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Abstract: Four Zn(II) Schiff base complexes that exhibit crystallisation-induced emission enhancement
(CIEE) are presented. There is an intermolecular dimerisation through the hydrogen bonding of
the mixed phenol/phenolate donors. The choice of ligand also determines the emission wavelength.
The complexes have been investigated using experimental and theoretical techniques.

Keywords: crystallisation-induced emission; luminescence; coordination chemistry; Schiff base;
inorganic

1. Introduction

The interaction of light with organic molecules and transition metal coordination complexes
is becoming an increasingly widely studied area. Applications in organic light-emitting diodes
(OLEDs) [1], photocatalysis [2] and fluorescence-based sensors [3–5] have all been investigated.
The luminescent character of such complexes can vary greatly when moving from solution to the solid
state. Usually, the vast majority of compounds that exhibit fluorescence have higher photoemission in
solution than in the solid state, due to aggregation-caused quenching (ACQ) [6–8]. However, certain
organic luminophores that have freely-rotating groups, e.g., alkyl chains, show higher levels of emission
when aggregation occurs, termed aggregation-induced emission (AIE) [9]. Upon aggregation, the freely
rotating groups, which in solution lead to nonradiative relaxation, are restricted and enhanced emission
is observed. AIE has been observed in both organic systems as well as metal-containing systems
where there is flexibility around the luminophore. Crystallisation-induced emission enhancement
(CIEE) is a phenomenon similar to AIE, where the compound emits weakly in solution or in a
disordered/amorphous solid but emits very strongly when in crystalline form (Figure 1) [10–17].
As with AIE, CIEE is caused by the restriction of freely rotating groups in the molecule resulting in
enhancement of the efficiency of fluorescence or photoluminescence [18].

Numerous examples of Schiff base derived ligands exist which show interesting luminescent
properties with d10 Zn(II) [19–25]. This is due to both the simplicity of synthesis and ease of variation
of Schiff base ligands in general. Zinc complexes are of interest as they are earth-abundant and many
of the interesting applications for optics currently use rare earth metals as the luminescent ion.

Here we present four novel Zn(II) pseudo-octahedral coordination complexes that exhibit CIEE.
The complexes employed are based on the Schiff base condensation of 2-hydrazinopyrazine with a
variety of substituted salicylaldehydes followed by coordination of zinc nitrate to yield complexes 1–4
(Scheme 1).
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Figure 1. Representative diagrams for (left–right) luminesce in a monomer, aggregation-caused 
quenching, aggregation-induced emission and crystallisation-induced emission. 
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Scheme 1. Synthesis of complexes 1– 4. 

2. Materials and Methods  

All chemicals were ordered from either Sigma-Aldrich (Merck) or Fluorochem and used without 
further purification. All solid-state fluorescence spectra were obtained using a TECAN infinite M200 
Pro with an excitation of 405 nm. All synthesis was carried out under aerobic benchtop conditions. 

2.1. Synthesis 

Complex 1, [Zn(L1)(HL1)]NO3.H2O 

An amount of 0.110 g (1 mmol) of 2-hydrazinopyrazine was added to 0.106 mL (1 mmol) of 
salicylaldehyde in 20 mL of 1:1 methanol/acetonitrile and stirred for 10 min. To this 0.149 g (0.5 mmol) 
of Zn(NO3)2•6H2O was added and stirred for 20 min and the solution was filtered. Yellow crystals 
were isolated after several days of slow solvent evaporation. Isolated Yield 105 mg, 19%. 

IR (cm−1): 3207, 3049, 1617, 1537, 1515, 1455, 1285, 1207, 1153, 749. 
Elemental Analysis: Theory (Found); C, 46.13 (45.89); H, 3.70 (3.83); N, 22.01(22.15). 
1H NMR (400 MHz, DMSO-D6) δ 11.23 (s, 1H), 10.39 (s, 1H), 8.45 (s, 1H), 8.34 (s, 1H), 8.11 (s, 1H), 
7.96 (t, J = 8.3 Hz, 1H), 7.69–7.61 (m, 1H), 7.22–7.15 (m, 1H), 6.86 (s, 2H). 

Complex 2, [Zn(L2)(HL2)]NO3.H2O 

An amount of 0.110 g (1 mmol) of 2-hydrazinopyrazine was added to 0.152 g (1 mmol) of 3-
methoxysalicylaldehyde in 20 mL of 1:1 methanol/acetonitrile and stirred for 10 min. To this 0.149 g 
(0.5 mmol) of Zn(NO3)2•6H2O was added and stirred for 20 min and the solution was filtered. 
Yellow/orange crystals were isolated after several days of slow solvent evaporation. Isolated Yield 84 
mg, 13.5%. 

IR (cm−1): 3199, 3091, 3037, 1617, 1537, 1515, 1457, 1388, 1340, 1239, 829, 773. 
Elemental Analysis: Theory (Found); C, 45.55; (45.54) H, 3.98 (3.77); N, 19.92 (20.37). 

Figure 1. Representative diagrams for (left–right) luminesce in a monomer, aggregation-caused
quenching, aggregation-induced emission and crystallisation-induced emission.
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2. Materials and Methods

All chemicals were ordered from either Sigma-Aldrich (Merck) or Fluorochem and used without
further purification. All solid-state fluorescence spectra were obtained using a TECAN infinite M200
Pro with an excitation of 405 nm. All synthesis was carried out under aerobic benchtop conditions.

2.1. Synthesis

Complex 1, [Zn(L1)(HL1)]NO3·H2O

An amount of 0.110 g (1 mmol) of 2-hydrazinopyrazine was added to 0.106 mL (1 mmol) of
salicylaldehyde in 20 mL of 1:1 methanol/acetonitrile and stirred for 10 min. To this 0.149 g (0.5 mmol)
of Zn(NO3)2•6H2O was added and stirred for 20 min and the solution was filtered. Yellow crystals
were isolated after several days of slow solvent evaporation. Isolated Yield 105 mg, 19%.

IR (cm−1): 3207, 3049, 1617, 1537, 1515, 1455, 1285, 1207, 1153, 749.
Elemental Analysis: Theory (Found); C, 46.13 (45.89); H, 3.70 (3.83); N, 22.01 (22.15).
1H NMR (400 MHz, DMSO-D6) δ 11.23 (s, 1H), 10.39 (s, 1H), 8.45 (s, 1H), 8.34 (s, 1H), 8.11 (s, 1H),
7.96 (t, J = 8.3 Hz, 1H), 7.69–7.61 (m, 1H), 7.22–7.15 (m, 1H), 6.86 (s, 2H).

Complex 2, [Zn(L2)(HL2)]NO3·H2O

An amount of 0.110 g (1 mmol) of 2-hydrazinopyrazine was added to 0.152 g (1 mmol) of
3-methoxysalicylaldehyde in 20 mL of 1:1 methanol/acetonitrile and stirred for 10 min. To this
0.149 g (0.5 mmol) of Zn(NO3)2•6H2O was added and stirred for 20 min and the solution was filtered.
Yellow/orange crystals were isolated after several days of slow solvent evaporation. Isolated Yield
84 mg, 13.5%.
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IR (cm−1): 3199, 3091, 3037, 1617, 1537, 1515, 1457, 1388, 1340, 1239, 829, 773.
Elemental Analysis: Theory (Found); C, 45.55; (45.54) H, 3.98 (3.77); N, 19.92 (20.37).
1H NMR (400 MHz, DMSO-D6) δ 11.55 (s, 1H), 8.52 (d, J = 1.2 Hz, 1H), 8.42 (s, 1H), 8.17–8.13
(m, 1H), 8.01 (d, J = 2.8 Hz, 1H), 7.36 (dd, J = 7.9, 1.4 Hz, 1H), 6.97 (dd, J = 8.1, 1.4 Hz, 1H), 6.82 (t,
J = 7.9 Hz, 1H), 3.81 (s, 3H).

Complex 3, [Zn(L3)(HL3)]NO3·H2O

An amount of 0.110 g (1 mmol) of 2-hydrazinopyrazine was added to 0.193 g (1 mmol) of
4-diethylamino salicylaldehyde in 20 mL of 1:1 methanol/acetonitrile and stirred for 10 min. To this
0.149 g (0.5 mmol) of Zn(NO3)2•6H2O was added and stirred for 20 min and the solution was
filtered. Orange crystals were isolated after several days of slow solvent evaporation. Isolated Yield
154 mg, 22.5%.

IR (cm−1): 3194, 3039, 2968, 1603, 1537, 1515, 1455, 1284, 1138, 1015, 820, 766.
Elemental Analysis: Theory (Found); C, 50.39 (50.36); H, 5.50 (5.77); N, 21.55 (22.01).
NMR (400 MHz, DMSO-D6) δ 11.91 (s, 1 H), 10.91 (s, 1H), 10.47 (s, 1H), 8.27 (s, 1H), 8.10 (d,
J = 34.9 Hz, 1H), 7.91 (s, 1H), 7.12 (d, J = 126.9 Hz, 1H), 6.00 (dd, J = 49.9, 47.6 Hz, 1H), 3.32 (q,
J = 6.9 Hz, 4H), 1.09 (t, J = 7.0 Hz, 6H).

Complex 4, [Zn(L4)(HL4)]NO3

An amount of 0.110 g (1 mmol) of 2-hydrazinopyrazine was added to 0.156 g (1 mmol) of
5-chlorosalicylaldehyde in 20 mL of 1:1 methanol/acetonitrile and stirred for 10 min. To this 0.149 g
(0.5 mmol) of Zn(NO3)2•6H2O was added and stirred for 20 min and the solution was filtered.
Yellow/orange crystals were isolated after several days of slow solvent evaporation. Isolated Yield
72 mg, 12%.

IR (cm−1): 3199, 3049, 1615, 1535, 1515, 1457, 1315, 1287, 1207, 1155, 818, 711.
Elemental Analysis: Theory (Found); C, 42.36 (43.54); H, 2.75 (2.83); N, 20.21 (20.05).
1H NMR (400 MHz, DMSO-D6) δ 11.35 (s, 1H), 10.50 (s, 1H), 8.51 (dd, J = 36.0, 1.4 Hz, 1H), 8.30
(s, 1H), 8.21–8.07 (m, 1H), 8.01 (t, J = 6.5 Hz, 1H), 7.75 (t, J = 3.8 Hz, 1H), 7.22 (d, J = 2.7 Hz, 1H),
7.20 (d, J = 2.7 Hz, 1H), 6.89 (d, J = 8.7 Hz, 1H).

2.2. Computational Data Details

Geometry optimisation of 1–4 was performed using density functional theory (DFT) with the
ωB97X [26] functional and 6-31G(d) all-electron basis set. Final energies were refined using the
def2-TZVP basis set [27], along with time-dependent DFT (TDDFT) calculations. All calculations were
performed with the Q-Chem software [28].

3. Results

3.1. Structural Analysis

All four complexes were isolated and collected in moderate to low yields after several days of
slow solvent evaporation. Isolating high-quality single crystals was challenging; as a result, only
complex 3 was isolated with crystals of sufficient quality to obtain a structure using single-crystal
X-ray diffraction (SC-XRD) techniques. We believe the numerous intermolecular interactions that
occur between complexes facilitate aggregation and cause the system to form microcrystalline material
unsuitable for SC-XRD.

Complex 3 crystallises in the monoclinic C2/c space group with an asymmetric unit consisting of
two crystallographically independent Zn(II) complexes, two nitrate anions and one water molecule.
Two highly disordered solvent molecules in the asymmetric unit, which were consistent with two water
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molecules, were excluded using the solvent mask function in Olex2. The coordination environment of
each complex consisted of two tridentate ligands with the pyrazine nitrogen, imine nitrogen and the
oxygen of the phenol as the ligating atoms (Figure 2). This resulted in a N4O2

− ligand sphere, as there
is both a phenol (Zn1-O1, Zn2-O3) and phenolate (Zn1-O2, Zn2-O4) donor. A nitrate anion balancing
the Zn(II) charge is hydrogen-bonded to the hydrazinyl proton on the ligand backbone. The effect of
the protonation can be observed in the two Zn-O bond lengths. The phenol oxygen bonds (Zn1-O1,
Zn2-O3) have lengths of 2.1595(14) and 2.1562(14) Å, respectively, while the phenolate bonds (Zn1-O2,
Zn2-O4) have lengths of 2.0161(14) and 2.0419(13) Å, respectively. A list of metal–ligand bond lengths
is shown in Table 1.
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Figure 2. (left) Molecular structure of complex 3, [Zn(L3)(HL3)]NO3·3H2O (ellipsoids at 50% probability
and water omitted for clarity). (right) Coordination sphere of complex 3.

Table 1. Bond lengths for both crystallographically independent Zn complexes.

Bond Type Atoms Length (Å) Atoms Length (Å)

Phenol Zn1-O1 2.1595(14) Zn2-O3 2.1562(14)
Phenolate Zn1-O2 2.0161(14) Zn2-O4 2.0419(13)

Imine Zn1-N1 2.1123(18) Zn2-N11 2.1405(16)
Pyrazine Zn1-N2 2.1366(19) Zn2-N12 2.1303(17)

Imine Zn1-N3 2.1187(18) Zn2-N13 2.1572(16)
Pyrazine Zn1-N4 2.1722(18) Zn2-N14 2.1330(16)

The presence of the mixed phenol/phenolate ligand set allows for dimerisation of the Zn
complexes via hydrogen bonding (Figure 3). The dimer is formed between the two crystallographically
independent Zn complexes. This dimerisation has also been observed in similar phenol/phenolate
systems [29,30]. The diethylamino substituents are disordered, therefore acting as a steric buffer to
stop π–π interactions between the ligands or further supramolecular polymerisation that could lead
to ACQ.

Several hydrogen bond interactions take place within the lattice of complex 3. The main interactions
are between the hydrazinyl proton on the ligand, the spectator nitrate anion and water molecules.
The hydrazinyl proton bonds to the oxygen of the water molecule which in turn bonds to two nitrate
anions, where the motif is mirrored, resulting in a noncovalent polymeric chain (Figure 4). Here we
see another “insulating” effect within the lattice as the mixture of anions and solvents isolate each of
the dimers from each other in the lattice, further impeding possible ACQ.
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with a space-filled model (bottom).

3.2. 1H-NMR Analysis

1H-NMR studies in DMSO-d6 were performed for each of the ligands, complexes (1–4) and a
reaction of 1 equivalent of the ligand with 0.25 equivalents of the Zn salt to monitor the changes
in proton environment of the ligand due to coordination (Figure 4). The common feature observed
is the retention of the phenol proton from pure ligand to complex. The peak (11–12 ppm) exhibits
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some shifting and broadening which can be ascribed to the effect of coordination to the zinc ion and
hydrogen bonding that takes place between the phenol/phenolate donors as seen in the crystal structure
of complex 3. The singlet peak at ca. 10 ppm is the hydrazinyl proton and exhibits the broadening in
the same manner as the phenol proton (Figure 5).
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complexes 1– 4 in acetonitrile solution. However, very little or negligible emission was detected over 
several measured excitation wavelengths (Figure 6). To investigate the possibility of AIE, emission 
spectra were taken in a mixture of water and acetonitrile; however, no change was observed in the 
fluorescence properties of the system.  

Significant emission was detected in the solid phase. Using an excitation wavelength of 405 nm, 
complexes 1– 4 were analysed over the range of 415 to 750 nm (Figure 7). The λmax values for emission 
for complexes 1– 4 were 506, 531, 592 and 506 nm, respectively.  

Figure 5. Stacked 1H-NMR spectra for the complexes 1–4 featuring ligand only, a 1:1 reaction between
Lx/Zn and the final complex. The red bar highlights the change in phenol proton environment and the
blue bar highlights the change in hydrazinyl proton environment. Synthesis of 1, top left; synthesis of
2, bottom left; synthesis of 3, top right; synthesis of 4, bottom right.

In all cases, the broadening of the phenol proton and hydrazinyl proton peaks occurred upon
the addition of zinc. It can thus be deduced that the complex formation goes hand in hand with the
appearance of strong noncovalent interactions. The similarity of the changes in the proton environments
gives some evidence that all four complexes have similar coordination and structural motifs regardless
of the starting aldehyde used in the synthesis.

3.3. Electronic Absorption Analysis

UV-Vis absorption was performed to probe the coordination ability of the ligands towards Zn(II).
Titrimetric experiments between the ligands, L1–L4, and Zn(II) revealed similar characteristics for
all complexes, namely an increase in the π–π* band associated with the phenyl ring and a decrease
in the π–π* bands associated with the pyrazine ring, relative to the starting ligand. An increase in
bands related to metal-to-ligand charge-transfer (MLCT) was observed in spectra of 1–4, indicating
the formation of the complex (Figures S1–S4 in the Supplementary Materials). All four complexes
exhibited similar spectral features. Paired with the 1H-NMR data, we propose that all complexes share
a similar geometrical structure.

3.4. Luminescence Analysis

Due to the attractive luminescent character of Zn(II), we investigated the fluorescence of complexes
1–4 in acetonitrile solution. However, very little or negligible emission was detected over several
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measured excitation wavelengths (Figure 6). To investigate the possibility of AIE, emission spectra
were taken in a mixture of water and acetonitrile; however, no change was observed in the fluorescence
properties of the system.
Sustainability 2020, 12, x FOR PEER REVIEW 7 of 12 

 
Figure 6. Emission spectra for complexes 1–4, in CH3CN (black) and 10:90 CH3CN/H2O (red). 
Excitation at 405 nm. 

Crystallinity can be a deciding factor in the intensity of the fluorescence observed in CIEE 
systems. To probe the effect of crystallinity on the fluorescent properties, samples of complexes 1– 4 
were ground in a mortar and pestle for ~1 min and then analysed alongside the crystalline analogue. 
The spectra for the ground samples were normalised to the crystalline emission values to give a better 
idea of possible shifts.  

From the spectra, it can be clearly observed that a significant decrease in intensity occurs in all 
cases. Complexes 1–4 exhibit decreases of 62%, 48%, 42% and 55%, respectively.  
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Significant emission was detected in the solid phase. Using an excitation wavelength of 405 nm,
complexes 1–4 were analysed over the range of 415 to 750 nm (Figure 7). The λmax values for emission
for complexes 1–4 were 506, 531, 592 and 506 nm, respectively.
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Crystallinity can be a deciding factor in the intensity of the fluorescence observed in CIEE systems.
To probe the effect of crystallinity on the fluorescent properties, samples of complexes 1–4 were ground
in a mortar and pestle for ~1 min and then analysed alongside the crystalline analogue. The spectra
for the ground samples were normalised to the crystalline emission values to give a better idea of
possible shifts.

From the spectra, it can be clearly observed that a significant decrease in intensity occurs in all
cases. Complexes 1–4 exhibit decreases of 62%, 48%, 42% and 55%, respectively.

There are small observable shifts in the emission wavelength of each complex as well as a
significant decrease in quantum yield (ϕ), relative to sodium salicylate (NaSal; ϕ = 0.60) [31,32]
(Table 2).

Table 2. Comparison of crystalline complex λmax and ground complex λmax.

Complex 1 2 3 4

Crystalline λmax 506 nm 531 nm 592 nm 506 nm
ϕ Rel. to NaSal 0.04 0.21 0.44 0.05
Ground λmax 515 nm 505 nm 600 nm 506 nm
ϕ Rel. to NaSal 0.01 0.13 0.20 0.02

Complexes 1 and 3 respond to the change in crystallinity with a decrease in fluorescence intensity
coupled with a bathochromic shift. Complex 2 presents the decrease coupled with a hypsochromic
shift, while complex 4 exhibits a decrease in intensity only. The bathochromic shifts are approximately
10 nm shifts whereas the hypsochromic shift is nearly three times stronger at 26 nm. This type of
mechanochromism can derive from the changing of internal interactions as was observed in the lattice
of complex 3. No evidence of changes in luminescent character was observed with a variation of pH.

3.5. Theoretical Analysis

Density functional theory (DFT) calculations, using the ωB97X functional [26] and def2-TZVP
all-electron basis set [27], were performed to investigate the effect of the substituent on the HOMO and
LUMO for each of the complexes for 1–4 (Figure 8). In all cases, the model of the complex reflected a
gas-phase single complex and anion. This gives insight into the HOMO and LUMO levels but may not
reflect the crystallised complex due to packing and noncovalent interactions.Sustainability 2020, 12, x FOR PEER REVIEW 9 of 12 
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In each case, the HOMO is centred on the ligand with the phenolate coordination mode and on
to the Zn metal centre. All four LUMOs have strong π* character and are centred across the whole
complex, in contrast to the HOMOs. The TDDFT results indicate a π*–π transition is responsible for
the observed luminescence, as these are the transitions observed for the absorption.
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The calculated HOMO and LUMO energies in eV for the gas-phase complex are shown in Figure 9.
This approach was chosen so that the direct substituent effect on the electronic structure of each
complex could be understood. Complexes 2 and 3 have smaller HOMO–LUMO gaps at 6.20 and
6.26 eV, respectively. This could be attributed to the electron-donating nature of the ligand used. The
lower energy barrier between the HOMO and LUMO (vs. 1 and 3) correlates qualitatively with the
lower energy emission energies of complexes 2 and 3 vs. 1 and 3 and could help in designing ways to
tune these complexes to get a variety of emission wavelengths. While crystal-packing effects clearly
alter the quantitative picture (indeed, the transitions observed experimentally are much lower in energy
than the gas-phase calculated HOMO–LUMO gaps), the qualitative picture of substituent electronic
effects will still be important when the understanding of the tuning of the emission is required.
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4. Discussion

We have synthesised four novel CIEE active Zn(II) Schiff base complexes and analysed the
fluorescent properties using experimental and theoretical methods. To date, the majority of CIEE
active species have poorly understood mechanisms of fluorescence. The hydrogen-bonded dimer
and anion/solvent-based noncovalent interactions may give the rigidity needed to inhibit relaxation
through molecular flexibility and therefore stop nonradiative decay.

We propose that the coupling of these properties, with a lack of obvious π–π interactions,
is responsible for the lack of ACQ in the crystalline phase. The degree of crystallinity plays an integral
role in the fluorescence intensity and gives possible insight into the lack of fluorescence in solution,
where the interference of the solvent in this hydrogen-bonded network, along with the complete loss
of lattice-induced molecular rigidity, may be a leading cause of fluorescence quenching. The emission
wavelengths of the complexes 1–4 are qualitatively related to the electronic nature of the complex with
the electron-donating-based ligands, L2 and L3, resulting in bathochromic shifts, compared to the
unsubstituted ligand. This study yields some insight into the ability to tune the emission wavelength
and possible mechanism of CIEE for these and related complexes.
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