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Abstract

The use of speech for system identification is an important and
relevant topic. There are several ways of doing it, but most are
dependent on the language the user speaks. However, if the
idea is to create an all-inclusive and reliable system that uses
speech as its input, we must take into account that people can
and will speak different languages and have different accents.
Thus, this research evaluates speaker identification systems on
a multilingual setup. Our experiments are performed using
three widely spoken languages which are Portuguese, English,
and Chinese. Initial tests indicated the systems have certain
robustness on multiple languages. Results with more languages
decreases our accuracy, but our investigation suggests these
impacts are related to the number of classes.

1 Introduction

Speech exists with the main reason to enable communication be-
tween humans. This communication translates into a sequence-
dependent and rule-based system that we call language. To talk
with one another, humans use a complex system to produce the
voice signal. Starting at the lungs, through the trachea, stimulat-
ing vocal cords and the larynx tube, using the pharynx cavity,
the tongue, vellum, mouth and nasal cavity to produce sound
finally. This procedure is detailed in [1, p. 5].

Speaker identification (SPiD) is a biometric branch of Au-
tomatic Speech Recognition field. This sub-field of speech
research focuses on identity recognition. A better definition
would be “deciding if a speaker is a specific person or is among
a group of persons.” [2]. On the other hand, speaker verification
is “[. . .] deciding if a speaker is whom he claims to be.” [2].
This problem can be further specified as open-set when the un-
known speaker is not enrolled in the system, and as closed-set
when everyone is registered [3]. Then, some systems rely on
the content of the signal, that is, a type of passphrase. Those
are classified as text-dependent, in contrast to text-independent
when the user can speak anything [4]. In this paper, we explore
closed-set text-independent speaker identification systems.

The literature has a great variety for this biometry. When
representing a speaker, the Mel-Frequency Cepstrum Coeffi-

cients (MFCC) and some variations are still widely adopted [5,
6, 7, 8, 9, 10, 11], even though the state-of-the-art has shifted
from it to i-vectors [10, 12] and then towards x-vectors [13].

Besides biometric features, classification has also improved
for SPiD. For long, GMM-UBM [4] and HMM [14] dominated
the field. However, other methods such as vector quantisation
(clustering) [15, 16] have their spots. Little research is made
for fuzzy classification [17, 18, 8, 19, 20], but the majority is
quite dubious when describing their methods for both models
and data. Furthermore, most recent research has converged to
Neural Network variants, such as Deep Neural Networks [21,
12, 5], Convolutional Neural Networks [22], and others [23, 24].
Meanwhile, the SPiD community has always speculated the
impact of language for the problem [25]. In fact, some studies
investigate this topic [26, 27] but they usually employ languages
with common ancestry or accent variations.

However, most of these works have a small dataset or do not
provide a better description of how to split the dataset or any sta-
tistical tests performed. Also, not much research has been done
for fuzzy models, even though they have provided decent re-
sults. Moreover, only [28] has considered Brazilian Portuguese
(BP) in their open-set classification. The low occurrence of
this language is due to its lack of resource for creating speech
technologies, as explored in our previous work [29]. Therefore,
we propose a method to verify how different languages (on
structure, accent, and ancestry), BP, English (EN), and Chinese
(CN), can affect fuzzy and typical classifier for the SPiD.

Our experiments are conducted on three databases, using
different classifiers. Then, after selecting the model with the
best performance for BP we add other languages and verify
its effects on classification. Results suggest that the typical
classification does not suffer from language variation, while
decent classification results are obtained for BP. Next, we
introduce our methodology describing how we prepare the data
for our experiments and our feature extraction setup.

2 Materials and Methods

In this work, we explore three distinct datasets on three dif-
ferent languages. The DARPA-TIMIT [30], the LapsBench-
mark16k [31], and the AISHELL-1 [32]. They provide data on
EN, BP, and CN, respectively. They were chosen because their
audio have equal sampling rate (16KHz), they are public and
free. Other available multilingual corpus: NIST SRE datasets,
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Figure 1: Samples from Portuguese, English, and Chinese (top
to bottom).

Call My Net Corpus [33], and more. However, most of them
are not free, which puts them over the budget of this research.
Each dataset is better detailed in their respective references.
Therefore, we limit ourselves to briefly describe them.

The DARPA-TIMIT is a free version of TIMIT. Recordings
in this dataset have 2.9s±0.8s of duration. The BP data from
LBM16K has 20 recordings per speaker, while their durations
are about 4.6s±0.8s. Finally, the AISHELL-1 provides a sub-
stantial amount of CN speech. With at least 300 samples per
speaker, and an approximated duration of 4.6s±1.3s. Figure 1
shows examples of different samples from each dataset.

Following, Table 1 summarises the main characteristics of
the datasets. The gender distribution from BP and EN are not
good compared to CN. However, since our goal is to investigate
multilingual SPiD, then overall gender is well distributed. Also,
the number of samples for each language is different. However,
they are balanced by under-sampling.

Dataset #Size #Speakers Gender (M/F) Lang

DARPA 6,300 630 70%/30% EN
LBM16K 700 35 72%/28% BP
AISHELL-1 141,200 400 47%/53% CN

Total 148,200 1,065 48%/52% —

Table 1: Summary of the datasets.

This section introduced the data adopted for this work and a
portion of the preparation for executing the experiments. Fol-
lowing, we introduce the classification methods.

3 Experimental Setup

This section presents the organisation of our data to test our
hypothesis, feature methodologies, and their respective settings.
Subsequent procedures were executed on a system with an
AMD Ryzen-5 1600 Six-Core Processor, Dual Channel 2×8GiB
DIMM DDR4 2400MHz, SSD Kingston A1000 R1500Mb/s
and W500Mb/s, [MSI] Radeon RX580 8G OC, 64-bit Pop!_OS
20.04 with Gnome 3.36.2.

First, we test the models with BP, then the EN speakers are
added, followed by CN. However, to reduce the number of tests

and for better visualisation, the BP+EN and BP+EN+CN are
tested only with the best BP classifier. Also, it is crucial to pay
attention to the growing number of classes as new languages
are added. To assess this problem, we perform 30 experiments
with around 34 classes from mixed languages. For that, we
randomly select 1/3 of data from each language (Figure 2b), this
time ignoring other characteristics from data.

3.1 Preparing the Data

First, we made sure all languages had similar sizes. Mainly, we
preserved gender, number of speakers and accents from datasets.
Also, DARPA-TIMIT had the least samples per speaker. Thus,
we execute an undersampling on AISHELL-1 and LBM16K
making them have 10 samples for each speaker through a
Roulette algorithm. Furthermore, BP has 35 classes, much
less than other languages. Therefore, some English speaker
had to be cut-off from experiments, resulting into 34 speakers.
In contrast, for CN which uses its development set with 40
speakers. Figure 2 gives an overview of the distributions.
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Figure 2: Original (a) and experimental (b) distribution.

3.2 Biometric Feature Extraction

Before extraction, the signals pass through an energy-based
voice activity detection. Then, we use the first 13 coefficients
from 40 MFCC, excluding the 0th. Frames are 25ms long with
10ms stride, a Hamming Window function, as well as a 512
point DFFT. Besides, we used 40 triangular filters spamming
from 300Hz to 3400Hz. Then, computing the ∆ and ∆∆,
and appending the logarithm energy, creating a 39-dimensional
MFCC feature vector. Finally, a cepstral mean subtraction is
applied to the data before training/testing to remove channel
and recording variations [4, p. 95]. The feature for a single
recording can be represented in the spectral form, as shown in
Figure 3.



0 100 200 300 400
Frame

2

6

10

14

M
F

C
C

0 100 200 300 400
Frame

2

6

10

14

M
F

C
C

(a) Brazilian

0 100 200 300
Frame

2

6

10

14

M
F

C
C

0 100 200 300
Frame

2

6

10

14

M
F

C
C

(b) English

0 100 200 300 400
Frame

2

6

10

14

M
F

C
C

0 200 400 600 800
Frame

2

6

10

14

M
F

C
C

(c) Chinese

Figure 3: MFCC spectrum for speakers on BP, EN, and CN.

3.3 Fine Tuning SPiD Systems

Below, we describe parameter search space for our experiments.
This procedure was performed with a grid-search implementa-
tion available at GitHub1, along with those hyperparameters and
a stratified 3-fold. We choose a stratified version to maintain the
class distribution, while a 3-fold guarantee a decent amount of
training samples. Furthermore, we use a Fuzzy C-Means (FCM)
and Fuzzy K-Nearest Neighbours (FKNN) from GitHub2, while
K-Nearest Neighbours (KNN) and Support Vector Machines
(SVM) are of the SKLearn library [34].

FCM have m varying in {1.5, 2, 2.5, 3}. The number of
clusters is fixed at 35, and tolerance at 0.2. Finally, we
use the Manhattan, Euclidean and Minkowski similarities.

FKNN have K ∈ {2, 4, . . . , 12}, similarities are Manhattan;
Euclidean; and Minkowski, m ∈ {1.5, 2, 2.5, 3}. Ini-
tialisation search L is fixed to 16.

KNN have variable K ∈ {2, 4, . . . , 12}, distances are Manhat-
tan; Euclidean; Minkowski; and DTW.

SVM has C and γ varying in {0.001, 0.01, 0.1, 1, 10}. The
linear, RBF, and sigmoid kernels are tested. We vary
the degrees in {1, 2, 3, 4, 5} for the polynomial kernel.
Residues are not considered.

4 Results

The experimental results are presented here. Not only the preci-
sion, but also the performance with respect to languages.

4.1 Fuzzy C-Means

This clustering method reaches a maximum accuracy score of
32.57% ± 4.88%, illustrated in Figure 4. Setting the fuzziness
m = 1.5 and the metric to Euclidean produces the best results.
Tuning m provided no significant improvement, in contrast to
variations on the distances.

4.2 Fuzzy k-Nearest Neighbours

This model had a much better performance, achieving 87.42%±
4.1% accuracy. This score is obtained with Euclidean similarity,

1See: https://github.com/thalesaguiar21/Gryds
2See: https://github.com/thalesaguiar21/Fuzzy
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Figure 4: FCM results for speaker recognition on BP.

2 neighbours, and m = 2. Therefore, it represents an absolute
54.85% improvement over FCM. This and the other scores are
presented in Figure 5. Besides, the classification degrades for
m > 2. This is evident by looking at bars with the same colour
at Figure 5. Also, notice that the best setup uses a small k.
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Figure 5: Results for Fuzzy k-Nearest Neighbours with different
configurations.

4.3 k-Nearest Neighbours

Again, the accuracy is inversely proportional to the number of
neighbours (Figure 6).

From Figure 6, the best value is 86% ± 3.14%, which is
achieved by Euclidean, Minkowski, and Manhattan metrics. We
take the last metric as the best, as it has the same performance
with better generalisation. Therefore, the best setup for KNN
is the Euclidean metric with k = 6. Also, the KNN results
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Figure 6: k-Nearest Neighbours accuracy for on BP.

represent an 1.42% attenuation over the FKNN.

4.4 Support Vector Machines

Here, almost every kernel achieves decent accuracy values. Both
Sigmoid and RBF get the highest score of 92.29%± 4.8%. They
reach this value using γ = 10−3 and C = 10. While the Linear
kernel is right behind with 92% ± 4.2% accuracy.
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Figure 7: SVM accuracy scores for BP.

Given this tiny difference between them, we decided to fur-
ther compare these kernels. In short, the Linear kernel has a
7.7% better performance per time, lower σ (Figure 7), smaller
test duration, and lower C; while losing in absolute accuracy
and γ. Since using a C = 10 can lead to a non-generic model,
we choose the Linear SVM configuration (SVML1-C01G01).
The SVML1-C01G01 is an 4.58% improvement over FKNN.
Results for Polynomial kernel are not displayed as their be-

haviour is very similar to Linear; thus not adding much for the
discussion.

4.5 Multilingual Experiments

This section explores the best configuration from mono-
lingual experiments into multilingual environments. Now,
SVML1-C01G01 is submitted to experiments with BP+EN and
BP+EN+CN. Results are presented in Figures 8 and 9.
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Figure 8: Results of Linear SVM on BP+EN dataset.

Results shown on Figure 8 have a similar behaviour from
monolingual SVM tests regarding C with no effect on accuracy
for γ ≤ 0.01. The best configuration on this dataset is still
C = 0.01 and γ = 10−1, achieving 87.97% ± 2.56% of accu-
racy. Therefore, a 4.03% decrease compared to the monolingual
experiments. Also, the number of mistakes of BP speakers by
EN is small when compared to the opposite, as presented in Fig-
ure 10a. Since we carefully extracted em processed our features
to remove any bias from languages, recording procedures, or
errors added while transforming the signal, these mistakes are
more likely related to language distinction than something else.
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Figure 9: Results of Linear SVM on BP+EN+CN dataset.

Next, adding CN as a third language to the dataset results
into 85.59% ± 1.32% accuracy, a 2.38% decrease compared to
BP+EN. Mostly, due to confusions between CN and EN speak-
ers, as shown in Figure 10b. From Figure 10 it is noticeable that
there is a few confusions between languages. Besides that, from
a total of 45 wrong classifications, 31% (28) are BP, 34% (31)
EN, and 45% CN. Next, a total of 30 tests are evaluated using
the same configuration from previous multilingual experiments
with smaller versions of the multilingual dataset. As average,
these experiments achieved 91.88%± 1.87%, 0.12% lower than
monolingual results.
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Figure 11: Results for randomly selecting 1/3 classes of each
language.

5 Discussion

Here, we discuss and compare the monolingual and multilin-
gual results. Using this discussion to verify our hypothesis
that closed-set speaker identification is language indepen-
dent. Our focus is to describe the results with respect to lan-
guages, rather than models performance. Even tough, we add a
short discussion of our fuzzy results.

The first model we evaluated was the FCM. It was ex-
pected to have a bad performance, but the results were surprising.
Then, FKNN provides a substantial improvement over the FCM.
While followed by a small attenuation from its crisp version,
the KNN. However, SVM provided the best performance.

Then, the FKNN had a decent score, surpassing its crisp
version by 1.42%. Even though not by a large margin, this value
can still improve with further tuning. Here, several membership
functions could be tested to better balance the model according
to the data. Thus, showing that fuzzy models can be as accurate
as their crisp versions; as well as their flexibility.

Results showed that adding a second language reduced the
model accuracy by 4.03%, and 6.41% when adding a third
one. Thus, indicating that our hypothesis would fail. However,
language is not the only variable to consider due to other charac-
teristics that can influence SPiD results. Our results can easily
be influenced by gender and number of speakers. From a total
of 45 wrong classifications, 31% (28) are BP, 34% (31) EN, and
45% CN; thus representing no bias. The same way for gender,
as male speakers appearing on 46% of them. Thus, no problems
are found when looking at genders for our results. Therefore,
discarding any influence from it.

However, some information from it is very interesting. CN
speakers hold 79.16% of opposite gender mistakes, that is, pre-
dicting a male speaker with a female or the other way around.

From this proportion, the female speakers represent a large
amount. Except by 1 test, every mistake of Chinese speaker by
English speaker is between female (CN) and male (EN). For
Portuguese, from a total of 9 Chinese females, only two are pre-
dicted as a female BP speaker. This suggests that Chinese males
voices are very distinct from both BP and EN males. While CN
females have a close relation to male voices.

Finally, we conducted experiments to assess the increasing
number of classes. By discarding gender distribution, we created
smaller datasets with approximately 34 speakers, 1 less than
monolingual size. Then, these experiments resulted into 91.88%
accuracy. Figure 11 compares our main results from each dataset
showing that result with our monolingual are only 0.12% above.
A fairly close score; thus indicating that consecutive reductions
of accuracy in our results are likely due to the increase in classes.

6 Conclusions

This paper presented results for closed-set text-independent
SPiD for multiple languages. It is crucial to keep in mind that
our objective was not achieving high accuracy. In this work, we
aim to investigate how SPiD systems performs in multilingual
environments. Our results, using the settings employed in this
work, languages have little influence on the system accuracy.

Some segments of this work can be improved or expanded.
First, most of our findings come to the conclusion that the
speaker identification system is language independent, but the
influence of the features are not investigated. A comparison
between different features, such as x-vectors or LPC could
enrich the discussion around multilingual SPiD. Furthermore, a
better method to evaluate the influence of the number of classes
could be used. These results were obtained through random
experiments. A better method would be to split and label each
language data, then test all its combinations. This way, one can
ensure that all speakers evaluated.
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