
A methodology for procedural piano music composition 
with mood templates using genetic algorithms

ROCHA DE AZEVEDO SANTOS, Luisa, SILLA JR., Carlos and DA COSTA 
ABREU, Marjory <http://orcid.org/0000-0001-7461-7570>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/28011/

This document is the Accepted Version [AM]

Citation:

ROCHA DE AZEVEDO SANTOS, Luisa, SILLA JR., Carlos and DA COSTA ABREU, 
Marjory (2021). A methodology for procedural piano music composition with mood 
templates using genetic algorithms. In: 11th International Conference of Pattern 
Recognition Systems (ICPRS 2021). IET, 1-6. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


A methodology for procedural piano music composition
with mood templates using genetic algorithms

Luísa Rocha de Azevedo Santos; Carlos Nascimento Silla Jr. ∗and
Márjory Da Costa-Abreu †

Keywords: music composition; music emotion; music
mood; genetic algorithm; procedural content generation

Abstract
Creating music in an automatic way has been studied since
the beginning of artificial intelligence. One of the biggest
obstacles of music generation is the vagueness and sub-
jectivity of the mood or emotion transmitted by a music
piece. In this work, we experiment with the generation of
piano music using template pieces, represented in MIDI
format, as a mood directive. We generated a population
of random pieces for templates of two opposing moods -
happy and sad - and evolved them with a genetic algo-
rithm until their intended mood was close enough to their
respective templates. The fitness function that we im-
plemented uses MIDI statistical features to calculate the
distance between the given piece and the template. The
generated music pieces were evaluated by human listen-
ers thorough a questionnaire. This evaluation has shown
that the generated music pieces were able to express the
same mood as the template. However, they still sounded
computer-generated, probably due to the lack of rhythm
regularity and synchronicity.

1 Introduction
The area of music generation has been increasingly ex-
plored throughout the years [9, 15]. The approaches vary
from Markov models or hidden Markov models [22], to
neural networks [1], evolutionary algorithms [20], and sev-
eral other methods [12].

Traditionally, however, music generation researches fo-
cus only on generating good music, without considering
that whoever uses the system may want to use the music
for a specific situation, so they might need it to transmit
a particular feeling. Examples of this are the incidental
(background) music used in games [23] and movies [2].

It was observed that proprieties in music such as
scale modes, presence of dissonance, melody motion and
rhythm consistency can significantly influence the mood
of a musical piece [8], and that this mood can affect the
listener’s emotions in many ways [11].

∗2.PUC-PR, Curitiba, PR, Brazil, carlos.sillajr@gmail.com
†1.Sheffield Hallam University. Sheffield, South Yorkshire,

UK, m.da-costa-abreu@shu.ac.uk

Keeping that in mind, we decided to study the gener-
ation of music with a mood directive. We will experiment
with musical properties to see how they can influence the
mood of the final piece.

The goal of this work is to design a system that au-
tomatically generates a musical piece, given a template
piece as mood directive, without requiring in-depth knowl-
edge about music theory and composition. This template
piece may be any composition that suggests the intended
mood and respects the system’s limitations. This compo-
sition will be represented in MIDI [7] - Musical Instrument
Digital Interface: a widely used file format which can be
used both to play music and to represent it as a musical
score [10].

The generated music will have two parts: the melody,
a sequence of individual notes played one at a time that
gives identity to the piece; and the harmony, the back-
ground chords that accompany the melody.

A template piece with these two parts will be provided
to the system. After analyzing the piece and extracting
the most important features, the system will generate an-
other - unique - piece, also with these two parts, with
mood that is as similar as possible to the mood of the
original template.

The method we will experiment with is the genetic al-
gorithm [5] to evolve an initial population of randomly
generated pieces. The fitness function that we will use for
the algorithm is a similarity function that compares the
mood of the generated piece with the mood of the given
piece, using an euclidean distance calculated from musical
features. This way, a unique piece should be generated
since the starting population is also unique, but the mood
should still be similar to the template if it is well repre-
sented in the fitness function.

In the next sections, we will briefly present the musical
terminology used in this work and some of the previous
works that are related to ours (Section 2). Next, in Sec-
tion 3, we will describe our modelling for this problem,
including genetic operations and representation of a piece.
In Section 4, we will present the results of the tests that
we executed. Lastly, in Section 5, we will summarise the
results and propose future works.



2 Terminology and Related Works

In our work, we will use the terminology defined by Crotch
[3], where he defines the basis of modern musical theory
including notes, pitch, interval, octave, scale and oth-
ers.

Mcauley [17] described the time signature of a piece
as the specifier of two numbers: the first, the numerator,
is the size of a beat and the second, the denominator, is
the number of beats per measure. The reference time
unit used in this work for chords duration. The tempo
of a piece is the speed in which the notes are played -
indicated by the number of beats per minute (BPM).

Harmony is the sound that accompany the fore-
ground melody in a musical piece. Crotch [3] defines
harmony as a sequence of chords, where each chord is a
set of notes played at the same time or within a limited in-
terval of time. A sequence of chords is also called a chord
progression [21].

The notes in a chord may be played in an arpeggio,
in which each note is played one after another instead of
at the same time [21].

We will need a method to compute the distance be-
tween two music pieces. In this section we review the
works that model and evaluate some possible theoretical
features to describe a music piece.

There are several ways to extract features from songs,
depending of the type of data we have available. In this
work, we are using MIDI as a representation and for this
reason we are interested in works that deal with sym-
bolic music representation. Meanwhile, [6] also proposed
some metrics to classify music. The accuracy varied from
70.66% (12 classes) to 87.75% (2 classes).

The fitness function and generic operations varied a
lot in works that used genetic algorithm for music gen-
eration. The works [27, 28] used the judgment of a hu-
man listener to evaluate the individuals. A very com-
mon fitness function is a combination of rule-based objec-
tives [4,16,20,25,26]. Another common fitness function is
a classifier trained with human-made examples [13,14,19].

The works [16,26], like ours, also use a template piece
as a guide to the generated pieces, but differ from ours in
the representation of a piece and in the genetic operators.
Both works represented piece as a string of numbers, while
in our it is represented with an abstract model. For the
genetic operations, the work [26] used standard crossover
and mutation operations, while the work [16] used muta-
tion that altered the notes’ pitches and no crossover oper-
ator.

In our work, the mutation operations include other
variations based on musical theory, and the crossover op-
erator that we use also works in a different way: instead of
the standard cut-and-swap crossover, we combine musical
parts from three different parents.

3 Modelling

To reduce the scope of our problem, we limited the mu-
sic pieces (both input and output) to: using only diatonic
scales; a single track for the melody (monophonic); a single
track for the harmonic chords; no percussion (drums, cym-
bals, etc.) tracks; piano as the only possible instrument;
only one chord per measure; pieces with four measures;
a single arpeggio pattern for all four measures. Also, we
will not analyze patterns, repetitions or overall high-level
musical structure, and instead we will focus on generating
a single motif, long enough to communicate a feeling.

Instead of using typical strings of numbers as an in-
dividual, here we use an abstract hierarchical model to
represent a music piece, which will be an individual in
the population. This way, the application of the genetic
operators are more intuitive, since they modify abstract
musical properties instead of individual numbers.

In this model, a piece is as a tuple that contains: the
length of the piece in measures (integer value); the time
signature (two integer values, numerator and denomina-
tor); the BPM (float value); the piece’s scale; the fore-
ground melody; and the background harmony. Except for
the melody and harmony parts, all the other information
is obtained directly from the MIDI file’s header. The last
three fields are described in the next subsections.

A scale is a pair consisting of its root pitch, varying
from 0 to 11, and its mode, varying from 0 to 6. It
is important to note that a scale is represented by dis-
placements from the cannon scale, C major. The mode
value is the number of times the Major mode’s pattern
2-2-1-2-2-2-1 is displaced by one. That being said, each
mode is represented as: 0 - Ionian (Major); 1 - Dorian; 2 -
Phrygian; 3 - Lydian; 4 - Mixolydian; 5 - Aeolian (minor);
and 6 - Locrian.

A pitch, which in the MIDI file is represented by an
integer from 0 to 127, interpreted as the absolute sound
frequency. Here, it is converted to a pitch relative to its
scale, represented by: the pitch’s degree, a number from 0
to 6, which is the pitch’s position relative to the scale; the
pitch’s accidental (0 is natural, -1 is flat ([) and 1 is sharp
(])); and the pitch’s octave, relative to the scale’s root.

The melody is a set of notes, each one defined by: the
pitch being played; the time in beats in which this note is
played (also known as attack); and the duration in beats
of the note.

The harmony is a pair containing a sequence of chords
and the arpeggio pattern, a set of notes just like the
melody, used for the chords. Each chord is represented
by a pitch, which is the chord’s tonic relative to piece’s
scale (in this work, we use the lowest pitch in the chord
as its tonic). The tonic is then used to generate a scale,
which is the base scale for the arpeggio’s notes.

In our proposed genetic algorithm, each initial indi-
vidual will have the same length of the target piece, the
same number of notes in the melody and the same notes
in the arpeggio pattern. The generation of a random piece



follows the steps below:

1. The scale, BPM and tempo will be the same as the
target’s. The arpeggio structure - notes played rela-
tive to the chord’s root - were copied from the tem-
plate.

2. The start of each note is chosen by a random number
from the start of the piece to the end of it. The
number of notes in the piece will be the same as the
number of notes in the template.

3. The pitch and the duration of each note are uni-
formly generated from the range in the original piece
- from the shortest to the longest duration, and from
the lowest to the highest pitch.

After that, the musical features of each individual are
calculated and stored in a vector. This vector is used to
calculate the individual’s proximity to the template, which
is an Euclidean distance between the piece’s feature vector
and the template’s feature vector.

For the features, we selected some of the features pro-
posed by [18] that are applicable to our problem restric-
tions. The complete list of features that we implemented is
detailed in [24]. They are separated by classes: 10 rhythm
features, 14 pitch features, 13 note features and 15 in-
terval features. The rhythm features are calculated once,
the pitch and notes features twice each, and the interval
features three times, totalizing 109 features.

The final fitness of a piece p given the template t is

described as: f =
109∑
i=1

(αi ∗ pi − αi ∗ ti)2, where each αi

is the weight given to the feature i; pi is the feature i
extracted from piece p; and ti is the feature i extracted
from the template. We did not compute the square root of
the sum because the exact value of the distance was not
used; the summation is calculated only to compare and
sort individuals by distance.

Next, the population is sort by fitness, and a fraction
of the population with the fittest individuals (the elite) is
separated. The remaining individuals are replaced by new
ones in the next generation, created from a crossover of
elite individuals.

For the mutation, we defined three sets of mutation
operations. Each mutation operation is applied indepen-
dently, according to its rate.

The first set of mutation operations are applied to the
whole piece at once, since it changes the scale and rhythm
signatures. These operations are Change mode which
changes the scale mode, keeping the root key and the de-
grees of each note in the melody, using a random number
from 0 to 6; and Change BPM: changes a new BPM
value, from 50% to 150% of the current BPM.

This set of operations is applied to the notes in the
melody are Change start time which moves the note
start time, using a random float between the end of the
previous and the next notes in the melody; and Change

duration, which changes the note end time, using a ran-
dom float from the end of the previous note to the start
of the next note in the melody.

This set is applied to a set of pitches - both to
the melody and the chords’ tonics. These operations
are: Change pitch degree that changes scale degree
of the pitch, decreasing or increasing it by one scale step;
Change pitch accidental that changes the accidental of
the pitch, increasing or decreasing the pitch by a half tone
(one semitone); and Change octave which increases or
decreases all pitches by one octave.

There is a single crossover operation, which will oc-
cur with three selected individuals: the first one will pro-
vide the signature (scale and tempo), the second one will
provide the melody notes and the third one will provide
the chords. These three individuals are selected uniformly
from the set of elite individuals. To separate the elite set,
the population is sorted by fitness, and the n fittest indi-
viduals are selected as the elite.

4 Experiments and Results

During this section, we will indicate links to our mu-
sic showcase site, where reader can listen to the men-
tioned pieces, visualize their music sheets and download
the MIDI files.

We implemented our system using a Java library called
jMusic. The code is published on GitHub. For all tests,
we used four templates that were hand-made by us, two
“happy” pieces and two “sad”.

All the experiments were executed with a population
size of 60, and an elite size of 15. Due to time limitations,
we were not able to test variations of these values.

4.1 Human Evaluation

We published a questionnaire via Google Forms showing 4
templates, two “happy” ones and two “sad” ones, and also
2 procedurally generated pieces based on each template,
one using the random seed 01 and other using seed 12,
totalizing 12 pieces. We selected the fittest pieces from
the 4000th generation. For each piece - either a template
or a generated piece -, we asked the participants to: (1)
Rank the mood transmitted by the music piece, from 1
(sad) to 5 (happy); and (2) Evaluate how they thought
the piece was composed, being 1 (certainly by a computer)
to 5 (certainly by a human). In total 40 different people
answered: 20 with no music theory background, with 8 a
basic background, 9 intermediary and 3 advanced.

In general, the generated pieces transmit a mood sim-
ilar to the template it is based on. The pieces generated
from Happy2 and Sad2 were pretty close to the intended
mood, while with Happy1 they sounded slightly sadder,
and with Sad1 they sounded slightly happier.

1https://luisaras.github.io/piano-repo/#seed0
2https://luisaras.github.io/piano-repo/#seed1



In the case of the Happy1 pieces, we believe that the
chords in the harmony contributed for the sadder mood.
Both random seeds generated the same chord progres-
sion (vi-I-vi-IV), but this progression was not the same as
the one in the template (I-vi-IV-V). The first progression
may sound sadder because it contains two minor chords
(vi), while the second one only contains one. Besides this,
there may be something in the melody intervals that was
not captured by the features we calculate. The irregular
rhythm could also have contributed to the “weirdness” in
the piece, which disturbs the happy mood.

In the case of the Sad1 pieces, both pieces had the same
chord progression as the template, so it was not responsi-
ble for the mood difference. The generated pieces have a
little more note pitch variety, which usually makes music
sound happier, so this could have been the reason. This,
and the fact that the notes in the template are longer than
the notes in the generated pieces, and longer notes usually
sound sadder. Just like the Happy1 pieces, it could also
have been some interval information that was not taken
into account.

The listeners seemed to prefer the template pieces.
Among the templates, Happy2 was the only one that
sounded more like a computer-generated piece then like a
human-made one, and one of the pieces generated from it
sounded more natural than the original. It has likely hap-
pened because the beginning of the piece sounded slightly
dissonant.

It was reported by one of the people who answered
the questionnaire that sometimes the procedurally made
pieces could be identified by its lack of regularity and
melody-harmony synchrony in the rhythm, so this prob-
lem may be investigated in future works to make the pieces
sound more natural.

However, according to the results obtained from the
questionnaire, the piece with the smaller distance did not
necessarily perform the best to the human ear. This sug-
gests that the weights in the fitness function could still be
improved.

4.2 Feature Weights

After the results of the questionnaire, we decided to test
our fitness function separately. The initial weights were
chosen subjectively between a few combinations tested.
Some features could be normalized, but some could not,
so we had to manually try different configurations. What
piece actually sounds better is really a subjective matter,
so we did not try to find exact values for the weights.

For the initial tests, these weights were good enough
to evolve the population. Comparing the fittest individ-
uals from generations 1, 100, 1,000 and 4,000. We used
the template Sad1 to demonstrate it since it was the one
that showed the largest differences from one generation to
another. From generation 1,000 to 4,000 it did not show
a great improvement, but it is clear that from 1 to 100
the fittest individual was a lot different, sounding sadder.

From 100 to 1,000 it improved a little the intervals and
note durations.

After the results from the human evaluation, we com-
pared the performance of two versions of the fitness func-
tion: the one with the weights we proposed and the one
with all weights equal to 1. For this, we only generated
the initial population, without evolving it, and sorted it
by fitness using these weights.

We first compared these two weight configurations us-
ing the template Happy1. For each one, we uploaded a
pair of pieces, the best and worst. Being the first genera-
tion, it is expected that neither of the pieces are satisfac-
tory results, but we can still compare the best with the
worst of each configuration.

Both configurations selected reasonable pieces for the
fittest. The weighted fittest sounds a little less random
than the non weighted fittest, probably because of the
biggest weights given for the attack variation. The most
noticeable difference, however, is between the two least
fit pieces: the weighted one sounded way more dissonant
because of the high weights given for accidentals and dis-
sonant intervals, which means that the dissonant pieces
are way more penalized than the more harmonious ones.

However, our next test shows that this fitness func-
tion might be too “afraid” of selecting individuals with a
high incidence of accidentals and dissonance. Testing with
pieces generated with template Sad1 the non-weighted
version was able to select better the pieces that sounded
that most similar to the template - that is, it performed
better for the mood.

This demonstrated one of the most difficult parts for us
in choosing the weights: the balance between the impor-
tance of sounding natural and the importance of trans-
mitting the correct mood. The higher weight given to
attack variation and the accidental incidence were chosen
to avoid dissonance and randomity in the rhythm, both
elements that sound unpleasant and unnatural to the hu-
man ear. However, increasing these weights sometimes
makes the algorithm select pieces that do not have the
right mood. A possible solution to this is to separate the
generation of the melody, which will be focused on the
pleasantness of is sound, from the modification until it
sounds like the template. Another possible improvement
is to remove the weight given to dissonance and prevent
its occurrence by other means, like conditional mutation.

In summary, these results suggest that the fitness func-
tion that we initially proposed may work for some types of
template better than others. Different weight configura-
tions for the feature classes could be tested and evaluated
by other questionnaires in the future.

4.3 Mutation Rate

Now we will discuss the effects of the mutation rates in
the final results and the convergence of the individuals.
We noticed a great importance of the signature mutations
for the final mood. Even with static melody notes and



harmony chords, just changing the scale and the BPM of
the piece significantly change the mood, sometimes even
making the melody unrecognizable.

Instead of random individuals, we populated the sys-
tem using clones of one of our hand-made templates,
Happy1. With only these two mutation operations, both
with the weights 0.25, we evolved it to the 100th genera-
tion, using as a template the Sad1 music piece to make it
sound sad, and compared it to the original Happy1 piece.
The modified version sounds way slower, resulting from
the BPM mutation, and more dissonant, resulting from
the scale mode mutation.

As expected, note features did not appear in the list,
since they were kept the same in the modified version.
The biggest differences were in the intervals. The Sad1
piece has a lot more chromatic motion than Happy1 piece,
as well as other dissonant intervals, which helps the piece
sound more unsettling. Note density were the only rhythm
feature in the list, but had a really important role in the
mood, since it was what made the piece slower.

The inverse was also tested and we saw the biggest
differences between the original Sad1 piece and the fittest
piece from the 100th generation using Happy1 as template.
In this case, the final piece did not sound as happy as the
template, but it was probably because of the lack of har-
mony mutation, since the falling progression in the sad
piece did not change and has a significant influence in the
mood. However, it is noticeable that the modified version
sounds happier than the original. It sounds faster, be-
cause of the higher note density, and brighter, because of
the lower dissonance ratio and higher presence of stepwise
motion and other harmonic intervals.

In both cases, we can see some details that could still
be improved, like the excessively higher ratio of tritones
- an interval that sounds dissonant -, which could have
happened because of the lack of mutation in chords’ tonics
and melody pitches.

Next, we defined initial melody and harmony note mu-
tation rates, and also the melody rhythm mutation rates
(for change attack and duration, both, with 0.025). Next,
we evolved the population that were created without a
base piece for the melody, that is, randomly, through the
method described in Section ??. We executed the same
tests as the previous subsection.

The modified Happy1 version did sound a little sadder
than the original, but, compared to the one generated
with the signature mutation, this one is happier. This is
probably because of the higher note density, which did not
appear in the table, since it did not change. The falling
motion in the chords and the more dissonant intervals were
the most responsible for the sadder mood in the modified
version in this case.

The modified Sad1 version, however, still sounded too
sad. Since it could not change the note density, it would
always sound too slow.

The features that changed the most are basically the
same in both cases, but the qualities of the results were

very different. We believe that a greater number of occur-
rences of the tonic note would also make piece sound hap-
pier, since the tonic note does occur more in the Happy1
template.

We noticed, however, that the distances from these two
pieces to their templates where smaller than the distances
from the pieces generated with the signature mutation,
despite the latter ones sounding better. This is another
indicative that the weights given for the features are not
accurate.

With our initial mutation rates, we plotted the dis-
tance of the best individuals from generations 1, 100, 1000,
and 4000. The initial distance is very high and variable in
the first generation since it depends entirely on the ran-
dom seed. However, all pieces improved extremely fast
from the first generation to the 100th, to less than 10,000,
no matter how unfit was the first generation. From gener-
ation 100 to 1000, all of them improved significantly, but
some more than others. And from 1000 to 4000, some of
them still improved, but some had already converged, like
Happy2 (seed 1) and Sad2 (seed 0).

Except for Sad2 (seed 1), which reached a distance
way smaller than the others, all pieces have reached a
similar distance in generation 4000, which means that the
mutation rates are probably generic enough to work for
both happy and sad moods with little dependence on the
random seed.

Lastly, we tried to vary a little the mutation rates from
the initial parameters described in the previous subsec-
tions, to see if the populations would evolve faster. We
used the template Happy1 and evolved until generation
4000, using random seed 0. The distances are showed in
Table 1.

Mutation New Value Fittest Distance
- - 282.76
Signature (scale mode and BPM) 0.0005 88.56
Signature (scale mode and BPM) 0.025 228.43
Melody note attack 0.25 158.29
Melody note duration 0.25 73.80
Melody note degree 0.025 144.66
Melody note degree 0.25 1890.33
Melody note accidental 0.25 13772.98
Melody note octave 0.025 222.84
Melody note octave 0.25 297.79
Chord tonic degree 0.025 111.67
Chord tonic degree 0.4 569.49
Chord tonic accidental 0.25 183.77
Chord tonic octave 0.025 222.84
Chord tonic octave 0.4 297.79

Table 1. Distances of the fittest individuals to the tem-
plate, for each mutation rate variation.

From all the combinations, the best results seemed to
be the ones with a lower signature and higher note dura-
tion mutation rates. We believe that this happened be-
cause a change in the signature can drastically change
the mood, for better but also for worse, so many poten-
tially good pieces may be ruined by a wrong signature.
Also, a higher duration mutation rate could have helped
to find fitter individuals because the initial population has



all notes with full duration and, since the Happy1 has
some silent time in the melody, the initial rate of 0.025
could have made it too difficult to generate a piece with
better note duration.

The combination that performed the worst was the
change in the melody note accidental. This is expected,
since it was given a high weight to the accidental feature.
The only time this mutation is useful is when the template
has an accidental: after the piece gets the same number
of accidental notes as the template, this mutation ideally
should never happen again. If this rate is too high, though,
there is a high chance that some note in the melody re-
ceives an accidental, which would increase its distance a
lot.

These results suggest that the mutation rates should
be defined according to the feature weights. For this rea-
son, a conditional mutation - such as increasing the ac-
cidental mutation rate when the difference in accidental
ratio is high, and decreasing it when the distance is low -
could help the population to converge faster.

5 Conclusions
Our main objective with this project was to provide a way
to generate music automatically with some kind of direc-
tive for the mood expressed by the piece. Therefore, we
proposed a system where the user can provide a template
piece to direct the mood of the piece she or he needs,
and then unique pieces would be generated by the system
according to this mood.

We modelled a musical piece as an individual from a
population evolved with a genetic algorithm. The results
of our experiments demonstrated to be relatively effective
in its original goal, which is to generate pieces according to
the given mood template. We noticed that more weight on
the dissonance features helped to select the most pleasing
pieces, but not the most fitted for the mood described by
the template.

Moreover, the fittest piece was not always the most
natural-sounding either. The responses showed that, in
general, the generated pieces sound more artificial than
the hand-made ones. We made a few tests varying the
mutation rates to see if they could generate fitter individ-
uals in the same number of generations.

References
[1] A.E. Coca, R.A.F. Romero, and L. Zhao. Generation of com-

posed musical structures through recurrent neural networks based
on chaotic inspiration. In Neural Networks (IJCNN), The 2011
International Joint Conference on, pages 3220–3226. IEEE, 2011.

[2] A.J. Cohen. Music as a source of emotion in film, 2011.

[3] W. Crotch. Elements of musical composition, 1812.

[4] P. Donnelly and J. Sheppard. Evolving four-part harmony using
genetic algorithms. In European Conference on the Applications
of Evolutionary Computation, pages 273–282. Springer, 2011.

[5] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial intelligence
through simulated evolution, 1966.

[6] J. Grekow and Z.W. Ras. Detecting emotions in classical music
from midi files. In International Symposium on Methodologies for
Intelligent Systems, pages 261–270. Springer, 2009.

[7] R. Guerin. Midi power! the comprehensive guide, 2010.

[8] K. Hevner. Experimental studies of the elements of expression in
music. The American Journal of Psychology, 48(2):246–268, 1936.

[9] Hiller, L.A. and Isaacson, L.M. Experimental music: composition
with an electronic computer, 1959.

[10] T. Huang, G. Xia, Y. Ma, R. Dannenberg, and C. Faloutsos. Mid-
ifind: fast and effective similarity searching in large midi databases.
In Proceedings of the 10th International Symposium on Computer
Music Multidisciplinary Research, pages 209–224, 2013.

[11] C.L. Krumhansl. Music: A link between cognition and emotion.
Current directions in psychological science, 11(2):45–50, 2002.

[12] Y. LiChia, C. SzuYu, and Y. YiHsuan. Midinet: A convolutional
generative adversarial network for symbolic-domain music genera-
tion, 2017.

[13] M.Y. Lo and S.M. Lucas. Evolving musical sequences with n-gram
based trainable fitness functions. In IEEE Congress on evolution-
ary computation, pages 601–608, 2006.

[14] B. Manaris, P. Roos, P. Machado, D. Krehbiel, L. Pellicoro, and
J. Romero. A corpus-based hybrid approach to music analysis and
composition. In Proceedings of the National Conference on Arti-
ficial Intelligence, volume 22:1, page 839. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[15] H.H. Mao, T. Shin, and G. Cottrell. Deepj: Style-specific music
generation. In 2018 IEEE 12th International Conference on Se-
mantic Computing (ICSC), pages 377–382, Jan 2018.

[16] D. Matic. A genetic algorithm for composing music. Yugoslav
Journal of Operations Research, 20(1):157–177, 2010.

[17] J Mcauley. Tempo and rhythm. Music Perception, pages 165–199,
08 2010.

[18] C. McKay. Automatic genre classification of MIDI recordings.
PhD thesis, McGill University Canada, 2004.

[19] P. Mitrano, A. Lockman, J. Honicker, and S. Barton. Using recur-
rent neural networks to judge fitness in musical genetic algorithms,
06 2017.

[20] E. Ozcan and T. Ercal. A genetic algorithm for generating impro-
vised music. In International Conference on Artificial Evolution
(Evolution Artificielle), pages 266–277. Springer, 2007.

[21] W.A. Palmer. Scales, chords, arpeggios and cadences, 1994.

[22] D. Ponsford, G. Wiggins, and C. Mellish. Statistical learning of
harmonic movement. Journal of New Music Research, 28(2):150–
177, 1999.

[23] A. Prechtl. Adaptive music generation for computer games. PhD
thesis, The Open University, 2016.

[24] L.R.A. Santos. An analysis of procedural piano music composition
with mood templates using genetic algorithms, 2018.

[25] M. Scirea, J. Togelius, P. Eklund, and S. Risi. Affective evolutionary
music composition with metacompose. Genetic Programming and
Evolvable Machines, 18(4):433–465, 2017.

[26] C.K. Ting, C.L. Wu, and C.H. Liu. A novel automatic composition
system using evolutionary algorithm and phrase imitation. IEEE
Systems Journal, 11(3):1284–1295, 2017.

[27] N. Tokui and H. Iba. Music composition with interactive evolution-
ary computation. In Proceedings of the 3rd international confer-
ence on generative art, volume 17:2, pages 215–226, 2000.

[28] H. Zhu, S. Wang, and Z. Wang. Emotional music generation using
interactive genetic algorithm. In Computer Science and Software
Engineering, 2008 International Conference on, volume 1, pages
345–348. IEEE, 2008.


