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1 Abstract

2 Aims: We investigated: Grin1, Grin2a, Grin2b DNA methylation; and NR1 and NR2 

3 mRNA/protein in the prefrontal cortex (PFC) and hippocampus (HIPPO) of male 

4 Wistar rats exposed to isolation rearing. Materials & methods: Animals were kept 

5 isolated or grouped (n=10/group) housed from weaning for 10 weeks. Tissues were 

6 dissected for RNA/DNA extraction and NMDAR subunits were analysed using qRT-

7 PCR, ELISA and pyrosequencing. Results: Isolated-reared animals had: decreased 

8 mRNA in PFC for all markers; increased NR1 protein levels in hippocampus HIPPO; 

9 hypermethylation of Grin1 in PFC and Grin2b in hippocampus, HIPPO compared to 

10 grouped-housed rats. Associations between mRNA/protein and DNA methylation were 

11 found in  for both brain areas. Conclusions: This study supports indicates that changes 

12 in epigenetic DNA methylation may underlie NMDAR mRNA/protein expression 

13 alterations caused by isolation rearing.

14

15 Key words: Glutamate receptor; Early stress; Isolation rearing from weaning; 

16 Hippocampus; Gene expression; Prefrontal cortex; Protein expression; NMDAR; DNA 

17 methylation; Schizophrenia 

18

19 Introduction 

20 Interactions between biological and environmental factors are thought to be responsible 

21 for the development of schizophrenia, with early life adversity as a potent risk factor 

22 [1,2]. In this context, social isolation rearing from weaning is considered a valid animal 

23 model of schizophrenia [3–5] in inducing behavioural changes that are associated with 

24 the human condition and are sensitive to antipsychotic medication [3,5–7]. The N-

25 methyl-d-aspartate receptor (NMDAR) plays an important role in neurodevelopment 

26 [8] and its hypofunction may is are thought to underlie the core symptoms of 

27 schizophrenia [9]. NMDARs are heteromeric receptors composed of NR1 (encoded by 

28 GRIN1, humans; Grin1, rodents) and NR2 subunits encoded by four distinct subtypes 

29 (GRIN2A-D, humans; Grin2a-d, rodents) [10]. The presence of both subunits is 

30 mandatory for the activitye of NMDAR ion channels that only open in the presence of 

31 both glycine and L-glutamate [11,12]. Additionally, theThe NR1 subunit is associated 

32 with regulatory processes controlling the structure and function of synapses [13]; 

33 NR2A and B are essential for synaptic plasticity [14] and NR2B is particularly 

34 important in working memory [15]. These subunits are good candidates for studying 
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35 the neurobiology of schizophrenia, considering that perturbation in NMDAR 

36 functioning can disrupt neural excitation and contributinge to altered brain function, 

37 especially in this disorder, since with several genetic findings have indicatinged the 

38 involvement of GRIN2A and GRIN2B in schizophrenia [16–18].

39 Together with the glutamatergic system, the GABAergic system also plays a 

40 central role in the neurobiology of schizophrenia [19] The neuronal glutamatergic 

41 system has a strong interrelationship with GABAergic neurons, which provide 

42 inhibitory control of glutamatergic activity [19,20]. Moreover, glutamatergic activity 

43 drives GABAergic function since NMDARs are expressed on GABAergic 

44 interneurons, particularly the subtype containing the calcium binding protein 

45 parvalbumin (PV) in early stages of development [21,22]. Disruptions in this 

46 neurocircuit lead to disinhibition of the midbrain dopaminergic system, which plays a 

47 central role in the neurobiology of schizophrenia [23,24]. There is a reduced expression 

48 of genes associated with GABA neurons, such as glutamic acid decarboxylase (GAD), 

49 reelin (RELN) and parvalbumin (PVALB, in the brains of schizophrenia patients [25–

50 28]. Decreased PVALB is the most replicated finding reported in both schizophrenia 

51 post-mortem brain as well as in animal models of the disorder [27,29–31]; this finding 

52 may relate directly to the hyperfunction of dopamine in the disease [32]. The decreased 

53 PV-positive (PV+) interneurons result in imbalanced excitatory and inhibitory input 

54 [33,34], and consequent disruption of glutamatergic function, especially via NMDARs 

55 [35,36]. 

56 A variety of animal models have demonstrated an association between NMDAR 

57 subunits and schizophrenia. Genetic animal models that use NR1 knockdown and 

58 NR2A knockout have shown an association between reduced NMDAR activity and 

59 schizophrenia-like behaviours [37–39]. Social isolation in rodents has been shown to 

60 increase NR2 mRNA expression in the prefrontal cortex (PFC) and hippocampus 

61 (HIPPO) [40] and to decrease NR1 subunit protein in the PFC [41]. Additionally, 

62 evidence indicatesd that the administration of phencyclidine (PCP), an NMDAR 

63 antagonist, replicates certain some features of schizophrenia as negative symptoms and 

64 cognitive symptoms deficits of schizophrenia [42,43], related to as a functional 

65 consequence of neuronalPFC and hippocampus dysregulation dysfunctions in key brain 

66 areas such as the (HIPPO) and PFC [42]. Recent evidence has demonstrated that 

67 epigenetic regulation, including that of NMDARs, may have a role in schizophrenia, 

68 suggesting that changes in DNA methylation may be responsible for deficiencies in 
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69 both GABAergic and glutamatergic neurotransmission [44–46]. This includes a 

70 reduced DNA methylation of the Grin2b promoter in both a neurodevelopmental 

71 animal models of schizophrenia [47] and in patients in their first episode of psychosis 

72 [48].

73 Although previous studies have shown abnormalities in the glutamatergic 

74 system in animal models of schizophrenia, it is not known if there are equivalent 

75 mRNA/protein alterations associated with DNA methylation changes in the brains of 

76 rats reared in isolation. Therefore, we evaluated mRNA expression of NMDAR genes 

77 (Grin1, Grin2a, and Grin2b), NR1 and NR2 protein expressions and DNA methylation 

78 of Grin1 and Grin2b in two brain areas (PFC and hippocampus HIPPO) of rats 

79 undergoing social isolation rearing. Furthermore, because the PVALB deficit is the most 

80 consistent finding across animal models and schizophrenia itself, we also evaluated the 

81 expression of PvalbV and other related GABAergic genes (RelnEL and GAD1Gad1) in 

82 the brain of rats undergoing social isolation rearing as a validation of this animal model. 

83 We hypothesized that isolation rearing would reduce the expression of NMDAR 

84 subunits at both mRNA and protein levels due to changes in DNA methylation. 

85

86 Materials & methods

87 Behavioural testing: Open Field Test in isolation reared rats

88 Male Wistar rats were obtained from the Central Vivarium of the University of São 

89 Paulo, campus of Ribeirão Preto, Brazil. The animals (10/group) were brought to the 

90 vivarium of the Laboratory of Pharmacology and kept isolated from weaning (21 days 

91 after birth) or in groups of 3-4/cage (41 x 34 x 16 cm), during 10 days, under standard 

92 conditions: temperature (234 ± 10°C), light cycle (lights on from 6:00 a.m. to 6:00 

93 p.m.), free access to food (Rats and Mice Nutrition, Agromix, Brazil) and water. The 

94 welfare of the animals was assessed daily. The cages and bedding were changed every 

95 2 days, as well as food and water replacement. Animals were randomly assigned to the 

96 different experimental groups and experiments were conducted from 6:30 a.m. to 6:30 

97 p.m., with randomization of treatment conditions along the day.  All procedures were 

98 developed in accordance with Brazilian Council for Animal Experimentation 

99 (CONCEA), and all efforts were made to minimize animal suffering. After this period, 

100 both groups were exposed to the open field test to assess locomotion, were sacrificed 

101 and DNA and RNA extracted from the PFC and hippocampus HIPPO, as previously 

102 described [49]. 
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103 Gene and protein expressions

104 DNA and RNA extracts of the PFC and hippocampus HIPPO were obtained by using 

105 the All prep DNA/RNA mini kit (Qiagen, Valencia). The mRNA expression of 

106 glutamatergic genes (Grin1, Grin2a and Grin2b) and GABAergic genes (PvalbV, 

107 GadAD1 and RelnEL) were conducted by Real-Time quantitative PCR (qPCR) using 

108 β-actin (ACTBActb) as a reference gene, and thermal cycling conditions as previously 

109 published [49], using the following hydrolysis probes (TaqMan assays): Grin1 Rat: 

110 Rn01436034_m1, Grin2a Rat: Rn00561341_m1, Grin2b Rat: Rn00680474_m1, ACTB 

111 ActbRat: Rn00667869_m1, GadAD1 Rat: Rn00690300_m1, REL Reln Rat: 

112 Rn00589609_m1 and PV Pvalb Rat: Rn00574541_m1. Gene expression was quantified 

113 using the Comparative Ct Method (ΔΔCt Method), using ACTB Actb as the endogenous 

114 (housekeeping) control gene as it showed to be stable across our samples. In relation to 

115 gene expression, we followed the manufacturer’s instructions (Allprep DNA/RNA mini 

116 kit, QIAGEN) using 30 mg of tissue. 

117 For the NR1 and NR2 protein assays, tissues were weighed and then 

118 homogenized in PBS buffer (1 mL of PBS per 100 mg of tissue), centrifuged (1 min, 

119 8000 rpm) and the supernatant collected and stored frozen at -80 ºC until analysis. 

120 Quantitative determination of NR1 and NR2 was performed by ELISA 

121 according to the manufacturer’s instructions (My BioSource, San Diego, CA, USA). 

122 For the NR1 assay, the detection range was 0.5-10 ng/ml, the sensitivity was less than 

123 0.1 ng/ml, and the coefficient of variation was <10% for intra- and inter-assays. For the 

124 NR2 assay, the detection range was 31.2-2000 pg/ml, the sensitivity was less than 18.75 

125 pg/ml, and the coefficient of variation was <8% for intra-assay and <10% for inter-

126 assay. The total protein concentration for each area (PFC and hippocampusHIPPO) was 

127 performed using the biuret method (Piotrowski's test) (Labtest Diagnóstica, Lagoa 

128 Santa, MG, Brazil).

129

130 DNA extraction, Bisulphite treatment and Pyrosequencing

131 For DNA methylation experiments, we used DNA prepared as described above and the 

132 quantification and purity of DNA/RNA were performed by Nanodrop™ 2000 UV 

133 spectrophotometer. The concentrations were adjusted according to the following steps. 

134 cDNA reverse transcription for RNA and bisulphite conversion for DNA.

135 Genomic DNA was extracted from all rat samples using the AllPrep DNA/RNA Mini 

136 Kit (Qiagen, Valencia, CA/USA), and was bisulphite-modified to convert 
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137 unmethylated cytosine residues to uracil using the EpiTec Fast DNA Bisulphite Kit 

138 (Qiagen) with a calculated mean conversion of 99%. DNA sequences for each gene 

139 were identified in the 5’ region that contains likely transcription factor (TF) binding 

140 sequences for rats that we identified using ALLGEN-PROMO 

141 (http://alggen.lsi.upc.es/cgibin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3), and a 

142 pyrosequencing method was developed for the determination of methylation at the CpG 

143 sites within those sequences following bisulphite reaction. The results were compared 

144 to methylation of LINELine-1, a measure of global methylation. 

145  PCR reactions were carried out with 20 ng bisulphite-converted DNA using the 

146 PyroMark PCR Kit in a final volume of 25 µl containing 12.5 µl 1x PyroMark PCR 

147 Master Mix, 2.5 µl 1x CoralLoad Concentrate, 1 µl of each primer in a final 

148 concentration of 0.05 µM, 8 µl RNase-free water. Amplification conditions were as 

149 follows: 95°C for 15 min, 45 cycles of 94°C for 30 s, 56°C for 30 s (except for LINE-

150 1: 52°C for 30s) and 72°C for 30 s, finally, 72°C for 10 min. Methylation status in the 

151 promoter sequence of the target genes was determined with a PyroMark Q24 

152 pyrosequencer (Qiagen UK) using 15–20 µl PCR product and a sequencing primer. 

153 Pyrosequencing setup and data reading were conducted by PyroMark Q24 

154 2.0.6.20 software. We analysed samples in duplicate in both experiments, PCR and 

155 pyrosequencing, and any inconsistencies were resolved following further repetition. All 

156 the primers are listed ion Table 1.

157

158 Statistical analysis

159 All results are expressed as the mean and standard error of the means (SEM) and were 

160 analysed using SPSS 20 (IBM Corp: Armonk, NY, USA). The behavioural data 

161 analyses were done using the EthoLog 2.2 software [50] and were analysed with 

162 repeated measures ANOVA with Bonferroni post-hoc test, as described previously 

163 [49]. However, as the molecular data was were not normally distributed and we used 

164 the Mann-Whitney U test to investigate mRNA/protein expressions and the DNA 

165 methylation changes between the two groups (isolated and grouped), for the two brain 

166 regions (PFC and hippocampusHIPPO) under consideration. 

167       Correlations between mRNA/protein expressions and DNA methylation 

168 were analysed by the Spearman correlation coefficient (rho). Qualitatively, we 

169 considered significant values of rho higher than 0.35. Furthermore, we removed rats 

170 that presented values clearly outside the bulk of the data after the descriptive statistics 
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171 using SPSS analysis identified outliers for each data set (Analysis – Descriptive 

172 statistics – explore – extreme values). The outlier criteria in SPSS consisted in of 1.5 x 

173 Interquartile range [51]. Values of p<0.05 were considered significant for two-tailed 

174 tests.
175
176 Results

177 Open Field test, Locomotion activity 

178 The isolation-reared animals demonstrated hyperlocomotion in the two first time bins 

179 in the periphery of the arena when compared to the grouped [0-5 min: F(1,15)=6.209, 

180 p=0.025; 5-10 min: F(1,15)=14.272, p=0.002], as well as, at the centre of the arena during 

181 5-10 min [F(1,15)=6.452, p=0.023]. These data have been previously published [49].

182

183 Gene expression of brain tissues

184 The RT-qPCR showed that ACTB Actbwas expressed at a stable level across all the 

185 samples for both groups (PFC: U=22, p=0.060; hippocampus HIPPO: U=34, p=0.369) 

186 and therefore was used to normalise the data. Figure 1A shows decreased expression 

187 of Grin1 (0.6-fold), Grin2a (0.7-fold) and Grin2b (1.0-fold) in the PFC of isolated 

188 animals when compared to grouped (U=22, p=0.034; U=23, p=0.041; U=19, p=0.019); 

189 while no significant changes were found in the hippocampusHIPPO (Grin1: U=32, 

190 p=0.174; Grin2a: U=42, p=0.545 and Grin2b: U=36, p=0.290). 

191 In Figure 1B, we demonstrated the decreased mRNA expression of PV Pvalb 

192 (1.3-fold) GAD1 Gad1 (0.9-fold) and REL Reln (2.1-fold) in the PFC of isolated 

193 animals when compared to grouped (Pvalb: U=18, p=0.027; Gad1: U=14, p=0.019; 

194 Reln: U=16, p=0.031, respectively)., while noNo significant changesdifferences were 

195 found in the hippocampus HIPPO (Pvalb: U=39, p=0.624; Gad1: U=41, p=0.744; Reln: 

196 U=31, p=0.253, respectively). We excluded outlier values for GAD1 Gad1 and REL 

197 Reln in the PFC for one group-housed rat.

198

199 NR1 and NR2 protein expression of brain tissues 

200 Isolation-reared rats showed increased NR1 concentrations in the hippocamps HIPPO 

201 when compared with grouped (U=8, p=0.001). However, NR1 concentrations in the 

202 PFC of isolation-reared rats did not differ from group-housed animals (U=39, p=0.406) 

203 (Figure 2A). Regarding NR2 protein expression, there were no significant differences 
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204 between the groups either in the PFC or in the hippocampus HIPPO (U=36, p=0.462; 

205 U=32, p=0.174, respectively) (Figure 2B). 

206

207 DNA methylation of NMDAR subunit genes

208 DNA rat samples successfully underwent bisulphite conversion, PCR and 

209 pyrosequencing to determine methylation in the glutamate (Grin1 and Grin2b) and 

210 LINELine-1 sequences. All samples demonstrated single PCR bands with no evidence 

211 of DNA degradation.

212 Regarding LINELine-1, no significant difference was found between the groups 

213 in mean levels of methylation (PFC: U=35, p=0.414; hippocampus HIPPO: U=33, 

214 p=0.199) (Figure 3). 

215 In glutamatergic genes, Grin1 showed higher methylation at CpG5 in the PFC 

216 (U=18, p=0.047) of rats reared in isolation when compared to controls, while no 

217 differences were found in the hippocampus HIPPO in any CpG (Figure 4A). We also 

218 found hypermethylation in Grin2b in the hippocampus HIPPO at CpG4 in isolated rats 

219 compared to grouped (U=15, p=0.024), shown in Figure 4B. In this assay, some 

220 animals were excluded by outlier criteria mentioned previously (one isolated and one 

221 grouped in the PFC of Grin1 at CpG5; one grouped and one isolated in the hippocampus 

222 HIPPO of Grin2b at CpG4).

223

224 Correlations among mRNA, protein and DNA methylation in isolated and grouped rats

225 Negative correlations between DNA methylation and mRNA/protein levels of 

226 NMDAR subunits

227 We found that isolated and grouped animals presented a negative correlation between 

228 Grin1 mRNA and Grin1 methylation levels at CpG5 in the PFC (rho: -0.488; p=0.040, 

229 Figure 5A). Moreover, isolated rats presented a negative correlation between Grin2b 

230 methylation at CpG4 and NR2 protein levels in the hippocampus HIPPO (rho: -0.800; 

231 p=0.010, Figure 5B). We did not find any significant associations between behavioural 

232 changes and molecular alterations. 

233

234 Positive correlations between mRNA of glutamatergic and GABAergic markers 

235 in the PFC

236 We found the following positive correlations: (A) mRNA of Grin1 and Pvalb V(rho: 

237 0.563; p=0.012); (B) mRNA of Grin1 and GAD1Gad1(rho: 0.754; p<0.001); (C) 
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238 mRNA of Grin1 and RELReln (rho: 0.663; p=0.005); (D) mRNA of Grin2a and 

239 PVPvalb (rho: 0.482; p=0.036); (E) mRNA of Grin2b and PVPvalb (rho: 0.646; 

240 p=0.00); and (F) mRNA of Grin2b and RELReln (rho: 0.501; p=0.034) HIPPO (Figure 

241 6). These associations are demonstrated in the PFC of isolated and grouped rats 

242 (Figures 6A-F). All the other Ssignificant correlations are showed in Table S1.

243

244 Discussion

245 NMDAR subunits alterations in isolation rearing

246 We found that rats undergoing social isolation rearing from weaning showed NR1 and 

247 NR2 changes in  at both the both mRNA and protein, as well as at the DNA methylation 

248 level; the results indicate alterations, in the NR1 and NR2 NMDAR subunits, indicating 

249 that DNA hypermethylation may be as a potential mechanism underlying the changes 

250 seen in protein and gene expression of NMDAR subunits. In addition, we demonstrated 

251 that isolation-reared animals had robust alterations in multiple indicators of 

252 glutamatergic and GABAergic neuronal function in the hippocampus HIPPO and PFC, 

253 in line with evidence describing dysfunctional NMDAR signalling in schizophrenia. 

254 Firstly, isolated rats had an overall reduction of mRNA expression in the PFC 

255 of for all NMDARs subunits analysed, similar to previous studies that showed 

256 decreased NR1 mRNA expression in the striatum and PFC [52,53]. Accordingly, a 

257 downregulation of NR2A mRNA in the PFC of rats after isolation rearing has been 

258 reported [40], although opposite results were found in the same brain area by another 

259 group [54]. 

260 As glutamate is a key mediator of synaptic plasticity, these results indicate a 

261 glutamatergic dysfunction that likely affects synaptic plasticity in the PFC as a 

262 consequence of the social isolation rearing regime. This may be associated with 

263 NMDAR dysfunction and an imbalance between excitatory and inhibitory circuits, 

264 notably in the PFC [55]. Indeed, previous studies indicated that NMDAR subunits, 

265 mainly NR1 and NR2A-B, are involved in the early stages of brain development 

266 [22,56]. It is relevant in this respect that an abnormal glutamatergic system in the PFC 

267 may underlie the cognitive impairments and memory deficits present in schizophrenia 

268 [57,58], which is also in accordance with the hypofrontality already described in this 

269 animal model [59], based on an impairment of neuronal transmission and synaptic 

270 connectivity [60,61].
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271 Secondly, consistent with our findings of decreased PVPvalb, GAD1 Gad1 and 

272 REL Reln expression in the PFC of isolated reared rats, other studies have shown 

273 downregulation of PVALB, GAD1 and RELN mRNA in the PFC of schizophrenia 

274 patients [28,62–64] as well as in animal models of the disorder [63,65], implicating 

275 neurodevelopmental impairments of synaptic function and plasticity, and cognition 

276 [66]. Given that the hypofunction of NMDARs on GABAergic interneurons results in 

277 a decreased activity of this system [67], our results suggest that the reduced Pvalb 

278 mRNA expression reflects an indirect reduction of GABA neuron activity driven by 

279 dysfunctional NMDARs.

280 Thirdly, our findings showed increased NR1 protein levels in the hippocampus 

281 HIPPO of isolated rats, similar to a previous study showing increased NR1 following 

282 five weeks of social isolation, although not reaching statistical significance [53]. On the 

283 other hand, NR1 protein levels were reported to be significantly reduced in the PFC in 

284 chronic isolation-reared rats [41,53], similarly to our results demonstrating lower NR1 

285 concentrations in the same area, but without achieving significant differences. The 

286 increased NR1 in the hippocampus HIPPO found in our study may reflect the 

287 dysfunction in the PFC as well as the NMDAR activation in response to the chronic 

288 stress from social isolation rearing [68]. In addition, several direct and indirect 

289 anatomical pathways link the hippocampus HIPPO and the PFC [69–71] and 

290 interactions between hippocampus and cortical regions those two brain areas have long 

291 been known to play a central role in behavioural and cognitive functions [72,73], as 

292 already previously demonstrated in the post-mortem temporal cortex of schizophrenia 

293 patients [74]. 

294 In relation to epigenetic markers, isolated animals did not show any significant 

295 difference in LINELine-1 methylation, a global measure of DNA methylation. 

296 However, we found significantly greater methylation of Grin1 and Grin2b, providing 

297 a potential mechanism underlying the NMDAR impairments discussed previously. 

298 Thus, the Grin1 and Grin2b hypermethylation do not reflect effects on global 

299 methylation, but instead, may represent gene-specific results of social isolation rearing, 

300 equivalent to previous alterations already showed in schizophrenia patients [75].

301 We identified Grin1 hypermethylation at CpG5 in the PFC of isolated rats. At 

302 CpG5 are situated binding sites for two TFs with promoter activity, the specificity 

303 protein 1 transcription factor (Sp1) and the CCAAT/Enhancer Binding Protein β 

304 (C/EBPβ). However, C/EBPβ activity is reportedly not altered by CpG methylation 
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305 [76]. Sp1 is has a dual activity as an important TF promoter TF that can activatinge or 

306 repressing transcription in response to physiological and pathological stimuli [77–79]. 

307 Sp1 also has a direct role in transcriptional activation and is involved forin the initiation 

308 initial process of gene expression [80] and bindings with high affinity to GC-rich motifs 

309 to regulate the genes expression of a large number of genes involved in a variety of 

310 processes such as cell growth, apoptosis, differentiation and immune responses 

311 [78,81,82]. Hence, our findings suggest that DNA Grin1 hypermethylation of Grin1 

312 following early life stress may interfere with Sp1 binding site and thereby bring about 

313 a reduction of Grin1 mRNA expression. 

314 MoreoverRegarding Grin2b, isolated rats presented Grin2b hypermethylation 

315 at CpG4 of the gene promoter in the hippocampus HIPPO, which haswhere . CpG4 is 

316 found within a sequence with binding sites for several TFs, among them the Pax family 

317 TFs (Pax 5, 6 and 9a-b) are located. The Pax family is importanthas an important role 

318 in the specification of tissues during early animal development for the specification of 

319 tissues [83,84] via a regulatory function on the gene expression [85]. Considering that 

320 isolation rearing is an early life stressor, it seems likely that DNA methylation may 

321 contribute to the disruptions seen in the adult life of these rats. 

322 Finally, we found negative correlations between Grin1 and Grin2b 

323 methylationof Grin1 and Grin2b, and respectively Grin1 mRNA and NR2 protein 

324 levels. The Our results indicate that higher levels ofhyper methylation levels are 

325 associated with reduced gene/protein expressions, supporting our hypothesis that 

326 variation in DNA methylation changes is amay abe a potential mechanism influencing 

327 NMDAR protein and gene mRNA expressions. In addition, we also found positive 

328 correlations between glutamatergic (mRNA of Grin1, Grin2a and Grin2b and NR2 

329 protein) and GABAergic (mRNA of PVPvalb, GAD1 Gad1 and RELReln) markers, 

330 consistent with previous evidence that NMDARs are particularly found on GABAergic 

331 neurons [86,87].

332 In conclusion, our study showed that DNA methylation might beis associated 

333 with gene/protein expression of NMDAR subunits in isolation-reared rats. Given that 

334 social isolation from weaning characterises a chronic early life stress model, the 

335 observed alterations in methylation could result from this period of stress, leading 

336 afterwards to disruptions in glutamatergic and GABAergic neurotransmission, resulting 

337 in an imbalance in the excitatory/inhibitory tone equivalent to that seen in 

338 schizophrenia. 
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339 Strengths and Limitations

340 The most important aspect of this study was to integrate and correlate observations of 

341 methylation, gene and protein expression in a range of relevant markers of NMDAR 

342 and GABAergic function in a valid animal model of schizophrenia. In order to improve 

343 the role glutamatergic system played in the onset of schizophrenia, we first tested the 

344 specific hypothesis (for methylation-protein/mRNA correlations) and after we did the 

345 secondary exploratory analysis for the other correlations between glutamatergic and 

346 GABAergic markers to that may link these changes with schizophrenia. 

347 In this study, we did not measure the all four of the distinct subtypes of NR2 

348 (NR2a-d); this could underlie the lack of  that could explain the non-significant results 

349 in relation to NR2 protein expression between the groups. However, we investigated 

350 only NR2 subunit in this animal model of schizophrenia, because in our previous 

351 finding, we found low NR2 plasma concentrations in first-episode psychosis patients 

352 compared to unaffected siblings and community-based controls [88]. In the present 

353 study, we found increased methylation levels at the Grin2b gene and, consistently, low 

354 expression of this subunit at the gene level. However, contrary to our expectations, no 

355 differences were found at the protein level for this subunit, in any of the brain sites 

356 investigated. This may reflect the fact that we were only able to assess the total NR2 

357 protein expression rather than the protein subunits. Discrimination between the NR2 

358 subunits is essential for determining the decreased NMDAR activity, considering that 

359 the two NR2a-b subunits have different properties in relation to NMDAR function 

360 [14,89]. It has been shown that maturation of brain circuits occurs subsequent to the 

361 switch of NR2b to NR2a during critical periods of the development [14,58,90]. Thus, 

362 the lack of significant differences at the NR2 protein levels in our study should be 

363 interpreted with caution and it is important that future studies consider the analyses of 

364 NR2a and NR2b subunits separately.

365 We used hyperlocomotion as a proxy for validation of the model, given that this 

366 alteration is the most consistent behavioural change observed [3]; however, we did not 

367 include additional experiments related to other disturbances in behavioural domains 

368 associated with the isolation-rearing model and relevant to the symptoms of 

369 schizophrenia. In addition, our data did not present demonstrate a normal distribution 

370 and we used the non-parametric tests; however, our sample size is similar and provides 

371 a small variance that reduces the chances of our results as false positives. 

372
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373 Conclusions

374 Our study reinforces the validity of social isolation rearing after weaning in modelling 

375 aspects of schizophrenia, highlighting the glutamatergic and GABAergic disturbances 

376 in the disease. We also provide evidence in support of the hypothesis that the NMDAR 

377 hypermethylation found in the brain tissues may underlie the NMDAR mRNA/protein 

378 expression alterations caused by early isolation. These results highlight the importance 

379 of the environment during development as a contributor to behavioural and 

380 neurochemical changes during adulthood. In conclusion, our study contributes to the 

381 identification of epigenetic mechanisms involved in the neuropathophysiology of 

382 schizophrenia, which may provide new approaches for pharmacotherapy as well as 

383 identifying biological factors that could improve early diagnosis and intervention.

384

385 Summary points

386 ● NMDAR methylation changes found in the brain tissues may underlie the 

387 NMDAR mRNA/protein expression alterations caused by the isolation period.

388 ● Early social isolation induces epigenetic modifications in the NMDA 

389 receptor subunits.

390 ● Our data support the validity of social isolation after weaning in modeling 

391 aspects of schizophrenia, highlighting changes in the glutamatergic and GABAergic 

392 systems commonly seen in schizophrenia.

393 ● Our study also reinforces the strong correlations between glutamatergic and 

394 GABAergic genes that are involved in schizophrenia.

395 ● Changes in DNA methylation may be a plausible mechanism underlying the 

396 gene/protein expression alterations of NMDARs subunits after isolation rearing in rats. 

397 ● Our findings may contribute to understanding the pathophysiological 

398 consequences of decreased NMDAR subunits expression in schizophrenia.

399 ● This study contributes to the identification of epigenetic mechanisms 

400 involved in the neuropathophysiology of schizophrenia, which may lead to new 

401 pharmacotherapeutic strategies. 

402 ● In our study, the period of social isolation from weaning may characterise a 

403 chronic early life stress model that induced the alterations in methylation, resulting in 

404 an imbalance in the excitatory/inhibitory tone equivalent to that seen in schizophrenia. 
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405 ● Our findings highlight the importance of the environment during 

406 development as a contributor to behavioural and neurochemical changes in adulthood.

407

408 Future Perspective

409 Even though NMDARs are well characterized and much is known about its implication 

410 in schizophrenia pathogenesis, the role of epigenetic mechanisms in its dysregulation 

411 is still unclear. The results presented in this paper pave the way for further studies and 

412 highlight a possible epigenetic mechanism whereby early life adversities contribute to 

413 dysregulation in the glutamatergic system, more specifically in the hypofunction of 

414 NMDARs and, their impact effect on GABAergic function and subsequent 

415 disinhibition of dopaminergic neurons in the midbrain. The glutamatergic and 

416 GABAergic epigenetic dysregulations of the glutamatergic and GABAergic 

417 neurotransmitter systems observed in this our study have important translational value 

418 utilitymerit not only for schizophrenia, but also for a host of psychiatric disorders 

419 associated with exposure to environmental adversities. Future research should 

420 investigate the association between DNA methylation and early life stress in 

421 pharmacological models of schizophrenia, and test correlations between blood and 

422 brain biological markers. Finally, the results observed offer mechanistic pathways for 

423 translation in clinical settings, including the identification of more vulnerable 

424 populations exposed to early-life adversities and the screening of more specific 

425 pharmacological tools for these subgroups.

426
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746

747 Figure Legends 

748

749 Figure 1. Effects of rearing condition (isolated vs. grouped) on glutamatergic and 

750 GABAergic markers gene expression in the PFC and hippocampus HIPPO of rats. 

751 The figures show the mean fold change ± SEM of Grin1, Grin2a, Grin2b, PvalbV, 

752 GadAD1 and RelnEL mRNA levels using the housekeeping gene β-actin (ACTBActb) 

753 as reference. Glutamatergic and GABAergic markers mRNA expression were 

754 measured by qRT-PCR. (A) Isolated rats presented decreased expression of Grin1, 

755 Grin2a and Grin2b mRNA in the PFC when compared to grouped (p=0.034; p=0.041; 

756 p=0.019) respectively, while no statistical differences were found in the hippocampus 

757 HIPPO (Grin1: p=0.174; Grin2a: p=0.545 and Grin2b: p=0.290) of these animals. (B) 

758 Isolated animals also showed decreased expression of PvalbV, GadAD1 and RelnEL in 

759 the PFC when compared to grouped (p=0.027; p=0.019; p=0.031, respectively), while 

760 no significant changes were found in the hippocampus HIPPO (p=0.624; p=0.744; 

761 p=0.253, respectively). *p<0.05; Mann-Whitney U test.

762

763 Figure 2. Effects of rearing condition (isolated vs. grouped) on glutamatergic 

764 markers protein expression in the PFC and hippocampus HIPPO of rats. The 

765 figures show the mean ± SEM of NR1 (ng/mg) and NR2 (pg/mg) proteins. 

766 Glutamatergic markers protein expression was measured by ELISA test. Isolated rats 

767 showed increased protein expression of NR1 subunit in the hippocampus HIPPO when 

768 compared to grouped (p=0.001); while, no statistical differences were observed in the 

769 PFC (p=0.406). In relation to NR2 subunit protein, no differences were observed in the 

770 PFC (p=0.462) and hippocampus HIPPO (p=0.174) of these animals. *p<0.05; Mann-

771 Whitney U test.

772

773 Figure 3. Effects of rearing condition (isolated vs. grouped) on LINELine-1 

774 methylation in the PFC, hippocampus HIPPO and peripheral blood of rats. The 

775 figure shows the mean of percentage of methylation in LINELine-1. No statistical 

776 differences were observed between the groups in relation to PFC (p=0.414) and 
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777 hippocampus HIPPO (p=0.199). The LINELine-1 DNA methylation was measured by 

778 Pyrosequencing. Mann-Whitney U test. 

779

780 Figure 4. Effects of rearing condition (isolated vs. grouped) on DNA methylation 

781 of Grin1 and Grin2b in the PFC and hippocampus HIPPO of rats. The figure shows 

782 the mean ± SEM of percentage of methylation in Grin1 and Grin2b in the PFC and 

783 hippocampus HIPPO of rats reared in isolation or grouped. Glutamatergic markers 

784 DNA methylation was measured by Pyrosequencing. Increased DNA methylation of 

785 Grin1 at CpG5 (p=0.047) were found in the PFC of isolated-reared rats (A) and 

786 increased methylation of Grin2b at CpG4 were found in the hippocampus HIPPO of 

787 isolated animals (B) when compared to grouped (p=0.024). *p<0.05; Mann-Whitney U 

788 test. 

789

790 Figure 5. Correlations between DNA methylation in the brain tissue and 

791 gene/protein levels in the PFC and hippocampus HIPPO of isolated and grouped 

792 animals: (A) All rats presented a negative correlation between Grin1 methylation at 

793 CpG5 and Grin1 mRNA levels in the PFC (rho: -0.488; p=0.040). (B) Isolated rats 

794 presented a negative correlation between Grin2b methylation at CpG4 and NR2 protein 

795 levels in the hippocampus HIPPO (rho: -0.800; p=0.010; Spearman correlation).

796

797 Figure 6. Correlations between mRNA of glutamatergic and GABAergic genes in 

798 the brain tissues of isolated and grouped animals: All rats presented positive 

799 correlations between (A) Grin1 and PvalbV mRNA levels in the PFC (rho: 0.563; 

800 p=0.012); (B) Grin1 and GadAD1 mRNA levels in the PFC (rho: 0.754; p<0.001); (C) 

801 Grin1 and RelnEL mRNA levels in the PFC (rho: 0.633; p=0.005); (D) Grin2a and 

802 PvalbV mRNA levels in the PFC (rho: 0.482; p=0.036); (E) Grin2b and PvalbV mRNA 

803 levels in the PFC (rho: 0.646; p=0.003; and (F) Grin2b and RelnEL mRNA levels in 

804 the PFC (rho: 0.501; p=0.034; Spearman correlation).

805

806 Table 1. List of Forward (F) and biotinylated Reverse (R) primers used in PCR 

807 reactions, and Sequencing (Seq) primers for pyrosequencing

Gene Rats

Page 24 of 44

https://mc04.manuscriptcentral.com/fm-epi

Epigenomics



For Review Only

NMDAR alterations in isolated reared rats

25

LINELine-1

F 5'TTGTTGTAAGAAAGTTGTTTGGTGAGTT3'

R 5'ACCTCAAAAATACCCACCTAACC3'

Seq 5'GGTGAGTTTGGGATA3'

Grin1

F 5'TTGGGTTTGTGGGTGATAGAAG3'

R 5'ACCTACTAACATTCCCCCTACTTTTTTCCT3'

Seq 5'ATGTTGAAGATTTTGGGGT3'

Grin2a

F 5'TGGCCTCAGTGACAAGAAGTTC3'

R 5'AGACGGCTGCGTCATAGATGAA3'

Seq 5'AGAAGAATGGATTTTTTTTA3'

Grin2b

F 5'TTGGGTGTGAGATTTAAATTAAGATTAG3'

R 5'AAAATAAAAAAAAACCTTCCTTTCTCAA3'

Seq 5'AGATTAGGATTTTTGATGTT3'

808

809 Table S1. Correlations between glutamatergic and GABAergic markers in isolated 

810 animals
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Grin1 PFC Grin2a
Hippocampus Grin2a PFC Grin2b

Hippocampus Grin2b PFC Pvalb
Hippocampus

Grin1
Hippocampus

.045 ,812** .011 .250 -.054 .454

.850 .000 .965 .289 .821 .051

Grin1 PFC
-.036 ,863** .111 ,656** -.116

.880 .000 .640 .002 .637

Grin2a
Hippocampus

-.012 ,547* -.220 ,523*

.960 .012 .352 .022

Grin2a PFC
.235 ,693** .116

.319 .001 .637

Grin2b
Hippocampus

.051 ,537*

.830 .018

Grin2b PFC
-.049

.842

Pvalb
Hippocampus
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Pvalb PFC Gad1
Hippocampus Gad1  PFC Reln

Hippocampus Reln PFC Grin1 CpG1
Hippocampus

Grin1 CpG2
Hippocampus

.081 ,854** .018 ,642** -.184 -.114 -.177

.743 .000 .943 .003 .450 .631 .454

,563* .125 ,791** .270 ,688** .042 .078

.012 .611 .000 .263 .001 .860 .743

.005 ,747** -.002 ,637** -.233 -.189 -.245

.983 .000 .994 .003 .336 .425 .298

,482* .100 ,607** .260 ,561* .211 .173

.036 .684 .006 .283 .012 .373 .466

-.116 .225 .121 .211 -.084 -.058 -.239

.637 .355 .622 .387 .732 .808 .310

,693** .168 ,628** .116 ,674** .270 .257

.001 .491 .004 .637 .002 .250 .274

-.071 ,514* -.356 ,514* -,492* .074 .044

.779 .024 .147 .024 .038 .764 .858

Pvalb PFC
.377 ,535* .449 .428 .272 .268

.123 .018 .062 .067 .260 .267

Gad1
Hippocampus

.102 ,814** -.040 -.167 -.184

.687 .000 .874 .495 .450

Gad1  PFC
.098 ,865** .091 .130

.699 .000 .710 .596

Reln
Hippocampus

-.121 -.189 -.221

.633 .439 .363

Reln PFC
.091 .177

.710 .468

Grin1 CpG1
Hippocampus

,892**

.000

Grin1 CpG2
Hippocampus
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Grin1 CpG3
Hippocampus

Grin1 CpG4
Hippocampus

Grin1 CpG5
Hippocampus Grin1 CpG1 PFC Grin1 CpG2 PFC Grin1 CpG3 PFC Grin1 CpG4 PFC

-.092 -.196 .096 -.004 -.051 .268 .408

.700 .409 .686 .989 .836 .267 .083

.005 .175 .204 .018 .248 -.014 -.082

.985 .462 .389 .943 .305 .955 .740

-.194 -.099 -.012 -.111 -.108 .079 .274

.412 .679 .960 .652 .660 .748 .257

.160 .245 .361 -.133 .133 .049 .018

.500 .297 .118 .586 .586 .842 .943

-.201 -.094 -.214 -.061 -.009 -.082 .211

.396 .693 .364 .803 .972 .737 .387

.183 .061 .384 .167 .320 -.168 -.052

.441 .799 .094 .495 .181 .491 .833

.196 -.028 .052 -.003 -.147 .385 ,491*

.420 .909 .833 .990 .562 .115 .038

.134 .075 .262 -.065 .090 -.034 -.140

.584 .759 .278 .798 .723 .893 .578

-.111 -.327 .031 .040 -.050 .125 .258

.652 .171 .901 .874 .845 .622 .301

-.201 -.029 .122 .096 .152 -.240 -.318

.409 .906 .619 .705 .548 .336 .198

-.002 -.176 .184 -.071 -.121 .197 .236

.994 .470 .450 .779 .633 .433 .345

-.209 -.039 .059 .150 .182 -.375 -,494*

.391 .875 .811 .553 .470 .126 .037

,601** .396 .427 -.197 -.241 -.243 -.138

.005 .084 .061 .420 .321 .316 .574

,726** ,497* ,489* -.111 -.185 -.172 -.278

.000 .026 .029 .652 .448 .482 .249

Grin1 CpG3
Hippocampus

.436 ,515* -.011 -.012 .054 -.032

.055 .020 .963 .960 .825 .895

Grin1 CpG4
Hippocampus

,518* -.260 .086 .225 -.043

.019 .283 .726 .355 .861

Grin1 CpG5
Hippocampus

-.238 -.144 -.014 .045

.327 .558 .955 .856

Grin1 CpG1 PFC
,729** .205 .390

.000 .399 .099

Grin1 CpG2 PFC
.308 ,495*

.199 .031
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Grin1 CpG3 PFC
,633**

.004

Grin1 CpG4 PFC
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Grin1 CpG5 PFC Grin2b CpG1
Hippocampus

Grin2b CpG2
Hippocampus

Grin2b CpG3
Hippocampus

Grin2b CpG4
Hippocampus

Grin2b CpG5
Hippocampus Grin2b CpG1 PFC

.012 -.056 -.080 -.057 .245 -.046 .219

.960 .816 .738 .811 .328 .848 .369

-.400 .251 .074 .111 .005 .246 .106

.090 .286 .758 .640 .984 .296 .665

-.081 -.120 -.090 .077 .133 -.008 .226

.743 .613 .705 .748 .598 .972 .351

-.321 .326 .295 .188 .046 .321 .011

.180 .160 .207 .427 .855 .167 .966

.016 -.146 -.238 .102 -.119 .070 .330

.949 .539 .313 .668 .639 .769 .168

-.342 .417 .233 .220 -.094 .436 -.135

.152 .068 .323 .352 .711 .055 .581

.059 -.153 .093 .039 -.179 -.036 .073

.817 .533 .705 .875 .492 .884 .773

-,575* .289 .158 .242 .029 .303 -.188

.013 .229 .519 .318 .911 .208 .455

-.193 -.084 -.168 -.061 -.059 -.057 .131

.443 .732 .491 .803 .823 .817 .604

-,517* .275 -.207 .126 .037 .295 .287

.028 .254 .395 .606 .889 .220 .248

-.362 -.130 -.075 .054 -.311 -.039 .118

.140 .596 .759 .825 .224 .872 .642

-.381 .360 -.128 .123 .022 .334 .103

.119 .130 .601 .616 .933 .162 .683

-.086 ,655** .406 ,493* .391 ,609** -.168

.726 .002 .076 .027 .108 .004 .491

-.077 ,701** ,465* ,502* .467 ,608** -.282

.753 .001 .039 .024 .050 .004 .243

.243 .426 ,496* .356 .214 .351 -.431

.316 .061 .026 .124 .394 .129 .066

-.009 ,500* ,741** .384 .412 ,468* -.366

.972 .025 .000 .095 .089 .037 .123

-.242 ,585** ,748** ,453* .285 ,583** -.351

.318 .007 .000 .045 .252 .007 .141

.179 .119 -.202 .167 -.331 .141 ,554*

.464 .627 .408 .495 .195 .564 .014

.224 .081 .115 -.018 -.091 .083 .405

.357 .742 .639 .940 .729 .734 .086
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.135 -.093 .239 -.098 .103 -.191 .204

.581 .705 .325 .689 .694 .433 .403

.208 -.112 .255 -.037 -.005 -.069 .448

.393 .647 .291 .881 .985 .778 .055

Grin1 CpG5 PFC
-.032 -.063 .009 .199 -.148 .023

.898 .797 .972 .445 .545 .926

Grin2b CpG1
Hippocampus

,517* ,845** ,503* ,945** -.035

.020 .000 .034 .000 .887

Grin2b CpG2
Hippocampus

.364 .449 ,496* -.418

.115 .062 .026 .075

Grin2b CpG3
Hippocampus

.176 ,908** .022

.484 .000 .929

Grin2b CpG4
Hippocampus

.352 -.083

.152 .751

Grin2b CpG5
Hippocampus

.002

.994

Grin2b CpG1 PFC
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Grin2b CpG2 PFC Grin2b CpG3 PFC Grin2b CpG4 PFC Grin2b CpG5 PFC NR1
Hippocampus NR1 PFC NR2

Hippocampus

.153 .091 .042 .283 .320 .183 .113

.533 .710 .864 .241 .169 .441 .636

,502* ,723** .324 .251 -.310 -.162 -.227

.029 .000 .176 .300 .184 .494 .336

.249 .157 .026 .255 .232 .086 .161

.304 .521 .915 .293 .326 .719 .498

.328 ,677** .147 .124 -.185 -.068 -.382

.170 .001 .549 .613 .435 .774 .097

.204 .044 0.000 .053 -.275 -.234 .021

.403 .858 1.000 .830 .240 .321 .930

.105 .399 .061 .175 -,465* .099 -.179

.668 .091 .805 .474 .039 .679 .450

-.199 -.034 -,508* -.068 -.035 .440 .035

.428 .893 .031 .788 .887 .060 .887

.059 ,649** -.109 .023 -.270 .161 -.298

.817 .004 .666 .929 .263 .509 .215

.125 .133 -.232 .218 .014 .334 .193

.622 .598 .353 .385 .955 .162 .429

.395 .427 .374 .142 -.326 -.215 -.237

.104 .077 .127 .575 .173 .377 .329

.234 .314 -.205 .240 .054 .291 .061

.349 .204 .416 .338 .825 .226 .803

.209 .351 .394 .013 -.377 -.054 -.144

.404 .153 .105 .958 .111 .825 .557

-,469* .105 -.088 -.261 .071 -.029 -.371

.043 .668 .719 .281 .765 .905 .107

-.416 .149 -.209 -.306 .089 .099 -.266

.077 .542 .391 .203 .710 .679 .257

-.233 .109 -.335 -.121 .296 .015 -.091

.338 .657 .161 .621 .206 .950 .703

-.037 ,464* .005 -.250 -.070 .200 -,473*

.881 .046 .983 .301 .769 .398 .035

-.156 .163 -.062 .134 .193 .239 -.194

.523 .504 .801 .583 .416 .310 .412

.311 -.020 .338 .411 -.179 .147 .335

.196 .935 .157 .080 .464 .547 .161

,611** .365 ,490* ,521* -.357 .135 .044

.005 .125 .033 .022 .133 .581 .858
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.219 .297 -.180 -.040 .205 .312 -.279

.367 .217 .461 .872 .399 .194 .247

.307 .096 .120 ,562* .026 .220 .010

.201 .697 .625 .012 .915 .365 .969

-.035 -.180 .176 -.065 .175 -.025 -.056

.887 .461 .472 .791 .473 .920 .819

-.137 .378 .122 -.117 .075 .029 -.238

.576 .110 .619 .634 .753 .905 .313

-.154 .359 -.097 .058 .105 .344 -.253

.528 .131 .694 .814 .659 .137 .283

-.158 .321 .038 -.110 .093 -.026 -.111

.519 .180 .878 .655 .696 .912 .640

-.199 .287 .109 -.162 .356 -.092 -.309

.445 .264 .677 .534 .147 .717 .213

-.133 .357 .136 -.034 -.025 .007 -.130

.589 .134 .578 .891 .917 .977 .585

,503* .061 ,506* .385 -.105 -.102 -.011

.028 .805 .027 .104 .668 .678 .966

Grin2b CpG2 PFC
.447 .450 ,633** -.074 -.297 .075

.055 .053 .004 .764 .218 .759

Grin2b CpG3 PFC
.253 .059 -.121 .070 -,478*

.297 .811 .621 .775 .039

Grin2b CpG4 PFC
.440 -.154 -.101 -.167

.059 .530 .679 .495

Grin2b CpG5 PFC
-.027 -.121 .410

.912 .621 .081

NR1
Hippocampus

-.253 .182

.282 .443

NR1 PFC
-.219

.354

NR2
Hippocampus
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NR2 PFC

.123

.605

.054

.821

.030

.900

.089

.710

.086

.719

.021

.930

-.088

.721

-.296

.218

.019

.937

.039

.875

-.196

.420

.111

.652
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.582
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.498

.066

.782
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.271
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.221
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.022

.929
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.513

.269
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.209
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.168
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