

Low-Pressure Plasma Nitriding Of Medical Grade Alloy Using HIPIMS Discharge

SHUKLA, Krishnanand, PURANDARE, Yashodhan, LOCH, Daniel <http://orcid.org/0000-0003-3252-0142>, SUGUMARAN, Arrunprabhu, KAHN, Imran, EHIASARIAN, Arutiun and HOVSEPIAN, Papken

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/27953/

This document is the Presentation

Citation:

SHUKLA, Krishnanand, PURANDARE, Yashodhan, LOCH, Daniel, SUGUMARAN, Arrunprabhu, KAHN, Imran, EHIASARIAN, Arutiun and HOVSEPIAN, Papken (2020). Low-Pressure Plasma Nitriding Of Medical Grade Alloy Using HIPIMS Discharge. In: I2RI Winter Poster Session, Virtual, 09 December 2020. (Unpublished) [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam Hallam University | Engineering Research Institute

National HIPIMS **Technology Centre UK**

Materials and

Figure 1. Schematic of Nitriding Setup

K. Shukla^a, Y. Purandare^a, D. Loch^a, A. Sugumaran^a, I. Khan^b, A. Ehiasarian^a and P. Hovsepian^a ^aNational HIPIMS Technology Centre UK, Sheffield Hallam University, ^bZimmer-Biomet UK

1.Introduction:										
CoCrMo is a biomedical grade alloy which is widely used in the manufacturing of	5. Results an	d Discu	ission:					- DC P	γ_{N} (111)	
orthopaedic implants such as hip and knee replacement joints because it has high	5.1 Crystallo	graphi	c struc	ture:					$\varepsilon(10)$	1)
hardness, adequate corrosion resistance, and excellent biocompatibility [K. Shukla et		8- ~ F	-		ID					
al., 2020].					ID C	lextu oofficion	Ire t T*%	-		
• However, the major concern is the release of toxic metal fons due to corrosion and wear of the allow which causes an allergic reaction in the human body [Öztürk et			-				1, 1 · 70		$\gamma_{N}(111)$))
al 2006]				D	CPN	86 [γΝ([]]) 、	<u>v</u>	Λ Λ	,
\bigstar Over the years various surface modification techniques including nitriding have been				H	L PN 2	l4:56 [γN	[(111)]			
used to improve the performance of CoCrMo (F75) alloy.	5.2 Thickness	Measu	iremen	it:			•			
✤ In the current work the material properties of a surface layer produced by a novel		DC PN						Untro	eated $\gamma(111)$	
low-pressure plasma nitriding process are described. Unlike state-of-the-art plasma								Ł	Λ	
nitriding based on a DC glow discharge,(DCPN) the new process utilises a HIPIMS			traditional and the second					Ł	ε (100) ε(10	01) ^γ (200)
discharge to further enhance the ionisation of the reactive gas Nitrogen in the vacuum		and the second	~~~~~							
chamber, [P. Hovsepian et. al, 2003].								30 35	40 4 5	50 55 60
2. Objectives:					Fie	oure 2. X	RD spectra	of DC F	21n[⁹] N and HIP	TMS PN $\gamma N(11)$
To improve the mechanical, tribological and corrosion performance of CoCrMo		\boldsymbol{X}		5µ	m FC	C structur	The whereas γ	N(200): H	ICP structur	e.
alloy by thermochemical plasma surface modification.		HLPN -	a sh	add saddireas a			2E5			
To enhance the process productivity by utilising highly ionised reactive gas plasma					38-					
generated by a HIPIMS discharge.		and the		and a	S.F.					
with the new technique to those obtained from layers produced by industry provided			at at	1 2 2 1	2 Carl		र्श			
nitrided specimen used as a benchmark.			Terres .	1000	R.S.		1 E5 -			
		4.5%	1 Stal	(A.S.			unts/s			
3. Methodology:			the second	5µ	m		C		and the second se	
• Nullang System. The experiments have been carried but in a flauzer fifte 1000-4 PVD system enabled with HIPIMS technology at the National HIPIMS Technology	Figure 3. SEN	[cross-	section	of D	CPN and H	II.PN				
Centre UK at Sheffield Hallam University.	Nitrided laver	thicknes	section ss of 1.4	43 un	n (achieved	in 20				
HIPIMS discharge was sustained on one pair of Nb and Cr targets.	hours) and 2.79	θμm (a	chieved	l in 4	hours) have	e been	0	500 100	0 1500 2000	2500 3000 3500
* The nitriding voltage was varied in a vide range, (between -600V and -1000V) for	measured for th	e DC P	N and H	HIPIM	S PN respec	ctively F	igure 4: SI	MS dept	Depth (nm) h profile of	CPN and HLF
process optimisation.	revealing that the	ne nitrid	ing rate	of the	e HIPIMS P	N was C	compared t	o DCPN	I, HIPIMS	PN allows alr
The other process parameters such as nitriding time (t) = 4 Hours, Total Pressure (P)	factor of 10 hig	her than	that of	the D	CNP.	fa	actor of two	b higher	nitrogen c	oncentration in
$= 10^{-3}$ mbar. and nitriding Temperature (T) $= 400^{\circ}$ C were kept constant.	53 Machani	ol ond	Tribal	ogios	1 Study	n	itrided laye	r at the c	control dep	th of 1.5 µm.
Industry provided specimen nitrided in a DC glow discharge at nitriding temperature (T) 400% and nitriding waltage of 1000V for 20 hours used for comparison				logica						
(1) = 400 C and intriding voltage of -1000 v, for 20 hours was used for comparison. Abbreviations: APS: as polished substrate HI PN: HIPIMS low pressure nitriding	Sr. No.	Нр	E	μ	Kc]	D _T	H/E	H^3/E^2	K-
DCPN. DC plasma nitriding		(GPa)	(GPa)		$(m^3N^{-1}m^{-1})$	SIMS	SEM-CS			\mathbf{A}_{Ic}
4. Characterisation:						(µm)	(μm)			(MPamm ^{1/2})
The properties of the nitrided layers were investigated by a vide range of advanced	CoCrMo	0	240	0.0	6 OOE-14			0.04	0.008	908
surface analytical techniques.		8	249	0.8	0.00E	-	-	0.04	0.008	
SEM, XRD, Nanoindentation, 5 mN (Hp), Vickers diamond indentation, 50 kgf (for	DC PN	20	276	0.6	2.20E ⁻¹⁵	2.1	1.43	0.07	0.105	950
fracture toughness K_{Ic}). Pin-on-disc test for tribological characterisation and										017
potentiodynamic polarisation test.		23	287	0.62	1.18E ⁻¹⁵	2.91	2.79	0.08	0.147	917
• Fracture toughness characterisation by calculating K_{Ic} value : $K_{lc} = \delta\left(\frac{1}{H}\right) = \left(\frac{1}{C^{3/2}}\right)$				///	DODN		c m		Sa La das	
		APS		M.	DC PN	The start	rach III		Can X	
		APS			DC PN	1	Tracks	1/	-uear bands	*
		APS	1/		DC PN		racks		bands.	*
Substantial Substa		APS			DCPN		Cracks		bands	
Load Be Tribolog Diffusio		APS			DC PN		racks		bands	
Load Bearing Tribological Diffusion De Nitrided Layer (1500-3000 HV)		APS		50.1	DC PN		10 µm		lieum	
Load Bearing Ca Tribological Prop $\downarrow \downarrow $	Figure 5: SE	APS M imag	es of th	50 r the inde	entation imp	pression i	^ν ^{racks} ^{10 μm} n Vickers	microhan	rdness test	for the untreat

Low-Pressure Plasma Nitriding Of Medical Grade Alloy Using HIPIMS Discharge

ID	Texture Coefficient, T*%
DC PN	86 [γN(111)]
HL PN	44:56 [γN(111)]

1):

PN most the

Figure 5: SEM images of the indentation impression in Vickers microhardness test for the untreated and various plasma nitrided alloys . Dense network of cracks observed for the DCPN case. The crack free indentation impression obtained with the HLPN sample demonstrates the high fracture toughness of this nitrided layer.

