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Supplemental Methods 44 

Vital registration completeness 45 

We use a Bayesian hierarchical modelling framework to account for VR systems that vary in 46 

completeness by municipality and over time (Figure S1). Our methods expand upon a similar 47 

procedure developed in Brazil for estimating life expectancy [1], where a Bayesian framework 48 

bypasses a lack of identifiability between the mortality rate and completeness estimate by 49 

incorporating an informed prior on the VR completeness. In this analysis, we incorporate 50 

information from the GBD [2] on subnational (for Brazil and Mexico) and national VR 51 

completeness (for remaining countries) as well as geographic patterns in under-5 VR 52 

completeness from past analyses [3] to generate priors on municipality-level VR coverage by two 53 

age groups (<15 year-old’s and 15+) and year (Figure S3). 54 

In the present analysis, we model different levels of VR completeness in children and 55 

adolescents under 15 years (<15) and for adults ages 15 years and over (15+). We model these 56 

age groups separately based on the available national VR completeness estimated in GBD and 57 

established literature and expert opinion [4]. We do not model VR completeness for adults if 58 

GBD completeness estimates for adults exceeds 95% in all years of available VR (Costa Rica and 59 

Colombia). Similarly, we do not model under-15 VR completeness if GBD estimates of 60 

completeness is greater than 90% in all years of VR data (Costa Rica, Guatemala, Mexico). We 61 

therefore model adult completeness in Ecuador, Guatemala, Mexico, and Brazil, and model 62 

under-15 completeness in Ecuador, Colombia, and Brazil. 63 

 64 

Underlying geographic variation in VR completeness 65 

In order to build priors on geographic variation in VR completeness, we used the underlying 66 

geographic variation in completeness in under-5 mortality. We estimated VR completeness in 67 

under-5 mortality by comparing the estimated number of under-5 deaths in each municipality 68 

from previous analyses [3], where they exist, to the reported number of under-5 deaths from VR 69 

data. Previous research produced estimates of under-5 mortality in Ecuador, Colombia, and 70 

Guatemala that do not rely on vital registration data and produced 1,000 draws of the number of 71 

deaths at the 5 x 5-km level [3]. In these three countries, we used these estimates to generate 72 
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underlying geographic variation in VR completeness. In Mexico and Brazil, we proceed with a 73 

slightly different methodology that leverages state-level estimates of completeness produced by 74 

GBD and that is described below.   75 

To generate estimates of underlying geographic variation in VR completeness in Ecuador, 76 

Colombia, and Guatemala, we first aggregated estimates of under-5 mortality from the 5 x 5-km 77 

grid cell level to each municipality at the draw level by year, such that we derived 1,000 draws of 78 

the number of under-5 deaths in each area 𝑗 and year 𝑡. We aggregated these estimates using 79 

the same method as our aggregation of covariates and population—we intersected each grid cell 80 

with the municipality-level shapefile to determine what fraction of the area of each grid cell fell 81 

within each municipality. For cells split across multiple units, we allocated the number of under-5 82 

deaths in proportion to area. These estimates denote the expected number of deaths in the 83 

under-5 age group used to inform the denominator for our initial VR completeness estimates 𝜋𝑗
∗.  84 

We use the number of reported VR deaths in each area for children under 5 as the 85 

numerator for our initial VR completeness estimates 𝜋𝑗
∗. Due to stochastic variation from year to 86 

year in the total number of deaths by area, especially in areas with low child populations, we 87 

aggregated VR deaths over all reported years to smooth the number of deaths over time. 88 

Nonetheless, after combining child VR deaths across all years in a given area, in some countries 89 

there are still areas that report zero deaths. Given that we do not believe completeness is zero in 90 

these areas and this likely represents stochastic noise, we used a simple spatial smoothing model 91 

to derive more robust estimates of reported under-5 deaths. The spatial smoothing model is 92 

outlined below:  93 

𝑑𝑗 ~ Poisson (𝐸𝑗 ⋅ 𝑒
𝛽0+ 𝑆𝑗+ 𝜖𝑗 ) 94 

𝜖𝑗 ~ N(0,  𝜎𝜀
2) 95 

𝑆𝑗 ~ ICAR(0,  𝜎𝑆
2) 96 

Where 𝑑𝑗  denoted under-5 deaths in a municipality across all years of available VR data, 97 

𝐸𝑗  represented the under-5 population summed over all years of available VR data, and 98 

𝑒
𝛽0+ 𝑆𝑗+ 𝜖𝑗  represented an estimate of the underlying mortality rate—a linear combination in log-99 

space of an intercept 𝛽0, spatially structured random effect 𝑆𝑗  and the unstructured random 100 

effect 𝜖𝑗. The spatially structured random effect 𝑆𝑗  is an intrinsic conditional autoregressive 101 
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model (ICAR) model [6]. The model was fit in R-INLA [5] using a variation of the Besag, York and 102 

Mollié (BYM) model [6] to “borrow strength” from the geographic pattern in reported VR deaths 103 

while still allowing for non-spatially structured variation. We used first-order queen contiguity of 104 

the spatial units to form the graph for the spatial model. We chose this model over the classic 105 

BYM model because it parameterizes the relationship between the spatially structured random 106 

effect 𝑆𝑗  and the unstructured random effect 𝜖𝑗  in terms of two hyperparameters: 𝜏 which is the 107 

marginal precision and 𝜑 which is the portion of the marginal variance described by the spatially 108 

structured random effect, which improves the interpretability of the hyperparameters. We used 109 

the uninformative default penalized complexity priors [6, 7] available in INLA for these 110 

hyperparameters: 111 

𝜑 = 𝑃𝐶(0.5, 0.5) 112 

𝜏 = 𝑃𝐶(1, 0.01) 113 

In the first case, this prior indicates a 50% probability that 50% or more of the variation is 114 

spatially autocorrelated. In the second, this prior indicates a 1% chance that the log precision is 115 

less than 1. After fitting the model, we calculate the smoothed number of VR under-5 deaths by 116 

using the posterior mean estimate of the mortality rate for each area 𝑗 and multiplying by the 117 

sum of the under-5 population over all years. We produce 1,000 draws (𝑖) of the underlying 118 

completeness 𝜋∗ for each area 𝑗:  119 

𝜋𝑗,𝑖
∗   =   

VR deathsj

𝑈5𝑀 𝑑𝑒𝑎𝑡h𝑠𝑗,𝑖
⁄  120 

There are certain areas where 𝑉𝑅 𝑑𝑒𝑎𝑡h𝑗 >  𝑈5𝑀 𝑑𝑒𝑎𝑡h𝑠𝑗,𝑖  and underlying completeness 121 

estimates are above 1. Given that we have no reason to believe certain areas are over-reporting 122 

deaths, we truncated completeness to either the 99th percentile of completeness draws in that 123 

municipality or 0.99, whichever is greater.  124 

 125 

Calibrating to national VR completeness by age group 126 

The methods outlined above produced estimates of subnational geographic variation in VR 127 

completeness by municipality in Ecuador, Colombia, and Guatemala, but this variation is not 128 

specific to year or age group. We proceed with two different frameworks, one for adult VR 129 

completeness estimates and one for under-15 completeness estimates. For both under-15 and 130 
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adults, we rescale the municipality-level completeness estimates such that the death-weighted 131 

aggregation matches the GBD national VR completeness estimates. 132 

For national adult VR completeness, GBD produces 1,000 draws (𝑖) of completeness for 133 

each country and year 𝑡,  Πt,𝑖 . We rescale our initial estimates of municipality-level VR 134 

completeness, 𝜋𝑗,𝑖
∗ , at the draw level such that the expected number of true deaths among adults 135 

in each area 𝑗 and year 𝑡, calculated as the number of reported adult VR deaths 𝑑𝑗,𝑡
𝑎𝑑𝑢𝑙𝑡  divided 136 

by completeness 𝜋𝑗,𝑖
∗  is equal to the total number of expected national deaths by year 𝐷𝑡

𝑎𝑑𝑢𝑙𝑡 . 137 

The total number of expected national deaths 𝐷𝑡
𝑎𝑑𝑢𝑙𝑡  is calculated as the sum of all municipality-138 

level adult VR deaths 𝐷𝑡
𝑎𝑑𝑢𝑙𝑡  =  ∑ 𝑑𝑗,𝑡

𝑎𝑑𝑢𝑙𝑡
𝑗  divided by the national GBD completeness Π𝑡,𝑖 . We 139 

rescale the municipality-level completeness estimates at the draw level in logit space to ensure 140 

completeness remains between zero and one while scaling the expected number of deaths to 141 

GBD by adding an adjustment factor 𝑐𝑡,𝑖
𝑎𝑑𝑢𝑙𝑡  as represented in the equation below for each 142 

country: 143 

∑ (
𝑑𝑗,𝑡

𝑎𝑑𝑢𝑙𝑡

logit−1(logit(π𝑗,𝑖
∗ + 𝑐𝑡,𝑖

𝑎𝑑𝑢𝑙𝑡))
⁄ )

𝑗

=  
𝐷𝑡

𝑎𝑑𝑢𝑙𝑡

Π𝑡,𝑖
⁄  144 

∑ 𝑑𝑗,𝑡
𝑎𝑑𝑢𝑙𝑡 = 𝐷𝑡

𝑎𝑑𝑢𝑙𝑡

𝑗

 145 

We calculated and applied 1,000 draws of the adjustment factor 𝑐𝑡,𝑖
𝑎𝑑𝑢𝑙𝑡  to each municipality-146 

draw of the initial completeness in year 𝑡 to produce 1,000 draws of initial completeness for 147 

each municipality and year: 𝜋𝑗,𝑡,𝑖
adult  =   logit−1(logit(π𝑗,𝑖

∗ + 𝑐𝑡,𝑖
𝑎𝑑𝑢𝑙𝑡)). 148 

  For under-15 VR completeness, we undertook a different approach given that GBD does 149 

not produce draws of child completeness. In this case, for each country and year 𝑡 we pulled 150 

1,000 draws of the estimated under-15 all-cause deaths from the GBD, 𝐷𝑡
𝑢𝑛𝑑𝑒𝑟15 . We then 151 

rescaled the expected number under-15 deaths in municipality 𝑗 and year 𝑡 to equal to the 152 

estimated number of under-15 deaths from GBD by applying an adjustment factor 𝑐𝑡,𝑖
𝑢𝑛𝑑𝑒𝑟15 to 153 

each municipality in logit space:  154 

∑
𝑑𝑗,𝑡

𝑢𝑛𝑑𝑒𝑟15

logit−1(logit(π𝑗,𝑖
∗ + 𝑐𝑡,𝑖

𝑢𝑛𝑑𝑒𝑟15 ))
⁄

𝑗

=  𝐷𝑡,𝑖
𝑢𝑛𝑑𝑒𝑟15 155 
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We calculated and applied 1,000 draws of the adjustment factor 𝑐𝑡,𝑖
𝑢𝑛𝑑𝑒𝑟15 to each municipality-156 

draw of the initial completeness in year 𝑡 to produce 1,000 draws of initial completeness for 157 

each municipality and year: 𝜋𝑗,𝑡,𝑖
under15 =   logit−1(logit(π𝑗,𝑖

∗ + 𝑐𝑡,𝑖
𝑢𝑛𝑑𝑒𝑟15`)). 158 

 159 

Completeness draws for Brazil and Mexico  160 

For Brazil and Mexico, we leverage state-level estimates of VR completeness for adults and 161 

children produced by GBD [2]. For state-level adult VR completeness, GBD produces 1,000 draws 162 

(𝑖) of completeness for each state 𝐽 and year 𝑡,  ΠJ,t,𝑖.These estimates of adult completeness at 163 

the state level are modelled directly in our small area estimation framework, where each 164 

municipality that nests within a state is assumed to follow the same prior and contributes to the 165 

same posterior level of VR completeness.  166 

 For under-15 completeness in Brazil, given that GBD does not produce draw-level 167 

completeness, we extracted 1,000 draws of estimated under-15 all-cause deaths for each state 𝐽 168 

and year 𝑡: 𝐷𝐽,𝑡,𝑖 . We then calculate draws of completeness by taking the ratio of the reported 169 

all-cause deaths for each state 𝐽 and year 𝑡 from VR data and 𝐷𝐽,𝑡,𝑖:  170 

𝜋𝐽,𝑡,𝑖
under15 =

𝑉𝑅 𝑑𝑒𝑎𝑡ℎ𝑠𝐽,𝑡
𝐷𝐽,𝑡,𝑖

⁄  171 

In a small number of state draws, completeness estimates are greater than 1 and these are 172 

truncated to 0.99. These estimates of under-15 completeness at the state level are modelled 173 

directly in our small area estimation framework, where each municipality that nests within a 174 

state inherits the same prior and contributes to the posterior for VR completeness.  175 

Prior specification  176 

The processes outlined above generate draws of both adult and under-15 completeness for each 177 

municipality (Ecuador, Colombia, Guatemala) or state (Brazil and Mexico) by year. To include 178 

these informed priors in our modelling framework, we characterized the distribution by fitting to 179 

a logit-normal distribution using maximum likelihood estimation. For area-municipality-years 180 

where all draws were truncated at 0.99, we fit the model with a mean of 0.99 and a standard 181 

deviation of 0.01 in logit space. 182 

 183 
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Statistical model 184 

We fit the following hierarchical generalized linear model for VR data, building on a model 185 

developed in prior modelling studies [8, 9] 186 

𝐷𝑗,𝑡,𝑎 ∼ Poisson(𝑚𝑗,𝑡,𝑎 · 𝜋𝑘,𝑡,𝑎∗ · 𝑃𝑗,𝑡,𝑎) 187 

𝛾1,𝑎,𝑡 ∼ LCAR: LCAR(𝜎1
2, 𝜌1,𝐴, 𝜌1,𝑇) 188 

𝛾2,𝑗 ∼ LCAR(𝜎2
2, 𝜌2) 189 

𝛾3,𝑗 ∼ LCAR(𝜎3
2, 𝜌3) 190 

𝛾4,𝑗 ∼ LCAR(𝜎4
2, 𝜌4) 191 

𝛾5,𝑗,𝑡 ∼ N(0, 𝜎5
2) 192 

𝛾6,𝑗,𝑎 ∼ N(0, 𝜎6
2) 193 

1
𝜎𝑖

2⁄  ~ Gamma(1, 1000) for 𝑖 ∈ 1, 2, 3, 4, 5, 6 194 

logit(𝜌𝑖) ~ Normal(0, 1.5) for 𝑖 ∈ 1𝐴, 1𝑇, 2, 3, 4 195 

where 𝐷𝑗,𝑡,𝑎 represents the number of HIV deaths in municipality j, year t, and age group a; 𝑚𝑗,𝑡,𝑎 196 

is the mortality rate in municipality j, year t, and age group a; 𝜋𝑘,𝑡,𝑎∗  is the VR completeness in 197 

municipality (Colombia, Ecuador, and Guatemala) or state (Brazil and Mexico) j, year t, and 198 

completeness age group 𝑎∗ (<15, 15+); 𝑃𝑗,𝑡,𝑎 is the population in municipality j, year t, and age 199 

group a; 𝛽0 is the intercept; 𝛽1 ∙ 𝑋𝑗  is the vector of covariates and associated regression 200 

coefficients; 𝛾1,𝑎,𝑡 describes the overall age-time pattern; 𝛾2,𝑗  describes spatial patterns that 201 

persist over age and time, 𝛾3,𝑗 · t describes area-specific deviations from the overall time 202 

pattern; 𝛾4,𝑗 · a describes area-specific deviations from the overall age pattern; 𝛾5,𝑗,𝑡  and 203 

𝛾6,𝑗,𝑎  allow for area-specific non-linear deviations from the overall time and age patterns, 204 

respectively.  205 

VR completeness is incorporated into the data generating model, and logit-normal priors 206 

on 𝜋𝑘,𝑡,𝑎∗ fit on empirical data as described above allow the model to distinguish between 207 

mortality rate 𝑚𝑗,𝑡,𝑎  and the VR completeness. Random effects 𝛾1,𝑎,𝑡 , 𝛾2,𝑗 , 𝛾3,𝑗 , 𝛾4,𝑗  were assigned 208 

a Leroux conditional autoregressive prior (LCAR) [10]. The full conditional distribution can be 209 

described by: 210 

 211 
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𝛾𝑖|𝛾𝑘~𝑖 , 𝜎2, 𝜌 ~ Normal (
𝜌 ∑ 𝛾𝑘𝑘~𝑖

𝑛𝑖 ∙ 𝜌 + 1 − 𝜌
,

𝜎2

𝑛𝑖 ∙ 𝜌 + 1 − 𝜌
 )  212 

 213 

where: 𝑘 ~ 𝑖 denotes the set of 𝑖’s “neighbors” (for spatial terms, municipalities that share a 214 

border; for temporal/age terms, adjacent years/age groups); 𝑛𝑗 is the number of neighbors in 215 

𝑘 ~ 𝑖; 𝜎2 is the variance parameter; and 𝜌 is the correlation parameter. These random effects 216 

allow for additional variation across space, time, and age that is not explained by the covariates. 217 

For each of the random effects, the variance (𝜎2) denotes the amount of variation, while the 218 

correlation (𝜌) determines how much smoothing takes place, 𝜌 ranged 0 to 1 with higher values 219 

indicating greater spatial smoothness. We assigned Gamma(0, 1000) hyperpriors for the 220 

precision of each random effect and Normal(0, 1.5) hyperpriors for the logit-transform of the 221 

correlation parameters. The random effects 𝛾5,𝑗,𝑡 and 𝛾6,𝑗,𝑎 were assumed to follow independent 222 

mean-zero normal distributions. 223 

We model 𝛾1 as an interaction between two conditional autoregressive (LCAR) 224 

distributions as defined above for age and time, respectively. This was specified according to the 225 

procedure described by Knorr-Held (i.e., a ‘Type IV’ interaction) [11]. This specification allows for 226 

smoothing over age group and time simultaneously, such that the level for a given age group and 227 

year is informed both by first-order neighbors (i.e., adjacent years in the same age group and 228 

adjacent age groups in the same year) as well as second order neighbors (i.e., adjacent years in 229 

adjacent age groups). For this distribution there are three hyperparameters: 𝜎2, which control 230 

the overall amount of variation, and 𝜌1,𝐴 and 𝜌1,𝑇  which control the smoothness over age and 231 

time, respectively. 232 

  233 
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Objectives and funding 

1 Define the indicator(s), populations (including age, 
sex, and geographical entities), and time period(s) for 
which estimates were made. 
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2 List the funding sources for the work. Manuscript: Declarations 
(Funding)  
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name/institution, population represented, data 
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that have potentially important biases (e.g., based on 
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 For data inputs that contribute to the analysis but were not synthesised as part of the study: 
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 For all data inputs: 
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data can be efficiently extracted (e.g., a spreadsheet 
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listed in item 5. For any data inputs that cannot be 
shared because of ethical or legal reasons, such as 
third-party ownership, provide a contact name or the 
name of the institution that retains the right to the 
data. 

Available through GHDx: 
http://ghdx.healthdata.org/recor
d/ihme-data/latin-america-hiv-
mortality-estimates-2000-2017  

Data analysis 

9 Provide a conceptual overview of the data analysis 
method. A diagram may be helpful.  

Manuscript: Methods; Figure S1-
S3 

http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
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10 Provide a detailed description of all steps of the 
analysis, including mathematical formulae. This 
description should cover, as relevant, data cleaning, 
data pre-processing, data adjustments and weighting 
of data sources, and mathematical or statistical 
model(s).  

Manuscript: Methods 

11 Describe how candidate models were evaluated and 
how the final model(s) were selected. 

Manuscript: Methods 

12 Provide the results of an evaluation of model 
performance, if done, as well as the results of any 
relevant sensitivity analysis. 

Manuscript: Methods 

13 Describe methods for calculating uncertainty of the 
estimates. State which sources of uncertainty were, 
and were not, accounted for in the uncertainty 
analysis. 

Manuscript: Methods  

14 State how analytic or statistical source code used to 
generate estimates can be accessed. 

Available through GHDx: 
http://ghdx.healthdata.org/recor
d/ihme-data/latin-america-hiv-
mortality-estimates-2000-2017 

Results and Discussion 

15 Provide published estimates in a file format from 
which data can be efficiently extracted. 

Available through GHDx: 
http://ghdx.healthdata.org/recor
d/ihme-data/latin-america-hiv-
mortality-estimates-2000-2017 

16 Report a quantitative measure of the uncertainty of 
the estimates (e.g., uncertainty intervals). 

Manuscript: Results 

17 Interpret results in light of existing evidence. If 
updating a previous set of estimates, describe the 
reasons for changes in estimates. 

Manuscript: Discussion 

18 Discuss limitations of the estimates. Include a 
discussion of any modelling assumptions or data 
limitations that affect interpretation of the estimates. 

Manuscript: Discussion  

 269 

  270 

http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
http://ghdx.healthdata.org/record/ihme-data/latin-america-hiv-mortality-estimates-2000-2017
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Supplemental Figures 271 

Figure S1: Analytical process overview 272 

 273 

 274 
 275 

Figure S1: Analytical process overview. The process used to produce HIV mortality estimates by 276 

age, sex, year, and municipality involved three main parts. In the data processing steps (green) 277 

data were identified, extracted and prepared for use in the HIV mortality model. In the modeling 278 

phase (orange) we used data and covariates in a hierarchical linear effects model. In the post-279 

model processing (blue) we calibrated mortality estimates to national GBD 2017 estimates, 280 

aggregated mortality estimates to the state level, and calculated the number of HIV deaths.  281 

  282 
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Figure S2: Analytical process for VR data 283 

 284 

 285 
 286 

Figure S2: Analytical process for VR data.  The process used to process VR data for our analysis 287 

consisted of three main parts. In the data input steps (grey) country specific shapefiles and 288 

location hierarchies were acquired to match to raw VR data. In the location formatting steps 289 

(green) we matched VR data to stable areas over the years of study. In the geo-matching and 290 

redistribution phase (blue) we produced a stable shapefile over the years of study and raw VR 291 

data was processed using cause of death redistribution as outlined in GBD 2017. At the end of 292 

this process, we produced HIV mortality data matched to stable municipalities within each 293 

country.  294 

  295 
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Figure S3: Analytical process for VR completeness priors 296 

 297 

 298 
 299 

Figure S3: Analytical process overview for VR completeness priors. The process used to process 300 

VR data for our analysis consisted of three main parts. In the initial completeness steps (green) 301 

for Colombia, Ecuador, and Guatemala, draws of initial completeness were produced using 302 

under-5 mortality estimates. In the calibration to GBD steps (blue) state- or municipality-level 303 

initial completeness estimates were calibrated to GBD 2017 using draws of national adult 304 

completeness or under-15 national deaths. In the final completeness steps (orange) a logit-305 

normal prior was fit to draws of completeness to generate a final completeness prior used in the 306 

modeling process. 307 

  308 
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Figure S4: Model alignment with GBD, Brazil 309 

 310 
Figure S4: Model alignment with GBD, Brazil.  Comparison of the annual ratio of national HIV 311 

mortality from GBD and 1,000 draws of annual national HIV mortality in children under-15 (<15) 312 

and adults (15+) by sex across the entire range of study (2000 to 2017). The model used in the 313 

analysis that includes prior completeness 𝜋𝑘,𝑡,𝑎∗  (‘Completeness’) is shown compared to a model 314 

without any prior information on completeness (‘Standard’). Each point represents the median 315 

of the draws of the raking factor, the bar represents 2.5th and 97.5th quantile of the draws, and 316 

the density curve represents the relative frequency of the draws. A raking factor closer to 1 317 

(dotted line) indicates better alignment between model results and GBD estimates.  318 
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Figure S5: Model alignment with GBD, Colombia 319 

 320 
Figure S5: Model alignment with GBD, Colombia.  Comparison of the annual ratio of national HIV 321 

mortality from GBD and 1,000 draws of annual national HIV mortality in children under-15 (<15) 322 

and adults (15+) by sex across the entire range of study (2000 to 2017). The model used in the 323 

analysis that includes prior completeness 𝜋𝑘,𝑡,𝑎∗  (‘Completeness’) is shown compared to a model 324 

without any prior information on completeness (‘Standard’). Each point represents the median 325 

of the draws of the raking factor, the bar represents 2.5th and 97.5th quantile of the draws, and 326 

the density curve represents the relative frequency of the draws. A raking factor closer to 1 327 

(dotted line) indicates better alignment between model results and GBD estimates. 328 

 329 

  330 
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Figure S6: Model alignment with GBD, Costa Rica 331 

 332 
Figure S6: Model alignment with GBD, Costa Rica.  Comparison of the annual ratio of national 333 

HIV mortality from GBD and 1,000 draws of annual national HIV mortality in children under-15 334 

(<15) and adults (15+) by sex across the entire range of the study (2014 to 2016).  We do not 335 

model prior completeness for Costa Rica, and we show the final model without any prior 336 

information on completeness (‘Standard’). Each point represents the median of the draws of the 337 

raking factor, the bar represents 2.5th and 97.5th quantile of the draws, and the density curve 338 

represents the relative frequency of the draws. A raking factor closer to 1 (dotted line) indicates 339 

better alignment between model results and GBD estimates. 340 

 341 
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Figure S7: Model alignment with GBD, Ecuador 342 

 343 
Figure S7: Model alignment with GBD, Ecuador.  Comparison of the annual ratio of national HIV 344 

mortality from GBD and 1,000 draws of annual national HIV mortality in children under-15 (<15) 345 

and adults (15+) by sex across the entire range of study (2004 to 2014). The model used in the 346 

analysis that includes prior completeness 𝜋𝑘,𝑡,𝑎∗  (‘Completeness’) is shown compared to a model 347 

without any prior information on completeness (‘Standard’). Each point represents the median 348 

of the draws of the raking factor, the bar represents 2.5th and 97.5th quantile of the draws, and 349 

the density curve represents the relative frequency of the draws. A raking factor closer to 1 350 

(dotted line) indicates better alignment between model results and GBD estimates. 351 

 352 

  353 
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Figure S8: Model alignment with GBD, Guatemala 354 

 355 
Figure S8: Model alignment with GBD, Guatemala.  Comparison of the annual ratio of national 356 

HIV mortality from GBD and 1,000 draws of annual national HIV mortality in children under-15 357 

(<15) and adults (15+) by sex across the entire range of study (2009 to 2017). The model used in 358 

the analysis that includes prior completeness 𝜋𝑘,𝑡,𝑎∗  (‘Completeness’) is shown compared to a 359 

model without any prior information on completeness (‘Standard’). Each point represents the 360 

median of the draws of the raking factor, the bar represents 2.5th and 97.5th quantile of the 361 

draws, and the density curve represents the relative frequency of the draws. A raking factor 362 

closer to 1 (dotted line) indicates better alignment between model results and GBD estimates. 363 

   364 
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Figure S9: Model alignment with GBD, Mexico 365 

 366 
Figure S9: Model alignment with GBD, Mexico.  Comparison of the annual ratio of national HIV 367 

mortality from GBD and 1,000 draws of annual national HIV mortality in children under-15 (<15) 368 

and adults (15+) by sex across the entire range of study (2000 to 2017). The model used in the 369 

analysis that includes prior completeness 𝜋𝑘,𝑡,𝑎∗  (‘Completeness’) is shown compared to a model 370 

without any prior information on completeness (‘Standard’). Each point represents the median 371 

of the draws of the raking factor, the bar represents 2.5th and 97.5th quantile of the draws, and 372 

the density curve represents the relative frequency of the draws. A raking factor closer to 1 373 

(dotted line) indicates better alignment between model results and GBD estimates. 374 

 375 

  376 
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Figure S10: Mean and uncertainty in estimated HIV mortality in Brazil, 2017 377 

 378 
Figure S10: Mean and uncertainty in estimated HIV mortality in Brazil, 2017.  Estimated HIV 379 

mortality at the municipality level in 2017 in Brazil among men (a-c) and women (d-f). Mean 380 

estimates and lower and upper bounds of the 95% uncertainty intervals are shown in the top, 381 

middle, and bottom column, respectively.  382 
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Figure S11: Mean and uncertainty in estimated HIV mortality in Colombia, 2017 383 

 384 
Figure S11: Mean and uncertainty in estimated HIV mortality in Colombia, 2017.  Estimated HIV 385 

mortality at the municipality level in 2017 in Colombia among men (a-c) and women (d-f). Mean 386 

estimates and lower and upper bounds of the 95% uncertainty intervals are shown in the top, 387 

middle, and bottom column, respectively.  388 

  389 
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Figure S12: Mean and uncertainty in estimated HIV mortality in Costa Rica, 2016 390 

 391 
Figure S12: Mean and uncertainty in estimated HIV mortality in Costa Rica, 2016.  Estimated HIV 392 

mortality at the canton level in 2016 in Costa Rica among men (a-c) and women (d-f). Mean 393 

estimates and lower and upper bounds of the 95% uncertainty intervals are shown in the top, 394 

middle, and bottom column, respectively.  395 

  396 
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Figure S13: Mean and uncertainty in estimated HIV mortality in Ecuador, 2014 397 

 398 
Figure S13: Mean and uncertainty in estimated HIV mortality in Ecuador, 2014.  Estimated HIV 399 

mortality at the canton level in 2014 in Ecuador among men (a-c) and women (d-f). Mean 400 

estimates and lower and upper bounds of the 95% uncertainty intervals are shown in the top, 401 

middle, and bottom column, respectively.  402 

  403 



 26 

Figure S14: Mean and uncertainty in estimated HIV mortality in Guatemala, 2017 404 

 405 
Figure S14: Mean and uncertainty in estimated HIV mortality in Guatemala, 2017.  Estimated HIV 406 

mortality at the municipality level in 2017 in Guatemala among men (a-c) and women (d-f). 407 

Mean estimates and lower and upper bounds of the 95% uncertainty intervals are shown in the 408 

top, middle, and bottom column, respectively.  409 

  410 
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Figure S15: Mean and uncertainty in estimated HIV mortality in Mexico, 2017 411 

 412 
Figure S15: Mean and uncertainty in estimated HIV mortality in Mexico, 2017.  Estimated HIV 413 

mortality at the municipality level in 2017 in Mexico among men (a-c) and women (d-f). Mean 414 

estimates and lower and upper bounds of the 95% uncertainty intervals are shown in the top, 415 

middle, and bottom column, respectively.  416 

 417 

418 
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Figure S16: Estimated HIV mortality in Brazil by age group, 2017 419 

 420 
Figure S16: Estimated HIV mortality in Brazil by age group, 2017.  Estimated HIV mortality at the 421 

municipality level in 2017 in Brazil among men (a) and women (b) less than 20 years of age, 422 

among men (c) and women (d) between 20 and 59 years of age, and among men (e) and women 423 

(f) over 60 years of age.  424 
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Figure S17: Estimated HIV mortality in Colombia by age group, 2017 425 

 426 
Figure S17: Estimated HIV mortality in Colombia by age group, 2017.  Estimated HIV mortality at 427 

the municipality level in 2017 in Colombia among men (a) and women (b) less than 20 years of 428 

age, among men (c) and women (d) between 20 and 59 years of age, and among men (e) and 429 

women (f) over 60 years of age.   430 
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Figure S18: Estimated HIV mortality in Costa Rica by age group, 2016 431 

 432 
Figure S18: Estimated HIV mortality in Costa Rica by age group, 2016.  Estimated HIV mortality at 433 

the canton level in 2016 in Costa Rica among men (a) and women (b) less than 20 years of age, 434 

among men (c) and women (d) between 20 and 59 years of age, and among men (e) and women 435 

(f) over 60 years of age.   436 
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Figure S19: Estimated HIV mortality in Ecuador by age group, 2014 437 

 438 
Figure S19: Estimated HIV mortality in Ecuador by age group, 2014.  Estimated HIV mortality at 439 

the canton level in 2014 in Ecuador among men (a) and women (b) less than 20 years of age, 440 

among men (c) and women (d) between 20 and 59 years of age, and among men (e) and women 441 

(f) over 60 years of age.   442 
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Figure S20: Estimated HIV mortality in Guatemala by age group, 2017 443 

 444 
Figure S20: Estimated HIV mortality in Guatemala by age group, 2017.  Estimated HIV mortality 445 

at the municipality level in 2017 in Guatemala among men (a) and women (b) less than 20 years 446 

of age, among men (c) and women (d) between 20 and 59 years of age, and among men (e) and 447 

women (f) over 60 years of age.  448 
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Figure S21: Estimated HIV mortality in Mexico by age group, 2017 449 

 450 
Figure S21: Estimated HIV mortality in Mexico by age group, 2017.  Estimated HIV mortality at 451 

the municipality level in 2017 in Mexico among men (a) and women (b) less than 20 years of age, 452 

among men (c) and women (d) between 20 and 59 years of age, and among men (e) and women 453 

(f) over 60 years of age.  454 
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Supplemental tables   455 

Table S1: Merged municipalities by country to form stable geographical units 456 

Country State Group Areas 

Brazil Para 1 Mojui dos Campos, Santarem 

Brazil Piaui 1 Altos, Pau D'Arco do Piaui 

Brazil Piaui 2 Aroeiras do Itaim, Picos 

Brazil Piaui 3 Nazaria, Teresina 

Brazil Rio Grande do 
Norte 

1 Jundia, Varzea 

Brazil Alagoas 1 Coruripe, Jequia da Praia, Sao Miguel dos 
Campos 

Brazil Bahia 1 Barreiras, Luis Eduardo Magalhaes 

Brazil Bahia 2 Barrocas, Serrinha 

Brazil Espirito Santo 1 Colatina, Governador Lindenberg 

Brazil Rio de Janeiro 1 Mesquita, Nova Iguacu 

Brazil Santa Catarina 1 Criciuma, Balneario Rincao 

Brazil Santa Catarina 2 Laguna, Pescaria Brava 

Brazil Rio Grande do Sul 1 Acegua, Bage 

Brazil Rio Grande do Sul 2 Agua Santa, Caseiros, Ibiaca, Santa Cecilia do 
Sul, Tapejara 

Brazil Rio Grande do Sul 3 Almirante Tamandare do Sul, Carazinho 

Brazil Rio Grande do Sul 4 Arroio do Padre, Pelotas 

Brazil Rio Grande do Sul 5 Augusto Pestana, Boa Vista do Cadeado, Boa 
Vista do Incra, Bozano, Cruz Alta, Fortaleza dos 
Valos, Ijui 

Brazil Rio Grande do Sul 6 Barao de Cotegipe, Erechim, Jacutinga, Paulo 
Bento, Ponte Preta, Quatro Irmaos 

Brazil Rio Grande do Sul 7 Bento Goncalves, Pinto Bandeira, Pinto 
Bandeira 

Brazil Rio Grande do Sul 8 Caibate, Mato Queimado 

Brazil Rio Grande do Sul 9 Campinas do Sul, Cruzaltense 

Brazil Rio Grande do Sul 10 Canudos do Vale, Forquetinha, Lajeado, 
Progresso 

Brazil Rio Grande do Sul 11 Capao Bonito do Sul, Lagoa Vermelha 

Brazil Rio Grande do Sul 12 Capao do Cipo, Santiago, Sao Miguel das 
Missoes 

Brazil Rio Grande do Sul 13 Constantina, Novo Xingu 

Brazil Rio Grande do Sul 14 Coqueiro Baixo, Nova Brescia, Relvado 

Brazil Rio Grande do Sul 15 Coronel Pilar, Garibaldi, Roca Sales 

Brazil Rio Grande do Sul 16 Ernestina, Ibirapuita, Tio Hugo, Victor Graeff 

Brazil Rio Grande do Sul 17 Herval, Pedras Altas, Pinheiro Machado 

Brazil Rio Grande do Sul 18 Esmeralda, Pinhal da Serra 
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Brazil Rio Grande do Sul 19 Espumoso, Jacuizinho, Salto do Jacui 

Brazil Rio Grande do Sul 20 Imigrante, Teutonia, Westfalia 

Brazil Rio Grande do Sul 21 Itati, Terra de Areia 

Brazil Rio Grande do Sul 22 Lagoa Bonita do Sul, Sobradinho 

Brazil Rio Grande do Sul 23 Marata, Montenegro, Salvador do Sul, Sao 
José do Sul 

Brazil Rio Grande do Sul 24 Palmeira das Missoes, Sao Pedro das Missoes 

Brazil Rio Grande do Sul 25 Rolador, Sao Luiz Gonzaga 

Brazil Rio Grande do Sul 26 Santa Margarida do Sul, Sao Gabriel 

Brazil Mato Grosso do Sul 1 Agua Clara, Camapua, Chapadao do Sul, Costa 
Rica, Figueirao, Paraiso das Aguas 

Brazil Mato Grosso 1 Agua Boa, Nova Nazare 

Brazil Mato Grosso 2 Alto Boa Vista, Bom Jesus do Araguaia, 
Cocalinho, Novo Santo Antonio, Ribeirao 
Cascalheira, Sao Felix do Araguaia, Serra Nova 
Dourada 

Brazil Mato Grosso 3 Aripuana, Colniza, Rondolandia 

Brazil Mato Grosso 4 Caceres, Curvelandia, Lambari D'Oeste, 
Mirassol d'Oeste 

Brazil Mato Grosso 5 Claudia, Itauba, Nova Santa Helena 

Brazil Mato Grosso 6 Conquista D'Oeste, Pontes e Lacerda, Vale de 
Sao Domingos 

Brazil Mato Grosso 7 Ipiranga do Norte, Itanhanga, Tapurah 

Brazil Mato Grosso 8 Nova Mutum, Santa Rita do Trivelato 

Brazil Mato Grosso 9 Novo Sao Joaquim, Santo Antonio do Leste 

Brazil Mato Grosso 10 Sao José do Xingu, Santa Cruz do Xingu 

Brazil Goias 1 Anapolis, Campo Limpo de Goias 

Brazil Goias 2 Ceres, Ipiranga de Goias 

Brazil Goias 3 Gameleira de Goias, Silvania 

Brazil Goias 4 Itaja, Lagoa Santa 

Colombia Bolivar 1 Norosi, Rio Viejo 

Colombia Cauca 1 Caloto, Guachene 

Colombia Cordoba 1 Montelibano, San José De Ure 

Colombia Cordoba 2 San Andres Sotavento, Tuchin 

Colombia Sucre 1 Covenas, Santiago De Tolu 

Colombia Amazonas 1 El Encanto, Puerto Alegria 

Colombia Guainia 1 Barranco Minas, Mapiripana 

Costa Rica Puntarenas 1 Aguirre, Aguirre 

Ecuador Los Rios 1 Quinsaloma, Ventanas 

Ecuador Pichincha, Santo 
Domingo De Los 
Tsachilas 

1 Santo Domingo, Santo Domingo 
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Ecuador Esmeraldas, Santo 
Domingo De Los 
Tsachilas, Zona No 
Delimitada 

1 La Concordia, La Independencia, Plan Piloto, 
Quininde 

Ecuador Guayas, Santa Elena 1 Santa Elena, Santa Elena 

Ecuador Guayas, Santa Elena 2 La Libertad, La Libertad 

Ecuador Guayas, Santa Elena 3 Salinas, Salinas 

Guatemala Suchitepequez 1 Cuyotenango, San José La Maquina 

Guatemala San Marcos 1 La Blanca, Ocos 

Guatemala Huehuetenango 1 Concepcion Huista, Petatan 

Guatemala El Peten 1 La Libertad, Las Cruces 

Guatemala El Peten 2 Dolores, El Chal 

Guatemala Zacapa 1 San Jorge, Zacapa 

Guatemala Escuintla 1 La Gomera, Sipacate 

Mexico Guerrero 1 Azoyu, Cuajinicuilapa, Juchitan, Marquelia 

Mexico Guerrero 2 Chilapa de Alvarez, José Joaquin de Herrera 

Mexico Guerrero 3 Iliatenco, Malinaltepec, San Luis Acatlan 

Mexico Guerrero 4 Cochoapa el Grande, Metlatonoc 

Mexico Jalisco 1 Arandas, San Ignacio Cerro Gordo 

Mexico Mexico 1 Jaltenco, Tonanitla 

Mexico Mexico 2 San Felipe del Progreso, San José del Rincon 

Mexico Mexico 3 Luvianos, Tejupilco 

Mexico Quintana Roo 1 Bacalar, Othon P. Blanco 

Mexico Quintana Roo 2 Benito Juarez, Puerto Morelos 

Mexico Quintana Roo 3 Solidaridad, Tulum 

Mexico Veracruz de Ignacio 
de la Llave 

1 Martinez de la Torre, San Rafael 

Mexico Veracruz de Ignacio 
de la Llave 

2 Playa Vicente, Santiago Sochiapan 

Mexico Zacatecas 1 Santa Maria de la Paz, Teul de Gonzalez Ortega 

*Group number differentiates between multiple merged areas that are within the same first-administrative level unit  
 457 

  458 
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Table S2: Vital Registration data 459 

Country Years Reference NID* 

Brazil 2000–
2017 

Ministry of Health (Brazil). Brazil Mortality 
Information System – Deaths 2000-2017.Brasilia, 
Brazil: Ministry of Health (Brazil). 

153037, 153038, 
153039, 153040, 
153041, 153042, 
153043, 153044, 
153045, 153046, 
153048, 153049, 
153050, 173779, 
265226, 268267, 
317728, 386735 

Colombia 2000–

2017 

National Administrative Department of Statistics 
(DANE) (Colombia). Colombia Vital Statistics - 
Deaths 2000-2017. Bogotá, Colombia: National 
Administrative Department of Statistics (DANE) 
(Colombia). 

397407, 397409, 
397411, 397413, 
397415, 397417, 
397419, 397421, 
65267, 65199, 
57982, 265177, 
265178, 265179, 
265181, 265219, 
265220, 396797 

Costa Rica 2014– 
2016 

National Institute of Statistics and Censuses 
(Costa Rica). Costa Rica Registered Deaths 2014-
2016. San José, Costa Rica: National Institute of 
Statistics and Censuses (Costa Rica). 

398942, 325066,    
398943 

Ecuador 2004– 
2014 

National Institute of Statistics and Censuses 
(Ecuador). Ecuador General Deaths 2004-2014. 
Quito, Ecuador: National Institute of Statistics and 
Censuses (Ecuador). 

343283, 343285, 
343287, 343289, 
256676, 256677, 
256678, 256679, 
256680, 256681, 
325080 

Guatemal
a 

2009– 
2017 

National Statistics Institute (Guatemala). 
Guatemala Vital Statistics 2009-2017. Guatemala 
City, Guatemala: National Statistics Institute 
(Guatemala). 

336252, 336251, 
336250, 240728, 
240729, 240730, 
286175, 335901, 
398900 

Mexico 2000–
2017 

National Institute of Statistics and Geography 
(INEGI) (Mexico). Mexico Vital Registration - 
Deaths 2000-2016. 

116138, 116139, 
116140, 116141, 
116142, 116143, 
116144, 116145, 
116146, 93775, 
116147, 107113, 
124425, 157617, 
240409, 281783, 
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325345, 386753 
*NID = Data source unique identifier in the Global Health Data Exchange (http://ghdx.healthdata.org/). Additional information 460 
about each data sources is available via the GHDx, including information about the data provider and links to where the data can 461 
be accessed or requested (where available). NIDs can be entered in the search bar to retrieve the record for a particular source.  462 
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Table S3: Covariate data sources 463 

Covariate Temporal 
resolution 

Source Reference NID* 

Population 
Density  

2000–
2017 

WorldPop  Geography and Environmental Science, 
University of Southampton, WorldPop. 
Age and Sex Structures, Global Per 
Country 2000-2020. Southampton, 
United Kingdom: WorldPop, 2018. 

420764 

Nighttime 
lights 

2000–
2013 

NOAA DMSP National Oceanic and Atmospheric 
Administration (NOAA) (United States), 
United States Air Force (USAF). DMSP-
OLS Nighttime Lights Time Series, V4. 
United States of America: National 
Oceanic and Atmospheric 
Administration (NOAA) (United States). 

418630 

Travel time 
to the 
nearest 
settlement 
> 50,000 
inhabitants 

None Malaria Atlas 
Project, Big 
Data 
Institute, 
Nuffield 
Department 
of Medicine, 
University of 
Oxford  

Nelson A, Joint Research Centre of the 
European Commission. Estimated travel 
time to the nearest city of 50,000 or 
more people in year 2000. Ispra, Italy: 
Global Environment Monitoring Unit, 
Joint Research Centre of the European 
Commission, 2008. 

316680 

Urbanicity  2000–
2015 

European 
Commission/ 
GHS 

Pesaresi, Martino; Freire, Sergio (2016):  
GHS settlement grid, following the 
REGIO model 2014 in application to 
GHSL Landsat and CIESIN GPW v4-
multitemporal (1975-1990-2000-2015). 
European Commission, Joint Research 
Centre (JRC) [Dataset] PID: 
http://data.europa.eu/89h/jrc-ghsl-
ghs_smod_pop_globe_r2016a 

418851 

*NID = Data source unique identifier in the Global Health Data Exchange (http://ghdx.healthdata.org/). Additional information 464 
about each data sources is available via the GHDx, including information about the data provider and links to where the data can 465 
be accessed or requested (where available). NIDs can be entered in the search bar to retrieve the record for a particular source. 466 
  467 
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Table S4:  National HIV mortality rates among men and women 468 

HIV/AIDS mortality (age-standardized rates per 100,000) among men and women in six Latin American 
countries in the first and latest year of study 

 
 
Country  

HIV mortality rate, (95% UI)* 

Men  Women Both Sexes 

First Year Latest Year First Year  Latest Year  First Year Latest Year 

Brazil 11.7 (11.4-
11.9) 

8.7 (8.5-8.9) 5.3 (5.1-5.4) 4.5 (4.4-4.6) 8.4 (8.2-8.6) 6.5 (6.4-6.7) 

Colombia 9.8 (9.3-10.2) 7.8 (7.5-8.1) 2.1 (1.9-2.3) 2.5 (2.3-2.7) 5.8 (5.5-6.1) 5.0 (4.8-5.3) 

Costa Rica 6 (5.1-7.1) 4.9 (4.2-5.8) 1.9 (1.4-2.7) 1.5 (1.0-2.3) 3.9 (3.2-4.7) 3.2 (2.5-3.9) 

Ecuador 8.5 (7.8-9.2) 10.9 (10.1-
11.7) 

2.1 (1.8-2.4) 3.4 (3-3.8) 5.2 (4.7-5.7) 7.0 (6.5-7.6) 

Guatemala 10.8 (9.9-
11.7) 

6.8 (6.2-7.4) 4.1 (3.7-4.6) 2.8 (2.4-3.1) 7.2 (6.5-7.9) 4.6 (4.1-5.1) 

Mexico 9 (8.8-9.3) 6.9 (6.7-7.1) 2.0 (1.9-2.1) 1.9 (1.8-2) 5.4 (5.2-5.5) 4.3 (4.1-4.4) 
*UI = 95% uncertainty intervals 469 


