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Abstract A novel experimental analysis method has been
developed, making use of the continuous wavelet transform
and machine learning to rapidly identify α-clustering in
nuclei in regions of high nuclear state density. This tech-
nique was applied to resonant scattering measurements of
the 4He(40,44,48Ca,α) resonant reactions, allowing the α-
cluster structure of 44,48,52Ti to be investigated. Fragmented
α-clustering was identified in 44Ti and 52Ti, while the results
for 48Ti were less conclusive, but suggest no such clustering.

1 Introduction

Experimental studies of physical systems are often concerned
with answering simple questions: Does the Higgs boson
exist? Can we observe gravitational waves? Ideal experi-
ments are designed whereby the results depend on the answer
to these questions, and so by making such measurements
these answers can be inferred. It is, however, often also
the case that these fundamental properties are just one of
many complex and independent parameters that affect the
experimental data. The other parameters could be anything
from other fundamental physical constants, which are per-
haps unknown or known to poor precision, to experimental
effects such as the detector resolution and efficiency. There-
fore, in order to answer the ‘interesting’ questions, one must
first answer many ‘uninteresting’ questions about the mea-

a e-mail: samcbailey90@gmail.com
b e-mail: t.kokalova@bham.ac.uk (corresponding author)

surements, and in fact often it is these uninteresting questions
which dominate the efforts of researchers in their fields.

In this article we present a novel technique which uses
machine learning [1] to bypass the difficult and uninterest-
ing parts of the analysis, and address the fundamental ques-
tions directly. Machine learning refers to a set of numerical
algorithms which allow computers to learn patterns and make
predictions without encoding those patterns explicitly. These
techniques have exceptional analytical potential, and have
been used to great effect in a plethora of fields, for exam-
ple to perform image analysis and facial recognition [2], to
understand the sentiment of a paragraph of text [3], to auto-
matically identify interesting events in high energy physics
experiments, such as the LHC [4], and to automatically dis-
tinguish between true gravitational wave signatures and those
produced by non-astrophysical noise in LIGO data [5].

Here the fundamental question we wish to address is:
given an experimental energy spectrum produced by the
resonant scattering of a nucleus with 4He, is α-clustering
observed in the structure of the compound nucleus formed in
this reaction? Alpha-clustering is the phenomenon whereby
protons and neutrons form sub-structures within the nucleus,
and it can usually be ascribed to specific nuclear energy
levels, known as α-clustered states. This has been shown
to play a pivotal role in dictating the properties and inter-
actions of light nuclei [6,7], yet it has not been observed
to the same extent in heavy nuclei. It is tempting, there-
fore, to suggest that systems which contain few nucleons
are more likely to form cluster structures than those com-
posed of many nucleons, and efforts to understand this trend
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have led to considerable experimental and theoretical work
investigating α-clustering in medium mass nuclei, some of
which is detailed in Ref. [8]. It is unclear, however, whether
the reduction of experimentally observed α-cluster structures
in heavy nuclei truly reflects a shift in structural preference
away from α-clustering, or whether experimental difficulties
which arise with increasing nuclear mass have concealed the
cluster structures in this region.

One experimental difficulty which is unique to heavier
systems is the increasing nuclear level density. This leads
to more complex experimental spectra, and also means that
α-clustered states often serve as doorway states [9] in the
α decay-channel, and as such, rather than searching for a
single α-clustered state, one must instead search for groups
of fragmented states all sharing the strength of the original
clustered state. Usually the analysis of these experimental
spectra requires the extraction of the properties of all of the
energy levels which are populated in the reaction, and then
the energy levels are compared with a theoretical nuclear
model in order to ascertain whether or not they exhibit signs
of α-clustering. However, the significant increase in the com-
plexity of the spectra means that unambiguously extracting
all of the energy levels is a very challenging prospect, and
is often the primary obstacle when analysing experimental
data in this mass region.

In this scenario, the uninteresting properties are the energy
levels, which are difficult to extract and the majority of which
will correspond to non-clustered structures. So rather than
attempting to extract the states, in this article a technique is
developed which simulates many spectra, each time assum-
ing a unique and random combination of nuclear states, but in
each case controlling for whether or not an α-clustered struc-
ture is present. Machine learning is then employed to learn
the differences between spectra which do or do not contain
α-clustered states, independent of the properties of the other
states in the spectrum. This algorithm can then be applied to
the measured data to ascertain the existence of α-clustering.

In this article this technique is employed to examine the
evolution of α-clustering in titanium isotopes. Previous work
on 44Ti has identified a range of α-clustered states, many of
which have been shown to be fragmented [10–12]. These
observations are in agreement with predictions made by α-
cluster model calculations [8, ch. 2] and a deformed basis
Antisymmetrised Molecular Dynamics calculation [9], indi-
cating a good understanding of the underlying α-cluster
structure. There has, however, been comparatively little work
done to investigate similar structures in neutron rich titanium
isotopes. Analyses of α-transfer reactions have indicated that
the degree of α-clustering in titanium isotopes decreases with
increasing nuclear mass, both in the ground state [13,14] and
in excited states [11], however, a measurement of 48Ca(α,α)
elastic scattering shows significant resonant structure [15].
This may be indicative of α-clustered states in 52Ti above

the α-decay threshold, however no formal analysis was per-
formed on this measurement.

The present work investigates 44,48,52Ti by measuring the
resonant scattering reactions, 4He(40,44,48Ca,α). This allows
the degree of α-clustering above the α-decay threshold to be
compared consistently between the three isotopes, and is an
ideal testing ground for a novel machine learning technique
as 44Ti can be used to test the reliability of the procedure, as
it is already well understood, before the technique is applied
to the neutron rich isotopes.

2 Experimental measurements and results

The 4He(40,44,48Ca,α) measurements were made using the
Thick Target Inverse Kinematics (TTIK) technique [16]. The
reaction chamber was filled with 4He gas, which acted firstly
as a medium to smoothly decrease the energy of the cal-
cium ions as they travel through the chamber via electronic
interactions, and secondly as the target for the desired nuclear
reactions. This allows a measurement to be made of the entire
excitation spectrum without changing the beam energy. The
scattered α-particles were measured using two 1mm thick
Double-sided Silicon Strip Detectors (DSSDs), placed at the
opposite end of the reaction chamber to the beam entrance
in the E-�E configuration. This ensured that the measure-
ments consisted purely of α-particles and allowed the mea-
surements to be made at a scattering angle of 180◦ in the
centre-of-mass frame. The measured spectra are shown in
Fig. 1, and more details on the experimental work can be
found in Ref. [17,18].

A crucial aspect of the TTIK technique is that the mea-
sured spectra are in fact a convolution of the true excita-
tion function with the experimental resolution. This serves
to reduce the height of any resonances which are much nar-
rower than the experimental resolution. This behaviour can
severely hinder the analysis of TTIK spectra if the experi-
mental resolution is poor, however, if it is small enough such
that it only impacts states which are too narrow to be consid-
ered α-cluster candidates, and it does not cause neighbouring
states to become indistinguishable, then it can be considered
a useful property as its only effect will be to remove non-
clustered states from the spectra. In the present work, REX
[19], a Monte-Carlo simulation of thick target resonant scat-
tering experiments, was used to calculate the experimental
resolution as 45 keV at Full Width Half Maximum.

3 Alpha clustered doorway states model

The cross-section, dσ/d�, of the resonant reactions mea-
sured in this work can be calculated directly from the energy
levels in the compound nucleus using R-matrix theory [20].

123



Eur. Phys. J. A           (2021) 57:108 Page 3 of 12   108 

Fig. 1 Measurements of the differential cross-section, made at a
centre-of-mass scattering angle of 180◦, of the 4He(40Ca,α) (top),
4He(44Ca,α) (middle) and 4He(48Ca,α) (bottom) reactions. The res-
onances in these measurements are relevant to the structure of 44Ti,
48Ti and 52Ti respectively

It is, therefore, possible to simulate dσ/d� by first generat-
ing a set of ‘non-clustered’ energy levels, and then option-
ally coupling these levels to an α-clustered doorway state.
The simulated spectra are generated from the energy levels
using the Simplified R-Matrix [21], and classified as either
non-clustered (no α-clustered doorway states), or clustered
(one α-clustered doorway state). Many clustered and non-
clustered spectra were generated, each time with a unique
and random set of energy levels.

The Simplified R-Matrix calculates dσ/d� for reactions
where all initial and final state nuclei are spin-0. The cross-

section is calculated as a function of excitation energy, Ex ,
and centre-of-mass scattering angle, θ , from the excitation
energies, Eλ, orbital angular momenta, Lλ, partial decay
widths, �λμ, and total decay widths, �λ, of the energy lev-
els, where the energy levels are indexed by λ and the decay
channels are indexed by μ. This is written explicitly as

dσ

d�
=

∣
∣
∣
∣
∣
δμμ′ fb(Ex , θ) − i

2kμ

∑

λ

(2Lλ + 1)

×�λμ

�λ

(e2iβλ(Ex ) − 1)e2iφLλ PLλ(cos θ)

∣
∣
∣
∣

2

, (1)

where

βλ(Ex ) = arctan

(
�λ/2

Eλ − Ex

)

(2)

and fb is the background amplitude, kμ = √

2mμEc.m./h̄,
Ec.m. is the centre-of-mass energy of the system, mμ is the
reduced mass, PLλ is a Legendre polynomial of order Lλ and
φLλ is the partial wave phase shift. The partial wave phase
shifts exist only in the simplified version of the R-matrix to
account for the behaviour of the interference between the
resonances and the background amplitude. In this work they
were randomised between 0 and π to account for all possible
types of interference.

In practice the cross-section is not measured as a contin-
uous quantity, and instead is measured in a finite number of
excitation energy bins. In order to ensure that the simula-
tions match the experimental data the cross section was cal-
culated discretely for each experimental bin, dσ/d�n , where
Exn and θn are the excitation energy and scattering angle of
the bin respectively. Additionally, the background amplitude
was defined by fitting a smoothing spline to the experimental
spectra which approximated the background, and sampling
this at Exn . Finally the simulated cross-section was convo-
luted with the experimental resolution, and noise was added
based on the experimental signal to noise ratio, in order to
make the simulations as directly comparable to the measured
spectra as possible.

The non-clustered energy levels were simulated by gener-
ating a set of shell-model like energy levels, known as class-I
energy levels and indexed by λI, characterised by ensuring
that the levels adhere to the appropriate statistical distribu-
tions (described below) indicative of the shell model.

The partial widths, �λIμ, for each decay channel μ were
constructed to follow Porter-Thomas statistics [22] by Gaus-
sianly distributing the reduced widths, γλIμ, with a mean of 0
and variance given by 〈γ 2

μ〉. The partial widths are calculated
from the reduced widths using

�λIμ = 2PμLλIγ
2
λIμ

, (3)
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where PμLλI is the penetrability through the combined
Coulomb and centrifugal barrier, and LλI is the orbital angu-
lar momentum in channel μ. The penetrability was calculated
from the regular and irregular Coulomb wavefunctions [23].

The values of 〈γ 2
μ〉 dictate the average strength of each

decay channel. In these simulations they were chosen by
defining the mean square ratio to the Wigner limit for sin-
gle particle decays, 〈θ2

sp〉, and the ratio to the single particle
strength for each decay channel, Rμ/sp. The Wigner limit,
γ 2
μw, is a theoretical upper bound on the reduced width. Writ-

ten formally, this gives

〈γ 2
μ〉 = Rμ/sp〈θ2

μ〉γ 2
μw . (4)

For all of the spectra in this work the only open decay
channels are the proton, neutron and α channels. Since the
proton and neutron decays are both decays to single particles,
Rp/sp, Rn/sp ∼ 1, however, one would expect average α-
decay strength to be weaker than the proton and neutron
strengths for purely shell-model type states as the α-particle
is a more complex particle, and so Rα/sp < 1.

The excitation energies, EλI , and spins and parities, Jπ ,
were generated such that the nearest neighbour state spacings
of states with the same Jπ followed the Wigner distribution
[24], defined as

Pw (DJπ ) = πDJπ

2〈DJπ 〉2 exp

(

− πD2
Jπ

4〈DJπ 〉2

)

, (5)

where 〈DJπ 〉 is the mean nearest neighbour state spacing for
states with the same Jπ , and is calculated from the overall
mean state spacing, 〈D〉, using the Gaussian cutoff factor
from the Fermi-gas model [23],

〈DJπ 〉 = 〈D〉2J + 1

2σ 2
spc

1
√

2πσ 2
spc

exp

(

− J (J + 1)

2σ 2
spc

)

, (6)

where the spin cutoff factor σspc is defined by assuming that
the nucleus is a rigid rotating sphere.

The clustered spectra were generated by coupling an α-
clustered doorway state, known as a class-II state, to the set of
class-I states, to produce a set of compound states, indexed
by λ. The class-II state was assumed to exist in a highly
deformed secondary minimum in the deformation potential
energy surface, and was characterised as being α-clustered
by a large ratio to the Wigner limit in the α-channel, θ2

II,α , and
zero decay widths in all other channels. Its spin and parity,
Jπ

II , were randomised, and its excitation energy, EII, was
randomised uniformly within the measured energy range.

The coupling between the class-I and class-II states was
based on the work by Bjørnholm and Lynn [25] for the treat-
ment of fission isomers. The compound states were generated

by solving the eigenvalue equation
[

EI Hc

HT
c EII

] ⎡

⎣
C(I)

λ

C (II)
λ

⎤

⎦ = Eλ

⎡

⎣
C(I)

λ

C (II)
λ

⎤

⎦ , (7)

where EI is a diagonal matrix containing EλI , Eλ is the exci-
tation energy of the compound state and C(I)

λ and C (II)
λ are

the coefficients which produce the compound state from the
class-I and class-II states. The matrix Hc is a 1 × NI matrix,
where NI is the total number of class-I states. The elements
of Hc are 0 for class-I states which have a different Jπ to
the class-II state, and otherwise are taken from a normal dis-
tribution, centred on 0 with a variance given by 〈H2

c 〉. This
ensures that the class-II state only couples to class-I states
of the same Jπ , and the use of a normal distribution is jus-
tified in Ref. [25] to account for the random behaviour of
the overlap between the class-I and class-II state wavefunc-
tions. The value of 〈H2

c 〉 defines the strength of the coupling,
and, therefore, the number of class-I states which will couple
significantly to the doorway state, known as the fragmented
states. However, the number of fragmented states depends
also on the state spacing of the class-I states. Therefore, Nc

is defined for each clustered spectrum, which is directly pro-
portional to the expected number of fragmented states, and
from this 〈H2

c 〉 is defined as

〈H2
c 〉 = Nc〈DJπ

II
〉2

π
. (8)

The reduced width amplitudes of the compound states are
calculated from C(I)

λ and C (II)
λ as

γλμ =
∑

λI

(

C(I)
λ

)

λI
γλIμ + C (II)

λ γII,μ. (9)

An ensemble of spectra, containing an equal number of
clustered and non-clustered spectra, were generated using

this model. The input parameters,
{

〈D〉, 〈θ2
sp〉, Rα/sp

}

for

both types of spectra and additionally
{

θ2
II,α, Nc, EII, Jπ

II

}

for the clustered spectra, were randomised within sensible
ranges to ensure that all reasonable scenarios were accounted
for. Choosing the ranges for each of these parameters is akin
to choosing a prior distribution in Bayesian statistics. The
ranges used and their justifications are given in Table 1, and
an example of the clustered and non-clustered spectra pro-
duced are shown in Fig. 2.

This spectrum ensemble was used as ‘training data’ to
train a Random Forest Classifier (RFC) to classify spectra
as either clustered or not clustered, where each spectrum is
characterised by a set of ‘features’ calculated from dσ/d�n .
More details on the RFC are given in Sect. 4.

The features used were calculated from dσ/d�n using a
combination of the Continuous Wavelet Transform (CWT)
[28] and a Principle Component Analysis (PCA) [29]. It
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Table 1 The parameter ranges used to produce the ensemble of spectra

Parameter Range Justification

〈D〉 40–60 keV Chosen empirically based on the measured spectra, and is consistent with the state spacings
measured in TTIK measurements of α-scattering from other medium mass nuclei [26]

〈θ2
sp〉 0.02–0.05 Chosen to generously encompass the value extracted from 44Ca(p,p) measurements, 〈θ2

p 〉 = 0.034
[27]

Rα/sp <20% Chosen to ensure that the α-channel was significantly reduced compared with the proton and
neutron channels for the shell model type states

EII – Chosen to be within the experimentally measured energy range for each measurement

Jπ
II ≤ 7− All higher spins have a negligible contribution to the measured spectra due to the large centrifugal

barrier. Furthermore only natural parity states were allowed since the entrance channels for all of
the measurements were composed of spin-0 nuclei

Nc 2 Chosen empirically to ensure that the doorway state couples to more than one class-I state, but
remains suitably localised- not coupling to all states in the spectrum. This value was not
randomised since the randomisation of the state spacings and coupling matrix elements was
already sufficient to produce a variety of state fragmentations

θ2
II,α 0.2–1 Chosen to ensure a large alpha component for the class-II state, indicative of an α-clustered

structure

Fig. 2 An example of a simulated clustered spectrum (top) and non-
clustered spectrum (bottom). The position of the doorway state is indi-
cated by the dotted line. These spectra were calculated for 44Ti, using
the parameters: 〈D〉 = 0.05 MeV, 〈θ2

sp〉 = 0.035, Rα/sp = 5%, Nc = 2,

EII = 12 MeV, Jπ
II = 3− and θ2

II,α
= 0.2. Clustering likelihood: 4% vs

89%

was shown in Refs. [17,18] that the CWT is an effective
tool for the identification of α-clustered doorway states from
TTIK measurements. The CWT calculates wavelet coeffi-
cients, W�,nm , from dσ/d�n by folding it with an appropri-
ately chosen wavelet, �(E). The wavelet is scaled by δEm ,
known as the scale parameter, which allows features in the
spectrum to be expanded as a function of scale. The wavelet
coefficients are calculated as

W�,nm = 1√
δEm

∫ ∞

−∞
dσ

d�
(ε)�

(
ε − Exn

δEm

)

dε, (10)

where ε is a dummy variable used to facilitate the integra-
tion, and in practice the integral was calculated numerically
using the trapezoidal rule. In this work the complex Morelet
wavelet [28], which can be thought of as a windowed Fourier
transform, was used. This is defined formally as

�(E) = (

d
√

π
)1/2

exp (−i2πE) exp

(

− E

2d2

)

, (11)

where d defines the size of the window, and in this work
d = 0.8 MeV. In this case δEm is the equivalent of the period
in a typical Fourier transform, and W�,nm is similar to a
Fourier transform coefficient, but localised at Exn . In this
work 70 values of δEm were used, uniformly spaced between
0 and 1 MeV. The CWTs of the 4He(40,44,48Ca,α) spectra are
shown in Fig. 3.

In this work the magnitude of the wavelet coefficients,
∣
∣W�,nm

∣
∣, are used and the phases are discarded, as it was

observed that the phases contained little useful information
regarding the α-clustered nature of the spectrum. It would,
however, be inefficient to use

∣
∣W�,nm

∣
∣ directly in the RFC

as they are not orthogonal, with large correlations between
neighbouring values of

∣
∣W�,nm

∣
∣, and a large number of coef-

ficients are required to adequately characterise a spectrum,
which leads to an unnecessarily computationally intensive
analysis. Instead a PCA is performed on

∣
∣W�,nm

∣
∣ as a form

of dimensionality reduction. This constructs a new set of
orthogonal features from

∣
∣W�,nm

∣
∣, chosen to ensure that the

largest fraction of the variance in the original feature set is
retained in the fewest possible features. In this case 300 PCA
features were used, which accounted for 99.3% of the vari-
ance in the

∣
∣W�,nm

∣
∣ feature set. More details on the PCA

algorithm can be found in Ref. [29]. The PCA algorithm is
very sensitive to the initial distributions of the features, and
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Fig. 3 The CWTs of the measured spectra, 4He(40Ca,α) (top),
4He(44Ca,α) (middle) and 4He(48Ca,α) (bottom). In each case the
heatmap shows the magnitude of W�,nm as a function of δEm and Exn

works optimally when these are approximately normally dis-
tributed and normalised to a mean of 0 and a variance of 1. In
order to accomplish this, the logarithm was taken of

∣
∣W�,nm

∣
∣,

and the logged values were independently normalised to have
a mean of zero and unit variance across the training data. The
PCA was then performed on these normalised log wavelet
coefficients.

The result of this process is a set of PCA features, PCAk ,
which each correspond to a certain

∣
∣W�,nm

∣
∣ distribution.

Some examples of these distributions are shown in Fig. 4
for k = 0, 1, 2, 20, and an example of the stages of produc-
ing the PCA variables from a raw spectrum are shown in
Fig. 5. The ensemble of PCAk for all of the simulated spec-

Fig. 4 Examples of some PCA variables for 44Ti. A heatmap colour
scale is used to highlight the shape of the PCA components. See text
for details

tra, combined with their classification label, clustered or not
clustered, makes up the training data from which the Random
Forest is trained.

The consequence of using PCA features as opposed to
directly using the

∣
∣W�,nm

∣
∣ features is that they much more

naturally describe the overall properties of the spectrum than
they do the properties of individual resonances within the
spectrum. For example it is evident from Fig. 4 that PCA0

represents the average amplitude of the resonances through-
out the spectrum, relative to the amplitude of the noise in
the spectrum, and PCA1 represents whether or not the aver-
age resonant amplitude increases or decreases throughout
the spectrum. The higher order PCA variables then begin
to account for the shapes of the resonances, the spacings
between the resonances and the widths of the resonances,
however, these properties are all merged by the PCA algo-
rithm, obscuring the properties of individual resonances.
While this may lead to a reduction in the sensitivity of this
algorithm to the more subtle effects of α-clustering on the
spectra, the dominant effects ought to still be captured by the
PCA features.

4 Machine learning

A RFC [30] is an ensemble machine learning method, which
combines many randomised decision trees to produce a more
robust and sophisticated classification than is possible using
a single decision tree. Each tree is randomised by training it
on a random subset of the training data, and at each node in
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Fig. 5 The 4 stages of feature engineering used to prepare the spectra
for the RFC. Left to right: the raw spectrum, the CWT of the spectrum,
the normalised logarithm of the CWT, the PCA of the normalised CWT.

For each stage of processing the top plot shows an example spectrum,
and the bottom plot shows the distribution of some randomly chosen
features across the entire training data set

the tree the optimal splitting criterion is chosen from a subset
of the available features.

The RFC classifies a spectrum by allowing the individual
decision trees to perform the classification independently,
and then averaging the results. This method produces a
pseudo-likelihood that the spectrum is clustered, L ′

c, which is
calculated as the fraction of the decision trees which predict
that the spectrum is clustered. It is possible to calibrate the
pseudo-likelihood to give the true likelihood that the spec-
trum is clustered, Lc. This calibration was performed by cal-
culating L ′

c for every spectrum in the training data via fivefold
cross-validation [31], which splits the training data into 5 seg-
ments and then trains the RFC on 4 of those, before using it
to calculate L ′

c for the spectra in the 5th segment. This pro-
cess is repeated, leaving out each of the segments one at a
time, until L ′

c has been calculated for every spectrum in the
training data. All of the clustered and non-clustered spectra
were then binned separately as a function of L ′

c, producing
two histograms, N c

n and N nc
n respectively, with bin centroids

at L ′
c,n . The true clustering likelihood was then calculated

from these histograms as the fraction of the spectra in each
bin that are clustered, given formally as

Lc,n = N c
n

N c
n + N nc

n
. (12)

Finally a logistic function was fit to Lc,n as a function of
L ′
c,n , producing the continuous function Lc(L ′

c), under the

Fig. 6 An example of the likelihood calibration. The logistic func-
tion fit is shown in red, Lc,n are shown in blue. The dashed black line
indicates L ′

c = Lc

constraints that Lc(0) = 0 and Lc(1) = 1. This function
was then used to convert between L ′

c and Lc, an example of
which is shown in Fig. 6.

Five-fold cross-validation was also used to tune the
RFC hyper-parameters by calculating the percentage of the
cross-validated classifications which were correct, known as
the classification accuracy. The hyper-parameters that were
tuned were the total number of decision trees which com-
pose the RFC, and the minimum number of events which
may be contained within a single node of a decision tree.
The optimal values chosen were 1000 decision trees and 75
events respectively. While traditional RFCs use fully grown
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Fig. 7 The sensitivity of the RFC as a function of the number of class-II
states in the spectrum

decision trees, rather than limiting them by defining a min-
imum number of events per node, it was found in this work
that fully grown trees sometimes overfit to the training data,
producing unreliable results.

In addition to the classification accuracy, two other quan-
tities were used to assess the quality of the RFC, the fraction
of the clustered spectra which were classified correctly (sen-
sitivity) and the fraction of the non-clustered spectra which
were classified correctly (specificity). These are often also
referred to as the True Positive Rate (TPR) and True Neg-
ative Rate (TNR) respectively. These are used, in addition
to the accuracy, to probe the behaviour of the RFC in the
following section.

5 Results

Three RFCs were produced, one each for 44Ti, 48Ti and 52Ti,
with cross-validated classification accuracies of 76%, 77%
and 79% respectively, sensitivities of 74%, 78% and 81%
respectively and specificities of 77%, 76% and 79% respec-
tively. It is interesting to observe the dependence of the sen-
sitivity of the RFCs on some key simulation parameters, as
the sensitivity can be treated as a measure of how easy it is
to observe an α-clustered doorway state. The three RFCs all
behaved similarly, so one can assume that the conclusions
drawn here are applicable to all three measurements, and
only the results for 44Ti are presented.

Firstly it was important to ascertain that the RFCs were
capable of identifyingα-clustered states in spectra containing
more than one, despite being trained only on spectra with
a single α-clustered state. The sensitivity of the RFC was
plotted as a function of the number of class-II states in the
spectra in Fig. 7, demonstrating that the sensitivity increases
with the number of class-II states in the spectrum. This is to
be expected for a sensible RFC since if there are many class-
II states present it becomes less likely that the RFC will miss
all of them.

Fig. 8 The sensitivity of the RFC as a function of θ2
II,α , fit with a Gaus-

sian process using a Matern kernel (line). The shaded region indicates
a 1σ confidence interval

The sensitivity was calculated as a function of θ2
II,α by

binning the training data uniformly into 40 θ2
II,α bins and

calculating the sensitivity independently for each bin. These
values were then smoothly interpolated using a Gaussian pro-
cess with a Matern kernel, which assumes that the data points
ought to be correlated highly with those close in θ2

II,α , and
uses the magnitude of the errors on the data points to infer the
smoothness of the interpolation and the size of the confidence
interval. The data and the Gaussian process fit are shown in
Fig. 8. Below θ2

II,α ∼ 0.25 the sensitivity decreases, while
above it plateaus. This indicates that if the α-clustered door-
way state one is attempting to observe has a large ratio to the
Wigner limit in the α-channel, above 0.25, it is much easier
to observe than if one attempts to observe a similar state with
a smaller θ2

II,α . This is a sensible result, as states with small
α-widths will look similar to class-I states, and, therefore, be
more difficult to identify.

Finally the sensitivity was calculated for each Jπ
II , as a

function of EII. This is plotted in Fig. 9, and shows that at high
energies, low-spin doorway states are difficult to observe, and
conversely at low energies high-spin doorway states are dif-
ficult to observe. This is because the resonant amplitude is
proportional to (2J + 1)2, which amplifies high-spin states,
however, the increased centrifugal barrier for high spin states
dramatically decreases their penetrability factor and, there-
fore, their decay widths. Therefore, at low energies, where
the barrier penetrability is especially dominant, the high spin
states are difficult to populate, whereas at high energies they
are populated and their increased amplitude dominates the
spectrum, obscuring the low-spin resonances.

Upon their application to the experimentally measured
data, the RFCs predicted clustering likelihoods of 92%, 41%
and 83% respectively, indicating that it is very likely that
44Ti and 52Ti contain at least one α-clustered doorway state
and unlikely that 48Ti does. This is consistent with previous
observations of α-clustered doorway states in 44Ti [10–12],
as well as with a previous analysis of these data, which iden-
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Fig. 9 The sensitivity of the RFC as a function of the excitation energy
of the class-II state, for each Jπ of the class-II state (data points with
error bars). The values are fit smoothly using a Gaussian process with a
Matern kernel (solid line), and a 1σ confidence interval is shown (shaded
region). The Gaussian process fits are compared in the bottom-right plot

tified doorway states in 44Ti and 52Ti but not in 48Ti by exam-
ining the characteristic CWT scales of these measurements
[17,18].

Next, the sensitivity of these results to the ranges used to
produce the ensemble of training spectra was investigated.
The upper and lower limits of 〈D〉 and 〈θ2

sp〉, the lower limit

of θ2
II,α , the upper limit of Rα/sp and the value of Nc were

all varied, and new training ensembles were generated, to
which new RFCs were fit and clustering likelihoods were
recalculated for each isotope. The clustering likelihoods are
plotted as a function of the parameter limits in Fig. 10.

Firstly, while Lc is almost completely insensitive to the
choice of limits on 〈D〉, it does exhibit a dependence on
the other parameter limits, to varying degrees of severity.
The clustering likelihood decreases slightly for all isotopes
as both 〈θ2

sp〉 limits increase. This is because as these limits
increase, the average widths of the non-clustered resonances
increases, reducing the difference between clustered and non-
clustered spectra. The clustering likelihood also decreases
for all isotopes as the lower limit on θ2

II,α increases. Increas-
ing this limit effectively increases the threshold at which a
state is considered α-clustered, and consequently the cluster-
ing likelihood ought to naturally decrease as this increases
and the criteria for α-clustering gets harsher. It is also the
case that the clustering likelihoods increase for low values of
Rα/sp. This is because the value of Rα/sp dictates the aver-
age size of the non-clustered resonances. If the simulated
resonances in the non-clustered spectra are all very small,
then any resonances in the measured spectra will produce a
large clustering likelihood. Finally, it can be seen from the
clustering likelihoods as a function of Nc that while frag-
mented states are observed in 44Ti and 52Ti, if one looks for
non-fragmented α-clustered states instead (i.e. small values
of Nc), then the clustering likelihood falls below 0.5 for all
three isotopes, indicating none are observed. This is consis-
tent with the expectation that if α-clustered states exist in
this mass region, they ought to behave as doorway states.
Overall however, while there are some small variations in Lc

for extreme values of the parameters, the fundamental results
that 44Ti and 52Ti contain α-clustered doorway states, while
48Ti does not, are preserved, indicating a robust analysis.

It is possible to calculate the relative importances of each
PCA parameter, which indicates which parameter has the
most influence over the resulting classification. This is cal-
culated by evaluating the average ‘height’ of each parameter
in the decision trees, and assuming that the most important
parameters are those that are used earlier (or higher). These
importances are plotted in the lower panel in Fig. 11. It is
clear that the importance is highest for the lowest order PCA
variables, suggesting that it’s the overall group properties
which contribute most significantly to the classification, for
example the average resonance amplitudes, and the higher
order terms are not as important. This demonstrates that the
RFC is predicting the existence of α-clustered doorway states
by examining the average resonant amplitude observed in the
spectra, and how the resonant amplitude varies as a function
of excitation energy.

It is also possible to calculate the contribution each PCA
feature makes to Lc, Lc,k , such that Lc = 0.5+∑

k Lc,k . For
example, a negative contribution for a given parameter means
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Fig. 10 The clustering likelihood for 44Ti (red), 48Ti (green) and 52Ti
(blue), as a function of the limits used for the training data. In each
case one limit is varied, and the others are held constant at their default

values given in Table 1. In each plot the horizontal black dashed line
indicates Lc = 0.5, and the vertical black dotted line indicates the
default parameter value

that parameter represents a swing towards not clustered, and
a positive contribution represents a swing towards clustered.
These clustering likelihood contributions are plotted for each
nucleus in the bottom panel of Fig. 11. These values can be
used to assess exactly how the RFCs made the classification
decisions for 44,48,52Ti. In all three cases PCA0 contributes
negatively, indicating that alone the average amplitude of the
resonances is not large enough to demonstrate the existence
of an α-clustered doorway state. However, in the cases of
44Ti and 52Ti PCA1 makes a very large positive contribution
to Lc. It is clear from looking at the spectra that both of

these nuclei have large resonances at low excitation energies,
and so it seems reasonable to conclude that the existence of
large resonances at low excitation energies is indicative of α-
clustered doorway states in 44Ti and 52Ti. Note this work has
used a binomial classification system, where the result must
be one of two results (clustered or not) which could introduce
a systematic bias. In future work it could be generalised to
a multinomial classification problem, where predictions are
attempted if the data are (A) shell model, (B) alpha clustered,
(C) alpha clustered and coupled to shell model, (D) …etc.,
with a different class for each nuclear structure or model to
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Fig. 11 Top panel: The relative importance of the PCA features for the
classification of α-clustered spectra, calculated based on the average
height at which each feature is used in the decision trees. Bottom panel:
The contribution each feature makes to the overall clustering likelihood

be evaluated, giving a likelihood for each different possible
model.

6 Discussion

To summarise, by training an RFC to evaluate the differ-
ences between spectra simulated either with or without α-
clustered states, α-clustering has been identified in 44Ti and
52Ti. The results for 48Ti are less conclusive, but tentatively
suggest that α-clustering is not present in this energy region.
If one searches for a single α-clustered state in the spectra,
rather than sets of fragmented α-clustered states indicative of
a doorway state, then none of the measurements return a posi-
tive result, indicating that the α-clustered structures observed
in 44Ti and 52Ti act as doorway states. This suggests that the
doubly-magic nature of 40Ca and 48Ca is particularly impor-
tant for the existence of α-clustered states.

The use of machine learning here has allowed these con-
clusions to be drawn without requiring the extraction of the
individual spins, parities, energies and widths of the nuclear
energy levels. This is very powerful, as it is likely that those
parameters could not be robustly extracted from the current
measurements alone, yet using this technique it was still pos-
sible to quantitatively answer the crucial, fundamental ques-
tions of α-clustering in this mass region.

It is important to note that the combination of the PCA
and the RFC here constituted quite a ‘blunt’ machine learn-
ing algorithm, since it effectively focused only on the aver-
age resonant amplitude of the measurements and ignored the
more subtle features such as the state spacing and the reso-
nance shapes. It may be possible to improve upon the results
shown here by employing a more sophisticated machine
learning technique, such as convolutional neural networks,
which have been used with great success for image analysis
in other fields [32].
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