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Summary

The current coronavirus disease (COVID‐19) pandemic caused by novel severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has a male bias in severity

and mortality. This is consistent with previous coronavirus pandemics such as SARS‐
CoV and MERS‐CoV, and viral infections in general. Here, we discuss the sex‐dis-
aggregated epidemiological data for COVID‐19 and highlight underlying differences

that may explain the sexual dimorphism to help inform risk stratification strategies

and therapeutic options.
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1 | INTRODUCTION

The current coronavirus disease (COVID‐19) pandemic, caused by

the novel severe acute respiratory syndrome coronavirus 2 (SARS‐
CoV‐2), has overwhelmed healthcare systems around the world

bringing significant morbidity and mortality. The World Health Or-

ganization has declared it to be a public health emergency of inter-

national concern. As of 31 October 2020, there have been >45
million confirmed cases reported worldwide, with deaths exceeding

1.18 million and still rising.1 Whilst most reported cases of COVID‐19
experience mild to moderate symptoms including fever, persistent

cough, loss of taste and smell, or dyspnoea, about 15% of infected

adults develop severe pneumonia requiring oxygen supplementation

via invasive mechanical ventilators. Among these, 5% progress to a

critical stage with acute respiratory distress syndrome (ARDS),

hypoxic respiratory failure and multi‐organ failure, that necessitates

mechanical ventilation.2,3

Epidemiological data from previous coronavirus epidemics‐
SARS‐CoV (2002) and Middle Eastern respiratory syndrome coro-

navirus (MERS, 2012) highlighted differences in their manifestation

based on sex, with men being consistently more severely affected

than women.4–7 Early reports of COVID‐19 also suggest a sex

imbalance, with men at a higher risk of more severe disease and

increased case fatality ratio (CFR).3,8 Publicly available sex‐dis-
aggregated data from several governments compiled by the Global

Health 50/50 research initiative also show, despite similar numbers

of COVID‐19 cases in men and women, an increased fatality rate in

men as outlined in Figure 1, with the male:female ratio of deaths

among confirmed cases ranging from 1.0 in Pakistan and Canada to

2.1 in Wales.9 In addition to fatality, hospitalizations and admissions

to intensive care units (ICU) can serve as a measure of disease

severity. A review of epidemiological data by Gebhard et al. (2020)

comprising confirmed COVID‐19 cases in several countries including

China, Italy and Spain show that there were 50% more men requiring

hospitalization compared to women, with ICU admission being three

to fourfold higher.10,11 A meta‐analysis of 15 independent studies

that recorded sex disaggregated patient outcomes found men had an

odds ratio of 1.31 to develop a severe COVID‐19 infection compared

to women.12 United States of America has the highest number of

COVID‐19 cases to date and early reports by the Centers for Disease

Control and Prevention (CDC) across 14 states also observed higher

hospitalization rates for men.13 A recent count by Global Health 50/

50 also confirms this indication of sex imbalance in disease severity

across several countries (Figure 2).9 There are, however, some limi-

tations to this data set particularly as the interaction between age

and sex remains unexplored.

On investigating the magnitude of differences in survival for both

sexes in Europe across different age groups, Ahrenfeldt et al. (2020)

reported that the relative risk of dying from COVID‐19 is consis-

tently elevated in men across all age groups with the differences

increasing until the age range 60–69 years.14 Thereafter, the sex

difference in survival decreases and was at its lowest for ages 80+.14

A study comprising of 227,000 confirmed cases of COVID‐19 pooled

from Italy, Germany, Spain and Switzerland also suggested that the

sex difference in fatality is most pronounced in the ages 50–59, and

decreases subsequently with increasing age.10 Interestingly, as per

the Global Health 50/50 data, numbers of confirmed cases are similar

for men and women, suggesting equal infection rates.9 More detailed

reports on incidence rates from Switzerland and Germany also sug-

gest similar proportions of COVID‐19 cases in men and women at all

age groups (Figure 3), thereby highlighting the worsened prognosis in

infected males compared to females.15,16

To some extent, sex difference in COVID‐19 expands to affect

the male reproductive system either directly or indirectly as some

articles suggest.17

As vaccines and other treatment modalities are researched and

developed in attempt to contain the recurrent surges in infections for

this pandemic, better understanding of the sex imbalance and its

underlying biology can help inform public health strategies for testing

and intervention by stratifying groups at high risk for severe disease;

and help improve therapeutic options by allowing gender‐specific
targeted treatments. Herein, we discuss several factors that may

contribute to the sex differences observed in COVID‐19 patients,

including possible biological reasons, contributions of comorbidities,

and highlight any role that gender may play.

2 | SEX DIFFERENCES IN VIRAL ENTRY

Angiotensin converting enzyme‐2 (ACE2) catalyses the conversion of

angiotensin‐II to angiotensin (1–7), and plays a vital role in homeo-

stasis of blood pressure, inflammatory responses and blood coagu-

lation.18 ACE2 is expressed in a range of tissues including nasal and

respiratory epithelial cells, blood vessels and kidneys.19–22 As with

SARS‐CoV, membrane‐bound ACE2 serves as a receptor for the

SARS‐CoV‐2 spike (S) glycoprotein, facilitating its attachment to the

cell surface and subsequent entry.23

The expression levels of ACE2 correlate with the risk of

COVID‐19 severity, with children who have lower ACE2 expression

in their nasal epithelium having a lower risk compared to adults.24

However, evidence regarding a sex disparity in ACE2 expression is

unclear. A phenomenon, termed X chromosome inactivation, is an

epigenetic process that silences one of the two X‐chromosomes in

females to maintain balance in gene expression dosage.25 The ACE2

gene is located on the X chromosome, and is thought to have higher

levels of expression in females. This is because it has been reported

that ACE2, frequently ‘escapes’ inactivation that occurs to balance

expression dosage between the sexes, has an uncharacteristic het-

erogeneous pattern of male‐female expression based on the tis-

sues.25 In pre‐clinical studies, ACE2 expression has been reported to

be higher in female rat lungs and kidneys.26,27 Conversely, oestrogen

downregulates the expression of ACE2 in vitro and in gonadectom-

ised female mice.28,29 In human tissues, studies have suggested no

significant difference in the expression of ACE2 for both sexes in

respiratory tissues,30–32 and in circulation are more elevated for male

patients with comorbidities such as cardiovascular diseases.33 Taken
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F I GUR E 1 Sex‐disaggregated data of confirmed COVID‐19 cases and deaths from countries with >10,000 cases. Cases and deaths are

only reported where sex‐disaggregated data is available, and not total cases. Data from Global Health 50/50 COVID‐19 data tracker as of 31st
October 2020.9
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F I GUR E 2 Disease severity is higher in males as measured by hospitalizations and ICU admissions. Graphs reproduced from Global Health
50/50 COVID‐19 data tracker.9

F I GUR E 3 Reported COVID‐19 cases in Germany by age group and gender (n = 254,549) (Data accessed on10/09/2020, from https://
www.rki.de/EN/Content/infections/epidemiology/outbreaks/COVID‐19/Situationsberichte_Tab.html)
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together, the levels of ACE2 expression varies based on tissues and

underlying comorbidities and therefore it may not be a strong pre-

dictor for disease severity isolation.

Transmembrane protease serine 2 (TMPRSS2) is also vital for viral

entry, following its binding to ACE2, by priming the viral S protein (by

proteolytic cleavage) and mediating fusion of viral and cell mem-

branes.34,35 Indeed, in an in vitro model, inhibiting TMPRSS2 activity

partially inhibited the entry of SARS‐CoV‐2 into lung epithelial cells.34

In vivo, TMPRSS2 deficient mice demonstrated reduced weight loss

and inflammatory response in the lungs following SARS‐CoV and

MERS‐CoV infections, suggesting decreased severity.36

Interestingly, a study by Asselta et al. (2020), which compared

the expression of TMPRSS2 in the two sexes from a large Italian

cohort observed a higher expression of TMPRSS2 in bronchial

epithelial cells in the males compared to females.31 TMPRSS2 plays a

pivotal role in the development and progression of prostate cancer

via gene fusion, and is strongly upregulated in response to andro-

gens.37,38 These data suggests that TMPRSS2 expression might

mediate the sex disparity observed in severity of COVID‐19. How-
ever, it is unclear if androgen signalling can modulate TMPRSS2

expression in respiratory tissues, and whether low level of androgens

present in women can maintain TMPRSS2 expression in respiratory

tissues. Further research is therefore required to determine if there

is a sex‐biased expression and/or regulation of ACE2 and TMPRSS2

that confers increased severity COVID‐19 in males compared to fe-

males. This is especially topical with current treatment strategies

targeting these proteins.39

3 | SEX DIFFERENCES IN IMMUNE RESPONSES

Sex‐based differences in immune responses have been reported for

adults and children,40 suggesting an influence of both the sex chro-

mosome and hormones on the immune system. The X chromosome

encodes several genes that regulate immune function and is funda-

mental in shaping sex‐specific immune responses.41 As mentioned

previously, X chromosome inactivation silences one of the two X‐
chromosomes in females to maintain balance in gene expression

dosage. This process leads to 50% cells in females having the

maternal X chromosome inactivated, whilst the paternal X chromo-

some is inactivated in the rest, a phenomenon termed as ‘cell

mosaicism’.42 This provides females with a greater plasticity and

adaptability in response to infections, especially in case of X‐linked
mutations by expressing the corresponding wild‐type allele on the

other X chromosome.43 Furthermore, some immune related genes

are partially reactivated in female lymphocytes to confer enhanced

immunity to infectious diseases.44

3.1 | Role of innate immunity

The sexual dimorphism in immune responses to vaccines and viral

infections has been well documented. There is compelling evidence

showing that females differ in their innate recognition and response

to viral infections, and mount a greater inflammatory and humoral

immune response.45,46 As a result, both the prevalence and intensity

of viral infections are often lower for females.47–49 Toll‐like receptor

are a class of innate immune pattern recognition receptors that

recognize bacterial or viral pathogen‐associated molecular patterns.

TLR7 is an endosomal receptor expressed constitutively in plasma-

cytoid dendritic cells (pDCs) and B‐cells,50 and is capable of detecting

single‐stranded ribonucleic acids from viruses, including coronavi-

rus.51 Upon recognition of viral infection, TLR7 triggers an antiviral

type I interferon (IFN) response which serves to control viral repli-

cation and activate an adaptive immune response to clear the

infection.52,53

TLR7 is encoded on the X‐chromosome, and is one of the 23% of

the X‐linked genes that exhibit incomplete inactivation resulting in

increased dosage in females.54 Using single‐cell analyses, Souris et al.
(2018) demonstrated that TLR7 is transcribed on both X chromo-

somes in pDCs and B‐cells, and correlates with higher TLR7 protein

expression in female leucocyte populations.55 This disparity in TLR7

expression enhances innate immune responses to viruses,56 and may

confer females an advantage as observed with COVID‐19. Indeed,
some early COVID‐19 case‐reports suggest a link between loss‐of‐
function TLR7 mutations and increased disease severity in young

patients.57

Interferon α and β (IFNα and IFNβ) are the primary effector

cytokines of the type I IFN response downstream of TLR activation,

and critical players of the immune system, linking innate to adaptive

immunity.58 IFNα/β production by pDCs is primarily mediated

through the stimulation of TLR7 during viral infection, and is essen-

tial for the maturation of DCs to effective antigen‐presenting cells

with increased ability to activate T cells.59–61 Several studies have

shown that pDCs from females produce more IFNα/β than males,

following TLR7 activation by viral RNA.56,62,63 In a study cohort of 50

COVID‐19 patients with mild/moderate to critical severity, Hadjadj

et al. (2020) employed an integral approach by conducting in‐depth
phenotypical analysis of immune cells, whole‐blood transcriptomics

and cytokine measurements.64 They observed that the severity of the

disease characterized by persistent viral load in the blood and

exacerbated inflammation associated with highly impaired type I IFN

response, with very low levels of IFNα and no IFNβ.64 Taken

together, this suggests that females may have a better prognosis

following SARS‐CoV‐2 infection partly because of their heightened

type I IFN response, and enhancing type I IFN response could serve

as a therapeutic possibility for COVID‐19.
Genetically, a British gene‐wide association study attained in

critically ill COVID‐19 patients, revealed loss‐of‐function mutation in

the one of the responsible genes for IFNα and IFNβ expression called

IFNAR2, explaining the lower interferons level in the critically ill

patients specifically.65

Whilst the initial immune response against the pathogen is vital

to protect the host, an overactivation of the response that results

overproduction in pro‐inflammatory cytokines causes immunopa-

thology leading to multiple organ failure and ultimately death. In a
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recent study, Liu et al. (2020) evaluated the severest multi‐organ
dysfunctions during entire hospitalization between males and fe-

males which helps predict in‐hospital death.66 They observed that

whilst multiple key factors that characterize a ‘cytokine storm’ were

elevated (pro‐inflammatory cytokines such as TNFα, IL6 and IL8) in

females during the acute infection phase, these mediators were lower

when measured over the whole duration of hospitalization, possibly

offering a survival advantage. However, when the infection persisted,

the heightened immune response in females led to more ferocious

organ injuries and their survival advantage diminished.66

3.2 | Role of adaptive immunity

In general, females mount a much stronger cellular and humoral

immune response post viral infections,67–69 and vaccinations.70

T cells play an integral role in cell mediated immune response, with

CD4+ T cells orchestrating the B cell response for antibody pro-

duction and CD8+ T cells responsible for the killing of infected cells

and reducing viral burden. Akin to SARS‐CoV,71 several reports

following SARS‐CoV‐2 infection describe a correlation of COVID‐19
severity with lymphopenia, and drastically reduced circulating CD4

+ and CD8+ T cells.72–74 In a longitudinal study comparing immune

responses between sexes, Takahashi et al. (2020) observed that

whilst T cell lymphopenia occurred in both sexes, female patients

mounted a more robust T cell activation, particularly for CD8+
T cells.75 A balance between the CD4+ pro‐inflammatory T helper

type 1 (Th1) and anti‐inflammatory type 2 (Th2) subtypes is vital for

regulating the immune response and resolving of the infection

without damaging host tissue. Studies with SARS‐CoV and MERS‐
CoV describe upregulation of Th1 cytokines, dysregulating the Th1/

Th2 balance.76,77 Sexual dimorphism in Th1 and Th2 responses

based on the stages of infection have been reported previously,78

and further research is needed to elucidate if it plays a role in

COVID‐19.
T follicular helper (Tfh) cells, are a subset of CD4+ T cells,

responsible for the differentiation of B cells into plasma cells and

memory B cells. In patients with severe disease particularly, the

improved outcomes for females can also be attributed to higher

levels of circulating IgG antibodies against SARS‐CoV‐2 as observed

by Zeng et al. (2020).79 Furthermore, in a comprehensive analysis of

sex differences in B‐cell gene expression, Fan et al. (2014) found over

350 differentially expressed genes between males and females.80

These include upregulation of immune response genes such as Cav1,

CXCR3, and downregulation of inflammatory genes such as IL7R and

DDX3Y, and may account for some of the observed sex bias observed

in COVID‐19.80 Taken together, the reports suggest that the immune

landscape in COVID‐19 is considerably different between the two

sexes and may contribute to the higher susceptibility observed in

males. These, along with genes such as ACE2 and TLR7 that escape

inactivation, cause a gene dosage imbalance between the sexes and

may contribute to the immune disparity.

3.3 | Role of sex hormones

The role of sex hormones in regulating immunity is well character-

ized, and is likely to play a role in differences in the severity of

COVID‐19 between males and females. Oestrogen has a dual effect

based on its levels. At low doses similar to those in post‐menopausal

women, oestrogen is immuno‐stimulatory and induces differentiation

of inflammatory dendritic cells, higher production of IL‐4 and IFNα,
and an increased Th1 type and cell mediated responses. Conversely,

at higher doses observed in premenopausal women, oestrogen pro-

motes anti‐inflammatory Th2 responses and is inhibitory to the

pro‐inflammatory innate immune response.78,81–83 Indeed, Chan-

nappanavar et al. (2017) demonstrated that mortality in female mice

infected with SARS‐CoV increased following ovariectomy or expo-

sure to oestrogen receptor antagonist suggesting a protective role of

oestrogen receptor signalling.84 A similar protective effect of oes-

trogen has also been suggested in a recent pre‐print study which

investigated the association of oestrogen with severity of COVID‐19
symptoms.85 The study observed a higher risk in post‐menopausal

women; and in younger women who did not take the combined oral

contraceptive pill (COCP) compared to those of similar aged women

taking COCP.85 A similar observation was reported by Ding et al.

(2020), who showed that post‐menopausal women were at a greater

risk of hospitalization, and that oestrogen levels had a protective

effect against disease severity.86 This protective effect of oestrogen

was attributed to reduced levels of inflammatory IL‐6, IL‐8 and

TNFα.86

Early reports from China, Germany and Italy have suggested that

low testosterone levels strongly correlate with disease severity and

the need for intensive care in male patients.87,88 Testosterone im-

munosuppresses,89 by reducing the production of pro‐inflammatory

IL‐6, IL‐1β and TNFα via inhibition of the NF‐κB pathway.90 In fact,

IL‐6 is a key mediator of disease progression to ARDS in COVID‐19,
and a clinical trial of tocilizumab, an IL‐6 receptor blocker, is

approved in China for patients with severe disease.91 This suggests

that the role of testosterone on the immune response to SARS‐
CoV‐2 may be beneficial to patient outcomes potentially suppressing

uncontrolled inflammatory responses. Conversely, men with higher

levels of testosterone have weakened immunity and produce the

lowest antibody responses to annual flu vaccinations.92

Low serum testosterone can increase the expression of ACE‐2
receptors and TMPRSS2, with patients reportedly developing severe

manifestations of COVID‐19 infections which require assisted

ventilation as a result of the upregulation of ACE‐2 receptors in

lower respiratory cells increasing risk of lung damage and respiratory

muscle catabolism.93,94 Reduced testosterone in men can also inhibit

pulmonary endothelial cell function as SARS‐CoV‐2 reduces ACE‐2
concentrations by binding and increasing angiotensin‐II while

lowering angiotensin 1–7. As a result of this process superoxide

species become increased, leading to oxidative stress induced

endothelial cell dysfunction and localised inflammation.95,96 Conse-

quently, von Willebrand factor expression can increase and
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development of thrombosis in the alveolar capillaries, a precursor of

ARDS, ensues.97–99

Testosterone levels are known to decline following onset of

disease, and in particular, during infections with low testosterone

often considered a marker of ill health.100 This may have evolu-

tionary origins to move energy away from high‐energy consuming

anabolic processes to allow instead most energy for strengthening

the immune response. It has been suggested that COVID‐19 might

deteriorate serum testosterone level in SARS‐CoV‐2 infected male

patients and that a lower pre‐infection testosterone may significantly

increase the risk of ICU transfer and mortality.101 The authors

additionally propose possible improvement in clinical outcomes with

the testosterone treatment in SARS‐CoV‐2 infected hypogonadal

male patients. However, due to the varying effects on different as-

pects of the immune system (it is not likely that testosterone's anti‐
inflammatory effects would reduce all parts of immune function

equally) it would be necessary to look at testosterone effects on

various functions of both innate and adaptive immunity in a variety of

contexts to elucidate its therapeutic potential, as well as testosterone

deficiency in hypogonadism contribute to increase the risk of

comorbidities such as type 2 diabetes mellitus (T2DM), and cardio-

vascular diseases.101–103 Thus, increase the rate of ICU admissions

and mortality in COVID‐19 patients as Cayan S et al. suggests.101

Furthermore, a systemic review spotlights in the acute man-

agement of COVID‐19, T2DM and hypogonadism suggests that

treating testosterone deficient COVID‐19 patients with testosterone

might be considered in the future as Testosterone reduces the risk of

T2DM, and boosts the body inflammatory response against the virus

acutely.102 However, further studies required in order to reveal the

optimal effect of Testosterone replacement therapy.

4 | SEX AND GENDER RELATED RISK FACTORS

Clinical data has highlighted that specific comorbidities increase the

risk of COVID‐19 severity. Guan et al. (2020) showed that COVID‐19
patients with comorbidities have a poorer prognosis, and that greater

number of comorbidities correlate to poorer clinical outcomes.2

Specific comorbidities associated with poorer patient outcomes

included chronic obstructive pulmonary disease (COPD), Obesity,

diabetes, cerebrovascular disease, cancer and hypertension.2,102–104

Globally, men have more of these morbidities than women,105 placing

them at a higher risk for severe disease.

In addition to biological sex‐based differences, gender as defined

as the social and cultural norms, roles, attributes and behaviours that

society considers appropriate for males and females, is likely to play a

role in the incidence and fatality of COVID‐19. A meta‐analysis by

Zhao et al. (2020) which analysed data from 1726 patients showed

that smoking has a significant association with COVID‐19 severity,

with odds ratio of 2.0 (95%CI 1.3‐3.1).106 This observation has since

been confirmed by several studies that also reported increased disease

severity and death in COVID‐19 patients who smoke, potentially

related to higher expression of ACE2.107,108 Indeed, gender

differences in smoking rate between men and women has been sug-

gested to contribute to their predisposition to COVID‐19 progres-

sion.109 However, a male bias is often still observed in countries

reporting equal rates of current smokers between the genders, and

large variations across age and ethnicity confound this relationship

resulting in review of the current literature not supporting smoking as

a predisposing factor in men for COVID‐19 incidence or severity.109

Other gender‐based differences include delay in accessing health

services bymen that lead to higher fatality, as suggested from the data

of the Ebola outbreak.110 Furthermore, handwashing behaviour, which

is the primary public health message in this pandemic, also exhibits a

sex difference with women being more frequent adherers to guide-

lines.111 Therefore, understanding the sex differences in COVID‐19
severity and mortality requires recognition of both the biological and

the social factors that may play a role.

4.1 | Sex disparity in ‘long–COVID’

It is becoming evident that the impact of the SARS‐CoV‐2 pandemic is

likely to be much larger due to the long term persistence of symptoms

in patients following the initial acute stage. In a subset of COVID‐19
patients, a syndromic state post the acute symptomatic phase has

been reported which includes a wide range of symptoms such as

dyspnoea, extreme fatigue, tachycardia and mental fog.112–114 This

prolonged symptomatic phase (beyond 3‐weeks) is being referred to

as ‘Long‐COVID’, ‘Long‐haulers’ or ‘Chronic COVID Syndrome’, and is

still poorly understood.

A recent report describing data collected from over 4000 pa-

tients using a mobile application showed that symptoms persist for

28 days in 13% patients, of which 4.5% and 2.3% experienced

symptoms for 56 and 94 days respectively.115 The study also re-

ported that age significantly associated with long‐COVID, rising from

10% in 18–49 year olds, to 22% in those above 70. Interestingly, and

conversely to the acute phase, long‐COVID seems to affect women

disproportionately (14.9%) compared to men (9.5%), with females

aged 50–60 having the highest odds ratio, although this sex effect

was not significant in the older age‐group (>70).115 Whilst the aeti-

ology of the syndrome and reasons for any sex disparity needs

further research, a pre‐existing asthma condition, which is more

common in women, increased the odds of having long‐COVID.115,116

5 | CONCLUSION

The sex disparities in COVID‐19 severity and mortality are multi-

factorial, may also be resulted from the sex‐difference comorbidities

and behaviours, thus underline the need to collect sex and age‐dis-
aggregated data to better understand disease pathology and guide

clinical care. It has also highlights the need to incorporate sex and

gender analyses in any therapeutic strategies under consideration,

and vaccine development protocols. Furthermore, the consistencies

with previous coronavirus pandemics suggest that the public health
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policies and risk stratification should take sex into consideration for

any future outbreaks.
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