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Abstract

Noncoding RNAs (ncRNAs) are emerging as key regulators of cellular function. We have

exploited the recently developed barcoded ncRNA gene deletion strain collections in the

yeast Saccharomyces cerevisiae to investigate the numerous ncRNAs in yeast with no

known function. The ncRNA deletion collection contains deletions of tRNAs, snoRNAs,

snRNAs, stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs) and

other annotated ncRNAs encompassing 532 different individual ncRNA deletions. We have

profiled the fitness of the diploid heterozygous ncRNA deletion strain collection in six condi-

tions using batch and continuous liquid culture, as well as the haploid ncRNA deletion strain

collections arrayed individually onto solid rich media. These analyses revealed many novel

environmental-specific haplo-insufficient and haplo-proficient phenotypes providing key infor-

mation on the importance of each specific ncRNA in every condition. Co-fitness analysis

using fitness data from the heterozygous ncRNA deletion strain collection identified two

ncRNA groups required for growth during heat stress and nutrient deprivation. The extensive

fitness data for each ncRNA deletion strain has been compiled into an easy to navigate data-

base called Yeast ncRNA Analysis (YNCA). By expanding the original ncRNA deletion strain

collection we identified four novel essential ncRNAs; SUT527, SUT075, SUT367 and

SUT259/691. We defined the effects of each new essential ncRNA on adjacent gene expres-

sion in the heterozygote background identifying both repression and induction of nearby

genes. Additionally, we discovered a function for SUT527 in the expression, 3’ end formation

and localization of SEC4, an essential protein coding mRNA. Finally, using plasmid comple-

mentation we rescued the SUT075 lethal phenotype revealing that this ncRNA acts in trans.

Overall, our findings provide important new insights into the function of ncRNAs.

Author summary

Genomes from different organisms produce noncoding RNAs that are not translated to

make proteins and whose functions are largely unknown. There are approximately 2,000
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noncoding RNAs that make up almost 25% of the yeast genome compared to the approxi-

mately 6,000 protein coding genes that make up 70% of the yeast genome. With this large

number of ncRNAs there is a need for large-scale studies to determine the functional roles

of ncRNAs. We take advantage of a recently developed resource of 532 yeast strains in

which individual noncoding RNA genes have been deleted. We grow these yeast noncod-

ing RNA deletion strains in different conditions and catalogue how each noncoding RNA

contributes to cell growth. Improvement or inhibition of cell growth under particular con-

ditions implicates the deleted RNA in cellular responses to those conditions. We have also

investigated in more detail the function of specific noncoding RNAs, revealing examples

of how a deletion influences nearby genes, and other examples of noncoding RNAs that

regulate genes at distant genomic locations. We have made our extensive data on the fit-

ness of noncoding RNA deletion mutants publically available for searching and bulk

download in a new online resource, called Yeast ncRNA Analysis (YNCA). This large-

scale analysis of noncoding RNA deletion mutants reveals the importance of many non-

coding RNAs in cellular function.

Introduction

Eukaryotic cells express a wide variety of RNAs that do not code for proteins but contribute to

the many essential functions within cells. The process of protein synthesis by translation

requires ribosomal RNAs (rRNAs) to form the ribosomal subunits and transfer RNAs

(tRNAs) to bring the amino acids to the ribosome [1,2]. Another class of RNAs called small

nucleolar RNA (snoRNAs) predominantly catalyze the modification or processing of other

RNAs, but additional novel functions for snoRNAs are emerging [3]. The small nuclear RNAs

(snRNAs) of the spliceosome are required for the recognition and removal of introns from

pre-messenger RNA [4]. The functions of most of these so called classical noncoding RNAs

(ncRNAs) have been known for some time.

More recently, expression analysis of eukaryotic genomes has established that pervasive

transcription produces an abundance of ncRNAs whose functions are largely unknown [5–9].

In human cells, where some ncRNA functions are known, there tends to be three mechanistic

themes for ncRNA function where ncRNAs act as either decoys to titrate proteins away from

their binding sites, scaffolds to bring proteins together or guides to recruit proteins to DNA

[10]. A number of methods to probe the functional significance of the numerous ncRNAs in

humans have been utilized. For example, ncRNA gene deletion, targeting ncRNAs with RNAi

and repression of ncRNA transcription with CRISPR based methods are just a few techniques

used to investigate the functions of expressed human ncRNAs [11–15]. Mutations in ncRNAs

are also increasingly being associated with human diseases [16–18].

In the yeast Saccharomyces cerevisiae, tiling arrays and strand-specific RNA sequencing

analyses have identified novel classes of ncRNAs that are distinct from the classical ncRNAs.

Two classes of ncRNAs were initially identified according to their half-life in the cell, the stable

unannotated transcripts (SUTs) had a relatively long half-life whereas the cryptic unstable

transcripts (CUTs) were RNAs with a short half-life and were revealed only after deletion of

the exosome complex exoribonuclease Rrp6 [9,19]. Deletion of the cytoplasmic exonuclease

Xrn1, followed by RNA sequencing, revealed another class of ncRNAs termed Xrn1-sensitive

unstable transcripts (XUTs) [20,21], some of which overlap with either a SUT or CUT. Subse-

quently, depletion of the RNA binding factor Nrd1 revealed a fourth class of ncRNA termed

Nrd1-unterminated transcripts (NUTs) [22] and deletion of the histone methyltransferase

ncRNA functional profiling in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007253 March 12, 2018 2 / 33

https://doi.org/10.1371/journal.pgen.1007253


Set2 has identified yet another class of ncRNA called the Set2-repressed antisense transcripts

(SRATs) [23]. With the numbers of these yeast ncRNAs in the thousands only a very small pro-

portion have been ascribed a function to date.

Where there are examples of ncRNA function in yeast one emerging theme is that ncRNA

transcription can either induce or repress the expression of an adjacent gene [24–27]. One

mechanism whereby ncRNA expression can induce or repress nearby gene expression is

through chromatin modification [28]. An investigation into the influence of transcription by

180 anti-sense SUTs on the overlapping yeast genes found no direct relationship between anti-

sense SUT transcription and protein abundance from the overlapping reading frame, indicat-

ing that the presence of an antisense SUT does not necessarily mean it regulates protein

abundance from the sense protein coding gene [29]. Analysis of six intergenic SUTs using the

synthetic genetic array (SGA) technology, to identify genetic interactions between deletions of

these six SUTs and non-essential protein deletion strains, linked two SUTs to specific cellular

functions and provided evidence that they may function in trans [30]. Many of the SUTs and

CUTs are associated with specific RNA binding proteins within the yeast cell that are distinct

from those bound by mRNAs to presumably allow them to carry out their specific function

[31]. There is also evidence from ribosome profiling techniques that some yeast unannotated

ncRNAs associate with ribosomes and can be translated into protein, so may not necessarily

be noncoding [32–34]. As many of these studies have only investigated the function of a small

subset of ncRNAs, a large scale analysis of ncRNA function in yeast would be useful for defin-

ing the role in the cell of the remaining ncRNAs.

We have utilized the recently developed collection of ncRNA deletion strains [35], which

we have now expanded further, to carry out large-scale functional analysis of ncRNAs in yeast.

In total 532 different ncRNA deletions were investigated encompassing tRNAs, snRNAs,

snoRNAs, SUTs, CUTs and other annotated ncRNAs that do not overlap protein coding

genes. Using both the heterozygous and haploid ncRNA deletion strain collections we have

analyzed quantitatively, in a variety of growth conditions and phases, the influence that dele-

tion of each ncRNA has on cellular fitness. This fitness analysis identified novel environmen-

tal-dependent haplo-proficient and haplo-insufficient growth phenotypes which provided key

information on ncRNA function. Additionally, we have analyzed four essential ncRNAs of

unknown function and have determined how deletion of these ncRNAs influenced surround-

ing gene expression. Moreover, we identified one ncRNA that works in trans and character-

ized a more detailed function for one of these ncRNAs in regulating the expression, 3’ end

formation and localization of an essential protein coding mRNA. Overall, these data signifi-

cantly expand the information available on the function of ncRNAs in yeast. Finally, the exten-

sive catalog of functional data has been compiled into an easy to use website called YNCA

providing an important resource for future ncRNA research.

Results

Expanding the ncRNA deletion collections

The ncRNA deletion strain collections, as previously reported, contained 428 heterozygous

diploid deletion strains in the reference strain BY4743, 373 haploid (MATa), 370 haploid

(MATα) and 331 homozygous diploid ncRNA deletion strains giving a total of 1502 strains for

functional analysis of ncRNAs [35]. Each ncRNA, that did not overlap with a protein coding

gene, was deleted with the KanMX cassette while simultaneously introducing two unique

molecular barcodes to allow identification of each deletion strain. We have now expanded this

collection by the addition of 81 heterozygous diploid, 66 haploid (MATa), 67 haploid (MATα)

strains and 63 homozygous diploid ncRNA deletion strains to give a total of 1779 strains

ncRNA functional profiling in yeast
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(S1 and S2 Tables). Within these collections 532 different individual ncRNAs have been

deleted in at least one strain background. These new combined collections of strains were uti-

lized for fitness profiling to determine how ncRNA deletion affected the growth of cells under

a variety of conditions.

Fitness profiling of the heterozygous ncRNA deletion collection

To quantify the impact of ncRNAs on cellular fitness, competition experiments were carried

out using the heterozygous deletion collection, with the deletion strains pooled and grown in

six different liquid media. Two biological repeats were carried out for each condition. After an

initial batch phase, the strains were propagated in continuous culture (steady state), an open

system in which the amount of nutrients and pH are kept constant, allowing small fitness dif-

ferences to be detected [36]. Specifically, cells were grown under carbon-limited and nitrogen-

limited conditions at both 30˚C and 36˚C. Cells were also grown under carbon-limited and

nitrogen-limited conditions at 30˚C in the presence of 100mM LiCl which is known to inhibit

the exoribonuclease Xrn1 and stabilize RNA [37]. Culture samples were removed for analysis

at the beginning (initial pool, P) and end of the batch growth (B), at early steady state (ESS),

mid steady state (MSS) and late steady state (LSS) time points (Fig 1A) to compare the compo-

sition of these populations with each other. Genomic DNA from each sample was isolated and

the unique molecular barcodes identifying each deletion strain were amplified for next genera-

tion sequencing (Bar-Seq) [38–40] to determine the abundance of each ncRNA deletion strain

in the population. As there were two biological repeats a total of four independent barcodes

were sequenced for each ncRNA deletion strain. Under-representation of specific deletion

strains highlights haplo-insufficient phenotypes, namely ncRNAs that are quantitatively

important for phenotypic maintenance. Over-representation of deletion strains (haplo-profi-

cient phenotypes) suggest that lowering the copy number of specific ncRNAs is beneficial in

that particular environmental context.

We first compared the population fitness profile between the initial pool and batch stage to

identify strains that displayed either haplo-insufficiency or haplo-proficiency in the six differ-

ent conditions tested (Fig 1B and 1C; S3–S10 Tables). The tRNA, tR(CCU)J, also known as

HSX1, displayed an extreme haplo-insufficient phenotype between the pool and batch stages

in all six conditions we tested. The tRNA tR(CCU)J is a single copy rare tRNA gene [41] and is

clearly required for batch growth of yeast. The reduced fitness of the tR(CCU)J deletion strain

from pool to batch indicates that the function of tR(CCU)J is critical when nutrients become

limiting. Reduced fitness of the tR(CCU)J deletion strain was also validated in monoculture

under nutrient rich (YPD), carbon-limited and nitrogen-limited conditions at 30˚C (S1 Fig).

Another tRNA, tA(UGC)O, displayed haplo-insufficiency between the pool and the batch

stage in both carbon-limited and nitrogen-limited conditions, but only at 36˚C (Fig 1B and

1C; S10 Table), suggesting that this tRNA is required for fitness under conditions of heat

stress.

A number of the heterozygote deletion strains displayed better growth, haplo-proficiency,

between the pool and batch stages. Interestingly, CUT248 deletion was haplo-proficient in all

the conditions where nitrogen was limited (Fig 1C; S10 Table) which was confirmed in mono-

culture (S1 Fig). CUT248 is located near DPS1 (Fig 2A) which is known to be up-regulated

during yeast fermentation in the presence of diammonium phosphate [42]. Analysis of DPS1
expression by quantitative real-time PCR (qRT-PCR) confirms that deletion of CUT248

induces an increase in DPS1 expression in rich media and nitrogen-limiting conditions (Fig

2A). CUT248 therefore appears to repress DPS1 transcription. Lowering the amount of

CUT248 in a diploid background, allows increased DPS1 expression, which could be beneficial

ncRNA functional profiling in yeast

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007253 March 12, 2018 4 / 33

https://doi.org/10.1371/journal.pgen.1007253


for growth in nitrogen-limited conditions. In contrast to the deletion of CUT248, overexpres-

sion of the CUT248 RNA sequence from a plasmid in a wild-type haploid strain BY4741

results in a slow growth phenotype (S2 Fig) suggesting further that the levels of CUT248 are

important for cellular fitness. A noticeable influence of temperature on fitness can be observed

in the strain carrying the SUT340 deletion during the pool to batch transition (Fig 1B and

1C). SUT340 displays strong haplo-insufficiency at 36˚C in both carbon-limited and nitrogen-

Fig 1. Diagram of competition experiment and analysis of the pool to batch fitness changes. (A) The pool of heterozygous deletion strains

was grown in batch culture before the switch to continuous culture. Samples were taken at the initial pool stage, the batch stage, early steady state

(ESS), mid steady state (MSS) and late steady state (LSS). (B) Comparison of fitness between the pool and batch stages under the three indicated

carbon-limited conditions. Haplo-proficient deletion strains have positive Log2 fold change and haplo-insufficient deletion strains have negative

Log2 fold change. (C) Comparison of fitness between the pool and batch stages under the three indicated nitrogen-limited conditions. Haplo-

proficient deletion strains have positive Log2 fold change and haplo-insufficient deletion strains have negative Log2 fold change. Any strains

falling outside the grey shaded area have a significant fitness difference (p< 0.05). Graphs where individual points can be identified are found in

S4–S9 Tables.

https://doi.org/10.1371/journal.pgen.1007253.g001
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limited conditions but not in any of the conditions at 30˚C, revealing that this ncRNA with no

known function is required for growth at high temperature. Additionally, RNA stabilization

through inhibition of Xrn1 with LiCl triggers haplo-proficiency of CUT873 and tT(AGU)J

specifically in carbon-limited conditions between the pool and batch stages (Fig 1B; S10

Table). We have also tested the deletion mutants tA(UGC)O, SUT340, CUT873 and tT(AGU)

J in monoculture using the same conditions in which haplo-insufficient and haplo-proficient

phenotypes were observed, and reconfirmed their phenotypes. The tA(UGC)O and SUT340

deletion mutant strains which were haplo-insufficient are both significantly less fit than the

WT strain when grown in monoculture (S3A Fig). Similarly, the CUT873 and tT(AGU)J dele-

tion mutant strains which were identified as being haplo-proficient are both significantly fitter

than the WT strain when grown in monoculture (S3B Fig).

Fig 2. Genome location of ncRNA deletions and RT-PCR quantitation of mRNA levels. (A) Genome location of CUT248 compared to DPS1. All of

CUT248 was deleted. Relative expression of DPS1 in the wild type diploid background is represented by grey bars and DPS1 expression in the CUT248

diploid heterozygous deletion background is represented by black bars. Cells were grown in either rich media (YPD) or N-limited conditions. DPS1: YPD

p = 0.006, N-limited p =<0.01. (B) Genome location of SUT233/CUT707 between the HAP4 and KTI12 genes. Relative expression of HAP4 or KTI12 in

the wild type diploid background is represented by grey bars and HAP4 or KTI12 expression in the SUT233/CUT707 diploid heterozygous deletion

background is represented by black bars. Cells were grown in either rich media (YPD) or N-limited conditions. HAP4: YPD p = 0.97, N-limited p =

<0.01. KTI12: YPD p = 0.05, N-limited p =<0.01. The fold change (2^) in expression, relative to the wild-type was calculated using the ΔΔC method and

ACT1 as a reference gene. Error bars were calculated using three independent biological samples. P values were calculated using the Welch two sample t-

test.

https://doi.org/10.1371/journal.pgen.1007253.g002
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Deletion of the overlapping ncRNAs SUT233/CUT707 results in haplo-insufficiency in

four of the six conditions in the pool to batch transition (Fig 1B and 1C; S10 Table) which

was confirmed in monoculture (S1 Fig). SUT233 lies upstream of the gene HAP4 which codes

for a transcription factor involved in the diauxic shift in yeast [43–45]. CUT707 lies upstream

of KTI12which codes for a protein that in yeast associates with the elongator complex required

for tRNA modification [46,47]. HAP4 expression is increased during the diauxic shift to allow

the upregulation of the glyoxylate cycle with HAP4 inducing the expression of approximately

88% of the proteins made during the diauxic shift [43,45]. Analysis of HAP4 and KTI12 expres-

sion by qRT-PCR confirms that in nitrogen-limiting conditions deletion of SUT233/CUT707

reduces expression of both HAP4 and KTI12 (Fig 2B). To show the number of haplo-insuffi-

cient and haplo-proficient ncRNA deletion strains in common between conditions in the pool

to batch experiments UpSet diagrams of intersecting sets have been provided (S4 Fig).

We next compared the fitness of the heterozygote ncRNA deletion strains between the early

LSS and ESS stages (Fig 3; S3–S9 and S11 Tables). By keeping nutrients, pH and growth rate

constant we were able to quantify smaller differences in fitness in response to changes in tem-

perature. For example, deletion of SUT089 displayed haplo-proficiency in both carbon-limited

and nitrogen-limited conditions at 30˚C. However, this haplo-proficiency of SUT089 was sig-

nificantly buffered in both carbon-limited and nitrogen-limited conditions at 36˚C. Another

striking example of temperature affecting the fitness of a heterozygous diploid ncRNA deletion

strain is the large increase in fitness of SUT467 in nitrogen-limited conditions when tempera-

ture is increased from 30˚C to 36˚C. We have also found that SUT471 is haplo-proficient in all

six conditions, therefore its presence clearly limits growth in continuous culture conditions.

Under continuous culture conditions tR(CCU)J, which displayed severe haplo-insufficiency in

the pool to batch growth phase, did not display any significant growth defect (Fig 3A and 3B;

S11 Table). Therefore, analysis of deletion strains under continuous culture conditions clearly

reveals additional phenotypes not seen in traditional batch culture where nutrients become

limiting. To show the number of haplo-insufficient and haplo-proficient ncRNA deletion

strains in common between conditions in the ESS to LSS experiments UpSet diagrams of inter-

secting sets have been provided (S5 Fig).

Co-fitness analysis

Co-expression analysis has been used widely to infer functional relationships between protein

encoding genes [48–51]. Here we apply a similar approach to our fitness data from eight differ-

ent data sets to look for ncRNA deletion strains with similar fitness profiles and uncover phe-

notypic networks in the heterozygous ncRNA deletion collection. Four clusters were identified

for a total of 226 deletion mutants which accounts for approximately 40% of the original data-

set (Fig 4; S12 and S13 Tables). Our results indicate that deletion strains within each cluster

followed the same fitness pattern throughout the eight testing conditions. Cluster 1 and 2 are

the biggest containing 149 and 65 strains, respectively. Within these clusters the ncRNA dele-

tion strains are separated into smaller sub-groups, sub-cluster 1 and sub-cluster 2, based on

direction of fitness changes. The other clusters are relatively small (8 and 4 strains) and consist

mainly of tRNAs and SUTs (S13 Table).

Cluster 1 encompasses strains with primarily specific response to temperature (Fig 4A). As

shown in the heat map, this response to temperature is particularly evident in the initial pool

(P) to batch (B) transition where, in any media considered, a change in fitness can be seen

when the temperature is raised from 30˚C to 36˚C. Lowering the dosage of some ncRNAs

either increases (Fig 4A, sub-cluster 1) or decreases (Fig 4A, sub-cluster 2) cell fitness with

increasing temperature. The results suggest that ncRNAs in this cluster are involved in the

ncRNA functional profiling in yeast
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optimal growth during heat stress and general nutrient deprivation. For example, SUT643 in

sub-cluster 1 may have a function in transcriptional regulation of the neighbouring gene

IME1, which is essential for meiosis, and is required for repression of HSP82 [52–54]. Our data

indicate that lowering the dosage of SUT643 has a positive impact on yeast growth at high tem-

perature, suggesting that the repression on HSP82 is partially lifted (the quantitative fitness

profile for SUT643 is shown in S6A Fig).

Cluster 2 encompasses strains with specific response to growth phases, such as transition

from P to B (batch phase with nutrient depletion) and from ESS and LSS stage (continuous

culture phase with constant nutrients and pH), suggesting that ncRNA deletion strains in this

cluster become important when nutrient levels are not constant (Fig 4B). In this case, lowering

the dosage of some ncRNAs either increases (Fig 4B, sub-cluster 1) or decreases (Fig 4B, sub-

cluster 2) cell fitness with nutrient depletions. When cells are about to reach stationary phase,

there is a decline in overall transcriptional activities and several changes in cellular metabolism

Fig 3. Analysis of early steady state to late steady state fitness changes. (A) Comparison of fitness between the early steady state (ESS) and late

steady state (LSS) stages under the three indicated carbon-limited conditions. Haplo-proficient deletion strains have positive Log2 fold change

and haplo-insufficient deletion strains have negative Log2 fold change. (B) Comparison of fitness between the early steady state (ESS) and late

steady state (LSS) stages under the three indicated nitrogen-limited conditions. Haplo-proficient deletion strains have positive Log2 fold change

and haplo-insufficient deletion strains have negative Log2 fold change. Any strains falling outside the grey shaded area have a significant fitness

difference (p< 0.05). Graphs where individual points can be identified are found in S4–S9 Tables.

https://doi.org/10.1371/journal.pgen.1007253.g003
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occur to store complex carbohydrates such as glycogen and trehalose [55–57]. Based on our

data, sub-cluster 2 (Fig 4B) encompasses ncRNAs which are crucial for survival during the

pool to batch stage. We found that some ncRNAs in this sub-cluster 2 are located next to genes

Fig 4. Co-fitness analysis. Variation of fitness profiles in Cluster 1 (A) and Cluster 2 (B). Rows represent individual ncRNA deletion strains.

Columns represent the eight growth conditions analysed (B>P: comparison between batch and pool; L>E: comparison between late and early steady

state; C-Lim: carbon-limited medium; N-Lim: nitrogen-limited medium). Colour bar represents Log2 fold change between batch and pool or late

and early steady state. Haplo-insufficiency is shown in blue, and haplo-proficiency is shown in bright red. Data can be seen in S12 and S13 Tables.

https://doi.org/10.1371/journal.pgen.1007253.g004
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that are highly correlated with transition to stationary phase. For example, SUT471 is located

downstream of SNF11 and upstream of TPS2. TPS2 encodes for a phosphatase in the last step of

the trehalose pathway, important for carbon storage and is activated sequentially after diauxic

shift and is suppressed fully before entering stationary phase [58,59]. SNF11 encodes for a sub-

unit of the SWI/SNF chromatin remodelling complex, which is involved in transcriptional regu-

lation of several genes at the onset of stationary phase [60,61]. Another example is SUT509

which is located downstream of the medium chain fatty acyl-CoA synthetase gene FAA2 which

has a transcriptional profile similar to that of the gene TPS2. The effect of SUT471 and SUT509

deletion on the neighbouring genes may, therefore, be responsible for their haplo-insufficiency

in the pool to batch transition (the quantitative fitness profiles for SUT471 and SUT509 are

shown in S6B and S6C Fig). We further analyzed all four clusters for representation of different

ncRNA classes and found no bias in the distribution of SUTs or CUTs (FDR> 0.05). In addi-

tion, we could not identify any common biological functions using the gene ontology terms of

neighbouring genes for the ncRNAs that comprise the different clusters.

Phenotypic screening of the haploid ncRNA deletion collection

To determine the influence of complete removal of a ncRNA on cell fitness we individually

arrayed each strain of the haploid deletion collections on rich media (YPD) plates at 30˚C and

assessed colony size compared to the wild-type strain. The haploid deletion collections exhib-

ited significant variation in fitness on YPD and this variation was detected across all types of

ncRNA (Fig 5; S14 and S15 Tables). The deletion overlapping both SUT233 and CUT707

(Fig 2B), which displayed significant haplo-insufficiency as a diploid heterozygotic deletion in

most conditions in the pool to batch growth (Fig 1), is the least fit in the haploid deletion col-

lection (Fig 5). Deletion mutants of tL(CAA)A and SUT339 are respectively, the second and

third least fit strains in the haploid collection on YPD media. The tL(CAA)A tRNA is part of a

family of tRNAs for the leucine CAA codon and deletion of tL(CAA)A has previously been

Fig 5. Haploid deletion strain phenotypic screen. Scatter plot of the normalized colony size values for each of the haploid ncRNA

deletion strains growing on YPD plates at 30˚C. Any strains falling outside the grey shaded area are significantly different than the

wild-type strain (p< 0.05). Data can be seen in S14 and S15 Tables.

https://doi.org/10.1371/journal.pgen.1007253.g005
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shown to significantly impair growth on YPD, whereas other members of this tRNA family do

not display a severe fitness defect [62] (S14 Table). Our data support the idea that there are

major and minor copies in tRNA gene families and loss of different members of a tRNA family

affect cellular fitness differently [62]. From the genomic location of SUT339 there is no immedi-

ately obvious reason how its deletion is affecting fitness. The SNR75, tD(GUC)J3 and tE(UUC)

B deletion strains are the top three fittest strains in this plate assay showing increased growth.

SUT471 deletion also had a significantly positive effect on fitness in the haploid background

(Fig 5). This positive effect on fitness is consistent with SUT471 being haplo-proficient in all of

the continuous culture conditions (Fig 3), supporting the theory that SUT471 expression limits

cell growth. ncRNA deletions showing little fitness change in the heterozygote background, but

significant effects in the haploid background, have also been identified here (S15 Table). These

data demonstrate that useful fitness data can be obtained from the plate array method of pheno-

typing on solid media. Moreover, some of the most dramatic phenotypes which were scored via

colony size (Fig 5) are also seen in our continuous culture experiments (Figs 1 and 3). For

example, the SUT004, SUT107, CUT356, SNR10 and tQ(UUG)L deletion mutants which were

haplo-insufficient in at least one of the continuous culture conditions, also displayed signifi-

cantly impaired fitness in the haploid fitness screen. Expanding this array method to a variety of

other growth conditions should further our understanding of ncRNA function.

Identification and analysis of essential ncRNAs

The heterozygote ncRNA deletion strains were induced to sporulate and the haploid spores

dissected to reveal whether individual ncRNA gene deletion was essential for growth. Three

percent of the ncRNA gene deletions (17 of 532) were found to be essential in nutrient rich

conditions (YPD), with thirteen of these (i.e. snRNAs, snoRNAs, tRNAs) already known to be

essential (S2 Table). Four novel essential ncRNAs were identified, SUT075, SUT367, SUT527

and SUT259/691, and were found to be essential in separate biological replicates of the deletion

strains (S7 Fig). One of these essential ncRNAs, SUT527 (also annotated as RUF20), overlaps

by 140 base pairs with the 3’ untranslated region (UTR) of the essential gene SEC4, a GTPase

required for vesicle-mediated exocytic secretion and autophagy [63,64] (Fig 6A). To determine

whether SUT527 essentiality was derived from its overlap with the 3’ UTR of the essential

SEC4, two shorter deletions of SUT527 were constructed with 40bp overlap and no overlap

with the SEC4 3’ UTR. The shorter SUT527 deletion, that still overlapped the SEC4 3’ UTR,

resulted in a non-viable phenotype, whereas the strain containing a SUT527 deletion with no

overlap with the SEC4 3’ UTR was viable (S8 Fig). This viability indicates that SUT527 essenti-

ality is derived from the overlap with the 3’ UTR of the essential gene SEC4 and that deletion

in this region does not generally cause silencing of SEC4 transcription. Transformation of the

original SUT527 diploid deletion strain with a plasmid containing an approximately 1.4kb

DNA fragment containing the SEC4 sequence known to complement SEC4 function [64]

restored strain viability after sporulation and tetrad dissection. To understand whether the

essential phenotype was caused by the deletion of the SEC4 3’ UTR in itself or caused by the

interaction of the SUT527 RNA with the SEC4 3’ UTR, we reduced SUT527 expression in a

haploid strain using a regulated Tet promoter [65]. We found that SEC4 mRNA expression

was greatly decreased (Fig 6B) and SEC4 3’ UTR formation was affected when SUT527 expres-

sion was suppressed (Fig 6C). The SEC4 3’ UTR is required for localization of SEC4 mRNA

[66]. Fluorescent in situ hybridization (FISH) revealed that SUT527 displayed a similar punc-

tate localization to SEC4mRNA and SEC4mRNA was mislocalized when SUT527 expression

was switched off (Fig 6D and 6E). Analysis of data sets from a global sequence analysis of

small RNAs from S. cerevisiae strains engineered for RNAi to reveal the presence of dsRNAs
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[21], identified small RNAs produced from SUT527 in the region of overlap with the SEC4 3’

UTR (S9 Fig). The presence of these small RNAs in the region of overlap between SEC4 and

SUT527 indicates that in vivo there is dsRNA formation between SUT527 and the SEC4 3’

Fig 6. Analysis of an essential ncRNA. (A) Overlap of the ncRNA SUT527 with the 3’ UTR of SEC4. (B) qRT-PCR analysis of SUT527 and

SEC4RNA levels in a strain with SUT527 under control of the tetO7 element. Grey bars represent the relative expression of SUT527 and SEC4
in YPD media (-) Doxycycline. Black bars represent the relative expression of SUT527 and SEC4 in YPD (+) Doxycycline. Error bars (SD) are

from three technical replicates from three independent biological replicates. Relative normalized expression was calculated using ACT1. P

values were calculated using the Welch two sample t-test. SUT527: p = 0.02, SEC4: p = 0.03. (C) Primer walking of cDNA isolated from cells

expressing (-DOX) or not expressing (+DOX) SUT527 to assess 3’ UTR formation. Top panels depict the locations and number of the

different back primers used with a common forward primer for the SEC4 and TUB2RNAs. (D) SEC4mRNA was localized by FISH in the

presence and absence of SUT527 expression. When SUT527 was expressed in YPD (-) DOX, 32% of the SEC4mRNA was localized to the cell

membrane. The absence of SUT527 expression in YPD (+) DOX decreased localisation of SEC4mRNA to 13%. (E) SUT527 localization was

determined by FISH. Under normal growth with YPD 33% of SUT527 was observed in foci at the cell surface similar to the localization of

SEC4. (F) Three representative images of SEC4 (red) and SUT527 (green) localized together in the same cells. Nuclei are stained with DAPI

(blue). Scale bars, 1μm.

https://doi.org/10.1371/journal.pgen.1007253.g006
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UTR. In fact, FISH of SEC4mRNA and SUT527 in the same cells with different coloured

detection probes revealed that in cells approximately 10% of the SEC4 mRNA (red) and

SUT527 RNA (green) puncta were found next to each other (Fig 6F). We have therefore

defined a molecular function for the ncRNA SUT527 and suggest that the physical interaction

between SUT527 and the 3’ UTR of SEC4 influences SEC4 3’ end formation and mRNA

localization.

Of the four essential ncRNAs identified here (SUT527, SUT075, SUT367 and SUT259/691)

SUT527, SUT075 and SUT367 are located adjacent to essential genes. Deletion of the ncRNA

with the KanMX cassette could potentially remove essential regulatory elements for a nearby

essential gene, or the expression from the KanMX module may influence the expression of a

nearby essential gene. To determine the influence of deleting a single copy of SUT527,

SUT075, SUT367 or SUT259/691 on the expression of nearby genes, qRT-PCR was used to

analyze expression of nearby genes in the diploid deletion strains compared to the wild-type

diploid strain. Analysis of the diploid SUT527 deletion strain revealed greatly reduced expres-

sion of SEC4 as expected (Fig 7A). Deletion of the overlapping SUT259/691 ncRNAs increased

the expression of the upstream and downstream non-essential genes EMP46 and GAL2 which

are both transcribed in the same direction as the KanMX (Fig 7B). SUT690 is located between

EMP46 and SUT259/691. It is plausible that SUT690 might be the target of SUT259/691 regu-

lation. However, analysis of SUT690 expression in the ΔSUT259/691 strain reveals that

SUT690 expression levels are unchanged (S10 Fig). The deletion of either EMP46 or GAL2
alone does not result in a lethal phenotype, but since a double deletion mutant of EMP46 and

GAL2 shows positive epistasis [67], it is possible that overexpression of both genes gives the

opposite effect and hampers fitness (see Discussion). To test this hypothesis, we have cloned

both EMP46 and GAL2 into the pBEVY-GA plasmid, containing a bi-directional GAL1/10

promoter. Overexpression plasmids with EMP46, GAL2 or both EMP46 and GAL2 were cre-

ated and transformed into the BY4743 background strain. The comparative fitness of these

overexpression strains were then examined using spot assays. Solitary overexpression of GAL2
or EMP46 was not lethal, however they resulted in impaired fitness, particularly the overex-

pression of GAL2 (Fig 8). The simultaneous overexpression of GAL2 and EMP46 resulted in

no cell growth and is therefore lethal (Fig 8). This lack of growth supports the idea that the

lethality, observed in the SUT259/691 knockout strain, is a result of a combined increase in

EMP46 and GAL2 expression. The partial deletion of SUT075 caused a large decrease in the

expression of the essential gene PRP3 which is transcribed in the opposite direction to SUT075

and the KanMX expression (Fig 7C). The decreased expression of the essential PRP3 may be

the explanation for SUT075 lethality. Deletion of SUT367 caused an increase in the expression

of the essential gene RPL3 which is transcribed in the same direction downstream of SUT367

(Fig 7D). Interestingly, RPL3 is one of the few ribosomal protein genes in yeast that is neither

duplicated nor contains an intron, both properties that are associated with increased ribosomal

protein gene expression [68]. Therefore, increased expression of RPL3 may be detrimental to

cells providing a reason for SUT367 lethality (see Discussion). Overall, we observed that dele-

tion of ncRNAs can both positively and negatively influence the expression of nearby genes

and that in some cases can explain the lethality.

To investigate further the essentiality of ncRNAs SUT527, SUT075, SUT367 and

SUT259/691, we overexpressed these SUTs from plasmids to discover any that could

recover the lethal phenotype of the corresponding deletion strain and identify trans ncRNA

effects. We constructed centromeric plasmids with each SUT expressed in either the sense

or antisense orientation from the GAL1 promoter. These plasmids were then transformed

into the corresponding heterozygote diploid deletion strains. These strains were then sporu-

lated and tetrads dissected. Successful generation of viable haploid strains, containing the
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Fig 7. Genome locations of the essential ncRNAs and the expression of nearby genes. The ncRNA deletions are indicated by vertical black dotted lines and

the direction of KanMX deletion cassette expression is indicated with a grey arrow. Red arrows are protein coding genes and the arrows encompass the

annotated 5’ and 3’ UTR regions. The essentiality of nearby protein coding genes is indicated. (A) SUT527 full deletion. Relative expression of SEC4 in the wild

type diploid background is represented by grey bar and SEC4 expression in the SUT527 diploid deletion background is represented by black bar. SEC4: p = 0.02.

(B) Overlapping SUT259/691 deletion. Relative expression of EMP46 and GAL2 in the wild type diploid background is represented by grey bars and EMP46 and

GAL2 expression in the SUT259/691 diploid deletion background is represented by black bars. EMP46: p = 0.02, GAL2: p = 0.02. (C) SUT075 partial deletion.

Relative expression of PRP3 in the wild type diploid background is represented by grey bar and PRP3 expression in the SUT075 diploid deletion background is

represented by black bar. PRP3: p = 0.04. (D) SUT367 full deletion. Relative expression of RPL3 in the wild type diploid background is represented by grey bar

and RPL3 expression in the SUT367 diploid deletion background is represented by black bar. RPL3: p = 0.02. The fold change (2^) in expression, relative to the
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deleted essential SUT, would indicate the ability of the overexpressed SUT to function in

trans. The SUT367, SUT527 and SUT259/691 sense or antisense plasmids were unable to

reverse lethality of the corresponding ncRNA deletion in the haploid background following

sporulation and tetrad dissection. However, deletion of SUT075 was no longer lethal when

the sense orientation SUT075 plasmid was present (Fig 9A and 9B) but was still lethal with

the antisense SUT075. This complementation of the SUT075 deletion strain lethal pheno-

type by the ectopic expression of SUT075 RNA indicates that SUT075 functions in trans. It

is, therefore, plausible that SUT075 regulates expression of distal genes in the genome, not

just the neighbouring PRP3 gene. The deletion of one copy of SUT075 in the diploid back-

ground (Fig 7C) significantly reduced expression of the adjacent PRP3 gene. Expression of

PRP3 was measured in the heterozygote diploid SUT075 deletion strain with the sense

SUT075 plasmid expressing the SUT075 ncRNA, to determine if the rescue of the lethal

phenotype in the haploid progeny (Fig 9A and 9B) was the result of PRP3 expression levels

being returned to normal. PRP3 expression was found to be 8.3 fold greater in the heterozy-

gote diploid SUT075 deletion strain, when the SUT075 expression plasmid was present (Fig

9C). Recovery of PRP3 expression, to levels greater than in wild type cells, suggests that the

GAL1 promoter is stronger than the native SUT075 promoter. Overall, these data confirm

that expression of SUT075 from a plasmid is able to up-regulate PRP3 expression in trans
and reverse lethality in strains deleted for SUT075.

wild-type was calculated using the ΔΔC method and ACT1 as a reference gene. Error bars were calculated using three independent biological samples. P values

were calculated using the Welch two sample t-test.

https://doi.org/10.1371/journal.pgen.1007253.g007

Fig 8. Spot assays for strains containing EMP46,GAL2, EMP46/GAL2 or empty pBEVY-GA overexpression

plasmids. The comparative fitness of the identified strain when grown on galactose media or glucose media, which

activates and inactivates the GAL1/10 promoter, respectively.

https://doi.org/10.1371/journal.pgen.1007253.g008
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The yeast ncRNA analysis database

To ease the use and access of our extensive functional fitness data for future research, we have

built a publicly accessible online resource called the Yeast ncRNA Analysis (YNCA) (http://

sgjlab.org/ynca/) to host the heterozygote and haploid deletion fitness profiles for each of the

deleted ncRNAs. Data are searchable by neighbouring genomic features, ncRNA type, essenti-

ality, chromosomal position and growth phenotype for each growth medium used, as well as

searchable by ncRNA name as classified in Xu et al. (2009) [9]. The types of searchable neigh-

bouring genomic features are known open reading frames, tRNA genes, snoRNA genes, cen-

tromeric and telomeric regions, autonomous replicating sequences (ARS), long terminal

repeats (LTR), pseudogenes, LTR retrotransposons and transposon internal genes. The user

can download both raw experimental values and statistical significance values from a results

table specific to the search performed. The list of barcode TAGs associated with each strain is

Fig 9. Expression of SUT075 in trans rescues the lethal phenotype of a SUT075 deletion and increases PRP3
expression. (A) Haploid spores from dissection of six MATa/α SUT075Δ/SUT075 diploid tetrads were spotted on SD

media lacking uracil and containing 2% galactose. The plasmid expressing the SUT075 ncRNA is selected for using the

URA auxotrophic marker. Galactose induces expression of SUT075 present in the plasmid. (B) Haploid spores from

dissection of six MATa/α SUT075Δ/SUT075 diploid tetrads were spotted on SD media lacking uracil containing 2%

galactose and 300mg/L G418 disulphate. G418 resistance selects for haploids deleted for SUT075. Spores growing in

both panels A and B are considered to contain the G418 resistance SUT075 deletion cassette and the SUT075 ncRNA

expressing plasmid. (C) Expression levels of PRP3 in the ΔSUT075 and the ΔSUT075 (+ sense SUT075 recovery

plasmid) heterozygote diploid strains measured by qRT-PCR. The relative expression of PRP3 in the wild-type

background is represented by a grey bar and a black bar in the ncRNA deletion strain backgrounds. Using the ΔΔC

method and ACT1 as a reference gene, the fold change (2^) in expression, relative to the wild-type was calculated.

Error bars are calculated using each of the three independent biological samples. P values calculated using the Welch

two sample t-test determine there to be a significant difference (p = 0.02) between the ΔSUT075 and the ΔSUT075

(+ sense SUT075 recovery plasmid) strains.

https://doi.org/10.1371/journal.pgen.1007253.g009
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also available on the website. We plan to progressively expand the YNCA database to include

homozygote deletion strain fitness data under a variety of conditions and results from future

analyses.

Discussion

By utilizing the newly developed ncRNA deletion strain collections in the yeast Saccharomyces
cerevisiae we have carried out large scale profiling of ncRNA function under a variety of

growth conditions and phases. The extensive functional fitness data can be accessed via the

database YNCA (http://sgjlab.org/ynca/) where the influence of individual ncRNA deletion

strains on cellular fitness has been catalogued in an easy to navigate and searchable website.

This large scale functional profiling has now provided valuable functional information on the

deletion of 532 different ncRNAs which includes tRNAs, snoRNAs, snRNAs, SUTs, CUTs and

various other annotated ncRNAs. We have also investigated in more detail four novel essential

ncRNAs and determined the mechanisms by which they result in a lethal phenotype when

deleted.

Yeast strains deleted for individual tRNA genes have been previously constructed with

these deletion strains tested for both growth rate and growth yield under a number of condi-

tions [62]. While there is significant overlap between our collection and that of Bloom-Acker-

mann et. al., there are strains that are unique to each collection (S16 Table). Where there is

overlap between collections we have observed similar growth phenotypes of tRNA deletion

strains. For example, our observation that the tR(CCU)J deletion strain displays decreased fit-

ness in all the conditions we tested during the pool to batch growth phase was also observed

for the growth rate of the tR(CCU)J deletion strain in four of the six growth conditions used

by Bloom-Ackermann et al [62]. Within tRNA families major and minor tRNAs have been

identified where deletion of the major tRNA influences the ability of a deletion strain to grow

under different conditions more than one of the minor tRNAs in the same family [62]. For

instance, the tRNAs tR(UCU)E and tR(UCU)M2 were identified as being major tRNAs that

are influenced the most by different growth conditions in their family [62]. In the six condi-

tions tested here we have also found that the tR(UCU)E deletion displays decreased fitness in

all six conditions in the pool to batch transition. However, we have identified tR(UCU)B in the

same family, a deletion novel to our collection, that also displays decreased fitness in all six

conditions in the pool to batch transition and tR(UCU)G1 as less fit in four of the six condi-

tions in the pool to batch transition (S4–S10 Tables). In contrast, we did not observe a signifi-

cant decrease in fitness with deletion of tR(UCU)M2 in any of the six conditions in the pool to

batch transition. Analysis of the tRNA deletion strains in the tR(UCU) family under continu-

ous growth conditions did not identify any tRNAs in the tR(UCU) family that displayed a con-

sistently significant decrease in fitness, when deleted, in any of the conditions we tested. These

results suggest that tRNA levels are more important in conditions where nutrients become

limited.

By using continuous growth conditions, we have uncovered additional phenotypes for

ncRNA deletion strains that are not observed under growth conditions where nutrients

become limiting. Specifically, we have observed changes in fitness associated with temperature

changes that were not observed in the pool to batch growth phase. Additionally, phenotypes

observed in the pool to batch stage where nutrients are limited were not observed in continu-

ous culture. By observing the fitness of the deletions strains by two distinct methods of cell cul-

ture we have produced an extensive catalog of fitness data for each of the heterozygous diploid

deletion strains. Combined with our analysis of the haploid deletion collections arrayed on

solid media, overall we present the most extensive analysis of ncRNA requirements for cellular
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fitness to date. These data have been compiled into a database called YNCA. YNCA uses the

more sensitive ESS-LSS fitness change for search based on the heterozygote fitness profile, but

displays both pool-batch and ESS-LSS fold change values in the detailed ncRNA-specific page.

Both sets of data are downloadable. For each growth medium, the user can retrieve strains

which display any or one selected fitness phenotype (after statistical analysis; gain/loss of fit-

ness or haplo-proficient/insufficient) or obtain a list of all strains with available experimental

data, for raw data download. Given that only a few examples of CUTs and SUTs have a known

function and that the analysis of ncRNA function sometimes focuses on the regulation of

neighbouring genes, the YNCA website offers the option to search by nearby genomic feature,

hence facilitating the selection of candidate ncRNAs as gene-specific or feature-specific

regulators.

In the construction and analysis of the ncRNA deletion strains we have identified ncRNAs

that are essential for cell growth. Many of these essential ncRNAs have been previously identi-

fied and annotated as essential ncRNAs. The five snRNAs (U1, U2, U4, U5 and U6) required

for pre-mRNA splicing, the snoRNAs snR128 (U14) and snR30 (U17), the RNA component of

RNase MRP (NME1), the RNA component of nuclear RNase P (RPR1) and tRNAs tR(CCG)L,

tR(CCU)J, tS(CGA)C and tT(CGU)K have all been previously shown to be essential. Besides

the known essential ncRNAs we have identified four novel ncRNAs that are essential when

deleted. These four novel essential ncRNAs are SUT075, SUT367, SUT527 and SUT259/691.

The essentiality of SUT527 is caused by its overlap with the 3’ UTR of the essential protein cod-

ing gene SEC4, as making smaller deletions that did not overlap the annotated 3’ UTR of SEC4
did not result in a lethal phenotype. It appears that the overlap of SUT527 with the 3’ UTR of

SEC4 is required for both the stability of the SEC4mRNA and for the localization of SEC4

mRNA. SEC4 mRNA localization is determined by its 3’ UTR [66]. There is evidence that

SEC4 3’ UTR/SUT527 RNA duplexes are formed within cells [21] and we have observed that

the SEC4mRNA and SUT527 RNA localize in close proximity. A cytoplasmic function for

other SUTs is very likely as a proportion of SUTs are transported to the cytoplasm where they

have been proposed to exert their function [31].

The ncRNA SUT367 was found to be essential when deleted, but analysis of the nearby

essential gene RPL3 in the diploid heterozygous deletion strain revealed that RPL3 expression

is increased (Fig 7D). Large scale screens have previously identified that overexpression of

RPL3 causes growth impairment, disrupts the cell cycle [69] and induces chromosome instabil-

ity [70]. The mechanisms by which deletion of SUT367 leads to RPL3 overexpression or how

overexpression of a ribosomal protein gene leads to chromosome instability/cell cycle disrup-

tion and lethality is not clear. However, other ribosomal protein genes have also been identi-

fied to cause chromosome instability/cell cycle disruption leading to cell lethality when

overexpressed [69,70]. We show that deletion of SUT367 prevents spores from germinating

after meiosis, and it is plausible that the resulting overexpression of RPL3 is responsible for the

inability of the spores to grow.

A deletion of SUT259/691 is lethal and this deletion results in the overexpression of two

adjacent nonessential protein coding genes EMP46 and GAL2, but not the adjacent SUT690, in

the diploid heterozygote (Fig 7B, S10 Fig). Individual overexpression of either EMP46 or

GAL2 displays a slow growth phenotype on their own ([71] and Fig 8 of this a manuscript).

When EMP46 and GAL2 are overexpressed simultaneously the cells are unable to grow (Fig 8).

Therefore, SUT259/691 are essential for the regulation of EMP46 and GAL2, and when deleted

cause an overexpression of these genes which causes lethality.

The SUT075 is expressed in the opposite direction to the essential gene PRP3 with the dele-

tion we made of SUT075 being 230 nucleotides away from the start of PRP3 and 143 nucleo-

tides away from the stop codon of the non-essential gene JIP4 (Fig 7C). We successfully used
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complementation to determine that expressing the full length SUT075 RNA from a plasmid in

trans could rescue the essential phenotype of SUT075 deletion. Therefore, we have identified

another example of a ncRNA that works in trans. The action of SUT075 is in part locally as the

trans expression of SUT075 increases the expression of the adjacent essential gene PRP3, but

there is also the possibility that SUT075 acts elsewhere in the cell. As transcription of SUT075

produces an RNA that works in trans we investigated yeast ribosome profiling data and found

that SUT075 does not associate with ribosomes so is unlikely to be translated into protein [34].

To date only a few examples of ncRNAs working in trans have been identified. The Ty1 RTL

CUT ncRNA has been found to regulate Ty1 expression in trans [72] and the ncRNA PHO84

can work in trans to silence genes [73]. Recent work has found two new trans acting SUTs sug-

gesting that trans acting ncRNAs may be more prevalent than previously thought [30]. Our

identification of SUT075 as another trans acting ncRNA supports the view that there may be

more trans acting ncRNAs identified in the future. Overall, analysis of these ncRNAs, initially

identified as being essential, has revealed that the transcription of ncRNA can both positively

and negatively influence the expression of adjacent genes or produce an RNA that can function

on its own, indicating that regions of the genome identified as producing SUTs and CUTs are

functional and do not represent just transcriptional noise.

By exploiting the yeast ncRNA deletion collections we produced a large array of phenotypic

data which is a useful resource for providing a snapshot of ncRNA function in the cell. By

expanding the number of conditions investigated it is hoped that a picture can be built of how

ncRNAs contribute to the fitness of cells in different environments. Here by exploring individ-

ual examples of ncRNA we have determined the molecular function of SUT527 and also

showed that SUT075 works in trans, expanding the repertoire of cellular functions that require

ncRNAs. As the characterization of the numerous ncRNAs continues, the use of ncRNA dele-

tion collections in large-scale functional and interaction studies will ultimately provide infor-

mation on how ncRNAs fit into the functional framework of the cell.

Methods

Strains and primers

All S. cerevisiae strains and primers used are listed in S17 Table and S18 Table. Individual

deletion strains or the collection of deletions strains are available on request.

Deletion strain and heterozygous deletion strain pool construction

Methods for the construction of the deletion strain collections have been previously described

[35]. In preparation for chemostat continuous culturing of the heterozygote collection, a pool

of the deletion strains was prepared. A -80˚C stock of heterozygous ncRNA deletion strains

were grown overnight at 30˚C in liquid YPD and the OD600 of each strain in the microtitre

plate was read using a FLUOstar OPTIMA plate reader (BMG Labtech). Subsequently each

strain was normalised to an OD600 of 0.1 and pooled.

Competition experiments in continuous (chemostat) culture

The diploid heterozygote ncRNA deletion collection pool was grown in chemically defined F1

medium limited for glucose (carbon limitation) or nitrogen at 30˚C and 36˚C. The pooled het-

erozygous deletion strains were also grown in F1 medium limited for glucose or nitrogen at

30˚C in the presence of 100mM LiCl. The diploid heterozygote ncRNA deletion collection

pool was grown in batch culture for 24hrs and then switched to continuous culture where it

took about 42 hrs to reach steady state. Steady state growth conditions were maintained for 30
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generations. Samples were taken at the Pool (P), Batch (B), Early Steady State (ESS, 48 hours

after switching to continuous culture), Mid Steady State (MSS, after 20 generations) and Late

Steady State (LSS, after 30 generations) stages then processed for Illumina sequencing of the

barcodes to determine the abundance of each strain. Two biological repeats were carried out

for each condition. Details of growth medium and continuous culture in chemostats are as

previously described [36].

Genomic DNA extraction, amplification of UPTAG and DOWNTAG

barcodes and Illumina sequencing (Bar-Seq)

Genomic DNA was isolated from samples using the Wizard Genomic DNA Purification Kit

(Promega) according to the manufacturer’s protocol. UPTAGs and DOWNTAGs were ampli-

fied with primers compatible with multiplexed Illumina sequencing. For the UPTAGs the for-

ward primer was 5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG

CTCTTCCGATCTGATGTCCACGAGGTCTCT and the reverse primer was 5’CAAGCAG

AAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

TCTGTCGACCTGCAGCGTACG. For the DOWNTAGS the forward primer was 5’-AAT

GATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTC

GAGCTCGAATTCATCGAT and the reverse primer was 5’CAAGCAGAAGACGGCATAC

GAGATNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGGTGTCGGT

CTCGTAG. The NNNNNN represents the 6-mer indexing tag used for multiplexing the dif-

ferent samples. Amplified TAGs were quantified with the KAPA library quantification kit

(KAPA Biosysytems) and 10nM of the TAG libraries was used for Illumina sequencing.

Illumina sequencing data analysis

Sequenced reads were trimmed to contain just the TAG sequence using Trimmomatic [74].

Trimmed reads were mapped to a database of the TAG sequences using Bowtie2 [75]. A TAG

was deemed to be identified if the trimmed sequenced read aligned to the full length of that

TAG with a maximum of 1 mismatch. Summed counts for each of the two TAGS for a deletion

strain were used as input for DESeq [76]. The Log2 fold change was determined between differ-

ent growth stages and the changes with a p value of< 0.05 and 1.5 fold change were identified.

Construction of RUF20 (SUT527) KanMX-TetO7 strain

Two primers, RUF20_P1 and RUF20_P2 (S18 Table) were designed to amplify the KanMX-
TetO7 cassette from plasmid pCM325 [65]. The resulting RUF20-KanMX-TetO7 cassette was

transformed into the strain CML476 [65]. The two ends of the cassette were homologous to

the start and 500bp upstream of the SUT527 gene to replace 500bp of the SUT527 promoter.

The successful transformants were selected on 200μg/ml YPD-G418 plates, confirmed by PCR

and the resulting strain was named CML/RUF20/tetO7.

Reverse transcription polymerase chain reaction (RT-PCR)

For RT-PCR, mRNA was isolated from 200μg yeast total RNA prepared by the hot phenol

method [77] with the SIGMA GenElute mRNA Miniprep kit according to the manufacturers

protocol and eluted in 100μl of elution buffer. The polyadenylated mRNA sample was treated

with 10 units of RQ1 DNase (Promega) in 1X DNase Buffer (Promega) and 200 units RNasin

(Promega) at 30˚C for 30 minutes. The reaction was then stopped by adding 2mM of EDTA

and incubation at 65˚C for 10 minutes. An equal amount of citrate buffered phenol (pH 5.3)

was added followed by vortexing for 1 minute and centrifugation at 15600g for 2 minutes. The
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polyadenylated mRNA was then precipitated from the aqueous phase by adding 0.1 volume of

3M sodium acetate (pH 5.3), 2.5 volumes of 100% ethanol and 10μg of glycogen. The sample

was precipitated at -20˚C for 30 minutes. The RNA was collected by centrifugation for 5 min-

utes and washed with 96% ethanol, pelleted again at 15600g and air dried. The pelleted sample

was resuspended in 16.25μl of water to be used for the first strand cDNA synthesis using the

OneTaq RT-PCR Kit (New England Biolabs). The procedure for cDNA synthesis and PCR

amplification was based on the manufacturer’s instructions. Primers for primer walking of the

SEC4 and TUB2 coding sequence and 3’ UTR are listed in S18 Table.

Quantitative Real Time-PCR (qRT-PCR)

To determine the expression of genes, cells were grown to an OD600 of 0.5 prior to RNA

extraction using the Qiagen RNeasy Mini Kit. RNA concentrations were determined with a

NanoDrop Lite Spectrophotometer. The GoScript Reverse Transcriptase was used for cDNA

synthesis with 200ng of RNA. Quantitative RT-PCR was performed on the cDNA using iTaq

universal SYBR green Supermix (BioRad) in a CFX Connect Real-time PCR Detection System

(BioRad). qPCR cycling conditions were as follows: initial denaturation 95˚C for 3 mins; 35

cycles of 95˚C for 45 secs, 58˚C for 45 secs and 72˚C for 3 mins; final extension of 72˚C for 5

mins. ACT1 was used as a reference gene. The Ct values were used to measure the expression

of each gene according to the 2-ΔCt method [78]. Sequences for the oligonucleotides used can

be found in the S18 Table. Using the ΔΔC method and ACT1 as a reference gene, the fold

change (2^) in expression, relative to the wild-type was calculated. Error bars are calculated

using each of the three independent biological samples. P values were calculated using the

Welch two sample t-test.

Cloning of SEC4 and SUT527 (RUF20) genes

The open reading frame plus 500bp upstream and 250bp downstream of SEC4 (129943–

131331), which contains the approximately 1.4kb BamHI/EcoRI fragment that complements

SEC4 function [64] was amplified with Phusion DNA polymerase (New England Biolabs) and

primers SEC4F-Bam and SEC4B-Eco (S18 Table). The open reading frame plus 500bp

upstream and 500bp downstream of SUT527 (13146–14586) was amplified with Phusion

DNA polymerase and primers RUF20F-Bam and RUF20B-Xba (S18 Table). PCR products

were then cloned into pRS413 to produce plasmids pRS413-SEC4 and pRS413-RUF20. The

correct SEC4 and SUT527 (RUF20) sequences were confirmed by sequencing.

Digoxigenin (DIG) and Dinitrophenol (DNP) labelling probes for

fluorescent in situ hybridization

Plasmids pRS413-SEC4 and pRS413-RUF20 were used as templates for production of tran-

scription templates for SEC4 and SUT527 (RUF20) probes by PCR for digoxigenin or dinitro-

phenol labelling using primer pairs SEC4T7/SEC4B_prob and RUF20FT7/RUF20B-prob (S18

Table). Digoxigenin and dinitrophenol labelled probes were made using 1μg of purified SEC4
or SUT527 (RUF20) PCR template with 1X DIG RNA labelling mix (Roche) or an identical

RNA labelling mix containing DNP-11-UTP in place of DIG-11-UTP in a transcription reac-

tion at 37˚C for 2 hours using T7 RNA polymerase (Promega) according to the manufacturer’s

instructions. Two units of RQ1 DNase (Promega) were then added and the mixture incubated

at 37˚C for 15 minutes. The sample was then purified using the Qiagen RNA Easy kit following

the manufacturer’s instructions. The RNA concentration was measured and 10μg of RNA

probe was used for the hybridization step.
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Fluorescence in situ hybridization slide preparation

Coverslips No.1 glass 22mm X 22mm (Fisher) were boiled for 30min in 250ml water with

0.1N HCl. Cover slips were then rinsed 10X with deionised water and stored in 70% ethanol.

Flamed coverslips were coated with 200μl of 1X poly-L-lysine solution (Sigma) for 2min then

excess poly-L-lysine removed and the coverslips air-dried. Coverslips were washed three times

with 250μl of water for 10 minutes and air dried. Slides were stored in single wells of a six-well

tissue culture dish at room temperature after air drying.

Cell growth and fixation of yeast

For cell fixation, cells were grown at 30˚C in 50ml YPD with our without doxycycline

(600μg/mL) to OD600nm = 0.5 and fixed in 4% formaldehyde (Sigma) for 45min at room

temperature. Cells were then centrifuged at 2,400g for 5min at 4˚C then resuspended in 1ml

buffer B (16mM KH2PO4, 83mM K2HPO4, 5.4% Sorbitol). Cells were then washed three

times with buffer B. Washed cells were resuspended in 1ml freshly-prepared spheroblast

buffer (Buffer B with 20mM Vanadyl Ribonucleoside Complex (NEB), 250 units lyticase

and 0.002% β-mercaptoethanol) and incubated at 30˚C for 15 minutes. Cells were washed

twice with 1ml ice cold buffer B and spun at low speed 2000g for 1 minute. Cells were resus-

pended in 1ml buffer B and 150μl of the cells were placed on coated coverslips and incu-

bated at 4˚C for 30 minutes to allow adherence of the cells to the coverslips. Cells were then

washed with 5ml ice cold Buffer B and 5ml of 70% ethanol was added, cells were then stored

at -20˚C.

Hybridization and detection

The stored coverslips were immersed in 1ml of the hybridization mix (50% formamide, 5X

SSC, 1mg/ml yeast tRNA, 100μg/ml heparin, 1X Denhardts, 0.1% Tween 20, 0.1% CHAPS,

5mM EDTA) in a six-well tissue culture dish. The dish was then sealed with parafilm and incu-

bated at 50˚C for 1 hour. Next, the hybridization mix was removed and another 2ml of the

hybridization mix was added with 10μg probe (either DIG-labelled probe alone for SEC4 or

SUT527/RUF20 for single detection or DIG-labelled probe for SEC4 and DNP-labelled probe

for SUT527/RUF20 for colocalization) then incubated overnight at 50˚C. Coverslips were

washed with 2ml 0.2X SSC three times. Then 2ml of blocking buffer (1X PBS, 0.1% TritonX-

100 and 10% horse serum) was added to the coverslips and incubated at room temperature for

1 hour. For single localization of DIG-labelled probes coverslips were incubated for 2 hrs with

HRP conjugated anti-digoxigenin monoclonal antibody (Jackson Immuno Research) diluted

to 1:500 with 250μl blocking buffer. Coverslips were then washed three times with 1ml block-

ing buffer and incubated for 2 hours with Alexa Fluor 488-conjugated anti-HRP antibody

(Jackson Immuno Research) diluted 1:100 with 250μl blocking buffer. For combined co-locali-

zation detection of DIG- and DNP-labelled probes coverslips were incubated for 2 hrs with

goat anti-DIG antibodies (Vector Laboratories) and rabbit anti-DNP (Vector Laboratories)

diluted to 1:500 with 250μl blocking buffer. Coverslips were then washed three times with 1ml

blocking buffer and incubated for 2 hours with mouse anti-rabbit Alexa Fluor 488 antibody

(Jackson Immuno Research) and mouse anti-goat Alexa Fluor 647 antibody (Jackson Immuno

Research) each diluted 1:100 with 250μl blocking buffer. Coverslips were then washed three

times with 1ml blocking buffer and the coverslips were placed on a slide with a drop of Pro-

Long Gold antifade reagent with DAPI (Molecular Probes by Life Technologies) and allowed

to set.
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Fluorescent microscopy and quantification of localization

For single localization slides were visualised with a Nikon Eclipse E600 microscope using a

100x/0.5–1.3 NA differential interference contrast oil Iris Apo objective. The images were cap-

tured using a Nikon DS-QilMc camera and NIS-Elements BR 3.2 software. To obtain the

quantitative data on RNA localisation in each strain, 100 cells were scored and analyzed for the

localization on whether RNA signals were localized to the cell membrane or not. Cells were

scored from three technical repeats. For colocalization images were collected on a Zeiss Axioi-

mager.D2 upright microscope using an Olympus UPlanFL 100x/1.30 Oil Ph3 0.17 objective

and captured using a Coolsnap HQ2 camera (Photometrics) through Micromanager software

v1.4.23. Specific band pass filter sets were used to prevent bleed through from one channel to

the next. Images were then processed and analyzed using Image J.

Fitness growth rate assays of deletion strains (monoculture)

In order to investigate the growth effects of the ncRNA deletions, strains were grown under

rich (YPD) and minimal (chemically defined F1 with carbon or nitrogen limitations) media

conditions at 30˚C. F1 medium was prepared in accordance to Delneri [36]. Carbon and

Nitrogen limited F1 media were modified to contain 0.25% glucose (w/v) and 0.46 g/liter

(NH4)2SO4, respectively. Growth measurements at OD595 were recorded using a BMG FLUOs-

tar OPTIMA Microplate Reader, as previously described by Naseeb and Delneri [79] for up to

70hr incubation time. Cells were grown at 30˚C from an OD600 0.1 and readings taken every

5min. Three technical replicates of three independent biological samples were used for each

deletion mutant strain and six technical replicates for the wild type strain. Graphs were pro-

duced using the grofit package of the R program. Area under curve (AUC) measurements for

the tA(UGC)O, SUT340, CUT873 and tT(AGU)J deletion mutants were calculated as per Nor-

ris et al [80], using the grofit::gcFitSpline R package.

Phenotypic analysis of the haploid deletion collection

To account for plate and batch effects, two biological replicates (MATa and MATα) and four

technical replicates of each haploid deletion mutant strain were prepared. Three technical rep-

licates of each plate were performed. Strains were removed from -80˚C storage and grown to

saturation at 30˚C in YPD, in 384 well microtitre plates. Using a Singer Rotor HDA, the 384

well cell cultures were stamped onto YPD plates and incubated at 30˚C for 2 days. Plates were

then imaged using a Bio-Rad Gel Doc XR system and images processed using SGAtools [81].

The average of the normalized colony size values for replicates of each biological were then

combined and used for analysis. We assumed normal distribution on the dataset and used the

standard EM algorithm to determine means and standard deviations from the mixture of

strains with normal growth and others with reduced fitness using Mixtools [82]. The P values

were calculated from the parameters that are closer to the wild-type and fitness differences

considered significant with p< 0.05.

Co-fitness analysis

Sequencing data were normalized and converted to Log2 fold change to allow comparison

between the pool and batch stage and between the early and late steady state across different

media and temperatures using DESeq2 [83]. To classify the deletion strains based on the

impact of growing conditions, we applied generalized linear model with normal approxima-

tion and selected those with significant response to our testing variables (P value� 0.05). As a

result, fitness profiles were simplified and clustered using the ad hoc partitioning around
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medroid method implemented in the R package cluster [84]. Finally, data analysis was con-

ducted to evaluate enrichment of SUT/CUT using exact binomial test. False discovery rate

(FDR) was calculated using R. The biological functions of neighboring genes to ncRNAs in

each cluster were identified using GO Term Finder in SGD.

Sense and antisense ncRNA overexpression plasmid construction

The PGAL1 promoter was amplified from pAV1901 [85] using Gal1.for and Gal1.rev primers

and cloned into the SalI site in pRS416 [86]. Next the CYC1 terminator was amplified from

p426-GPD [87] using Cyc1.for and Cyc1.rev primers and cloned into the BamHI site creating

pRS416Gal1Cyc1. The sense and antisense ncRNA expression plasmids were created using the

primer pairs in S18 Table. Phusion DNA polymerase (New England Biolabs) was used in all

amplifications according to the manufacturers protocol using yeast genomic DNA from

BY4742 as template. All sense and antisense ncRNA expression plasmids were cloned into

pRS416Gal1Cyc1 via the HindIII restriction site using the Gibson cloning technique [88]. All

constructs were verified by sequencing.

Complementation of ncRNA deletions with ncRNA overexpression

plasmids

Each ncRNA overexpression plasmid was transformed into the corresponding heterozygote

diploid deletion strain and wild-type BY4743. Cells containing the overexpression plasmids

were selected for on SD media lacking uracil (0.67% Bacto yeast nitrogen base without amino

acids, 2% glucose, 2% agar, 0.192% Yeast synthetic drop-out medium supplement without ura-

cil). Strains were then sporulated in liquid sporulation medium lacking uracil (1% potassium

acetate, 0.005% zinc acetate, 0.002% histidine and 0.003% leucine). Cultures were incubated

for 5 days at 25˚C followed by three days incubation at 30˚C. Tetrad dissection was performed

on SD media plates containing 2% Galactose and lacking uracil, using a Singer instruments

MSM 400 microdissector. After 4 days incubation at 30˚C, tetrad dissection plates were replica

plated on to SD media containing 2% Galactose, 300mg/L G418 and lacking uracil. Haploids

growing on the final plates were considered to contain the original ncRNA deletion cassette

and the ncRNA overexpression plasmid.

DNA was extracted (QIAamp DNA Mini Kit) from these haploids for PCR confirmation.

The presence of the ncRNA overexpression plasmid was confirmed using universal pRS416

primers (pRS416 F Primer ‘CATGGAGGGCACAGTTAAGC’ and pRS416 R Primer ‘ACCAC

ATCATCCACGGTTCT’). Deletion of SUT075 was confirmed using a primer specific to the

kanamycin cassette (kanC3 ‘CCTCGACATCATCTGCCCAGAT’) and a primer flanking the

insertion site (SUT075 confD ‘TGCAGGGAACAGATTTTAGATTT’). PCR reaction mix con-

tained: 0.5μM of each primer, 100ng of DNA template, 12.5μl MyTaq Red Mix (Bioline) and

water to 25μl. Cycling conditions: initial denaturation at 95˚C for 10min followed by 35 cycles

of 95˚C for 30sec; 57˚C for 30sec; 72˚C for 90sec and a final elongation of 72˚C for 5min. PCR

products were run on a 1.5% agarose gel.

Co-overexpression of EMP46 and GAL2
EMP46 and GAL2 overexpression plasmids were constructed following the same methodology

as the ncRNA overexpression above, with a few adjustments. The pBEVY-GA plasmid, contain-

ing a bi-directional GAL1/10 promoter, was used [89]. EMP46was inserted at the upstream site

via the BamHI site and GAL2 was inserted at the downstream site via the XmaI site. Three plas-

mids were constructed containing: 1) GAL2; 2) EMP46 or 3) GAL2 and EMP46. These plasmids

were transformed separately into BY4743 and selected on SD media lacking uracil (as above).
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Cultures of these overexpression strains were then serially diluted tenfold and stamped (using

the spot assay function of Singer Instrument’s ROTOR) onto SD media containing either 2%

Galactose (promoter activate) or 2% Glucose (promoter inactivate). Plates were then imaged

using a Bio-Rad Gel Doc XR system.

SUT075 complementation qRT-PCR

Cultures of BY4743 (+empty pRS416), ΔSUT075 (+empty pRS416) and the ΔSUT075 (+ sense

SUT075 recovery plasmid) heterozygote diploid strains were grown to an OD600 0.5 in liquid

SD media containing 2% galactose and lacking Uracil. Three biological replicates of each strain

were cultured. RNA was extracted and qRT-PCR was performed using the PRP3 forward and

reverse primers (S18 Table), following the methods previously described (Quantitative Real

Time-PCR).

Website building

YNCA was developed in RStudio [90], version 1.0.143, with the use of the packages shiny [91]

and rmarkdown [92]. Local server hosting relies on the open source version of Shiny-server.

The underlying server-side data processing is written in R [93], version 3.4.0. Lists and posi-

tions of chromosomal features in S. cerevisiae are taken from the Saccharomyces Genome

Database (www.yeastgenome.org). The type of features included are: known opening reading

frames, tRNA genes, snoRNA genes, centromeric and telomeric regions, autonomous replicat-

ing sequences (ARS), long terminal repeats (LTR), pseudogenes, LTR retrotransposons and

transposon internal genes.

Supporting information

S1 Table. Deleted ncRNAs. List of deleted ncRNAs, their genomic coordinates, distances to

closest protein start codons, deletion cassette primers, assigned Tag numbers and barcode Tag

sequences, deletion confirmation primer sequences and confirmation PCR product sizes.

(XLSX)

S2 Table. Deletion collections. Table contains four sheets: first sheet contains the list of the

heterozygous diploid collection with identified essential ncRNAs;the second sheet contains the

list of the haploid a mating type collection;the third sheet contains the list of the haploid α mat-

ing type collection; the fourth sheet contains the list of the homozygous diploid collection.

(XLSX)

S3 Table. Pool vs Batch and ESS vs LSS comparisons. Log2 Fold changes and P values for

Figs 1 and 3.

(XLSX)

S4 Table. Carbon-limited 30˚C data. Carbon-limited 30˚C data with Pool vs Batch plots and

ESS vs LSS plots.

(XLSX)

S5 Table. Carbon-limited 36˚C data. Carbon-limited 36˚C data with Pool vs Batch plots and

ESS vs LSS plots.
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S6 Table. Carbon-limited LiCl 30˚C data. Carbon-limited 30˚C LiCl data with Pool vs Batch

plots and ESS vs LSS plots.
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S7 Table. Nitrogen-limited 30˚C data. Nitrogen-limited 30˚C data with Pool vs Batch plots

and ESS vs LSS plots.

(XLSX)

S8 Table. Nitrogen-limited 36˚C data. Nitrogen-limited 36˚C data with Pool vs Batch plots

and ESS vs LSS plots.

(XLSX)

S9 Table. Nitrogen-limited LiCl 30˚C data. Nitrogen-limited 30˚C data with LiCl Pool vs

Batch plots and ESS vs LSS plots.

(XLSX)

S10 Table. Heterozygote collection–pool vs batch Top 50 and Bottom 50 most haplo-profi-

cient or haplo-insufficient.

(PDF)

S11 Table. Heterozygote collection–ESS vs LSS Top 50 and Bottom 50 most haplo-profi-

cient or haplo-insufficient.

(PDF)

S12 Table. Summary of heatmap data for Fig 4.

(XLSX)

S13 Table. Heterozygote collection—genes listed according to co-fitness groupings.

(PDF)

S14 Table. Haploid collection fitness data.

(XLSX)

S15 Table. Haploid collection–Top 50 and Bottom 50 most haplo-proficient or haplo-

insufficient.

(PDF)

S16 Table. Comparison of tRNA deletions in this study with tRNA deletions in Bloom-

Ackermann et al (2014).

(PDF)

S17 Table. Strains.

(PDF)

S18 Table. Primers.

(PDF)

S1 Fig. Fitness profiles of the tR(CCU)J, CUT248 and SUT233/CUT707 heterozygous

ncRNA deletion mutants in rich and minimal media conditions at 30˚C. ncRNA deletion

strains were tested individually for their fitness in YPD (A), nitrogen-limited (B) and carbon-

limited (C) chemically defined F1 media at 30˚C. Growth curves shown are expressed as the

mean growth from three replicates of three independent biological strains for each deletion

and from six replicate cultures for the wild type (BY4743) strain. Limitations in nitrogen or

carbon sources are indicated as Nlim (B) and Clim (C), respectively. Error bars are present in

all points and are indicated as the standard deviations from the replicates. All strains included

in the growth assays are represented by different colors as described in panel D.

(TIF)

S2 Fig. Overexpression of the CUT248 RNA sequence from a plasmid in a wild-type hap-

loid strain BY4741 results in a slow growth phenotype. The RNA sequence for CUT248 was
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cloned into a yeast expression vector under control of the yeast GAL1 promoter. The vector

was transformed into the wild-type BY4741 haploid strain and six independent single colonies

(1–6) were spotted by serial dilution on SD-Ura plates with either glucose or galactose contain-

ing plates. Plates were incubated at 30˚C for 48hrs. The expression vector alone (P), the vector

expressing the gene WWM1 known to cause lethality when overexpressed (N) and the BY4741

strain alone were also spotted by serial dilution on the same plates.

(TIF)

S3 Fig. Monoculture validation of selected haplo-proficient and haplo-insufficient pheno-

types. Monoculture validation, in a microplate reader, of four strains identified as being

haplo-insufficient or haplo-proficient during competition experiments in continuous culture.

Box plots are constructed using the area under curve (AUC) as parameter. (A) SUT340 and tA

(UGC)O heterozygote diploid deletion strains grown in C-limited F1 media at 36˚C. (B)

CUT873 and tT(AGU)J heterozygote diploid deletion strains grown in C-limited F1 media at

30˚C.

(TIF)

S4 Fig. Upset plots to visualize common haplo-insufficient (A) and haplo-proficient (B) fit-

ness profiles between different conditions in Batch to Pool experiments. Horizontal bars for

each condition shows the total number of strains with significant fitness differences at Log2

fold change greater than 1.50 and p-value less than 0.05. Connected black circles indicate com-

mon profiles across different conditions with vertical bars showing the number of intersec-

tions.

(TIF)

S5 Fig. Upset plots to visualize common haplo-insufficient (A) and haplo-proficient (B) fit-

ness profiles between different conditions in LSS to ESS experiments. Horizontal bars for each

condition shows the total number of strains with significant fitness differences at Log2 fold

change greater than 1.50 and p-value less than 0.05. Connected black circles indicate common

profiles across different conditions with vertical bars showing the number of intersections.

(TIF)

S6 Fig. Selected data from co-fitness analysis. Fitness profiles of selected ncRNA deletion

strains (A) SUT643; (B) SUT471; (C) SUT509. Heights represent Log2 fold change between

batch and pool or late and early steady state across the eight growth conditions (B_P:compari-

son between batch and pool; L_E: comparison between late and early steady state; Clim: car-

bon-limited medium; Nlim: nitrogen-limited medium). Colours represent direction of fitness

changes. Haplo-insufficiency is shown in blue, and haplo-proficiency is shown in bright red.

(TIF)

S7 Fig. Biological replicates of tetrad dissections for essential ncRNAs showing lethality.

Two additional biological replicates of the diploid knockout strains found to be essential with

the first replicate were sporulated and tetrads dissected to determine essentiality. All replicates

displayed a pattern (2 viable, 2 lethal) consistent with all the ncRNA deletions being essential.

(TIF)

S8 Fig. Shorter deletions of SUT527 that do not overlap with SEC4 are not essential. (A)

The different lengths of SUT527/RUF20 deletions are represented as blue arrows containing

the number of nucleotides deleted. Arrows with a blue gradient indicate that the deletion has

disrupted the 3’ UTR of SEC4. (B) Only two viable spores grew after diploid sporulation and

dissection for the 342nt deletion of SUT527/RUF20, indicating that this region of SUT527/

RUF20 is still essential (left panel). Four viable spores grew after diploid sporulation and tetrad
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dissection for the 242nt deletion of SUT527/RUF20, indicating that it is not essential (right

panel).

(TIF)

S9 Fig. Double stranded RNA is formed in the region of SEC4/SUT527 when RNAi is intro-

duced into yeast cells. Screen shot from genome browser for visualization of processed small

RNA-seq data for Genome-wide mapping of dsRNA from Wery et al. 2016, Molecular Cell

61:3790–392 (http://vm-gb.curie.fr/mw2). Red lines define the limits of the SEC4 transcript.

Black arrows point to the region of overlap between SEC4 3’ UTR and SUT527. dsRNA (red

peaks) is detected upon RNAi reconstitution.

(TIF)

S10 Fig. No change in SUT690 expression in the SUT259/691 deletion strain. Real time

PCR results to measure expression levels of SUT690 in the ΔSUT259/691 heterozygote diploid

deletion strain. The relative expression of SUT690 in the wild-type background is represented

by a shaded grey bar and as a shaded black bar in ΔSUT259/691 strain background. Using the

ΔΔC method and ACT1 as a reference gene, the fold change (2^) in expression, relative to the

wild-type was calculated. Error bars are calculated using each of the three independent biologi-

cal samples. P values calculated using the Welch two sample t-test. There is no significant dif-

ference (p = 0.72) in SUT690 expression between the wild type and ΔSUT259/691 strains.

(TIF)
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