to terminate the call and clears the media (Rattal et al., 2013) and 

(Aliwi and Sumari 2013). 

3.5.2 The function of session initiation protocol (SIP) 

According to Aliwi and Sumari (2013) "SIP is an application-layer control protocol that can 

establish, modify, and terminate multimedia sessions (conferences) such as Internet telephony 

calls." The protocol outlines the rules that manage call start-up, adjustments and terminate. 

SIP is planned to work on top on RTP that carry voice stream and data. SIP is considered as 

simpler than H323. 

SIP protocol was used in this study for signalling as all experiments using whole IP network. 

Two network devices that are essential for SIP to form call session as following: 

i. SIP end point nodes or called user agents: The two components signify session ends; 

they can be also hard or soft phones that configured on a computer or smart phones. Two user 

kinds of SIP agent are known: a server and a client. Client's user agents (UAC) which initiate 

the call by generate a request whereas a server user agent (UAS) processes and sends a 

response back confirm the communication (Johnston, 2015). 

ii. SIP servers: These devices usually computers that process user agents' requests and send 

back a response to confirm establishing the call. The processing embraces IP addresses 

resolving from usernames.  

iii. SIP operation and services: The SIP process can be summarized in below six steps 

(Baset et al., 2012). 

1. Register, appropriate initiation and obtain user location. 

2. Identify the used media protocol. 

3. Define the preparedness of the call to connect (reject or accept). 

4. Form the call. 

5. Modify and/or handel calls. 

6. Terminate the call. 
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3.5.3 Real-time transport protocol (RTP) 

RTP is a real time protocol deals with media to form end to end transport. However, it is 

usually used upon UDP transport protocol. RTP is close to the application layer. RTP is as a 

framework that VoIP services use for protocol implementation. RTP does not guarantee 

packets delivery, nor does it retain the packets in sequence (Barz and Bassett, 2016). RTP 

leaves packet resequencing and recovering lost packets to the application layer. Some 

applications may tolerate some packet loss during communication. For video or voice, there 

is no time for retransmissions. Some senders deal with lost packet by providing updated or 

new data to fix the original loss instead of retransmission. RTP protocol offers: sequence 

numbering, payload type identification and source identification. RTP Control Protocol 

(RTCP) delivers feedback of data transmission performance and data about call participants. 

RTP session is collected of an RTP port number, a RTCP port number and the participant's IP 

address (Junxiang and Yu, 2019) and (Westerlund, 2014).  

In VoIP, RTP sessions are normally formed initially by a signalling protocol like SIP or 

H.323. RTP uses UDP for transmission method; a stream-oriented transport like TCP can be 

used (Baset et al., 2012). Figure 3.5 illustrates the SIP and RTP triangular topology, the SIP 

messages transmission between VoIP Agents and SIP Server, then RTP packets transports 

between VoIP agents directly. 

 

Figure 0.5 RTP and SIP Triangular Topology  

The synchronization source identifier (SSRC) is value that generated randomly and 

individually which recognises the source within a session. RTP was used in this research 

because of its ability to use timestamps which can be configured so that the transmitter and 

receiver could synchronise via NTP server. An ability to synchronised time at transmitter and 

receiver enables an accurate measurement of the actual delay and delay variation (jitter) by 

extracting the time at timestamp field in RTP (Shannon et al., 2016). 
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3.6 Wireless LAN (WLAN) Overview 

WLAN delivers practically equivalent functions and tasks of the normal wired local area 

network (LAN), Fast-Ethernet (FE) and Token Ring and Gigabit Ethernet (GE) with no 

concerns that associated to cable limit (Dordal, 2019). Burbank et al. (2013) in general 

described the LAN as providing a high throughput by reasonable communication media as 

related to LAN's copper wires. The communication network WLAN has limitation to its 

geographic site such as campus building or local office. The simple idea of WLAN creates a 

connection link between two devices or more without physical cables. The connection link is 

provided by Access Point (AP) (Comer, 2018) and (Sarkar et al., 2016).  

3.6.1  Wi-Fi technology evolution and market status 

Wi-Fi is the largest commonly implemented wireless with regard to infrastructure and of 

devices. Wi-Fi chipsets are standard interfaces parts in computers, laptops and smartphones. 

Wi-Fi has developed during years to fulfil high speed demands and higher bandwidth to 

support more applications and features. Wi-Fi is standardized by IEEE with 802 umbrellas of 

standards for WLANs (Gast, 2013). The newer wireless is IEEE 802.11ah which uses 1 GHz 

to deliver wider range with less energy consumption that allowing enormous sets of stations 

or sensors creation which cooperates the signal, associate the conception of the Internet of 

Things (IoT) (Ravindranath et al., 2016) and (Talari, et al., 2017). In 2009 the 802.11n 

wireless protocol was published, the new protocol has advantages that recently created in Wi-

Fi, known as multiple-input multiple-output (MIMO) that support channels of 40 MHz. The 

protocol supports frame combination. 802.11n supports three operational modes; High-

throughput modes non-HT mode, Greenfield and HT mixed mode.  
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Table 3.3 Summary of IEEE802.11 standards (Bejarano et al., 2013) 

Feature/IEEE standard 802.11b 802.11g/a 802.11n 802.11ac 

Maximum data rate per 

stream (Mb/s) 
11 54 >100 

>500 (Assuming 80 

MHz channels) 

Frequency band 2.4 GHz 2.4/5 GHz 
2.4 GHz and 

5 GHz 
5 GHz 

Channel width (MHz) 20 20/20 20 and 40  
20,40,80, 160, and 

80+80  

Antenna technology SISO SISO  MIMO MIMO/MU-MIMO 

Transmission technique  DSSS 
DSSS and 

OFDM 
OFDM OFDM 

Maximum number of 

spatial streams 
1 1 4 8 

Beamforming-capable No No Yes Yes 

Date ratified by IEEE 1999 2003/1999 2009 2013 

The 802.11n can reach up to 600 Mbps speed rate that considerably 10 times better than the 

previous 802.11a/b/g standards (Mishra et al., 2015). The newest WLAN is 802.11ac 

standard that is upgrade of 802.11n. It supplies a high throughput (VHT) reaching 1 Gbps. 

802.11ac runs on 5 GHz band as not suitable spectrum is available at 2.4 GHz for high speed. 

The 802.11ac can support a wider bandwidth that can reach 160 MHz by adjusting 256-

QAM. The 802.11ac supports more MIMO spatial that up to 8 to enhance its speed rate. 

Bejarano et al. (2013) summarized IEEE wireless characteristics as outlined in Table (3.3). 

3.7 Artificial Intelligence Techniques 

This section of the study explains the concept of two important Artificial Intelligent systems; 

fuzzy logic, and neural network. Fuzzy logic can perform both numeric and linguistic 

reasoning and cope with uncertainty in information. Neural networks are adaptive parallel 

processing systems that can learn by interacting with their operating environment. 

3.7.1 Fuzzy logic 

Fuzzy logic initially was developed in 1965 by Lotfi Zadeh as computer methods for 

computing words instead of just numbers. It is widely applied to various services and 

applications in varied areas like control, evaluating systems and decision making (Egaji et al., 

2015) and (Alreshoodi and Woods, 2013). The flexibility and robustness of Fuzzy Logic to 

handle with inaccurate or uncertain information makes it powerful and excellent technique.  
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An important feature of fuzzy logic is its capability to process information linguistically. It 

facilitates modelling of very complex systems efficiently by using advanced level of concepts 

from human's experiences and knowledge. Below is summary of fuzzy logic process. 

i. Fuzzy Inference System (FIS): A fuzzy logic technique to compute input vector values by 

using predefined rules. FIS allocates measures to the output. It consists of four sections: 

fuzzification, inference engine base of rules and defuzzification. Figure 3.6 shows a FIS 

operation (Egaji et al., 2015). 

 

 

 

 

 

 

 

 

 

ii. Fuzzification: In this part of Fuzzy logic the numerical inputs that converted into 

linguistic forms by determining their extents of belonging to onfe of proper membership 

functions. Cirstea et al. (2002) explains fuzzy sets that each component (x) in the universe of 

discourse X is allocated to certain extent of membership µ(x) which is achieved from 

membership functions. Membership functions allow gradual conversion as full belonging to a 

fuzzy set to not belonging with intermediary extents of belonging. It is unlike normal 

classical logic that has very limited borderline between true and false conditions, the fuzzy 

logic represent a gradient slope of other probable states between true and false. 

iii. Rule Base: It is a set of IF-THEN rules which implies linguistic values; the rules and its 

number are changing according to the number of input's variables, outputs and used many 

membership functions that are correlated to them. The basic definition form of IF-THEN 

rules: IF which is (Antecedent), THEN which is (Consequent) (Mendel, 2017).        

iv. Inference Engine: It uses fuzzified input data and the defined rules in the knowledge base 

to deduce new information about the current input case through processes known as 

implication and aggregation (Lee, 1990). The fuzzified inputs data could be used for multiple 

rules to identify how effectively every rule defines the current condition. However, 

implication must apply for every rule whereas the input for the implication procedure is only 

 

Crisp Inputs 

Knowledgebase 

Inference Engine 

Crisp Output Fuzzification De-fuzzification 

Figure 0.6  Schematic diagram of a fuzzy inference system (FIS) 
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a number that has obtained by the antecedent of this rule, and the output is considered as a 

fuzzy set. Then the output fuzzy set from previous implication procedure for every rule is all 

integrated by aggregation procedure to generate single fuzzy set (Mendel, 2017).  

v. Defuzzification: Defuzzification process converts the output linguistic values which are 

the results of aggregation part to real numeric values. There are many mechanisms that can be 

used in defuzzification operations like bisector, centroid, smallest of maximum, middle of 

maximum and largest of maximum (Greenfield and Chiclana, 2013). 

3.8 Probabilistic Classifiers 

3.8.1 Bayes’ theorem   

The conditional probability of any event is a possibility attained with the extra data that some 

other event previously happened. P(B|A) refers to the conditional probability for event (B) 

happening, as that the other event (A) that previously occurred (Parrill and Lipkowitz, 2015) 

and (Lantz, 2015). The following Equation provides for finding P (B|A): 

𝑃(𝐵|𝐴) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃(𝐴)
     (3.5) 

The textbook also involved this "intuitive approach for finding a conditional probability": 

The conditional possibility of (B) given (A) can be obtained by supposing that event (A) has 

happened. Bayes' theorem (Bayes' rule) that has been used for studying a probability 

assessment based on extra data that is later attained. It is important to identify that dealing 

with consecutive events, whereby new extra data is attained for a consequent event, and that 

new obtained data is used to revise the probability of the previous event. In this perspective, 

the terms prior probability and posterior probability are usually used (Mitzenmacher and 

Upfal, 2017). 

Bayes' theorem status that the probability of event (A), as that event (B) has already 

happened, is in Equation (3.6) (Ambica et al., 2013).  

𝑃(𝐴|𝐵) =
𝑃(𝐴).𝑃(𝐵|𝐴)

[𝑃(𝐴).𝑃(𝐵|𝐴)]+[𝑃(�̅�).𝑃(𝐵|�̅�)]
         (3.6)                              

Bayesian classifiers (BC) are known as statistical classifiers. BCs can expect class 

membership possibilities like if given sample belongs to a class. BC is created based on 

Bayes’ theorem. Naive Bayesian classifiers if the influence of an attribute measure for 
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specified class is independent of the other attributes. This assumption is recognised as class 

conditional independence which make simpler computation considered as "naive” (Junxiang 

and Yu, 2019) and (Wolstenholme, 2018). 

Bayes’Theorem;LetX={x1, x2 ..., xn} as a sample, whose elements characterise measures 

made on a set of n characteristics. In Bayesian terms, X is known as "evidence". Let H be 

likelihood that the data X belongs to a class C. For categorising issues, the aim is to obtain P 

(H|X), the probability of the hypothesis H holds assumed the "evidence", (i.e. the detected 

data sample X). In other words, the probability that sample X belongs to 

     𝑃(𝐻|𝑋) = 𝑃(𝑋|𝐻)𝑃(𝐻)𝑃(𝑋)                                                (3.7) 

3.8.2 Probabilistic neural network  

PNN classifies an input dataset to predefined class types. PNN is known as supervised 

learning feedforward artificial neural network (Raman et al., 2017). It is a classifier using a 

statistical algorithm which is kernel discriminant analysis. The PNN training needs several 

examples of identified classes in order to conclude the approximated. PNN has many 

advantages, its essentially parallel structure, fast training and convergence, and it capability 

to optimise classifiers by adding training examples.  

According to Specht (1990), PNN is linked to Parzen nonparametric probability density 

function (PDF) and Bayes classification rules. In the algorithm, the PDF of each class is 

approximated by a Parzen window and a non-parametric function. Then, using PDF of each 

class, the class probability of a new inputisestimatedandBayes’ruleisemployedtoallocate

it to the class with the highest posterior probability. PNN structure is shown in Figure 3.7, 

consists of four layers; input, pattern (hidden), summation layer and output (Raman et al., 

2017).  
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Figure 0.7 Architecture of probabilistic artificial neural network PNN 

An input dataset vector is fed to the n input neurons. Then, the input layer forwards the data 

to the neurons in the hidden (pattern) layer which distributed into k classes. The neurons in 

the hidden (pattern) layer process the data using a Gaussian kernel of the form of an input 

pattern x from the input layer. There is more explanation about using PNN in chapter 6. 

In this study, Bayesian and PNN based methods were developed to classify QoS for their 

advantages of computational speed and robustness.  

PNN is a fast training process and an inherently parallel structure that is guaranteed to 

converge to an optimal classifier as the size of the representative training set increases and 

training samples can be added or removed without extensive retraining. The training time, as 

measured by number of iterations of the learning algorithm needed for the network to reach 

its best performance. It is also significantly shorter for the PNN compared to conventional 

neural networks (CNN) while PNN generally requires more hidden nodes than CNN to reach 

comparable performance.  
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3.9 Network Tools 

3.9.1 NetEm (Network Emulator) 

Network Emulator is a Linux based tool that has the ability to emulate a vast range of 

network scenarios. Network engineers have used NetEm to emulate wide area network 

properties to test protocols. By NetEm, it’s possible to emulate various networks scenarios 

whilst having a control over traffic factors like delay, jitter and %PLR, duplication and re-

ordering of network data packets (Roshan, 2018) and (Biernacki, 2017).  

NetEm runs emulation functionality for required protocols by emulating some of network 

parameters. The current NetEm emulates delay, packet loss, duplication and re-ordering 

(Roshan, 2018), (Moe, 2013) and (Beuran, 2012). NetEm allows two delay emulation types. 

The first type is a fixed delay, as illustrates in Figure 3.8. 

 

Figure 0.8 NetEm adds a fixed delay to outgoing data packets (Roshan, 2018) 

The second type in NetEm to emulate a delay is with the use of a distribution. NetEm has 

built-in delay distributions called Normal and Pareto which allow added delay to the outgoing 

traffic based on one of these built-in distributions as illustrated in Figure 3.9. 

 

 

Figure 03.9 NetEm traffic control logic (Roshan, 2018) 

∆T1 ∆T
2
 

{ 

Packet out of order 

Source packets 

Destination packets 

Time 

NetEm Traffic Control 

Data packets from an application 

on the way out to the network. 
Packets leaving with a delay based 

on distribution used Normal or Pareto. 



 

44 

 

NetEm is a very popular tool used widely by many researchers. It allows testing and design 

of network related applications in various controllable conditions where the experiments can 

be repeated for concluding a desired outcome. In this study, the NetEm software was used 

due its capabilities that allowed control of delay, jitter and packet loss.  

3.9.2 Network time protocol NTP 

NTP is an Internet protocol used to synchronize the clocks of computers to time reference. 

NTP is assembled on top of UDP and IP. It is considered to preserve time reliability and 

accuracy (Douglas et al., 2018). It is constructed for having all devices get correct time close 

as possible to the - Universal Coordinated Time (UTC). Simple NTP system contains a 

central server and clients to deliver precise time to the network clients.  

The basic NTP operation is to time stamp transported packets between the server and its 

clients. The process order is: i) the client stamps its time while sends an NTP request packet 

to the server. ii) The server stamps the time while NTP request packet has received from its 

client. iii) The server stamps the time while it sends the NTP reply to the client. iv) The 

network client stamps the time when this NTP reply is received. NTP packet contains four 

timestamps, where clients use these timestamps to compute the variation between its internal 

and the UTC time reference then adjusts its local time to synchronise with its server. In 

addition, the client can measure the latency and apply a correction factor to adjust its internal 

time, which results in more accurate latency level of synchronization. In this study, to 

accurately measure multimedia traffic parameters between two PCs, NTP was installed in 

transmitting and receiving PCs to synchronise time and accurately measured delay, jitter and 

%PLR. 

3.9.3 Wireshark software 

Wireshark is identified as packets analyser for hybrid networks, it is "the packet sniffers" 

capture, and analyse network traffic transmitted between two devices to further study and 

troubleshoot network problems. Wireshark builds useful statistical information of wireless 

(Wi-Fi) usage. Wireshark captures and records packets based on many criteria such as 

protocol number or type UDP, TCP, RTP, RTCP or SIP. In this study the furthermost 

significant packets that needs to be collected is VoIP packets then calculate some VoIP 

statistics such as delay, jitter and %PLR (Lamping and Warnicke, 2014).  
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3.9.4 VLC media Player  

VLC, is a media player that produced by Video Lan (VideoLAN, 2019), it operates on 

Windows, Linux, and MacOS computers. VLC plays a wide range of media files. VLC has 

controlling streaming capabilities which allow local or network streaming with a large control 

over the protocols and codecs to meet specific streaming requirements (Panayides et al., 

2013). The VOD streaming can be done by VLC using many protocols such as HTTP, RTP 

and UDP. VLC has capability to display the stream locally to allow check effects of 

transcoding and rescaling. In this study, VLC have been used for video streaming between 

PCs. 

3.10 Summary 

This chapter explained theories that significant to the QoS and QoE of multimedia 

applications. This covers the descriptions, QoS traffic factors and parameters, QoE visual 

factors, QoS essential requirements of multimedia services, and multimedia parameters. It 

introduced the IEEE 802.11n/ac as emerging WLANs standards to provide QoS was 

explained. This chapter also explained the theoretical background related to Artificial 

Intelligence (AI). The basic concepts of fuzzy logic, Bayesian classifier, probabilistic Neural 

Network PNN were explained.   
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Chapter 4 Methodology 

4.1 Introduction 

An explanation of procedures that were common in obtaining results presented in the 

following results chapters is included in this chapter. The procedures that were specific to the 

results in individual chapters are included in their related chapters to aid clarity and 

readability. The methodologies were in three parts: 

 Simulation approach which was used to generate data that used to develop an adaptive 

sampling technique covers objective 1. The NS2 simulation-based approach is explained 

in section 4.3. 

 Emulated testbed was used to develop QoS, objective QoE and integrated QoS/QoE 

techniques, according to needed scenarios, the emulation used NetEm due to its ability to 

alter delay, jitter and %PLR, this approach covers objectives 2, 3 and 4. The emulation 

approach is explained in section 4.4. 

 Real network of large institution has been used to evaluate multimedia transmission 

between two computers using all developed techniques which cover objective 5. The 

approach was explained in section 4.5.   

In this chapter, the traffic measurement procedure and SPSS analysis procedure are explained 

in sections 4.6 to 4.10. 

4.2 Network Evaluation Approaches 

As described in section 2.7 performance evaluations of wired and wireless networks is often 

performed either by simulation, emulation or real-world testing. All these approaches have 

advantages and disadvantages. Simulations typically use simplified models with idealized 

conditions. Emulations reflect real networks but still allow for controlled network parameters 

like delay, jitter, %PLR and throughput. These parameters and elements are involved in real 

world tests leading to a complex environment and can involve labour intensive tests, but the 

conditions and the results will be practical. 

There are many simulation tools for research (Sarkar and Halim, 2011) and (Gantenbein et 

al., 2010) such as Optical Micro-Networks Plus (OMNET++), Global Mobile Information 

System Simulator, NS2 by Virtual Internetwork Testbed (VINT) and NS3 from National 

Science Foundation (NSF). NS2 is an open source and free simulation model. NS2 is wildly 



 

47 

 

used for network research. In this study simulation did not have a major role; it was used to 

gather network traffic in order to develop an adaptive sampling technique. Therefore NS2 

was selected and used for its simplicity in the task required for. 

Emulator testbeds only redefine the physical layer instead of redefining many levels of the 

OSI model, such as the real radios are used. The links between hosts are the only parts 

modified, not the hosts themselves. Emulation solution offers middle ground between 

simulators and real network (Angrisani et al., 2017) and (Gantenbein et al., 2010). Because 

the only issue that needs to be managed is the link, it can be emulated in hardware. At the 

same time, emulators exclude many of the practical problems that exist in real testbeds by 

controlling such external factors that may influence the experiment (Petrioli et al., 2015). An 

example of emulator is the NetEm (Angrisani et al., 2017) and (Petrioli et al., 2015). In this 

research, the reason for using emulation is to alter network parameters; delay, jitter 

and %PLR to provide different QoS classification to the multimedia traffic. NetEm software 

is widely used to control network parameters such as delay, jitter and %PLR (Angrisani et al., 

2017) and (Jurgelionis et al., 2011). 

Real-world testbeds include computer nodes that are connected through the actual 

communication media. The entire network contains the original components that able to 

handle any communication under practical conditions (Attaby et al., 2019). In order to 

overcome limitations of simulations and small testbed emulation, a real large network is 

needed for quality performance evaluation.  

In this study, simulation and emulation testbed have been used to develop approaches of a 

multi-input adaptive sampling, QoS and QoE evaluations and Integrated QoS/QoE 

approaches. However, all developed techniques will be applied on real large institutional 

network for multimedia. These approaches and the manner they were used are shown in 

Table (4.1). 
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Table 4.1 Approaches to test transmission methods

 

4.3 Network Simulation NS2 

NS2 code processing is Object-oriented Tool Command Language (OTcl) and C++ language. 

While C++ describes the inside the simulation model. The OTcl sets up simulation by 

configuring the objects and scheduling discrete events (Yu et al., 2018). The simulation 

process of NS2 is shown in Figure 4.1. NS2 Simulate wired and wireless network functions 

and protocols. The NS2 is able of stream video like H.264 and MPEG-4 by using Evalvid 

toolset (Ke et al., 2008). NS2 uses Terminal Command Language (TCl) as scripting language 

for creating simulation scenario file (for example, sample.tcl). The output of the simulation 

procedure is saved in two files, trace file and (Network AniMator) NAM file. The trace file 

contains network packets information such as transmitted packets, received packets, packet 

types, packet ID, dropped packet, etc. (Katkarand and Ghorpade, 2016). The information in 

trace file is used to extract relevant information by using script languages such as Perl, Awk 

and Matlab or script languages such as Xgraph and Gunplot (John and Haroon, 2014).  

Network engineers tend to use NS2 for testing new protocols or modifying the existing ones 

in a controlled environment. Moreover, NS2 can carry out trace-driven simulation using a 

record of events from a real system and its simple to use; therefore, in this study, NS2 was 

used to develop the multi-input adaptive sampling model. While, NetEm was implemented in 

the actual laboratory testbed network to control relevant network traffic parameters, i.e. 

delay, jitter and %PLR, for sampling, QoS, objective QoE and integrated QoS/QoE 

assessments.  
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Figure 4.1 The NS2 simulation process (Katkarand and Ghorpade, 2016) 

4.3.1 Network topology in NS2 

A modular and scalable hybrid network has been implemented using NS2 tool. Figure 4.2 

shows the network's design, based on the mentioned hierarchical design which distributed the 

network into three levels; access, distribution and core. This network structure optimises 

administration and management (Tan and Fang, 2018), the designed scheme was associated 

with the Open Source Interconnection (OSI) model (Trabelsi and Barka, 2019). The wireless-

cum-wired network was simulated using the NS2. The network nodes in the simulated 

network were 8 stations. The connections between stations were unidirectional. Each station 

sent traffic to its counterpart station destination. The network topology area configured of 

(400 400) m and the stations were positioned randomly. The time period simulation took 

place varied between 800 seconds to 10 minutes as the scenario requirement. 
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Wired node

Wireless node

Station

Figure 4.2 Network scheme 

The wired side controlled the core layer and assigned 10 Mbps bandwidth. The WLAN part is 

based on wireless standard of IEEE 802.11e, and it was used the Enhanced Distributed 

Channel Access (EDCA) with Hybrid Controlled Channel Access (HCCA) approach. In this 

study the focus was on the IEEE 802.11e EDCA because its easiness (Lee et al., 2011). The 

default setting for IEEE 802.11e of the main elements modelled the wireless channels is 

shown in Table (4.2). Data rate was 2 Mbps and basic rate was 1 Mbps (Barolli et al., 2019). 

The physical part was modelled to work as Lucent Wave LAN DSSS radio interface card at a 

frequency of 914 MHz. The physical layer parameters are listed in Table (4.2). 

Table 0.2 Description of settings of MAC and PHY parameters in IEEE 802.11e 

Parameter Value 

Modulation Method DSSS 

Physical Header 24 bytes 

MAC Header 28 bytes 

The Frequency Band 914x106 

Speed Rate 
2.0 - 11.0 

Mbps 

Basic Rate 1.0 Mbps 

Preamble Length 144 bits 

Capture Threshold 10 

Carrier Sense 

Threshold 
1.559x10-11 

Receiving Threshold 3.652x10-11 

Transmission Power 0.28183815 

RST Threshold 3000 

PLCP Header Length 48 bits 

There are many routing protocols supported in NS2 environment. Destination-Sequenced 

Distance Vector (DSDV) was chosen for its simplicity as it keeps the routing data for all 
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network nodes and updates the existing routes periodically (Ng, 2018). The queueing 

technique was First-In-First-Out (FIFO) for all scenarios while the queue size set to 50 

packets.  

In this study, many traffic types were sent over the network scenarios. These include Voice 

over IP (VoIP), best effort traffic, video streaming and background traffic. For VoIP, best 

effort traffic was modelled by constant bit rate (CBR). The G711 coding has been used for 

audio with 64 kbps. Packet size has been configured for video to 512 bytes (Saraireh et al., 

2007). VoIP was configured with 160 bytes. Video streaming frames were configured with 

MPEG-4 coding scheme and length of 1024 bytes. Following individual simulation, NS2 

produced a trace file that included the network status and traffic details like the packet types, 

packet sizes, received and sent times and delivery status. Matlab
©

 was used to read the data 

that generated in the saved trace file. Then the traffic parameters; delay, jitter, and %PLR 

were measured. The generated traffic parameters have been used to develop a multi-input 

adaptive sampling in chapter 5. 

4.4 Network Emulation (NetEm) Testbed  

The experiments that have been used to develop QoS, QoE and QoS/QoE techniques were 

based on multiple scenarios in a network laboratory, size 4 m6 m, consisting of two access 

points (APs) and 20 personal computers (PCs) as shown in Figure 4.3. The design established 

up to 10 PPP connections between PCs that linked to AP-1 and the PCs that linked to AP-2, 

number of PPP links varied according to the needed scenario and this will be clarified in its 

relevant chapter. The setup gave flexibility in testing for different traffic conditions. Number 

of PCs that were attached to the AP-1 and AP-2 were from 1 to 10 depending on the 

scenarios needed and this will be explained in its relevant chapter.  

NetEm is a very common tool used widely by many researchers. It allows the network 

researchers to emulate network scenarios for evaluating new protocols and application. These 

environments offer the testing and design of network related applications in controllable 

conditions where the experiments can be repeated infinitely for concluding a desired outcome 

or a concrete finding. The common NetEm offered features its ability to control network 

parameters such as delay, jitter and PLR. Therefore, MetEm was used in this research to 

control network parameters in such a way to reflect practical scenarios.  
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Figure 4.3 Network layout with NetEm 

The APs were Cisco
© 

AIR-AP1852E and supported 802.11 g/n/ac protocols. They had four 

dual-band external antennas. Catalyst switch Cisco
©

 3560-CX was used to connect the APs 

and SIP server by 1 Gbps links. On the PC side, wireless adaptors of Linksys AC1200 Dual-

Band were used in all scenarios. The data were not encrypted for transmission between PCs' 

wireless interfaces and APs. As the wireless nodes were at same location, the power of 

transmission was below 30 mW (15 dBm) (Santos, 2016). NetEm ran over the Windows
© 

PC. 

SIP Softphones configured on the Windows
© 

PC to provide SIP VoIP sessions. Real Time 

Protocol (RTP) used packet size of 160 bytes and G711a protocol for audio CODEC. The 

queuing technique was First-In-First-Out (FIFO) with size of 50 packets for all scenarios.  

Initially one to one PPP link was established between PC-1a and PC-1b. The traffic 

comprised video, VoIP and transmission control protocol (TCP). The traffic was sent 

simultaneously from PCs connected to AP-1 to PCs connected to PC-2. The manner of traffic 

transmission varied depended on the scenario and will be explained in the relevant chapter. In 

addition, NetEm was used in this study for its ability to emulate a setting up the network test 

scenarios whilst having a control over network parameters; delay, jitter and %PLR. NetEm 

server was installed in between the PCs as shown in Figure 4.3. The traffic was routed 

between one end to the other through NetEm. Graphic interface tool was used to access 

NetEm and change delay, jitter and %PLR in real time manner for QoS and QoE study. In 

this study, Emulation using NetEm was used in order to develop QoS approach, objective 

QoE and integrated QoS/QoE approach that covered objectives 2, 3 and 4. Further 

explanation of the manner of using this emulation is provided in chapters 5, 6 and 7. 
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4.5 Real Large Institutional Network 

In this study, all developed techniques were evaluated on a large institutional network (it is 

not named for security purposes) that consisted of 35,000 computers, more than 3500 routers, 

switches and access points. The developed techniques and methods have been used to 

evaluate multimedia transmission between two PCs over the institution's network, one PC-1 

in Campus A and PC-2 in Campus B. The multimedia traffic transmitted from PC-1 to PC-2. 

The PC-1 connected by wireless Cisco© AIR-AP1852E on Campus A, the traffic passed 

through Cisco switch 3850UA, then to distribution layer through Cisco 6880X VSS, then to 

the core routers Cisco 6880X then reverse to Campus B computer passing similar products. 

On PC-1 the video streaming was done by VLC software and the compression set to MPEG-4 

using UDP/RTP protocol. VoIP was handling between the two PCs using softphone called X-

Lite using SIP protocol. Wireshark software was installed on both PCs for capturing 

generated traffic to measure traffic parameters (delay, jitter and %PLR). The time duration of 

transmission was according to scenario and will be explained in its relevant chapter. The 

network layout is shown in Figure 4.4. 

 

Figure 0.4 Real Institutional Network layouts (partially) 
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4.6 Traffic Capturing 

Wireshark traffic monitoring tool (Banerjee et al., 2010) was installed on PC-1a and PC-1b to 

capture packets. Wireshark captured packets based on protocol type or number like UDP, 

TCP, RTP and SIP. The captured packets were processed using Matlab
©

 and a statistical 

package called SPSS
©

 to compute packets actual delay, jitter and %PLR and used these 

values to quantify overall QoS for VoIP. Wireshark was used in the testbed emulation and in 

real network to capture VoIP and video streaming traffic, and then associated delay, jitter and 

%PLR were determined. 

4.7 Real time Transport Protocol (RTP) 

In this study, RTP was used to deliver network transport functions suitable for multimedia 

(video and audio) over unicast or multicast network applications (Perkins and Ott, 2018) and 

(Duong et al., 2017).  

The timestamp was used to place the incoming packets (audio and video) in the correct 

timing order. The sequence number and timestamp features are main features on RTP 

headers. Timestamp were used in this study to measure end-to-end delay and delay variation 

(jitter) accordingly while sequence numbers to detect and measure packet losses. The main 

two features of RTP are (Perkins and Ott, 2018): 

 Sequence number field: This is 16 bits. The first value is random and then it increases 

by 1 in every packet sent. The sequence number feature of RTP is that it can be used to 

detect any lost or misplaced packets. RTP does not take any actions when it detects a 

packet is lost.  

 Timestamp field: This is 32 bits. It identifies the time when the first byte of the RTP 

packet was constructed. This instant has been configured by clock and increments in a 

monotonic and linear method.  

For the purpose of end-to-end time measurements, time must be synchronized between 

sender and receiver computers by using NTP. 
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4.8 Network Time Protocol NTP 

The purpose of a time server is to deliver precise time to the clients. In this study, NTP was 

installed in PC-1a as server and on all other PCs as clients to assure time synchronization. 

4.9 Iperf software 

It is a command-line network speed measurement. IPerf was installed on the computers at 

both ends of the connection, PC-1a as a server and PC-1b as client. It was used to measure 

actual throughput rate by sent TCP packets from the server to the client and return 

(Bholebawa et al., 2016). TCP throughput was measured for a given TCP packet size that 

varied from 250 bytes to 64 Kbytes. It was mainly for QoS evaluation that has been carried 

out in this study to compare VoIP transmission performance over 802.11ac and 802.11n 

standards. 

4.10 Statistical Package for the Social Sciences (SPSS©) 

SPSS
©

 is a platform used for statistical analysis and is widely used for computer networks 

analysis. It has slightly more 'point and click' functionality than some of the other statistical 

analysis packages, and is easy to learn and to use (Green and Salkind, 2016). SPSS was used 

in this research for exploring network data. It was used to analysis QoS, QoE and integrated 

QoS/QoE and their relations to the network and media parameters. The statistical descriptions 

of data were classified packets, boxplots, histograms and scatter plots. SPSS also used to 

show the overall performance and its relation to QoS parameters and QoE media parameters. 

4.11 Summary 

This chapter defined the experiments procedures used to assess and verify the methods 

developed during this research study. NS2 to simulate network scenarios was provided. The 

settings include queuing, routing protocols, and wireless parameters were also discussed. The 

Testbed emulation network was discussed. The manner of NetEm and RTP and capturing 

packet method were introduced. The real large institutional network was introduced and the 

manner of how evaluate its multimedia transmission.  
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Chapter 5 Multi-input Adaptive Sampling Technique 

for Multimedia Traffic 

5.1 Introduction 

The transmission of multimedia over hybrid networks generates large traffic loads on 

bandwidth and other resources (Tan et al., 2018), (Robitza et al., 2017), (Hofstede et al., 

2014) and (Manfredi, 2012). Traffic analysis necessitates packet transmission data for the 

overall network and individual flows to be captured and interpreted. Processing every 

transmitted packet is not practical in real time because of high processing desires. In addition, 

network traffic behaviour is dynamic. Therefore, a subset of data packets required to be 

captured in a way that the subset contains considerably smaller size than the actual number of 

sent packets while maintaining the total traffic’scharacteristics and behaviour. The process is 

called sampling and considers a significant role in assessing multimedia transmission's 

performance (Salama et al., 2018), (Silca et al., 2014), (Lin et al., 2014) and (AL-Sbou et al., 

2008). The contribution of this part is developing a novel multi-input adaptive sampling 

model based on statistics of the traffic. The method samples multiple traffic parameters 

simultaneously. It can be used as part of QoS assessment. As stated in the literature, the 

emulated testbed network is more practical in network evaluation. Thus, the developed model 

has been initially developed using data generated by a simulated network then the model has 

been applied practically on emulated testbed network and its results were compared against 

the conventional sampling techniques. 

This chapter is ordered as following: In section 5.2 a review of the latest related adaptive 

sampling studies that were used for traffic measurements were explained. In section 5.3 a 

detailed explanation of the proposed multi-input adaptive sampling approach was provided. 

The details of the implementations of conventional sampling methods are discussed in section 

5.4. The measurements of traffic parameters with sampling analysis approaches are discussed 

in section 5.5. Section 5.6 explains the simulation network topology and its results while 

actual emulated testbed network topology and its results are introduced in section 5.7. The 

developed multi-input adaptive model results were compared against non-adaptive sampling 

(i.e. systematic, random and stratified) in section 5.7.1.  
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5.2 Related Work 

Adaptive sampling based on fuzzy logic has been previously reported where sample rate has 

been adjusted based on past traffic history and traffic conditions (Tan et al., 2018) and (Silva 

et al., 2017b and 2013). Adaptive sampling approaches can be used to represent traffic 

parameters parameter, such as delay and jitter (Robitza et al., 2017), (Shao, 2016), (Dogman 

et al., 2010) and (Hu et al., 2008) or packet loss (Serral-Gracia et al., 2010) and (Serral-

Gracia et al., 2008). The work reported in (Dogman et al., 2011, and 2010) were based on 

statistical adaptive sampling methods. They considered the traffic's statistical parameters and 

adjusted them using fuzzy logic methods. However, the methods lacked sufficient modularity 

(such as multi-input) as they dealt with a single traffic parameter at a time that reduced the 

accuracy of determining QoS. According to (Silva et al., 2017b, 2017c), existing sampling 

techniques lacked modularity thus making them less transparent in operation. In this context, 

this study proposes an adaptive traffic sampling architecture capable of adjusting sampling 

rate in accordance with multiple traffic parameters that are processed simultaneously to 

determine QoS. In this part of this study, the main contribution has been to develop a novel 

multi-input adaptive sampling method that is an advancement of the earlier reported methods. 

Initially an adaptive sampling method with one input parameter was developed in (Salama et 

al., 2017b) and (Salama et al., 2017c). This was further developed to multi-input adaptive 

sampling approach that uses multiple network parameters inputs for QoS evaluation (Salama 

et al., 2017a) and (Salama et al., 2018). The modularity feature allows performance 

assessment to deal with multiple traffic parameters simultaneously depending on the 

application requirements. For multimedia transmission; delay, jitter and %PLR are important 

to sample but if %PLR is not as critical then the approach relies on delay and jitter only. The 

importance of the multi-input adaptive is that the method dynamically adjusts the sampling 

interval in accordance with variations in delay, jitter and %PLR.  

5.3 Adaptive Sampling Method 

A multi-input adaptive sampling approach is proposed in this chapter. The sampling interval 

was adjusted using the traffic changes that represented linear regression model and fuzzy 

inference system. 

The method samples traffic according to the extent of traffic changed by adjusting a parameter 

called inter-sampling interval (isi). The parameter provided flexibility in implementation of 
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the sampling method. This design considered delay, jitter and %PLR jointly for the purpose of 

QoS evaluation. The design can be further adapted to other network measurements with 

different number of inputs according to the application. The main traffic sampling sections 

which include packets to be sampled are shown in Figure 5.1.  

           

Figure 0.1 The sampling concept 

The operating parameters of the developed multi-input adaptive sampling algorithm is shown 

in Figure 5.2. The parameters of the sampling methods are defined as: 

 Pre- and post-sampling sections: are defined as the time intervals associated with the 

selected packets. The duration of these two sections are predefined and do not vary 

throughout the sampling practice.  

 Inter-section interval (isi): is defined as the time interval between the pre-sampling and 

post-sampling sections. In this interval, packets are not selected. The isi interval duration 

is updated adaptively by FIS based on the change of traffic behaviour (i.e. changes in 

delay, jitter and %PLR). isi is updated during each sampling iteration. 

 Regression model: The traffic parameters (i.e., delay, jitter, and %PLR) were represented 

by an n × n matrix which allows regression computation between pre-sampling and post-

sampling sections, where n is the number of subsections that forms the pre-sampling and 

post-sampling sections, and n is also equal to number of packets in each subsection. 

 Traffic difference TD: quantifies the amount of traffic variations between the pre-

sampling and post-sampling (intervals) sections by using the Euclidean (traffic 

difference) measure. In this study, TD_D, TD_J and TD_%PLR represent traffic 

differences of delay, jitter and %PLR respectively. 

 Fuzzy inference system (FIS): was used for duration (interval) update of isi based on the 

vales of TD_D, TD_J, TD_%PLR and current value of the isi. 
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Figure 05.2 The flow chart of the multi-input adaptive sampling algorithm 

Yes 

Start  

End  

Initialise:  
1. Pre and post-sampling intervals length (n x n). 
2. Subsections length of pre- and post-sampling intervals (n). 
3. Inter-sample interval (isi). 

No Is traffic totally 
sampled? 

Determine location of next stage: 
1. Pre-sampling section starts at the end of current post-sampling section. 
2. Post-sampling section starts at the end of current pre-sampling section + updated isi. 

Process TD_D, TD_J, TD_%PLR and current isi with fuzzy inference system (FIS) to 

compute updated isi value 

Measure traffic difference of delay, jitter and %PLR (TD_D, TD_J, TD_%PLR) between 

the regression model coefficient for pre, and post-sampling (intervals) sections 

Represent traffic delay, jitter and %PLR 
by regression model incorporating pre-, 

post-sections (P matrices) 

Measure time durations of each 

subsection (T) in the pre, and post-

sampling sections 

Measure regression model coefficients for traffic delay, jitter and %PLR simultaneously 
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The method was iterative and at each stage the value of isi was updated. The regression model 

was used to represent packets included in the pre-sampling and post-sampling (intervals) 

sections. The traffic factors delay, jitter, and %PLR were the independent measures signifying 

p values in regression model represented in Equation (5.1). The pre-sampling and post-

sampling sections were allocated into n subsections (s1, s2 …, sn), whereas each subsection had 

n packets as presented in Figure 5.3; the traffic parameters measures of each subsection were 

characterised by a row of the matrix P and the related time interval for every subsection was 

signified by the vector T as specified in Equation (5.1). 
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t: time

t2 tnt1 t2 tnt1 t2 tnt1 t2 tnt1 t2 tnt1 t2 tnt1

T: subsection duration  

Figure 0.3 A representations of traffic for the regression model (i.e. delay, jitter or 

%PLR). 

In this study the number of pre-sampling and post-sampling subsections (n) was 3 and each 

and each section (S) contained 9 data packets. This resulted form of in a 3 × 3 traffic matrix 

(P). The matrix P represented one traffic parameter at time (t1, t2…, tn). These produced 

subsections S1pre, S2pre, while S3pre for the pre-sampling section and S1post, S2post, and S3post for 

the post-sampling section as shown in Figure 5.3. This representation was repeated for the pre- 

sampling and post-sampling (intervals) sections. The traffic representation matrices for both 

sampling sections are shown in Equation (5.1) by linear regression model. The initial isi set to 

zero. 

                             𝑇 = 𝑃𝐶 + 𝐸 = [

𝑇1

𝑇2

⋮
𝑇𝑛

] = [

𝑃11

𝑃12
⋯

𝑃1𝑛

𝑃2𝑛

⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

] [

𝑐1

𝑐2

⋮
𝑐𝑛

] + [

𝑒1

𝑒2

⋮
𝑒𝑛

]                                       (5.1)                                 
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The time periods related with every subsection’s packets (s1, s2 …, sn) were expressed by T1, T2 

…, Tn. These periods were computed by subtracting the arrival time of the last packet from the 

arrival time of first packet in the equivalent subsection. The vector E = [e1, e2 …, en]' signifies 

the computation error which initially was set to zero which led the reduction in the complexity 

of regression model. The regression coefficients 𝑐1, 𝑐2 … , 𝑐𝑛  were measured by Equation 

(5.2). 

𝐶 = 𝑃−1𝑇           (5.2) 

The quantity of change in traffic that related with pre-sampling and post-sampling sections 

was measured by their corresponding regression model coefficients using the traffic difference 

(traffic variation), as shown in Equation (5.3). 

Traffic difference of delay(TD) =   √(c1pre − c1post)2 + (c2pre − c2post)2 + ⋯ (c(n)pre − c(n)post)2 

(5.3) 

The previous steps, the Equations (5.1) - (5.3) for the delay parameters can be expressed as: 

𝑇 = 𝑃𝐶 + 𝐸 = [

𝑇1

𝑇2

⋮
𝑇𝑛

] = [

𝐷11

𝐷12
⋯

𝐷1𝑛

𝐷2𝑛

⋮ ⋱ ⋮
𝐷𝑛1 ⋯ 𝐷𝑛𝑛

] [

𝑐1

𝑐2

⋮
𝑐𝑛

] + [

𝑒1

𝑒2

⋮
𝑒𝑛

] 

where D, contains delay values of packets, the first row of the matrix P represent the delay 

values of subsection (1), while, the bottom row represent the subsection (n). This repeated for 

pre- and post-sections. The coefficients were determined as                

𝐶𝑝𝑟𝑒 𝑜𝑟 𝑝𝑜𝑠𝑡 = 𝐷−1𝑇            

After coefficients of delay parameter were determined, the traffic difference of delay (TD_D) 

was obtained as  

Traffic difference of delay(TD_D) =   √(c1pre − c1post)2 + (c2pre − c2post)2 + ⋯ (c(n)pre − c(n)post)2 

The previous three Equations were repeated for jitter and for %PLR and used in the FIS. FIS 

received the current interval of the isi and the traffic differences (TD) and accordingly 

measured the updated isi interval as illustrated in Figure 5.4. 
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Figure 05.4 Fuzzy logic to update isi interval 

The FIS has been used to adaptively change the value of the isi. Four inputs were fed to the 

FIS. These were the traffic difference for network parameters delay (TD_D), jitter (TD_J), 

(TD_%PLR) and the current isi. The membership function choice is the subjective aspect of 

fuzzy logic. The most common membership function is Gaussian which has been most 

commonly used in literature due its smooth representation of input, and the error is 

minimized. It allows the desired values to be interpreted appropriately. The amount of 

overlap and the range of each variable were determined by experimenting with a number of 

suitable values and selecting the ones that gave best outcomes by trial and error. In this study 

delay (TD_D), jitter (TD_J), (TD_%PLR) and the current isi membership function have been 

chosen as Gaussian. The locations, the range, the degree of overlap amongst the produced 

membership functions, and their equivalent fuzzy linguistics elements are provided in Figure 

5.5.  

The model inputs and the output have been fuzzified by the Gaussian membership functions 

that are smooth and have concise notation. The formula expressed in Equation (5.4) signified 

the Gaussian membership function while ci andσi are the mean and standard deviation for the 

i
th

 Gaussian fuzzy set Ai (Khalifa et al., 2016). 

  𝜇
𝐴𝑖(𝑥) = exp (−

(𝑐𝑖−𝑥)2

2𝜎𝑖
2 )                                               (5.4)  

The inputs to the FIS i.e. the traffic difference measures of delay, jitter, %PLR and current isi 

were independently fuzzified using five membership functions. The measured traffic 

difference for delay, jitter, and %PLR were VHigh, High, Medium, Low, and VLow fuzzy 

sets. While, the input isi was signified by VLarge, Large, Medium Small, and VSmall, fuzzy 

sets. The output (updated isi) was defuzzified by five membership functions, signified by DH 

(High decrease), DL (Low Decrease) NC (no change), IL (Low Increase), and IH (Increase 

High). Figure 5.5 provides these membership functions.  
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Figure 5.5 The membership functions for (a–c) traffic difference (TD_D, TD_J and 

TD_%PLR) sets for delay, jitter, and %PLR (d) current inter-sampling interval; and 

(e) the updated inter-sampling interval 
 

Tables (5.1) - (5.2) provide mean and standard deviation values of the Gaussian membership 

function parameters for the fuzzy input sets delay, jitter, %PLR, and current isi while, the 

fuzzy output sets (updated isi) are included in Table (5.3). 
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(c) (d) 
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Table 0.1 Mean and standard 

deviation of TD_D, TD_J and 

TD_%PLR membership functions 

 
Table 0.2 Mean and standard 

deviation of current isi fuzzy 

membership functions 

Membership 

functions 

Overall statistics 

 

Membership 

functions 

Current sample 

interval isi 

Mean St. dev. Mean St. dev. 

Very low 0 0.10 Very small 0 10.62 

Low 0.25 0.10 Small 25 10.62 

Medium 0.5 0.10 Medium 50 10.62 

High 0.75 0.10 Large 75 10.62 

Very high 1 0.10 Very large 100 10.62 

 

 

Table 0.3 Mean and standard deviation of updated isi output fuzzy membership 

functions 

Membership 

functions 

Updated sample 

interval isi 

Mean St dev. 

Very small 0 10.62 

Small 25 10.62 

Medium 50 10.62 

Large 75 10.62 

Very large 100 10.62 

   

 

The association between the inputs and the output was defined by a set of fuzzy rules. The 

number of fuzzy rules was set based on the number of inputs and their related fuzzy sets. The 

method to define a fuzzy rule base for fuzzy logic controllers was based on experience 

knowledge. In this case, trial and error has been a choice to design fuzzy rules. The rules are 

expressed in linguistically forms and the size of the rule base is small enough to allow 

modelling of the systems to be easily interpreted and analysed. In this part 25 rules have been 

chosen based on experience and best outcome results. The rules are explained in Table (5.4). 

Fuzzy reasoning was based on (minimum and maximum) inferencing. Each rule was 

individually associated by the membership functions and their minimum was mapped into 

related output membership function. While, the output fuzzy set from the implication 

operation for each rule was joined via the aggregation method to create one fuzzy set. The 

FIS output was produced from aggregated fuzzy set (defuzzification) by the centroid method. 
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The centroid method indicated the centre of area under the curve of the aggregated 

membership functions according to Equation (5.5) (Kovac et al., 2013). 

𝑌 =
∑  𝑦𝑖 . 𝜇𝑖

𝑚
𝑖=1

∑  𝜇𝑖
𝑚
𝑖=1

                                                         (5.5) 

Where m is the fuzzy sets achieved after implication, 𝑦𝑖 is the centroid of fuzzy region i, and 

µ𝑖 is the of degree membership measure. 

Table 0.4 The fuzzy rules used by FIS to adjust isi 

Rule TD Delay TD Jitter TD %PLR Current isi Updated isi 

1 Very low Very low Very low Very large No Change NC 

2 Very low Very low Very low Large Increase Low IL 

3 Very low Very low Very low Medium Increase High IH 

4 Very low Very low Very low Small Increase High IH 

5 Very low Very low Very low Very small Increase High IH 

6 Low Low Low Very large No Change NC 

7 Low Low Low Large No Change NC 

8 Low Low Low Medium Increase Low IL 

9 Low Low Low Small Increase Low IL 

10 Low Low Low Very small Increase Low IL 

11 Medium Medium Medium Very large Decrease Low DL 

12 Medium Medium Medium Large No Change NC 

13 Medium Medium Medium Medium No Change NC 

14 Medium Medium Medium Small No Change NC 

15 Medium Medium Medium Very small Increase Low IL 

16 High High High Very large Decrease High DH 

17 High High High Large Decrease High DH 

18 High High High Medium Decrease Low DL 

19 High High High Small Decrease Low DL 

20 High High High Very small No Change NC 

21 Very high Very high Very high Very large Decrease High DH 

22 Very high Very high Very high Large Decrease High DH 

23 Very high Very high Very high Medium Decrease Low DL 

24 Very high Very high Very high Small Decrease Low DL 

25 Very high Very high Very high Very small No Change NC 

 

5.4 Implementations of Conventional Sampling 

Non-adaptive sampling methods based on systematic, stratified and random sampling were 

measured according to the count-based method. These sampling methods were selected due 
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to their easiness (Silva et al., 2017b and 2013), (Robitza et al., 2017) and (Shao, 2016). The 

implementation of conventional sampling methods involved: 

i. Systematic sampling: for every n packet, the n
th

 packet was chosen. In systematic 

sampling operation, a counter was set at beginning to n and it is decreased by 1 at 

receiving every new packet. Once the counter become zero, the packet chosen. The 

operation represented selection of one packet. In the next step, the counter was reset, and 

the computational method was repeated.  

ii. Random sampling: for a sample size of n obtained from a population of N, the n is 

random number require to be produced for a range 1 to N, and then the packet chosen 

process is achieved according to the packet’s positions in the data flow. For every run, a 

new n would be produced in order to get multiple sets of samples at same size.  

iii. Stratified sampling: For each N packets, random numbers n is produced in the range [1, 

N], and packets are chosen based on their position. For every run, a new n is obtained for 

the same sample size.   

In this study n was given different values for different sample fractions (selected sample 

fractions are shown in Tables (5.5) - (5.7).  

5.5 Measurements of Sampling Traffic Parameters and 

Sampling Analysis 

The network traffic parameters delay, jitter and %PLR were determined as explained in 

chapter 3 section 1. The sequence number of the packets at the receiver side which is a 

unique number for every packet was used for this purpose. Then the timestamp in RTP 

header for the VoIP traffic was used to measure these parameters based on Equations (3.1) - 

(3.3). The traffic parameters (i.e. delay, jitter, and %PLR) of the sampled traffic that were 

computed using adaptive sampling model.  

To assess the efficiency of the proposed samplingmodel,theactualtraffic’spopulationand

its sampled were compared. According to Wan et al. (2014) assessments of mean and 

standard deviation of the sampled traffic and original traffic may not be adequate to assess 

the accuracy of the sampling consequently, further assessments were used to evaluate the 

efficacy of the proposed model. The parameters used were: 

i. Bias: It specifies how distant the mean of the sampled version deception from the mean 

of its actual data (Wan et al., 2014). The bias is the average of variance of all samples as 

indicated in Equation (5.6) was used to measure biasness: 
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Bias = 𝑀𝑖 − M                                             (5.6) 

Where, Mi and M are the means of the actual data and its sampled form.  

ii. Relative Standard Error (RSE): The RSE is an additional method that was used to 

evaluate the accuracy of the sampling. The RSE determined the consistency of sampling 

(Sileshi, 2015). RSE is described as a percentage and can be computed by Equation (5.7), 

the standard error (SE) divided by the sample size of (n): 

                                 

            𝑅𝑆𝐸 =  
𝑆𝐸

𝑛
 100                                                        (5.7) 

Where n is the sample size, and SE is the standard error values of the actual and sampled 

data. 

iii. Curve fitting: is an additional computational technique used to determine the sampling 

behaviour for its representation of the actual population. It determines the data trends of 

the actual population and its sampled version by the process of curve fitting. The curve 

fitting is a convenient approach for representing data in linear, polynomial and quadratic 

formats (Guruswami and Venkatesan, 2016) and (Fraundorf et al., 2012). Equation (5.8) 

shows the general formula for a polynomial: 

               𝑓(𝑥) =  𝑎0𝑥𝑁 +  𝑎1𝑥𝑁−1 + 𝑎2𝑥𝑁−2 +  … … + 𝑎𝑁−1𝑥 +  𝑎𝑁                     (5.8) 

The curve fitting polynomial calculates a least squares polynomial for a set of data x and 

determines the coefficients of the polynomial that demonstrates a curve to fit the data giving 

the quantified degree (N). Whereas, the polynomial degree is equivalent to the maximum 

number of the exponents (N), and (a0, a1… aN) is a set of polynomial coefficients. The 

polynomial assessment function determines a polynomial for x and then generates a curve to 

fit the data depend on the coefficients that have been obtained using the curve fitting 

(Guruswami and Venkatesan, 2016) and (Fraundorf et al., 2012). In this study N was selected 

to be 4. 

The sampling fraction is a part of data that will be calculated. The sampling fraction is the 

ratio of the sampled size (n) divided by the data size.  

5.6 PART A: Simulation Network Topology 

A hybrid and scalable network design was implemented using NS2 simulator. The designed 

scenario is explained in section 4.3 and shown in Figure 4.2. 
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The core layer was the wired part of the network with a capacity of 10 Mbps. The wireless 

channel capacity was configured to 2 Mbps. The queuing model for the testing scenario was 

First-In-First-Out (FIFO). The traffic included HTTP, FTP video streaming and VoIP. G711 

was adapted as audio coding. The NS2 sampling evaluation scenarios ran for period of 800 

seconds. After the simulation was completed, a trace file was generated that included packet 

transmission details like the packet types, sent and received times, packet sizes and delivery 

status. Traffic parameter measurements been quantified based on Equations in section (3.1) - 

(3.3). VoIP results were extracted; delay, jitter and %PLR were calculated for the VoIP to be 

sampled. 

5.6.1  Simulation network results and discussion 

Figure 5.6 (a) provides the updated isi based on the differences in TD_D, TD_J, TD_%PLR, 

and current isi. Figure 5.6 (b) indicates the manner the Traffic difference of TD_D. When 

differences are large, isi value declined and vice versa. Figure 5.6 (c) illustrates the actual 

delay and its trend. Figure 5.6 (d) provides the sampled delay and its trend. The trends for the 

actual delay and its sampled form were very close. The updated value of isi changed 

dynamically. For each iteration, isi changed the packet count which included the number of 

packets that isi increased or decreased for the next iteration.  

The scenario repeated several times to best normalise TD of delay, jitter and %PLR. Initially, 

the maximum and minimum values were defined and then the data were normalized between 0 

and 1 for membership simplicity, and this was for delay, jitter and %PLR. However, the same 

normalised numbers (maximum and minimum numbers were used for the simulation and the 

real testbed scenario which make the designed method suitable for networks. 
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     (c)                         (d)  

Figure 05.6 Typical results obtained from the developed adaptive technique (a) FIS 

output for updated isi (b) traffic difference for delay TD_D (c) actual traffic delay (d) 

sampled traffic delay 

 

In Figures 5.7 (a) - (c), the way the developed sampling method tracked the jitter is shown. In 

Figure 5.7 (a) the traffic difference of jitter TD_J is shown. In Figures 5.7 (b) - (c) the actual 

jitter and their sampled traffic are shown. For traffic jitter, the trends for the actual traffic are 

similar to the sampled form. In Figure 5.8 (a) the traffic difference for %PLR (TD_%PLR) is 

shown. Figures 5.8 (b) - (c) the actual %PLR and its sampled version are shown. For %PLR, 

the trends for the actual traffics are very close to the sampled form. 

 

 

 

 

 

 

 

       (a) 

 

 

 

 



 

70 

 

 

 
             

 

 

 

 

 

 

 

 

 

           (b)                                                       (c) 
 

Figure 5.7 Typical results obtained from the developed adaptive technique (a) traffic 

difference for jitter TD_J (b) actual jitter (c) sampled jitter 
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              (b)                                   (c) 

Figure 5.8 Typical results obtained from the developed adaptive technique (a) traffic 

difference for %PLR (TD_%PLR) (b) actual traffic %PLR (c) sampled traffic %PLR 
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5.7 PART B: Emulated Testbed Network Topology 

As stated in literature review, the actual emulated network represents network traffic 

conditions more practically than the simulations. Therefore, the developed sampling technique 

was applied on an actual emulated network in this section. The results of this section will be 

compared against conventional sampling techniques. Hybrid computer network was used to 

evaluate the developed adaptive sampling model. The design is explained in section 4.4 and 

shown in Figure 4.3. The network was implemented and configured in a network laboratory 

with 6 m × 4 m area. Details of the hardware description are explained in methodology chapter 

4, section 4.4. 

The traffic transmission continued for up to 900 seconds and includes of VoIP, video 

streaming using MPEG-2, and normal data using the TCP. VoIP call was initiated by SIP and 

UDP/RTP.  

The process of initiated PPP connections between the PCs that connected to AP-1 and the 

other PCs that connected to AP-2. The traffic sent included VoIP call which was captured by 

Wireshark that was installed in PC-1a and PC-ab.  

NetEm was used for its capability to emulate traffic factors (Roshan, 2018). In this part of the 

study NetEm was configured to alter delay, jitter, and %PLR between PC-1a and PC-1b. The 

scenario ensures that VoIP packets sent between PC-1 and PC-2 were sufficiently large to 

allow accurate sampling for QoS assessment.  

5.7.1 Emulated testbed results and discussion 

The packets for VoIP were selected and their parameters, i.e., delay, jitter and %PLR were 

measured using Equations (3.1) - (3.3). Linear regression Equation (5.1) was used to model 

traffic packets. The traffic difference (TD_D, TD_J and TD_%PLR) shown in Equation (5.3) 

was used to measure the traffic variation behaviour related with the pre- sampling and post-

sampling intervals. The FIS output produced the updated isi for every iteration based on the 

FIS inputs values and the fuzzy rules. As an example, Figure 5.9 (a) shows the adaptive 

updating of isi based on variation of TD_D, TD_J and TD_%PLR and current isi. Figure 5.9 

(b) shows the way the variation of traffic difference of delay TD_D. Figure 5.9 (c) provides 

the actual delay with its trend and Figure 5.9 (d) provides the sampled delay and its trend. 

Both actual delay packets and its sampled packets are very close. When traffic differences 

were large, isi reduced and vice versa. Figures 5.9 (c) - (d) show the curve fitting model 



 

72 

 

applied for both the actual and sampled forms of the network traffic parameters. The fitted 

curve shown in red confirms that actual traffic and its sampled version are very close. It can be 

observed from the Figure that trend of the sampled traffic using the adaptive sampling 

technique characterised the trend of its actual data very closely. The updated inter-sampling 

interval (isi) changed adaptively.  

 

Figure 5.9 Typical results obtained from the developed adaptive technique (a) FIS 

output for the inter-sampling interval (isi) (b) traffic difference for delay (c) actual 

traffic delay (d) sampled traffic delay 

Figure 5.10 (a) shows the traffic difference for jitter, TD_J. Figures 5.10 (b) - (c) show the 

actual, sampled jitter and their trends. The trends for the actual jitter and its sampled form are 

very close. A similar observation is for %PLR. In Figures 5.10 (b) - (c) the curve fitting model 

was applied for both the actual and sampled jitter. It is shown in red which confirmed that 

actual population traffic and sampled version were very close. To produce the results, the 

same minimum and maximum numbers of delay, jitter and %PLR from the simulation test 

(previous section) were used and these were relied upon to normalize data between 0 and 1. 

 

(a) (b) 

(c) (d) 



 

73 

 

 

       

      

 

 

 

 

 

       

      (a) 

 

 

 

 

 

 

 

 

 

          (b)         (c) 

Figure 5.10 Typical results obtained from the developed adaptive technique (a) traffic 

difference for jitter (b) actual traffic jitter (c) sampled traffic jitter 

Figure 5.11 (a) show traffic difference of %PLR (TD_%PLR). Figures 5.11 (b) - (c) show the 

actual, sampled %PLR and their trends. In Figures 5.11 (b) - (c), curve fitting was applied to 

both the actual and sampled %PLR. It indicated that actual population traffic and sampled 

version are very close. 

In order to compare the proposed sampling against non-adaptive techniques, the bias and RSE 

were calculated. These comparisons were performed using an emulated testbed as it is based 

on a real network laboratory. This provided a suitable accuracy as explained in the literature 

review. 
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            (b)                          (c) 

Figure 5.11 Typical results obtained from the developed adaptive technique (a) 

traffic difference for %PLR (b) actual traffic %PLR (c) sampled traffic %PLR 

Table (5.5) shows the comparisons of the mean, standard deviation, biasness and RSE for the 

actual and sampled delay at many fractions using the proposed model and non-adaptive 

techniques. In all approaches, as the sample size was increased, the deviation of the mean and 

RSE reduced consequently as a large sample size included a larger number of packets that 

improved representation of the actual population. The mean and standard deviation of the 

actual delay traffic (at 0.0 sample fractions) were 146 ms and 141 ms, respectively. At sample 

fraction of 22.9%, the sampled delay achieved from the proposed model had a mean of 147 ms 

and standard deviation of 141 ms, respectively. The mean and standard deviation of the actual 

sampled delay obtained by systematic, random, and stratified sampling, at sample fraction of 

22.9%, were (143 and 138 ms), (150 and 142 ms) and (149 and 139 ms) respectively. The 

results indicated that the delay measures of sampled traffic by proposed technique represented 
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the actual delay traffic more accurately. Tables (5.5) - (5.7) indicate that the proposed model 

has the lowest relative error and bias measures in most of the sample fractions as compared 

against the non-adaptive approaches, indicating a better performance. 

Table 0.5 Measurement results for delay using different sampling methods: 

adaptive, systematic, random, and stratified 

Measured 

 

Sample Fractions % 

0 6.1 10.2 13.0 22.9 

Adaptive sampling method 

Mean 146 147 147 147 147 

Std. 141 141 141 142 141 

Bias 0 0.875 0.683 0.067 −0.262 

RSE 0 0.90 0.40 0.30 0.11 

Systematic sampling 

Mean 147 145 146 148 143 

Std. 141 146 142 141 138 

Bias 0 1.974 0.725 −1.279 3.960 

RSE 0 0.99 0.52 0.38 0.15 

Random sampling 

Mean 147 176 157 149 150 

Std. 141 165 152 149 142 

Bias 0 −28.551 −9.741 −1.401 −2.432 

RSE 0 1.13 0.50 0.29 0.14 

Stratified sampling 

Mean 147 146 150 150 149 

Std. 141 143 149 142 139 

Bias 0 1.093 −2.740 −2.977 −2.184 

RSE 0 1.20 0.46 0.38 0.26 

 

The measurements provide a similar jitter trend, as specified in Table (5.6). The mean and 

standard deviation of the actual jitter (at 0.0 sample fractions) were 11.116 ms and 17.493 ms 

respectively. While, the sampled jitter version quantified by the developed model had a mean 

of 11.073 ms and standard deviation of 17.493 ms, respectively, at sample fraction of 22.9%. 

Though, the mean and standard deviation of actual jitter using systematic, random, and 

stratified sampling at sample fraction 22.9% were (10.855 and 12.120 ms), (10.608 and 14.770 

ms) and (11.389 and 18.681 ms) respectively. These indicated that the sampled jitter by the 

proposed model characterised the actual jitter more closely. 
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Table 0.6 Measurement results of jitter using different sampling methods: adaptive, 

systematic, random, and stratified 

Measured 

 

Sample Fractions % 

0.0 6.1 10.2 13.0 22.9 

Adaptive sampling method 

Mean 11.116 11.235 10.638 11.185 11.073 

Std. 17.493 17.479 11.636 14.073 17.493 

Bias 0 −0.118 0.478 −0.068 0.043 

RSE 0 0.11 4.31 × 10
−2

 2.69 × 10
−2

 1.5 × 10
−2

 

Systematic sampling 

Mean 11.116 12.612 11.133 12.732 10.855 

Std. 17.493 23.778 21.049 26.650 12.120 

Bias 0 −1.495 −0.016 −1.615 0.261 

RSE 0 0.16 6.97 × 10
−2

 7.40 × 10
−2

 1.66 × 10
−2

 

Random sampling 

Mean 11.116 11.733 10.325 10.691 10.608 

Std. 17.493 23.990 13.723 21.510 14.770 

Bias 0 −0.616 0.790 0.425 0.508 

RSE 0 0.16 4.53 × 10
−2

 4.34 × 10
−2

 1.55 × 10
−2

 

Stratified sampling 

Mean 11.116 13.127 11.357 11.202 11.389 

Std. 17.493 23.601 19.236 18.428 18.681 

Bias 0 −2.011 −0.241 −0.085 −0.272 

RSE 0 0.20 6.08 × 10
−2

 5.05 × 10
−2

 3.5 × 10
−2

 

 

Table (5.7) provides a similar %PLR trend. The mean and standard deviation of the actual 

population of %PLR (0.0 sample fractions) were 0.035 and 0.029 respectively. The sampled 

%PLR version quantified by the developed model had a mean of 0.035 and standard deviation 

of 0.029, respectively, at sample fraction of 22.9%. The mean and standard deviation of the 

actual of sampled %PLR by systematic, random, and stratified sampling at sample fraction 

22.9% were (0.035 and 0.029 ms), (0.035 and 0.028 ms) and (0.036 and 0.028 ms) 

respectively. This also indicated that the sampled %PLR by the proposed model represented 

the actual %PLR more precisely. 
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Table 0.7 Measurement results of packet loss ratio using different sampling 

methods: adaptive, and non-adaptive (systematic, random, and stratified) 

Measured 

 

Sample Fractions % 

0.0 6.1 10.2 13.0 22.9 

Adaptive sampling method 

Mean 0.035 0.035 0.034 0.036 0.035 

Std. 0.029 0.029 0.029 0.029 0.029 

Bias 0 6.23 × 10
−6

 0.0016 −5.96 × 10
−4

 −7.22 × 10
−5

 

RSE 0 1.88 × 10
−4

 3.05 × 10
−5

 5.93 × 10
−5

 2.08 × 10
−5

 

Systematic sampling 

Mean 0.035 0.037 0.035 0.035 0.035 

Std. 0.029 0.029 0.029 0.028 0.029 

Bias 0 −0.0014 5.20 × 10
−4

 7.95 × 10
−6

 −2.72 × 10
−4

 

RSE 0 2.06 × 10
−4

 9.62 × 10
−5

 8.05 × 10
−5

 3.99 × 10
−5

 

Random sampling 

Mean 0.035 0.035 0.034 0.034 0.035 

Std. 0.029 0.029 0.027 0.028 0.028 

Bias 0 1.65 × 10
−5

 0.0013 8.07 × 10
−4

 −2.90 × 10
−4

 

RSE 0 1.98 × 10
−4

 1.03 × 10
−4

 7.94 × 10
−5

 3.30 × 10
−5

 

Stratified sampling 

Mean 0.035 0.034 0.035 0.037 0.036 

Std. 0.029 0.028 0.029 0.029 0.028 

Bias 0 0.0013 1.03 × 10
−6

 −0.0014 −6.45 × 10
−4

 

RSE 0 2.55 × 10
−4

 9.35 × 10
−5

 8.13 × 10
−5

 5.47 × 10
−5

 

 

Figures 5.12 (a) - (c) indicate the bias of sampled delay, jitter and %PLR respectively at 

several sample fractions using the developed model and non-adaptive sampling methods. The 

measurements indicated that the bias was near zero for all used techniques for a large sample 

size. Additionally, the proposed model has a smaller bias as compared against non-adaptive 

methods. For example, at 22.9% sample fraction, the absolute value of the bias of sampled 

delay was 0.262 ms, whereas, the absolute values of bias measures for systematic, random, 

and stratified sampling were 3.960 ms, 2.432 ms, and 2.1844 ms, respectively. When the 

sample fraction was 6.1%, the lowest bias was obtained by the proposed model (i.e. 0.875 ms), 

followed by the stratified sampling method (i.e. 1.093 ms), then systematic methods at 1.974 

ms while the highest absolute value of bias was for the random method was at 28.55 ms. 
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               (a)                        (b) 

 

(c) 

Figure 0.12 Comparisons of biasness of (a) delay, (b) jitter, and (c) %PLR between 

the developed technique and non-adaptive methods 

In Figures 5.13 (a) - (c) the RSE for the sampled delay, jitter and %PLR for non-adaptive 

techniques were compared with the quantified RSE for the developed adaptive model. The 

measurements indicated that the developed adaptive model has the lowest RSE as compared 

with the non-adaptive methods. For example, at a 22.97% sample fraction, the RSE of the 

sampled delay traffic was 0.11%, while the bias measurements for systematic, stratified, and 

random sampling were 0.19%, 0.14%, and 0.26%, respectively. It can be concluded that RSE 

measurements reduced and became nearer to zero for all used techniques when sample size 

was increased. 
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(a) (b) 

 

(c) 

Figure 0.13 Comparisons of RSE of (a) delay, (b) jitter, and (c) %PLR between the 

developed technique and nonadaptive methods 

 

The improved performance of proposed sampling method over conventional non-adaptive 

sampling methods was due to its capability to select packets based on traffic variations, while 

the packet selection process in the non-adaptive methods depended on a predefined or random 

manner. 

5.8 Summary 

A novel multi-input adaptive sampling approach that sampled multimedia traffic parameters 

was proposed and assessed. It processed network traffic parameters: delay, jitter and %PLR 

simultaneously for its analysis. The developed approach performance was assessed and 

compared with the non-adaptive approaches of systematic, random, and stratified. The 
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proposed approach adaptively increased the inter-sampling interval (isi) causing an increase in 

the number of selected packets when the traffic variations decreased and vice versus. The 

adaptive sampling approach expressed the actual traffic more precisely than the non-adaptive 

techniques. The adaptive sampling method successfully sampled three network parameters 

simultaneously (i.e. sampled three traffic parameters at same time delay, jitter and %PLR) 

which increased its accuracy for sampling multimedia traffic. The proposed adaptive sampling 

approach was successfully applied to simulated and emulated testbed laboratory computer 

networks that carried VoIP traffic. In both networks the developed method shows better 

performance against non-adaptive sampling methods.  

 

  



 

81 

 

Chapter 6 Development of Quality of Service 

Evaluation Methods for VoIP 

6.1 Introduction 

There is growing dependence on wired and wireless networks for transmitting numerous 

types of time sensitive applications such as VoIP and video streaming. QoS has significant 

role in hybrid networks as it can simplify assessment of their performance and deliver 

approaches to their operation optimisation (Li et al., 2018) and (Chen et al., 2018). Thus, to 

successfully manage networks to deliver desired services, appropriate tools to evaluate their 

performance are required. The contribution of this part of the study is to propose two 

probability-based techniques that combine measurements, evaluation and assessment for 

overall QoS in multimedia transmission over a hybrid network in an effective manner. 

Probabilistic neural network (PNN) and Bayesian classification were proposed to process 

traffic parameters delay, jitter and %PLR and determine Quality of Service (QoS) for VoIP. 

Both approaches successfully categorised the VoIP packets into their corresponding high, 

medium and low QoS types. The devised approaches were tested with IEEE 802.11ac (80 

MHz) wireless protocol in different traffic load scenarios. The results were compared with 

IEEE 802.11n (20 and 40 MHz) protocols. In addition, statistical means by SPSS were used 

to interpret QoS results and their relationships to the traffic parameters.   

This chapter is divided into two parts, part A describes the developed performance evaluation 

models based on actual emulated testbed network in section 6.3. While, part B covers a 

practical use of developed models by investigate QoS of VoIP over Wi-Fi protocols 802.11ac 

(80 MHz) and 802.11n (20 and 40 MHz) under different traffic load conditions and their 

analysis 6.4. 

6.2 Related Works 

The definition of QoS assessment with the recent related studies was discussed in detail in 

section 2.3. QoS evaluation according to analysing traffic parameters is measurable but needs 

tools to compute and interpret traffic transmission (Kim and Choi, 2014). An example of such 

tool that was used to evaluate QoS in wireless networks is artificial neural network (ANN) 

(Dogman et al., 2014, 2012a). Fuzzy c-means (FCM) clustering, Kohonen neural network, 

multilayer perceptron (MLP) neural network and fuzzy inference system (FIS) was also 
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applied for QoS assessment (Salama et al., 2017d). A restriction in FCM is that its results can 

be influenced by the initial setting of its variables. The FIS based technique needs the user to 

prepare the rules for its knowledge base and to measure the parameters and the membership 

types for its inputs and outputs. MLP and Kohonen network based QoS assessment 

approaches can require much iteration to train (1000 iterations in (Salama et al., 2017d)). 

MLP designed approach needs careful determination of the number of neurons in its pattern 

layer to avoid overfitting and to guarantee appropriate generalisation. Kohonen results output 

is a map that needs analysing by the user to establish distinct groupings.  

A number of probabilistic methods were reported to determine QoS in computer networks. 

For example, Bayesian methods were proposed to classify internet traffic (Namdev et al., 

2015) and to analysis QoS for Web applications (Liu et al., 2015) and (Xu, 2012). A 

Bayesian method that collected data about malicious users was developed Chorppath et al. 

(2015). A Bayesian decision theoretic approach for QoE modelling was proposed that dealt 

with computation and estimated problems related to network transmission traffic (Mitra et al., 

2014). Bayesian network classifiers as predictive approaches were developed for intrusion 

detection but they had limitations (Xiao et al., 2014). A technique that addressed the 

restrictions of Bayesian networks was reported, it was referred to as Bayesian Network 

Model Averaging (BNMA) (Xiao et al., 2014). 

Based on the literature, Probabilistic based methods such as Bayesian and PNN could be used 

for QoS evaluation for their simplicity and accuracy. Both methods require a single iteration 

to provide their output. A contribution of this study is proposing two QoS evaluation 

approaches for VoIP traffic (Salama and Saatchi, 2018). The performance of the developed 

probabilistic classification approaches were tested in Wi-Fi 802.11n and 802.11ac wireless 

protocol settings (Salama and Saatchi, 2019b).  

6.3 PART A: Probabilistic Classification of QoS in Using 

Emulated Testbed 

6.3.1 Bayesian classification   

Bayesian classification is a supervised learning approach that deals with uncertainty by 

probabilities with services such as classification, modelling and prediction. Bayesian 

classification allows apriori about data to be used as part of classification (Rappel et al., 
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2019) and (Taroni et al., 2007). Bayes' theorem uses the knowledge that prior events as part 

of quantifying future events, i.e. 

𝑃(ℎ|𝑒) =
𝑃(𝑒|ℎ)𝑃(ℎ)

𝑃(𝑒)
                         (6.1)  

Where p(h) is the prior probability of hypothesis h, p(e) is the prior probability of evidence e, 

p(h|e) is the probability of h given e, p(e|h) is the probability of e given h. Using Bayes' 

theorem, the probability that a feature vector X with parameter vector θ is assigned to a type 

t1 is given by 

𝑃(𝑡1|𝑿, 𝜽) =
𝑃(𝑡1)𝑃(𝑿|𝑡1,𝜽)

𝑃(𝑿)
                         (6.2) 

Where p(t1) is the prior probability of type t1, p(X|t1,θ) is the probability density function of X 

for a given type t1 and n is number of types. The total probability is 

𝑃(𝑿) = ∑ 𝑃(𝑿|𝑡, 𝜽)𝑡=𝑡𝑛
𝑡=𝑡1

𝑃(𝑡)                                       (6.3) 

Equation (6.2) can then be written as 

𝑃(𝑡1|𝑿, 𝜽) =
𝑃(𝑡1)𝑃(𝑿|𝑡1,𝜽)

∑ 𝑃(𝑿|𝑡,𝜽)
𝑡=𝑡𝑛
𝑡=𝑡1

𝑃(𝑡)
                               (6.4) 

θ is unknown but the calibration data set (Z) is known and so p(X|t,θ) can be replaced by 

q(X|t,Z) Saatchi et al. (1995), where  

𝑞(𝑿|𝑡, 𝒁) = ∫ 𝑃(𝑿|𝑡, 𝜽) 𝑃(𝜽|𝒁) 𝑑𝜽
𝜽

                          (6.5) 

So, Equation (6.4) becomes  

𝑃(𝑡1|𝑿, 𝜽) =
𝑃(𝑡1)𝑞(𝑿|𝑡1,𝒁)

∑ 𝑃(𝑡)𝑞(𝑿|𝑡,𝒁)
𝑡𝑛
𝑡=𝑡1

                      (6.6) 

Equation (6.6) is the predictive density function for an observation X on a case of type t 

measured on the calibration data Z. The right-hand side of Equation (6.5) can be rewritten by 

Saatchi et al. (1995). 

𝑞(𝑿|t, 𝒁) = 𝑺𝑡𝑑(𝑣𝑡, 𝒎𝒕 , {1 +
1

𝑛𝑡
} 𝑺𝑡)                                    (6.7) 

Where there are nt cases of type t with observation vectors x1, x2..., xnt; vt is the degrees of 

freedom (given by nt - 1), mt is the vector of the means of the input features and St the 
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covariance matrix of the inputs. Std is a d-dimensional student-type density function defined 

by  

𝑺𝑡𝑑(𝑣, 𝒃, 𝑐) =
𝛤[0.5(𝑣+1)]

𝜋0.5𝑑{[0.5(𝑣−𝑑+1)]} |𝑣𝑐|0.5 𝑥
1

[1+(𝑿−𝒃)𝑇(𝑣𝑐)−1 (𝑿−𝒃)]0.5(𝑣+1)                           (6.8) 

Where Γ is the gamma function. Thus using Equation (6.8) the required values of p(X|t,θ) can 

be computed for the case of known type. To compute the probabilities for the test or 

evaluation data set, Equation (6.8) uses the observation vector X for the cases of known type 

but retains the mean and covariance matrices (i.e. calibration information) for the 

classification of cases whose types are not known.  

In order to further interpret the Bayesian classification results, the atypicality index can be 

calculated. This is between 0 and 1. Higher values (i.e. values close to 1) of this index for a 

case indicates that the case is not typical of that type. The atypicality index for a type t and an 

observation vector X is given by Saatchi et al. (1995) as 

𝐴(𝑡) = 𝛽{
𝑑

2
,

𝑛𝑡−𝑑

2
;  

𝑤𝑡(𝑿)

𝑤𝑡(𝑿)+
(𝑛𝑡

2−1)

𝑛𝑡

}                       (6.9) 

where   

𝑤𝑡(𝑿) = (𝑿 − 𝒎𝑡)𝑇𝑺𝑡
−1(𝑿 − 𝒎𝑡)                             (6.10) 

βdesignates the incomplete beta function computed based on the algorithm of Majumder and 

Bhattacharjee (1973) and nt is the number of individuals of type t. 

6.3.2  Probabilistic neural network    

PNN is a supervised learning, feedforward presented artificial neural network that maps an 

input to predefined output types (Raman et al., 2017). It is principally a classifier based on a 

kernel discriminate statistical analysis algorithm. PNN training needs example sets of classes 

to infer the approximated functions that best define its input (Kowalski and Kulczycki, 2017). 

The main benefits of PNN are its basically parallel model and fast training convergence to 

optimum classifiers by aggregate training data. PNN is related to Bayes classification rules 

(Raman et al., 2017) and (Georgiou et al., 2004) and nonparametric probability density 

function estimation theory (Kowalski and Kulczycki, 2017).  
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The neurons in the pattern or hidden layer measure the outputs of an input pattern x from the 

input layer by executing a Gaussian kernel of the model: 

𝜑𝑘,𝑖(𝑥) = ∑ 𝑤𝑘𝑖
𝑀𝑘
𝑖=1 𝜑𝑘,𝑖(𝑥)    𝑘 = 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠 (𝑐𝑙𝑎𝑠𝑠𝑒𝑠)        (6.11) 

𝜑𝑘,𝑖 =
1

(2π𝜎2)𝑛/2 𝑒𝑥𝑝 (
‖𝑥−𝑥𝑘,𝑖‖

2

2𝜎2 )                                               (6.12) 

Where n

kix R  is the centre of the kernel, and   is identified as the smoothing (spread) 

parameter which states the size of the kernel's receptive field. The second layer (the 

summation layer) sums the outputs separately for each group and provides the probabilities 

for the input to fit to the predefined clusters by joining the earlier added densities as, 

𝑝𝑘(𝑥) = ∑ 𝑤𝑘𝑖
𝑀𝑘
𝑖=1 𝜑𝑘,𝑖(𝑥)    𝑘 = 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠 (𝑐𝑙𝑎𝑠𝑠𝑒𝑠)           (6.13) 

Where Mk is the number of neurons in the pattern (hidden) layer of type k and wki are positive 

coefficients satisfying ∑ 𝑤𝑘𝑖
𝑀𝑘
𝑖=1 = 1. 

The neuron at the output layer defines the class or type of the input vector (x) based on 

Bayes' decision rule and the information from the neurons in the summation layer, i.e. 

𝑐(𝑥) = arg  𝑚𝑎𝑥1≪𝑘≪𝐾 (𝑝𝑘)                                   (6.14) 

The smoothing parameter needs to be specified as part of PNN's training. 

An input vector is fed to the n input neurons. Then, the input forwards them to the neurons in 

the hidden layer where they are distributed into k classes which is equal to 3 classes in our 

study (i.e. k=1, 2 and 3 represent high, medium and low respectively) which are coloured as 

pink, green and blue in the Figure 6.1. The structure of a PNN indicating its four layers i.e., 

input, pattern (hidden), summation and output layers is provided in Figure 6.1.  
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Figure 6.1 A probabilistic artificial neural network 

6.3.3 Methodology 

In this part of the study the devised approaches of Bayesian classification and probabilistic 

neural network (PNN) have been applied practically in a computer network laboratory. The 

proposed traffic transmission classification approaches were assessed on a hybrid network in 

the laboratory. Figure 6.2 shows the network design. The network equipment details are 

discussed in chapter 4. The computer network switch device connected the APs, the SIP and 

NetEm server via 1 Gbps. The equipment's details are explained in chapter 4. 
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Figure 0.2 Network design 

The testing procedure establishes PPP connection between the PC-1 that connected to AP-1 

while PC-2 that connected to AP-2. NetEm was configured at the middle of the PPP link to 

enable adjusting delay, jitter and %PLR measures and consequently to produce high, medium 

and low QoS classes for the traffic to be evaluated. The traffic packets were transmitting over 

PPP connection in like that traffic from PC-1 sent to PC-2 through NetEm server and vice 

versa. The traffic includes TCP, video streaming, and VoIP traffic. The VoIP and the RTP 

packets were evaluated and analysed. SIP server was used to establish, and control VoIP 

transmission and the streaming period was about 10 minutes. Wireshark were installed on 

PC-1 and on PC-2. The captured packets by Wireshark were used to compute delay, jitter 

and %PLR for VoIP packets (due to RTP features of their sequence numbers and timestamps) 

based on Equations (3.1) - (3.3). The resulting delay, jitter and %PLR measurements were 

then used by the classification approaches Bayesian and PNN. Training examples of 300 

entries have been used for both Bayesian and PNN methods were extracted from recorded 

data and its pre-classification based on ITU recommendations specified in Table (6.1). 

Table 0.1 VoIP QoS requirements (Dogman and Saatchi, 2014) 

QoS range Delay (ms) Jitter (ms) %PLR 

High <150 <1 <2 

Medium 150-400 1-3 2-4 

Low >400 >3 >4 

Both developed methods classified the received packets into the corresponding high, medium 

or low QoS types. The implementations of these methods are defined next. 
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6.3.4 Bayesian method 

The Bayesian based method processed input data that included the traffic parameters for 

received packets and formed an output specifying the QoS type for the packets. The approach 

for the Bayesian model contained three parallel routes as shown in Figure 6.3 that related to 

high, medium and low classes.  

 

Figure  0.3 Flow chart for the Bayesian approach 

  Determine probabilities to low, medium and high QoS 

Calibration 

End of algorithm 

No Is traffic 

transmission 

end 

Compute delay, jitter 

and %PLR 

Examples: Medium/ 

not Medium QoS 

Examples: High/ 

not High QoS 

BC-1 Bayesian 

classifier for Low QoS 

BC-3 Bayesian 

classifier for High QoS 

Start algorithm 

Map the probability value Low: 0-33, Medium: 0.34-0.65, High: 0.66-1 

BC-2 Bayesian 

classifier, Medium QoS 

Examples: Low/ 

not Low QoS 

 

Capture traffic packets 

Classified packets based on the largest probability measure 
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Three lists of training (calibration) data examples were organised from recorded data 

according to Table (6.1) that contains 300 predefined entries which indicated different levels 

of delay, jitter and %PLR measures identify for high, medium and low qualities. Figure 6.3 

illustrates the method traffic computes were connected to each class. If a packet highly 

belonged to a QoS class type (e.g. low, represented by BC-1 route) then the related 

probability was close to 1. The same methods were processed for BC-2 (medium) and BC-3 

(high). In BC-1, the training data from the low and not low QoS entries in calibration list 

(training file) were used. Whereas, BC-2 used the examples from the medium and not 

medium QoS entries and BC-3 used the examples from the high and not high QoS entries. 

Each path produced a probability value between 0 and 1. High measures of probability stated 

QoS associated with that path. In order to have a constant range between 0 and 1, for the 

three paths, the outputs from the paths were mapped as: 0 to 0.33 for low QoS that classified 

through BC-1 path, 0.34 to 0.65 for medium QoS packets that through BC-2 path and 0.66 to 

1 for high QoS packets classified through BC-3 path. The test file contained VoIP 

transmission parameters X= (x1=delay, x2=jitter, x3=%PLR) in Equations in section 6.3 for 

traffic that continued for 10 minutes.  

6.3.5  Probabilistic neural network PNN method 

The PNN architecture is shown in Figure 6.1 for three inputs of traffic parameters. The 

(calibration) training file included 300 entries that associated a range of delay, jitter 

and %PLR values for many QoS classes (i.e. good, medium and low). For every entry in the 

training file the equivalent QoS type: 3=high, 2=medium or 1=low, were thus identified. In 

this study the spread ( ) parameter in Equation (6.11) value was selected as 0.01. The test 

file (calibration) includes VoIP traffic parameters X= (x1=delay, x2=jitter, x3=%PLR) in 

Equations (6.11) - (6.14). 

6.3.6 Results and discussion 

Figures 6.4 (a) - (c) show the results for the network delay, jitter and %PLR of VoIP packets. 

The associated traffic variations were established by NetEm. Figures 6.4 (d) - (e) indicate the 

QoS results for both Bayesian and PNN models individually. Initially the QoS was high as 

delay, jitter and %PLR measures were lower. Then, at minute 1.2, QoS became medium. 

Then, at minute 2.8, the QoS become high again. At time minute 5.5, the QoS fluctuated 

between low, medium and high in relation to the variations in the delay, jitter and %PLR.  
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Figure  0.4 (a) Delay, (b) jitter, (c) %PLR, (d) QoS classification Bayesian and (e) QoS PNN classification 

(a) 

(b) 

(c) 

(d) 

(e) 
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To examine the efficacy of the proposed methods SPSS
©
 statistical analysis package was 

used. Figures 6.5 (a) - (b) illustrate the QoS categorisation boxplots for both Bayesian and 

PNN models. The measured median (the bar inside each box) for the two methods were very 

close. Initially the QoS was high. Then, at minute 1.2, packets were classified as high or 

medium with more packets classified as medium. Then, at minute 5.5, most packets start to 

be classified as low or medium. The median measure for the high QoS was at minute 3.5, the 

median measure for the medium QoS was at minute 4.2. Whereas, the median measure for 

the low QoS was at minute 7.8. Both approaches had some outlier’s data for the low QoS 

between 0 and 4 minutes.  

 

Figure 6.5 QoS boxplots for (a) Bayesian (b) PNN 

Figures 6.6 (a) - (b) show additional information about the packet’s classification forboth 

Bayesian and PNN models. Both methods indicated consistent classifications however there 

are some variances, e.g. between 1.5 and 2.5 minutes, Bayesian has categorised them as 

medium QoS while PNN has classified some packets into high class.  

(a) 

(b) 
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Figure 0.6 Packet classifications for (a) Bayesian (b) PNN 

6.3.7 Interpretation of results 

Figures 6.7 (a) - (b) show an interpretation of results related to the categorisation, the causes 

for packets being categorised as low, medium or high quality by the Bayesian and PNN 

methods. Blue, green and red colours in the Figures indicate low, medium and high QoS 

respectively. The blue dotted line is at 150 and 400 msec indicates the recommended delay 

(a) 

(b) 
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values (indicated in Table 6.1). Several packets were assigned to the medium (green) QoS 

that have delay less than 150 msec due to their jitter or %PLR exceeding the ITU 

recommended values. There are some packets between transmission time 1.5 and 2.5 minutes 

and between 7.8 and 9 minutes that were classed by PNN as high quality (red) but that their 

delay measures exceeded 150 msec. 

 

Figure 6.7 Relationship between packet delay and QoS classification for (a) 

Bayesian (b) PNN approaches 

Figures 6.8 (a) - (b) show an interpretation of the categorisation, the explanations for packets 

that categorised as low, medium or high quality by both the Bayesian and PNN methods 

(a) 

(b) 
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according to their jitter values. Blue colour indicates low QoS, green specifies medium QoS 

and red indicates high QoS. While, the blue dotted line is at 1 and 3 msec according to 

recommended jitter values in (Table 6.1). The Figures indicate that there were several packets 

that were classed into medium (green) QoS that have jitter less than 1 msec, but %PLR is 

high. There were several packets between (1.5 and 2.5 minutes) and between (7.8 and 9 

minutes) that were categorised by PNN as high (red) QoS despite that their jitter measures 

exceeing 1 msec. 

 

Figure 0.8 Relationship between packet jitter and QoS classification for (a) 

Bayesian (b) PNN approaches 

(a) 

(b) 
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Figures 6.9 (a) - (b) show an interpretation of the categorisation, the causes for packets were 

categorised as low, medium or high QoS by both Bayesian and PNN models individually 

according to %PLR parameter measures. Blue colour in the Figures specifies low, green 

specifies medium and red illustrates high QoS. The blue dotted line is at 2% and 4% that 

according to %PLR recommendation values in Table (6.1). In general, Figures 6.7, 6.8 and 

6.9 show that both methods classified packets similarly. 

 

Figure 6.9 Relationship between %PLR and QoS classification for (a) Bayesian (b) 

PNN approaches 

Table (6.2) provides the percentage of packets categorised as high, medium and low quality 

by both Bayesian and PNN methods by considering recommended values in Table (6.1) as 

(a) 

(b) 
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reference. The measures indicate that the Bayesian method had a better precision for 

classification than to PNN. This is because the three paths associated with the Bayesian 

method assisted in sorted the packets in their groupings.  

Table 6.2 Percentage of packets classed as high, medium and low QoS by PNN and 

Bayesian methods 

QoS category 
%Classification accuracy 

Bayesian PNN 

High 99.7 97.9 

Medium 98.6 97.3 

Low 100 94.9 

Atypicality parameter is another measure to examine the accuracy of the Bayesian and PNN 

classification results. Figures 6.10 (a) - (c) provide the atypicality index (formula provided in 

Equation 6.9) for the Bayesian classifier for the traffic in the testing file connected with paths 

BC-1, BC-2 and BC-3 respectively. It also relate to the flow chart provided in Figure (6.3). 

The index specified the extent the traffic data represented by delay, jitter, and %PLR, and 

expressed a QoS category, i.e. high, medium and low. A high atypicality index specified that 

traffic parameter was not typical of that QoS type. Thus misclassification could be attributed 

not to the classifier's failure but to the relevance of the input itself. The blue coloured circles 

in Figures 6.10 (a) - (c) represent packets that belong to BC-1, BC-2 and BC-3 respectively 

(i.e. low, medium and high QoS). These packets have high probability and low atypicality 

index representing correct classification. The red coloured circles in Figures 6.10 (a) - (c) 

show packets that do not belong to BC-1, BC-2 and BC-3 respectively. They have low 

probability and high atypicality index. The black coloured circles in Figures 6.10 (a) - (c) 

represent packets that were misclassified. These had high probability and high atypicality 

index. Combining the blue coloured circles in Figures 6.10 (a) - (c) with their related times, 

show consistent results to those in Figures 6.4 (d) - (e). 
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Figure 0.10 Atypicality index plots for the Bayesian classifier for (a) low (BC-1), (b) 

medium (BC-2) and (c) high QoS (BC-3). Blue coloured points represent packets with 

high probabilities and low atypicality indices. Red coloured points represent packets 

with low probabilities and high atypicality indices. Black coloured points represent high 

probability and high atypicality index. 
  

(a) (b) 

(c) 
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6.4 PART B: Investigation to Quality of Service Behaviors of 

VoIP Over IEEE 802.11ac and 802.11n 

In this part of the study, the QoS behaviour of IEEE 802.11ac (80 MHz) wireless protocol for 

VoIP transmission in different traffic load scenarios was studied and it was compared against 

IEEE 802.11n (20 and 40 MHz) protocols. Two QoS classification methods, one based on 

probabilistic neural network (PNN) and the other Bayesian probability were utilized and the 

consistency of their QoS classifications was compared. The study showed that IEEE 802.11 

ac (80 MHz) was robust in maintaining quality of service for VoIP as the number of 

transmission point to point (PPP) links was increased from 1 to 10 while the QoS for the two 

protocols deteriorated. Jitter was the main factor affecting QoS in IEEE 802.11ac. 

Comparison QoS classification by the PNN and Bayesian demonstrated their effectiveness 

and consistency of their performance. 

6.4.1 Methodology 

The experiment was performed in a computer network laboratory (size 4 m6 m) with two 

wireless access points (APs) and 20 PCs. The design supported 10 PPP links involving 20 

PCs that communicated via access point 1 (AP-1) and access point 2 (AP-2) as shown in 

Figure 6.11. The setup gave flexibility in testing for different traffic conditions.  

AP-1 AP-2switch

SIP Server

PC-1a

PC-2a

PC-10a

PC-1b

PC-10b

PC-2b

PPP link GE link  

Figure 06.11 Network layout 

The APs were of type Cisco
© 

AIR-AP1852E. These supported IEEE 802.11g/n/ac protocols. 

They have four external antennae. Cisco
© 

3560-CX catalyst switch was used to connect the 

APs and SIP server via 1 Gbps links. On the PC side, wireless adaptors of Linksys AC1200 
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Dual-Band were used in all scenarios. VoIP connectivity was done by the SIP server. SIP 

Softphones configured over the Windows
© 

PC.  

Initially one to one PPP link was established between PC-1a and PC-1b. The traffic included 

video, VoIP and TCP. Following this test, the number of PPP links was increased to three 

PCs in each side. PC-1a connected to PC-1b, PC-2a connected to PC-2b and PC-3a connected 

to PC-3b at the second minute of the transmission. Then the number of PPP links was in turn 

increased to 5, 7 and 10 PCs in each side at times 4, 6, and 8 minutes from the start of the 

transmission, the transmission ended at minute 10. The tests investigated the network 

behaviour and QoS by increasing PPP links between AP-1 and AP-2. Each PC that connected 

to AP-1 (i.e. PC-1a to PC-10a) in these PPP links transmitted the same traffic that included 

video, VoIP and TCP to its peer PC connected to AP-2. The traffic was sent simultaneously. 

The manner of increasing the number of PPP links every two minutes was by manual 

configuration of the PCs connected to the AP-1 to send traffic to its counter PCs connected to 

AP-2 as indicated in Table (6.3). 

Table 0.3 Communication timing of PPP links 

Time (minutes) Number of PPP links 

0 - 2 1 

2 - 4 3 

4 - 6 5 

6 - 8 7 

8 - 10 10 

Wireshark was installed on PC-1a and PC-1b to capture packets. Wireshark captured RTP 

packets. The captured packets were processed using Matlab
©

 and a statistical package SPSS
©
 

to measure network delay, jitter and %PLR (Sanders, 2017) and use these values to quantify 

overall QoS for VoIP. 

In order to obtain QoS performance for the wireless protocols i.e. IEEE802.11ac (80 MHz) 

and 802.11n (20 and 40 MHz), one channel was used for IEEE 802.11n (20 MHz bandwidth) 

in first scenario, then two channels were used for 802.11n (40 MHz). For IEEE 802.11ac, one 

channel was configured with (80 MHz). Table (6.4) summarizes wireless channels 

bandwidth, frequencies and maximum physical data rate. 
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Table 0.4 IEEE 802.11 standards, frequency and channel bandwidth used in the 

study 

Protocol 
Frequency 

(GHz) 

Channel width 

(MHz) 

Maximum data 

rate (Mbps) 

Modulation and 

coding scheme 

802.11n 2.4 20 65 7 (1 Spatial stream) 

802.11n 2.4 40 135 7 (1 Spatial stream) 

802.11ac 5 80 325 7 (1 Spatial stream) 

 

Iperf software was used to measure actual throughput rate using TCP packets. It was used to 

connect the two computers as server/client, then to send TCP traffic from the server to the 

client and return to get the actual throughput rate. The Iperf software measured the actual 

throughput between PC-1a and PC-1b during all established PPP links (i.e. 1, 3, 5, 7 and 10 

PPP links). TCP throughput was measured for a given TCP packet size that varied from 250 

bytes to 64 Kbytes (de Carvalho et al., 2017). 

6.4.2  The operations of approach  

i. Wireshark was configured and used to capture VoIP packets between PC-1a and PC-1b 

during all change of PPP links and their associated traffic from start until minute 10 which 

was the end of 10 PPP links transmissions. 

ii. Delay, jitter and %PLR were computed according to Equations (3.1) - (3.3). 

iii. QoS requirements of VoIP traffic applications were applied to train the Bayesian and 

PNN methods (i.e. the training examples) based on recommendations in Table (6.1). 

6.4.3 Results and discussion 

i. Throughput and traffic analysis 

Figure 6.12 shows the average throughput for 802.11n (20 and 40 MHz) and 802.11ac (80 

MHz) for 1, 3, 5, 7 and 10 VoIP PPP links. All PPP links had similar VoIP, video, and TCP 

traffic. A decline in the throughput was observed with an increase in the number of PPP links 

for all wireless protocols. IEEE 802.11ac had the highest throughput and for 802.11n (20 

MHz) the lowest. The throughput for 802.11n (20 MHz) reduced from 59.07 Mbps (1 link) to 

3.484 Mbps for 10 links. This reduction for IEEE802.11n (40 MHz) was from 128.77 Mbps 

to 13.60 Mbps and for IEEE802.11ac (80 MHz) was from 318.11 Mbps to 170.13 Mbps. For 

802.11ac even with 10 PPP links the throughput rate remained high as compared to 802.11n 
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which dropped significantly. Throughput has been measured by Iperf software that was 

introduced in section 4.9. 

 

Figure 0.12 Average throughput results 

Figures 6.13 (a) - (c) indicate the manner of average delay, jitter and %PLR for VoIP traffic 

changed as the number of links was increased from 1 (from 0 to 2 minute) to 10 (from 8 to 10 

minutes).  
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(c) 

Figure 0.13 (a) Delay (b) Jitter and  (c) %PLR 

For the IEEE 802.11n (20 MHz, shown in green), the average delay shown in Figure 6.13 (a) 

was 24 msec at 1 PPP link and increased gradually to 226 msec for 10 links. For IEEE 

802.11n (40 MHz, in red) the delay was 16 msec at 1 PPP link and increased gradually to 67 

msec at 7 PPP links (from time 6 to 8 minutes) then increased dramatically to 185 msec at 10 

PPP links. The Figure shows delay for 802.11ac (80 MHz, in blue) was lowest with 13 msec 

at 1 PPP link and increased to 48 msec for 10 links. Figure 6.13 (b) shows the average jitter 

measurements. For IEEE 802.11n (20 MHz, plotted green), jitter was 0.27 msec at the start (1 

PPP link) and increased to 3.89 msec at minute 10 (10 links). For IEEE 802.11n (40MHz, 

plotted red) a lower jitter at the start (1 PPP link) 0.26 msec and increased to 3.81 msec 

minute 10 (10 PPP links). For IEEE 802.11ac (80 MHz, shown in blue), jitter was 0.08 msec 

for 1 link and increased to about 0.31 msec for 10 links. Figure 6.13 (c) shows the results 

for %PLR. The 802.11n (20 MHz, plotted green), 802.11n (40MHz, plotted red) and 

802.11ac (80 MHz, shown in blue) show similar trends to delay and jitter as %PLR were 

higher for 802.11n (20 MHz) as compared with 802.11ac (80 MHz). 

ii. QoS Analysis  

Figures 6.14 (a) - (b) indicate the average QoS by Bayesian and PNN methods for IEEE 

802.11n (20 MHz in blue), 802.11n (40 MHz, in red) and IEEE 802.11ac (80 MHz in green). 

The average was taken according to PPP links time periods, from 0 to 2 minutes for 1 link, 2 

to 4 minutes for 3 links, 4 to 6 minutes for 5 links, 6 to 8 minutes for 7 links and 8 to 10 

minutes for 10 links. QoS decreased as number of links increased for all protocols. For 
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IEEE802.11n (20 MHz), the QoS fell rapidly from about 0.9 for a single link to about 0.3 for 

10 links while for IEEE802.11ac decrease was from 0.99 for a single link to about 0.91 for 10 

links, highlighting the robustness of IEEE802.11ac for VoIP traffic as traffic load increases. 

IEEE 802.11n (40 MHz in red colour) showed a good QoS during all PPP links except 10 

links which started at minute 8 and the QoS dropped rapidly from 0.88 to 0.45. The Bayesian 

and PNN QoS classification approaches showed consistent results in QoS classification.   

 

   (a)                       (b) 

Figure 0.14 QoS classification by (a) Bayesian (b) PNN methods: blue for IEEE 

802.11n (20 MHz), red for 802.11n (40 MHz) and green for IEEE 802.11ac (80 MHz) 

Figures 6.15 (a) - (f) provide classification boxplots for both Bayesian and PNN methods. For 

IEEE 802.11n (20 MHz) in Figures 6.15 (a) - (b), the median values for low, medium and 

high QoS were at 7.5, 6.5 and 2 minutes. Some outlier packets that belonged to low QoS 

between 0 and 2 minutes could be observed. Figures 6.15 (c) - (f) show the QoS 

classifications for IEEE 802.11n (40 MHz) and IEEE 802.11ac (80 MHz) respectively. 

Comparison of Figures 6.15 (e) - (f) with Figures 6.15 (a) - (b) and Figures 6.15 (c) - (d) 

indicated that IEEE 802.11ac had sustained a higher QoS for the longer duration during VoIP 

transmission as the number of links was increased from 1 to 10. The Bayesian and PNN 

methods showed consistent performance. 
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Figure 6.15 Boxplots of the classified packet for the Bayesian and PNN approaches 

to classify QoS. (a) and (b) are for IEEE 802.11n (20 MHz), (c) and (d) are for 802.11n 

(40 MHz) and (e) and (f) are for IEEE 802.11ac (80 MHz) 

Figures 6.16 (a) - (f) provide histogram analysis for QoS classification by the Bayesian and 

PNN methods. Figures 6.16 (a) - (b) show classified results for IEEE 802.11n (20 MHz) for 

(a) (b) 

(c) (d) 

(e) (f) 
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Bayesian and PNN methods respectively. A large proportion of packets had a high QoS up to 

4 minutes (corresponding to 3 operational links) and thereafter there was a rapid decrease in 

QoS packets. Figures 6.16 (c) - (d) show the QoS classification results for IEEE 802.11n (40 

MHz) for Bayesian and PNN respectively. Up to minute 8 (corresponding to operational 7 

links), the QoS for packets was overwhelmingly high and thereafter there was a sharp 

decrease for 10 links. Figures 6.16 (e) - (f) show QoS classification results for IEEE 802.11ac 

for Bayesian and PNN methods respectively. The QoS for the full duration of the 

transmission was overwhelmingly high. Again, consistent behaviour was observed between 

PNN and Bayesian QoS classification methods.  
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  (e)                                                             (f) 

Figure 6.16 Packet classifications for 802.11n (20 MHz), 802.11n (40 MHz) and 

802.11ac (80 MHz) using the Bayesian and PNN approaches. (a) and (b) are for IEEE 

802.11n (20 MHz), (c) and (d) are for 802.11n (40 MHz) and (e) and (f) are for IEEE 

802.11ac (80 MHz) 

iii. Interpretation of results for delay and jitter and their Relations to QoS  

Figures 6.17 (a) - (c) show an interpretation of the causes for packets that classified into high, 

medium or low QoS by the Bayesian classifier according to the delay parameter using SPSS 

scatter plots. PNN results were not included due to similarity with Bayesian method. Figure 

6.17 (a) shows the results for IEEE 802.11n (20 MHz), Figure 6.17 (b) for 802.11n (40 MHz) 

and Figure 6.17 (c) for 802.11ac (80 MHz). Red, green and blue colour indicates high, 

medium low QoS packets respectively. The dotted black line appearing at 150 and 400 msec 

indicates to the ITU recommended delay value for high QoS for VoIP. For 802.11n (20 

MHz), delay for most packets exceed the threshold after 6 minutes (corresponding to more 

than 5 operational links) resulting QoS to become low. Figure 6.17 (b) indicates that for 

802.11n (40 MHz) delay sharply rose at minute 8 where 10 links were operational and 

otherwise QoS was low. Figure 6.17 (c) shows the results for 802.11ac (80 MHz) and delay 

had remained below the ITU recommended value proving high QoS for the interval of VoIP 

transmission. 
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                      (c) 

Figure 0.17 Classified packets and delay relationships by Bayesian model (a) 

802.11n (20 MHz), (b) 802.11n (40 MHz), (c) 802.11ac (80 MHz). Colours: red for 

classified high QoS, green for classified medium QoS and blue for classified low QoS 
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Figures 6.18 (a) - (c) show jitter analysis for the three protocols. The dotted black line on the 

vertical axis at 1 and 3 msec indicates the ITU recommended jitter value for high QoS. Figure 

6.18 (a) shows the results for IEEE 802.11n (20 MHz). The Figure shows that many packets 

had jitter higher than 1 msec and a large increase at minute 6 reducing the QoS thereafter. 

Figure 6.18 (b) shows the results for IEEE802.11n (40 MHz). Jitter sharply increases at 

minute 8 resulting in low QoS thereafter. Figure 6.18 (c) shows the jitter result for IEEE 

802.11ac (80 MHz). While the delay was always within acceptable range in 802.11ac, jitter 

for few packets exceeded the recommended ITU value which resulted in medium and some 

low QoS packets throughout transmission. 
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Figure 0.18 Classified packets and jitter relations by Bayesian model (a) 802.11n (20 

MHz), (b) 802.11n (40 MHz), (c) 802.11ac (80 MHz). Colours are red for classified high 

QoS, green for classified medium QoS, and blue for classified low QoS 
 

 Some of jitter values were significantly high in 802.11ac as indicated in Figure 6.18 (c), 

exceeding the recommended ITU value. While all delay values for 802.11ac in Figure 6.17 

(c) were within recommended ITU value, jitter exceeded it, causing low and medium QoS of 

802.11ac for some packets. The 802.11n (40 MHz) performed well for all PPP links except 

for 10 links where its delay, and jitter and %PLR ratio increased rapidly affecting QoS. The 

Bayesian and PNN QoS classification methods showed consistency in their classifications. 

They both had fast learning and robust performance with minimal parameters to adjust.  

6.5 Summary 

This chapter explained two novel QoS evaluation methods. The first method was Bayesian 

based to analyse and classify the QoS for VoIP packets, whereas the second method was 

based on probabilistic neural network (PNN). Both methods were developed and applied over 

actual testbed laboratory network with variations of traffic parameters delay, jitter and %PLR 

that reflected the practical network conditions. Both methods showed consistency in their 

classifications. Both models successfully classified the QoS parameters of the received VoIP 

packets into their corresponding low, medium, and high QoS types. The measures indicate 

that the Bayesian method had a better precision for classification than to PNN. This is 

because the three paths associated with the Bayesian method assisted in sorted the packets in 

their groupings. PNN only has a single training parameter. The smoothing parameter σ

should be selectedproperly.Ifσistoosmall,theestimatedPDFwillbesonon-linear that the 
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PDF at a testing point will be almost zero if this point is not close enough to any one of the 

trainingpoints,thusreducingthenetwork’scapacitytogeneralize.If,ontheotherhand,σis

too large, then over a wide range of input values the estimated PDF will be almost constant, 

and in that case the actual values of the training and test patterns does not seem to play any 

role in the determination of which class the test input pattern belongs to.  

 Advantages of both approaches were that they had fast learning and robust performance with 

minimal parameters to adjust. The capability, simplicity and robustness of the developed 

methods made them effective mechanisms for QoS analysis. SPSS
©

 was used to examine the 

traffic parameters and QoS relations which provided valuable information as to the causes of 

low QoS. In addition, Atypicality index for the Bayesian classifier examined accuracy. 

Atypicallity index confirmed that most packets had been classified by the Bayesian approach 

correctly. Furthermore, the developed methods were used to classify VoIP traffic over 

different Wi-Fi 802.11n/ac using multiple protocols in practical laboratory environments. 

IEEE 802.11ac showed consistent behaviour for delay, jitter and %PLR as the number of 

VoIP transmission links increased. Tests showed that jitter was the main traffic parameter 

that caused low and medium QoS for packets in IEEE 802.11ac. The Advantages of proposed 

probabilistic methods include faster training and accuracy.   
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Chapter 7 Video Transmission Quality of Service and 

User-Experience Evaluation in Hybrid Computer 

Networks 

In this chapter, objective evaluation techniques were developed for performance assessment 

of a video transmission over a hybrid computer network. The traffic measures, packet delay, 

jitter and %PLR were processed to determine network quality of service (QoS) for the video 

while video visual parameters: PSNR and SSIM with image difference ID or entropy 

difference ED (PSNR, SSIM and ID/ or ED) were used to determine quality of experience 

(QoE) for the video. Fuzzy inference system (FIS) was used for these processing. In order to 

obtain an overall measure of video quality, QoS and QoE measures were combined using 

FIS. This measure was correlated with both traffic parameters and visual parameters to 

demonstrate the effectiveness of evaluations. With regard to decreasing the number of images 

processed and thus reduce the computational need, the traffic was sampled using systematic 

sampling. As part of the evaluation, image labelling and sampling were adapted to increase 

accuracy of the measurements due to transmission impairment and frame loss. A novel 

approach whereby the images were partitioned to better localise possible distortions was 

devised. In this study, the developed fuzzy logic-based approaches were able to correctly 

measure the quality of transmitted video over a hybrid computer network and the devised 

method of image partitioning enhanced measurement of QoE (Salama and Saatchi, 2019a). In 

addition, SPSS was used to examine the relationship between the overall measure of video 

quality with traffic parameters and video visual parameters. Moreover, subjective tests in the 

Mean Opinion Score (MOS) form with 25 participants were performed to validate the 

developed overall video assessment method. According to ITU-T (2008), at least 24 subjects 

must be used for experiments conducted in a controlled environment. This means that after 

subject screening, every stimulus must be rated by at least 24 subjects. The QoE results were 

consistent with the developed FIS system.  

7.1 Introduction 

Prior to reviewing the methodology, a brief explanation of the some QoS and QoE 

procedures is provided. QoS measures relevant to this study were delay, jitter and %PLR. 

The QoE measures relevant to this study were PSNR, SSIM, ID and ED. Peak signal to Noise 
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Ratio PSNR in dB is determined by Equation (7.1) (Maimour, 2018) and (Brito and 

Figueiredo. 2017) 

 𝑃𝑆𝑁𝑅(𝑋, 𝑌) = 10 log10 (
𝑀𝑃𝑃2

𝑀𝑆𝐸(𝑋,𝑌)
)                       (7.1) 

Where MPP is the Maximum Possible Pixel value of the image and it is equal to 2
n
 -1, the 

number of bits n used to represent each sample (e.g. when n is 8 bits per sample, MPP=255). 

Larger measures of PSNR indicate a reduced distortion and thus a higher quality. The MSE is 

the mean square error between two images X and Y and is measured by Equation (7.2)  

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0                   (7.2) 

Where m and n represent the image dimension and i, j signify a pixel's location for an image. 

Structural Similarity Index (SSIM) for computing image quality for image windows (x and y) 

of the same dimension for an image (Maimour, 2018) and (De Grazia et al., 2018) is 

determined by Equation (7.3) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦+

2 𝑐1)(𝜎𝑥
2+𝜎𝑦+

2 𝑐2)
                  (7.3) 

Where 𝜇𝑥 and 𝜇𝑦 are the averages of the pixels within the windows x and y respectively, 𝜎𝑥
2 

and 𝜎𝑦
2 are the variances of pixels, 𝜎𝑥𝑦 is the covariance of the pixels within x and y. The 

included variables c1 and c2 to stabilise the division with weak denominator. They can be 

defined as 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 where the dynamic range 𝐿 = 2𝑛 − 1, where n is the 

number of bits per pixel. While the elements k1 and k2 are set by default 0.01 and 0.03. The 

computed value of SSIM is between 0 to 1, with values closer to 1 indicating a higher 

similarity and vice versa. 

Image Difference (ID) is an indicator of complete pixel to pixel variations (differences) 

between two images of the same dimension. It was determined by obtaining the histogram of 

pixel measures of the images to be compared. In this study, the operation was on grey images 

the pixel value range was from 0 to 255. Euclidian distance in Equation (7.4) was used to 

measure the variance between the two histograms. 

                                 𝐼𝐷(𝑋, 𝑌) = ∑ (𝐹𝑋𝑖 − 𝐹𝑌𝑖  )2𝑖=255
𝑖=0                        (7.4) 
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Where FXi and FYi are the occurrence frequencies pixel with value i related with images X 

and Y respectively. The ID value of zero specifies identical images and larger ID value 

represent greater image differences. 

7.2 Related studies 

Establishing perceived video deterioration due to network perturbation is essential in 

assessing video transmission. Furthermore, the network perturbations effect on video can 

variety from noise, distortion and errors. According to (ITU-T, 2008) not all network losses 

result in a noticeable degradation. (Lal et al., 2018) reported that the current approaches for 

providing QoS do not show that all issues related to video quality, such as varying connection 

status, mobility and changeable congestion. In addition, computing the effect of network 

perturbation on the video transmission is a challenging task (Pokhrel et al., 2016) and 

(Pokhrel, 2014). Objective video assessment approaches can decrease the cost and operation 

time (Paudel et al., 2014).  

There were several studies related to objective video QoE for video (Barman and Martini, 

2019), (Duanmu et al., 2018), (Maimour, 2018), (Su et al., 2016), (Zheng, et al., 2015) and 

(Zanforlin et al., 2014). However there were very limited work were reported on video 

quality that integrate the traffic parameters and visual information (Nasralla et al., 2018). 

PSNR is the most objective method in assessing image and video performance but it has 

limited features and usually with biased results (Preethi and Loganathan, 2018), (Pinki, 2016) 

and (Alvarez et al., 2011). Studies have reported that PSNR is more sensitive to additive 

Gaussian noise than the SSIM, while the opposite is observed for jpeg compression (Navarro 

and Molimard, 2019), (Ece and Mullana, 2011) and (Hore and Ziou, 2010). Furthermore, 

most objective QoE evaluation methods compare received image to the original transmitted 

image to determine QoE. This operation requires availability of image sequence to be able to 

compare the corresponding transmitted and received images (Maimour, 2018). Transmission 

impairments, aggravates frame loss which leads to unpaired frame comparisons between the 

original and distorted images, and therefore results in inaccuracies in QoE scores (Sankisa et 

al., 2016), (Akramullah, 2014), (Soares, 2013), (Alvarez et al., 2011) and (Canadell Pulido, 

2008). 

There were several studies relating to QoS and QoE (Barman and Martini, 2019), (Nasralla et 

al., 2018) and (Chen et al., 2014). The study in (Nourikhah and Akbari, 2016) used Bayesian 
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data analysis to estimate the overall users' satisfactions in opinions form for a known range of 

QoS measures. The study in (Kim and Choi, 2014) found the relationship between QoS 

parameters like delay, jitter, %PLR, burst loss and group of picture length to QoE. Another 

study used formulae to relate QoE from QoS (Kim et al., 2012). In a study by Stanojevićet 

al. (2018) a technique that used delay, jitter, %PLR and bandwidth to measure four types of 

video degradations were reported (Stanojević et al., 2018). However, these studies did not 

consider user perception and validation results. 

 

Some studies investigated the impact of network parameters such as encoding process, 

average number of bits for one coding unit and packet loss rate on QoE (Cheng et al., 2017) 

and (Qian et al., 2016). A proposed technique based on Random Neural Network (RNN) was 

developed to assess the MAC parameters effecting video transmission in 802.11n standards 

(Paudel et al., 2014). In their study subjective testings were carried out to correlate MAC-

level factors like aggregation, load, queue size and bit error rate with the QoE.  

A limitation of current objective techniques is that they mostly rely on PSNR, VQM or SSIM 

which do not provide consistent assessment (Stanojevićet al., 2018), (Usman et al., 2018), 

(Orosz et al., 2014) and (Kim and Choi, 2014). Therefore, in this study, two more video 

parameterscalled image difference ID and entropy difference ED were included for video 

QoE assessment. In addition, a novel approach whereby the images were partitioned to better 

localise possible distortions was devised. 

According to Vega et al. (2014) when connecting with wireless, where interference and 

contextual factors could influence network services, quality assessment is insufficient and 

mostly inadequate. Thus, the evaluation of a lossy wireless network requires consideration of 

not just the physical network transmission characteristics (QoS) but also how these impacts 

the end-user service (QoE). Thus, integrated QoS/QoE is important. 

In this study, we propose objective QoE assessment that integrate multiple media parameters 

(PSNR, SSIM, ID/ or ED) system based on fuzzy logic (Salama and Saatchi, 2019a). The 

difference of these QoE parameters affects the performance of the video transmission and, 

accordingly, the user satisfaction feedback. In this study we proposed integrated QoS/QoE 

assessment model based on fuzzy inference system as the relation between QoS and QoE can 

be nonlinear (Pokhrel, 2014). For QoS, three network parameters were used to assess network 

QoS using three network parameters (delay, jitter and %PLR). Moreover, subjective tests in 
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the Mean Opinion Score (MOS) form with 25 participants were performed to validate the 

developed overall video assessment method. In addition, the video transmission assessment 

established in this study was compared against a technique that used spatial efficient entropic 

differencing (Bampis et al., 2017) and consistent results were observed. The features of the 

work outlined in this chapter are (specifics of each part are described in the following 

sections): 

 Frame labelling dealt with the problem of frame loss by sampling and thus improved QoE 

measurement accuracy. This required each image to have serial number in the form of a 

label. 

 Reduction in processing need through systematic sampling of the received images. This 

was implemented by processing a subset of the received images according to labels. 

 Improved image distortion assessment through a procedure referred to as image 

partitioning. This enabled localised image distortions to be represented more adequately. 

 Integration of traffic parameters (delay, jitter and %PLR) to determine QoS using FIS and 

integration of image distortion computes (PSNR, SSIM and ID/ or ED) to determine QoE 

using a second FIS.  

 Integrating QoS and QoE to obtain a single value that indicated the overall quality of 

transmitted video using a third FIS. .  

 An analysis by SPSS to examine the relation between overall quality with video traffic 

parameters (delay, jitter and %PLR) and video visual parameters (PSNR, SSIM and ID) 

was carried out.  Subjective tests in the Mean Opinion Score (MOS) form with 25 

participants were performed to validate the developed overall video assessment method. 

7.3 Methodology 

7.3.1 Wireless network set up  

The hybrid network designed to transmit the video is shown in Figure 7.1. 

AP-1

PC-1

NetEm Server 

PC-2

PPP links
GE link

Transmitted video Received video

AP-2

 

Figure 0.1 Network setup used in the study 
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The details of the test setup have been introduced in chapter 4. It combined two Cisco© 

Access Points (APs) AIR-AP1852. Catalyst 3560 switch linked via 1 GE the Aps. NetEm ran 

over the Windows
© 

PC. The arrangement established PPP connections between the PC-1 and 

PC-2. The NetEm was positioned in between the PPP links to control the traffic parameters, 

i.e. delay, jitter and %PLR to be changed to produce different transmission quality (i.e. high, 

medium and low video quality transmissions). The video was sent over the PPP link from 

PC-1 to PC-2 over NetEm server. The Big Buck Bunny (Kovacs et al., 2015) clip was 

selected as video testing. Streaming duration was 90 seconds and includes of 1350 frames. 

The frame pixel resolution was 1280×720 pixels. The video encoded using H.264 and format 

was MPEG-2.  

The packets associated with the video were transmitted from PC-1 to PC-2 using Video LAN 

Client (VLC) media player and RTP protocol. The sequence number and time-stamp 

advantages in RTP allowed measurements of delay, delay variation (jitter) and %PLR. 

Through NetEm, traffic delay, jitter and %PLR were increased in three stages during the 

streaming. During first stage, traffic parameters had lower values measures, whereas 

increasing values in the final stage. Throughout all stages, the QoS, QoE and overall 

integrated QoS/QoE were measured.  

7.4 Mechanism for video quality evaluation 

The stages in determining the transmitted video quality is shown in Figure 7.2.  

Three similarly structured FIS were implemented to achieve the required operations. Though 

the whole video assessment could be achieved by a single FIS, three FIS models were used to 

allow a modular system, thus making it easier to understand, design, implement and 

troubleshoot.  

The numerical FIS inputs were fuzzified by membership functions that represented the QoS 

and QoE levels (a quantity between 0 and 1). Each FIS knowledgebase included the data for 

processing the relations between the inputs (delay, jitter, %PLR, PSNR, SSIM and ID) and 

produced an output indicating video quality. The inference engine performed reasoning by 

comparing the input measures with the knowledge domain. The coding was IF-THEN rules. 
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De-fuzzification was a procedure for the outcomes of the combined rules to provide an 

aggregated membership function from the measurements.  

The first FIS (FIS1) handled the input measurements (delay, jitter and %PLR) to provide 

QoS. While, the second FIS (FIS2) handled PSNR, SSIM and ID/ or ED to provide QoE. 

Then, the third FIS (FIS3) integrated the outputs of FIS1 and FIS2 to produce the overall 

video transmission quality. The specifics of the tasks to advance these FIS systems are 

clarified next: 

 Each image before transmission was labelled with a serial number, starting with 1 and 

sequentially increasing till transmission of the last image. Two equal labels were used. 

Frame labelling  

Wireless network 

Delay, jitter and %PLR PSNR, SSIM and ID/ or ED 

(full/partitioned image) 

QoS metric FIS1 QoE metric FIS2 

Integrated overall metric FIS3 

Network QoS Objective QoE 

Overall video transmission quality 

Big Buck Bunny video 

Frame sampling (systematic) 

Figure 0.2 Stages in determine video transmission quality 
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These were placed on the top right and left corners of all image. Its replication on two 

sides was to assure an alternative label in case of one label became unreadable due to 

distortion. The labelling was needed to allow the received images to be compared with 

the corresponding transmitted (original) images to increase comparison accuracy. 

Systematic sampling (a sample is selected from the whole set at a fined period) was 

applied to the received images to decrease the required image number for processing. The 

time period chosen for systematic sampling was 1 second. This resulted in a reduction of 

images from 1350 to 90 (i.e. 1 image from every 15 images was chosen). The selected 

received images were compared with their corresponding sent images by using the image 

labels. 

 Traffic parameters; delay, jitter and %PLR were obtained for the received images packets 

and were computed by FIS1 to obtain the QoS. Whereas, PSNR, SSIM and ID/or ED 

were measured for the chosen received images and their corresponding original images 

(transmitted) that processed by FIS2. This process was repeated for both full and 

petitioned images approaches.  

 The QoS and QoE determined in above steps were integrated using FIS3 to determine the 

overall quality of transmitted video. 

7.4.1 Implementation of the FIS1  

QoS was measured by FIS1 that process delay, jitter and %PLR. Nine rules were combined 

into the FIS1 knowledge base as described in Table (7.1). Three fuzzy membership functions 

have been used to signify each of the three inputs and three membership functions signified 

FIS1 output (QoS).  

The most common membership functions are Gaussian which has been most commonly used 

in literature due its smooth representation of input, and the error is minimized. It allows the 

desired values to be interpreted appropriately. The amount of overlap and the range of each 

variable were determined by experimenting with a number of suitable values and selecting 

the ones based on ITU recommendations for video transmission parameters as shown in 

Figure 7.3 (Salama et al., 2017d), (Dogman et al., 2014, and 2012b) and (Al-Sabou et al., 

2007). 

The method to define a fuzzy rule base for fuzzy logic controllers was based on experience 

knowledge. The rules are expressed in linguistically forms and the size of the rule base is 
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small enough to allow modelling of the systems to be easily interpreted and analysed. In this 

part nine rules have been chosen based on experience and best outcome results. 

Table 0.1 The rules for FIS1 knowledge base (Salama et al., 2017d) and (Dogman et 

al., 2014, and 2012b) 

Rule Delay Operator Jitter Operator %PLR FIS (output) 

1 Low AND Low AND Low High 

2 Low AND Low AND Medium High 

3 Low AND Medium AND Low High 

4 Medium AND Low AND Low High 

5 Medium AND Medium AND Low Medium 

6 Medium AND Low AND Medium Medium 

7 Low AND Medium AND Medium Medium 

8 Medium AND Medium AND Medium Medium 

9 High OR High OR High Low 

The membership functions shown as blue, red and green colours signify classes of high, 

medium and low values respectively. Every fuzzy rule was related to membership functions 

and the rules' consequences were mapped to the related output membership functions. The 

output membership functions were combined, and the centroid technique was adapted to 

execute the de-fuzzification that in turn delivered the FIS1 output.  

In order to develop FIS1, its knowledgebase that measured QoS, traffic QoS bound required 

to be predefined. For a video transmitting, Good QoS (i.e. QoS > 67%) corresponded to delay 

less than 150 ms, jitter less than10 ms, and %PLR less than 1%. Medium QoS (i.e. 33% < 

QoS   67%) corresponded to medium QoS parameters (i.e. 150 < delay <400 ms, 10 < jitter 

<20 ms, and 1% < %PLR < 2%). And Low QoS (i.e. QoS   33%) corresponded to delay > 

400 ms, jitter > 20 ms, and %PLR > 2% (Salama et al., 2017d), (Dogman et al., 2014, and 

2012b) and (Al-Sabou et al., 2007).  
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Figure 7.3 Membership functions for FIS1: inputs (top three Figures), output 

(bottom Figure) 

7.4.2 Implementation of FIS2 

FIS2 used input measures of PSNR, SSIM and ID/ or ED and processed them to obtain QoE. 

The QoE computations were achieved by two manners. In the first method, PSNR, SSIM and 

ID were measured for the complete (full) images. Whereas, the second method, each image 

was partitioned into four identical sections (top-right, top-left, bottom-right and bottom-left) 

and the measures for PSNR, SSIM and ID/ or ED for each section were individually 

measured. The suitability of these two methods in providing QoE was obtained and 

compared. The reason for partitioning images was to examine whether localised distortions 

could be recognised and signified more accurately. 

The FIS2 inputs were PSNR, SSIM and ID. They were fuzzified by three Gaussian 

membership functions labelled as high, medium and low quality which shown in Figure 7.4 

as green, red and blue. The output was defuzzied by three membership functions that 

signified high, medium and low QoE. The knowledgebase for the FIS2 was set up to 

measured QoE. The QoE bound required to be predefined for video streaming. These were 

set to: Low QoE (i.e. QoE   33%) was associated to PSNR   25, SSIM ≤ 0.88, and ID/ or ED 

≥ 0.66,Medium QoE (i.e. 33% < QoE ≤67%) was associated to medium QoE (i.e. 25 < 

PSNR 35, 0.88 < SSIM ≤ 0.95, and 0.33 ≤ ID/ or ED < 0.66). Good QoE (i.e. QoE > 67%) 

was associated to PSNR more than 35, SSIM more than 0.95, and ID less than 0.33. The 
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PSNR and SSIM limitation bounds values have been chosen according to previous studies 

(Al-Jawad et al., 2018), (Brito and Figueiredo, 2017), (De Grazia et al., 2017) and (Testolin 

et al., 2014). The ID results were normalized between 0 and 1. The normalization required 

knowing the highest and lowest values for each parameter. These were obtained by running 

the code that indicated the QoE parameters.  

 

Figure 7.4 FIS2 membership functions, inputs (top Figures), output (bottom Figure) 

The knowledge base for FIS2 with rules as listed in Table (7.2). The rules mapped the inputs 

to FIS2 to its output and provide QoE as high, medium and low values.  

Table 7.2 The rules for FIS2 knowledgebase 

Rule PSNR Operator SSIM Operator ID FIS output 

1 High AND High AND Low High 

2 High AND High AND Medium High 

3 High AND Medium AND Low High 

4 Medium AND High AND Low High 

5 Medium AND Medium AND Low Medium 

6 Medium AND High AND Medium Medium 

7 High AND Medium AND Medium Medium 

8 Medium AND Medium AND Medium Medium 

9 Low AND Low AND Medium Low 

10 Medium AND Low AND High Low 

11 Low AND Medium AND High Low 
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7.4.3  Implementation of FIS3 

FIS3 integrated the QoS and QoE measures that were obtained by FIS1 and FIS2 to provide 

the overall transmission performance. The output was in the range of 0 (minimum 

performance) to 5 (maximum performance). Three Gaussian membership functions stated to 

as high, medium and low were used to fuzzy the QoS and QoE measures. They are indicated 

in green, red and blue plots in Figure 7.5.  

 

Figure 0.5 FIS3 membership functions (a) inputs (b) output 

Five rules were incorporated as part of FIS3 knowledge base which are indicated in Table 

(7.3). The rules mapped the two inputs (QoS and QoE) to the overall transmission 

performance of the video as low, medium and high values. 

Table 0.3 The rules for FIS3 knowledge base 

Rule QoS Operator QoE Operator 
FIS output 

(overall quality metric) 

1 High AND High AND High 

2 High AND Medium AND High 

3 Medium AND High AND High 

4 Medium AND Medium AND Medium 

5 Low OR Low OR Low 
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7.5  Results and Discussions 

7.5.1 Network QoS by FIS1 

Figures 7.6 (a) - (c) indicate the traffic computation for delay, jitter and %PLR respectively. 

Figure 7.6 (d) provides the QoS measured by FIS1 for the video traffic based on the 

membership functions in Figure 7.3 with fuzzy rules in Table (7.1). The increase in delay, 

jitter and %PLR was controlled by NetEm that caused reduction of the QoS. At the start of 

the streaming, at time 5 seconds, QoS was high at 75% with (delay= 51 msec, jitter=0.51 

msec, %PLR=0.5). At time 43 seconds QoS was 47% (delay=102 msec, jitter=0.039 msec, 

%PLR= 2.1), At time 65 seconds QoS was 54% (delay=152 msec, jitter=0.406 msec, 

%PLR=1.9), At time 90 seconds QoS was 19.2% (delay=186 msec, jitter=18.18 msec, 

%PLR= 3.1). It can be seen that QoS declined by time as traffic parameters of delay, jitter 

and %PLR increases. Curve fitting function (the polynomial of 4
th

 degree) was performed to 

illustrate the measurements trends for the plots. QoS varied according to the delay, jitter and 

%PLR variations. The values associated to 0- 34 as low QoS, 35-65 as medium QoS and 66 

to 100 as high QoS.  
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Figure 0.6 (a) Traffic delay (b) jitter (c) %PLR (d) QoS obtained from FIS1 

(a) 

(b) 

(c) 

(d) 
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7.5.2 Objective QoE by FIS2 

Figure 7.7 provides a normal streamed image with serial numbers presented as labels on its 

top right and left corners. The labels are applied to ensure the received images were 

compared correctly to the corresponding transmitted image, even in situations the images did 

not arrive in order (e.g. due to packet loss) 

 

Figure 0.7 A typical transmitted image with its serial numbers as labels indicated on 

its top corners 

The PSNR, SSIM and ID were computed by comparing sent and received video images 

following systematic sampling. The distortion was localised through image partitioning. 

Figures 7.8 (a) - (b) indicate the transmitted and received images at time 65 seconds. A 

distortion is visible at the bottom of the received image. The measured PSNR and SSIM were 

36.08 and 0.999 respectively and ID was 0.48. 

       

(a)               (b) 

Figure 7.8 (a) The transmitted (original) image (b) received (distorted) image with 

label=1170 at time 65 second 

The four partitions approach is shown in Figure 7.9 for same image in Figure 7.8 (b). 
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Figure 0.9 Partitioned received image at time 65 sec 

The PSNR, SSIM and ID measures for each section were measured and the minimum 

measures for PSNR and SSIM and the maximum ID among the four sections were chosen. 

The minimum value was used to consider the worst-case scenario. The measures of PSNR, 

SSIM and ID for a full image approach and partitioned image approach are shown in Table 

(7.4). Sections 1 to 4 signify top left, top right, bottom left and bottom right of the image 

respectively. In Figure (7.8), the selected visual video parameters PSNR, SSIM and ID were 

28.13, 0.997 and 0.60 respectively. Table (7.4) provides the visual video parameters or the 

chosen image and its four partitions. 

Table 0.4 PSNR, SSIM and ID for a full and partitioned image (these were obtained 

from the image shown in Figure 7.8 (b) and its partitions in Figure 7.9) 

Parameter Full image 
Partitions 

Selected value 
1 2 3 4 

PSNR 36.08 33.22 33.56 29.32 28.13 28.13 

SSIM 0.999 0.998 0.999 0.998 0.997 0.997 

ID 0.48 0.41 0.42 0.47 0.60 0.60 

Figures 7.10, 7.11, 7.12 and 7.13 show PSNR, SSIM, normalised ID and ED for the video 

images (following systematic sampling) at the receiver and their comparisons with their 

counterparts for the sent images. For each plot, (a) is for the full image and (b) for the 

partitioned image.  
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(a)                  (b) 

Figure 0.10 PSNR (a) full image, (b) partitioned imagepartitioned 

 
(a)                     (b) 

Figure 0.11 SSIM (a) full image, (b) partitioned image 
 

(a)                           (b) 

Figure 7.12 ID (a) full image, (b) partitioned image 
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 (a)              (b) 

Figure7.13 ED (a) full image, (b) partioned image 

 

PSNR, and SSIM measures were at their maximum values at the initial of the streaming and 

they decreased as the traffic parameters were increased according to the NetEm. While, ID 

was zero at start but by increasing network parameters, the ID increased accordingly. For the 

full image processing approach, the results for SSIM and PSNR were moderately similar to 

QoS. However, at time 80 seconds SSIM and PSNR were high but QoS at the time was low. 

Furthermore, for the partitioned images, SSIM and PSNR measures were very similar in 

behaviour to network QoS. Even at the end of streaming between 80-90 seconds. The 

partitioned images SSIM and PSNR measures had similar trends to QoS measures. ID in both 

cases (i.e. the full and partitioned image methods) was very close. Furthermore, the trend of 

ID was also very close to QoS. While, the ED was zero at start of the streaming as received 

images were similar to those sent but by increasing traffic parameters, the ED increased 

accordingly. According to the results, the partitioned image technique was more accurate in 

measuring the quality of video transmission than the full image method. 

Figures 7.14 (a) - (b) show the QoE metric based on (PSNR, SSIM and ID) the full and 

partitioned images respectively that have been determined by FIS2 using provided 

membership functions in Figure 7.4 and fuzzy rules listed in Table (7.2). The partitioned 

image technique had represented the video quality more accurately. The data trend of QoE 

according to partitioned image approach in Figure 7.14 (b) is very similar to data trend of 

QoS results in Figure 7.6 (d).  
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(a)              (b) 

Figure 0.14 Video quality determined by FIS2 (a) full image (b) partitioned image 

Figures 7.15 (a) - (b) show the objective QoE metric based on (PSNR, SSIM and ED) the full 

and partitioned images respectively that have been determined by FIS2 using provided 

membership functions in Figure 7.4 and fuzzy rules listed in Table (7.2). The partitioned 

image technique characterised the video quality more accurately. The QoE (PSNR, SSIM and 

ED) trend of partitioned approach was very similar to QoE (PSNR, SSIM and ID).  

  
(a)              (b) 

Figure 7.15 Video quality determined by FIS2 (a) full image (b) partitioned image 

To illustrate how QoS and QoE measures related to individual images with several levels of 

distortion, some images and their computed values are shown in Figure 7.16 at times of 5, 43, 

65 and 90 seconds. The values are provided for whole image processing and partitioned 

approach. QoS is between 0 to maximum 1 and QoE is from 0 to maximum 1. The 

partitioning of images into four parts improved quantifying image distortion and thus better 

determining QoE. To illustrate the point, Figure 7.16 (a) has a small amount distoration. The 

QoE obtained from the full image and partitioned image approches are 0.78 and 0.77 in 
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partitioned approach. In Figure 7.16 (d), the image is highly distorted. The QoE measured by 

the full image approach is 0.70 while the QoE measured using partitioning approach is 0.17.  

 
QoS=75.50, delay=51.51 ms, jitter=0.07 ms, 

%PLR=0.5. 

 

Image partitioning approach: 

 Full image: QoE =0.78, PSNR=45.09 dB, 

SSIM=1, ID =0.004. 

 Partitoned: QoE =0.77, PSNR=45.09 dB, 

SSIM=1, ID = 0.01. 

(a) 

 
QoS=48.01, delay=104.10 ms, jitter=0.56 ms, 

%PLR=2.1. 

 

Image partitioning approach: 

 Full image: QoE=0.76, PSNR=45.39 dB, 

SSIM=0.999, ID =0.48. 

 Partitioned: QoE=0.49, PSNR=27.30 dB, 

SSIM= 0.998, ID = 0.62. 

(b) 

 
QoS=52.02, delay=157.5 ms, jitter=1.43 ms, 

%PLR=1.9. 

 

Image partitioning approach: 

 Full image: QoE=0.59, PSNR=30.06 dB, 

SSIM=0.99, ID =0.48. 

 Partitioned: QoE=0.49, PSNR=28.13 dB, SSIM= 

0.997, ID =0.61. 

 (c) 

 
QoS=19, delay=178.5 ms, jitter=19.8 ms, 

%PLR=3.1. 

 

Image partitioning approach: 

 Full image: QoE=0.70, PSNR=45.52 dB, 

SSIM=0.999, ID =0.88. 

 Partitioned: QoE=0.17, PSNR=8.66 dB, SSIM= 

0.87, ID =0.85. 

 (d) 

Figure 0.16 Sample of images illustrating the values for QoS, QoE and the effect of 

image partitioning of determine QoE. (a) time 5 sec (b) time 43 sec (c) time 65 sec (d) 90 

sec. (PSNR in (db), delay and jitter in (msec). %PLR (is %ratio) 

7.5.3 Integrated QoS/QoE by FIS3 

Figure 7.17 provides a plot for the overall video quality that measured by FIS3 according to 

the membership functions provided in Figure 7.5 and fuzzy rules listed in Table (7.3). Score 1 

is the lowest quality while 5 is the maximum quality for the received video. The inputs were 
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the QoS shown in Figure 7.6 (d) and QoE by partitioned approach (PSNR, SSIM and ID) 

shown in Figure 7.14 (b). 

 
Figure 0.17 Evaluation of video quality transmission by FIS3 

The video quality video transmission was very high throughout the first 5 seconds and 

decreased to its minimum during the end of streaming. The trend correlated well with QoS, 

QoE and their related parameters thus demonstrating the technique had properly performed 

the assessment.  

 

To validate the over-all performance results based on developed system, a subjective test was 

performed. For this purpose, a test sequences were created of sampled received images to be 

evaluated by 25 human participants. The average provided a MOS (Pokhrel, 2014) score 

according to the ITU-T recommendation (ITU-T, 1996). The streaming of the video lasted for 

90 seconds and contained to 90 sampled images. The distorted (received) video was played to 

each participant at the start. Because scoring of the specific images while the video was being 

played was not realistic, windows photo viewers' tool was used to show the video images 

individually, and once the scoring of an image was attained, the next image was showed. This 

opinion scale allocated qualitative measures from bad to excellent by mapping the numerical 

MOS as; excellent (5), good (4), fair (3), poor (2) and bad (1).In this work, a the laboratory 

environment was used to accomplish the subjective test. The subjective test scores are shown 

in Figure 7.18. The results showed that the trend of subjective test in Figure 7.18 was close to 

the trend of the developed objective method in Figure 7.17. There were few variances, for 

example from 80 to 90 second the subjective test showed quality with 1.4 to 2.2 that was 

higher than the objective test that showed quality close to 1 for same period.  
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Figure 0.18 Average evaluation of video quality transmission by 25 participants 

For an independent comparison of the assessment results from proposed approaches, a 

recently known image and video quality evaluation proposed in (Bampis et al., 2017) was 

selected. The authors in that study used assessment of video quality that was termed as 

Spatial Efficient Entropic Differencing Quality Assessment (SpEED-QA). This proposed 

approach is an effective natural scene statistics-based method that computes local entropic 

variations between the tests (received) and reference (original) data in the spatial domain 

(Bampis et al., 2017). They stated that SpEED-QA had a very competitive performance 

compared to other objective image and video quality assessment approaches. SpEED-QA was 

measured by first computing the conditional block entropies of the distorted and reference 

images. The variations between the entropies of the associating blocks were then attained and 

an averaged for all blocks (Bampis et al., 2017). Single scale (SPDss) and multiscale methods 

of SpEED were proposed in (Bampis et al., 2017). Figure 7.19 shows the plot SPDss values 

for the video used in our study. The multiscale plot was very similar to the single scale and 

therefore is not shown.  
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Figure 0.19 Plot of SPDss for the video used in the study 

 

The red line over the plot provides its trend attained by a 4
th

 order polynomial. A relationship 

can be observed when comparing the plots in Figure 7.19 and those in Figure 7.14 (b) (i.e. 

FIS2 results which produced from PSNR, SSIM and ID) with the overall video quality 

achieved by FIS3 (which integrated delay, jitter and %PLR with PSNR, SSIM and ID) 

provided in Figure 7.17. In Figures 7.14 (b) and 7.17, larger measures illustrate a better 

quality but in Figure 7.19 lowest measures illustrate a better quality, thus, the trends are 

inverted. In Figures 7.14 (b) and 7.17, the images associate to times at 30 and 59 seconds 

have a very low quality as provided by a drop in the plot. The associating images in Figure 

7.19 have also a low quality as provided by a large increase in the plot.  

The images associate to the time period between 85 and 90 seconds have lowest quality in 

Figure 7.17. These images showed minimum QoS as provided in Figure 7.6 (d). However, 

the associating images when evaluated by SPSS do not show lowest quality. This 

demonstrates an advantage of the FIS approach proposed in this study that integrates QoS and 

QoE to deliver an overall quality assessment. 

In order to further compare SPDss and the FIS method, the values of PSNR, SSIM, ID, 

SPDss, FIS2 output and FIS3 output are tabulated in Table (7.5) for images corresponding to 

1 second and then every 10 seconds. 
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Table 7.5 Values for PSNR, SSIM, ID, SPDss, FIS2 output and FIS3 output for 

images at 1 second and then every 10 seconds 

Time 

(seconds) PSNR (dB) SSIM ID SPDss 

QoE FIS2 

Output 

QoE FIS3 

Output 

1 45.49 1.000 0.00 0.00 0.76 4.41 

10 45.74 1.000 0.62 0.99 0.58 3.52 

20 38.58 0.999 0.30 5.70 0.67 3.60 

30 7.95 0.777 0.64 35.58 0.19 1.19 

40 26.54 0.994 0.36 48.93 0.49 2.81 

50 30.06 0.999 0.61 7.42 0.49 3.17 

60 34.15 0.999 0.64 10.58 0.51 2.92 

70 22.11 0.994 0.61 15.63 0.32 2.36 

80 7.14 0.647 0.99 52.08 0.16 1.01 

90 8.66 0.871 0.91 27.49 0.16 1.04 

Figures 7.20 (a) - (b) show plots of FIS3 output and SPDss against PSNR respectively. PSNR 

was used as it was a more sensitive measure for qualifying video quality as compared with 

SSIM and ID. FIS3 shows a closer correlation to PSNR than SPDss. The correlation is 

indicated in the Figures by coefficient of determination (R
2
) obtained from the best fit 

through the data points. The values of R
2 

are 0.945 and 0.623 for Figures 7.20 (a) - (b) 

respectively. R
2
 indicates the proportionate amount of variation in FIS3 output and SPDss in 

response to PSNR. Larger values of indicate greater variability in the linear regression model. 

Figure 7.20 (c) shows a plot of FIS3 output against SPDss. The two are closely related at high 

quality images. For low quality images, FIST3 grades them as 1 but SPDss has different 

measures for them therefore the relationship between the two is not as obvious. 

 

 

 

 

 

 

 

 

 

 

            (a)                   (b)                  (c) 

   

Figure 0.20 Plots for (a) FIS3 output against PSNR, (b) SPDss against PSNR and 

(c) FIS3 output against SPDss 
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7.6 Interpretation of results 

SPSS
© 

was used to analysis the overall quality produced by FIS3 for the video traffic 

parameters and video visual parameters. The scatter plots in Figures 7.21 (a) - (c) show an 

overview analysis of the proposed quality assessment. The explanations for packets being 

classified as low, medium or high overall quality by the proposed FIS3 relates to delay, jitter 

and %PLR values. Blue colour in the Figures indicates low overall quality (values between 1-

2), green indicates medium overall quality (values between 2-4) and red illustrates high 

overall quality (values between 4-5). The dotted blue lines are positioned as described in 

section 7.4.1. There were several packets that were allocated into medium class (green) 

overall quality that have delay values lower than 150 msec, while their jitter or %PLR values 

were high. Several packets that were classified into medium (green) quality had a small 

delay, but their jitter or %PLR values were high. It can be seen from Figures 7.21 (a) - (c) 

that %PLR was the most useful parameter reflecting overall quality. The overall quality 

classified as poor (blue) when %PLR exceeded the limit recommended values (2%). For 

delay, many packets were within the recommended delay values but had poor quality (blue). 

It was the same for jitter as there were many packets classified as poor (blue) but they were 

within recommended jitter values.  

 
             (a) 
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            (b) 

 

 
          (c) 

Figure 7.21 An overview analysis of the classifications, the reasons for packets being 

classified as high, medium or low overall quality metric by the FIS3 model according to 

(a) delay, (b) jitter and (c) %PLR values 

The scatter results in Figures 7.22 (a) - (c) show an overview analysis of the classifications 

results, the explanations for packets being assigned as low, medium or high overall quality 

metric by the FIS3 model according to PSNR, SSIM and ID parameter values. Blue colour in 

the Figures indicates low overall quality metric; green indicates medium overall quality 

metric and red illustrates high overall quality metric. The dotted lines are placed according to 

recommended values of PSNR, SSIM and ID described in section 7.4.2. It can be observed 

from Figures 7.22 (a) - (c) that video visual parameters show different reflection to overall 

quality. For example, there are many poor (blue) classified packets but they are within 

recommended PSNR values. There are poor (blue) classified packets but they are within 

recommended SSIM values. This illustrates the need to combine QoS/QoE parameters 
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            (a) 

 

 
             (b) 

 

 
              (c) 

  

Figure 0.22 An overview analysis of the classifications, the reasons for packets being 

classified as high, medium or low overall quality metric by the FIS3 model according to 

(a) PSNR, (b) SSIM and (c) ID values 
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7.7 Summary  

An integrated modular approach to objectively assess quality of video transmission over 

hybrid networks was developed and its performance was estimated. The approach 

accommodated traffic factors (delay, jitter and %PLR) in quality of service (QoS) measure 

and image distortion parameters PSNR, SSIM and ID into quality of experience (QoE) 

measure. It was demonstrated that image partitioning can be valuable in making qualification 

of image distortion, more precise and thus improved determination of QoE. A subjective test 

was performed with 25 participants to validate the results. The subjective test trend showed 

similar results to the overall integrated QoS/QoE system. An independent comparison to the 

developed approach in this study was performed against a technique that used spatial efficient 

entropic variation and comparison results to the FIS based system were obtained.  
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Chapter 8 Multimedia VoIP and Video Transmission 

Quality of Service Assessment over an Institutional 

Network  

8.1 Introduction  

The main objective in this chapter was to apply all developed methods and techniques of 

adaptive sampling, Bayesian and PNN QoS evaluation, QoE and integrated QoS/QoE 

assessment to a large institutional network in practical manner. As explained in literature 

review, network simulations and emulation testbeds have several limitations related to their 

reliability, validation and scalability limits (Roshan, 2018), (Rampfl, 2013) and (Petrioli et 

al., 2015). The evaluations were carried out on the institution's network at its peak usage time 

to allow heavy traffic load to be accommodated. The VoIP and video transmission time were 

90 seconds. The testing took place at peak traffic time 11:00am. The name of the institution 

for network security purposes is not indicated in this thesis. 

8.2 Methodology 

The relevant part of the institution's network diagram is shown in Figure 4.4. The testing used 

two PCs, one in Campus A (PC-1) and the other PC in Campus B (PC-2) for multimedia 

transmission that included VoIP and Big Bunk Bunny video. The testing was performed in 

parallel (i.e. VoIP and video separately). Both VoIP and video were transmitted using RTP 

for its ability to access sequence number and timestamp as explained in Section 3.5. The test 

process was shown in Figure 8.1 where the left-hand side of the blue line illustrates the VoIP 

test (PART A) while the right-hand side of the blue line illustrates the video transmission 

approach (PART B). The multimedia traffic consisting of audio and video transmitted from 

PC-1 to PC-2. The PC-1 connected by wireless Cisco© AIR-AP1852E on Campus A, the 

traffic passed through Cisco switch 3850UA, to distribution layer through Cisco 6880X VSS, 

then to the core routers Cisco 6880X, and reversed to Campus B computer passing through 

the same network devices. On PC-1 the video streaming was performed by VideoLAN Client 

(VLC) media player and the compression set to MPEG-4 using UDP/RTP protocol. VoIP 

was handling between the two PCs using softphone called X-Lite using SIP protocol. 

Wireshark software was installed on both PCs for capturing generated traffic to measure 

traffic parameters. The time duration of transmission was 90 seconds.  
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Figure 0.1 Network testing approach 

In VoIP (PART A): where the call was established, the RTP packets that travelled from PC-1 

to PC-2 were captured by Wireshark and analysed. An adaptive sampling technique, 
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according to the algorithm described in section 5.3, was used due to large number of RTP 

packets generated, through the established VoIP call. To effectively assess the VoIP call, 

Bayesian and PNN QoS evaluation methods described in section 6.3 were used. For the video 

transmission (PART B): QoS, QoE and integrated QoS/QoE were determined based on 

developed approaches described in section 7.4. Summary for the methods as below: 

8.2.1  PART A: VoIP evaluation 

 Apply the multi-input adaptive sampling method described in section 5.3. 

 Apply Bayesian, and PNN QoS evaluation methods described in section 6.3. 

8.2.2 PART B: Video streaming evaluation 

The steps to evaluate the quality of received video by apply the approach that defined in 

section 7.4 with below summary: 

 Insert labels to images. This was a number that appeared in the top corners of the 

images to allow their correct matching with those transmitted.  

 Applying systematic sampling to select sample frames. 

 Measure QoS of video RTP packets by FIS1. 

 Determine an objective measure of QoE using PSNR, SSIM, and ID/ or ED by FIS2. 

 Quantify overall video streaming performance by FIS3. 

 Use SPSS
©

 to evaluate the relation between overall performance measurements of the 

video and network traffic parameters (delay, jitter and %PLR) and media parameters 

(i.e. PSNR, SSIM, and ID/ or ED). 

8.3 Results  

8.3.1 PART A: VoIP evaluation 

1.1.1.1 The adaptive sampling results and discussion 

Figure 8.2 (a) shows the adaptive updating of inter-sampling interval (isi) according to the 

differences in packet delay, jitter and %PLR. Figure 8.2 (b) indicates the manner the traffic 

difference for delay (TD_D). Figure 8.2 (c) provides the original delay and its data trend while 

Figure 8.2 (d) provides the sampled delay form and its data trend. It can be observed that the 

trends for the original delay and its sampled form were very similar. The updated isi varied 

significantly. In each iteration, isi changed the packet count that represented the number of 
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packets that isi increased or decreased for the next iteration. The number of VoIP RTP packets 

was 4607 and number of sampled packets was 1584 (i.e. fraction rate was 43%). 

  
(a)                                                                                    (b) 

 
 
 
 
 
 
 
 
 
 
 

(c)                                                                                    (d) 
 

 

 

In Figures 8.3 (a) - (c), the manner the proposed adaptive sampling model tracked the jitter is 

shown. Figure 8.3 (a) shows the traffic difference of jitter TD_J. In Figures 8.3 (b) - (c) the 

actual (original) jitter and its sampled form are shown. For jitter, the trend for the original jitter 

is very close to its sampled version. Figures 8.3 (d) - (e) provides the manner developed 

adaptive sampling model tracked the %PLR. For traffic %PLR, there was no packet loss. 

Therefore, just two inputs have been used to sample traffic (delay and jitter), this illustrates the 

importance of the modular sampling design in computer networks that flexible on number of 

inputs parameters.  

Figure 8.2 Typical results obtained from the developed modular adaptive 

technique (a) FIS output for the inter-sampling interval (isi) (b) traffic difference 

for delay TD_D (c) original traffic delay (d) sampled traffic delay 
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(a)                                
 

 

 

 

 

 

 

(b)                                                                                    (c) 

 
(d)                                                                                  (e) 

Figure 0.3 Typical results obtained from the developed adaptive technique (a) 

traffic difference for jitter (b) original traffic jitter (c) sampled traffic jitter (d) original 

traffic %PLR (e) sampled traffic %PLR 

1.1.1.2 VoIP traffic QoS 

The sampled data for sampled delay, jitter and %PLR in Figures 8.2 (d), 8.3 (c) and 8.3 (e) 

were used to classify QoS (to reduce processing and computational time). Figures 8.4 (a) - (c) 

provide the QoS results according to FIS, Bayesian and PNN methods respectively. The VoIP 

QoS was very high most of the time as delay and jitter were small whereas %PLR was zero 

for the full period. There are few occasions that QoS was low due to an increase in jitter. The 

Bayesian approach classified 91.7% of sampled packets as High, 5.6% as Medium and 2.7% 

of sampled packets as Low quality.  
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(a) 

 
(b) 

 
(c) 

Figure 0.4 (a) QoS classification by FIS1, (b) QoS classification by Bayesian, (c) QoS 

classification by PNN 

8.3.2 Video streaming results and discussions 

1.1.1.3 Video QoS by FIS1  

Figures 8.5 (a) - (c) show the traffic measurement plots for the video traffic parameters 

respectively. Figure 8.5 (d) shows the video QoS measured by FIS1 for the video packets. For 



 

145 

 

the video indicated QoS was high most of the time during the 90 seconds of video 

transmission corresponding to the 84%. Video QoS varied based on the changes in the delay, 

jitter and %PLR by the membership functions in Figure 8.5 (d). The measures correspond to 

66% to 100% as high QoS, 35%-65% as medium QoS and 0- 34% as low QoS, 

 
(a)

 
(b)

 
(c) 
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(d) 

Figure 0.5 (a) Traffic delay, (b) jitter (c) %PLR, (d) QoS obtained from FIS1 

 

1.1.1.4 Objective QoE by FIS2 

Figures 8.6 (a) - (b) show the transmitted and received (distorted) images at time 65 seconds.  

      

(a)             (b) 

Figure 8.6  (a) The transmitted (original) image (b) received (distorted) image with 

label=1170 at time 65 second 

Figure 8.7 provides the four sections (partitions) from the image in Figure 8.6 (b) as part of 

indicating the effect of image partitioning on determining video quality. 
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Figure 0.7 The image received at 65 sec following its partitioning 

The measures of PSNR, SSIM and ID for both full-image and partitioned image are provided 

in Table (8.1). The partitions 1 to 4 signify top left, top right, bottom left and bottom right 

sections of the image respectively. In Figure 8.7, the selected (worst case scenario) PSNR, 

SSIM and ID were 31.22, 0.998 and 0.09 respectively. Comparing this received image by the 

institutional network to same received image in chapter 7 in Figure 7.8 (b) using NetEm 

emulation network, the distortion was less due to good network conditions. The network 

traffic parameters conditions delay jitter and %PLR were low as compared to the network 

conditions in chapter 7 where delay, jitter and %PLR were increased by NetEm. 

Table 0.1 PSNR, SSIM and ID for a full and partitioned image (these were obtained 

from the image its partitions in Figure 8.5) 

Parameter Full image 
Partitions 

Selected value 
1 2 3 4 

PSNR 36.08 38.58 38.58 34.15 31.22 31.22 

SSIM 0.999 0.999 0.999 0.999 0.998 0.998 

ID 0.1 0.1 0.1 0.1 0.09 0.09 

Figures 8.8, 8.9, 8.10 and 8.11 show PSNR, SSIM, normalised ID and ED for the video 

images (following systematic sampling) at the receiver and their comparisons with their 
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counterparts for the sent images. For each plot, (a) is for the full image approach and (b) for 

the partitioned image approach.  

The PSNR and SSIM were high for most of video transmission duration. The ID was 

relatively low (i.e. 0.2) during the transmission and reached its peak at 0.17. For the 

transmission period, the results for PSNR, SSIM and ID correlated to QoE measure for the 

video. The ID in both cases (full and portioned image) was very similar. In addition, the trend 

of ID was also very similar to QoE.  

 
   (a)             (b) 

Figure 8.8 PSNR (a) full image, (b) partitioned image 

 
     (a)             (b) 

Figure 0.9 SSIM (a) full image, (b) partitioned image 
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   (a)                         (b) 

 

Figure 0.10 ID (a) full image, (b) partitioned image 

 
   (a)                                         (b) 

Figure 8.11 ED (a) full image, (b) partitioned image 

Figures 8.12 (a) - (b) show the objective QoE metric based on the full and partitioned images 

respectively using PSNR, SSIM and ID, and on the membership functions and fuzzy rules 

described in section 7.4.2. 

   (a)                                                             (b) 

Figure 8.12 Video quality determined by FIS2 (a) full image (b) partitioned image 
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Figures 8.13 (a) - (b) show the objective QoE metric based on the full and partitioned images 

respectively based on PSNR, SSIM and ED based on membership functions and fuzzy rules 

described in section 7.4.2. 

 
   (a)                           (b) 

Figure 8.13 Video quality determined by FIS2 (a) full image (b) partitioned image 

 

Both full and partitioned image methods showed high QoE most of the time during video 

transmission where QoE reached 0.8 (80%) at the beginning and at the end of the 

transmission. The QoE obtained by FIS2 was consistent when PSNR, SSIM and ID were 

used and then compared with FIS2 use PSNR, SSIM and ED. 

In order to illustrate how QoS and QoE measures related to the individual images with 

varying levels of distortion, a number of images and their measurement values are shown in 

Figure 8.14. The values are provided for whole image processing and partitioned approach. 

QoS is between 0 to maximum 1 and QoE is from 0 to maximum 1. All images were 

extracted and studied in chapter 7. The received images in the institutional network were less 

distorted as compared to same images in chapter 7. 
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QoS=75.50, delay=44.51, jitter=0.31, %PLR=0 

Image partitioning approach: 

 Full image: QoE =0.68, PSNR=48.13, 

SSIM=0.999, ID =0.11. 

 Partitoned image: QoE =0.69, 

PSNR=36.09, SSIM=0.999, ID = 0.13. 

(a) 

 
QoS=83.16, delay=42.9, jitter=0.007, %PLR=0. 

Image partitioning approach: 

 Full image: QoE=0.70, PSNR=34.15, 

SSIM=0.999, ID =0.06. 

 Partitioned image: QoE=0.55, PSNR=25.20, 

SSIM= 0.995, ID = 0.09. 

 

(b) 

 
QoS=83.1, delay=42.5, jitter=0.36, %PLR=0. 

Image partitioning approach: 

 Full image: QoE=0.73, PSNR=32.56, 

SSIM=0.999, ID =0.05. 

 Partitioned image: QoE=0.72, 

PSNR=32.56, SSIM= 0.998, ID = 0.08. 

                                  (c) 

 
QoS=83.2, delay=40.12, jitter=0.044, %PLR=0. 

Image partitioning approach: 

 Full image: QoE=0.70, PSNR=48.13, 

SSIM=0.999, ID =0.13. 

 Partitioned image: QoE=0.80, PSNR=42.11, 

SSIM= 0.999, ID =0.12. 

(d) 

Figure 8.14 Sample of images illustrating the values for QoS, QoE and the effect of 

image partitioning of determine QoE (a) time 5 sec (b) time 43 sec (c) time 65 sec (d) 90 

sec (PSNR in (db), delay and jitter in (msec). %PLR (is %ratio) 

1.1.1.5 Integrated QoS/QoE FIS3 

Figure 8.15 provides a plot for the overall quality metric generated by FIS3. The quality of 

transmitted video was at its maximum throughout for the first 5 seconds and decreased to its 

minimum during the end of transmission. This trend correlated with QoS, QoE and their 
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related measurement parameters, thus demonstrating the proposed approach has accurately 

determined the video quality.  

 

Figure 8.15 Evaluation of video quality transmission by FIS3 

1.1.1.6 Interpretation of results 

Figures 8.16 (a) - (c) provides an interpretation of the classifications, the explanations for 

packets being categorised as high quality (values between 4-5), medium (values 2-4) or low 

(values between 1-2) by the FIS3 according to delay, jitter and %PLR parameter values. 

Blue, green and red colours in the Figures indicate low, medium and high overall quality. It 

can be seen from Figure 8.16 that overall video quality was high all the time because delay, 

jitter and %PLR were within the recommended values.  

 

               (a) 
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              (b) 

 

       (c) 

Figure 0.16 (a-c) Deliver detailed analysis of the classifications, the reasons for 

packets being classified as high, medium or low overall quality by FIS3 according to 

delay, jitter and %PLR values. Blue, Green and Red colours in the figures indicates 

low, medium and high QoS 

Figures 8.17 (a) - (c) show an overview analysis of the classifications, the explanations for 

packets being categorised as high, medium or low quality by the FIS3 according to PSNR, 

SSIM and ID. Blue, green and red colours in the Figures indicate low medium and high 

quality.  
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             (a) 

 

                 (b) 

 

               (c) 

Figure 0.17 (a) - (c) Deliver detailed analysis of the classifications, the reasons for 

packets being classified as high, medium or low overall quality by FIS3 according to 

PSNR, SSIM and ID values. Blue, Green and Red colours in the figures indicates low, 

medium and high QoS 
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8.4 Summary 

This study focused in devising and evaluating techniques to assess multimedia transmission 

in real network over large instituitional network. Two tests were carried out to transmit VoIP 

and video between two buildings in different campuses. The developed methods successfully 

sampled network traffic, classified QoS and QoE for the VoIP and video. 

In the VoIP part, an adaptive sampling model to modify the sampling-interval of the traffic 

was used to sample VoIP traffic according to traffic variations over time. Sampled packets 

were used to evaluate the VoIP traffic QoS. Bayesian and PNN approaches analysed and 

classified the QoS for VoIP traffic sent over the network. Both approaches successfully 

classified the packets to their corresponding high, medium, and low QoS. 

In the video part, an integrated modular approach to objectively assess quality of video 

transmission over the networks was devised. The approach accommodated traffic parameters 

(delay, jitter and %PLR) in QoS measure and image distortion parameters (PSNR, SSIM and 

IS/ or ED) into QoE measure. The overall video transmission was determined by combining 

QoS and QoE measures. Fuzzy Inference System (FIS) was used to perform the evaluations. 

Both QoS and QoE measures showed that the institutional network performance was within 

ITU recommended values for multimedia applications.  
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Chapter 9 Conclusions and Future Work 

9.1 Conclusions 

In this thesis, our work was mostly dedicated to analysing QoS and QoE for multimedia 

applications transmitted over hybrid (combination of wired and wireless structures) computer 

networks. The study carried out with developed multi-input modular adaptive sampling 

method technique to reduce the necessity of processing all traffic packets or video frames for 

network performance estimation. Two novel probabilistic QoS evaluation based methods 

were developed for multimedia traffic. We also proposed a QoE estimation system based on 

full image and partitioned image approaches that use fuzzy system to estimate the QoE using 

three media parameters. After that, intensive subjective tests were performed to validate 

objective QoE approaches. An integrated QoS/QoE assessments method was proposed for 

better network performance measurements. The aims and objectives of this study have been 

achieved.  

A multi-input modular adaptive sampling method was developed and tested in order reduce 

the amount of packets processed and stored when analysing computer network traffic. The 

method was evaluated in simulated and real testbed networks. Its performance was compared 

with those of conventional non-adaptive sampling approaches of systematic, random, and 

stratified. The devised sampling approach adaptively adjusted its sampling-interval according 

to traffic variations over time thus causing in an increase in the number of packets selected 

when the traffic variations were higher and vice versa. In addition, multiple comparisons were 

carried out, data trends (curve fitting), mean, standard deviation, biasness measurements and 

relative standard error (RSE) were obtained to assess the method. The results indicated that 

the delay, jitter and %PLR measures of sampled traffic from the devised sampling method 

represented the actual parameters more precisely (i.e. least difference between the original 

traffic and sampled traffic). The biasness and RSE measurements of delay, jitter and 

percentage packet loss ratio (%PLR) showed similar findings. The developed adaptive 

sampling technique features were low computational load and its ease of implementation and 

most importantly its ability to sample multiple traffic parameters concurrently.  

Simulations to explore network performance have limitations and therefore it is helpful 

alternatives when determining quality of transmitted applications Network emulation was 

used in this study as part of dealing with this limitation. The network emulator (NetEm) 
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testbed used in the study has Linux Foundation. It allowed network parameters delay, jitter 

and %PLR to be altered thus facilitating traffic scenarios for the tests. 

Two novel probabilistic QoS evaluation-based methods were proposed for multimedia traffic. 

The first method used Bayesian approach and analysed and classified the QoS for VoIP 

traffic transmitted over emulated testbed network, whereas the second used probabilistic 

neural networks (PNN) to assess the QoS for VoIP and video services. The capability, 

simplicity and robustness of the developed methods made them effective mechanisms for 

QoS analysis. Both methods successfully classified the measures of QoS parameters of 

streamed VoIP to their corresponding high, medium, and low QoS types.  

Investigations were carried out into the manner VoIP QoS was affected by the IEEE 802.11ac 

(80 MHz) and IEEE 802.11n (20 and 40 MHz) wireless protocols. These involved the 

Bayesian and PNN QoS evaluation methods. IEEE 802.11ac provided a good QoS as traffic 

was increased from 1 point-to-point (PPP) link to 10 links. For IEEE 802.11n (20 MHz) and 

IEEE 802.11n (40 MHz) QoS deteriorated once more than 7 links became operational 

respectively. SPSS
©

 statistical package was used to analyse the traffic parameters and QoS 

relations which provided valuable information as to the causes of low QoS. The study 

showed the main traffic parameter affecting IEEE802.11ac QoS for VoIP transmission was 

jitter while the protocol was less susceptible to delay and %PLR. Both PNN and Bayesian 

QoS classification approaches showed robust performance and consistency in classification 

results. The Advantages of proposed probabilistic methods are low computational load and a 

good accuracy. 

QoE was determined by fuzzy logic based on full image and partitioned image approaches. 

Three video visual parameters were used (PSNR, SSIM and ID/ or ED). A novel image 

partitioning approach was devised to improve QoE evaluation of images. For the whole 

image processing, the results for SSIM and PSNR were partially associated to QoS. However, 

for the partitioned images, SSIM and PSNR values were very similar in behaviour to network 

QoS. The image difference (ID) measure in both approaches (full and portioned image) was 

close to network QoS trend. It was demonstrated that image partitioning is valuable in 

making qualification of image distortion, more precise and thus improved determination of 

QoE. A modular fuzzy logic-based approach to objectively assess quality of video 

transmission over hybrid networks was implemented and its performance was evaluated. The 

approach accommodated traffic parameters in QoS measure and image distortion parameters 
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(PSNR, SSSIM and ID) to determine the quality of transmitted video transmission. The 

subjective tests involving 25 adult volunteers evaluating the received video quality indicated 

consistent results with fuzzy logic-based evaluation of the same video.  

The study also included the video and audio quality evaluating techniques on an instituitional 

network. Two tests were carried out to transmit VoIP and video between two buildings in 

different campuses. Despite the institutional network's large size, and the tests being 

performed in peak usage time, the developed methods were successfully applied and the 

sampled network traffic was correctly classified into appropriate low, medium and high 

quality.  

For most part of this research is multimedia transmission quality service over hybrid 

networks, end-to-end multimedia quality evaluation and objective and subjective quality 

measurement. The outcomes of this research can be used as building blocks for future work 

in this area in emulation testbeds and in practical networks. In addition, the findings out of 

the experimentation in this research could have valuable commercial advantages equally for 

the service providers and service consumers to improve customer satisfaction. The developed 

QoS/QoE approaches can be used in sensitive applications such as the e-healthcare. However, 

performance need to be further confirmed with physical networks before a realistic 

implementation can be made.  In addition to a use in commercial environment, the developed 

testbed methods out of this research could be also useful in academic research to study a 

range of other communication transmission standards and network scenarios.  

9.2 Future Work 

There are remains a number of further possibilities to continue the study. These include: 

 Adaptive sampling approach: The adaptive sampling method devised could be 

evaluated in a number of computer network traffic analysis operation including 

network security where reducing the number of packets processed can result in a 

faster response to threats. In this study the devised adaptive sampling method was 

compared against non-adaptive sampling methods (random, systematic and stratified). 

However its evaluation against adaptive sampling methods reported in other studies 

will be valuable.  

 Implementation of the proposed methods in other type of networks: The 

validation and execution of the devised methods were carried out on Wi-Fi networks. 
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The implementations of these approaches in other communication networks such as 

3G/4G, MANET and long-term evolution LTE can further demonstrate their 

effectiveness.  

 Implementation of the proposed approaches in other applications: The validation 

techniques were carried out using multimedia (VoIP and video) applications. The 

implementations of these approaches in other applications such as medical images, 

video games and IPTV can further determine their effectiveness.  

 Implementation of the proposed approaches in other video formats and codecs: 

The validation approaches were carried out using MPEG and G711a. The 

implementations of these approaches in other video formats like WMV WEBM, FLV 

and AVI can be useful. In addition, other codec can further determine their 

effectiveness. 

 Incorporating QoS into QoE relations: The interrelationships between QoS and 

QoE could be explored further. In this study, delay, jitter and %PLR were used to 

determine QoS and SSIM, PSNR and ID were used to determine QoE. Other 

measures could be explored in determining QoS and QoE. 

 Implementation of adaptive sampling approach into Hardware: Examining how 

the adaptive sampling could be employed into hardware as a System-on-Chip (SoC) is 

additional area of more improvement. The proposed sampling could be used for 

multipurpose network service such as monitoring, traffic engineering or security. 

Hardware implementation can make it easier to be integrated into network devices. 

 Implementation of QoS/QoE approach into hardware: Investigating how the 

QoS/QoE methods devised in this study could be implemented in hardware will be 

valuable as this case ease their incorporation into network devices.  
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