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Abstract 

Impairments in social cognition after traumatic brain injury (TBI) are well documented but 

poorly understood (McDonald, 2013). Deficits in emotion perception, particularly facial affect 

recognition, are frequently reported in the literature (Babbage et al., 2011; Knox & Douglas, 

2009), as well as mentalizing impairments and difficulty in understanding sincere and sarcastic 

exchanges (Channon, Pellijeff & Rule, 2005). To fully understand social impairments, both 

low-level and high-level processes must be explored. Few studies have focused on low-level 

perceptual processes in regards to facial affect recognition after TBI, and those that do typically 

use static social stimuli which lack ecological validity (Alves, 2013). This thesis employed eye-

tracking technology to explore the visual strategies underpinning the processing of 

contemporary static and dynamic social cognition tasks in a group of 18 TBI participants and 

18 age, gender and education matched controls.  

The group affected by TBI scored significantly lower on the Movie for the Assessment of 

Social Cognition (MASC; Dziobek, et al., 2006), the Amsterdam Dynamic Facial Expression 

Set (ADFES; van der Schalk, Hawk, Fischer & Doosje, 2009), and The Assessment of Social 

Inference Test (McDonald et al., 2003). These findings suggest that, across a range of reliable 

assessments, individuals with TBI displayed significant social cognition deficits, including 

emotion perception and theory of mind, thus presenting strong evidence that social cognition 

is altered post-TBI. Impairments were not related to low-level visual processing as measured 

through eye-tracking metrics. This important insight suggests that social cognition changes 

post-TBI is likely associated with impairments in higher-level cognitive functioning. 

Interestingly, the group with TBI did display some aberrant fixation patterns in response to one 

static and one dynamic task but gaze patterns were similar between the groups on the remaining 

tasks. These non-uniform results warrant further exploration of low-level alterations post-TBI. 

Findings are discussed in reference to academic and clinical implications. 
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GCS Glasgow Coma Scale 

ToM Theory of Mind 

PTA Post Traumatic Amnesia  

LOC Loss of consciousness  

FPC Frontopolar cortex  

MFC Medial frontal cortex  

DAI Diffuse axonal injury  

NICE National Institute for Health and Care Excellence  

CT Computed tomography 

MRI Magnetic resonance imaging 
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1. Chapter one: Traumatic brain injury, brain anatomy 

and divisions of the frontal lobes  

1.1. Chapter overview 

The first section of this chapter evaluates the prevalence and sequelae of traumatic brain injury 

(TBI). A brief outline of human brain anatomy is presented, with particular focus on the 

structure and function of the frontal cortex, an area susceptible to damage during TBI and 

associated with social cognition functions (Adolfi et al., 2017; Andreasen, Calarge, Calage, & 

O’Leary, 2008; Rushworth, Mars & Sallet, 2013).  

1.2. Prevalence and sequelae of brain injury 

TBI is defined as a traumatic event which causes the brain to move rapidly within the skull, 

leading to damaged brain matter (Prins, Greco, Alexander & Giza, 2013). Precise brain injury 

statistics are currently unavailable, most likely due to; discrepancies in the diagnosis and 

classification of brain injury, variable definitions of acquired brain injury (ABI), the lack of 

distinction between ABI and TBI in the extant literature and socioeconomic divides (Dewan et 

al., 2018; Faul & Coronado, 2015; Roozenbeek, Maas & Menon, 2013). It is estimated that in 

2015/16 between 293,000 and 301,500 individuals sustained an ABI in the UK (Figure 1), and 

although the majority of ABI’s are classified as mild (Peeters et al., 2015; Yates, Williams, 

Harris, Round & Jenkins, 2006), up to approximately 1.4 million individuals are living with 

the long-term effects of brain injury with a cost to the UK economy of £15 billion per annum, 

equalling 10% of the National Health Service’s (NHS) annual budget (Barber et al., 2018; 

Davis & Ings, 2015; Dinsmore, 2013). Worldwide, it is thought that approximately 69 million 

(95% CI 64-74 million) people per year experience a TBI, with research suggesting that it is a 

major if not leading cause of physical and mental disability and mortality in young adults living 

in western society (Dewan et al., 2018; Johnson & Griswold, 2017; Li, Zhao, Yu & Zhang, 
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2016). TBI has been coined by researchers as a ‘silent epidemic’ (Dewan et al., 2018) and an 

‘overwhelming burden’ (Johnson & Griswold, 2017). It is estimated that by the year 2020, TBI 

will be the leading cause of death and disability worldwide for the general public (Humphreys, 

Wood, Phillips & Macey, 2013). 

 

Figure 1. Chart illustrating hospital admissions for acquired brain injuries in England 

between 2000 - 2017 (reproduced from Barber et al., 2018, p.5). 

Worldwide, the most common causes of TBI include falls (22-43%), assaults (30-50%) and 

road traffic accidents (25%) (Bruns & Hauser, 2003; Roozenbeek et al., 2013). Lawrence et al., 

(2016) conducted a prospective audit of brain injury epidemiology in England and Wales and 

reported that the most frequent mechanisms of injury were falls in the elderly and road traffic 

accidents in younger adults. Marshman, Jakabek, Hennessy, Quirk and Guazzo (2013) reported 

that the majority of TBI cases occur in males aged between 16-24 years as a result of motor 

vehicle accidents, assaults, falls, and sporting accidents. Indeed, the authors proposed that 

males are up to three times more likely to sustain a brain injury compared to females and this 
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increases to five times more likely if males are aged between 15-29 (Greenwald, Burnett & 

Miller, 2003; Williams, 2012). However, this gender bias reverses with regards to elderly 

individuals over 65 where females are more likely to be admitted to the hospital after a head 

injury. This gender effect has been reported from several countries including the UK, USA, 

Australia and Finland (Fletcher, Khalid & Mallonee, 2007; Harvey and Close, 2012; Kannus, 

Palvanen, Niemi & Parkkari, 2007; Shinoda-Tagawa & Clark, 2003; Shivaji, Lee, Dougall, 

McMillan & Stark, 2014). Research on gender reversal with age is scant but several theories 

as to why elderly females acquire more brain injuries than males include the hypotheses that 

females tend to outlive males on average by 5.8 years longer (Rochelle, Yeung, Bond & Li, 

2015), they tend to combine multiple medications, and often live alone (Ebrahim & Kalache, 

1996). There is a rising prevalence of TBI in the elderly population as a result of falls, likely 

due to an increase in the ageing population (Gaastra et al., 2016; Korhonen et al., 2013). UK 

research infers that elderly trauma may soon be on par with young male statistics (Kehoe, Smith, 

Edwards, Yates & Lecky, 2015). Lawrence et al., (2016) reported that across all TBI severities 

in England and Wales, there was a unimodal age distribution, which peaked between the ages 

of 80 and 90 and represented one in five of TBI’s, usually because of falls from under two 

metres high. Severe TBI’s accumulated a smaller peak (estimated to be around 15% of all TBI 

cases) and is more common in younger cohorts (age 20-30), usually as a result of road traffic 

accidents and assaults. From the total cohort (15,820) reviewed by the authors, Glasgow Coma 

Scale (GCS; Teasdale & Jennett, 1974, discussed in detail in the latter part of this chapter) 

scores indicated that 68% of cases were mild, 6% moderate, and 26% severe (Figure 2).  

Due to developments in medicine, diagnostic evaluation, and acute care pathways, patient 

outcome is more positive now post-TBI than in the past (Gerber, Chiu, Carney, Härtl & Ghajar, 

2013). The majority of individuals with TBI will go on to have relatively normal lifespan 

expectancy (Harrison-Felix et al., 2015; Harrison-Felix, Whiteneck, DeVivo, Hammond & Jha, 
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2004), although this does depend on extraneous factors such as gender and age at injury 

(Brooks, Shavelle, Strauss, Hammond & Harrison-Felix, 2015; Ziebell et al., 2017). 

Nevertheless, many TBI survivors will need some form of support, either professional or family 

orientated after injury which can be costly to public health services (Fountain, Kolias, Laing & 

Hutchinson, 2017; Humphreys et al., 2013), as well as creating a strain on social relationships 

(Backhaus et al., 2016; Humphreys et al., 2013; Temkin, Corrigan, Dikmen & Machamer, 

2009). 

 

Figure 1. Graph outlining the number of individuals with TBI by age and cause of injury 

from the Lawrence et al., (2016) audit of England and Wales (reproduced from Lawrence 

et al., 2016, p.3). Abbreviations: Road traffic accident (RTA), traumatic brain injury 

(TBI). 

Many TBI survivors experience some form of physical impairment post-injury, for example, 

epilepsy (Lowenstein, 2009), dizzy spells (Chandrasekhar, 2013), and headaches (Lucas, 

Hoffman, Bell & Dikmen, 2014) which often require life-long and costly pharmaceutical 
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treatments as well as limiting the individual.’s physical abilities (e.g. the ability to drive). TBI 

survivors may also experience a range of cognitive, social and emotional impairments, which 

restrict independent living in the community, even if those impairments are mild (Drake, Gray, 

Yoder, Pramuka & Llewellyn, 2000; Vikane et al., 2016). Ponsford et al., (2014) undertook a 

longitudinal outcome follow-up of 141 individuals with TBI at two, five and ten years post-

injury. Fatigue, balance, cognitive, communication, behavioural and emotional problems were 

all reported over the ten years with over 40 per cent of the cohort requiring more support than 

they did pre-injury. Merely 50 per cent had returned to participating in leisure activities, less 

than half were employed, and 30 per cent admitted difficulties in personal relationships. 

Reports from survivors of TBI and their families suggested that it was the social and emotional 

impairments after TBI which had the largest and most adverse impact on life quality (Fleminger 

& Ponsford, 2005; Humphrey et al., 2013; McDonald, Flanagan, Rollins & Kinch, 2003; 

Ubukata et al., 2014). It is often the case that TBI survivors live with their families and do not 

return to school or work after the injury, creating physical, psychological and financial burdens 

on the relatives who care for the patient (Humphrey et al., 2013; Ponsford et al., 2014). Social 

relationships are often negatively affected after a TBI and many survivors lose close friendships 

and experience marital breakdowns (Bodley-Scott & Riley, 2015; Carlozzi et al., 2015). This, 

in turn, leads to social isolation and risk of developing mood disorders, such as depression and 

anxiety, with an increased risk of suicide (Bornhofen & McDonald, 2008; Fralick, 

Thiruchelvam, Tien & Redelmeier, 2016).  

In summary, TBI is a major economic, social, medical and public health concern (Roozenbeek 

et al., 2013; Humphrey et al., 2013). Mechanisms underpinning the social and emotional 

deficits after TBI are not fully understood and it is not known whether these impairments are 

due to a disruption of complex higher-level cognitive functions or lower-level functions, such 

as visual processing. Research investigating low-level visual processing after TBI is scant and 



Page 30 of 531 

 

little is known about how these visual processes relate to social functioning. If low-level visual 

processes are disrupted after TBI then this could lead to the incapacity to capture, monitor and 

evaluate dynamic social stimuli, as well as having a simultaneous effect on higher-order 

cognitive functions. Future research might focus on the fundamental automatic and controlled 

elements of visual processing to disentangle at which level of function the primary deficits of 

TBI occur.  

1.3. Introduction to brain anatomy 

The human brain is encased within the skull to protect it from outside forces. The brain does 

not touch the overlying bone of the skull since it is protected by three meninges (layers of 

protective tissue) which ensure the brain is stabilised during head and body movements. The 

three meninges are the dura mater, the arachnoid membrane, and the pia mater (Figure 3). The 

dura mater is tough and adheres to the inner skull and the arachnoid.  The arachnoid and pia 

are both thin and merge so subtly that it is difficult to distinguish them. The arachnoid 

membrane and the pia mater are separated by cerebrospinal fluid (CSF), a layer of salty liquid 

which provides a buoyant environment that helps decrease the distortion of the brain from 

various forces (Ivancevic, 2009). Despite this mechanical protection, pathology to brain matter 

still occurs as a result of rotational forces and the forwards and backwards motion of the brain 

during impact, leading to coup-contrecoup injury and shearing of dura matter and neural tissue 

(Bigler, 2013; Drew & Drew, 2004; Fujiwara, Schwartz, Gao, Black and Levine, 2008; Kolb 

& Wishaw, 1990; McDonald, Togher & Code, 2013; Taylor & Ford, 2009; Zappala, de 

Schotten & Eslinger, 2012). It should be noted that two ‘potential spaces' (defined as space 

which can appear between two structures that are normally pressed together) are affiliated with 

the dura as a result of pathology, the extradural space (separation from the cranial bones and 
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the endosteal layer of the dura mater) and the subdural space (separation of the arachnoid mater 

from the dura mater). 

 

Figure 2. Separate levels of the cranial meninges (reproduced from Nolte, 2008, p.92). 

At a simple anatomical level, the central nervous system (CNS) contains two categories of 

cells; neurons which mediate information processing and signalling, and glial cells which 

provide a supportive function. Many articles and books state that the human brain contains 

more than 100 billion neurons and up to 10 times that many glial cells yet no original reference 

supports this fact, leading to the erroneous assumption that the cellular composition of the 

human brain has been determined. Evidence from Azevedo et al., (2009) and Herculano-

Houzel (2009) challenged this popular fact and suggested that 100 billion neurons are an 

overestimation and that it is probable that glial cells constitute approximately 50% of human 

brain cells. The CNS can be further divided into grey and white matter. Grey brain matter is 
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rich in nerve cell bodies which consist of unmyelinated axons, dendrites, and glial cells 

(Swanson & Bota, 2010). White brain matter consists mainly of long myelinated axons.  

The brain can be divided into three main structures or vesicles; rhombencephalon (hindbrain), 

mesencephalon (midbrain) and prosencephalon (forebrain) (Blumenfeld, 2010). The 

rhombencephalon can be further divided into the myelencephalon (medulla oblongata), 

metencephalon (pons) and the cerebellum (Figure 4). Collectively, the medulla oblongata, pons 

and cerebellum are referred to as the brainstem. The prosencephalon can be subdivided into the 

diencephalon and the telencephalon. The diencephalon section is concealed from view by the 

cerebral hemispheres and contains the thalamus, hypothalamus, and other smaller structures 

such as the epithalamus and subthalamus. The telencephalon comprises the cerebral 

hemispheres containing fissures, sulci, and gyri and can be subdivided into four distinct lobes; 

the occipital, temporal, parietal and frontal lobes. The furrows on the surface of the 

hemispheres are divided into two; fissures which are prominent and deep, and sulci which are 

shallower (Standring, 2015). The longitudinal fissure separates the two cerebral hemispheres 

while cerebral commissures provide connecting tracts for the two hemispheres to communicate. 

The frontal and parietal lobes are separated by the rolandic or central fissure. The frontal and 

parietal lobes are separated from the temporal lobes by the Sylvian or lateral fissure. The 

parieto-occipital fissure or notch, on the medial surface of the cortex, separates the parietal and 

the occipital lobes. The different brain structures are selectively vulnerable to TBI, for example, 

the brainstem is postulated to be less susceptible to injury due to its location, providing a degree 

of protection against trauma-induced forces (Adams, Graham & Jennett, 2000; Valko et al., 

2016). Moreover, the tissue property of the brainstem, being rich in sturdy white matter, could 

allow the structure to flex during TBI, thus reducing damage (Valko et al., 2016). In contrast, 

the frontal lobes are predisposed to damage during TBI as they are subjected to compressive 

pressure when they make contact with the bony protuberances of the skull (Bigler, 2013). The 
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different structures of the brain mediate diverse and distinct cognitive functions which may be 

diminished or abolished by brain trauma (Rabinowitz & Levin, 2014). 

The cerebral cortex is divided into two, the allocortex consisting of three to four cellular levels 

that include structures such as the hippocampus and neocortex (isocortex). These consist of six 

cellular levels that encompass the four lobes of the human brain. The neocortex is the most 

recently evolved region of the brain comprising of approximately 90% of the human cerebral 

cortex (Coqueugnlot, Hublin, Vellon, Houët & Jacob, 2004; Northcutt and Kaas, 1995). The 

region displays a substantial level of individual macroscopic structural variability concerning 

secondary structures (e.g. operculum; Idowu, Soyemi & Atobatele, 2014), posing a challenge 

when trying to ascertain functional and structural relationships from neuroimaging experiments. 

The continuous development of superior imaging techniques is allowing scientists to study the 

macro-structure of the human brain and large scale neural data projects (e.g. the Human 

Connectome Project) could potentially lead to changes in the way the human brain is mapped. 

For example, Kruggel (2018) applied a data-driven analytic approach to assess structural 

magnetic resonance imaging (MRI) data, proposing that subdividing the neocortex into 

communities, rather than lobes, could provide a more meaningful overview of vascular, 

anatomical, and functional brain connectivity.  

The human evolution of the neocortex is associated with the development and advancement in 

higher cognitive function (Lui, Hansen & Kriegstein, 2011), particularly social cognition 

(Dunbar, 2009) and executive function (Morton & Barker, 2010; Taylor, Barker, Reidy & 

McHale, 2013). Executive function is a term used to refer to a multifaceted psychological 

construct that incorporates the formation, maintenance and shifting of mental sets to generate, 

motivate and alter goals or plans in response to changing contingencies (Suchy, 2009). 

Research findings have reported strong associations between frontal lobe regions and uniquely 
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human social-cognitive behaviours (Adolfi et al., 2017; Forbes & Grafman, 2010; Rushworth 

et al., 2013), including speech production and language comprehension associated with Broca’s 

area (Skeide & Friederici, 2016), moral judgement (Cameron, Reber, Spring & Tranel, 2018; 

Rowley, Rogish, Alexander & Riggs, 2017), and theory of mind (ToM; Powell, Grossi, 

Corcoran, Gobet & Garcia-Fiñana, 2017; Saxe & Baron-Cohen, 2006; Yeh, Tsai, Tsai, Lo & 

Wang, 2017) which is the ability to attribute and understand the mental states of others 

(Premack & Woodruff, 1978). 

 

 

Figure 3. The localisation of the four human lobes (frontal, parietal, temporal and 

occipital), brainstem and cerebellum and some of the main sulci and gyri (A) lateral view, 

(B) medial view (reproduced from Nolte, 2008, p.92). 

Social behaviours are thought to be vital underpinnings of human social achievement and 

culture (Cummings and Miller, 2007; Frith and Frith, 2010; Simpson & Beckes, 2010). One 

theory proposes that a relative and disproportionate enlargement of the frontal lobes during 
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evolution led to superior social abilities in humans over other species (Powell, Lewis, Roberts, 

Garcia-Finana & Dunbar, 2012). Although the frontal lobes are relatively large in humans, 

recent research has challenged this concept (Barton & Venditti, 2013a, 2013b; Semendeferi, 

Lu, Schenker & Damasio, 2002). These objections are commonly based on the fact that prior 

research had less precise methodologies to measure the delineation of brain region boundaries 

compared to modern technologies today (Risberg & Grafman, 2006). Barton and Vendetti 

(2013a) analysed five data sets with rigorous scaling and phylogenetic techniques and reported 

that the frontal lobes were an expected size relative to the size of other brain structures. Barton 

and Vendetti’s (2013a) research supports Semendeferi et al., (2002) who also concluded, using 

MRI, that the frontal lobes in humans were not overly large and that superior human social 

abilities may be due to alterations in cortical areas as well as a higher density of cortical 

interconnectivity compared to other species.  

The evolutionary enlargement of white brain matter volume compared to grey matter in humans 

has also been proposed to underpin human social cognition (Schenker, Desgouttes & 

Semendeferi, 2005). Increased white matter is caused by an expansion of axons, dendrites, and 

myelination which might expedite neuronal transmission. In turn, this may facilitate the fast 

learning needed for superior human, compared to other species, social cognition, particularly 

in rapidly changing dynamic social contexts (Schenker et al., 2005). This theory is supported 

by adolescent research which reports a surge of myelination during puberty (Arain et al., 2013), 

and this stage of development is also associated with increased social cognitive ability (Burnett 

& Blakemore, 2009; Choudhury, Blakemore & Charman, 2006; Taylor et al., 2013, Taylor, 

Barker, Reidy & McHale, 2015). Although brain matter expansion theories are well supported 

in the literature, at present there is conflicting data regarding which areas undergo expansion. 

For example, Smaers et al., (2011) postulated that there has not been a disproportionate 

expansion of overall white or grey matter in the human frontal cortex, proposing that a specific 
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white and grey matter increase in the left prefrontal region has led to the evolutionary increase 

in social skills in humans. Cellular research is focusing on Von Economo neurons (VENs) 

which are located within layer five of the anterior cingulate and frontoinsular cortex. VENs are 

unique to hominoid primates (Butti, Santos, Uppal & Hof, 2013), and are less dense in apes 

compared to humans (Nimchinsky et al., 1999). VENs are thought to be a specialised projection 

neuron for linking cortical regions and possibly relaying social information (Stimpson et al., 

2011). VENs are depleted in frontotemporal dementia, a neurodegenerative disease associated 

with social cognition deficits, particularly the inability to identify emotional states and 

demonstrate empathy (Waldö, Santillo, Gustafson, Englund, & Passant, 2014; Seeley et al., 

2007). The opposite effect is reported for autism, a developmental disorder associated with 

poor communication and other social deficits. Santos et al., (2011) reported that post-mortem 

results indicated that autistic groups had a significantly higher number of VENs compared to 

control individuals. This finding concurs with Frith's (2004) 'under-pruning' hypothesis for 

autism which proposes that connections are not effectively pruned during infancy resulting in 

abnormal connectivity. This excessive preservation of VENs may be linked with the common 

autistic symptom of muted interoception, the inability to moderate bodily sensations which, in 

turn, has a significant effect on social functioning (Schauder, Mash, Bryant & Cascio, 2015).  

Conversely, Thomas, Davis, Karmiloff-Smith, Knowland and Cahrman (2016) challenge the 

under-pruning theory and present conflicting evidence for an 'over-pruning' hypothesis for the 

neurophysiological basis of autism. Although there is contention regarding the cellular basis of 

human social cognition, the research area is broadening the empirical evidence base 

investigating the underlying neural networks of social cognition in humans.  

There is still a longstanding controversy concerning the association between the 

disproportionate evolution of the frontal lobes and high-order human abilities. A recent tissue 

volume analysis conducted by Donahue, Glasser, Preuss, Rilling and Van Essen (2018) 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Landqvist%20Wald%26%23x000f6%3B%20M%5Bauth%5D
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reported a disproportionately large volume of grey and white matter corresponding to the 

prefrontal cortex (PFC) in humans compared to non-human primates. Smaers, Gómez-Robles, 

Parks and Sherwood (2017) explored PFC scaling across anthropoid primates and reported that 

the human PFC expansion does not follow typical allometric growth patterns (e.g. not 

associated with scale and body size), aligning with evidence for a developmental heterochronic 

shift in the human prefrontal expansion (Somel et al., 2011). In his review of the evolution of 

the human brain, Preuss (2017) summarised that evolutionary changes in the human brain were 

not restricted to one specific region, with this cortical change running parallel with 

developments in molecular, cellular physiology and network connectivity systems. The 

majority of human brain enlargement appears to be in the association cortex, an area highly 

related to higher-cognitive functions (Jung, Cloutman, Binney & Ralph, 2017). The expansion 

of the association cortex was accompanied by changes of the systems connecting cortical areas 

to functional networks, for example, language and tool-manipulation systems (Rakic, 2009).  

In summary, the specific evolutionary basis for human social cognition remains unclear. 

However, there is a strong evidence base indicating that this may be related to a natural 

adaptation and enlargement of specific distributed neural network connectivity throughout 

cortical and non-cortical brain regions (Barton & Venditti, 2013b; Risberg & Grafman, 2006; 

Schenker et al., 2005; Semendeferi, Armstrong, Schleicher, Zilles & Van Hoesen, 2001). The 

next section discusses neuroanatomy and connectivity of the frontal lobes as this brain region 

is frequently associated with social cognition (Amodio & Frith, 2006; Bzdok et al., 2013; 

Forbes & Grafman, 2010; Wood, 2003). Evidence has suggested a specialised social neural 

circuit within the frontal lobes which undergoes alterations during different stages of human 

development, particularly during adolescence (Kilford, Garrett & Blakemore, 2016; Taylor et 

al., 2012, 2015). This social neural substrate is sensitive to trauma, developmental, and 

degenerative abnormalities resulting in abnormal social functioning (Baez, García & Ibanez, 
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2017; Eack, Wojtalik, Keshavan & Minshew, 2017; Rigon, Voss, Turkstra, Mutlu & Duff, 

2016).  

1.4.  Delineations of the frontal lobes 

The frontal lobes are located at the anterior of the cerebral cortex, directly in front of the parietal 

lobes with the central sulcus separating the two lobes (Figure 4). The frontal lobes are not 

structurally homogeneous but comprised of distinct regions, which can be characterised by 

cellular structure or by functionality (Cummings & Miller, 2007). Cytoarchitectonic studies 

subdivide the cortex based on differential neuronal patterns in the cortical layers of the brain 

and thus indicate specialised functional units (Figure 5).  

 

Figure 4. Photomicrographs representing Brodmann areas 8Ad, 8Av, and 8B located in 

the frontal cortex of humans (reproduced from Petrides & Pandya, 2012, p.996). The 

roman numerals illustrate cortical layers and the black line in 8B represents 1mm. 

One of the most well-known cytoarchitectonic maps was produced by Brodmann who labelled 

individual cortical areas with numbers, commonly referred to as Brodmann areas (BA; 

Brodmann, 1908; Figure 6). Several alternative cytoarchitectonic maps of the human cortex 

have since been produced (Bailey & von Bonin, 1951; von Economo & Koskinas, 1925; 
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Sarkissov et al., 1955; Vogt, 1919), one of the most prominent being Walker’s (1940) 

cytoarchitectural study of the prefrontal area of the macaque monkey. However, with 

advancements in modern technology, discrepancies in the architectonic parcellation of the 

human cortex have emerged (Ardila, Bernal & Rosselli, 2016; Zilles & Amunts, 2010).  

Petrides, Tomaiuolo, Yeterian and Pandya (2012) and Petrides and Pandya (2012) re-examined 

the Brodmann cytoarchitectonic map of the human PFC to resolve previous discrepancies. This 

thesis will draw upon the seminal Brodmann maps when referring to frontal lobe delineations 

but will also reference Petrides et al., (2012) cytoarchitectonic map of the human PFC to ensure 

that the most contemporary data is being presented (Figure 7 and 8). Petrides et al.’s (2012) 

work highlights advancements in the field of cytoarchitectonic mapping and illustrates the 

evolution of the research field. Commonly the frontal lobes are divided into the motor, 

premotor and prefrontal regions (Cummings & Miller, 2007; Penfield & Jasper, 1954). The 

primary motor (area 4) and premotor regions (area 6) are distinct, while the prefrontal region 

may be further divided (Rae, Hughes, Anderson & Rowe, 2015). The motor regions mediate 

motor functions and bodily movements in conjunction with the basal ganglia, cerebellum and 

brain stem pathways (Leisman, Moustafa & Shafir, 2016). Penfield and Boldrey (1937) 

proposed the cortical homunculus which depicts the anatomical delineations of the motor strip 

in a pictorial form, where the size of each body part is proportional to the allocated size in the 

motor strip (Figure 9).  

The current work will use the terms dorsolateral prefrontal cortex (DLPFC), ventrolateral 

prefrontal cortex (VLPFC) and orbital frontal cortex (OFC) for the subdivisions of the 

prefrontal cortex following the delineations of Petrides et al., (2012). Although the PFC is 

frequently described as homogeneous, it is evidentially heterogeneous. For instance, prefrontal 

neurons are thought to be highly diverse in their; developmental lineages, molecular 

phenotypes, projection targets, afferent inputs, synaptic connectivity, physiological properties, 
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and behavioural functions (Chandler, Gao & Waterhouse, 2014). The diverse characteristics of 

prefrontal neurons could play a role in the dissociable cognitive functions associated with the 

PFC (Chandler, Lamperski & Waterhouse, 2013). Research findings have shown that the PFC 

undergoes a diverse and protracted maturation including the expansion of synaptic neuronal 

connections as well as the pruning and reorganisation of these networks (Taylor et al., 2015). 

This extended maturation is related to the longitudinal development of executive and social 

functions into early adulthood (Taylor et al, 2015). Prefrontal architecture is reviewed in the 

next section. 

 

Figure 5. Brodmann area map of the brain (reproduced from Teffer & Semendeferi, 2012, 

p. 192). The frontal lobe is shaded in grey with the prefrontal lobe depicted by the darker 

shading of grey. Brodmann denoted frontal regions to include areas 8, 9, 10, 11, 12, 44, 

45, 46, and 47. Precentral regions included areas 4 and 6. Anterior cingulate cortex 

included areas 24, 25 32 and 33. The orbital prefrontal region includes area 11 and 13. 

Prefrontal cortex generally refers to all shaded areas in the diagram bar the motor and 

premotor areas (4, 6, 24 and 44) and the dorsolateral frontal lobe (9, 10 and 46). 
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Figure 6. Modified cytoarchitectonic map of the lateral and orbital surfaces of the (A) 

monkey lobe and (B) human lobe (reproduced from Petrides & Pandya, 2012, p.995). 

 

Figure 7. Modified cytoarchitectonic map of the medial surfaces of the (A) monkey and 

(B) human frontal lobe (reproduced from Petrides & Pandya, 2012, p.996). 
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Figure 8. A diagram depicting the motor homunculus (reproduced from Manasco, 2016, 

p.34). 
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1.4.1. Dorsolateral prefrontal cortex (DLPFC) 

In terms of cytoarchitectonics, the DLPFC encompasses area 8, 9 and 46 (Brodmann, 1908; 

Cieslik et al., 2013; Petrides et al., 2012; Petrides & Pandya, 2012; Pierrot-Deseilligny, Rivaud, 

Gaymard & Agid, 1991). Area 8 is located on the posterior side of the superior and middle 

frontal gyri, extending medially to the paracingulate sulcus (Figure 6-8). To the posterior of 

area 8 is rostral area 6 and anteriorly it abuts area 9 on the superior frontal gyrus and area 9/46 

on the middle frontal gyrus. Area 8 can be divided into 8A and 8B (Figure 7). Area 8A is 

located on the middle frontal gyrus and can be further divided into ventral (area 8Av) and dorsal 

(area 8Ad) regions (Figure 7) (Petrides et al., 2012). Area (8Av) is located in a narrow section 

of the caudal-most middle frontal gyrus while the area 8Ad extends into the superior frontal 

sulcus.  

On Brodmann’s (1908) map, areas 9 and 46 are located in the dorsolateral frontal area at the 

midsection of the superior and middle frontal gyri. Area 9 extends across the superior frontal 

gyrus and the middle frontal gyrus and, therefore, area 46 occupies the middle frontal gyrus, is 

abutted by area 9, both dorsally and caudally. Petrides et al., (2012) reported that the 

architecture of the superior frontal gyrus, labelled as area 9 on their map, differed from 

Brodmann (1908), with area 9 being more analogous with 46. Petrides et al., (2012) have 

consequently labelled the area occupying the middle frontal gyrus 9/46 (Figure7). According 

to Petrides et al., (2012), area 9 is located in the superior frontal gyrus, extending medially to 

the paracingulate sulcus. Area 46 is located in the anterior section of the middle frontal gyrus 

with a significant area concealed in the intermediate frontal sulcus.  

The DLPFC has complex interconnections and subcortical circuits which allow communication 

across the cerebral cortex and other brain regions (Cummings & Miller, 2007). Of relevance to 

the current research, area 46 projects to area 8 where the frontal eye fields (FEF) are located 
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(Barbas, Ghashghaei, Rempel-Clower & Xiao, 2002). The FEF plays a role in covert spatial 

attention where, without moving the eyes, a location is selected for cognitive processing 

(Brooks & List, 2006). The FEF's also mediate voluntary control over saccades, the rapid shift 

in eye movements, which allow an individual to shift attention to the most salient information 

in the visual scene (Ghasia & Shaikh, 2013). When engaging in social interaction, an individual 

must constantly adjust their attention to the most pertinent information, such as facial 

expressions or following eye gaze (Auyeung et al., 2015; Frischen, Bayliss & Tipper, 2007; 

Tanaka & Sung, 2016). Mundy and Newell (2007) suggested that FEF’s are an important 

network for social cognition as they mediate voluntary saccades, an integral mechanism for 

encoding other’s behaviour. Furthermore, the FEF region is postulated to be part of an attention 

system that mediates volitional and goal-directed behaviour, processes vital for appropriate 

social behaviour i.e. joint attention (Mundy & Newell, 2007; Mundy, Sullivan & Mastergeorge, 

2009) where two people consciously coordinate attention to a common focus (e.g. another 

person, object, or situation). Joint attention can be divided into (1), response joint behaviour; 

the ability to follow gaze, head turn and gestures, and (2), initiating joint behaviour where an 

individual consciously creates a new point of reference with the use of gaze, head turn or 

gesture (Mundy et al., 2009). If joint attention is not followed and responded to, then this will 

have a negative effect on social behaviour and may lead to communication breakdown (Hahn, 

2016). Additionally, if eye gaze synchrony is not initiated or sustained, then this will also lead 

to poor communication and may be seen as a deviation from the typical social convention 

(Adamson, Bakeman, Suma & Robins, 2017). Impairments in eye gaze are frequently 

associated with autism; a developmental disorder characterised by communication and 

relationship difficulties (Tanaka & Sung, 2016) and schizophrenia; a neuropsychiatric disorder 

characterised by abnormal social behaviour (Seymour et al., 2017). Emerging data has also 

indicated that there may be a relationship between aberrant eye scan patterns and social 
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cognition impairments after TBI (Vassallo, Douglas & White, 2010). As frontal brain areas are 

particularly vulnerable to head trauma (Rabinowitz & Levin, 2014), it could be postulated that 

damage to the visual networks within the frontal lobes and visual network connectivity between 

frontal, parietal and temporal lobes will have a detrimental effect on social functioning, 

although more data to support this theory is needed.  

1.4.2. The ventrolateral prefrontal cortex (VLPFC) 

The VLPFC encompasses areas 44, 45, 47/12 and 14 (Figure 7). Area 44 is reported to 

encompass Broca’s speech area and is located rostral to the inferior precentral sulcus in the 

pars opercularis of the inferior frontal gyrus (Figure 7). Area 45 is located in the pars 

triangularis of the inferior frontal gyrus and can be subdivided into rostral and caudal sections 

labelled as area 45A and area 45B in Figure 7. Brodmann (1908) labelled the area rostroventral 

to region area 45 as area 47 (Figure 6). Area 47 is located in the most rostral region of the 

inferior frontal gyrus and extends onto the caudal half of the orbitofrontal cortex. Petrides et 

al., (2012) noted that a section of area 47 is located to the rostral and ventral region of area 45, 

extending to the lateral orbital sulcus. Area (47) shares cytoarchitecture similarities with 

Walker’s (1940) map of the monkey brain and hence Petrides et al., (2012) have labelled the 

area 47/12. The remaining area 47 is located on the caudal orbitofrontal cortex.  

Area 44 is thought to have visual, motor, language, and working memory functions (Ardila et 

al., 2016; Bernal, Ardila & Rosselli, 2015; Morin & Grèzes, 2008). Neural activation in area 

44 during movement observation and production has indicated a possible connection with the 

mirror neuron system (Iacoboni et al., 2005; Press, Weiskopf & Kilne, 2012). A mirror neuron 

fires when an animal or primate performs a behaviour and also when the animal or primate 

observes the same behaviour performed by another. The mirror neuron system is of great 

significance to social cognition as understanding the actions of others is necessary for survival, 
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social organisation, human culture, and imitation learning, for example, the development of 

language (Rizzolatti & Craighero, 2004). Area 44 has also been associated with intentional 

facial expressions, a complex human communication tool which is socially learned and used 

to convey emotional states. Facial expressions are also used to mask underlying intentions and 

facilitate traits such as deception, manipulation and empathy (Gola et al., 2017). Intentional 

facial expressions are vital for modulating social functioning as they express an individual.’s 

emotional state as well as influencing the mood state of others. Gola et al., (2017) reported a 

correlation between intentional expression imitation and cortical volume loss in the speech 

production network, a prime region of the mirror neuron system, in individuals with prefrontal 

atrophy who displayed socioemotional impairments. Gola et al., (2017) concluded that 

imitation of facial expressions was associated with a right lateralised cortical network, coined 

the ‘emotional apraxia’ network which was homologous to the left-sided speech production 

network. It should be noted that research on area 44 is tentative and there are discrepancies 

regarding the exact location and function of this area (Morin & Grèzes, 2008). Functions 

associated with area 45 are similar to that of area 44 in the mediation of language, including 

lexical search during reading (Heim, Eickhoff & Amunts, 2009) and encoding of word meaning 

(Zaccarella, Meyer, Makuuchi & Friederici, 2017). Area 45 is also thought to play a role in the 

perception of affective prosody, the ability to understand emotion expressed through speech 

(Belyk & Brown, 2014; Witteman, van Ijzendoom, van der Velde, van Heuven & Schiler, 

2011). This is important for social interactions as it enables emotional valence to be understood 

(Brazo, Beaucousin, Lecardeur, Razafimandimby & Dollfus, 2014). 

Neuroimaging data have shown that area 47 and the ventral section of area 6 are part of the 

language module of the brain (Bookheimer, 2002; Devlin, Matthews & Rushworth, 2003; 

Hagoort, Hald, Bastiaansen & Petersson, 2004). Area 47 may also mediate certain emotion-

related processes, such as the successful control of emotions, particularly the modulation of 
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negative affect through the use of cognitive strategies (Phan et al., 2005) and executive 

functions, such as working memory (Collette, Hogge, Salmon & Van der Linden, 2006; Wager 

& Smith, 2003). There is debate surrounding whether emotional mimicry is an implicit or 

explicit process (Kirkham, Hayes, Pawling & Tipper, 2015). The phenomenon occurs rapidly 

(Chechko, Pagel, Otte, Koch & Habel, 2016; Riehle, Kempkensteffen & Lincoln, 2017) and 

subconsciously when it is not the main focus of the task (Kaiser, Davey, Parkhouse, Meeres & 

Scott, 2016), as well as during tasks where participants are asked to inhibit facial mimicry 

(Kirkham et al., 2015). Nevertheless, humans can inhibit emotional mimicry to avoid 

inappropriate responses during social interactions, for example, not smiling at an offensive joke. 

Consequently, emotional mimicry may be a moderated automatic process (Kirkham et al., 

2015; Murata, Saito, Schung, Ogawa & Kameda, 2016) that only occurs if there is a neutral or 

positive rapport between individuals (Murata et al., 2016). Reductions in cell density in area 

47 have been documented in individuals with schizophrenia, Alzheimer’s disease and 

depression (Bralet, Buchsbaum, DeCastro, Shihabuddin & Mitelman, 2016; Underwood et al., 

2012), conditions associated with impairments in intentional facial mimicry (Gola et al., 2017; 

Varcin, Bailey & Henry, 2010; Zwick & Wolkenstein, 2017). Pathology to the VLPFC often 

causes disturbances within the frontal-subcortical signalling circuitry which, in turn, disrupts 

higher-order regulatory functions, such as speech and the modulation of facial expressions, 

negatively impacting socioemotional functioning (Lee, Josephs, Dolan & Critchley, 2006).  

1.4.3. Orbital frontal cortex (OFC) 

Brodmann (1908) labelled a significant area of the caudal OFC as area 47 and then labelled the 

remaining OFC as area 11. Brodmann (1908) acknowledged that area 47 and area 11 were 

heterogeneous and could be subdivided. Petrides et al., (2012) drew upon this distinction and 

incorporated it into their cytoarchitecture model, recognising that a significant part of the 
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ventrolateral frontal region was labelled as area 12.  Medial to area 12 on the orbital frontal 

region was area 13 caudally and area 11 rostrally. Using their architectonic analysis of monkey 

and human brains, Petrides et al., (2012) reported that Walker's (1940) area 12 only slightly 

abutted with area 47 on the ventral-most section of the ventrolateral frontal area and extended 

as far as the lateral orbital sulcus. Petrides et al., (2012) referred to this area as 47/12. The 

caudomedial section of area 47 shares cytoarchitecture similarities with Walker’s (1940) area 

13 and therefore Petrides et al., (2012) labelled the area as 13 (Figure 7). This division 

differentiates area 13 from more lateral orbital extensions of area 47/12, rostral area 11 and 

medial area 14 (Figure 7).  

In the monkey brain, the OFC has connections with higher sensory areas, medial and lateral 

PFC, temporal lobe, midbrain, and striatum (Cavada, Compañy, Tejedor, Crux-Rizzolo & 

Reinoso-Suárez, 2000). Ongür and Price (2000) presented a functional division of the monkey 

OFC; the medial network comprised the medial and posterior-lateral section of the OFC and 

the orbital network which extends over the ventral surface. Zald et al., (2012) used meta-

analytic connectivity modelling (MACM) to support Ongür and Price’s (2000) findings, 

suggesting clear segregation between medial and lateral regions of the OFC. The human medial 

OFC is understood to be an output system, mediating stimuli associated with reward as well as 

playing a role in the expression of emotion and action (Neubert, Mars, Sallet & Rushworth, 

2015; O’Doherty, Kringelbach, Rolls, Hornak & Andrews, 2001; Price & Drevets, 2010; Xiu, 

Geiger & Klaver, 2015). The lateral OFC is thought to be a sensory-related system combining 

multi-modal stimuli as well as being vital in mediating stimuli related to punishment and 

behaviour alteration signals (O’Doherty et al., 2001; Price & Drevets, 2010; Rolls, 2017). 

Contemporary research has advocated a more detailed delineation of the OFC rather than a 

simple medial and lateral division. Kahnt, Chang, Park, Heinzle and Hayne (2012) used brain 

imaging methodology to parcellate the human OFC. Findings suggested six functionally 
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distinct sub-regions; medial, posterior-central, central and three clusters in the lateral OFC 

(Figure 10). 

 

Figure 9. OFC human subdivisions (reproduced from Kahnt et al., 2012 p.6247). The 

different numbers refer to the specific units of the OFC as identified by Kahnt et al., 

(2012). (1) medial, (2) post-central, (3) central, (4-6) lateral. 

Indeed, Kahnt et al.’s, (2012) division of the human OFC is convergent with diffusion-

weighted MRI (Neubert et al., 2015), cytoarchitectonic (Uylings et al.; 2010), functional 

activation (Berridge & Krigelbach, 2015), and resting-state functional connectivity research 

(Rolls, Joliot & Tzourio-Mazoyer, 2015). Hierarchical clustering suggests that the medial 

cluster of the OFC is activated during reward and decision tasks (Kahnt, Heinzle, Park & 

Haynes, 2011). The medial cluster has connections with the medial PFC and the posterior 

cingulate cortex which are thought to regulate episodic memory (Cavanna and Trimble, 2006) 

and self-related processes (Sajonz et al., 2010). The posterior-central cluster is connected to 



Page 50 of 531 

 

the midbrain, possibly the substantia nigra, which provides the striatum with dopaminergic 

neurons and is related to the experience of pleasure and reward learning (Li et al., 2015; Zhang, 

Harris, Split, Troiani & Olson, 2016). The central cluster has connections with ventrolateral 

and dorsal striatum and is reported to mediate value learning (Kahnt et al., 2010), while the 

dorsomedial frontal cortex is associated with action-outcome values (Gläscher, Hampton & 

O’Doherty, 2009). The lateral clusters displayed connections with the temporal and parietal 

cortices involved in high-level visual processing (Delgado, Li, Schiller & Phelps, 2008) as well 

as the DLPFC which mediates optimal decision making and self-control (Hare, Camerer & 

Rangel, 2009).  

Importantly, two distinct functional regions appear evident in the OFC. Pegors, Kable, 

Chattergee & Epstein (2015) scanned human participants with functional MRI (fMRI) while 

they judged the attractiveness of faces and places. The first region appeared to process 

category-unique responses to face attractiveness, and the other region responded strongly to 

faces but exhibited no preference for attractiveness versus non-attractive faces. The authors 

concluded that the OFC may modulate basic reward processing that is specific to certain 

stimulus categories, possibly socially relevant stimuli. Troiani, Dougherty, Michael and Olson 

(2016) termed these regions ‘OFC face patches’ and reported a prevalence of OFC face-

selective regions in control participants. Furthermore, they described a correlation between the 

OFC face patches and social motivation assessed via the Broad Autism Phenotype 

Questionnaire (Hurley, Piven & Parlier, 2007). The authors proposed that abnormal activation 

in OFC face patches during the viewing of faces could reflect developmental disorder 

symptoms. For instance, it is well established that autistic individuals display altered reward 

sensitivity during behavioural tasks (Kohls et al., 2014), and there is evidence that OFC 

activation is reduced in autistic groups (Lynn et al., 2018). Troiani et al., (2016) advised that 

future research should investigate the role OFC face patches play in social learning. Retrograde 
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tracing determined that the face patches have complex connectivity with both feed-forward and 

feedback projections (Grimaldi, Saleem & Tsao, 2016). Grimaldi et al., (2016) recorded low 

inputs from other prefrontal regions while distinct face patches received strong inputs from the 

extrastriate cortex (in the visual cortex), the medial temporal lobe, and three subcortical 

structures including the pulvinar, claustrum, and amygdala. These findings suggest a highly 

specialised system incorporating prefrontal face patches and critical connections to subcortical 

regions for the processing of face-related information. Also, the face patch network overlaps 

with the social brain network including the supplementary eye fields (SEF) which are thought 

to aid attention direction by guiding saccades to relevant facial features during emotion 

identification. Hence, pathology to this region of frontal cortices could have a devastating effect 

on the recognition, evaluation and generation of social signals (Schwiedrzik, Zarco, Everling 

& Freiwald, 2015).   

Social interactions are often complex and rapid and frequently require an individual to engage 

in decision making and adapt behavioural responses, as well as modulating moral behaviour 

and empathy which are critical for human social functioning (Kringelbach & Rolls, 2003). If 

an individual is unable to assess and utilise reward and punishment or they are impaired at 

alternating behaviour then this would have an adverse effect on social communication and 

integration (Hornak, Rolls, & Wade, 1996; Rolls, Hornak, Wade & McGrath, 1994). Damage 

to the OFC can lead to inhibition impairments which can have a detrimental effect on 

interpersonal behaviours such as the inability to regulate interpersonal space (Peters & 

D’Esposito, 2016), self-disclosed information (Beer, John, Scabini & Knight, 2006) or 

emotionally-driven outrages (Mimura, 2010). Abnormalities in the medial OFC is also 

correlated with mood disorders such as depression (Rolls et al., 2018), and obsessive-

compulsive disorder (Ducharme, Dougherty & Drevets, 2016). Social interactions can promote 

physical and psychological benefits (Holt-Lunstad et al., 2015), therefore, disinhibited 
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behaviours, which lead to social isolation, could have a significant effect on wellbeing in 

groups that are affected by abnormal OFC functions (Lefebvre, Cloutier & Levert, 2008).   

1.4.4. Frontopolar cortex (FPC) 

The Frontopolar cortex (FPC) is one of the largest cytoarchitectural areas of the human cortex, 

situated at the most anterior point of the PFC and corresponding to area10 (Boschin, Piekema 

& Buckley, 2015) (Figures 6 and 7). On the lateral surface, it caudally abuts areas 9, 46 and 

47/12, on the orbital surface it abuts areas 11 and 14 and on the medial surface, it abuts areas 

9, 32 and 14. The functionality of area 10 is relatively unknown as the area is methodologically 

difficult to investigate due to structural differences between humans and animals, hindering the 

application of animal to human models. At present, electrophysiological and imaging 

techniques are not able to reliably isolate area 10 and focal lesions to this region are rare 

(Burgess, Simons, Dumontheil & Gilbert, 2007).  

In a review of area 10, Burgess et al., (2007) outlined four theories of function which included; 

episodic memory, meta-cognition (the ability to reflect on one’s thoughts), higher-order 

cognitive processes, for example holding numerous goals in mind or selecting between goals 

and the default mode hypothesis. The default mode hypothesis relates to decreases in neural 

activity during a task compared to a previously defined baseline state (Greicius, Krasnow, Reiss 

& Nenon, 2003). Burgess et al., (2005) questioned all four theories, mainly on the grounds of; 

incomplete accounts, discrepancies in definitions of brain regions and the different 

tasks/stimuli being used. Due to the anterior location of area 10, the well-established 

complexity of the prefrontal cortex, and the association the area has with executive functions 

(Koechlin, 2016), it may be surmised that damage to area 10 could result in severe cognitive 

dysfunction but this is not so. Case study N.M (Metzler & Parkin, 2000) underwent virtually 

complete removal of the rostral PFC but presented with good social skills and performed within 

the superior range on IQ, memory and executive function tasks. N.M did display impairments 
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in multitasking which had a detrimental effect on social functioning, such as frequent tardiness 

and disorganisation, meaning he was unable to maintain his premorbid occupational role. 

Conclusions based on case-studies must be treated with caution and are hard to generalise yet 

research by Burgess et al., (2000) also reported that 60 individuals with neurological damage 

to area 10 displayed impairments on the Greenwich multi-tasking task. Similarly, Boschin et 

al., (2015) research findings supported the theory that damage to area 10 does not necessarily 

produce marked cognitive deficits but, may instead, produce subtle deficits which lead to 

significant social deficits. Boschin et al., (2015) reported that localised lesions to non-human 

primate frontopolar cortex led to deficits in rapid novel learning, particularly during uncertain 

contexts. Rapid novel learning is integral to human-level intelligence and impairments would 

lead to abnormalities in everyday functioning, such as not being able to learn new technologies 

or adapt behaviour according to verbal instructions (Cole, Laurent & Stocco, 2013). Boschin 

et al., (2015) postulated that the prefrontal cortex is vital for rapid learning regarding the 

relative value of alternatives, including stimuli and rules. It should be noted that animal 

research may be a poor predictor of human physiology and experience, and caution must be 

taken when trying to apply animal findings to humans (Akhtar, 2015; Bracken, 2009). Hyafil 

and Koechlin (2016) described area 10 as the apex underlying executive control. The authors 

proposed that the area mediates a basic process known as cognitive branching, the ability to 

maintain a pending task whilst completing an alternative task and then reverting to the original 

pending task. Hyafil and Koechlin (2016) suggested that their cognitive branching theory also 

explained why the area is associated with so many other cognitive functions, such as 

prospective memory and attentional shift. This theory aligns with previous research reporting 

activation of area 10 during tasks such as the standard Tower of London. The Tower of London 

draws on executive functions including planning and prospective memory (Christoff & 

Gabrieli, 2000).  
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The current models exploring the anatomical and functional basis of the FPC require more 

investigation, particularly around the role of area 10. Needless to say, advancements in 

neuroimaging may inform new human models. Currently, it appears that the FPC mediates a 

range of social and cognitive processes. Damage to the area may result in impairments in novel 

learning and the ability to switch in and out of multiple tasks without the aid of external cues 

or sequential learning. These types of impairments would have a negative effect on planning 

and multi-tasking in the social world (Boschin et al., 2015; Hyafil and Koechlin, 2016). 

1.4.5. Medial frontal cortex (MFC) 

The cingulate and paracingulate areas on the medial surface of the frontal lobes are respectively 

referred to as the medial prefrontal cortex (MFC) labelled as areas 24, 25 and 32 (Figure 7). 

On the medial surface of the superior frontal gyrus, dorsal to areas 24 and 32, is the medial 

extensions of areas 8, 9 and 10. Area 32 ventrally abuts the medial section of area 14 and 

caudally area 25.  

de la Vega, Chang, Banich, Wager and Yarkoni (2016) published a meta-analysis across nearly 

10,000 human studies to create a topological map of cognitive, social and emotional functions 

within the MFC. The authors applied cluster-based analysis (grouping contiguous brain regions 

activated during fMRI-Heller, Stanley, Yekutieli, Rubin & Benjamin, 2006) to create zones, 

which were small and consisted of few voxels, and sub-regions which were larger and 

contained more voxels. At a basic level, the MFC was divided into three bilateral clusters 

spanning across the rostrocaudal axis. The posterior zone had two clusters, with de la Vega et 

al., (2016) proposing that there was a high likelihood that it contained parts of the 

supplementary motor area. In the middle zone, four clusters were identified with two anterior 

and two posterior clusters located anterior to the anterior vertical commissure. The dorsal 

clusters were homogenous to the paracingulate gyrus and the two ventral clusters to the 

cingulate gyrus. In the anterior zone, a dorsal cluster was homogenous to the medial frontal 
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pole and superior frontal gyrus with no aspects of the anterior cingulate gyrus. Two ventral 

clusters were reported; the first was within pregenual aspects of the anterior cingulate gyrus 

and included pregenual portions of paracingulate gyrus while the second more ventral cluster 

was associated with pregenual aspects of the ACC and medial OFC. The research team then 

contrasted co-activation patterns of the three zones and determined that the posterior zone 

demonstrated bilateral co-activation with the primary motor cortex, superior parietal cortex, 

anterior cerebellum, posterior insula and subcortical regions, including the thalamus and dorsal 

striatum. This activity configuration is comparable to motor processing. The middle zone co-

activated with anterior aspects of the thalamus as well as regions in the frontoparietal control 

network, such as dorsolateral prefrontal cortex, anterior insula and superior parietal cortex. The 

anterior zone co-activated with angular gyrus, hippocampus, posterior cingulate cortex, 

amygdala and ventral striatum. de la Vega et al., (2016) used a data-driven multivariate 

classifier to ascertain whether clusters were correlated to specific cognitive functions. The 

posterior zone was related to motor function, including gaze, the middle zone was linked to 

negative affect recognition, pain, fear and decision making and the anterior zone was associated 

with affective functions including fear, reward, and decision making, in addition to internally 

orientated functions, for example, episodic memory and social processing. While de la Vega et 

al., (2016) meta-analysis results provided insight into the functional diversity of the MPFC, the 

authors note that the apparent heterogeneity of the region must be interpreted with caution as 

it was noted that no single region was solely activated by a single function. It is probable that 

there are overlapping neuronal populations within the region (Kvitsiani et al., 2013), suggesting 

that pathology to the area could result in the inability to perceive and process social stimuli 

causing impairments in metalizing and affective states.   



Page 56 of 531 

 

1.4.6. Cortical connection patterns of the frontal lobes 

The frontal lobes are associated with higher-order cognitive and social-emotional functions. 

Nevertheless, specialised regions within the frontal lobes, such as the motor cortices, 

supplementary motor areas, and FEF, mediate more basic processes. These low-level processes 

are just as important, if not more so, as high-level cognition. If initial processes or functions 

are aberrant then this is likely to have an adverse influence on upstream cognitive functions. 

The complex range of basic and higher cognitive abilities mediated by the frontal lobes is 

dependent upon integrated and intricate networks of fibrous connections (Bartolomeo, 

Thiebaut de Schotten & Chica, 2012; Yeterian, Pandya, Tomaiuolo & Petrides, 2012) (Figure 

11). Long-range projections and association fibres convey sensory knowledge from subcortical 

nuclei and sensory cortices and then facilitate frontal input to this information (Catani et al., 

2012). Short-range projections are responsible for local connectivity of the frontal lobes and 

consist of U-shaped projections among gyri and longer intralobar fibres (Yeterian et al., 2012). 

Also, critical feed-forward and feedback circuits form connections from the PFC to the rest of 

the frontal lobe region. The extensive PFC connections are widely dispersed and include 

circuits with the association and limbic cortices and brainstem areas, more than likely 

mediating specific elements of social cognitive processes (Siddiqui, Chatterjee, Kumar, 

Siddigui & Goyal, 2008).  

The vulnerability of the frontal lobes, due to their position within the skull and back and forth 

shearing motions during impact, often leads to pathology which can sever or damage these 

complex and intricate connections (Schiff, 2010; Shenton et al., 2012). This effect, combined 

with Wallerian degeneration (neuroinflammation caused by a cascade of cellular and molecular 

events distal to injury of nerve fibres-Stoll, Jander & Myers, 2002) causes serious disruption 

to cognitive function after pathology (Bigler, 2007) (Figure 12).  
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Figure 11 illustrates the intricate connectivity of the frontal lobes while Figure 12 outlines the 

diminishment of these connections after pathology. Oni et al., (2010) did not present a 

neuropsychological assessment of the patient in Figure 12 but, with the extent of neuronal 

pathway loss, it is almost certain that cognitive impairments, specifically social and emotional 

impairments, would have occurred due to the intensity of damage to the frontal lobes and the 

association this region has with social cognition (Adolphs, 2001; Brothers, 1990; Satpute & 

Lieberman, 2006).  

 

 

 

Figure 11. Diagram of frontal lobe connections. (reproduced from Catani, Dell’Acqua, 

Vergani & Thiebaut de Schotten, 2012, p.15). U-tracts are red, intralobar frontal tracts 

are yellow and long-range association and projection connections are black. The different 

functional divisions are; central sulcus connections (yellow area), hand-knob connections 

(dashed black line area), premotor connections (green area), prefrontal and orbito-polar 
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(light red area), dorsolateral longitudinal connections (dashed white line area). AOF, 

anterior orbitofrontal; FP, frontal pole; IFGop, pars opercularis; IFGtr, inferior frontal 

gyrus pars triangularis; IFGor, inferior frontal gyrus pars orbitalis; LGN, lateral 

geniculate nucleus; LP, lateroposterior nucleus; POF, posterior 

orbitofrontal; SMA, supplementary motor area; VLp, ventral lateral posterior nucleus; 

VPl, ventral posterior lateral; VPm, ventral posterior medial.  

 

 

Figure 10. Diffusion tensor imaging (DTI) data after TBI (reproduced from Oni et al., 

2010, p.13). DTI data from a 12-year-old girl (left) who had sustained a severe TBI after 

hitting the back of her head leading to frontal pathology compared with an age and sex-

matched control (right). In the right image, tracts from the frontal region are displayed 

posteriorly via central white matter pathways and the cingulum as well as 

interhemispheric connections across the anterior corpus callosum including bi-frontal 

pathways. In the left image, there is extensive frontal encephalomalacia and all of the 

pathways are damaged and reduced including an absence of callosal fibres across the 

posterior corpus callosum. 
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1.5. Pathophysiology of TBI 

An impact to the head produces an array of mechanical and chemical processes which cause 

pathology to brain matter. Any impact to the head or acceleration, deceleration, velocity 

alterations/forces or torsion and tension (twisting and stretching) motions can cause neural 

damage. Brain injury can be categorised as impact if the head has direct contact with an object 

or non-impact if the force is a result of a blast or rapid acceleration-deceleration such as 

whiplash (Prins et al., 2013). Head movements are restricted by the physiology of the neck and 

can only make limited forward movement before a rebound action occurs. This rebound action 

produces a momentum shift and leads to pathology during non-impact injuries. When the head 

and neck are violently forced to extend and flex, brain matter moves within the skull. This 

movement is due to the soft nature of brain matter (Meaney, Morrison & Bass, 2014). In TBI, 

brain matter and meningeal membranes impinge upon the irregular and bony surfaces of the 

skull, stretching and tearing blood vessels and creating lesions (Figure 12 and 13). During 

impact, the brain collides with the skull which creates a large positive pressure at the coup site 

(direct site of impact), while the skull opposite the impact briefly enlarges, thus generating 

negative pressure at the contrecoup site (remote sites of the direct impact –Payne & Payne, 

2019) (Figure 14). The rebound motion of the brain produces spikes in pressure as well as 

shearing and strains at the contrecoup area (Moss, King & Blackman, 2009). The expansion of 

the skull and the rebound action after this is associated with the tearing of blood vessels 

crossing from the skull to the dura, leading to extradural haematoma cavities (Chen et al., 2012). 

Pathology to orbital and ventral surfaces of frontal and ventromedial regions of the temporal 

lobes are common as they are subjected to compressive pressure when they make contact with 

the bony protuberances of the skull, particularly the anterior cranial fossa, ethmoid bone, the 

sphenoid bone and the crista galli located on the cribriform plate (Bigler, 2013; Fujiwara et al., 
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2008; Kolb & Wishaw, 1990; Maas, Stocchetti & Bullock, 2008; McDonald et al., 2013; Taylor 

& Ford, 2009; Zappala et al., 2012 see Figure 1.13).   

 

Figure 13. Interior skull surface showing rigid and bony structures of the skull floor 

(reproduced from Remington & Goodwin, 2012 p.146).  

During impact or acceleration/deceleration forces, the underside of the frontal and temporal 

lobes slide or 'slap' along these rough skull bones. This effect is due to the brain momentarily 

lifting away from the skull and then slapping back when the momentum moves in another 

direction (Bigler, 2013; Gurdjian, 1975). The falx and tentorium often create a region of strain 

during the impact that can lead to the shearing and stretching of white matter, causing diffuse 

axonal injury (DAI; Strich, 1956). DAI is related to mechanical disruption of a large number 

of axons in cerebral hemispheres and subcortical white matter. DAI can induce deep white 

matter damage, damage to membranes connecting grey and white matter, and damage to 
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capillary blood vessels known as petechial haemorrhages (Li and Feng, 2009). DAI is theorised 

to play a critical role in cortical network dysfunction after TBI, even if the injury is mild 

(Vascak, Jin, Jacobs & Povlishock, 2018). The damage to white matter after TBI is associated 

with the severity of the injury as well as future outcome (Kraus et al., 2007).   

 

 

 

Figure 14. Coup-contrecoup injury (reproduced from El Sayed, Mota, Fraternali & Ortiz, 

2008, p. 4693).  

Evidence indicates that TBI initiates a complex cascade of events leading to primary and 

secondary damage that varies according to the mechanics and severity of the injury. The 

primary effects of TBI are immediate and occur as a direct result of the injury. Primary damage 

includes coup-contrecoup injury, possible skull fracture, focal and diffuse contusions, 

hematoma, lacerations, DAI, and concussion (Drew & Drew, 2004; Werner & Engelhard, 

2007). During the acute stage after TBI (< 1 hour) there is a complex alteration in 

neurochemical processes including, but not restricted to, the release of glutamate, potassium 

and calcium within neurons (Prins et al., 2013).  
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Primary injuries can induce a series of biochemical, physiological and pathological processes, 

including cellular inflammatory responses and ionic and neurotransmitter alterations, these 

propagate secondary effects of TBI and lead to abnormal cellular functioning (Prins et al., 

2013; Werner & Engelhard, 2007). Typically, apoptosis (a naturally programmed cell death 

important for neuronal regeneration and repair; Sabirzhanov et al., 2016) and necrosis (a 

pathological and non-programmed cell death; Fujikawa, 2015) both occur after brain trauma. 

Subsequent secondary effects, which can develop over hours or even days, may also include 

infection, hypoxia, oedema and increased intracranial pressure. The main aim of acute 

management of TBI is to limit secondary effects (Murthy, Bhatia, Sandhu, Prabhakar & Gogna, 

2005).  

1.6. The diagnosis and classification of TBI 

TBI’s are classified as mild, moderate or severe based on the level of primary and secondary 

injuries. This can be assessed via a range of clinical indices and outcome measures (Friedland 

& Huthchinson, 2013). TBI is usually classified using a combination of neurological measures 

including; the length of loss of consciousness (LOC), physical and neurological alertness 

measured by the GCS, and the length of post-traumatic amnesia (PTA). Less than 30 minutes 

of LOC indicates a mild TBI, 1-24 hours as moderate TBI, and more than 24 hours as severe 

TBI. The GCS is used to measure the severity of brain injury using eye, motor and verbal 

responses and classifies brain injury on a scale as mild (13-15), moderate (9-12) or severe (0-

8). The GCS is a quick and simple bedside measure to administer. It is widely used and, 

therefore, the majority of health professionals know how to administer and interpret the scores. 

Reviews on the reliability of the GCS are mixed with some research indicating good reliability 

while others highlighted issues regarding inexperience of administrator (Bledsoe et al., 2015; 

Mattar, Liaw & Chan, 2015; Reith, Van den Brande, Synnot, Gruen & Mass, 2016). In addition, 
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there is evidence of inconsistencies between staff members at accident and emergency wards 

regarding when the GCS should be administered. Marion and Carlier (1994) reported that 

neurosurgical staff members administered the GCS one hour following admission after 

hypotension and hypoxia are stabilised, while non-surgical staff members administered the 

GCS immediately on arrival of the patient, regardless of hypotension and hypoxia. Reith, 

Brennan, Maas and Teasdale (2016) conducted an online questionnaire with 616 health 

professionals from different disciplines over 48 countries. Significant discrepancies were 

documented for the type of stimulus applied when patients do not obey verbal commands (e.g. 

nail bed pressure, pectoral pinch), with 25% of participants reporting that no stimulus was used. 

Techniques for reporting GCS scores have major variations with 35% of health professionals 

only reporting a summary score. There were also large inconsistencies with methods to deal 

with issues completing certain components of the test, such as sedation. Within the UK, an 

increased burden on NHS resources might exacerbate this variability of measurement 

(Robertson, Wenzel, Thompson & Charles, 2017).  

PTA can also be used as an indicator of brain injury severity. A definition of PTA was provided 

in Russell and Smith’s (1961) seminal research where they described the event as the period 

between head injury and the ability of the individual to create continuous memories of daily 

events. Although PTA is a well-established phenomenon, little is known about the underlying 

pathophysiological processes, with no standardised practises as to when PTA should be 

measured. In a review, McMillan (2015) outlined variabilities between clinician’s 

measurement of PTA, highlighting how some clinicians included time spent in coma and others 

documented it from the point when the patient emerged from a coma. National Institute for 

Health and Care Excellence (NICE) guidelines have advised that PTA for more than five 

minutes indicates a need for hospital admission and a head CT scan (NICE, 2019), but no clear 

guidance is given on when to start measuring amnesia. This ambiguity is disadvantageous when 
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trying to standardise and index TBI severity. PTA generally encompasses a global memory 

disturbance in encoding, storage, and retrieval of information. Anterograde amnesia, the 

inability to maintain new memories, is the most common memory disturbance, although 

retrograde amnesia, the inability to recall previously stored memories, as well as a tendency to 

forget information, can also be present (De Simoni et al, 2016; Luoto et al, 2015). PTA lasting 

24 hours is supposedly indicative of a severe brain injury, PTA lasting 30 minutes to 24 hours 

is indicative of moderate injury, and finally, PTA lasting 30 minutes or less is indicative of 

mild injury (Isaac et al, 2016; Rao and Lyketsos, 2000). Friedland (2013) noted issues with 

misclassification of PTA, particularly mistaking other factors, such as sedation, intoxication, 

or memory alternating drug effects (e.g. morphine) for PTA symptoms (Kemp, Agostinis, 

House & Coughlan, 2010; Ruff, Iverson, Barth, Bush, & Broshek, 2009).  

In summary, LOC, the GCS, and PTA are the most commonly used measures to determine the 

severity of TBI. With improvements in medical treatment, neuroimaging and other 

physiological biomarker techniques, as well as advancements in published reviews and 

empirical research, the reliability and validity of the TBI classification system have been 

brought into question. Indeed, the literature is proposing that a revision of the current system 

is needed, including more accurate measures and further education and teaching on how to 

administer the tests (Bledsoe et al., 2015; Levin & Diaz-Arrastia, 2015; Mattar et al., 2015; 

Reith et al., 2015). Furthermore, LOC, the GCS, and PTA scores can dramatically fluctuate 

when an individual emerges from a coma, responds to treatment, endures secondary stroke or 

complicating medical problems. There appears to be a need for a more holistic and linear TBI 

classification system. Improvement of this system will progress evidence-based research and 

interventions which will, in turn, mitigate morbidity rates, patient outcomes, and 

socioeconomic strain. The current research followed guidance from the literature and classified 

TBI as mild if; LOC and PTA were less than 30 minutes and GCS was 13-15, moderate if LOC 
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was 1-24 hours, PTA was 30 minutes-24 hours and GCS was 9-12, and severe if LOC and PTA 

were greater than 24 hours and GCS was 0-9.   

1.7. Summary 

In summary, TBI is a major cause of death and disability with statistical evidence suggesting 

that worldwide, approximately 69 million people per year sustain a documented TBI (Dewan 

et al., 2018; Johnson & Griswold, 2017; Li et al, 2016). TBI can have a devastating effect on 

the patient and their family, with the high prevalence of TBI creating a serious burden on public 

health services (Fineberg et al., 2013), creating a need for improved neurorehabilitation 

programmes (Wiltshire & Ehrlich, 2014). Due to the brains position within the skull and the 

biomechanical and pathophysiological factors associated with TBI, the frontal lobes and their 

intricate connections often become damaged (Bigler, 2007). Of note, damage to the frontal 

lobes is associated with impaired social cognition (Molesworth, Sheu, Cohen, Gianaros & 

Verstynen, 2015). The prevailing nature of this impairment has been documented as the most 

challenging and debilitating of all TBI sequelae, for both the TBI patient and their family or 

caregivers. Consequently, abnormal social skills have a direct impact on functional daily living 

and quality of life (Brooks, Campsie, Symington, Beattie & McKinlay, 1986; Kinsella Packer 

& Olver, 1991; Ubukata et al., 2014) yet is often overlooked by clinicians (Kelly, McDonald 

& Frith, 2017a). The next chapter will discuss and review theories of social cognition and the 

effect that TBI can have on the psychological processing of social stimuli.  
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2. Chapter two: Social cognition and the effects of TBI  

2.1. Chapter overview 

Social cognition is a complex skill which enables people to understand the social world (Cassel, 

McDonald, Kelly & Togher, 2019) and likely gives rise to uniquely human constructs such as 

civilisation and culture (Adolphs, 2009). Despite its importance in everyday functioning, the 

cognitive and neural underpinnings of social cognition are still poorly understood. Over the 

past decade, social cognition research has gained traction and there have been several 

influential papers which have underscored the importance of continued investigation into this 

field (Cassel et al., 2019; Cotter et al., 2018). Developing a better understanding of social 

cognition is paramount for the amelioration of disorders associated with poor social interaction 

and cognition (Happé, Cook & Bird, 2017), particularly after brain injury since those most 

affected are likely to be young with normal life expectancy (Harrison-Felix et al., 2015; 

Lawrence et al., 2016). 

Individuals with TBI frequently exhibit impaired social cognition including, but not limited to; 

emotion identification deficits, problems inferring people's thoughts and intentions, difficulties 

maintaining social relationships, and social inappropriateness (Babbage et al., 2011; McDonald, 

2013; McDonald, Rushby, Dalton, Allen & Parks, 2018; Spell & Frank, 2000). However, social 

cognition is sometimes overlooked in clinical practice and post-injury rehabilitation is not 

routinely offered (Kelly, McDonald & Frith, 2017a, 2017b; McDonald, 2017). This is 

surprising as evidence suggests a negative relationship between social cognition deficits and 

functional outcome post-TBI (Ubukata et al., 2014). For example, reduced subjective 

emotional experience after TBI, particularly of sadness and fear, has been correlated with poor 

emotion matching (Croker & McDonald, 2005), inappropriate behaviour, and poor community 

re-integration (May et al., 2017).  



Page 67 of 531 

 

This chapter will define social cognition and discuss the current challenges related to 

delineating a standardized factor structure. It will also review the lower and higher-level 

processing stages of social cognition and the basic neural underpinnings of the specialised 

‘social brain’. A specific objective of the current thesis was to explore facial affect recognition 

post-TBI, which is the processing of others’ emotional expressions. Justification for this 

decision, as well as an overview of extant facial expression identification research and 

paradigms in normative and clinical samples, will also be presented. This review will also 

highlight gaps in the literature, with subsequent chapters detailing how the present research 

addressed these. 

2.2. Social cognition: Definitions 

Humans are thought to be among the most social of all primates with the success of the human 

species possibly associated with superior social cognition abilities compared to other species 

(Adolphs, 1999; Frith & Frith, 2010). Social cognition is a broad term which can refer to any 

cognitive process which mediates or facilitates the ability to understand the self, other 

conspecifics (a member of the same species), or the relationship between the self and other 

conspecifics (Forbes & Grafman, 2010). There are various definitions of social cognition from 

very basic explanations such as ‘simply thinking about people’ (Fiske & Taylor, 1995, p.151) 

to more advanced definitions, for example, ‘psychological processes that are involved in the 

perception, encoding, storage, retrieval and regulation of information about other people and 

ourselves. These processes include social cue perception, experience sharing, inferring other 

people’s thoughts and emotions, and managing emotional reactions to others’ (Green, Horan 

and Lee, 2015, p.620). This present research adopts Green et al.’s., (2015) definition of social 

cognition and analogous theoretical framework which recognises the various processing stages, 
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including lower (perception) and higher (encoding and regulation) levels of cognition, whilst 

acknowledging the multifaceted nature of social cognition.  

2.3. Conceptual challenges for social cognition research 

An important challenge for the current research was how to standardise the conceptualisation 

of the multi-componential processes constituting social cognition. There are several different 

approaches to social cognition including; developmental (Bandura, 2001), psychoanalytical 

(Fonagy, 1991), and neuroscientific perspectives (Adolphs, 2009; Frith & Frith, 2007). Each 

perspective uses a different vocabulary which has more than likely slowed the progress of the 

research field (Cassel et al., 2019). There is also dispute within the literature regarding the core 

processes of social cognition. Happé et al., (2017) reviewed the factor structure of social 

cognition and highlighted the disparity between different authors’ division of social cognition 

abilities. For instance, Green et al., (2015) deduced four social cognitive processes, including; 

perception, experience sharing, mentalizing, and experiencing/regulating emotion. Fiske and 

Taylor (2013) proposed 14 domains of social cognition that ranged from low-level processes, 

such as perception and attention of social stimuli, to higher-level processes, such as decision-

making and social attitudes. Happé and Frith (2014) suggested ten components and presented 

a specific division of the processes, such as agent detection (a human preference for presuming 

a purposeful involvement of another agent (human or animal) in a social interaction that may 

or may not involve one), and social policing (taking accountability and mitigating behaviour 

in terms of moral principles/justice). Besides, there is a lack of consensus within the field 

regarding which processes should be considered core and which processes are interrelated with 

these core factors. Happé et al., (2017) argued the need for a standardized taxonomy and 

vocabulary within the discipline and highlighted the negative effect that loose definitions can 

have on the replication of studies and mapping of social processes to brain regions. One 
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example of this disunity is the inconsistency in the definition of social perception and facial 

affect recognition. Some authors combine the processes, for instance, Adolphs (2010) 

presented social perception as an overarching principle and classified facial affect recognition 

as a subcomponent along with auditory and olfactory processing. Other authors distinguish 

between the two processes and assess them as distinct functions (Barbato et al., 2015).  

Mitchell and Phillips (2015) have commented on the lack of agreement in terminology and 

conceptual frameworks between low-level emotion perception and higher-level theory of mind 

(ToM: the ability to attribute and understand the mental states of others (Premack & Woodruff, 

1978). Reviewing the existing evidence base, Mitchell and Phillips (2015) explored the 

similarities and distinctions of emotion perception and ToM at a conceptual, theoretical, and 

neuroanatomical level. They concluded that the two functions were distinct yet overlapped on 

multiple levels. Mitchell and Phillips (2015) recommended that when both processes are 

discussed in a single study, the authors should be explicit regarding the distinctions between 

the two concepts, including definitions and the extent to which the experimental tasks make 

emotional and cognitive demands. This position contrasts with work from Njomboro, Deb and 

Humphrey (2008) who proposed that emotion perception was a sub-component of ToM. 

Presently, these conceptual and methodological issues remain unresolved and further clarity is 

warranted to better inform socio-cognitive models and methodological designs.  

A further challenge arises when researchers consider how to measure such complex 

multifaceted processes. Broadly, social cognition depends upon social and non-social cognitive 

processes and behaviours, for example, perception, attention, memory, reward/punishment 

learning, and cognitive flexibility. Whether these processes are related or distinct is not yet 

clear. Evidence suggests a dissociation between classic cognitive (e.g. executive functions: a 

set of higher-order cognitive processes which allow humans to monitor and control behaviour), 
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and social-cognitive processes in individuals with autism (Miranda, Berenguer, Roselló, 

Baixauli & Colomer, 2017), Alzheimer’s disease (Cosentino et al., 2014), schizophrenia 

(Green et al., 2015), and frontotemporal dementia (Lough, Gregory, Hodges, 2001). 

Furthermore, individuals with frontal pathology from trauma frequently present with intact or 

mildly impaired intellect but chronic impairments in social functioning (Blair & Cipolotti, 

2000; Tranel, Bechara & Denburg, 2002). These findings suggest that social and non-social 

cognitive processes are dissociable in certain pathological conditions, although this may partly 

reflect the functions measured. There is likely to be crosstalk between social and non-social 

cognitive processes for adaptive social functioning. For example, the decoding of facial 

expressions relies on several non-social processes such as vision, attention, and memory. 

Indeed, perceptual processes are pivotal to social functioning, with evidence suggesting that 

humans have evolved specialised brain areas for social perception, for instance, the fusiform 

face area (FFA, Schultz et al., 2003) and amygdala (Rutishauser, Mamelak & Adolphs, 2015). 

Aberrations in these systems are related to disorders such as autism (Schultz, 2005) and 

schizophrenia (Mukherjee et al., 2013), both of which are clinically characterised by 

impairments in social cognition (Gall & Iakimova, 2018).  

In a systematic review of meta-analyses across 30 clinical conditions, Cotter et al., (2018) 

reported that social cognition impairments were a core phenotype or marker. In many of these 

conditions, social cognition deficits were similar in magnitude to ‘classic’ cognitive functions, 

such as memory or executive functions. The conditions were diverse, including; psychiatric 

disorders (e.g. bipolar disorder and anorexia nervosa), neurological disorders (e.g. Alzheimer’s 

disease and Huntington’s disease), and developmental disorders (e.g. autism and attention 

deficit hyperactivity disorder). Cotter et al., (2018) theorised that social cognition abilities can 

be distinguished from non-social abilities that could potentially be used as trait markers or 

endophenotypes for many neurological or psychiatric conditions, particularly autism and 
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schizophrenia (Derntl & Habel, 2011). However, Dodell-Feder and Germine (2018) cautioned 

against making generalised inferences across conditions as the cause and nature of social 

impairments usually differ according to the condition and other inter-individual factors. For 

example, autistic children display social cognition deficits from a young age, whereas an 

individual with a brain injury may have developed typical social cognition, yet this ability has 

been selectively diminished as a result of pathology. The neurological underpinnings of the 

two conditions are, therefore, disparate, and this needs to be taken into account when assessing 

social cognition and offering intervention or therapy.  

Beer and Ochsner (2006) define social cognition through an interdisciplinary approach, 

bridging psychology and cognitive neuroscience. The authors advised that a comprehensive 

account of social cognition should take into consideration; the processing of other people, the 

self, social norms and procedures of the social world. More than likely, these processes will 

occur on both an implicit and explicit level and will be subjective to; motivational biases, the 

context of the situation, previous experience, and declarative (e.g. social scripts and schemas) 

and procedural (social rules and skills) knowledge. Beer and Ochsner (2006) highlighted that 

understanding the social world, including the self, encompasses multiple stages of processing, 

as well as the use of information from all of the sensory channels to process both verbal and 

nonverbal cues. Beer and Ochsner (2006) underscored that the interconnected and overlapping 

nature of the psychological processes involved in social cognition would be supported by 

nearly every neural network (e.g. vision, language, hearing, memory), leaving social cognition 

module theories open to scrutiny on the basis that they are biologically implausible as they do 

not correspond to neural substrates. Later work by Ochsner (2008) proposed a framework based 

on the premise that human social and emotional behaviours are highly intertwined, identifying 

that emotions arise from appraisals of the goal relevance of a stimulus, and people are typically 

the most goal-relevant stimuli during daily lives. To this end, Ochsner proposed the social-
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emotional processing stream which denoted a collection of psychological and neural processes 

that encoded social and emotional inputs, represented their meaning, and guided responses. 

The stream consisted of five core constructs; (i) acquisition of social-affective values and 

responses, (ii) recognition of and response to social-affective stimuli, (iii) embodied simulation 

or low-level mental state inference, (iv) high-level mental state or trait inference, and (v) 

context-sensitive regulation. Ochsner (2008) then considered translational examples of how 

each construct could aid in the understanding of negative symptoms in schizophrenia (e.g. 

pervasive lack of emotional expressivity, abnormal emotional experience, lack of motivation, 

and asociality) and other clinical samples, such as TBI. For example, with regards to 

constructing (ii), Ochsner proposed that the decoding of subtle nonverbal social cues could be 

challenging for individuals with schizophrenia, particularly cues which convey the intentions 

of conspecifics. One illustration provided by the author was that individuals with schizophrenia 

may exhibit heightened amygdala activation to patterns of eye gaze that normally are not 

considered threatening to non-schizophrenic individuals. The above work provides a basic 

framework for exploring the relationship between social cognition and social functioning and 

supports the proposal that social cognition impairments in clinical populations may result in 

difficulties with social behaviour and poor social outcome.  

A third challenge stems from reports of dissociations between certain social cognition 

processes. For example, some researchers make distinctions between ‘hot’ social cognition (e.g. 

emotion processing and empathy) and ‘cold’ social cognition (e.g. ToM) (McDonald, 2013; 

Figure 15). Another example comes from reports that several neurological disorders are 

associated with social cognition impairments but differ in terms of social deficits and their 

developmental courses. For example, the clinical diagnosis for both autism (Hoffman, Brück, 

Kreifelts, Ethofer & Wildgruber, 2016; Rosenblau, Kliemann, Heekeren & Dziobek, 2015), 

and schizophrenia (Schilbach et al., 2016; White, Borgan, Ralley & Shergill, 2016) include 
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problems identifying social cues and mentalizing. Impairments in autism develop early in life 

compared to impairments in schizophrenia that typically develop during adolescence or 

adulthood. Frontotemporal dementia often occurs later in life and is also associated with 

mentalizing problems (Caminiti et al., 2015), while conduct disorder, which can be diagnosed 

from a young age, is associated with diminished empathy, disinhibited behaviour, and emotion 

sharing problems, yet mentalizing abilities remain intact (Winter, Spengler, Bermpohl, Singer 

& Kanske, 2017). 

 

Figure 15. Processes during social cognition (reproduced from McDonald, 2013, p. 232). 

Shamay-Tsoory, Aharon-Peretz and Perry (2009) reported a double dissociation between 

affective empathy (the implicit process of sharing others’ emotional state) and cognitive 

empathy (the explicit process of trying to understand others’ emotional state). They suggested 

a two-system basis for empathy, with increased activation in the inferior frontal gyrus during 

affective empathy compared to increased activation in ventromedial regions during cognitive 



Page 74 of 531 

 

empathy. However, the concept that specialised functions (e.g. facial affect recognition, 

memory, empathy) can be modularised to specific brain areas is contentious (Dias, 2009; 

Shettleworth, 2012) as the brain is a connectome. Dissociations between social-cognitive 

processes are seen in abnormal and pathological conditions, but there are also multiple inter-

relationships between cognitive processes. For instance, Neumann, Zupan, Malec and 

Hammond (2014) suggested that alexithymia (difficulty in identifying and describing 

emotions) is associated with impaired affect recognition and cognitive empathy but not 

affective empathy. Emerging reports appear to consider social cognition as a construct which 

relies on several different components working in unison and, therefore, a primary concern is 

how to operationalise these functions for empirical study.  

One approach involves isolating a specific social process (e.g. facial affect recognition) and 

investigating this process using different experimental paradigms (Figure 16). This reductionist 

approach (i.e. investigating part of the process thoroughly compared to the whole phenomenon) 

facilitates the development of operational variables and makes a complex process easier to test. 

Isolating the constituent parts of social cognition and gaining a comprehensive understanding 

of a specific process should, in theory, aid the understanding of social cognition as a whole. 

Nevertheless, the reductionist approach has an obvious limitation in that it reduces behaviour 

down to, for example, brain structures or neurotransmitters, and omits other influential factors, 

for instance, culture or the combination of social processes (e.g. the effect of context, tone of 

voice, and facial expressions on the behavioural response). This produces a simplistic overview 

of a multifaceted process and generating theoretical frameworks which may lack validity (van 

Kleef, Heerdink & Homan, 2017). However, adopting a holistic approach to the investigation 

of social cognition would be challenging as these functions span low-level social perception to 

complex and higher-level ToM. At present, it is common practice in affective neuroscience to 
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employ the reductionist approach, with the collation of findings is providing an insightful 

overview of social cognition.   

 

Figure 16. Diagram illustrating the processing of social information (reproduced from 

Adolphs, 2001, p.232). At the input stage, social cognition involves neural networks 

associated with perception and the recognition and evaluation of stimuli, subsequently 

supplying the information which is necessary to construct central representations of the 

social world. Several brain regions and structures are involved in this process including, 

but not limited to, the fusiform gyrus and the superior temporal sulcus working together 

with a network of structures. This includes; the amygdala, orbitofrontal cortex, anterior 

and posterior cingulate cortices, right somatosensory-related cortices, motor and 

premotor cortices, basal ganglia, hypothalamus, periaqueductal grey (PAG), and visual 

system. Critically, social perception, social cognition, and social behaviour are 

interconnected as depicted by the bottom of the diagram.    

2.4. Stages of social cognition  

Adolphs (2010) proposed three stages of social cognition; perception of social information, 

social understanding, and social behaviour (Figure 15 and 16). Adolphs’ (2010) framework 
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was developed from earlier schizophrenia models of social cognition proposing; perception of 

social cues, interpretation of social information, and processing of social information (Ostrom, 

1984; Penn, Corrigan, Bentall, Racenstein & Newman, 1997). Social perception refers to the 

initial stage of social cognition where visual cues, such as eye gaze (Allison, Puce & McCarthy, 

2000), auditory cues (Blake et al., 2015) and olfactory cues (Lahera et al., 2016) are encoded. 

During social interaction, an individual must extract relevant information whilst inhibiting 

irrelevant information from the environment. Visual cognition is restricted by computational 

capacity as the human brain can only process a finite amount of information. Two mechanisms 

moderate this constraint: attention prioritizes stimuli based on motivational relevance, and 

expectations limit visual interpretation based on prior likelihood (Summerfield & Egner, 

2009). Less salient information must be ignored and relevant information must then be 

interpreted (processed) to formulate appropriate responsive behaviour. Penn et al., (1997) 

proposed that the amalgamation of these stages is the basic underpinning of social cognition. 

A strength of this particular model is that it incorporates early attentional and visual processing. 

These initial low-level functions influence upstream cognitive processes, yet many studies fail 

to acknowledge, assess, or even consider the effect they may have on higher-order cognitive 

abilities (Pinkham, Penn, Perkins and Lieberman, 2003). Nevertheless, frameworks which 

present cognitive processes as linear and sequential pathways are likely to be over-simplistic. 

Perception alone is a dynamic interactive process, and the combination of social cognition 

functions are likely to proceed in parallel and through constant iterative feedback loops. 

2.5. Implicit and explicit social cognition  

Another important consideration in social cognition research is the distinction between low 

level, implicit processes that largely occur in the absence of awareness and higher-level explicit 

processes (Frith & Frith, 2008). Most social cognitive processes are thought to be implicit and 
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processed automatically without the influence of conscious processes, allowing people to 

respond swiftly in social situations (Bargh & Williams, 2006; Forbes & Grafman, 2010). 

Unconscious processes may underpin several social cognitive functions, including but not 

confined to, emotion recognition and gesture interpretation (Barker, Andrade, Morton 

Romanowski & Bowles, 2010; Nosek, Hawkins & Frazier, 2011). Implicit processes are crucial 

for increasing the success of group behaviour, for example, the generation of good rapport 

through unconscious mirroring of other's behaviour (Chartrand & Bargh, 1999).  

Explicit processes depend upon conscious thought and are generally slower but more dynamic 

than implicit processes (Frith & Frith, 2008). These processes are thought to contribute to 

personal adaptability and goal-directed behaviours, such as collective responses to danger (e.g. 

raising the alarm to a fire) and acts of persuasion and deception (Frith & Frith, 2012). Satpute 

and Lieberman (2006) proposed a working model that distinguished between the reflexive 

implicit system (X-system) and a reflective explicit system (C-system). The brain regions 

associated with the X-system were thought to be slow learning, rapid operating, bi-directional 

and able to parallel-process information. These implicit systems included the amygdala, basal 

ganglia, ventromedial prefrontal cortex, dorsal anterior cingulate cortex and lateral temporal 

cortex, including the superior temporal sulcus (STS); essentially, midbrain areas and associated 

networks. C-system areas were proposed to incorporate rapid learning, slow operating 

functions mediating symbolic or propositional functions, including the lateral prefrontal cortex, 

posterior parietal cortex, rostral anterior cingulate, medial temporal, and medial prefrontal 

cortices. 

A strength of Satpute and Lieberman’s (2006) model is that it recognises the distinction 

between cognitive and social processes and implicit and explicit processes. The model 

amalgamates the two by identifying shared and distinct brain regions emphasising the 
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importance of parallel connectivity. In sum, Satpute and Lieberman (2006) presented a 

biologically plausible model of social cognition and their framework is mirrored by other 

scholars (e.g. Forbes & Grafman, 2013). Nonetheless, the existence of discreet X- or C-systems 

in the brain may be oversimplified with recent research reporting a complex interaction 

between regional activations and connectivity changes when different tasks are performed, for 

example, recognising emotion compared to a language task (Di & Biswal, 2019). Similarly, 

there is debate within the literature regarding dissociations between implicit and explicit 

processes. Some researchers advocate an independent role for the two processes (Frith & Frith, 

2008), while others support a more complex synergistic relationship (Forbes, Cox, Schmader 

& Ryan, 2011; Forbes & Grafman, 2013).  

2.6. The social brain 

2.6.1. Brain networks 

The neurological underpinnings of social cognition are complex and appear to be dependent 

upon a variety of cortical and subcortical areas and connective circuitry (Van Overwalle, 2009). 

The term ‘social brain’ was coined by Gazzaniga (1985) as a result of research investigating 

social deficits after right hemisphere damage. The term is now used to refer to social brain 

functions (Glozman & Krukow, 2013). Brothers’ (1990) seminal research with primates 

advanced the social brain theory and identified multiple brain networks and structures 

including; the amygdala, prefrontal cortex, and the temporal poles, as the neural basis of the 

social brain. The evidence for Brothers’ (1990) model was mainly based on monkey lesion 

studies; for example, amygdala lesions resulted in social isolation (Kling & Brothers, 1992), 

and orbitofrontal lesions negatively impacted social behaviour, such as reduced grooming and 

huddling (Raleigh & Steklis, 1981). However, Brothers (1990) work is limited as it was based 

on animal data which does not always translate well to humans. For instance, although primates 
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and humans both tend to have social and hierarchical groups, humans have additional complex 

factors, such as finances, culture, and language, which impacts upon social constructs. 

Nevertheless, the underlying principle of Brothers (1990) hypothesis has been partially 

supported by neuroimaging and human lesion studies that have consistently associated a strong 

involvement of frontal and limbic micro-circuitry (Amodio & Frith, 2006; Bicks, Koike, 

Akbarian & Morishita, 2015; Wittmann, Lockwood & Rushworth, 2018; Xiao, Jacobsen, Chen 

& Wang, 2017). It should be noted that although the existing evidence base suggests a 

specialised role of the frontal and limbic systems during social cognition, the social brain 

network is thought to vary depending on task demands and social context and likely draws on 

a widely distributed brain network (Frith & Frith, 2006; Fujiwara & Bartholomeusz, 2010; 

Figure 16).  

 

 

Figure 17. Brain areas related to social cognition (reproduced from Green et al., 2015, 

p.625). Social perception can be divided into facial perception, reported to rely on 

amygdala and FFA, and voice perception, related to superior temporal gyrus (STG) and 
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inferior frontal gyrus (IFG) activation. The ability to share experiences with others may 

be related to motor resonance (activation of observer’s motor system when they perceive 

a conspecific performing an action) which is associated with inferior parietal lobule (IPL) 

and premotor cortex, and affect sharing which appears to rely on the dorsal anterior 

cingulate cortex (dACC) and anterior insula. Mentalizing (understanding the mental 

state of ourselves and others) is reported to rely on several brain regions including the 

temporoparietal junction (TPJ), temporal pole, precuneus and medial prefrontal cortex 

(mPFC). Experiencing emotions activates the amygdala, anterior hippocampus (not 

shown), ACC and anterior insula, while the regulation of emotions is associated with the 

dorsolateral PFC (dlPFC), ventrolateral PFC (vlPFC) and amygdala. It is evident that 

several brain structures are associated with several social processes (e.g. the amygdala 

and anterior insula) and those social processes, such as empathy and emotion recognition, 

may be inter-related.  

 

2.6.2. Neuropeptides 

The role of neuropeptides in human social cognition is critical to understanding the biological 

basis of human social cognition. Two of the most well researched human social neuropeptides 

are oxytocin and vasopressin. Oxytocin is produced in the hypothalamus and released by 

the posterior pituitary gland (Fineberg & Ross, 2017). The key pathways through which 

oxytocin modulate social functioning include; communication with serotonergic systems in the 

nucleus accumbens, interaction with the amygdala and other limbic structures, and direct 

projections to brainstem nuclei (Fineberg & Ross, 2017). Oxytocin plays a pro-social role in 

human behaviour by diminishing behavioural and neuroendocrine responses to social stress, 

therefore, facilitating approach behaviour and decreasing avoidance behaviour (Heinrichs & 

Domes, 2008). Oxytocin increases the formation of trusting behaviour (Kosfeld, Heinrichs, 

Zak, Fishbacher & Fehr, 2005), cooperation (Declerck, Boone & Kiyonari, 2010), social bonds 

(Bosch & Young, 2017), and the perception and processing of faces (Theodoridou, Rowe, 

Penton-Voak & Rogers, 2009). Additionally, oxytocin appears to increase empathy levels 

(Geng et al., 2018), in-group compared to out-group preferences (Ten Velden, Daughters & De 

Dreu, 2017), and social motivation and reward (Gordon, Martin, Feldman & Leckman, 2011).  
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Vasopressin is synthesized in the hypothalamus and is released to several brain regions 

including; the amygdala, cingulate gyrus, dorsal hippocampus, and caudate nucleus (Cuzzo & 

Lappin, 2019; Dumais & Veenema, 2016). The role of vasopressin on human social behaviour 

is less researched compared to oxytocin, but the neuropeptide appears to produce an anxiogenic 

effect (causing anxiety). Males produce more vasopressin than females (De Vries & Panzica, 

2006) and has been implicated in male-typical social behaviours, particularly aggression during 

pair bonding (Caldwell, Lee, Macbeth & Young, 2008; Goodson & Bass, 2001). It has been 

hypothesised that there may be an association between higher levels of vasopressin and a bias 

to respond to neutral social stimuli as threatening (Thompson, Gupta, Miller, Mills & Orr, 

2004).  

The specific mechanisms underpinning the effects of neuropeptides on social cognition are still 

under investigation but it is evident that both oxytocin and vasopressin modulate vital social 

behaviours, including prosocial behaviour, attachment, social recognition, and defence 

behaviours (Geng et al., 2018; Heinrichs & Domes, 2008). Interestingly, oxytocin is being 

considered as a psychopharmacological enhancement for social cognition disorders and has 

been reported to increase empathy levels in individuals with schizophrenia (Davis et al., 2014) 

and emotional ratings of faces in autistic individuals (Quintana et al., 2017). Despite these 

positive effects, current ethical considerations and methodologies are problematic in human 

cohorts and present findings are equivocal (Bradley & Woollet, 2017).  

2.7. Facial affect recognition  

Humans rely heavily on visual cues, particularly non-verbal visual communication to negotiate 

social contexts (Beattie & Ellis, 2014). Birdwhistell (2010) postulated that during a dyadic 

conversation, only one-third of the social meaning is conveyed by verbal components, the 

remaining two-thirds are conveyed by non-verbal components (Figure 18). 
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Figure 18. Combined verbal and non-verbal social signals during a dyadic interaction 

(reproduced from Vinciarelli, Salamin & Pantic, 2009, p.43). Verbal cues include 

language, tone of voice, and intonation. Non-verbal cues include posture, personal space, 

expressions and gestures. The combination of these signals allows humans to decipher a 

social situation, for example, with the above image, hostility, aggressiveness and 

disagreement.  

Indeed, Mehrabian (1971) proposed that up to 93% of a conversational message is conveyed 

by non-verbal components. These non-verbal components are usually visually processed and 

include aspects of human behaviour such as eye contact, facial expressions, body language and 

gestures (Knapp & Hall, 2002). According to Argyle (2013), there are five main functions of 

non-verbal communication; to express emotion, facilitate interpersonal relationships, 

accompanying speech to create a feeling of synchronisation, self-presentation, and to uphold 

cultural rituals, for example, handshaking. The ability to correctly identify, assimilate and 

engage paralinguistic features, non-verbal and contextual cues from the social environment is 

vital in behaving appropriately during social situations (Mah, Arnold & Grafman, 2004).  

The present research was interested in exploring the visual non-verbal communicators of mood 

state, specifically emotion perception through facial expressions. The human face is one of the 
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most communicative modes utilised during social interactions, and correct identification of 

facial expressions is central to adaptive social functioning (Hinojosa, Mercado & Carretié, 

2015; Jack & Schyns, 2015). Human faces display visible signals of social intentions, 

motivations, and communicate internal emotional states (Hess & Hareli, 2015; Schmidt & 

Cohn, 2001). It is generally accepted that there are six basic facial expressions/emotions which 

are recognisable across cultures; anger, fear, disgust, happiness, sadness and surprise (Ekman 

& Keltner, 1997). Nevertheless, there is still a lack of consensus between theorists regarding a 

common taxonomy of emotions (Izard, 2009, 2010; Turner & Stets, 2006), mainly because 

they are investigating phenomena from different theoretical positions.  

As well as emotions, human faces also display intention gestures and signals, such as the 

eyebrow flash which indicates a desire to communicate (Frith, 2009), yawning, which is 

theorised to promote emotional contagion (the transfer of emotion and mood to other 

individuals (Ferrari & Coudé, 2018), and eye gaze (Slonimska, Campisi & Ozyurek, 2015), 

which is the basis for joint attention; the ability of two or more individuals to concurrently 

utilise gestures or eye gaze to focus attention on salient objects or events in the environment 

(Jones & Carr, 2004). These gestures are critical for adaptive social behaviour as they allow 

humans to perceive and interpret other people’s intentions, thoughts, and behaviours during 

social interactions, as well as mediating the generation of contextually appropriate social 

responses (Green et al., 2008). Interestingly, Elder (2018) explored the use of emojis 

(ideograms displaying facial expressions) in textual computer-mediated communication. The 

research concluded that the use of emojis had a positive effect on individual well-being and 

interpersonal communication, directed attention, expressed or acknowledged difficult 

emotions, and increased altruistic tendencies, highlighting the human reliance on facial 

expressions for communication.  
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Facial expressions can also be used to build rapport consciously through friendly displays 

(Grahe & Bernieri, 1999), and unconsciously through a process of mirroring (the chameleon 

effect which is the unconscious imitation of facial expression, gestures or speech patterns; 

Lakin, Jefferis, Cheng & Chartrand, 2003; Tramacere & Ferrari, 2016). The evolutionary 

benefit of mirroring is that it drives humans to unconsciously produce survival behaviours. For 

instance, a fearful face is indicative of a threat and the physiological facial adaptations 

associated with fear (e.g. widening of the eyes and nostrils) enlarge the visual field, inspiratory 

capacity, and sense of smell (Susskind et al, 2008).   

Humans exhibit an innate preference for faces and evidence has proposed that the human visual 

system rapidly identifies human faces compared to other visual stimuli (Frank, Vul & Johnson, 

2009). Eye-tracking research has reported that human saccades (quick movements of the eye 

in preparation for a fixation) are exhibited as early as 100 milliseconds after stimulus onset for 

happy faces (Crouzet, Kirchner & Thorpe, 2010). When faces are paired with other objects (e.g. 

vehicles), initial saccades are biased towards faces, even when the other object is the target, 

suggesting that these quick saccades are not under conscious control (Crouzet et al., 2010). 

This unconscious bias appears to extend to social cues from facial expressions (e.g. eye gaze). 

Deaner and Platt (2003) reported that when participating in a peripheral visual target detection 

task, macaque and human performance levels were both facilitated when eye gaze was 

consistent with the target location. These findings indicated that primates displayed innate 

covert attention to face stimuli. Abnormalities within this social perception system, for example 

avoiding looking at the eye area of a face, have been related to poor social functioning in 

autistic cohorts (Tanaka & Sung, 2016).  

The neural networks underpinning facial affect recognition are extensive and beyond the scope 

of detailed discussion in the current thesis. The recognition of facial expressions relies on both 
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low and high-level processes, activating early sensory cortices (discussed in detail in chapter 

three), subcortical structures, and widespread cortical regions. In brief, Phillips, Drevets, Rauch 

and Lane’s (2003) neurobiological model of emotion perception suggests two emotion 

perception neural systems. Firstly, a ventral system, predominantly important for identifying 

emotion valence and producing appropriate affective responses, and included the amygdala, 

insula, ventral striatum, and ventral regions of the anterior cingulate gyrus and prefrontal cortex. 

Secondly, a dorsal system, necessary for the regulation of affective states, and included the 

hippocampus and dorsal regions of the anterior cingulate gyrus and prefrontal cortex. TBI, even 

mild, has been associated with structural and neurochemical brain changes, including DAI, in 

the aforementioned regions (Eierud et al., 2014; Mayer, Mannell, Ling, Gasparovic & Yeo, 

2011), and could account for the frequently reported emotion perception impairments post-TBI 

(Babbage et al., 2011). 

In summary, facial expressions are arguably the most important conveyor of human mood state 

and aid social behaviours such as emotional contagion and joint attention. Even in the ‘digital 

age’, where there has been a reduction in face to face, humans have perceived the need to 

develop a facial expression system to facilitate the message they are trying to convey, 

highlighting human dependency on this intrinsic ability (Elder, 2018). Facial affect 

recognition draws on a diverse set of brain networks including; early sensory cortices, 

subcortical structures, and widespread cortical regions, notably the frontal cortex and the 

motion detection regions of the parietal cortex (Adolphs, 2009; Phillips et al., 2003). Facial 

affect recognition was identified as the primary focus for the current thesis because facial 

expressions are considered to be the most important non-verbal conveyor of mood state in 

humans (Croker & McDonald, 2005; Frith, 2009), and impairments in understanding facial 

expressions post-TBI are well-established but poorly understood (Babbage et al., 2011; May et 
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al., 2017). The next section critically reviews the effects of TBI on social cognition with a 

specific focus on facial affect identification.  

2.8. Social functioning post-TBI 

Social cognition impairments after TBI are well documented and can include behaviours such 

as self-focused conversations, the inability to express, inhibit or regulate emotions, lack of 

empathy, inability to detect nuanced expression such as sarcasm, and lack of social etiquette 

(Cattran, Oddy, da Silva Ramos, Channon, Pellijeff & Rule, 2005; McDonald, 2000; 

McDonald & Pearce, 1996). Some authors have proposed that social cognition impairments, 

compared to other cognitive deficits, are the greatest barrier to adjustment and rehabilitation 

after brain injury (Grattan & Ghahramanlou, 2002; Ponsford & Schönberger, 2010; Yates, 

2003). Indeed, research exploring the functional outcomes of TBI survivors has typically 

focused on classical cognitive dysfunction, such as memory and information processing speed 

deficits, but correlations are usually weak and poor predictors of post-TBI social outcome 

(Ownsworth & McKenna, 2004; Wood & Rutterford, 2006). Social cognition impairments may 

be a better predictor of community reintegration and measure of assisted living needs post-TBI 

(Ubukata et al, 2014). For example, May et al., (2017) found that poor facial affect recognition 

was related to lower community outcome and social functioning post-TBI. In their study, May 

et al., (2017) reported that 40 mixed aetiology TBI participants, aged 19-60, performed 

significantly poorer on two emotion recognition tasks (dynamic facial expressions and 

morphed facial expressions), ToM tasks (faux pas and hinting test), and cognitive flexibility 

tasks (stoop and go/no-go) compared to controls. The authors also administered three socio-

emotional behaviour questionnaires to measure self-report and proxy ratings of post-TBI 

behaviour. Findings suggested that the group affected by TBI had developed behaviour 

problems post-injury, including poor interpersonal behaviour, as well as lower levels of 
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community integration compared to before the injury and control group. Emotion recognition 

was related to post-injury behaviour, measured through a subset of the Dysexecutive 

Questionnaire proxy ratings (DEX; Burgess, Alderman, Wilson, Evans & Emslie, 1996) with 

higher emotion recognition being related to better community outcome and social functioning.  

Ubukata et al., (2014) also investigated social cognition and functional outcomes in a post-TBI 

group using the Revised Craig Handicap Assessment and Reporting Technique (R-CHART: 

Mellick, 1999). The study focused on facial emotion perception (The Japanese and Caucasian 

facial expressions of emotion set: JACFEE; Matsumoto & Ekman, 1988), social emotion 

perception (Eyes Test: Baron-Cohen, Wheelwright, Hill, Raste & Plumb, 2001), and ToM 

(Faux-Pas test: Stone, Baron-Cohen & Knight 1998). An original factor in Ubukata and 

colleagues (2014) research was that it was one of the first studies to explore multiple domains 

of social cognition concerning social functioning in a moderate-severe TBI cohort. This multi-

domain approach is important for collecting ecologically valid results and developing efficient 

rehabilitation programmes post-TBI. Findings from the study revealed that, compared to 

control data (extracted from the author's data set and not matched for age and gender), the 

group with TBI were impaired on all social cognition measures, as well as having lower scores 

in social participation compared to controls. As participants were not matched for age or gender, 

care should be taken when drawing conclusions from the research. Nevertheless, there was a 

negative relationship between nonverbal ToM (reading the eyes test) and cognitive 

independence (ability to sustain an effective independent existence) measured through the R-

CHART. The non-significant correlation between the facial affect task and the R-CHART 

could be attributed to the static nature of the facial expression task as it provided the perceiver 

with an apex emotion for a sustained period. It should be noted that Knox and Douglas (2009) 

employed a similar methodology to Ubukata et al., (2014) and reported that TBI participants 

had significantly lower scores on the JACFEE (Matsumoto & Ekman, 1988), and on a matching 
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emotions to social situations task compared to matched controls. Furthermore, Knox and 

Douglas (2009) reported a significant correlation between the R-CHART and scores in the 

JACFEE (Matsumoto & Ekman, 1988). May et al., (2017) and Ubukata et al., (2014) results 

emphasise the importance of investigating the factors which contribute to impairments in facial 

expression recognition after TBI as they seem to adversely affect functional outcomes. As TBI 

is most common in young adults (Marshman et al., 2013), who will go on to have a relatively 

normal lifespan expectancy (Harrison-Felix et al., 2015), the need to understand social 

problems and functional outcomes post-TBI is of paramount importance. 

Abnormalities in social functioning can lead to reductions in friendship group size (Hoofien, 

Gilboa, Vakil & Donovick, 2001; Salas, Casassus, Rowlands, Pimm & Flanagan, 2018), 

increased strain on family relationships (Schönberger, Ponsford, Olver and Ponsford, 2010), 

and breakdown of a marriage or long-term relationships (Wood, Liossi & Wood, 2005). 

Hoofien et al., (2001) reported that in their sample of 60 moderate-severe TBI participants, 

30% had very few friends and rarely took part in social activities 10-20 years post-injury. These 

findings are replicated by other research which has demonstrated that individuals with TBI find 

it hard to maintain social relationships (Salas et al., 2018; Struchen, Pappadis, Sander, Burrows 

& Myszka, 2011), feel isolated, lonely, depressed, and overall rate a low quality of life 

(Ditchman, Keegan, Batchos, Haak & Johnson, 2017; Lefebvre et al., 2008). Families of TBI 

survivors have described increased daily hardships, such as changes to relationships and losing 

contact with social networks (Arango-Lasprilla et al., 2008; Carlozzi et al., 2015; Wood & 

Rutterford, 2006), with many reporting that changes in emotional and social abilities were more 

disabling and difficult to deal with than cognitive or physical changes (Kelly, Brown, Todd & 

Kremer, 2008; Koskinen, 1998; Marsh, Kersel, Havill & Sleigh, 2002). Individuals with poor 

social skills frequently do not return to work (Douglas, Bracy & Snow, 2016), and when they 

do it is usually in a lower position within the company (Temkin et al., 2009). There are 
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considerable benefits of employment including financial independence, a sense of ‘social 

cohesion’, as well as economic benefits as a result of reduced use of health and welfare services 

(Douglas et al., 2016). Negative correlations between a sense of social belonging and mental 

(Hagerty, Lynch-Sauer, Patusky, Bouwsema & Collier, 1992; Hagerty, Williams, Coyne & 

Early, 1996) and physical health (Hale, Hannum & Espelage, 2005; Mushtaq, Shoib, Shah & 

Mushtaq, 2014) have been reported in the literature, making the post-TBI person, and their 

families, vulnerable to further mental and physical health problems. The current literature may 

underestimate the long-term socioemotional effects of TBI. One possible limitation of TBI 

longitudinal studies is that severely depressed, anxious, disinhibited or cognitively impaired 

individuals are unlikely to participate.  

Despite the high prevalence of social cognition deficits after TBI and the negative interaction 

between social cognition and functional outcome post-TBI, the underlying mechanisms of 

these impairments are not well understood. Several theories have intended to explain social 

problems post-TBI, including; impaired executive functioning (Bechara & Van Der Linden, 

2005), self-regulatory behaviour problems (Ganesalingam, Sanson, Anderson & Yeates, 2007), 

and self-appraisal deficits (Kervick & Kaemingk, 2005). One prominent hypothesis proposes 

that aberrant facial affect recognition may underpin abnormalities in social cognition after TBI. 

Biszak and Babbage (2014) reported that 51% of 45 individuals referred to TBI rehabilitation 

programmes displayed clinically significant impairments in facial affect recognition. A meta-

analysis of 13 studies (296 individuals with TBI) conducted by Babbage et al., (2011) provided 

evidence that individuals with TBI were significantly poorer at identifying facial expressions 

compared to control participants, and that the severity of emotion perception deficits was 

variable. The analysis estimated that up to 39% of individuals with a moderate-severe TBI 

could present with significant facial affect identification impairments. Babbage and colleagues 
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(2011) meta-analysis provided an informative overview of facial affect recognition after TBI, 

addressing the frequent criticism that TBI studies usually only include small sample sizes, as 

well as highlighting the magnitude of an often untreated sequela of TBI. However, the authors 

restricted their review to static facial affect due to the paucity of available dynamic 

methodologies and, therefore, estimations are based on partial data and not entirely 

representative of general facial affect impairments post-TBI. Regardless of specific 

percentages, there is a consensus that facial affect recognition impairments are often evident 

post-TBI. Furthermore, they appear to be associated with other debilitating post-TBI deficits 

such as alexithymia and lower levels of cognitive empathy (Neumann et al., 2016) which, in 

turn, weaken social attachments and interpersonal relationships (Grynberg et al., 2012; 

Williams, Wood & Howe, 2019). 

Other researchers have investigated the effects that emotion perception impairments can have 

on social functioning. In early work, Hornak et al., (1996) explored a putative correlation 

between facial affect recognition and social behaviour. The authors established that individuals 

affected by TBI, particularly those with ventral frontal lesions, were poor at identifying facial 

expressions. Additionally, individuals with TBI and their relatives reported a rise in 

inappropriate behaviour, apathy, withdrawal and a reduction in communication post-injury. 

Hornak et al., (1996) reported a significant negative correlation between facial affect 

recognition and subjective emotional experience, for example, an inability or reduction in the 

ability to experience emotions. The researchers suggested that impairments in facial affect 

recognition may be part of a wider disturbance of emotional experience. This theory was 

supported by Croker and McDonald (2005) who also reported significant correlations between 

facial affect recognition and subjective emotional experience post-TBI. Facial affect 

recognition research, including Hornak et al., (1996), and Croker and McDonald (2005) has 

tended to use forced-choice paradigms with isolated static faces which do not capture the 
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naturalistic emotion perception of everyday life (Turkstra et al., 2017). Similarly, empirical 

research may underestimate the severity of facial affect identification impairments post-TBI as 

matching and labelling tasks arguably provide cues and prompts. However, it is hard to strike 

a balance between the confounding variables of providing emotional labels and controlling for 

verbal expression impairments during TBI research. Contemporary research needs to develop 

improved tools and methodologies which capture social impairments in real-world settings 

(Sasson, Pinkham, Weittenhiller, Faso & Simpson, 2015).   

In contrast to Hornak et al.’s, (1996) findings, Milders, Fuchs and Crawford (2003) reported 

that TBI participants scored significantly lower on naming and matching facial expressions 

compared to controls. However, there was no correlation between facial affect recognition and 

changes in emotional and social behaviour. Milders et al., (2003) proposed that their findings 

do not support the assumption that facial affect recognition impairments are related to poor 

social behaviour. This view is disputable as an inability to perceive emotions could logically 

lead to abnormal social behaviour as emotion perception is essential for the engagement of 

successful social functioning (Phillips et al., 2003) and maintenance of relationships (Clark, 

Von Culin, Clark-Polner & Lemay, 2017). Osborne-Crowley and McDonald (2018) proposed 

that, if an individual with TBI is unable to identify the emotion of a person they are interacting 

with, then they will be unable to experience ‘social punishment’ which usually curtails 

inappropriate behaviour. A lack of significant correlation in the Milders et al., (2003) study 

may be related to the design of their methodology, (e.g. lengthy questionnaires-219 questions), 

or stringent statistical adjustments (e.g. adjusting the  level for multiple comparisons).  

Spikman et al., (2013) implemented a self-report and proxy version of the DEX to measure 

behavioural problems after TBI. Although the DEX is widely used in research, the inter-rater 

reliability of the test has been questioned (Barker, Morton, Morrison & McGuire, 2011; 
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McGuire et al, 2014). Both the self-report and proxy DEX scores indicated that TBI 

participants had significantly more behavioural problems compared to controls. Furthermore, 

proxy ratings for the DEX tended to be higher than the self-report scores, suggesting that TBI 

participants underestimated their behavioural problems, a condition known as anosognosia or 

lack of insight. The extent of anosognosia in the group affected by TBI was related to the 

severity of facial affect recognition deficits. A further negative relationship was reported 

between deficits in facial affect recognition and behavioural changes reported by significant 

others. The authors proposed that impairments in aspects of social cognition, particularly facial 

affect recognition, may underlie, at least in part, behavioural disturbances after TBI. Spikman 

et al., (2013) postulated that discrepancies in the extant literature may stem from variation in 

participant samples. For instance, Milders et al., (2003) research included participants who 

were one-year post-injury while Spikman et al.’s., (2013) participants were, on average, more 

than six years post-injury. In early work, McKinlay, Brooks, Bond, Martinage & Marshall 

(1981) reported that adverse psychosocial changes increased after the first 12 months post-

injury. These psychosocial changes probably became more apparent after 12 months, possibly 

because this is around the time that medical and rehabilitation support decreases and the 

individual with TBI are expected to resume daily activates (e.g. returning to work) and 

reintegrate into society (e.g. participate in social activities such as hobbies or meeting friends). 

It may be the case that Spikman et al.’s (2013) self-report and proxy ratings indexed chronic 

problems while Milder’s et al.’s (2003) research failed to capture enduring deficits. Guidelines 

for distinguishing between acute and chronic impairments are lacking and there are 

inconsistencies between studies regarding the length of time post-TBI and recruitment into 

research. For instance, some studies have recruited individuals as early as three months post-

TBI (Neumann, McDonlad, West, Keiski & Wang, 2016) while others only included 

individuals at least one-year post-TBI (McDonald, Flanagan, Martin & Saunders, 2004). 
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Therefore, caution must be taken when interpreting results in regards to whether temporary 

acute effects or long-term intractable deficits were being measured. 

Nevertheless, facial affect recognition impairments have been evidenced during the acute phase 

of TBI and appear to continue into the chronic phase. Ietswaart, Milders, Crawford, Currie & 

Scott (2008) reported that TBI participants had significantly lower accuracy scores on a facial 

affect recognition task compared to controls, both shortly after their injury (mean of 2.1 

months) and one-year post-injury. They also reported that individuals with TBI had slower 

reaction times during the task, a finding which has been supported by subsequent research 

(Celeghin, Galetto, Tamietto & Zettin, 2019). The group affected by TBI emotion identification 

scores had increased slightly after one year, for example, labelling expressions rose from 73 % 

shortly after injury to 79.8 % at the one-year follow-up. Correlational analyses revealed that 

injury severity, measured by the GCS and PTA, negatively correlated with affect recognition 

scores. Importantly, Ietswaart et al., (2008) showed that 63% of the TBI cohort had mild or 

moderate injuries but still displayed significant facial affect recognition impairments. Mild TBI 

is often underrepresented in the literature, even though it is associated with long-term 

complaints including a decline in social cognition (van der Horn, Liemburg, Aleman, Spikman, 

van der Naalt, 2016).  

Similarly, Green, Turner and Thompson (2004) employed a longitudinal design to assess acute 

(two months post-injury) and chronic (one-year post-injury) emotion perception impairments 

in a group of 30 TBI participants. TBI participants had differing injury severities and were 

divided into sub-groups consisting of; (i), individuals who had sustained right posterior focal 

lesions, including pathology to the basal ganglia and the amygdala, both of which have been 

implicated in facial affect recognition (+RPF; n=16) and (ii), individuals who exhibited no right 

posterior focal lesions (-RPF; n= 6). Overall, the combined group with TBI were less accurate 
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on a facial affect identification task compared to controls at both time points. Importantly, there 

was no difference between the TBI and control groups on a non-affect face perception task, 

implying that TBI generates impairments in the ability to make fine-grained face analysis (e.g. 

processing facial expressions and subtle facial movements) compared to coarse-grained 

judgements of facial features (e.g. identifying sex). Further analysis revealed that both sub-

groups were impaired on the emotion perception task compared to the control group. Green et 

al., (2004) proposed that the dramatic shearing forces associated with DAI could be the 

underlying mechanism of poor facial expression recognition post-TBI, compared to focal 

lesions to brain regions frequently implicated in emotion perception. This theory is supported 

by subsequent research from Philippi, Mehta, Grabowski, Adolphs and Rudrauf (2009) and 

Genova et al., (2015) who reported an interaction between reduced white and grey matter 

integrity in relation to DAI and emotion perception deficits post-TBI.  

Advancements in neuroscientific techniques are helping to elucidate the relationship between 

network functionality and emotion perception deficits post-TBI. McDonald, Dalton, Rushby 

and Landin-Romero (2018) used diffusion tensor imaging (DTI; a technique which measures 

water diffusion at specific points along white matter tracts) to measure fractional anisotropy 

(FA; indexes the variability of diffusion in different directions with high values indicating 

intact white matter and low values indicating abnormalities) and mean diffusivity (MD; a scalar 

measure of the total diffusion within a brain voxel) using tract-based spatial statistics (TBSS; 

measures white matter of the whole brain). McDonald et al., (2018) explored the white matter 

integrity in 17 adults with severe TBI. Compared to a matched control group, individuals 

affected by TBI displayed abnormal FA and MD in numerous tracts including the thalamus, 

external capsule and cerebellum tracts, all which are necessary for multimodal processing. 

There were also abnormalities in the orbitofrontal, frontopolar and right temporal cortices 

which have strong associations with social cognition Amodio & Frith, 2006; Bzdok et al., 2013; 
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Forbes & Grafman, 2010; Wood, 2003. There was also a significant correlation between 

decreased FA in widespread structures and The Assessment of Social Inference Task (TASIT; 

McDonald et al., 2003) which provided a systematic examination of social perception. 

McDonald et al.’s (2019) findings highlight that more research is warranted to understand the 

effects of DAI.   

2.9. The nature and extent of emotion identification impairments post-TBI 

The previous section outlined why social cognition deficits are important to explore post-TBI. 

For example, it is generally accepted that TBI is a risk factor for negative social outcomes 

across the adult lifespan, including poor social integration (Knox & Douglas, 2009), loss of 

close friendships/marital breakdowns (Bodley-Scott & Riley, 2015), and loss of occupation 

(Humphrey et al., 2013). Previous outcome studies in TBI have focused on cognitive functions, 

such as information processing, memory and attention impairments, as predictors for poor 

social reintegration, but findings have been limited (Spikman et al., 2011). The focus on 

cognitive deficits after TBI is more than likely related to the fact that cognitive sequelae can 

be objectively and reliably measured through neuropsychological assessments, while there is a 

paucity of suitable social cognitive assessments (Spikman et al., 2012). Contemporary research 

has started to explore the relationships between general cognitive deficits, social cognition 

impairments and social outcomes.  

Rosenberg et al., (2018) reported that in a group of 32 individuals affected by TBI emotion 

recognition impairments could not be accounted for by deficits in working memory or 

processing speed, although, the authors did acknowledge that they employed a short battery of 

tests to assess executive function which may not have tapped into the necessary difficulties 

which equate to poor social functioning post-TBI. Interestingly, Rosenberg and colleagues did 

hypothesise that subtle cognitive impairments, such as aberrant visual strategies, may have 



Page 96 of 531 

 

impacted on social performance, although this was not tested. However, the authors did find 

that more severe injuries did contribute somewhat to emotion identification impairments. These 

results mirror previous work by the research team which had also documented that severity of 

the injury was a solitary predictor of performance on an emotion perception task (Rosenberg 

et al., 2015; Rosenberg et al., 2014). Although previous work has indicated that more severe 

TBI is related to more severe social cognition deficits (Spikman et al., 2012), some studies 

have found that controlling for injury severity does not account for the correlation between 

social cognition and post-injury behaviour (De Sousa et al., 2012; Knox and Douglas, 2009; 

May et al., 2017). Consequently, it is improbable that injury severity could fully account for 

the association between social cognition and social behaviour, but it is likely a contributing 

factor.  

As general cognitive impairments are common after TBI, an important research question is to 

what extent do these account for social cognition deficits post-TBI? Spikman et al., (2012) 

explored social cognition impairments in relation to general cognitive impairments (memory, 

mental speed, attention, executive function) in individuals with moderate to severe TBI. The 

authors reported that the individuals with TBI scored significantly lower on general cognitive 

assessments (mental speed, attention, memory and executive function) compared to matched 

controls. However, the authors reported that lower performance on the social cognition tasks 

(emotion recognition, ToM, empathy) was not related to impairments on the general cognitive 

assessments. At present, it is generally accepted that the interaction between general cognitive 

impairments and social outcome post-TBI is weak (Ownsworth & McKenna, 2004; Wood & 

Rutterford, 2006), and it is more likely that social cognition impairments (e.g. social cue 

perception, empathy and ToM) are related to social behaviour and outcome. Unfortunately, 

correlational analyses do not provide details of the direction of the relationship, so it is 

unknown whether (1) impairments in social cognition lead to poor social functioning or (2) 
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post-TBI social behaviour changes are a result of a reduction of social interactions over time 

and, therefore, the individual with TBI had fewer opportunities to utilise social skills (3) it is a 

combination of both. However, the second theory is unlikely as research has indicated that 

post-TBI social impairments remain stable over time. Indeed, the literature documents that 

social cognition impairments post-TBI are persistent, they are present in the acute phase of the 

injury and extend into the chronic stages (at least one-year post-injury) of the condition (Blair 

& Cipolotti, 2000; Hoofien, Gilboa, Vakil, & Donovick, 2001; Ietswaart, Milders, Crawford, 

Currie & Scott, 2008; Tranel, Bechara & Denburg, 2002). However, that does not mean that 

other factors, such as time since injury, are not contributing to intractable social cognition 

deficits post-TBI.  

This chronicity of social impairments post-TBI is apparent across the lifespan with extant 

evidence suggesting that emotion identification impairments occur in both younger and older 

adults. However, there is discord regarding whether age might mediate aspects of emotion 

recognition abilities following TBI. The literature suggests that older adults may be less 

accurate at identifying facial expressions compared to younger adults (Gonçalves et al., 2018; 

Ruffman et al., 2008). However, Byom, Duff, Mutlu and Turkstra (2019) found that their 

combined TBI sample (older and younger participants) were less accurate on both subtle and 

intense facial expression recognition conditions compared to a control group, but there was no 

relationship between age and intensity level. This is in line with findings from Rigon, Turkstra, 

Mutlu and Duff (2016) who also found no significant effect of age on an emotion recognition 

task post-TBI. Rigon et al., (2016) also investigated sex as a possible protective factor against 

emotion perception deficits following TBI. As it is predicted that up to 39% of individuals who 

have sustained a TBI experience impairments in emotion recognition (Babbage et al., 2011), 

uncovering protective or risk factors would be a clinically significant finding. Rigon et al., 

(2016) reported that in a group of individuals with TBI, females, compared to males, were 
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significantly better at identifying dynamic, but not static, emotions. Furthermore, males, but 

not females, performed significantly poorer compared to control participants on the dynamic 

task. This sex difference could not be accounted for by pathology location, injury severity or 

other neuropsychological variables. Zupan, Babbage, Neumann and Willer (2017) explored 

whether males and females with TBI differed in their emotion recognition and emotional 

inferencing abilities. The research team also investigated whether differences were related to 

target emotion or high and low-intensity facial and vocal emotion expressions. The female 

individuals with TBI were significantly more accurate during the vocal expression and 

emotional inferencing tasks compared to males. Interestingly, females were also better at 

identifying fearful facial expressions and also facial expressions in the high-intensity stimuli 

set. The author’s proposed that the purported female advantage, often found in emotion 

perception studies with non-TBI participants, is at least partially maintained following a TBI 

(Collignon et al., 2010; Hall & Matsumoto, 2004). They also acknowledged that their findings 

may have differed from Rigon et al., (2016) because their study only employed static stimuli 

while Rigon and colleagues also employed dynamic stimuli. A pertinent finding from Zupan 

et al., (2017) is that 32% of their female participants with TBI exhibited impairments in facial 

expression recognition while only 19% displayed vocal affect recognition deficits. This pattern 

was not expected as it is typically thought that vocal cues are harder to decipher (Johnstone & 

Scherer, 2000). This is interesting as it could suggest that emotion perception deficits post-TBI 

may be related to a specific abnormality in visually scanning faces, compared to a general 

inability to process all emotional cues. However, this effect was only apparent in females, with 

a similar proportion of males being impaired on faces (42%) and voices (41%). Babbage, 

Zupan, Neumann & Willer (2018) reported a significant sex treatment effect for a ‘Stories 

Intervention’ (a programme which taught individuals living with TBI to infer emotions based 

on the contextual information that was provided during a short story). The authors reported that 
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the group of women affected by TBI significantly improved during the intervention, exhibiting 

improved emotion perception, compared to males with TBI. Contrasting findings were reported 

by Zupan, Neumann, Babbage and Willer (2017) who found that there were no significant sex 

differences in general emotion perception, although the authors acknowledged that this may 

have been due to the prolonged stimulus exposure of their task. Interestingly, females were 

more accurate than males at recognising fearful faces while there were no differences for happy 

or angry stimuli.  

Sex differences on one measure do not exclude the possibility of sex differences on another 

measure and vice-versa. For instance, Zupan, Babbage, Neumann and Willer (2018) 

investigated sex differences in affective and cognitive empathy post-TBI. The study required 

participants to complete a self-report affective and cognitive empathy questionnaire and the 

scores were then compared against normative data. Pre-existing normative data has indicated 

that females have higher levels of both affective and cognitive empathy than men. The females 

in the study rated themselves significantly lower than the normative means on both measures 

whereas males only rated themselves as lower on the cognitive empathy measures. Further 

analysis indicated that significantly more females with TBI exhibited deficits in affective 

empathy compared to male participants, suggesting that diminished empathy levels, 

particularly affective empathy, may be more marked for females post-TBI compared to males. 

These results contrast with Wood and Willams (2008) who reported that a group of males with 

TBI were more impaired than females on an affective empathy task. Again, these discrepancies 

may be related to differences in methodologies or cohort demographics. Interestingly, Zupan 

et al., (2018) reported that there were no statistical differences between males and females for 

self-reported and proxy levels for empathetic concern or perspective-taking. This finding 

suggested that sex differences in empathy levels following TBI are minimal, but females may 

experience more relative difficulties compared to males for affective empathy. Zupan and 
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colleagues’ results show that females do experience social cognition impairments post-TBI 

despite the underlying assumption that females are less vulnerable to socioemotional changes 

following TBI (Rigo et al., 2016). With the variability of stimuli sets used within the TBI 

literature, researchers need to continue to explore sex differences, and other possible protective 

factors post-TBI, on both pre-existing and new social cognition assessments. It is unlikely that 

age and sex are driving factors for social cognition deficits post-TBI. However, it may be the 

case that they may mediate some aspects of the impairments, but the evidence base is univocal 

and needs extending.  

There is a trend in the literature documenting that individuals affected by TBI may exhibit an 

‘emotion-specific’ deficit. Extant evidence has indicated that negative emotions are 

particularly impaired post-TBI (Green et al., 2004; Ietswaart et al., 2008; McDonald et al., 

2003; Spikman et al., 2013). For example, Croker and McDonald (2005) reported that both 

individuals with and without TBI scored higher when identifying positive (happy, surprised) 

compared to negative (sad, fearful, angry) facial expressions. However, individuals with TBI 

scored lower overall for both positive and negative emotions. The reason for this effect is 

debated, one hypothesis is that the frontal brain regions associated with the processing of 

negative emotional stimuli are vulnerable to damage during TBI (Adolphs, 2001; McDonald 

et al., 2013). However, given the heterogeneous nature of TBI and the finding that other clinical 

cohorts (e.g. schizophrenic and autistic populations), and control groups also score lower when 

deciphering negative compared to positive emotions (Teh, Yap & Liow, 2018), it seems 

unlikely that anatomical damage can sufficiently account for the valence effect. A 

parsimonious explanation for the valence effect is the frequent imbalance between positive and 

negative emotions in most studies, typically with four negative possibilities (anger, disgust, 

sadness and fear) and only two positive options (happy and surprise, although surprise is 

sometimes not considered a true representation of positive emotion and can be either positive 
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or negative - Kreibig, 2010). High scores on positive affect measures may change if research 

included alternative, non-basic positive emotions such as amusement or excitement. Indeed, 

this was the case in the Rosenberg et al., (2019) study, as they reported a decrease in control 

participant accuracy identifying dynamic happy faces from 85.42% to 41% when the group 

were provided with multiple positive labels. Recent research has highlighted the importance of 

studying emotion perception in contexts that more clearly represent real-life perception of 

emotional displays, including moving away from forced-choice paradigms (Turkstra et al., 

2017). Accordingly, disputes about valence-based differences in emotion identification within 

the TBI literature are confounded by methodological limitations, with floor and ceiling effects 

often being reported for fearful and happy expressions respectively (Rosenberg, Dethier, 

Kessels, Westbrook, & McDonald, 2015; Rosenberg, McDonald, Dethier, Kessels, & 

Westbrook, 2014). 

The social cognition research field is rapidly developing and, therefore, innovative tools to 

assess emotion perception are being created. The complex audio-visual emotion assessment 

task (CAVEAT; Rosenberg, McDonald, Rosenberg & Westbrook, 2019) incorporates non-

posed, audio-visual aspects of social interactions and includes subtle emotions such as pleasant 

and unpleasant surprise. The task is thought to eliminate floor effects often associated with fear 

conditions by directing actors to intensely display fear as if they were terrified, although this 

may decrease the ecological validity of the assessment as fear varies in intensity during real 

world interactions. The assessment was also designed to reduce the ceiling effects of happiness 

by presenting a list of 11 positive emotions for participants to choose from. Rosenberg et al., 

(2016) assessed 32 moderate-severe TBI participants and matched controls on the CAVEAT. 

Compared to the control group, the TBI group displayed poor emotion identification across all 

emotions. This finding is of significance as it is frequently reported that both TBI and control 

groups find it more difficult to identify negative compared to positive emotions (Croker & 
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McDonald, 2005; Green et al., 2004; Ietswaart et al., 2008; McDonald et al., 2003; Spikman et 

al., 2013), although findings are mixed (Rosenberg et al., 2014). To further this work, 

Rosenberg et al., (2018) explored emotion identification of 22 different emotions (11 positive 

and 11 negative emotions) in a group of individuals affected by TBI and matched controls. The 

study also investigated basic (innate emotions from birth e.g. fear) versus complex social 

emotions (learned through cultural interactions and social ‘display rules’, involving mentalistic 

construction of emotions as internal states e.g. embarrassment). The researchers reported that 

the group with TBI exhibited a general deficit in emotion recognition, rather than displaying a 

selective deficit in recognising negative compared to positive emotions or basic versus complex 

emotions. This finding is in line with previous research (e.g. Ietswaart et al., 2008; Rosenberg 

et al., 2014).  

Emotion recognition is not only mediated by emotion valence but also by expression intensity 

(Spell & Frank, 2000; Rigon et al., 2016). Rosenberg et al., (2014) and Rigon et al., (2016) 

reported that individuals with TBI scored significantly lower than controls on both low and 

high-intensity emotion recognition tasks. However, Spell and Frank (2000) reported that their 

group of individuals with TBI only displayed deficits in recognising low-intensity emotions, 

with no group differences between the TBI and control group on high-intensity expressions. 

Indeed, individuals with TBI appeared to be poorer at recognising subtle compared to intense 

emotions, even during happiness conditions. However, findings from Rosenberg et al., (2014) 

highlighted that this interaction is complex as they reported that, for some emotions (fear, 

surprise), the group TBI only displayed deficits on low-intensity expressions while for other 

emotions (anger, disgust)  recognition was impaired regardless of intensity. 

Emotion perception impairments post-TBI are apparent regardless of the stimuli mode. That is, 

individuals affected by TBI frequently display impairments on both static and dynamic emotion 
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perception tasks (Babbage et al., 2011; McDonald et al., 2003; Rosenberg et al., 2019). 

Recently, the use of static stimuli has been criticized on the grounds of poor ecological validity 

and mundane realism (Alves, 2013), with many researchers now attempting to employ dynamic 

stimuli in their research designs. The processing of static and dynamic stimuli are likely to 

depend upon different neurological underpinnings (Trautmann-Lengsfeld, Dominguez-Borrás, 

Escera, Herrmann & Fehr, 2013; Zinchenko, Yaple & Arsalidou, 2018), and may induce 

different underlying physiological responses (Blais, Fiset, Roy, Saumure-Régimbald & 

Gosselin, 2017; Rymarczyk, Żurawski, Jankowiak-Siuda & Szatkowska, 2016). Furthermore, 

static stimuli often eliminate the contextual effects of social interactions. Social context 

influences our mental and behavioural processes and plays a major role in social cognition 

(Baez, García & Ibanez, 2018). Although the exploration of the relationship between context 

effects and social cognition is still in its infancy, the existing literature suggests that variables 

such as; faces within a natural scene, tone of voice, body language, cultural orientation, and 

the nature of the relationship (e.g. romantic/strangers) shape how emotions are perceived 

(Barrett, Mesquita & Gendron, 2011; Ibañez & Manes, 2012; Turkstra et al., 2017). Importantly, 

Croker and McDonald (2005) and Zupan et al., (2014) reported that participants with TBI 

improved on a label and matching facial expression task when they were provided with context 

compared to when no context was provided. McDonald and Saunders (2005) assessed emotion 

recognition in individuals with and without TBI using four types of stimuli (static images, video 

only, audio-only, and audiovisual media).  Individuals with TBI scored significantly lower on 

the audio-only and the audiovisual media conditions compared to non-TBI individuals. A 

deeper exploration of the data revealed that eight of the individuals with TBI were significantly 

impaired (two standard deviations below the control group mean) on the static images, in 

contrast to one participant on the video only condition. This led the authors to conclude that 

audiovisual media is easier for individuals with TBI to decipher, probably due to the additional 
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contextual cues. However, Williams and Wood (2009) pointed out that this conclusion appears 

counterintuitive as the audiovisual condition would involve processing semantic and affective 

content of the conversation as well as visual cues, constituting to dual processing, an ability 

which is well known to be impaired post-TBI (Azouvi et al., 2004).  

Williams and Wood (2009) reported that a group of 64 individuals affected by moderate-severe 

TBI performed significantly poorer compared to a control group on a static and dynamic 

emotion recognition task. In line with similar research, the group with TBI exhibited 

significantly greater difficulty during the static compared to the dynamic task, suggesting that 

the media of stimuli plays an integral role in emotion perception (Hornak et al., (1996); 

Humphrey, Donnelly & Riddoch, 1993; McDonald & Saunders, 2005). These results also 

support the hypothesis that static and dynamic displays of emotion may draw upon dispersed 

and dissociated neural networks (Adolphs, 2003). This theory was also supported by Wood and 

William’s (2009) finding that information processing, measured through a variety of 

neuropsychological measures, was not associated with emotion recognition ability. Although 

there was a significant correlation between vocabulary and performance on the static facial 

expression recognition task, regression analysis indicated that verbal ability only accounted for 

8.7 % of the variance on the static task. The facial movement during the dynamic task may 

have aided emotion identification, regardless of the greater demands which would have been 

placed on the information processing system. In line with an earlier discussion point, the group 

with TBI in the Wood and Williams study also exhibited impairments when recognising 

negative versus positive emotions, suggesting that emotion valence may influence emotion 

perception performance. The authors did point out that there were a greater number of negative 

emotions on both the static and dynamic tasks, that negative emotions share similar features, 

and both the TBI and control groups found negative emotions harder to identify during the 

static task. Consequently, these preceding factors may account for the valence findings rather 
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than there being a true specific deficit in negative emotion perception post-TBI. A further 

finding was that both groups performed poorly on the neutral items of the dynamic task, but 

the group with TBI were significantly poorer than controls. The authors proposed that group 

differences could be related to a wider emotion dysfunction, rather than an impairment in 

specific emotions, suggesting that TBI induces a global emotion recognition impairment, 

regardless of the nature of the assessment.  

To address the criticisms of static stimuli, researchers have developed dynamic emotion 

perception assessments. For example, McDonald et al., (2003) developed TASIT, a dynamic 

audio-visual assessment of social perception. The authors reported that 12 TBI participants 

scored significantly lower on the test compared to matched controls, with specific difficulties 

interpreting neutral, fear and disgust items. These results were mirrored by Knox and Douglas 

(2009) who measured the ability of individuals with severe TBI to match facial expressions to 

social situations using static photographs (JACFEE; Matsumoto & Ekman, 1988) and TASIT 

(McDonald et al., 2003). Knox and Douglas (2009) reported that the group with TBI performed 

significantly lower compared to matched controls on both the static and dynamic tasks. The 

control group scored similarly across both tasks but the group with TBI scored significantly 

lower on the dynamic task, suggesting that static images were easier to decode. Knox and 

Douglas (2009) theorised that inappropriate behaviour after TBI may stem from a 

misinterpretation or a failure to understand how another person is feeling, rather than 

disinhibited responses. Knox and Douglas (2009) observed that control participants mirrored 

facial expressions of the photographs and actors in TASIT and added context-specific 

spontaneous scripts to the muted video clips, this appeared to aid emotion detection. Only one 

out of 13 TBI participants appeared to display similar behaviour. Knox and Douglas (2009) did 

not provide further comments on this case but it would have been interesting to explore the 
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nature and location of pathology to determine if this may have accounted for the sparred 

mirroring ability.  

In summary, impairments in emotion recognition have been found in groups of individuals 

affected by TBI, irrespective of cognitive deficits, time since injury, age, sex, valence, intensity 

and mode (e.g. dynamic or static) of the emotions. This suggests that the nature of emotion 

recognition deficits post-TBI are significant and long-term and the extent of the deficits do not 

appear to be wholly related to cognitive changes, individual characteristics or stimuli 

presentation. For that reason, other factors must mediate the persistent emotion identification 

impairments frequently reported in the TBI literature. One possibility is that TBI leads to 

aberrant visual strategies which are insufficient during the initial stages of social cognition. 

These abnormal gaze patterns could mean that individuals with TBI miss the vital social cues 

necessary to decipher another person’s mood state.  

2.10. Multifaceted components of social cognition post-TBI 

To understand the nature of emotion recognition impairments post-TBI, it is important to 

understand these in context with other social cognition components which work simultaneously 

and in synergy with emotion recognition. Wearne, Osborne-Crowley, Rosenberg, Dethier and 

McDonald (2019) examined the relationship between affective expressivity, the subjective 

experience of emotion, and emotional face recognition in both individuals with and without 

TBI.  The authors wanted to test the unique contribution of these factors after controlling for 

demographic and cognitive variables related to emotion recognition. They found that subjective 

emotional experience significantly predicted the ability to recognize facial expressions. This is 

in line with previous research by Croker and McDonald (2005) who found that poor matching 

of facial expressions was related to a reduction in the experience of sadness and fear in a group 

of individuals who had sustained TBI. Hornak et al., (1996) also discovered that a group of 
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individuals affected by TBI who were poor at identifying mood states, as identified by nursing 

staff, were also poor on a test of emotion recognition. These combined findings support 

simulation models of emotion recognition which theorise that the ability to identify and 

understand emotions in conspecifics is reliant on individuals simulating a similar emotional 

state in themselves as a means to understand it (Niedenthal, Mermillod, Maringer & Hess, 

2010). Consequently, individuals with TBI may find it challenging to simulate the emotions of 

others or to attribute the meaning to the experience they feel, linking tightly with theoretical 

models of alexithymia (the inability to identify, process or describe personal feelings; Williams, 

Wood & Howe, 2019; Wood & Williams, 2012; Wood, Williams & Kalyani, 2009). It should 

be noted that alexithymia is a broad term and it is not clear whether individuals with TBI have 

difficulty experiencing emotions or whether they are incapable of assigning meaning or 

salience to these emotions. Individuals with TBI may also find it difficult to utilise emotional 

empathy with research reporting significantly higher frequencies of alexithymia and lower 

levels of emotional empathy compared to control groups (Williams & Wood, 2010; Wood & 

Williams, 2008). Therefore, individuals with TBI may have generalized difficulty in decoding 

emotional stimuli and experiences, which include emotion perception deficits. If this is the case, 

post-TBI interventions could target emotional experience as opposed to the perceptual analysis 

of facial expressions.  

Other abilities which contribute to effective social behaviour are ToM, that is, the ability to 

understand and infer other people’s thoughts, intentions and beliefs (Premack & Woodruff, 

1978) and mentalizing, that is, the reflection of affective mental states (Wyl, 2014). It should 

be noted that although some authors (e.g. Wyl, 2014) acknowledge a distinction between ToM 

and mentalizing, others do not and the terms are often used interchangeably in the literature. 

First-order ToM mental states include thoughts such as ‘he thinks’ while second-order mental 

states include thoughts such as ‘he thinks she thinks’(Coull, Leekam & Bennett, 2006). Both 
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ToM and mentalizing deficits are often reported in the TBI literature (Bibby & McDonald, 

2005; Havet-Thomassin, Allain, Etcharry-Bouyx & Le Gall, 2006; McDonald & Flanagan, 

2004), and research has suggested a relationship between deficits in ToM, mentalizing and 

maladaptive social and emotional behaviour post-TBI (Milders et al., 2003).  

In a recent review by Bivona et al., (2018), the authors outlined the two main theoretical models 

explaining ToM. ‘Theory Theory’ suggests that humans infer other people’s intentions and 

beliefs by deploying general principles, such as cultural rules and laws, with the involvement 

of executive functions, abstract reasoning and working memory (Carruthers & Smith, 1996). 

On the other hand, ‘Simulation Theory’ suggests that autobiographical experiences allow an 

individual to ‘put themselves in someone else’s shoes’, remodelling the other person’s 

experience to make predictions about their behaviour. The Simulation Model is largely based 

on the discovery of mirror neurons which have briefly been discussed in the preceding chapter. 

To support the Theory Theory, research has documented a correlation between working 

memory, processing speed, inhibition and ToM (Bibby & McDonald, 2005) while others have 

reported no interactions (Tranel, Bechara & Denburg, 2002). The Simulation Theory also has 

support from studies reporting associations between low self-awareness, emotional 

disturbances and low ToM scores (Bivona et al., 2014; de Sousa, McDonald, Rushby, Dimoska 

& James, 2010). Bivona et al., (2018) concluded that the two models are more than likely not 

mutually exclusive in explaining ToM and mentalizing impairments post-TBI and more 

research is needed in the area to fully understand these univocal findings.  

Executive functioning, particularly impairments inflexible response selection, could also affect 

the social outcome of individuals who have sustained TBI. Indeed, inflexibility would interfere 

with Penn et al’s (1997) third stage of social cognition, response selection, as individuals would 

be unable to adjust their social behaviour in response to dynamic environments (Milders et al., 
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2008). Vilkki et al., (1994) and Nybo et al., (2004) demonstrated that there was a relationship 

between cognitive flexibility and return to work/level of social activity. Milders et al., (2003) 

investigated emotion recognition, ToM and cognitive flexibility and related test performance 

to self and proxy scores of post-injury behaviour in a group of individuals affected by TBI 

shortly after injury and one-year post-injury. Compared to orthopaedic control participants, 

individuals with TBI exhibited impairments on an emotion identification, ToM and cognitive 

flexibility task both soon after injury and one-year post-injury. The proxy ratings of the group 

with TBI demonstrated an increase in behavioural problems one year following TBI but there 

was no significant relationship between test performance, both shortly after and one-year post-

injury, and poor social behaviour. Conflicting results between studies such as Vilkki et al., 

(1994), Nybo et al., (2004), Milders et al., (2003) and Milders et al., (2008) have highlighted 

the challenges of measuring executive functioning, particularly the features relevant to social 

cognition outcome post-TBI. Another factor to consider is that measurements of behaviour 

changes post-TBI are complex as individuals affected can provide inaccurate reports of their 

functioning due to lack of insight (Spikman et al., 2013). However, focusing on proxy data 

disempowers the individual affected by TBI and raises issues such as time of testing (e.g. 

family members or care staff need time to develop an accurate perspective of the new 

behaviours; Bennett, Ong and Ponsford, 2005). Interestingly, Milders et al., (2008) proposed 

that their findings presented little reason to conclude that deficits in emotion recognition or 

ToM were associated with changes in social behaviour post-TBI. Knox and Douglas (2009) 

and Struchen et al., (2008) both found a significant interaction between facial expression 

identification and social integration, thus supporting the assumption that poor social 

reintegration following TBI is more related to poor emotion perception rather than executive 

function impairments. However, it should be noted that although extant evidence suggests that 

executive dysfunction is not the main driving force behind poor social reintegration post-TBI, 
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and emotion perception may play a leading role, the identification of facial expressions will 

draw upon executive function abilities and impairments in this domain will have an impact on 

social cognition. Spikman et al., (2013) proposed that poor social behaviour might pertain to 

passivity or apathy associated with fatigue or disorganised behaviour, both of which can be 

related to executive dysfunction.  

While social outcomes after TBI are influenced by many factors (injury severity, pathology 

location, pre-morbid personality, economic status; Ponsford, 2013), evidence suggests that 

social cognitive abilities are key contributors, particularly the ability to identify facial 

expressions. Further nuanced research is needed to understand the nature and extent of emotion 

identification impairments post-TBI, particularly the deleterious effect it has on functional 

outcomes. The proportion of variability in aberrant behaviour explained by a specific 

impairment (e.g. emotion perception, executive function) will more than likely be small if the 

tools employed to measure post-TBI behaviour include a wide range of behaviours (e.g. the 

DEX). The implication for these findings is that to better understand the impairments 

underpinning post-TBI changes in social behaviour other mechanisms need to be explored, 

such as initial visual strategies to social stimuli.   

As detailed earlier in the chapter, measuring social cognition is a complicated task as the ability 

taps into numerous cognitive, social and emotional functions. It is impossible to fully separate 

emotion perception from other social abilities, such as ToM, empathy and simulation, as well 

as neuropsychological functions. However, it is nearly almost impossible to study all of these 

factors in-depth during a single study. Therefore, many researchers usually choose one area of 

interest to focus on. Based on evidence reporting that emotion perception impairments post-

TBI are consistent and persistent, as well as findings that effect sizes were more substantial 

and larger compared to effect sizes in ToM and empathy studies (Milders, 2018; Spikman et 
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al., 2012), this thesis’ main focus was on emotion perception. Furthermore, although emotion 

perception deficits post-TBI are well documented, they are poorly understood. A gap in the 

current literature is that there is a paucity of research exploring low-level social cognition, 

particularly with regards to facial affect recognition after TBI, specifically in response to 

dynamic stimuli.  

2.11. Summary 

In summary, this chapter has defined social cognition as the ability to perceive, encode, store, 

retrieve and regulate social information about self and others (Green et al., 2015). It is generally 

accepted that there are three stages to social cognition; the perception of social cues, 

interpretation and processing of social information and response selection (Adolphs, 2010; 

Ostrom, 1984; Penn et al., 1997). The ‘social brain’ is orchestrated by an extensive neural 

network which is heavily dependent on a frontal and limbic micro-circuitry (Amodio & Frith, 

2006; Bicks et al., 2015; Wittmann et al., 2018; Xiao et al., 2017), and is influenced by social 

neuropeptides, particularly oxytocin and vasopressin. Research suggests that humans rely 

heavily on non-verbal visual cues (Beattie & Ellis, 2014), and the ‘social brain’ appears to have 

an innate preference for faces (Deaner & Platt, 2003). This preference is likely associated with 

the fact that facial expressions provide signals of social intentions, motivations and are 

communicative of internal emotional states (Hess & Hareli, 2015; Schmidt & Cohn, 2001). 

The processing of facial expressions relies on an extensive brain network, notably the frontal 

cortex and the motion detection regions of the parietal cortex (Adolphs, 2009; Phillips et al., 

2003). Unfortunately, these areas are particularly vulnerable to damage during TBI due to 

movement of the brain in the skull and internal skull structures (Bigler, 2013). Pathology to 

these brain areas is frequently related to difficulty interpreting facial expressions and poor 

social functioning (Croker & McDonald, 2005; Hornack et al., 1996; Tanaka & Sung, 2016). 
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The mechanisms underpinning these facial affect recognition impairments are poorly 

understood and are complicated by the complex interplay between classic cognitive deficits 

(e.g. memory and executive function), co-morbid effects (e.g. anxiety/depression and 

substance abuse) and pre-morbid personality traits. These confounding variables compound the 

research field and make it extremely challenging to disentangle the underlying mechanisms of 

facial affect recognition deficits post-TBI. To fully comprehend these impairments, researchers 

must explore both low-level and higher-level processes. Few studies have focused on low-level 

perceptual processes in regards to facial affect recognition after TBI, particularly in response 

to dynamic stimuli. Individuals perceive what they attend to, or fixate on, so crucially these 

data can provide objective indices of whether TBI and control cohorts differ in this respect 

when viewing naturalistic social stimuli. If there is variability in basic visual processing, then 

this might underpin upstream facial affect recognition impairments frequently reported after 

TBI. One method to investigate early social perception is through the implementation of eye-

tracking technology which offers a non-invasive and quantitative assessment of social attention. 

However, the investigation of visual strategies, particularly in response to dynamic and 

naturalistic stimuli, post-TBI is scant. The next chapter will review typical visual processing 

and changes associated with TBI with a primary focus on facial affect identification. 
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3. Chapter three: Visual processing and visual attention 

after brain injury  

3.1. Chapter overview 

This thesis investigated fixation patterns during social cognition task performance in TBI and 

control cohorts. Therefore, the present chapter will provide a brief overview of human visual 

processing. The neurological underpinnings and functionality of several eye movements are 

discussed.  

Eye movements provide a powerful measure of the workings of the brain,  with abnormalities 

within eye movement systems providing diagnostic clues and theoretical insight into disorders 

such as autism (Flack-Ytter et al., 2018), and schizophrenia (Benson et al., 2012). There is 

evidence that brain injury, even mild in nature, can damage neural network activation in brain 

areas associated with eye movements (Rockswold et al., 2019) and effect aspects of vision 

including; saccades, pursuit tracking, and convergence (the simultaneous inward movement of 

both eyes toward each other, typically to maintain single binocular vision; Ventura et al., 2014). 

Indeed, contemporary research, particularly in the field of sports science, is exploring visual 

scanning behaviour as a diagnostic biomarker of post-concussion syndrome (Chung et al., 

2017; Childs, Barker, Gage & Loosemore, 2018; Maruta, Spielman, Rajashekar & Ghajar, 

2018). Oculomotor testing offers a non-invasive and quantitative assessment method to 

investigate the neural underpinnings of brain networks often damaged during TBI, particularly 

frontal-striatal circuitry (Kraus, Little, Wojtowicz & Sweeney, 2010), which is strongly 

associated with social cognition (Bicks et al., 2015; Lee, Walker, Hale & Chen, 

2017). Pathology and neurological disorders which disrupt the connectivity of the frontal lobes 

are associated with changes to eye scan patterns and social cognition (Klin, Jones, Schultz, 

Volkmar & Cohen, 2002), but the cause and effect of this relationship are unknown. This 
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chapter reviews the literature on the neurological underpinnings of human eye movements. 

This evaluation is not exhaustive due to space limitations and will, therefore, focus on the 

critical gaze-control networks including; the frontal eye fields (FEF), the supplementary eye 

fields (SEF), the dorsolateral prefrontal cortex (DLPFC) and the parietal eye fields (PEF) 

(Vernet, Quentin, Chanes, Mitsumasu & Valero-Cabré, 2014).  

3.2. Human oculomotor and visual systems  

Visual processing begins in the photoreceptor cells, specialised neurons of the retina (back part 

of the eye). These cells are responsible for visual phototransduction, the conversion of light 

into electrical signals. There are three known photoreceptor cells in the human eye; rods, cones 

and photosensitive retinal ganglion cells (Figure 19).  

Figure 19. Layers of human retinal cells (reproduced from Dynamic Brain, 2019). 
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The visual process begins at the retina and progresses to the optic nerves, optic chiasm and 

optic tracts.  The ipsilateral and decussating pathways are demonstrated in Figure 20 as well as 

the retinotopic visual scene projections to the primary visual areas (striate) in the occipital 

cortex. The optic chiasm is formed by the crossing of the optic nerves, with axons from the 

medial (nasal) retina decussating and continuing as the contralateral optic tract. Lateral 

(temporal) retina axons remain ipsilateral (do not cross at the chiasm) and feed into the 

ipsilateral optic tract. During primate vision, the majority of fibres from the medial half of the 

retina cross while all the fibres from the lateral half of the retina remain ipsilateral, 

enabling binocular vision (Reamington, 2012). Therefore, signals from the left visual field are 

passed to the right visual primary cortex ipsilateraly, via the temporal hemiretina of the right 

eye, or contralaterally, via the nasal hemiretina of the left eye, and vice versa for the right visual 

field.  
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Figure 20. Segregation of the human visual field (reproduced from Betts et al., 2013). 

There are two major pathways within the human brain which process visual information. The 

largest pathway is the retina-geniculate-striate pathway which passes information from the 

retinal neurons in the eye to the optic nerve and then onto the primary visual cortex in the 

occipital lobe via the lateral geniculate nuclei (LGN) of the thalamus (Burman & Wurtz, 2008). 

The LGN is part of thalamic structures and is a relay centre and proposed ‘early gatekeeper’ in 

the wider visual pathways network (Kastner, Schneider & Wunderlich, 2006; Weyand, 2016). 
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Additionally, the LGN receives feedback connections from the primary visual and striate 

cortices (Briggs & Usrey, 2011). The second pathway is the tectopulvinar pathway. This 

pathway passes information from the optic nerve onto the superior colliculus (SC), a midbrain 

structure, next to the pulvinar nucleus in the thalamus, and lastly the visual cortex with primary 

projections to the parietal and temporal lobes (Kolb & Whishaw, 2016) (Figure 21). 

 

Figure 21. Diagram of the flow of visual information from the eye into the brain 

(reproduced from Kolb and Whishaw, 2016, p.234). The optic nerve consists of two 

branches. The first branch projects to the LGN in the thalamus (geniculostriate system) 

and the second branch projects to the SC (tectopulvinar system). The LGN pathway 

enters the occipital cortex and the information is passed to other visual regions in the 

temporal and parietal cortices. The SC pathway leads to the pulvinar and, again, onto the 

temporal and parietal cortices.  

After initial visual processing in the primary visual cortex, information is transmitted to 

secondary and association visual areas in the occipital lobes, collectively termed the striate 

cortex (Standring, 2015). The majority of pathways which mediate transference between the 

primary and secondary association areas are part of two main streams; the dorsal and the ventral 

stream (Goodale & Milner, 1992). In the most simple form, the dorsal stream (occipitoparietal 

pathway) projects visual information to the parietal cortex and has been coined the 'where is it' 

or 'how' pathway as it is responsible for the processing of spatial location and motion 
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processing. The ventral stream (occipitotemporal pathway) projects visual information to the 

temporal cortex and has been coined the 'what is it' pathway as it is responsible for colour, form, 

and identity of an object (Goodale & Milner, 1992). The occipitoparietal and occipitotemporal 

pathways are output pathways from the visual cortex and receive numerous top-down input 

from distributed brain regions (Kravitz, Saleem, Baker, Ungerleider & Mishkin, 2013). 

Goodale and Milner (1992) proposed that the main difference between the two streams was the 

function in output systems. Both the dorsal and ventral streams process information about the 

structure and location of an item but the two separate streams process and disseminate the 

information differently. The ventral stream generates perceptual representations from visual 

inputs concerning an object's structure and location (vision for perception). The dorsal stream 

mediates real-time visual actions, such as reaching and grasping, by constantly processing 

visual information about an object and creating and updating the egocentric coordinates of the 

object within the environment (vision for action). Goodale and Milner (1992) therefore 

proposed a division between the vision for perception and vision for conducting actions.  

Empirical support for the ‘two visual system hypothesis’ is robust and heavily based on 

neuropsychological dissociations for object and spatial vision. For example, while some brain-

injured individuals present with visual agnosia, the inability to recognise everyday objects, 

others present with optic ataxia, the inability to control visually orientated hand movements 

(Goodale, Milner, Jakobson & Carey, 1991; Martinaud et al., 2012; McIntosh, Mulroue, 

Blangero, Pisella & Rossetti, 2011). However, evidence supporting this apparent double 

dissociation has been challenged. For instance, Pisella, Binkofski, Lasek, Toni and Rossetti 

(2006) proposed that individuals in case studies were not administered an extensive visual 

perception assessment which raises questions concerning the validity of Goodale and Milner’s 

(1992) conclusions. Milner and Goodale (2008) rebutted these challenges and suggested that 

some controversies around the ‘two visual system hypothesis’ were based on an imprecise 
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reading of some of the more subtle details of the model.  The authors clarified the terms ‘vision 

for perception’ and ‘vision for action’ and provided a fuller account of the processing 

characteristics for these two kinds of vision. Nevertheless, there is still uncertainty surrounding 

the ‘two visual system hypothesis’. For example, Michel and Henaff (2004) argued against the 

dichotomy of the model, contending that the functional double dissociation, demonstrated by 

brain-injured individuals, could stem from aberrant central or peripheral vision rather than 

impairments in the vision for perception and vision for conducting actions. Rossetti, Pisella 

and McIntosh (2017) suggested that it is no longer tenable to assume independence between 

visuomotor and visual perception functions based solely on the double dissociation between 

optic ataxia and visual agnosia in brain-injured individuals. The authors highlighted the 

importance of taking into account the perception-action circle as a functional system. 

Compelling experimental and tractography research mapping white matter connectivity has 

shown a myriad of interconnected pathways, opposing the supposed isolated dual visual system 

theory. More than likely, the two systems approach is an oversimplification and there is cross-

talk between the pathways (Budisavljevic, Dell’Acqua & Castiello, 2018). Indeed, a large 

contemporary fMRI study utilising data from the Human Connectome Project suggested that 

the functional human visual system may incorporate three, not two, cortical pathways (Haak & 

Beckmann, 2018), highlighting the complexity of the system and the reality that there are, more 

than likely, multiple visual circuits.     

3.3. Human eye movements  

At the most basic level, human eye movements are vital for survival (Shaikh & Zee, 2018) but 

are also pivotal for more complex functions such as social interactions, as these functions are 

underpinned by the information acquired during eye movements (Emery, 2000). As humans 

have front-facing eyes, each eye captures different information. The brain has to integrate these 
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separate neural signals (binocular vision) to create a single 3D image with a sensation of depth 

(stereopsis). A seminal theory proposed by Hering (1977) suggested that both eyes were 

innately mediated by a single neural network and that the left and right eye muscles were 

always equally innervated. An opposing theory was proposed by Helmholtz and Atkinson 

(1873) who argued that each eye was controlled individually and that there was an element of 

conscious learning involved in visual orientation. Although both Hering’s and Helmholtz’s 

theories hold merit, developments in research techniques have revealed that binocular vision is 

a multi-component process, involving at least five neuro-visual systems which originate in the 

retina and are distributed throughout the brain (Coubard, 2015). During human visual 

processing, both eyes move together several times a second to hold areas of interest on the 

fovea (Krauzlis, Goffart & Hafed, 2017). High visual acuity in humans is restricted to the fovea, 

a very small pit in the centre of the retina composed of cone photoreceptors (Mccamy, Macknik 

& Matinez-Conde, 2014). Eye movements precipitate foveation, the process where areas of 

interest within the environment become concentrated on the fovea (Purves et al., 2001). On a 

basic level, the decision to move the eyes is dependent upon target-related signals from the 

peripheral visual field and signals from the fixated target at the fovea (Krauzlis et al., 2017). 

The most studied eye movements in humans are saccades, smooth pursuit and fixations; 

discussed below. The control of eye movements is navigated by several subsystems, described 

below, and is well-documented in animal and human research. 

3.3.1. Saccades 

Saccades are high-velocity ballistic movements where both eyes move toward a point of visual 

space to redirect the point of fixation (Krauzlis et al., 2017). On average, humans generate a 

saccade two to three times per second (Pèlisson, Alahyane, Panouillères & Tilikete, 2010), and 

during this process, the eyes are moving so rapidly that no new visual information is acquired 
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(Berman, Cavanaugh, McAlonan & Wurtz, 2017; Bridgeman, Hendry & Stark, 1975; 

Gegenfurtner, 2016).  

The saccadic system mediates information about the distance and direction of visual stimuli to 

ensure that an area of interest is projected onto the fovea (Sparks, 2002). The system also 

controls for gaze errors and integrates information to ensure that the visual scene is perceived 

as a unified whole (McCamy et al., 2014). Although all saccades require a degree of attentional 

processing, they are generally separated into conscious (voluntary) or unconscious (reflexive) 

movements (Ross, Morrone, Goldberg & Burr, 2001; Terao, Fukuda & Hikosaka, 2017). 

Reflexive saccades are rapid, automatic eye movements generated in response to a novel 

peripheral stimulus, while voluntary saccades are consciously controlled and usually made 

based on a symbolic cue or instruction (Walker, Walker, Husain & Kennard, 2000). Evidence 

indicates that reflexive and voluntary saccades rely on different neural networks (Cieslik, 

Seidler, Laird, Fox & Eickhoff, 2016; McDowell, Dyckman, Austin & Clementz, 2008), but 

they also rely on mutual neural networks including; the FEF, DLPFC, PEF, middle temporal 

regions, supplementary motor regions, occipital lobes, thalamus, SC, cerebellum, and brain 

stem structures (Berman et al., 1999; Cieslik et al., 2016; Kraus, 2013). 
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Figure 22. A diagram to illustrate saccades and fixations during natural vision 

(reproduced from Rucci & Poletti, 2015, p.500).This image outlines the eye scan pattern 

of one participant. The yellow lines represent saccades while fixations are represented by 

the red areas. F1 represents the first fixation, F2 the second fixation and so forth. As 

demonstrated in the enlarged circle, the eyes continue to elicit small movements during 

fixations. 

3.3.2. Smooth pursuit  

Smooth pursuit eye movements are slower than saccades and require continuous rotation of the 

eyes to avoid retinal slip (when the amplitude and/or velocity of eye movements are inaccurate, 

resulting in a gaze shift that induces the appearance of a stationary item as moving). A retinal 

slip would result in a blurring effect and therefore smooth pursuit ensures that moving targets 

(e.g. cars, animals, or people) can be tracked with high acuity (Krauzlis et al., 2017; Orban de 

Xivry & Lefevre, 2007).  

3.3.3. Fixations 

In the lapses between saccades and smooth pursuit, the eyes are held relatively still and fixation 

is maintained (Krauzlis et al., 2017). Martinez-Conde, Macknik, Troncoso and Hubel (2009) 
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defined fixations as ‘microscopic and unnoticed motions of the eyes made when fixating the 

gaze between larger eye movements’ (p. 463). It should be noted, while many researchers refer 

to fixations as the period when the eyes are stationary, this is somewhat of a misnomer (Rayner, 

1998). The eyes are never completely static (Figure 23), and during fixations in humans, there 

are three categories of these types of constant eye movements; microsaccades, tremor, and drift 

(Martinez-Conde, 2005; see Figure 23).  

 

Figure 23. A diagram to illustrate fixational eye movements (reproduced from Martinez-

Conde and Macknik, 2008, p.5). Microsaccades are quick and straight movements, drifts 

are slow and curved, and tremors are oscillations which overlap drifts.   

Fixational eye movements counteract visual neural adaption (adjustment of the sensory system 

over time in response to a constant stimulus) so that a stimulus remains visible at fixation. They 

also inhibit visual fading (also known as Troxler fading where fixating on one element of the 

visual field results in fading or disappearance of surrounding visual information; Figure 24).  
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Figure 24. An example of visual fading in normal vision (reproduced from Martinez-

Conde, Macknik & Hubel, 2004, p.231). Precisely fixate on the red dot, without blinking, 

but pay attention to the light blue circle. After about ten seconds, the blue circle will 

disappear and it will appear that the red dot is surrounded by white. When you move 

your fixation the blue circle will reappear.  

The human visual system, therefore, presents as a paradox, humans must fixate on an object to 

process the finer details but if the fixation is maintained in a strictly static fashion then the 

visual scene would fade away. Microsaccades, tremors, and drifts counteract this paradox.  

During human visual processing, the most useful visual information is collected during 

fixations (Morris, 2015). Human eye fixation data can be analysed to explore saliency in 

images or videos owing to the direct association between eye movements and visual attention 

(Duc, Bays & Husain, 2008). Distinguishing between areas of interest of a visual scene, as 

indicated by fixations, aids the understanding of the behavioural underpinnings of human visual 

attention (Atkinson, Simpson & Cole, 2017; Edwards, Stepenson, Dalmaso & Bayliss, 2015).  

3.3.3.1. Microsaccades  

Microsaccades are small, rapid, straight eye movements which arise during fixations 

(Martinez-Conde, 2005; Figure 23). The specific functionality of microsaccades is still under 
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investigation, although the relationships between microsaccades, perception, and cognition 

have been subject to much research over the past decade. Martinez-Conde, et al., (2009) 

proposed that regardless of minor discrepancies between research groups, there is a consensus 

that microsaccades modulate neural activity in early visual areas through retinal motion. 

Microsaccades are reported to enhance edge sensitivity and spatial resolution (Donner & 

Hemilä, 2007), and to render latency and contrast in perception (Martinez-Conde et al., 2004). 

It is probable that they also play a role in correcting fixation errors (Engbert & Kliegl, 2004). 

Also, microsaccades are theorised to be critical in overcoming neural adaption (Costela et al., 

2017; Martinez-Conde, Macknik, Troncoso & Dyar, 2006; Troncoso, Macknik & Martinez-

Conde, 2008), as well as being vital for several other aspects of attention, such as; spatial cueing, 

visual exploration, and visual search (Meyberg, Sinn, Engbert & Sommer, 2017; Otero-Millan, 

Troncoso, Macknik, Serrano-Pedraza & Martinez-Conde, 2008). Microsaccades and saccades 

have similar functional and physical characteristics, implying that both eye movements may 

share common oculomotor origins (Otero-Millan et al., 2008; Rolfs, Kliegal & Engbert, 2008). 

Animal models and fMRI studies have revealed neuron activation in response to microsaccades 

in the LGN, area V1 of the occipital cortex, and extrastriate regions (Donner & Hemilä, 2007; 

Peter, Tse, Baumgartner & Greenlee, 2010).  Similar to saccades, the SC is thought to be pivotal 

for the generation of microsaccades (Chen & Hafed, 2017; Chen, Ignashchenkova, Thier & 

Hafed, 2015). Microsaccades and saccades activate burst neurons in the pontomedullary 

reticular formation, which is downstream from the SC, and putative motor neurons in the 

nearby abducens nucleus (eye motor cranial nerve; Van Gisbergen, Robinson & Gielen, 1981). 

3.3.3.2. Tremors 

The aperiodic wave-like movement of the eyes is referred to as a tremor and is the smallest of 

all eye movements (Figure 23). The role of tremor in vision is still unknown but it is theorised 
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that the movement may be associated with ensuring there is a continuous source of image 

motion to offset visual fading (Martinez-Conde et al., 2004).  

3.3.3.3. Drifts 

Drifts emerge in synchrony with tremor movements and are slow curved eye movements which 

occur during the period's in-between microsaccades (Figure 23). Drifts are hypothesised to 

correct fixation position and disparity (Cyr & Fender, 1969; Steinman, Cunitz, Timberlake & 

Herman, 1967), and drifts and tremors work in unison during high spatial frequency processing 

(Kuang, Poletti, Victor & Rucci, 2012).  

3.4. Neural control centres for eye movements  

The neural basis of human oculomotor function is extensive and a detailed account of these 

processes is beyond the scope of this thesis. Instead, there is a specific focus on the FEF, SEF, 

DLPFC and PEF as these are documented to be significant oculomotor structures (Pierrot-

Deseilligny, Milea & Müri, 2004; Figure 24), and are vulnerable to damage during head trauma 

(Bigler, 2013; Jenkins, Mehta & Sharp, 2016; McAllister, 2011). Intricate connections between 

the frontal and parietal cortices form neural networks which modulate oculomotor functions, 

such as spatial attention (Ptak & Müri, 2013) and oculomotor sequence learning (Gonzalez, 

Billington & Burke, 2016); vital for successful social interactions (Gobel, Tufft & Richardson, 

2017). TBI is evidenced to disrupt this brain connectivity (Hayes, Bigler & Verfaellie, 2016; 

Kinnunen et al., 2010) and, therefore, may impede social reintegration after TBI, although 

research on this hypothesis is scant. 
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Figure 25. Major cortical brain regions and pathways involved in eye movement 

generation and control (reproduced from Pierrot-Deseilligny et al., 2004, p.19). 

Abbreviations: supplementary eye fields (SEF), superior frontal sulcus (SFS), cingulate 

eye field (CEF), central sulcus (CS), dorsolateral prefrontal cortex (DLPFC), precentral 

sulcus (PCS), frontal eye fields (FEF), intraparietal sulcus (IPS), inferior frontal sulcus 

(IFS), supramarginal gyrus (SMG), posterior cingulate cortex (PCC), superior parietal 

lobule (SPL), intraparietal areas (IPA), lateral sulcus (ls), angular gyrus (AG), posterior 

eye fields (PEF), superior temporal sulcus (sts), parieto-occipital sulcus (pos), 

parahippocampal cortex (PHC), hippocampal formation (HF), superior colliculus (SC), 

reticular formations (RF).  

3.4.1. Frontal eye fields (FEF) 

The FEF are a vital part of the cortical network controlling eye movements (Figure 25). 

Ferrier’s (1874) seminal work exploring the oculomotor effect of cortical stimulation in 

monkeys revealed that eye movements could be evoked from the frontal, temporal, and parietal 
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lobes, as well as the SC and cerebellum. Ferrier (1874) proposed that the monkey frontal lobe 

eye field was quite large and extended from the arcuate sulcus to the midline. The monkey FEF 

is thought to correspond to Brodmann area (BA) 8 (Brodmann, 1908; Watanabe, 2017). The 

location of the human FEF is less certain and is still debated within the literature (Percheron, 

François & Pouget, 2015; Vernet et al., 2014) with different studies showing activation in 

contrasting brain areas (Amiez & Petrides, 2009).   

Paus (1996) reviewed eight studies investigating the location of the human FEF in the brain 

using cerebral blood-flow levels measured through positron emission tomography (PET) scans. 

Findings indicated that an area of the precentral sulcus and superior frontal sulcus (BA 6) 

showed increased cerebral blood-flow levels during a variety of oculomotor tasks (e.g. anti-

saccade and pro-saccade tasks; Figure 26). Electrostimulation studies have supported these 

findings and have localised the human FEF anterior to the superior precentral sulcus (Blanke 

et al., 2000; Yamamoto et al., 2004).  

 

 

Figure 26. The proposed location of human cortical eye fields with corresponding BA’s 

(reproduced from Gulyás, 2016, p.525). 
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In other work, Grosbras, Laird & Paus (2005) conducted a quantitative meta-analysis of 59 

PET and fMRI experiments investigating voluntary and involuntary triggered eye movements. 

The authors computed activation likelihood estimation maps based on the study data. Findings 

supported spatial localisation of the FEF in humans to the precentral sulcus, close to the 

junction of the superior frontal sulcus. However, both of the above meta-analyses had some 

limitations in that several of the studies included did not image the whole brain. This could 

lead to confirmation bias, with findings based on incomplete evidence when selecting areas of 

activation. It could be argued that it is hard to draw inferences from meta-analyses which have 

aggregated data from diverse visual paradigms, as they involve different cognitive processes 

and different neural networks. For example, during an anti-saccade task, the participant is 

required to exhibit a pre-emptive top-down inhibition of a saccade and then a voluntary anti-

saccade must override a reflexive saccade (Coe & Munoz, 2017). During a pro-saccade task, 

the participant must encode the location of a target, remember this information during a delay 

period, and then generate an accurate saccade to the previous location (Srimal & Curtis, 2011; 

Figure 27). Hence, these eye movements are quite distinct neural mechanisms governed by 

different brain circuitry. Interestingly, FEF’s are not confined to a single brain region with 

evidence suggesting that different FEF neurons mediate motor, visual, and visuomotor 

information (Crapse & Sommer, 2009; Lawrence & Snyder, 2009; Schall, Purcell, Heitz, 

Logan & Palmeri, 2011).  
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Figure 27. Activation likelihood maps displaying the FEF and SEF during an anti-saccade 

and pro-saccade task in humans (reproduced from Jamadar, Fielding & Egan, 2013, p.6). 

The yellow regions represent overlap, the red represents activation during an anti-

saccade and green represents activation during a pro-saccade. Abbreviations: frontal eye 

field (FEF); supplementary eye field (SEF); superior parietal lobule (SPL); intraparietal 

sulcus (IPS); inferior frontal gyrus (IFG); lingual gyrus (LG). 

In human work, Amiez and Petrides (2012) used fMRI methodology to assess eye movements 

and reported that basic eye movements (following a dot) caused activation in the ventral branch 

of the superior precentral sulcus, while high-level eye movements (performing appropriate eye 

movements to previously learned conditional rules) caused activation in the superior frontal 

sulcus. These findings illustrated functional sub-areas within the FEF in humans. Tseng, Wang, 

Lo and Juan (2018) used transcranial direct current stimulation (tDCS) to apply anodal 

(positively charged electrode) and cathodal (negatively charged electrode) currents over the 

right FEF while 53 control participants performed pro and anti-saccade tasks. The researchers 

recorded facilitation in pro-saccades towards low-probability locations compared to high-



Page 131 of 531 

 

probability locations when anodal tDCS was administered, and facilitation of anti-saccades 

away from the high-probability location when cathodal tDCS was applied. Based on these 

findings, the authors proposed an overlapping spatial endpoint-selective mechanism between 

pro-saccades and anti-saccades within human FEF. However, similar research by Reteig, 

Knapen, Roelofs, Ridderinkhof and Slagter (2018) reported contradictory findings to Tseng et 

al., (2018). They reported null effects for latency and accuracy of pro-saccades during tDCS 

administration over the FEF in 26 control participants. These contrasting findings might reflect 

sample size differences or methodological inconsistencies, as Tseng et al., (2018) only included 

data where participants showed a positive probability effect (i.e. they were sensitive and 

responsive during a practice tDCS) whereas Reteig et al., (2018) did not discriminate between 

participants included in the study on this basis.  

Hutchison et al., (2012) investigated the functional connectivity of the FEF in humans using 

resting-state fMRI. They used Petrides and Pandya’s (2012) comparative cytoarchitectonic 

analysis to assign corticocortical patterns to the human brain (see chapter one for more details 

of Petrides and Pandya’s analysis). Findings revealed frontal areas that shared functional 

connectivity with the FEF. The study also revealed strong functional connectivity between the 

FEF and posterior cortical areas including; the IPS, posterior central sulcus, parieto-occipital 

sulcus, upper superior temporal sulcus, and cingulate sulcus marginal ramus. These findings 

likely represent spatial and time-based inputs to the FEF.   

It is well established that the FEF are involved in the control and initiation of voluntary 

saccades (Cameron, Riddle & D’Esposito, 2015; Tseng et al., 2018), including predictive 

memory-guided and anti-saccades (Pierrot-Deseilligny, Müri, Ploner, Gaymard & Rivaud-

Péchoux, 2003), and for transforming visual signals into saccade commands (Schall & 

Thompson, 1999). It is generally accepted that the FEF have relatively little control over 
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reflexive saccades (Pierrot-Deseilligny et al., 2004). To test this assumption, van der Stigchel, 

Koningsbruggen, Nijboer, List and Rafal (2012) recruited four individuals with lesions to the 

FEF (three stroke patients and one schizencephally patient, a developmental birth defect which 

causes abnormal clefts in the cerebral cortex) and asked them to complete an anti-saccade task 

and an oculomotor capture task (a visual search task where the target is endogenous and no 

reflexive eye movements should be activated). They compared performance in the 

contralesional compared to ipsilesional visual fields of the four individuals, therefore acting as 

their controls. The participants displayed more errors on both tasks for contralesional compared 

to ipsilesional stimuli. While the study supported the role of the FEF in suppressing voluntary 

saccades, as demonstrated through patient’s impairments on the anti-saccade task, the findings 

also suggested that the FEF may mediate aspects of reflexive inhibition, as participants also 

had impaired performance on the oculomotor capture task. Subsequent research by Peel, Hafed, 

Dash, Lomber and Corneil (2016) has supported the theory that the FEF may modulate facets 

of reflexive saccades. The research group administered unilateral and bilateral pharmacological 

revisable inactivation of the FEF in three macaque monkeys in an attempt to identify a cortical 

location responsible for generating reflexive microsaccades. The authors discovered that 

inactivation of the FEF leads to impairments in microsaccade metrics, kinematics (the study of 

motion without consideration of mass or other forces), and generation to peripheral cues. Peel 

et al., (2016) concluded that the FEF supplies top-down information for the generation of 

reflexive microsaccades. However, there are studies which have reported no error increases on 

anti-saccade tasks when transcranial magnetic stimulation (TMS) is applied to the human FEF 

(Nagel et al., 2008; Olk, Chang, Kingstone & Ro, 2005), although response times increased 

when TMS was applied during an anti-saccade task.  

In summary, the FEF is an oculomotor region involved in many visual processes. It is well 

established that the FEF is vital for successful voluntary saccades (Cameron et al., 2015; Tsang 
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et al., 2018), with mounting evidence that this region may also play a role in reflexive saccades 

(van der Stigchel et al., 2012; Peel et al., 2016). Furthermore, the region appears to modulate 

the direction of covert spatial attention (Schall, 2004) as well as possibly mediating aspects of 

smooth pursuit (Missal & Heinen, 2017), vergence (Searle & Rowe, 2016), and fixations 

(Krauzlis et al., 2017). 

3.4.2. Supplementary eye fields (SEF) 

The SEF constitute an integral part of the network controlling eye movements. In their 

pioneering research, Penfield and Rasmussen (1950) noticed that electrical stimulation, during 

craniotomy, of the human rostral supplementary motor area (SMA), induced gaze shifts. Schlag 

and Schlag-Rey (1985, 1987) recorded gaze and head movements when single-unit activity 

was administered to the dorsomedial edge of the frontal lobe, above the superior arcuate 

sulcus, in three trained monkeys. The authors proposed that this was a supplementary eye 

field, separate from the FEF, and termed the area the SEF. The human SEF is thought to 

correlate with the dorsal bank of the cingulate sulcus in the monkey brain. Hutchison et al., 

(2012) proposed that the SEF boundary was located along the anterior-posterior axis within the 

medial wall, dorsal to the cingulate sulcus. The connective network of the dorsomedial region 

is extensive and complex and innervates the FEF and the SC in monkeys (Huerta & Kaas, 

1990). The SEF also receives reciprocal projections from the motor cortex (Lu, Preston & 

Strick, 1994) and projects to the brainstem and spinal cord nuclei involved in eye, head, and 

limb movement (Huerta & Kaas, 1990). Visual centres, including the lateral IPS area and the 

medial superior temporal area, innervate the region, while reciprocal connections to the 

prefrontal cortex form pathways to thalamic and striatal areas associated with an oculomotor 

function (Huerta & Kaas, 1990). Evidence suggests that SEF may contain a topographic map 

(Savaki, Gregoriou, Bakola & Moschovakis, 2015; Stuphorn, 2015), and single-unit recording 
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experiments have demonstrated that eye movements can be evoked when the rostral area is 

activated, compared to when stimulation is applied to caudal or between rostral and caudal 

areas, which evoked hind-leg and forelimb movement. 

Neural recordings from monkey electro-stimulation studies and human imaging studies have 

documented activity in the SEF during a range of saccadic tasks including, but not limited to; 

distinguishing between successful and unsuccessful cancellation of saccades (Curtis, Cole, Rao, 

& D’Esposito, 2005), smooth pursuit (Missal & Heinen, 2017), object-centred spatial 

awareness (Olson & Gettner, 1995, 1996, 1999), change-of-plan saccades (Nachev, Rees, 

Parton, Kennard, & Husain, 2005), memory-guided saccade sequences (Lu, Matsuzawa, & 

Hikosaka, 2002), and serial decision-making (Abzug & Sommer, 2018).  

Several studies have investigated the functional role of the SEF in oculomotor behaviour after 

brain injury in humans (Gaymard, Pierrot-Deseilligny, & Rivaud, 1990; Heide, Kurzidim, & 

Kompf, 1996), reporting impairments in sequential eye movements and saccades anticipating 

predictable target motion. However, these experiments had small sample sizes, and lesions 

were not localized specifically to SEF, therefore, findings cannot be attributed to discreet SEF 

damage but probably reflect disruption to multiple systems. 

Parton et al., (2007) reported the case study of JR, a 55-year-old male who suffered a small left 

medial frontal venous stroke eight months prior. Using high-resolution structural MRI, the 

research team precisely localized the bilateral lesion to SEF in both axial and sagittal planes 

and confirmed that pathology did not extend beyond this specific area. JR completed anti-

saccade, pro-saccade, and memory-guided saccade tasks, as well as a task that involved 

learning arbitrary oculomotor stimulus-response mappings through trial and error. JR’s 

performance on the anti and pro-saccade tasks exceeded that of age-matched controls and he 

made fewer errors overall. Overall, JR was slower at generating saccades and this may explain 
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his high accuracy scores; a speed/accuracy trade-off. However, he showed impaired 

performance switching from anti to pro-saccades on a conflict task compared to age-matched 

controls. He also showed prolonged latencies on the arbitrary stimulus-response task when 

selecting the correct saccade compared to controls. These findings suggest that the SEF may 

not be necessary for instigating saccades, but mediates the implementation of control when 

there is a conflict between competing saccadic responses, but not when saccades need to be 

made accurately in sequence. Indeed, it seems likely that that SEF does not directly control 

saccades but rather mediate higher-order cognitive variables during saccades, such as 

monitoring error, conflict, and reward (Husain, Parton, Hodgson, Mort & Rees, 2003; 

Stuphorn, Brown, & Schall, 2009; Roesch & Olson, 2003).  

In summary, the role of the SEF in human oculomotor function is still under investigation. It 

is generally agreed that the SEF is not directly involved in the generation of eye movements 

but instead mediates higher-order cognitive functions during saccades (Husain et al., 2002; 

Stuphorn et al., 2010; Roesch & Olson, 2003).  

3.4.3. Dorsolateral prefrontal cortex (DLPFC) 

The location and connections of the DLPFC are discussed in detail in chapter one but, in brief, 

the area encompasses area 8, 9 and 46 and has complex interconnections with subcortical 

circuits including the FEF, SEF, and PEF (Cummings & Miller, 2007; Pierrot-Deseillingny, 

Müri, Nyffeler & Milea, 2005; Figure 26). Lesion, tDCS, and neuroimaging studies have 

reported that the human DLPFC pathways mediate aspects of executive function control, the 

capability to undertake goal-directed behaviour using complex mental processes (Manes et al., 

2002; Nejati, Salehinejad & Nitsche, 2018; Yuan & Raz, 2014), and monkey and human 

DLPFC have both been associated with executive control of anti-saccades (Coe & Munoz, 

2017; Johnston & Everling, 2006; Munoz & Everling, 2004).  
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The anti-saccade movement requires two mechanisms; firstly executive resources (Tarnowski, 

2013) suppressing reflexive saccades (DLPFC inhibits reflexive saccade generated by the PEF), 

and secondly, generating the correct anti-saccade (generated by the FEF; Ploner, Gaymard, 

Rivaud-Péchoux & Pierrot-Deseilligny, 2005). Human DLPFC lesions have resulted in an 

increased percentage of errors in the anti-saccade task, while FEF lesions can cause an increase 

in the latency of correct anti-saccades (Gaymard, Ploner, Rivaud-Pechoux & Pierrot-

Deseilligny, 1999; Pierrot-Deseilligny et al., 1991; Rivaud, Müri, Gaymard, Vermersch & 

Pierrot-Deseilligny, 1994). This dissociation suggests an inhibitory role of the DLPFC.  

Ploner et al., (2005) tested 15 participants with acute unilateral ischemic lesions of the 

prefrontal cortex and 20 controls on an anti-saccade task to determine if there was a distinct 

sub-region of the human prefrontal cortex responsible for reflexive saccades. They found that 

lesions affecting a region in the mid-DLPFC, or the white matter between this region and the 

anterior portions of the internal capsule, resulted in increased anti-saccade errors. Lesions 

outside of these areas did not appear to affect anti-saccade error rates. These results indicated 

that the DLPFC inhibit reflexive saccades. However, the authors excluded participants who 

had sustained ‘unusual’ strokes such as vasculitis and venous thrombosis, only including 

individuals who had sustained unilateral atherothrombotic or embolic infarction. Although 

researchers control for differences in lesions, each human brain damage case is essentially 

unique. For instance, evidence suggests that different subtypes of typical strokes (e.g. 

atherothrombotic or embolic) still produce differences in pathogenesis (Arboix, Oliveres, 

Massons, Pujades & Garcia-Eroles, 1997; Kozuka et al., 2002), making it difficult to ascertain 

the reliability and validity of human lesion studies and to generalise the results.  

It is theorised that there may be a ‘task-set’ neuronal organisation in the DLPFC with different 

sets of neurons exhibiting activation for anti and pro-saccade instructions (Everling & DeSouza, 
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2005). The DLPFC is active during the preparatory phase of anti-saccades and may also 

mediate inhibitory signals to saccade-related regions, such as the SC. Johnston and Everling 

(2006) recorded DLPFC activity in monkeys when they performed alternating pro and anti-

saccade trials. The researchers discovered that the DLPFC appeared to generate task-selective 

signals (e.g. stimulus location and saccade direction) to the SC, suggesting that the region is 

involved in controlling the activity of other brain regions depending on the goal of the task. 

Although Johnston and Everling’s (2006) research provides evidence of single neuron 

behaviour in the monkey DLPFC, it is still not clear how this very specific neuronal activity 

functions in the human oculomotor system (Johnston, DeSouza & Everling, 2009), and 

therefore it remains a hypothetical model until direct human data are established.  

TMS pulse activation over the DLPFC of control participants during the preparatory phase of 

anti-saccades increased errors in anti-saccades, while the application of TMS after the 

preparatory phase did not affect anti-saccades (Nyffeler et al., 2007). These findings suggest a 

critical time frame where the DLPFC can inhibit reflexive saccades during the anti-saccade 

task, and this time interval is before the onset of the stimulus. While TMS can provide causal 

brain-behaviour information in humans, the method does have some disadvantages. For 

example, Nyffeler et al.’s (2007) localisation procedure for positioning the TMS coil over the 

DLPFC relied upon functionally localising TMS 5cm anteriorly from the motor hand area. 

However, there is no guarantee that this TMS placement specifically targeted the DLPFC in 

each of the 15 participants, as genetic and environmental effects may contribute to individual 

differences in adult human brain structure (Gu & Kanai, 2014).  

In other work, human lesion (Pierrot-Deseilligny et al., 2003; Pierrot-Deseilligny et al., 1991; 

Ploner et al., 1999) and TMS studies (Müri et al., 2000) have reported that the DLPFC may be 

involved in memory-guided saccades. However, a recent study by Mackey, Devinsky, Doyle, 
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Meager and Curtis (2016) reported that individuals who had sustained damage to the DLPFC, 

which did not encroach on the precentral sulcus, performed equally well on a memory-guided 

saccade task compared to controls. Mackey et al.’s., (2016) findings may contrast with other 

studies conducting similar research because much of the earlier work was based on patient 

populations who had sustained strokes affecting large areas of the DLPFC.  

In summary, the DLPFC exerts executive control over the programming and preparation of 

anti-saccades (Cameron et al., 2015). The region inhibits unnecessary reflexive saccades, 

triggered by the PEF, by mediating bias signals to saccade-related areas (Pierrot-Deseillingny 

et al., 2005). Therefore, pathology to this region may produce selective deficits in these visual 

mechanisms depending on lesion location and severity, thus impacting the processing of visual 

stimuli.     

3.4.4. Parietal eye fields (PEF) 

The posterior parietal cortex (PPC) provides an interface for visuospatial attention (Yang, 

Jacobson & Burwell, 2017; Wu et al., 2016) and accurate oculomotor movement plans; a 

critical process for the integration of multiple sensory modalities to construct a representation 

of the body in the external world (Ptak & Müri, 2013). The intraparietal sulcus separates the 

PPC into superior and inferior lobules. The superior regions primary inputs are somatosensory, 

while the inferior regions are visual-based (Paré and Dorris, 2011). In non-human primates, 

there is a specialised region in the IPS, known as the lateral intraparietal area (LIP), located in 

area 7a. The LIP is anatomically embedded between visual brain areas (occipital lobes) and 

saccade executive centres (frontal lobes; Thomas & Paré, 2006) so goal-directed attentional 

activity can be co-ordinated (Bisley, Mirpour, Arcizet & Ong, 2011; Freedman & Assad, 2006). 

Certain neurons in the LIP respond to visual (Gottlieb, Kusunoki & Goldberg, 2004) and 

visuomotor stimuli (Colby & Duhamel, 1991), with others active during fixations 
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(Constantinidis & Steinmetz, 2001). The human homologue of the LIP is termed the PEF and 

is theorised to be located along the IPS within the sulcus, in its posterior half, adjacent laterally 

to the anterior part of the angular gyrus (area 39) and medially to the posterior part of the 

superior parietal lobule (area 7) (Pierrot-Deseilligny et al., 2004; Pouget, 2015) (Figures 25 

and 26).  

The role of the PEF is still being researched, but extant literature suggests that the region may 

modulate aspects of visual-spatial attention (Goldberg, Bisley, Powell et al., 2006) and the 

intention to make a saccade (Andersen & Cui, 2009). The PEF are thought to be an integral 

system for visual working memory, involving eye movements to remembered locations. The 

ability to temporarily remember information is necessary for goal-driven behaviour and has 

been investigated with delayed-oculomotor-response tasks in humans and monkeys (Mirpour, 

Ong & Bisley, 2010). Seminal research by Gnadt and Anderson (1988) demonstrated that 

monkey LIP neurons were activated during the delay period of saccade tasks, with many 

studies supporting the author’s early findings. Goldberg et al., (2006) reported that monkey 

LIP neurons responded to the appearance of a flashed distracter even when the monkey was 

required to generate a memory-guided delayed saccade elsewhere. This data suggested that the 

monkey’s attention was aligned with the goal of a memory-guided saccade unless a distracter 

appeared, in which case attention was directed to the distracter and then back to the memory-

guided saccade. Goldberg et al., (2006) postulated that LIP neurons generated a salience map 

which mediated saccade goals and locus of attention. Mackey et al., (2016) compared the 

performance of three human participants with lesions to PEF (from surgical resections of 

cortical tissue for a tumour or focal epilepsy) to 12 controls on a memory-guided saccade task 

(measuring working memory), and a visually guided saccade task (to control for impairments 

in spatial or visuomotor processing). The individuals who had been affected by brain injury 

exhibited slower and less accurate memory-guided saccades compared to controls, while no 
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differences were found on the visual-guided saccade task. Mackey et al.’s., (2016) work is 

innovative in paralleling human and monkey PEF/LIP control over memory-guided saccades. 

However, there were large differences in age (35 years), lesion size (36.7 mm), and time since 

lesion (10.5 years) between the three participants. Furthermore, there were differences in 

hemispheric location, aetiology and specific PEF region of the lesion. Mackey and Curtis 

(2017) used TMS over the parietal cortex of two human control participants in a robust 

experimental study including fMRI and nonlinear population receptive field mapping to locate 

stimulation sites. The results indicated that TMS administration caused memory-guided 

saccade errors, supporting the research team’s earlier lesion study. It appeared that PEF neurons 

control attention (Snyder, Batista, & Andersen, 2000) and provide a salience map as so 

attention and saccades can be regulated (Goldberg et al., 2006).  

In summary, the primary oculomotor function of the PEF appears to be the integration of visual 

and goal-directed information (Mirpour et al., 2010). This includes the transformation of visual 

information into a saliency map (Goldberg et al., 2006; Gottlieb, 2007), where a representation 

of spatial locations can be created and selected to guide saccade generation (Colby & Goldberg, 

1999).  

In conclusion, it is generally accepted that the FEF mediates intentional saccades, the SEF 

modulates the generation of motor programs saccades, the DLPFC mediates the remembering, 

inhibition, and prediction of saccades and the PEF informs saccade generation through salience 

maps. These circuits form the basis of visual processing of complex social stimuli.  

3.5. Typical human visual attention and the effects of TBI 

There have been many studies focussing on emotional and social deficits after neuropathology 

(May et al., 2017; McDonald et al., 2018; McDonald et al., 2017). These have been based on 

the assumption that impairments are due to disrupted impulse control and/or emotion regulation 
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i.e. failure in executive functions (van der Horn et al., 2016; Wood & Worthington, 2017) or 

impaired facial affect recognition (Rigon et al., 2016). One key consideration, however, is that 

all higher-level visuospatial functions require accurate visual data extraction, and this is the 

start point for subsequent higher socio-cognitive functions. Few studies have investigated 

whether these fundamental processes remain intact post-TBI. Research that does explore this 

often has small sample sizes and implements static stimuli, which lacks ecological validity 

(Douglas, Vassallo & White, 2010; Vassallo, Douglas & White, 2010; Vassallo et al., 2011).  

The importance of low-level visual processes to normal social functioning cannot be 

underestimated. During everyday functions, dyadic relationships and social interactions rely 

on constant and diverse visual processing, including action observation and the ability to read 

others’ feelings and intentions through facial affect (Matsumoto, Takahashi, Murai & 

Takahashi, 2015). Normally functioning eye movement mechanisms are critical for these 

functions (Gobel, Kim & Richardson, 2015; Freeth, Foulsham & Kingstone, 2013). 

The visual system has developed across evolution to detect biological motion (Nishimoto, Huth, 

Bilenko & Gallant, 2017; Yovel & O’Toole, 2016), focus attention on the most salient area of 

the visual scene (Schurgin et al., 2014; Vabalas & Freeth, 2016), and to participate in joint 

attention (Cazzato, Mazzeo, Spagnolo & Distante, 2015; Emery, 2000). These processes are 

thought to be innate (Bardi, Regolin & Simion, 2014; Leppänen, 2016) and largely automatic, 

for instance, human adults evoke rapid responses during facial expression recognition tasks, 

with happiness being recognised as quickly as 23 milliseconds after stimuli onset (Martinez & 

Du, 2010).  

Similarly, Hsiao and Cottrell (2008) reported that, on average, it takes adults just two fixations 

to recognise a face. However, these findings were based on data collected in an experimental 

context and eye scanning patterns may differ in naturalistic settings. Typically, during natural 
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vision, eye movements are only directed to salient information and it is seldom that random 

saccades or fixations are made (Hayhoe, Shrivastave & Nruczek, 2003; Peterson & Eckstein, 

2012). Everyday tasks vary greatly (e.g. participating in a conversation compared to making a 

cup of tea) and, therefore, what is considered salient information will also vary. Hayhoe and 

Ballard (2005) reported that the majority of fixations will be directed towards the object which 

is paramount for the current goal, coining the ‘just in time’ selection strategy (the acquisition 

of specific information at the point it is required and no sooner). So, for instance, when making 

a cup of tea, fixations would be generated towards the cup rather than areas around it (Figure 

28). Gaze positioning also informs the musculoskeletal system indicating that gaze monitoring 

and motor output have rapid communication and reciprocal circuitry (Cesqui, Mezzetti, 

Lacquaniti & d’Avella, 2015; Koike, Sumiya, Nakagawa, Okazaki & Sadato, 2019; Oullier, de 

Guzman, Jantzen, Lagarde & Kelso, 2008).   

 

Figure 28. A participant’s point of gaze (circle) while picking up a mug (reproduced from 

Foulsham, 2015, p. 197). The participant fixates immediately on the handle, about 0.5 s 

before reaching for the object. Once lifted, gaze moves to a different location. Fixations 

are directed on the most pertinent part of the visual scene (i.e. the handle for picking the 

cup up and the rim for going to take a drink).  
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Concerning face processing, salient facial features are well-known. Research suggests that 

during social interactions, internal facial features (eyes, nose, mouth) are more attended to 

compared to external features (hair, face, forehead, ears; Mehoudar, Arizpe, Maker & Yovek, 

2014; Schurgin et al., 2014; Vassallo et al., 2011). More specifically, human eye-tracking 

research investigating the identification of emotional facial expressions showed that the eye 

region is the most fixated area of the face, due to the amount of social information which can 

be extracted from the area, including mood, attention, and identity (Eisenbarth & Alpers, 2011; 

Guo & Shaw, 2015; Laidlaw & Kingstone, 2017; Wells, Gillespie & Rotshtein, 2016). An 

interesting paper by Keil (2009) suggested that the eyes are the most informative feature for 

person identification, as the area provides the least ‘noisy’ information, that is, the eyes contain 

more reliable information compared to the nose and mouth. It has been documented that 

humans frequently display five isostatic fixation patterns of oculomotor activity when viewing 

the human face (Ananyeva et al., 2010). During the perception of basic facial expressions, 

humans tend to display a triangular model of eye movements, known as a ‘T pattern’ or a ‘Y’ 

pattern where they alternate between fixating between the eyes and the mouth when they 

perceive basic emotions (Barabanschikov, 2015; Galambos et al., 2018; William & Henderson, 

2007; see Figure 29).  
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Figure 29. Example of the typical ‘T’ (image A) and ‘Y’ (image B) fixation patterns 

displayed by humans when deciphering mood state (reproduced from Barabanschikov, 

2015, p.105). 

Ocular fixation patterns appear to differ in response to the six basic emotions (Barabanschikov, 

2015; Pérez-Moreno et al., 2016; Schurgin et al., 2014; Smith, Cottrell, Gosseslin & Schyns, 

2005). For example, Calvo, Fernández-Marín, Gutiérrez-García and Lundqvist (2018) explored 

the visual strategies of observers during the identification of dynamic facial expressions. 

Findings showed that specific visual scan-path profiles characterised the different facial 

expressions. Angry and sad faces drew more attention to the eyes; happy faces produced more 

fixations to the mouth, while the nose and cheek regions were fixated upon during the viewing 

of disgusted faces. Fearful and surprised faces elicited a more equal pattern of fixations across 

eye and mouth regions. Calvo et al., (2018) concluded that different ocular fixation patterns 

represented a selective attention pattern to expression-specific diagnostic face regions. Further 

research is needed to explore whether the six basic emotions do produce different ocular 

scanning patterns.  



Page 145 of 531 

 

In line with Hayhoe and Ballard’s (2005) ‘just in time’ theory, typical adults fixate on the eye 

region of a static image during a passive viewing task, whereas damage to the brain, either 

through injury, abnormal development, or disease, appears to disrupt this pattern (Figure 30). 

Aberrant gaze processing has been associated with neuro-social-developmental disorders such 

as autism and schizophrenia. For example, autistic individual’s saccadic exploration of faces 

is reported as disorganised, incoherent and variable, with less fixation on the eye region and 

more on peripheral (and uninformative) aspects of the visual scene compared to controls (Black 

et al., 2017; Dalton et al., 2005; Klin et al., 2002; Wang et al., 2015). Individuals with 

schizophrenia have been reported to display fewer and longer fixations compared to matched 

controls (Bortolon, Capdevielle, Salesse & Raffard, 2016; Delerue, Laprévote, Verfaillie & 

Boucart, 2010; Simpson, Pinkham, Kelsven & Sasson, 2013) as well as reduced attention to 

salient facial features and more attention to context irrelevant areas (e.g. forehead) during 

passive viewing, as compared to non-schizophrenic participants (Bekele, Bian, Peterman, Park 

& Sarkar, 2017; Bortolon et al., 2016; Delerue et al., 2010). 
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Figure 30. Heat map (A) and first fixation count bee swarm (B) during a gender 

identification task and free passive viewing for controls and SM, a brain-damaged patient 

(reproduced from Kennedy & Adolphs, 2011, p. 11-12). (A) Mean fixation count heat map 

displaying fixation location for controls and SM, a brain-damaged participant, on a 

gender identification task and a passive viewing task. Zero fixations = blue and maximal 

fixations = red. While controls fixate on the eyes more, SM exhibits more fixations on the 

nose and appears to avoid the eyes. (B) First fixation count locations for controls (n= 500) 

and SM, (100 trials), during a gender identification task and a passive viewing task. Each 

dot signifies a single fixation. While controls exhibit attention to the eye region, SM’s 

appears to display less attention to the eye region and fixations are disparate and more 

focused on the nose region.  
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Antoniades and Kennard (2015) reviewed the literature on abnormal eye scan patterns often 

associated with numerous neurodegenerative diseases, including Alzheimer’s disease 

(prolonged saccade latencies, reduced peak velocities, disorganized visual scanning), 

frontotemporal dementia (reduced inhibition on the anti-saccade task), Huntington’s disease 

(impairments in vertical and horizontal saccades, slowed saccades), and Parkinson’s disease 

(saccadic hypometria, when the saccade is not accurate and misses the target). One explanation 

for these eye movement abnormalities is that all of the disorders mentioned above involve some 

component of frontal lobe dysfunction (Cummings & Miller, 2007). It could be that these 

conditions produce motor deficits as they usually affect motor regions in the brain.  

Furthermore, as discussed in chapter one and two, research from animal models, imaging data, 

and behavioural findings from studies with brain-damaged participant establish the integral 

role of the frontal lobes for human social cognition (Adolfi et al., 2017; Wittmann et al., 2018). 

Consequently, contemporary research suggests an integrative relationship between eye 

movements, social cognition, and the frontal lobes (Funahashi, 2014; Wolf, Philippi, Motzkin, 

Baskaya & Koenigs, 2014). Abnormal eye scan patterns are associated with low social 

functioning and high social disability in schizophrenic and autistic individuals (Bo, Li, Jiang, 

Wang & Wang, 2018; Klin et al., 2002), as well as impairments in deciphering mental states 

(Grynszpan & Nadel, 2015; Itier & Batty, 2009). Although caution must be taken as the 

majority of evidence is from correlational analyses and, therefore, cause and effect cannot be 

directly inferred, these effects are more than likely due to the abnormality of eye scan patterns, 

more precisely; decreased fixation numbers in areas of interest pertinent for the task at hand.  

The effect of TBI on basic human vision is a well-studied area. Recently, Armstrong (2018) 

published a review paper on post-TBI visual problems including disruptions in; visual acuity, 

photophobia, colour vision, stereopsis, visual field loss, papillary response, and eye movements. 
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Eye movement impairments, recorded via eye-tracking technology, are documented in 

approximately 90% of concussion or blast injury cases with conjugate eye movements 

appearing to be the most affected function (Samadani et al., 2015). Data from fMRI exploring 

binocular saccades and vergence eye movements during a computerised circle/cross-task 

revealed that control participants displayed bilateral activation of the SC and 

oculomotor/abducens nuclei, while signals from TBI participants was significantly reduced in 

comparison (Tyler, Likova, Mineff & Nicholas, 2015).   

In animal work, Evanson, Guilhaume-Correa, Herman and Goodman (2018) investigated why 

some adult mice displayed motor and memory impairments after TBI without any visible brain 

damage on MRI and diffusion tensor imaging. Fluoro-Jade B and silver degeneration staining 

showed axonal neurodegeneration in the optic tract, the LGN, and the SC. Interestingly, this 

damage was not detectable 24 hours after the injury but was present seven days after the injury. 

These brain regions are critical for normal eye movement function (Erskine & Herrera, 2014). 

The mouse-model suggested that TBI causes axonal degeneration in the optic tract, LGN, and 

SC, with related neuroinflammation and astrocytosis that develops several days after the injury, 

potentially impacting on eye movement generation and control. Despite the extensive body of 

research documenting damage to the oculomotor systems and visual impairments after TBI, 

there is a paucity of research investigating the initial visual attention and visual strategies 

underpinning facial affect recognition (see review below). 

Mancuso et al., (2015) investigated the theory that emotion identification impairments 

experienced by TBI and schizophrenic individuals may be secondary to impairments in 

attention and/or executive function. The authors used eye-tracking technology to explore the 

visual strategies of 24 severe TBI participants, 21 schizophrenic participants, and 38 control 

participants when viewing different facial expressions. The group of individuals with 

schizophrenia displayed abnormal eye scan patterns compared to controls, but no differences 
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were found between the TBI and control group. There was a significant relationship for the 

group affected by TBI between emotion recognition and attentional function (measured with 

the Trail Making task part-B; Army Individual Test Battery, 1944). The authors did not include 

details of effect sizes so the magnitude of the difference between the TBI and control group 

could not be assessed. Exploring effect sizes, rather than alpha levels, can sometimes yield 

interesting findings as they describe ‘how much the groups are affected’ rather than simply ‘are 

the groups different’ (Sullivan & Feinn, 2012). The findings led the authors to propose a 

tentative hypothesis that attention deficits after TBI may impede emotion recognition, while 

low-level visual abnormalities appear to account for the emotion recognition deficits in the 

group with schizophrenia. One possible confounding variable in the Mancuso et al., (2015) 

study was the effect of the prescribed antipsychotic medication. All 21 individuals in the 

schizophrenic cohort were taking antipsychotic medications which are known to sedate the 

central nervous system (Miller, 2004). It would be difficult to disentangle the disease and 

medication effects on oculomotor differences between the schizophrenic and control group and 

raises the caveat of ascribing the performance differences between the groups to illness effects 

only (Reilly, Lencer, Bishop, Keedy & Sweeney, 2008). Furthermore, the design of Mancuso 

et al.’s., study (2015) included a non-speeded task (i.e. five-second fixed presentation of facial 

expressions), meaning their findings cannot be used to explain deficits in dynamic processing. 

In other work, Adolphs et al., (2005) reported the case of SM, a 38-year-old female who 

suffered from Urbach–Wiethe disease, a rare autosomal recessive disorder associated with 

calcification of brain tissue (Hortensius et al., 2017). SM had bilateral lesions to the nuclei of 

the amygdala, including a small section of the adjacent entorhinal cortex, but no damage to 

other subcortical and cortical structures (Figure 31).  
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Figure 31. An MRI scan of SM’s brain (reproduced from Feinstein, Adolphs, Damasio & 

Tranel, 2011, online supplementary material, p.5). Axial slices depicting focal bilateral 

amygdala lesions caused by the calcium deposits due to lipoid proteinosis associated with 

Urbach-Wiethe disease as well as circumscribed damage to white matter around the 

amygdala and the anterior entorhinal cortex.  

SM displayed impairments in processing emotional and social information, particularly in 

terms of fearful facial expressions compared to control participants. Interestingly, SM could 

recognise fear from visual scenes and tone of voice, indicating that the deficit was selectively 

visual. Using eye-tracking technology, Adolphs et al., (2005) identified that SM had abnormal 

eye scan patterns compared to controls (Figure 32). Adolphs et al., (2005) used the bubbles 

technique (a method designed to solve the problem of finding the most informative region in a 

complex search; Gosselin & Schyns, 2001) and interactively adjusted the number of bubbles 

on the face while participants tried to identify if the face was displaying fear or happiness. On 

average, the control group needed 16.5 bubbles to be removed before identifying the emotion 

while SM required, on average, 30.8 bubbles. Eye-tracking data indicated that while control 

participants used the eye region of the face to discriminate between happy and fearful faces, 



Page 151 of 531 

 

SM failed to make spontaneous fixations to the eye region during the free viewing of the face. 

The selective impairment in identifying fear indicated that the eyes are the most critical facial 

feature for recognising fear. SM was able to identify happy faces, possibly because she showed 

normal eye scan patterns for the mouth region. SM may have used compensatory information 

from other areas of the face, outside of the eye region, when processing the majority of 

emotions, but this was unsuccessful or insufficient during the fear condition. Interestingly, 

SM’s recognition of fearful faces matched controls when directed to look at the eyes. When 

the cues ceased, SM reverted to excluding the eye region during her natural eye scanning 

pattern, potentially indicating dissociation between voluntary and reflexive saccades, with 

voluntary saccades remaining intact post-amygdala damage.  

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Saccades (red lines) and fixations (white circles) exhibited by one control 

participant and SM during an emotion identification task (reproduced from Adolphs et 

al., 2005, p.70). SM displayed no fixations to the eyes during a free-view emotion 

recognition task. 
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Adolphs et al., (2005) also administered a control task using the same faces and the bubbles 

technique in which participants were asked to name the sex of the face rather than the emotion. 

During this task, SM’s performance was similar to controls; requiring a similar number of 

bubbles to be removed as well as exhibiting similar eye scanning patterns to controls, including 

frequent fixations to the eyes. These findings suggest that SM was capable of spontaneous 

fixations to the eyes during a sex discrimination task but not during an emotion identification 

task. To further explore the direct importance of the eye region during emotion recognition, the 

researchers completed a further study with two sets of stimuli; whole faces displaying the six 

basic emotions and faces with the eyes digitally removed displaying the same emotions. 

Control participants were significantly poorer at identifying fear during the erased eye 

condition, while SM showed no change in accuracy. These results suggest that SM failed to 

make typical use of the eye region when identifying facial expressions. Adolphs et al., (2005) 

concluded that SM’s fear recognition impairment stemmed from a loss of amygdala function 

guiding the visual system to focus attention on salient information for decoding emotions. It is 

well documented that the amygdala mediates emotional responses (Diano, Celeghin, Bagnis & 

Tamietto, 2017; Murray, 2007), but it is also hypothesised that these structures also facilitate 

aspects of attention (Davis & Whalen, 2001; Peck & Salzman, 2014). The amygdala has 

multiple feedback projections to the visual cortex (Ousdal, Andreassen, Server & Jensen, 2014). 

Nevertheless, Adolphs et al., (2005) also conducted the same fear/happiness emotion 

recognition experiment with 13 unilateral amygdala damaged participants who displayed 

normal fear identification scores compared to controls. All 13 individuals also showed typical 

fixation patterns to the eye area of the face compared to controls. These findings seem to imply 

that SM’s impairment cannot be attributed to amygdala damage alone. Researchers have not 

explored the possibility that Urbach–Wiethe disease produces pathology that is not easily 

detectable through neuroimaging scans. If Urbach–Wiethe disease causes pathology to 
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oculomotor regions, then this could induce the abnormal eye scan patterns shown by SM. 

Little is known about Urbach–Wiethe disease, with less than 500 documented cases since its 

discovery in 1929, and current literature relies mostly on anecdotal reports and case studies, 

none of which have employed diffusion tensor imaging to investigate diffuse axonal injury 

(DAI).  

A follow-up study with SM analysed the time course of fixations during a facial expression 

identification task and reported that SM’s first fixation was abnormal compared to control 

participants (Kennedy & Adolphs, 2010). SM’s subsequent fixations were more typical and 

mirrored that of the control group. In a second experiment, Kennedy and Adolphs (2010) 

combined eye-tracking and a gaze-contingent face task where only a small area of the face is 

visible at the centre point of the participants gaze. This task (i.e. only allowing the participant 

to see the area of the face they are fixating on) eliminates all bottom-up processing (automatic 

amygdala processing). During this study, SM’s results showed typical fixation patterns to the 

eye region. Taking all of SM’s findings into account, it appears that SM’s top-down 

processing was still intact (i.e. that the eyes are the most salient facial feature and the 

allocation of visual attention under voluntary control is independent of the amygdala), and 

that abnormalities must be present with the bottom-up attentional system. Interestingly, 

Spezio, Huang, Castelli & Adolphs (2007) reported that when viewing static stimuli, SM’s 

fixations were typically on the centre of the face (nose) but when SM was part of a dyadic 

interaction, the majority of fixations were directed around the mouth, even if the other person 

was not talking. Kennedy and Adolphs (2010) proposed that this may be the result of an 

expectation of speech which is associated with dynamic social interactions and which is 

removed from static stimuli.   
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Wolf et al., (2014) investigated the human ventromedial prefrontal cortex’s (VMPFC) role in 

controlling basic aspects of attention, in particular, the orientation of attention to social and 

emotional stimuli. The VMPFC has vital connections to the amygdala (Pessoa & Adolphs, 

2010), with damage to the amygdala disrupting visual mechanisms underlying facial 

expression recognition (Adolphs et al., 2005). It is well documented that damage to the VMPFC 

results in emotion identification impairments (Hiser & Koenigs, 2018; McCormick, Ciaramelli, 

De Luca & Maguire, 2017). Wolf et al., (2014) recruited three participants who had undone 

surgery to resection large anterior cranial fossa meningiomas with vasogenic oedema largely 

confined to the VMPFC, defined as areas 11, 12, 25 and 32 and the medial portion of area 10 

below the level of the genu of the corpus callosum. After surgery (at least three months), 

participants’ eye movements were tracked whilst they identified emotions from the Karolinska 

Directed Emotional Faces set (Lundqvist, Flykt & Öhman, 1998) and compared against control 

participants. The findings revealed that VMPFC damage impaired visual attention during the 

facial expression recognition task and that damage to this region disrupted attention to the eyes, 

particularly during fear conditions. Interestingly, there were no group differences in total 

fixations, the distance between fixations, or maximum eccentricity of fixation (the position of 

the centre of the fovea relative to the point of fixation). The authors concluded that the VMPFC 

and amygdala may be part of a neural circuit that controls aspects of visual attention to the eye 

region of the face, possibly by processing the socio-emotional salience of a stimulus. The 

VMPFC and the amygdala also have connective pathways to the orbital cortex, which projects 

to the FEF, further supporting this assumption (Barbas, 2000). Wolf et al., (2014) found that 

the most significant visual strategy abnormality arose during the first second (i.e. first fixation) 

of face viewing. This signifies the importance of exploring first fixation count and duration, 

mirroring the findings of Kennedy and Adolphs (2010). 
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In other work, Oatley, Torsein, Sadeghi and Green (2014) recruited seven male participants 

with moderate-severe TBI and nine male control participants, administering a simple static 

facial expression recognition task in two blocks (self-paced vs. fixed-timed) whilst eye 

movements were recorded. Oatley et al., (2014) reported that proportional data indicated a 

significant correlation between emotion and task (self-paced vs. fixed-timed) for the eyes and 

the mouth and a significant interaction between group (TBI vs. controls) and task, with the TBI 

group fixating on the eyes significantly less than the controls, especially on the self-paced task. 

These findings demonstrated that controls fixated more on the eye region of fearful faces 

compared to other emotions, indicating that there may be differences in emotion/task-specific 

scanning patterns for both control and TBI populations.  

Kenrick, Neumann and Conner (2017) also explored the hypothesis that TBI could result in 

suboptimal visual processing during facial expression recognition. The authors investigated 

possible visual scanning differences between nine controls and nine moderate to severe TBI 

participants whilst they viewed the adult faces subset of the Diagnostic Analysis of Nonverbal 

Accuracy (DANVA; Nowicki & Duke, 1994). Findings showed that the individuals with TBI 

made fewer fixation counts to the faces compared to controls, with errors on the facial 

expression task negatively correlated with the total number of fixations overall, as well as 

fixations specifically on the face (compared to visual background). Errors on the facial 

expression task were also positively correlated with the per cent of fixation counts and the per 

cent of fixation duration on the nostrils. This finding suggests that the nose does not provide 

enough cues to decipher a facial expression. The authors proposed that the group with TBI may 

have been distracted by information outside of the designated face AOI. The authors also 

highlighted the need for further investigation into why the group affected by TBI fixated more 

on the lower nose, a feature which is generally considered minimally relevant for emotion 

identification.  
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Turkstra (2005) compared gaze patterns of adults and adolescents with TBI with matched 

controls whilst engaging in a three-minute conversation. Turkstra (2005) reported that matched 

controls looked at the face of their conversation partner more compared to the group with TBI, 

but these results were not statistically significant. However, the within-group variability was 

significantly greater in the group affected by TBI, suggesting that gaze patterns may be 

qualitatively rather than quantitatively altered post-TBI.   

Douglas et al., (2010) investigated the interpretation of facial expressions and the role of visual 

scanning with individuals who had sustained TBI. Ten individuals with a severe TBI, at least 

two years post-injury, and ten age and gender-matched control participants were recruited. All 

participants viewed static images depicting the six basic emotions and static images of objects. 

Douglas et al., (2010) reported that TBI participants scored significantly lower on the emotion 

identification task compared to control participants. Furthermore, TBI participants displayed 

abnormal scan paths compared to controls, including increased number, duration, and 

dispersion of fixations when viewing faces. An interesting finding from this study was that TBI 

participant scan paths were typical for object stimuli, but no further work exists exploring this 

discrepancy. The authors concluded that impaired emotion identification after TBI may be 

related to abnormal eye scan patterns. In other research, Vassallo et al., (2010) conducted a 

case study with patient LY, a male (age unknown) with a severe TBI who displayed significant 

deficits in emotion identification. Three male control participants were recruited and test 

stimuli consisted of 18 static images depicting the six basic emotions. Vassallo et al., (2010) 

reported that control participants tended to fixate on internal facial regions, particularly the 

eyes, nose, and mouth, while LY displayed a dispersed (hyper scanning) eye scan pattern with 

significantly more fixations on the peripheral regions of the face, including the hair, ears, 

forehead, and background of the scene; similar to the findings of Kenrick et al., (2017). Again, 

the authors concluded that impairments in eye scan patterns may be associated with lower 
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emotion recognition scores. Vassallo et al., (2011) also investigated the visual scan paths of 

four male participants with severe TBI and four age and gender-matched controls. A static 

facial affect recognition task, including the six basic emotions, was used while visual scan paths 

were recorded. TBI participants displayed significantly poorer accuracy and response times 

compared to the control group during the facial affect task. With regards to visual scan paths, 

groups were compared on the number and duration of fixations to internal (eye, nose and 

mouth) and external (all the remaining) areas of the image. There was no significant difference 

in the overall number or duration of fixations to internal versus external facial areas between 

the two groups, but the control group displayed more frequent and longer fixations on the 

internal facial areas than the group with TBI.  

Although there are some differences across different eye-tracking studies, the initial results 

indicate that neuropathology may alter the generation and/or control of eye scan patterns, 

warranting further investigation of visual attention and fixational patterns in response to social 

stimuli. Individuals perceive what they attend to, or fixate on, so crucially this low-level visual 

attention data can provide objective indices of whether TBI and control cohorts differ in this 

respect when viewing social stimuli. Research investigating facial affect impairments after a 

brain injury usually focus on higher-level functions, such as executive control, yet these 

functions require accurate visual data extraction, and this is the start point for all subsequent 

socio-cognitive functions. Few studies have investigated whether these fundamental processes 

remain intact post-TBI, particularly when viewing naturalistic/dynamic social stimuli.  

The above eye-tracking studies are innovative in that they explore visual attention post-TBI 

but they rely heavily on static stimuli. There are concerns that the majority of social-affective 

neuroscience studies lack ecological validity as static stimuli (Knox & Douglas, 2009), posed 

expressions (Juslin, Laukka & Bänziger, 2018; Namba et al., 2018), and experimental settings 

(Barrett et al., 2011; Ibañez & Manes, 2012) do not correspond to real-world interactions. 
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Important differences between laboratory experiments and experience of real-world emotions 

include; lack of dynamics, lack of motion, and absence of depth cues (Alves, 2013; McCamy 

et al., 2014; McDonald, et al, 2003), as well as the absence of contextual cues (Barrett et al., 

2011; Ibañez & Manes, 2012). For over a decade, research has suggested that static and 

dynamic stimuli are processed by different brain networks (Kilts, Egan, Gideon, Ely & 

Hoffmann, 2002; McDonald & Saunders, 2005) so this is an important distinction when trying 

to map structure to function in eye-tracking research.  

A compelling study by Blais et al., (2017) explored control participants visual strategies when 

processing static and dynamic facial expressions using eye-tracking and the bubbles technique. 

The authors reported that the same facial features (eyes, nose and mouth) were utilised during 

both conditions to identify emotions, but participants exhibited more fixations to the left eye 

and mouth during the static condition and more fixations to the centre of the face during the 

dynamic condition. The authors proposed that one possible explanation for this difference is 

that humans can process biological motion outside of the fovea and peripherally to the fixation 

location (Gurnsey, Roddy, Ouhnana, & Troje, 2008; Thompson, Hansen, Hess, & Troje, 2007). 

Therefore, more fixations to the centre of the face during dynamic conditions may allow an 

individual to process motion cues from the eyes and mouth without directly fixating on the 

features, whereas this visual strategy would be insufficient for static stimuli. Blais et al., (2017) 

findings mirror that of Stoesz and Jakobson (2013) who had previously investigated processing 

differences between static and dynamic speeded identity and emotion expression judgements. 

The authors reported disparate processing patterns between static and dynamic displays, with 

the latter yielding longer responses. Stoesz and Jakobson (2013) stressed the importance of 

using dynamic displays when assessing face-processing mechanisms. 
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3.6. Summary  

In conclusion, the human oculomotor and visual systems are a complex collection of densely 

connected brain networks, originating in the photoreceptor cells of the retina and evolving to 

cortical areas, which work in synergy to direct attention to, and process, salient information 

in the dynamic world (Goodale & Milner, 1992; Willermain et al., 2014). This process relies 

on numerous neural processes, such as binocular vision, and is modulated by several eye 

movements, notably saccades, smooth pursuit, and fixations. The neurological 

underpinnings of human oculomotor function are extensive, with evidence from animal and 

human models suggesting that the FEF, SEF, DLPFC, and PEF are paramount for the 

generation and control of appropriate eye movements (Pierrot-Deseilligny et al., 2004). 

Damage to these brain areas or associated neural pathways are related to aberrant gaze 

patterns with marked reductions in fixations to areas of saliency, in the case of facial affect 

recognition, a noticeable curtailment of fixations to the eyes, nose and mouth (Adolphs et 

al., 2005, Vassallo et al., 2010). However, the majority of these findings are based on static 

stimuli which lack ecological validity and create challenges for generalisability. 

Additionally, recent evidence proposes that static and dynamic stimuli rely on different 

visual strategies (Blais et al., 2017). Nevertheless, these initial data warrant further 

exploration of fixation patterns in TBI and control cohorts to determine whether 

neuropathology produces low-level visual attention impairments which impact on higher-level 

functions, such as facial affect recognition. The present thesis will investigate fixation patterns 

about social stimuli, particularly facial expressions, in a group of individuals with TBI 

compared to matched controls. The next chapter presents the rationale for conducting the 

current research.  
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4. Chapter four: Rationale for the current research  

4.1. The rationale for the current research 

As previously outlined, TBI is a major cause of death and disability (Dinsmore, 2013; Maas et 

al., 2008). The high prevalence of TBI creates a serious burden on public health services 

(Fineberg et al., 2013), as well as physical, emotional, and financial strains on the survivor and 

their families. Indeed, some authors have documented that social cognition impairments are 

the greatest barrier to life adjustment and rehabilitation after brain injury (Grattan & 

Ghahramanlou, 2002; Ponsford & Schönberger, 2010; Yates, 2003). The extant literature 

illustrates that many TBI survivors and their families report that changes in emotional and 

social abilities were more disabling and difficult to deal with than cognitive or physical changes 

(Kelly et al., 2008; Koskinen, 1998; Marsh et al., 2002). Individuals who have sustained a TBI 

often do not return to full-time employment (Grauwmeijer, Heijenbrok-Kal, Haitsma & 

Ribbers, 2017) and experience decreased social relationships and material difficulties 

(Ponsford et al., 2014). This deleterious sequela more than likely exacerbates pre-existing 

mental health conditions that include depression, anxiety, and substance abuse (van der Horn, 

Spikman, Jacobs & van der Naalt, 2013; Kreutzer, Seel & Gourley, 2001).  

As human beings are social creatures, interpersonal relationships are important for both 

physical and mental health (Heinrich & Gullone, 2006). Exclusion from or inadequate 

participation in the social community through core social roles (e.g. having a job, being part of 

a family or hobbies) can lead to poor self-regulation and poor self-esteem (Siegrist, 2000). 

Human loneliness is a risk factor for the decline in cognitive function, depression, and social 

anxiety (Cacioppo & Hawkley, 2009). Social cognition, the skill which enables people to 

understand the social world (Cassel et al., 2019), is a prerequisite of social integration (Brother, 

1990). As outlined in the previous chapters, social cognition impairments after TBI are well 
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documented (May et al., 2017; McDonald, 2013). It has been acknowledged that the prevailing 

nature of socioemotional impairments post-TBI makes them one of the most challenging and 

deliberating of all TBI sequelae (Brooks et al., 1986; Kinsella et al., 1991; Ubukata et al., 2014). 

It has been noted that social cognition impairments occur on an implicit and automatic level 

(Barker & Andrade, 2006; Morton & Barker 2010, Barker, Andrade & Romanowski 2004), 

strongly correlating with frontal lobe pathology (Barker, et al., 2004; Frith and Frith 2001; 

Siegal and Varley, 2002). Due to the brains position within the skull and the biomechanical 

and pathophysiological factors associated with TBI, the frontal lobes and the connecting 

pathways often sustain an injury during trauma (Bigler, 2007). One of the most prevalent 

impairments associated with frontal lobe damage is facial affect recognition (Drapeau, 

Gosselin, Peretz & McKerral, 2017; Neumann et al., 2016; Spikman et al, 2013), yet the 

underlying mechanisms of this deficit are not well understood. 

It is estimated that up to 39% of individuals with a moderate-severe TBI could present with 

significant facial affect identification impairments (Babbage et al., 2011), with experts 

suggesting that this particular impairment could be one of the main barriers to successful 

community re-integration (Croker & McDonald, 2005). Nevertheless, formal assessments of 

facial expression recognition post-TBI are often overlooked in clinical practice (Kelly et al., 

2017a, 2017b). Current experimental treatment-outcome research has indicated that 

rehabilitation programmes can be successful in improving social behaviour post-TBI (Barman, 

Chatterjee & Bhide, 2016; Flanagon, McDonald and Togher, 1995; Williamson & Isaki, 2015). 

Indeed, there are positive reports of facial affect recognition interventions post-TBI (Bruhns, 

2017; Neumann, Babbage, Zupan & Willer, 2015; Williamson & Isaki, 2015), but more success 

could be gained if the underlying impairment mechanisms were fully understood, potentially 

allowing clinicians to target specific deficits rather than resorting to a global intervention 

approach (Yeates, 2014).  
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Social perception, that is the ability to detect social stimuli or social cues, is pivotal for social 

functioning. Social interactions rely on several visual processes, including action observation 

and the ability to read others’ feeling and intentions through body language and facial 

expressions (Matsumoto et al., 2015). A range of brain networks orchestrates social perception; 

central to this is the perception network (Bickart, Dickerson & Barrett, 2014). This network is 

thought to process information rapidly and automatically (Whalen, 2007). Appropriate eye 

movements are critical for social perception (Gobel et al., 2015; Freeth et al., 2013) and 

aberrant eye scan patterns are associated with low social adaption and high social disability 

(Klin et al., 2002), as well as impairments in deciphering mental states (Grynszpan & Nadel, 

2015; Itier & Batty, 2009).  

Residing within the frontal lobes are critical eye movement regions that mediate saccades and 

fixations, namely the FEF, SEF, DLPFC. Intracortical white matter pathways also connect the 

frontal lobes to other critical eye movement centres within the brain, such as the PEF and the 

occipital cortex (Stanton, Bruce & Goldberg, 1995; Vernet et al., 2014). These networks often 

incur some degree of pathology during trauma due to the compressive forces of the skull on 

soft brain tissue (Bigler, 2013), yet there is a dearth of research exploring the impact this has 

on social cognition. There are a limited number of studies which have investigated eye scan 

patterns in response to social stimuli after TBI (Adolphs et al., 2005; Douglas et al., 2010; 

Mancuso et al., 2015; Vassallo et al., 2010; Vassallo et al., 2011; Wolf et al., 2014), but the 

methodologies are constrained by small sample sizes and static stimuli. Nevertheless, what 

these findings underscore is that impairments in social perception after TBI may be associated 

with the inability to direct attentional resources to salient social information, rather than 

damage to specific areas (e.g. the face perception network) or aberrant upstream cognitive 

processing.  
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Eye movement abnormalities are well established in several disorders associated with frontal 

lobe dysfunction, notably schizophrenia (Bortolon et al., 2016) and autism (Wang et al., 2015). 

In fact, aberrant eye scan patterns are used as a classifier and trait marker in both schizophrenia 

(Benson et al., 2012) and autism (Carette et al., 2019). This information is pertinent for the TBI 

research field as common behavioural symptoms shared by the conditions (e.g. apathy, lack of 

motivation, lack of spontaneity, and disinterest in social interactions) might be related with 

atypical eye movements. For example, Schwab, Würmle, Razavi, Müri and Altorfer (2013) 

developed a visual peripheral recognition task that required participants to coordinate both eye 

and head movements. A visual target was first presented in the centre of the screen and then in 

the periphery and the participant had to decide if the two targets were equal or not. There were 

two different tasks, a simple colour recognition task and a more challenging Landolt-C 

orientation task. Two tasks were implemented to explore the hypothesis that tasks of varying 

difficulty may induce differences between participants with schizophrenia and controls 

concerning eye-head coordination. There were differences between individuals with 

schizophrenia and controls where the control group displayed long latencies during the colour 

task and short latencies during the Landolt task while individuals with schizophrenia had 

similar latencies across both tasks. The individuals with schizophrenia also displayed more 

head movements and increased eye-head offsets. As head movements and visual strategies are 

both used during social interactions to pick up social cues and to display engagement (e.g. joint 

attention), abnormalities within these systems are bound to have a negative effect of social 

integration. The researchers suggested that the individuals with schizophrenia may have 

displayed a specific oculomotoric attentional dysfunction as they demonstrated difficulty in 

adapting to the two different tasks, compared to the control group. Furthermore, the 

uneconomic over-performance of head-movements may have been due to poor inhibition, 

possibly related to alterations in the frontal executive function system. This may indicate that 
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individuals with schizophrenia have difficulty determining the relevance of stimuli which could 

extend to social interactions. This hypothesis is supported by a published literature review 

which concluded that restricted scanning behaviour, often documented in schizophrenic studies, 

could be linked with the negative symptoms of the condition, specifically in terms of face 

viewing (Beedie, Clair & Benson, 2011). Research has demonstrated that individuals with TBI 

frequently display very similar behaviours to the negative symptoms of schizophrenia (e.g. 

apathy, anhedonia difficulty in determining the relevance of social stimuli – Damasio, Tranel 

& Damasio, 1990; Worthington & Wood, 2018), so it may be the case that aberrant visual 

strategies lead to difficulty determining the relevance of social stimuli, but this hypothesis is 

currently untested. An emerging theory within the autism literature is that abnormal social 

reward processing may underlie social impairments in autism (Bottini, 2018), and this has been 

linked to pupillary responses to faces. Sepeta et al., (2012) reported that children with autism 

did not show typical pupillary sensitivity to gaze direction in response to happy faces compared 

to typically developed children. The authors proposed that the findings supported the 

hypothesis that individuals with autism displayed reduced sensitivity to the reward value of 

social stimuli. This theory has also been supported by subsequent research (Gale, Eikeseth & 

Klintwall, 2019; Ruta et al., 2017) and could potentially explain why individuals with TBI 

often appear apathetic and disinterested in the social environment (Worthington & Wood, 

2018) (i.e. pupillary sensitivity indicates appeal/attention/preference but if visual strategies are 

aberrant after TBI then the individuals affected may not be picking up relevant 

cues/appropriately reacting to cues). Again, this hypothesis is currently untested.  

Therefore, the negative symptoms of schizophrenia (e.g. apathy, anhedonia) and the principal 

characteristics of autism (e.g. finding it hard to understand others, finding it hard to make 

friends or preferring to be on their own, seeming blunt, rude or not interested in others), are all 

behaviours which have been mirrored by individuals with TBI. These behaviours may be 
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mediated by aberrant low-level visual processing abilities, but eye-tracking research within the 

TBI field is significantly lacking.  

From reviewing the existing literature base, it is clear that the mechanisms underpinning social 

cognition post-TBI are poorly understood. Research suggests that upstream cognitive processes, 

as well as co-morbid effects and pre-morbid personality traits, could affect social cognition 

impairments post-TBI. Correlational analyses have reported that poor performance on social 

cognition tasks is generally not related with cognitive deficits post-TBI (e.g. memory, 

executive function and attention – Spikman et al., 2012), suggesting that other factors must 

mediate the social cognition deficits consistently reported in the literature. TBI is often 

associated with co-morbid conditions such as post-traumatic stress disorder (PTSD; Tanev, 

Pentel, Kredlow & Charney, 2012), substance abuse (Weil, Corrigan & Karerlina, 2016), 

psychiatric disorders (Rogers & Read, 2007) and mood disorders (Spitz, Always, Gould & 

Ponsford, 2017). These post-TBI comorbidities interplay with social cognition deficits, for 

example, a general impairment in memory may lead to an individual with TBI forgetting key 

dates resulting in relationship breakdowns. Furthermore, PTSD, mood disorders and other 

psychiatric disorders may stop an individual with a TBI from leaving their home, harming 

social relationships and general mental health.  Premorbid personality characteristics have also 

been proposed as a moderator for ‘reserved’ social cognition following TBI. Sela-Kaufman, 

Rassovsky, Agranov, Levi and Vakil (2013) reported that premorbid personality characteristics 

provided the most robust moderator of occupational outcome (which could be considered as a 

good measure of social reintegration). Frank (2011) also proposed that certain premorbid 

personality traits may have implications regarding the way the individual copes with post-TBI 

changes. High levels of neuroticism, ineffective problem solving, and avoidance coping have 

been associated with poor adaption, while characteristics such as optimism and positivity are 

related to better adaption. Alexithymia is a personality trait found in up to 12% of the general 
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public (Salminen, Saarijärvi, Aärelä, Toikka & Kauhanen, 1999) and is hypothesised to be a 

risk factor for several medical and psychiatric disorders associated with affect regulation 

(Luminet, Bagby & Taylor, 2018). Individuals who experience this ‘organic alexithymia’ are 

likely to have a lower social reserve if they experienced a TBI compared to individuals who do 

not have alexithymia. Although the literature suggests that these comorbid factors are not the 

underpinning mechanisms driving social cognition impairments post-TBI, the factors 

mentioned above, plus other factors (e.g. employment status, social/culture/economic status), 

are likely to exacerbate the already deleterious emotional and social sequelae of TBI and 

partially determine psychosocial outcome post-TBI (Williams et al., 2020).  

Existing attempts to elucidate the underlying mechanisms of social cognition post-TBI have, 

so far, been unsuccessful. Existing research tends to employ imaging techniques with findings 

indicating a general brain dysfunction, with particular abnormalities within the frontal circuits. 

However, the specific mechanisms underpinning these impairments are still unknown and 

findings are univocal. For instance, Neumann, McDonald, West, Keiski and Wand (2016) 

proposed that post-TBI brain dysfunction may lead to impaired holistic face processing while 

Rigon, Voss, Turkstra, Mutlu and Duff (2019) hypothesised that facial affect recognition was 

comprised of subcomponents that depend on distinct neural substrates and that individuals with 

TBI were impaired in some, but not all, subcomponents. Other schools of thought for 

explaining the potential mechanisms underpinning impaired social cognition include impaired 

simulation (McDonald et al., 2011), impaired physiological responsivity and dulled emotional 

experience (Croker & McDonald, 2005; Hornak et al., 1996). However, none of these theories 

presents a complete account for the underlying mechanisms of social cognition deficits post-

TBI. One downfall of the pre-existing explanations is that they tend to focus on mid to high-

level processing and rarely assess the impact of automatic, low-level visual processing.  
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Individuals perceive what they attend to, or fixate on, so recording fixations in response to 

social stimuli can offer objective indices of typical or aberrant visual scanning patterns. If there 

is variability between the TBI and control groups, then this might underpin the reported 

upstream social cognition deficits in the TBI literature. Few studies have explored these basic 

visual processes and the experiments which do have only implemented very basic static stimuli 

which lack ecological validity. It appears that one of the reasons for this deficiency in 

understanding the low-level social cognition processing of individuals with TBI is due to a lack 

of published research. For example, when a targeted literature search was conducted using 

Scopus, an abstract and citation database, with the terms ‘eye-tracking’ and ‘traumatic brain 

injury’ only 86 documents were found. When ‘social cognition’ was added to the search terms, 

only three papers were found. These figures are extremely low in comparison to a similar search 

when the terms ‘eye-tracking’ and ‘autism’ were inputted, generating 761 documents or ‘eye-

tracking’, ‘autism’ and ‘social cognition’ which generated 122 articles. Indeed, while the 

research fields of autism and schizophrenia have explored, in-depth, visual strategies in 

response to social stimuli, the TBI research field is lagging. One reason for this may be that 

higher-level ‘classic’ cognitive impairments have been the focus of investigation following 

TBI. This is supported by a Scopus review using the terms ‘cognitive impairment’ and 

‘traumatic brain injury’ which generated a list of 3,087 articles. It has been established that 

social cognition is not well understood by experts in the TBI field and that social cognition 

deficits are rarely ever assessed during clinical practice (Kelly et al., 2017a, 2017b). Commonly, 

practice-based evidence feeds into research, for instance, clinicians consistently feedback that 

‘classic’ cognitive functions are impaired post-TBI. However, if clinicians are not assessing 

social cognition post-TBI, probably due to a lack of education, assessments and rehabilitation 

interventions, then this cross-talk between clinicians and researchers is naturally going to 

hinder the research field.  
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When referring back to the three stages of social cognition (Ostrom, 1984; Penn et al., 1997), 

there is a wealth of evidence focusing on stages two and/or three (interpretation of social 

information and processing of social information) while very little exploration is given to the 

very initial perception of social cues. This dearth could be associated with the fact that, in the 

past, eye-tracking technology was limited (not many models available, difficult to use, i.e. chin 

rest and head restrictions, and varying accuracy) and costly or because other areas of post-TBI 

impairments appeared more pertinent. As the research field of eye-tracking and social cognition 

post-TBI is scant, very few efforts have been made to create reliable and valid assessments. 

Indeed, to the best of the researcher’s knowledge, only two dynamic tasks have been validated 

with TBI populations; TASIT (McDonald et al., 2002) and CAVEAT (Rosenberg et al., 2016), 

neither of which have been implemented with eye-tracking technology. This also supports the 

fact that the deficiency in understanding the role of low-level processing in social cognition 

post-TBI is due to a general paucity of investigation. Hence, the current research, and similar 

projects, are needed to fill the gap in the literature and to shed light on the deficient 

understanding of the role of low-level processing in social cognition post TBI.  

The innovative aspect of the current research is the implementation of ‘real world’ dynamic 

and contextual stimuli. The denouncement of static stimuli in the neuropsychology literature is 

gaining traction, with scholars arguing that static stimuli lack ecological validity and mundane 

realism (Blais et al., 2017; Feldman-Barrett, 2011; Ibañez & Manes, 2012; Juslin et al., 2018; 

Knox & Douglas, 2009; Leigh & Zee, 2016; Namba et al., 2018; Recio, Sommer and Schacht, 

2011). There are clear disparities between static laboratory-based social cognition tasks and 

everyday social interactions. For instance, experimental paradigms often lack motion and depth 

cues (Alves, 2013; Mccamy et al., 2014; McDonald et al., 2003) as well as the absence of 

contextual cues (Feldman-Barrett et al., 2011; Ibañez & Manes, 2012).  Furthermore, evidence 

proposes that static and dynamic stimuli rely on different visual strategies (Blais et al., 2017; 
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Stoesz and Jakobson, 2013). Social interactions demand the tracking of emotions and mental 

states through complex cues, such as facial expressions, body language, and eye gaze. This 

dynamic process requires a constant shift in attentional processing. The currently available 

dynamic social cognition assessments are still flawed in that they include posed expressions 

(Juslin et al., 2018; Namba, et al., 2018) and are administered in experimental settings 

(Feldman-Barrett et al., 2011; Ibañez & Manes, 2012). Nevertheless, they offer a vast 

improvement on static stimuli yet are not as widely implemented in the existing evidence base, 

particularly within the TBI research field.  

4.2. Aims of the thesis 

Comprehensive objectives and hypotheses for each experiment are presented at the beginning 

of each chapter. In brief, the focus of this thesis was to explore how mechanisms of attention, 

specifically early visual processes, may modulate social behaviour in a TBI and age and sex-

matched control group. Data from typically developed samples are vital for the development 

of evidence-based interventions and the understanding of social cognition. Consequently, the 

opening study of this thesis investigated sex differences in social cognition with non-patient 

groups. One of the central aims of the research was to determine if TBI causes impairments 

during the first stage of social cognition, that is, the perception of social cues. Few studies have 

explored these basic visual processes and the experiments which do have only implemented 

static stimuli. Consequently, this thesis employed a combination of static and dynamic 

socioemotional assessments. Moreover, it is scarce that research studies explore more than one 

construct of social cognition. Therefore, a second aim of the current project was to investigate 

visual scanning differences in response to distinct domains of social cognition (e.g. thoughts, 

intentions, and emotions).  
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A further aim of the current research programme was to conduct a fine-grained analysis of the 

Movie for the Assessment of Social Cognition (MASC – Dziobek et al., 2006) using its 

multidimensional subcategories (e.g. emotions, thought, and intentions). The designers of the 

MASC had eluded to these subcategories in their original publication but no further details 

were provided (e.g. which construct each clip measured). Through personal email 

communication with the test author (Dziobek), the present research was able to divide the 

different social constructs and assign the relevant video clips. This process also involved two 

researchers separately validating the categories and associated videos. To test the process and 

to determine if the subcategories were sensitive enough to discriminate the separate social 

constructs, the normative MASC study was conducted. To understand social cognition deficits 

following TBI, the research field must first have a sound comprehension of social cognition in 

non-TBI individuals, including sex differences. For that reason, the MASC normative study 

was conducted to (i) allow the research team to explore the sensitivity of the MASC 

subcategories and (ii) to feed into the knowledge base of normative social cognition and to 

explore behavioural and cognitive (eye-tracking) sex differences in response to the MASC.    

One aspiration of this research was to disseminate research findings to health care professionals 

in the hope that it will raise awareness of social cognition impairments after TBI. Recent large 

scale online studies have demonstrated that clinicians and other health care professionals rarely 

or sometimes never formally assess social cognition deficits after TBI (Kelly et al., 2017a, 

2017b). This finding is concerning taking into account the major personal, social, and economic 

repercussions social cognition impairments give rise to post-TBI.  
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5. Chapter five: Methodology review  

5.1. Chapter overview  

This chapter reviews the specific neuropsychological tests selected to assess social cognition 

in the current study and a detailed description of the eye-tracking equipment, eye-tracking data 

preparation and the designation of areas of interest (AOI).  

5.2. Methodology 

The present programme of research included a neuropsychological test battery and eye-tracking 

technology to investigate social cognition after TBI. Standardized neuropsychological 

assessments were used to compare expected levels of functioning on behavioural and 

demographic tests between the TBI and matched control groups. Eye-tracking offers a non-

invasive and quantitative method to investigate how attention is distributed across a visual 

scene. The rich data collected during eye-tracking tasks allows researchers to evaluate 

continuous attentional processes that cannot be measured through standard neuropsychological 

assessments. Atypical eye movements can often provide insight and diagnostic clues into 

neurological disorders and the method is frequently used with autistic and schizophrenic 

cohorts (Murias et al., 2018; Porffy et al., 2018; Raffard et al., 2016; Wang et al., 2015). Despite 

this knowledge, there is a paucity of research implementing eye-tracking technology with TBI 

populations, despite evidence that eye movements are disrupted after TBI (Caplan et al., 2015; 

Samadani et al., 2015; Ventura et al., 2014).  

Some studies have measured visual fixations after TBI using static stimuli that have been 

criticised on the grounds of poor ecological validity and mundane realism (e.g. Knox & 

Douglas, 2009; Leigh & Zee, 2016). Mindful of this, the current research project used more 

recently developed static stimuli as well as innovative dynamic stimuli to address some of the 
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criticisms of current emotion perception studies. This research explored the underpinning 

mechanisms of social cognition by integrating behavioural and cognitive measures 

(neuropsychological tests) of static and dynamic social processing, in conjunction with eye-

tracking with TBI and control participants to contribute to the knowledge of why social deficits 

commonly occur after brain injury (Spikman, Timmerman, Milders, Veenstra & van der Naalt, 

2012).  

5.3. Selection of test measures and materials  

Figure 33 outlines the selected test battery for the current research with each test being 

discussed in more detail in the chapter. 
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Figure 33. Summary of the current test battery. 
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5.4. Screening measures 

The present research included eye-tracking methodology so participants needed to display no 

basic visual or perceptual impairments. Both TBI and control participants were administered 

the Visual Object Spatial Perception Battery (VOSP; Warrington & James, 1991) and the 

Cortical Vision Screening Test (CORVIST; James, Plant & Warrington, 2001) to measure low-

level visual perception and acuity. The Hospital Anxiety and Depression Scale (HADS; 

Zigmond & Snaith, 1983) was included as a mood state measure as high levels of anxiety and 

depression have been linked to abnormal eye scanning patterns (Carvalho et al., 2015; Liang, 

Tsai & Hsu, 2017). The Michigan Alcoholism Screening Test (MAST; Selzer, 1971), and the 

Drug Abuse Screening Test (DAST; Skinner, 1982) were also administered as alcohol and 

other drugs have been related to dysfunctional eye scan patterns (Costa & Bauer, 1998; 

Peragallo, Biousse & Newman, 2013). Additionally, the collaborating consultant psychologists 

conducted a risk assessment to measure the TBI participant’s suitability for inclusion in the 

study.  

5.4.1. The Health of the Nation Outcome Scales  

Participants with TBI had to present as no or extremely low risk to others and themselves to be 

recruited to the study. The justification for this choice was based on the fact that the PhD 

researcher would be lone working in an isolated laboratory. The two collaborating consultants 

screened potential participants for risk, on the researcher’s behalf, using the Health of the 

Nation Outcome Scale (HoNOS; Wing, Curtis and Beevor, 1996). Clinicians, rather than the 

researcher, assessed risk as they were considered an expert in this field, having received 

professional training and utilising this skill on a day-by-day basis. The PhD researcher had no 

experience or training in assessing risk. The HoNOS measures the health and social 

competence of individuals with suspected mental health conditions. The measure includes 12 
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items which evaluate behaviour, deficits, symptoms and social competence.  The HoNOS is 

well known for its easy administration, sensitivity, reliability and validity (Pirkis et al., 2005). 

The 12 items assess a dynamic range of behaviour and are outlined below: 

1) Overactive, aggressive, disruptive or agitated behaviour 

2) Non-accidental self-injury 

3) Problem drinking or drug-taking 

4) Cognitive problems 

5) Physical illness or disability problems 

6) Problems associated with hallucinations and delusions 

7) Problems with depressed mood 

8) Other mental and behavioural problems 

9) Problems with relationships 

10) Problems with activities of daily living 

11) Problems with living conditions 

12) Problems with occupation and activities 

Each item is scored on a five-point scale; zero for no problems, one for a minor problem 

requiring no action, two for a mild problem but present, three for a moderately-severe problem 

and four for a severe-very severe problem.  

5.4.2. Hospital Anxiety and Depression Scale  

The Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983) is a self-

administered questionnaire and includes questions such as ‘I feel tense or wound up’ and 'I still 

enjoy the things I used to enjoy' (Appendix 1). The HADS is quick and easy to administer and 

takes approximately five minutes to complete. Participants are asked to read each question 
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carefully and to underline the response which comes closest to how they have been feeling in 

the past week. There are four responses to each question and each response is assigned a 

number from 0-3. So for example, the question 'I feel tense or wound up’ can be answered as; 

(0) not at all, (1) from time to time, occasionally, (2) a lot of the time, (3) most of the time. 

There are a total of 14 questions, seven of which relate to anxiety and seven to depression. The 

questionnaire is scored using a separate point system for anxiety and depression with a 

maximum score of 21 for each condition or a total overall maximum score of 42. The HADS 

classification system is based on the overall total score for each of the subscales and a score of 

0-7 indicates normal mood, 8-10 indicates mild mood disorder, 11-15 indicates moderate mood 

disorder and 16-21 indicates severe mood disorder (Snaith, 2003).   

A wide range of research findings has shown that the HADS is a reliable and valid tool for the 

screening of depression and anxiety. Martin and Thompson (1999) investigated the internal 

reliability of the HADS and concluded that the measure has good internal reliability (α= 0.85). 

This result was supported by a meta-analysis conducted by Bjellanda, Dahlb, Haugc and 

Neckelmannd (2002) who reported a high mean internal consistency for both the HADS 

anxiety scale (α= 0.83) and the HADS depression scale (α= 0.82) and good concurrent validity 

with correlations between 0.60-0.80 for both anxiety and depression subscales. The HADS has 

been widely used in TBI research and is a popular instrument to measure mood state (Dahm, 

Wong & Ponsford, 2013; Gregório, Gould, Spitz, van Heugten & Ponsford, 2013; McKenzie, 

Downing & Ponsford, 2018). 

It is well documented that mood disorders negatively impact on emotion perception and that 

individuals with diagnosed depressive, anxiety or aggression syndromes often exhibit a 

negative bias towards emotive stimuli (Kaletsch et al., 2014; Niedenthal, Brauer, Halberstadt 

& Innes-Ker, 2001; Penton-Voak, Munafó & Looi, 2017; Vaskinn et al., 2017). Mood disorders 
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are also associated with abnormal eye scan patterns (Gamble & Rapee, 2010; Hills, Marquardt, 

Young & Goodenough, 2017; Horley, Williams, Gonsalvez & Gordon, 2003; Kellough, 

Beevers, Ellis & Wells, 2008; Mogg, Millar and Bradley, 2000; Wu, Pu, Allen & Pauli, 2012), 

including a bias towards threatening stimuli (e.g. angry compared to neutral faces (Gamble et 

al., 2010; Mogg et al., 2000), and avoidance of looking at facial features (Horley et al., 2003). 

In the present study, TBI and control participants completed the HADs to control for possible 

confounding variables related to anxiety and depression. As suggested by Snaith (2003) sub-

scale scores of 16 or above indicated severe anxiety or depressive disorder and scores above 

this would have been accounted for during analyses, however,  none of the TBI nor control 

group exceeded the established screening criteria for the HADs.  

5.4.3. Michigan Alcoholism Screening Test  

The Michigan Alcoholism Screening Test (MAST; Selzer, 1971) is a self-administered 

questionnaire and includes 24 questions such as ‘Do you feel you are a normal drinker? 

("Normal" is defined as drinking as much or less than most other people)’, ‘Can you stop 

drinking without a struggle after one or two drinks?’ and ‘Do you ever feel guilty about your 

drinking?’ (Appendix 2). Participants answered yes or no for all 24 questions. The 

questionnaire is scored using a point system across the 24 questions (Appendix 2). Originally, 

Selzer (1971) suggested a total score of 5 or above indicated alcoholism. However, the cut-off 

point has been adjusted so a score of 0-4 indicates no alcohol dependency; 4-6 may suggest 

some alcohol dependency and a score of 7 signals alcohol dependency (Hedlund & Vieweg, 

1984; Selzer, Yinokur, & Rooijen, 1975). The present study adopted the more conservative 

cut-off score of ≥7 in line with Hedlund et al., (1984) and Selzer et al., (1975). The MAST 

questionnaire takes approximately ten minutes to complete.  
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The MAST is considered the 'gold standard' of alcohol screening tests in medical and research 

settings (Laux, Newman & Brown, 2004). The measure is widely deemed as valid (Hirata, 

Almeida, Funari & Klein, 2001; Storgaard, Nielsen & Gluud, 1994), and reliable, with high 

internal consistency (Gibbs, 1983; α= 0.87; Laux et al., 2004 α= 0.88), and high test-retest 

reliability (Zung, 1982; 0.86-0.97). A recent systematic review confirmed the robust 

psychometric properties of the MAST including good internal consistency, test-retest 

reliability, and internal and external validity (Minnich, Erford, Bardhoshi & Atalay, 2018). The 

test is widely implemented in various psychological and medical research settings, for instance, 

with PTSD (Dahlgren et al., 2018), and ADHD individuals (Giordano et al., 2017) and TBI 

cohorts (McDonald et al., 2017; McDonald et al., 2019).  

Alcohol dependency has been associated with emotion perception abnormalities (Kopera et al., 

2015; Monnot, Nixon, Lovallo & Ross, 2001; Townshend & Duka, 2003) as well as affecting 

eye movements (Roche & King, 2010). Harvey (2014) found that participants under the 

influence of alcohol displayed reduced visual scanning during face encoding and also fixated 

more on the nose compared to the eyes. Taking these findings into consideration, as well as 

evidence indicating that TBI might be linked with an increased risk of developing alcohol 

dependency (Bjork & Grant, 2009; Pagulayan, Temkin, Machamer & Dikmen, 2016; Weil & 

Karelina, 2017), all TBI participants were asked to complete the MAST. None of the 

individuals with TBI exceeded the MAST cut-off limit.  

5.4.4. Drug Abuse Screening Test  

The Drug Abuse Screening Test (DAST; Skinner, 1982) is a self-administered questionnaire 

and includes 28 questions such as ‘Have you used drugs other than those required for medical 

reasons?’ (Appendix 3). Participants either answer yes or no to each question. One point is 

assigned for each 'yes' answer excluding question numbers 4, 5 and 7 when a 'no' answer is 



Page 179 of 531 

 

assigned 1 point. A score of 12 or over indicates drug dependence. The questionnaire takes 

approximately ten minutes to complete. 

The DAST is a reliable measure of substance abuse and a review of the DAST by Yudko, 

Lozhkina and Fouts (2007) reported that internal consistency scores ranged from α=0.92 - 0.94. 

This supports Skinner's (1982) high internal consistency score of α=0.92 with 223 participants 

who had previously been treated for drug and alcohol abuse problems. El-Bassel, et al., (1997) 

measured the test-retest reliability of the DAST over two weeks and reported a high correlation 

coefficient of 0.85. Staley and El-Guebaly (1990) tested the DAST with 250 clinical 

participants and reported that the measure had significantly high diagnostic validity (89%) in 

classifying participants who matched the DSM-III substance abuse diagnoses. Also, Giguère 

and Potvin (2016) administered the DAST to 912 psychiatric patients in an emergency setting 

and reported an internal consistency α= 0.88 and a test-retest reliability correlation coefficient 

of 0.86, concluding that the DAST has excellent psychometric properties in psychiatric 

populations.  

Drug abuse has been linked to impairments in social cognition, including deficits in emotion 

perception, emotional empathy, mental perspective taking, increased criminal behaviour and 

reduced social networks (Kemmis, Hall, Kingston & Morgan, 2007; Preller et al., 2014). This 

study screened all TBI participants for high levels of drug dependency (≥ 12) as research has 

documented a high incidence of illicit drug taking pre and post-TBI (Bombardier, Rimmele & 

Zintel, 2002; Corrigan, Lamb-Heart & Rust, 1995). None of the individuals with TBI exceeded 

the cut-off limit for the DAST.  

5.4.5. Visual Object and Space Perception Battery 

The Visual Object and Space Perception Battery (VOSP; Warrington and James, 1991) was 

administered to all TBI and control participants to measure possible low-level visual 
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impairments. The measure comprises eight sub-tests assessing object and space perception 

(Table 1). Four of the sub-tests measure visual object perception abilities and include 

incomplete letters, silhouettes, object decision and progressive silhouettes. The remaining four 

sub-sets measure visual space perception abilities and include dot counting, position 

discrimination, number location and cube analysis. The VOSP includes a measure of visual 

sensory efficiency, the shape detection test, to ensure that participants have efficient visual 

ability to undertake the VOSP. During this task, the participant is required to detect if there is 

an 'X' embedded within 20 separate pattern designs. One point is awarded for each correct 

answer. If participants fail to detect 15 or more of the 'X' Figures then they are considered 

ineligible to complete the rest of the test. All sub-tests are untimed and administered at a pace 

suitable for the participant. The VOSP was developed to assess the group affected by TBI and 

it has been successfully implemented within the TBI population (Miotto, et al., 2010; Summers, 

2006). To date, it appears that no published studies have explored the psychometric properties 

of the VOSP so the reliability and validity of the assessment is unknown. The test usually takes 

approximately 15-20 minutes to complete. None of the participants, either the group of 

individuals with TBI or matched controls, exceeded the VOSP cut-off limit.  

5.4.6. Cortical Vision Screening Test  

The Cortical Vision Screening Test (CORVIST; Warrington, Plant and James, 2001) was used 

in conjunction with the VOSP to assess visual acuity. The CORVIST assesses early visual 

processing in higher visual brain areas. When used in conjunction with the VOSP, the 

CORVIST offers a comprehensive measure of visual perception (James et al., 2001; Yong, 

Warren, Warrington & Crutch, 2013). There are ten sub-tests including symbol acuity, shape 

discrimination, size discrimination, shape detection, hue discrimination, scattered dot counting, 

fragmented numbers, word reading, crowding and face perception (Table 2). The ten sub-tests 
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assess different features of early visual processing controlled by various cortical regions. The 

CORVIST has been successfully implemented with individuals who have brain damage as a 

consequence of degenerative diseases although reliability and validity indices are not known 

(Adlington, Laws and Gale, 2009; Charles & Hillis, 2005). None of the participants, either the 

group of individuals with TBI or matched controls, exceeded the CORVIST cut-off limit.  
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Table 1. Descriptions of the VOSP subtests. 

VOSP  Description  

Object Perception Subtest   

   Incomplete Letters During this test, the participant is required to view and identify 20 

letters which are incomplete. One point is awarded for each correct 

answer. 

 

   Silhouettes 
The silhouettes task involves participants viewing and identifying 

shadows of fifteen animals and fifteen everyday objects. The test 

ascends in the level of difficulty with five consecutive errors resulting 

in a cessation of the test.   

   Object Decision Participants are presented with four images; one of these represents a 

real object while the remaining are distracters. The participant is 

required to select the real image and to also name the image. There 

are 20 trials and one point is awarded for each correct response. 

 

   Progressive Silhouettes 

 

This task required the participant to view a series of boards which 

outline the silhouette of an object. The first board shows very little of 

the picture with the following successive boards providing a more 

complete picture of the object with the final board presenting a 

complete image of the object. The participant has to identify the 

object using the least amount of boards possible. There are two 

objects, a gun and a trumpet; both objects are displayed over ten 

boards. 

Space Perception Subtest  

 

   Dot Count 
This test requires the participant to count the number of black dots on 

a white piece of card. There are ten trials and each correct trial is 

awarded one point.  

 

   Position Discrimination 
Participants are asked to view two squares presented on a white piece 

of card. Each square has a black dot either in the exact centre of the 

square or just off-centre. The participant must select which square 

contains the exact centre dot. One point is allocated to each correct 

answer over the ten trials.  

 

   Number Location 
A white piece of card is split horizontally. In the top half of the page 

numbers are scattered in a random order. In the bottom half of the page 

is one single black dot. The black dot corresponds in location to one 

of the random numbers in the top half of the page. The participant is 

asked to say which number is represented by the black dot for all ten 

trials.  

 

   Cube Analysis  
Depicts a solid structure which has been devised using 3D cubes. The 

participant needs to count how many cubes have been used to create 

the solid structure. There are ten trails which consecutively increase in 

difficulty.  



Page 183 of 531 

 

Table 2. Descriptions of the CORVIST subtests. 

CORVIST  Description  

Symbol Acuity A simplified acuity test for individuals who have deficits in 

scanning visual arrays.  

 

Shape Discrimination 

 

To determine if an individual with normal acuity has 

impairments in shape discrimination. 

 

Size Discrimination 

 

This test complements and extends the Shape Discrimination 

test and again tests individuals who display normal acuity but 

may suffer alternative visual deficits.   

 

Shape Detection 

 

This is a more complex shape discrimination task using 

stimuli which covers a wider area of the visual field.   

 

 

Hue Discrimination 

 

Participants had to identify the odd hue square out of nine 

coloured squares.  

 

Scattered Dot Counting 

 

This determines impairments in the localisation of a single 

point or spatial scanning of the visual field. 

 

Fragmented Numbers 

 

A test to investigate deficits in perceptual identification. 

 

Word Reading 

 

Assesses reading ability and includes words such as scare and 

biscuit. 

 

Crowding  

 

Determines if there are excessive deficits of acuity when 

symbols are placed closely together.   

 

Face perception  

 

Although individuals may display normal acuity and 

discrimination they may still be impaired with more complex 

stimuli such as processing faces. During this sub-test 

participants need to determine which face is the oldest and 

which face is the youngest out of three possible choices.  
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5.5. Demographic measures 

5.5.1. Wechsler Abbreviated Scale of Intelligence  

The effects of participant differences between the TBI and control groups were mitigated 

through matching on participant variables including IQ, gender and age. The Wechsler 

Abbreviated Scale of Intelligence (WASI, Wechsler, 1999) was administered to all participants 

to gain an estimate of general intellectual (IQ) ability. The WASI contains four subsets; 

vocabulary, similarities, block design, and matrix reasoning. The vocabulary subset assesses 

word knowledge, verbal comprehension, and verbal retrieval, with questions such as ‘Tell me 

what intermittent means’. The similarities subset measures verbal reasoning and concept 

formation and requires the participant to explain how two words are similar, for instance, ‘In 

what way is smooth and rough alike?’ The combination of scores from the subsets contributes 

to the calculation of verbal IQ. The block design subset assesses perception, organisational 

skills, ability to analyse and complete patterns following a tacit rule, nonverbal concept 

formation, parallel processing, visuomotor coordination, and the ability to learn from mistakes. 

This subtest requires participants to create pre-specified patterns by matching several blocks 

within a specified time-limit with the tasks getting progressively harder. The matrix reasoning 

subset provides a measure of visual information processing and abstract reasoning by 

presenting the participant with an incomplete pattern and asking them to select the missing 

segment from a choice of four. The combination of block design and matrix-reasoning subset 

scores allows for the calculation of performance IQ. The combination of verbal and 

performance scores estimates the full-scale IQ score.  The test takes approximately 45 minutes 

to administer.   

The WASI has been frequently used with TBI participants (Biederman et al., 2015; McDonald 

et al., 2017) as it takes less time to administer than alternative IQ measures and saves patient 
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and clinician time. Van Duijvenbode, Didden, van den Hazel and Engels (2014) reported that 

the WASI has good reliability (r = 0.96) and a strong, positive correlation (r = 0.89) with the 

full the Wechsler Adult Intelligence Scale (WAIS; Wechsler, 1981) offering a reliable and 

valid alternative IQ assessment for clinical and research settings. Furthermore, Canivez, 

Konold, Collins and Wilson (2009) and Ryan et al., (2003) reported that the WASI also had 

good construct validity.  

5.6. Social cognition tasks 

One aim of the current research was to contribute to the TBI literature through the use of 

comprehensive and innovative methodology. To address this, both modern static and novel 

dynamic stimuli were used to address growing criticism that static displays of facial 

expressions do not capture the complex unfolding of emotion and lack ecological validity 

(Alves, 2013; Knox & Douglas, 2009; McDonald et al., 2003).  

From an evolutionary perspective, humans are far less accustomed to viewing static compared 

to active expressions. Static facial displays do not capture the rapid facial muscle contractions 

that unfold over short periods (Recio et al., 2011), they exclude the perception of implicit 

emotional sources such as gaze direction and pattern, tears,  as well as autonomic responses 

such as pupil-dilation, eye blinks, and blushing (Kret, 2015). Static displays of emotion also 

exclude tone of voice, body language, and contextual cues, all features which aid emotion 

recognition (Barrett et al., 2011; Bassili, 1978; Ibañez & Manes, 2012; Scherer, Banse, 

Wallbott & Goldbeck, 1991). Static stimuli usually allow the participant unlimited or 

prolonged exposure to a fixed apex expression which has very little resemblance to real-life 

emotions (McDonald et al., 2003; Knox & Douglas, 2009). When emotions are displayed 

through facial expressions, and there is no need for them to be concealed, the expression 

duration usually lasts between 0.5-4 seconds and activates the majority of facial muscles 
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(Ekman, 2003). These expressions are known as macro expressions. Humans also produce 

microexpressions, which are more rapid than macro expressions, only lasting a fraction of a 

second and are thought to be a by-product of when an individual tries to conceal or control an 

emotion (Ekman & Friesen, 1974; Haggard & Isaacs, 1966). Microexpressions can also appear 

during the act of deception (Porter & Ten-Brinke, 2008). The use of static stimuli, and possibly 

also the use of staged/posed dynamic stimuli, neglect these fleeting processes (Juslin et al., 

2018; Namba et al., 2018).  

For more than a decade, scientific findings have reported differences in accuracy, brain areas 

activated, mimicry levels, and visual strategies when participants view static and dynamic 

facial expressions (Blais et al., 2017; Rymarczyk et al., 2016; Wehrle, Kaiser, Schmidt & 

Scherer, 2000; Zinchenko et al., 2018). Trautmann-Lengsfeld et al., (2013) reported that 

viewing dynamic facial expressions activated a more complex and enhanced neural network 

during an fMRI study, particularly within the frontal regions, compared to static stimuli. This 

finding is not surprising as dynamic stimuli require additional attention, working memory and 

more rapid information processing than static stimuli (McDonald & Saunders, 2005). Visual 

strategies are also different for the processing of static and dynamic stimuli, with fewer 

fixations on the eye and mouth area during the recognition of dynamic than static expressions 

(Blais et al., 2017).  

The current research also included newer facial affect datasets, thus improving on research 

using older datasets, for instance, the black and white images from the Ekman and Friesen’s 

(1976) Facial Expressions of Emotion Stimuli Tests (FEEST) are still frequently employed in 

research (Connolly, Lefevre, Young & Lewis, 2018; Pohl et al., 2017). However, images from 

the FEEST are visually outdated (e.g. hairstyles) and raises concerns regarding confounding 

variables (Figure 34 A).  
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Figure 34. Examples of static facial affect datasets. The top set of images (A) are examples 

taken from the Ekman and Friesen (1976) Facial Expressions of Emotion Stimuli Tests 

(FEEST). The bottom set of images (B) are from the Amsterdam Dynamic Facial 

Expression Set (ADFES; van der Schalk, Hawk, Fischer & Doosje, 2009).   

Contemporary static and dynamic facial affect data sets are frequently generated with the 

majority free to download for research purposes (face-rec.org; Krumhuber, Skora, Küster & 

Fou, 2016). Despite free accessibility to new facial rating stimuli, researchers frequently adopt 

black and white static images of facial expressions and often address this as a limitation during 

discussion sections (Spikman et al., 2013). This is likely because these tests have been widely 
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used and many studies have demonstrated that the stimulus has strong psychometric properties 

(Adolphs, Jansari & Tranel, 2001; Young, Perrett, Calder, Sprengelmeyer & Ekman, 2002). 

The use of static datasets in research has advanced understanding of human emotion perception 

and it is understandable that researchers still use these datasets in their research as they have 

strong reliability, are easy to administer and allow comparison across studies. Nevertheless, for 

the field of social cognitive and affective neuroscience to advance, it seems necessary to move 

away from static datasets and use more ecologically valid stimuli.  

The present research included contemporary static and dynamic social cognition tasks to 

address some of the limitations of older static stimuli, within the restrictions of university 

resources and funds. Although the aforementioned section has outlined the criticisms of static 

stimuli, one of the aims of the current research was to investigate whether there were 

differences in the visual strategies underpinning static and dynamic facial affect recognition 

using eye-tracking to augment current findings in this area.  

5.6.1. The Amsterdam Dynamic Facial Expression Set  

The Amsterdam Dynamic Facial Expression Set (ADFES, van der Schalk et al., 2009) contains 

dynamic MPEG-2 video clips and static photographs of ten emotions (anger, contempt, disgust, 

embarrassment, fear, joy, pride, sadness, surprise, and neutral). The data set is comprised of 22 

models, both male and female aged 18-25. The video clips begin with a model displaying a 

neutral face for 0.5 seconds before the onset of the emotion begins. Once the emotion reaches 

the apex, the pose is held for five seconds (Appendix 4). Static photographs consist of video 

clips which have been frozen at the apex of an unfolding emotion (Figure 34 B). Faces 

produced for the ADFES are founded upon the Facial Action Coding System (FACS; Ekman, 

Frisen, & Hagar, 2002). Models were trained by two coaches specialised in FACS to elicit the 
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appropriate facial expressions during a variation of the Directed Facial Action Task (DFAT; 

Ekman, 2007). 

The ADFES was selected as the data set includes modern static and dynamic facial affect 

stimuli. However, the assessment only includes a narrow age-range of models that were trained 

to elicit facial expressions, and these caveats should be noted. Van der Schalk et al., (2009) 

showed that the ADFES had good recognition scores and the measure is gaining traction in 

emotion research (Grainger, Henry, Phillips, Vanman & Allen, 2015; Widen, Pochedly & 

Russell, 2015; Wingenbach, Ashwin & Brosnan, 2016; Żurowska, Kalwa, Rymarczyk & 

Habrat, 2018).  

Six emotions were chosen for the present research; happy, sad, anger, surprise, fear and disgust. 

The rationale for this decision was based on Ekman’s (1984, 1992) pioneering research 

identifying the six basic and universal emotions. Furthermore, the six chosen emotions are 

frequently used in facial expression recognition studies with individuals who have sustained a 

TBI (Croker & McDonald, 2005; McDonald, Bornhofen & Hunt, 2009; Spikman et al., 2013).   

Appendix 5 and 6 detail the procedure of the static and dynamic experiment. There was one 

practise trial for each experiment to ensure that the participant understood the task. Each of the 

six basic emotions was presented six times, three times by a male model and three times by a 

female model, equalling 36 images in both static and dynamic conditions. An online number 

generator was utilised to randomly determine the order of the stimuli. Reaction time data was 

collected during the static experiment by participants pressing a corresponding keyboard button. 

This keypress documented whether the response was correct or incorrect and also moved the 

experiment on to the next image. Reaction time data was not collected during the dynamic 

experiment and participants verbally stated their answer to the researcher who would then press 

the space bar to move onto the next video.  
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5.6.2. Movie for the Assessment of Social Cognition  

The Movie for the Assessment of Social Cognition (MASC; Dziobek, et al., 2006) is a dynamic 

measure of social mindreading which assesses participant’s social cognition abilities such as 

emotion identification and understanding of false belief, deception, faux pas, metaphors, and 

irony. Participants are presented with instructions on a screen explaining that they will be 

watching a short 15-minute film and that they are required to try and understand what the 

characters are feeling and thinking. The short film depicts four characters meeting for a dinner 

party. The characters engage in small talk before making and eating dinner and then playing a 

board game. Some of the characters are friends and some are strangers to each other, thus 

creating different social reference systems. The main themes throughout the video are 

friendship and dating. All four characters have distinct personalities and exhibit different 

personality traits (e.g. timid, arrogant, and outgoing). Different scenarios during the video elicit 

a range of emotions and mental states in each of the characters (e.g. jealousy, embarrassment, 

and anger). During the MASC each character is introduced individually with a photograph and 

their name.  

During administration, the video is paused 45 times and participants are asked questions about 

the characters feelings, thoughts, and intentions. Overall, the task takes approximately 45 

minutes to administer. A description of one scene with its subsequent question is given in 

Appendix 7. An example of a question is ‘What is Betty feeling/thinking/intending to do?’  

There are four possible responses to the MASC, a correct response and three ‘distracter’ 

responses (Appendix 8). The three distracter responses are as follows: (1) hypermentalizing 

relating to the tendency of making complex or excessive mental state inferences (i.e. over-

attribution or exaggeration of mental state content) (2), undermentalizing which refers to overly 

simplistic inferences (i.e. insufficient or reduced mental states) or (3), no mentalizing in which 
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no mindreading inferences occur (i.e. focus on physical causation and no mental state 

attribution).  

In the literature, the term hypermentalizing is used to define the excessive theory of mind 

(ToM; Dziobek et al., 2006), colloquially known as ‘reading too much into something’. 

Hypermentalizing is characterised by individuals making excessively complex assumptions 

about others people’s mental states beyond observable data or evidence, with a clear lack of 

connection between thinking and feeling (Luyten & Fonagy, 2015; Sharp et al., 2013). 

Undermentalizing refers to reduced ToM, meaning that a person is capable of mentalizing, but 

does it incorrectly (Vaskinn et al., 2015). No Theory of Mind inferences occurs when 

individuals focus on physical causation showing little mental state attribution. 

5.6.2.1. MASC subcategories 

MASC test authors referred to several multidimensional subcategories (e.g. emotions, thought, 

and intentions) measured by the MASC in the original publication (Dziobek et al., 2006), 

although video clips measuring each factor were not provided. The present research aimed to 

conduct fine-grained analyses of social cognition across TBI and control groups and, therefore, 

wanted to isolate these subcategories during analyses.  

MASC subcategories include positive, negative, and neutral emotions. The MASC includes 

items that focus on verbal (19 displays) and non-verbal (16 displays) aspects of social cognition. 

Verbal items are divided into literal and sincere scenes (10 displays) and then non-literal scenes 

where figurative speech or other paralinguistic features are employed (9 displays). Non-verbal 

items include body language and gestures (10 displays) and facial expressions (6 displays). 

Each scene may depict more than one domain, for example, scene five requires the participant 

to understand an intention and figurative speech. Participants have to be aware of verbal and 

non-verbal cues to perform well on the test. Also, the MASC aims to assess three different 
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mental state modalities; emotions, thoughts, and intentions. The emotion category contains 17 

items, the thought category 7 items, and the intention category 18 items.  

The original MASC paper did not provide a template of the specific clips that contributed to 

each subcategory. Consequently, the current research included two independent raters to assess 

the proposed MASC subcategories. The test author (Professor Isabel Dziobek) provided 

preliminary clip categories (through email correspondence), and the two independent raters 

established an agreement on which clips measured the different subcategory constructs. The 

subcategories are presented in Table 3 and included emotions, thoughts, intentions, warm 

(emotional items), cold (non-emotional items), perceptive, and cognitive items. Perceptive 

items refer to when the mental state of a character can be inferred by perceptive cues, such as 

tone of voice, facial expressions, and body posture while being relatively independent of the 

context of the measure. In contrast, cognitive items are those where a mental state inference 

demands the interpretation of context, for instance, language (literal and non-literal). 

Table 3. MASC scenes (clips 1-45) ascribed to corresponding subcategories after inter-rater 

reliability procedure. 

MASC Subcategory Currenta Originalb Number of video clip/scenario 1-45 

Emotions 18 17 1, 4, 8, 9 ,10, 12, 13, 14, 20, 22, 25, 26, 30, 

33, 34, 38, 40, 45 

Thoughts 9 7 6, 15, 18, 24, 28, 29, 35, 36, 39 

Intentions 15 18 2, 3, 5, 7, 11,17, 19, 21,27, 31, 32,41, 42, 43, 

44 

Warm (emotional) 13 Unknown 9, 10, 14, 18, 22, 25, 26, 27, 30, 33, 38, 39, 

40  

Cold (non-emotional) 12 Unknown 2, 6, 7, 19, 20, 21, 28, 32, 36, 37, 43, 44 

Perceptive (non-verbal) 14 16 3, 8, 9,14, 15, 18, 24, 25, 26,33, 40, 41, 42, 

45 

Cognitive (verbal) 17 19 1, 2, 3, 5, 6, 7, 11, 12, 16, 17, 21, 23, 28, 36, 

37, 43, 44 

aNumber of scenes categorised from the present research by independent raters. 
bNumber of scenes categorised from the original Dziobek et al., (2006) paper. 
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An advantage of the MASC’s properties is that it assesses three main social input modes; visual 

information (facial expression recognition, gaze), auditory information (prosody), and verbal 

information (sincerity, sarcasm, the content of speech). The majority of social cognition tasks 

do not incorporate this multidimensional approach. Another positive aspect of the MASC is 

that the test allows the quantification of mindreading errors. Erickson (1995) suggested that 

error responses can often provide useful insight into an individual’s ability, highlighting the 

fact that many neuropsychological measures rarely analyse errors, although some 

contemporary tests do include this (e.g. Delis-Kaplan Executive Function System; D-KEFS; 

Delis, Kaplan & Kramer, 2001). 

As the MASC was originally developed to assess social cognition abilities in individuals with 

Asperger's syndrome, the measure has varying difficulty levels to challenge the participant and 

detect subtle impairments in social cognition. Research has reported that individuals who fall 

within the autistic spectrum can often perform similarly to control participants on certain social 

cognition tasks (Brook & Bowler, 1992; Happé, 1994; Jolliffe & Baron-Cohen, 1999; Ozonoff, 

Rogers, & Pennington, 1991), even though they may show apparent social cognition deficits 

in everyday life. Dziobek et al., (2006) used receiver operating characteristic curves (a 

graphical plot which outlines the diagnostic ability of a task) that suggested the MASC was 

significantly more accurate in discriminating the Asperger's syndrome group from the control 

group compared to the Strange Stories (Happé, 1994), Reading the Mind in the Eyes (Baron-

Cohen, Jolliffe, Mortimore & Robertson, 1997), and a basic emotion recognition task (Ekman 

& Friesen, 1971).  

The MASC is thought to be an ecologically valid measure of social cognition (Dziobek et al., 

2006; Lahera et al., 2013) as it relies on real-life settings; it has also been used with several 

clinical populations including schizophrenic, personality disorder, and depressed cohorts 
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(Dziobek et al., 2006; Martinez et al., 2017; Preißler, Dziobek, Ritter, Heekeren & Roepke, 

2010; Wolkenstein, Schönenberg, Schirm & Hautzinger, 2011).  

A Cronbach α level of 0.84 was reported for the overall MASC scale by Dziobek et al., (2006) 

which is satisfactory according to Nunnally’s (1978) criteria. This finding was supported by 

Preißler et al., (2013) who also reported high internal consistency (Cronbach's α = 0.86), and 

Fossati, Borroni, Dziobek, Fonagy and Somma (2018) who reported α levels between 0.70-

0.78. Preißler et al., (2013) also reported satisfactory internal consistency scores for the 

individual subscales of the MASC (emotions: Cronbach's α = 0.62; thoughts: Cronbach's α =

0.55; and intentions: Cronbach's α = 0.71). Dziobek et al., (2006) further reported a correlation 

coefficient of 0.97 suggesting that the MASC has high test re-test reliability. Subsequently, this 

measure was selected as a component of the test battery for the current study.  

5.6.3. The Awareness of Social Inference Test  

The Awareness of Social Inference Test (TASIT; McDonald, Flanagan & Kinch, 2003) was 

adopted for the present research to also assess participant’s social perception skills. The test 

comprises of video vignettes of individuals engaged in social interactions. Professional actors 

were employed to use a ‘method style’ of acting where they were required to demonstrate an 

emotion relevant to the situation. This method provided a realistic, spontaneous, and natural 

test context. The TASIT includes three sub-component measures; the emotion evaluation test 

(EET), the social inference-minimal test (SI-M), and the social inference-enriched (SI-E) test. 

The task is moderately lengthy (approximately one hour to complete with control participants) 

and potentially longer with TBI participants.  

5.6.3.1. The Emotion Evaluation Test (EET)  

The EET subtest of the TASIT assesses social communication components that include facial 

expressions, tone of voice, and gestures. As part of this subtest, participants are required to 
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identify the emotion expressed by the actor. Participants are provided seven emotions to choose 

from; anger, anxiety, surprise, sadness, happy, revulsion, and neutral. These emotions are then 

grouped into positive (surprise & happy) and negative (anger, anxiety, sadness & revulsion) 

emotions for analysis. The EET consists of 28 short videos (15-60 seconds) displaying actors 

interacting with each other in everyday situations. There are four videos for each of the seven 

emotions which are presented in a quasi-randomised fashion. For some videos, there is one 

actor, either on the telephone or directly talking to the camera. For the remaining videos, two 

actors are interacting with each other. See Appendix 9 for an example of the EET design.    

5.6.3.2. The Social Inference-Minimal (SI-M)  

The SI-M assesses the ability to read paralinguistic features, facial expressions, and tone of 

voice in either sincere or sarcastic situations. Participants are required to pay close attention to 

the tone of voice, facial expressions, gestures, and body language to correctly identify whether 

the speech is sincere or sarcastic. There are 15 short videos (20-60 seconds) in the SI-M 

displaying conversational exchanges between actors. Five of the videos have sincere exchanges, 

another five have sarcastic exchanges, and the remaining five videos have paradoxical scripts, 

that is, the scripts are nonsensical unless it is understood that one actor is being sarcastic 

(Appendix 10).  

After each video, the participant is required to answer four questions about the target actor. The 

first question indexes what the speaker was trying to ‘do’ (their intentions, for example, to 

insult or to reassure), what they were trying to say (what they meant), what they were thinking 

(what the participant thinks the target actor knows), and lastly, what the target actor was feeling 

in a given context. Please see Appendix 11 for the design of the study.  



Page 196 of 531 

 

5.6.3.3. The Social Inference-Enriched test (SI-E)  

The SI-E part of the TASIT included 16 short (15-60 seconds) videos of everyday 

conversations (Appendix 10). The SI-E assesses the participants’ ability to use contextual cues 

(tone of voice and facial expressions) to determine if the conversation in the video is deceptive 

or if the meaning is opposite to what the actor is saying (i.e. the actor is being sarcastic).  

The sarcasm and deception videos have identical scripts but during the sarcastic videos, actors 

do not try to obscure the truth but instead seek to emphasise it. The deception exchanges include 

white lies and sympathetic lies. White lies include situations such as a mother lying to a father 

about their child finishing dinner, with sympathetic lies including situations where a friend tells 

another friend that they do not look fat in a new outfit. Again, participants must use 

paralinguistic cues to make the correct answer. Furthermore, participants are provided with 

additional, enriched contextual cues during this subtest. Half of the video clips have camera 

edits to help participants establish the correct category of the video clip, for example, in the 

deceptive mother scenario, participants are provided with a camera shot of the child’s 

unfinished dinner.  

The additional camera shots providing supplementary information can only be seen by the main 

actor during the deception videos (mother); the other actor (father) cannot see the extra visual 

cue. During the sarcastic video clips, both actors can see the visual cues highlighting the correct 

subtest category. The remaining halves of the videos use a prologue or an epilogue scene where 

the main actor discusses their thoughts with a third actor. For example, during the new outfit 

scenario, Ruth tells Gary that she does not think he has put on weight. Nevertheless, a prologue 

scene features the sympathetic friend (Ruth) telling another friend (Keith) that she does think 

Gary has put on weight. These additional cues should aid participants in understanding the 

video. The SI-E has a similar answer format to the SI-M in that it asks the participant’s four 
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questions about what the actor was doing, saying, thinking, and feeling. See Appendix 12 for 

the study’s design.  

The advantage of the TASIT, compared to other social inference tasks, is that it includes 

naturally occurring visual cues during social situations (demeanour of the speaker and reaction 

of the listener) which many other experimental inference tasks do not. The MASC also includes 

dynamic social cues but does not explore the processing of sincere and sarcastic exchanges in 

as much depth as the TASIT. In conjunction with each other, the MASC and the TASIT provide 

a comprehensive assessment of social cognition. It has been reported that the TASIT has good 

reliability and high test-retest reliability levels (r = 0.74-0.88) as well as good construct validity, 

low practice effects, and high ecological validity (McDonald, 2012; McDonald et al., 2003).  

5.7. Control test (International Affective Picture System) 

The International Affective Picture System (IAPS; Lang, Bradley & Cuthbert, 2008) is a set of 

colour photographs depicting a wide range of categories aimed at assessing various normative 

emotion ratings that include pleasure, arousal, and dominance. The IAPS has been used in 

research with clinical populations (Jayaro, de la Vega, Diaz-Marsa, Montes & Carrasco, 2008) 

as well as in research investigating eye movements in reaction to emotional scenes (Bradley, 

Houbova, Miccoli, Costa & Lang, 2011; Nummenmaa, Hyönä & Calvo, 2009; Simola, 

Torniainen, Moisala, Kivikangas & Krause, 2013).  

In the current study, IAPS stimuli were included to investigate general eye scan patterns in 

response to different types of emotive stimuli (humans, mammals, non-mammals, and objects). 

A study by Douglas et al., (2010) documented that a group of TBI participants exhibited 

abnormal eye scan patterns compared to control participants when viewing faces but typical 

fixation patterns when viewing objects. The current study aimed to further explore this 

dissociation. Forty-eight images were selected from the IAPS, 12 for each category (Appendix 
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13). Images were chosen because the focus of the picture was a human, animal, or object. To 

try and minimise attentional demands, images with little additional information in the 

background were selected by the researcher. A random online number generator selected the 

order of the images.  

In this task, participants viewed an image for eight seconds, similar to eye-tracking studies 

exploring visual strategies in response to different stimuli (McPartland, Webb, Keehn & 

Dawson, 2011), and were asked to determine if the image depicted a human, animal, or object. 

Once an answer had been verbally provided the next image would be presented. This particular 

study aimed to replicate the work of Douglas et al., (2010) by exploring the visual strategies 

underpinning the perception of humans and objects. As well as comparing the gaze patterns for 

faces and objects, the current PhD research programme also wanted to extend Douglas and 

colleagues work by exploring visual strategies underpinning the perception of animals, namely 

mammals and non-mammals. Current theory suggests that there is a positive correlation 

between the degree of biological/behavioural similarity between a given species and human 

beings, and an increase in attitude level towards the species (Batt, 2009; Prokop & Randler, 

2018; Wilson, 1984). Therefore, it was hypothesised that participants would elicit more and 

longer fixations to mammals, compared to non-mammals, because they felt a sense of similarity 

towards them. As humans have a natural disposition to attend to human faces (Pascalis & Kelly, 

2009), it was hypothesised that human stimuli would elicit more and longer fixations, followed 

by mammals (based on research by Batt, 2009; Prokop & Randler, 2018; Wilson, 1984), non-

mammals and then everyday objects, which are usually mundane and elicit little emotion. 

Findings could elucidate whether aberrant visual strategies are specific to humans or whether 

they extend to other living creates as well as everyday objects.  
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Figure 35. Example stimuli from the International Affective Picture System (IAPS; Lang, 

Bradley & Cuthbert, 2008) control task. Example of an (A) human, (B) object, (C) 

mammal and (D) a non-mammalian animal included in the control task to explore natural 

eye scanning patterns in response to different stimuli.  

5.8. Equipment 

5.8.1. Tobii T120 eye tracker  

Participants in the present research viewed static and dynamic social cognition tasks. Fixation 

patterns were recorded using a Tobii T120 Eye Tracker (Tobii Technologies, Stockholm, 

Sweden). The recording of eye movements and the analysis of gaze allocation quantified the 

degree of social information and emotional valence that influenced low-level attentional and 

visual resources. The T120 eye-tracker has a 17-inch thin-film-transistor screen (1280x1024 

pixels) with embedded near-infrared light-emitting diodes and optical sensors (Figure 36). The 

cameras capture pupil location and size with an accuracy of 0.5° at a sampled data rate of 120 

Hz. As the T120 has two cameras, producing two images of the eyes, as well as pupil and 

corneal reflective technology, the equipment computed information from two sources 

concerning eye position. Thus Tobii software calculates robust fixation positions regardless of 

moderate head movements, negating the need for restrictive head constraints.  
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Both static and dynamic areas of interest (AOI) were constructed using Tobii Studio Analysis 

Software 3.1.6 through the oval, rectangular and freehand drawing tools, similar to pre-existing 

research using Tobii studio (Müller, Baumeister, Dziobek, Banaschewski & Poustka, 2016). 

Each stimulus typically consisted of an eye, nose, and mouth AOI (Figure 37), except for the 

control task demonstrated in Figure 38 To create the AOI for the static stimuli, a boundary was 

drawn around a feature (e.g. the eyes) (Figure 37). The creation of AOI for the dynamic stimuli 

was more complex due to the movement of actors (e.g. natural movement of facial features 

associated with a change in mood) and also changes in scenario or scene (e.g. due to TASIT 

and MASC’s film-like presentation, different camera angles may mean that an actor is in the 

first part of the clip, absent for the second part of the clip, and then re-enters for the third part 

– see Appendix 7 as an example). Therefore, to account for a character, scenario, scene, zoom 

or perspective changes across different clips, dynamic AOI were individually generated, again 

using oval, rectangular and freehand drawing tools, and were manually moved and resized to 

track the targets of interest. This manual drawing and moving were carried out on a frame by 

frame basis by using the playback controls (play/pause, frame forward/backwards) and 

increasing the zoom so smaller facial features could be drawn around. So, for example, an AOI 

would be drawn around the eye area and doing so would create a key-frame marker onto the 

AOI timeline. Using the playback controls, the researcher would move the movie forward until 

the eyes had moved such that it was outside the boundaries of the AOI as defined in the first 

key-frame. The AOI would then be dragged and re-sized if necessary, to encompass the eye 

region fully again. These steps were repeated until the last frame where the AOI was present.  

The Tobii T120 allowance for head movement is 30 × 22 × 30 at 70 cm. During a recording, 

the Tobii eye tracker collects eye movement data points every 8.3 ms and assigns a timestamp 

and an ‘X, Y’ coordinate. This information was analysed using Tobii Studio 3.1.6 eye 

movement recording software. For the current research, raw data was organised into mean 
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fixation durations and fixation counts using the default Tobii fixation filter in Tobii Studio. 

The Tobii fixation filter uses the classification algorithm proposed by Olsson (2007) and 

detects rapid changes in gaze points using a sliding averaging window. Fixation filter 

algorithms rely on mathematical and statistical processes which capture eye movement. The 

default Tobii fixation filter algorithm sets a fixation threshold at 35 pixels for velocity and 35 

pixels for distance per sample. If the velocity of the eye movement was above the 0.5° per the 

second threshold then the eye movement was classified as a saccade and if below this 

parameter, it was classified as a fixation.  

The eye tracker was calibrated for each participant using the regular five-point calibration of 

each eye and was set to the calibration speed of medium. The foreground colour was set to red 

and the background colour was set to grey. The calibration area was set to 100%. Calibration 

took place at the beginning of each eye-tracking experiment and also halfway through the 

presentation of the MASC as the task is lengthy. Participants were seated approximately 60-

65cm away from the screen in a stationary chair. Fixation crosses were not utilised during the 

research programme as the research team wanted to explore natural gaze behaviour in response 

to the social stimuli. As one of the research questions was to see if there were differences 

between the individuals with TBI and matched controls for the first fixation, it did not seem 

appropriate to include a fixation cross as this would have contaminated the findings. 

Furthermore, research has demonstrated that forced fixation conditions during emotion 

perception paradigms produced detrimental effects on emotion perception performance 

(Peterson & Eckstein, 2012).  
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Figure 36. Image of the Tobii T120 Eye Tracker (reproduced from Nudt, 2007). 

5.9. Ethical procedures 

All procedures were approved by the Leeds East Research Ethics Committee, Rotherham, 

Doncaster and South Humber NHS Trust, Sheffield Health and Social Care NHS Trust, and 

Sheffield Hallam University Research Ethics Committee. 

5.10. Recruitment 

Consultants based within two NHS Trusts referred TBI participants, who met inclusion criteria, 

to the study. Collaborating clinicians identified potential participants based on the individual’s 

TBI history and risk factor. Clinicians initially approached potential participants and verbally 

explained the research. If the individual expressed an interest, they were provided with a 

participant information sheet that they were encouraged to take home, read, and show family 

or friends. With the potential participant’s verbal consent, the clinician provided the chief 

investigator with the participant's contact details so they could further discuss the research and 

obtain consent.        
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5.11. Participants  

Eighteen TBI participants and 18 age and sex-matched controls were recruited for the research.  

There was no attrition throughout the study and all individuals with TBI and matched control 

participants completed all sections of the research programme.    

Inclusion criteria 

1. An acquired adult TBI which had been verified with neuropsychological measures on 

hospital admission or brain pathology evident through imaging scans. 

2. One year post-injury to warrant that chronic effects, rather than acute effects, of TBI, 

were being measured.  

3. Eighteen years old or over. 

Exclusion Criteria 

1. A history of psychiatric illness that is documented to disrupt eye scan patterns (e.g. 

schizophrenia/psychosis).  

2. Severe current drug and alcohol abuse.  

3. Did not have the capacity to provide fully informed consent.  

4. Individuals over 65 were excluded to try to mitigate natural ageing effects. 

Variables used to match control participants to TBI participants included gender, age, and years 

of education. Matched control participants were recruited using stratified opportunity and 

snowballing sampling. All participants were screened for depression, anxiety and visual 

deficits. It should be noted that none of the participants, from either the group with TBI or 

matched controls, scored above the HADS score of 16 which indicates abnormal levels of 

anxiety and depression  (group with TBI (Anxiety M = 8.11, SD = 4.61, depression M = 6.00, 

SD = 3.31, overall HAD’s M = 14.11, SD = 6.28); matched control group (Anxiety M = 4.94, 

SD = 2.04, depression M = 2.67, SD = 1.94, overall HAD’s M = 7.61, SD = 3.48)). All 
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participants exhibited sufficient visual and perceptual abilities according to the VOSP and 

CORVIST criteria. Males are over-represented in the TBI population so it was expected to 

recruit more males than females (Marshman et al., 2013). Demographic information and 

psychometric measure scores can be found in Table 4. Information regarding injury pathology, 

severity, and cause were obtained from medical records, including scan data and A&E 

admission notes (Table 5 and supplementary information). Collaborating clinicians who 

referred the participants to the research project classified the severity of the injury. This detail 

was provided to the researcher via telephone recruitment meetings, post-consent, and was 

based on injury indices and expert clinical judgement. In line with most TBI research, injuries 

were heterogeneous and included brain haemorrhages, skull fractures and contusions. Detailed 

case notes for each TBI participants can be found in Appendix 13.   
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Table 4. Demographic information for TBI and control group. 

Descriptive statistic Gender Current 

Age 

Age at injury 

(years) 

Post-injury 

years 

Years of 

education 

Verbal IQ Performance 

IQ 

Overall IQ 

Number  

TBI 

Control 

 

m= 15, f= 3 

 m= 15, f=3 

 

- 

 

- 

 

 

- 

 

- 

 

- 

 

- 

 

- 

Mean 

TBI 

Control 

 

- 

 

44.94 

43.83 

 

36.44 

- 

 

8.50 

- 

 

14.83 

15.56 

 

84.06 

95.33 

 

91.00 

104.72 

 

90.25 

100.06 

SD 

TBI 

Control 

 

- 

 

11.69 

12.26 

 

13.79 

- 

 

8.68 

- 

 

4.25 

3.65 

 

18.71 

8.66 

 

17.50 

11.64 

 

17.66 

10.44 

Range 

TBI 

Control 

 

- 

 

26-62 

25-63 

 

17-59 

- 

 

1-28 

- 

 

10-23 

11-23 

 

57-135 

82-113 

 

55-111 

79-121 

 

55-120 

81-116 

Mann-Whitney U test  p = 

.696 

  p = .389 p = 

.007** 

p = .015** p = .025** 

* Two TBI participants opted out of the WASI (IQ test) 

** Significant at α = .05 
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Table 5. Demographic and clinical characteristics of TBI participants (n=18). 

Participant 

Code 

Gender Age Injury 

Location 

Injury 

Severity 

Years 

Post-

Injury 

Mechanism of Injury 

1 Male 26 O Severe 7 Assault 

2 Male 40 FLP Severe 21 RTA (car) 

3 Male 53 FLP Severe 15 Fall 

4 Male 54 O Severe 30 RTA (car) 

5 Female 33 O Mild 10 Fall from horse 

6 Female 60 O Severe 29 RTA (car) 

7 Male 47 O Moderate 16 RTA (motorbike) 

8 Male 28 FLP Severe 11 Assault 

9 Male 50 FLP Severe 5 Fall (unconfirmed) 

10 Male 31 FLP Severe 1 Assault 

11 Male 63 FLP Severe 4 RTA (pedestrian) 

12 Male 43 FLP Severe 3 Fall from scaffold 

13 Male 33 O Severe 16 Fall from seizure 

14 Male 60 FLP Severe 3 Fall downstairs 

15 Male 53 FLP Severe 2 Fall 

16 Female 47 FLP Severe 1 Fall 

17 Male 39 FLP Severe 4 Assault 

18 Male 59 FLP Severe 1 Cyclist (collision with car) 

 

Key: Frontal lobe pathology (FLP); pathology which does not encroach on either frontal lobes, 

or occipital cortex, but may be present in other cortical or subcortical brain regions (O); road 

traffic accident (RTA). 

5.12. Procedure 

Test sessions took place either in the university laboratory or in the hospital clinic. The length 

and number of sessions were determined by the participant. Typically, control participants 

completed testing in one session over a three to four hour period (with breaks), although a 

minority of control participants decided to divide testing into two sessions that lasted 
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approximately two hours each. The number and length of testing sessions for TBI participants 

varied, with some participants completing the testing in two sessions and others taking up to 

six sessions. Participants completed the screening measures first, followed by the demographic 

tasks, and then social cognition/eye-tracking tasks. Counterbalancing was implemented to 

minimise order effects and a set A and set B procedure was used (Appendix 14).  

5.13. Study design and analyses 

The current research had a cross-sectional design with two cohorts; individuals who had 

sustained a TBI, and controls matched for age, gender and years of education. Similarly, cross-

sectional designs have been used in previous research studies investigating social cognition 

after TBI (e.g. Neumann et al., 2015; Spikman et al., 2013; Rosenberg, McDonald, Dethier, 

Kessels & Westbrook, 2014).  

Eye-tracking data included time to first fixation, first fixation duration, total fixation duration, 

and total fixation count to AOI (see Appendix 15 for more detailed definitions of the Tobii 

descriptive statistics).  
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Figure 37. An example of AOI for a female face during the ADFES static task. For the 

IAPS study, AOI incorporated the whole animal, object or human.  

 

Figure 38. An example of AOI for the IAPS control task. An example of an animal (Image 

A) and an object (Image B) condition during the IAPS control task. Image numbers from 

left to right (1080 and 7175). 
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The human images included head and body shots and, therefore, AOI sizes varied across clips 

(Figure 39).  

 

Figure 39. An example of human images used during the IAPS control task. IAPS image 

numbers from left to right (top: 2495, 2030, bottom: 2005, and 2830). 

High acuity visual information is collected during fixations and so by investigating this process, 

the underpinnings of visual attention and cognitive engagement can be understood (Macknik 

& Martinez-Conde, 2007). Fixation metrics were selected for analyses following other research 

that suggests the majority of visual processing occurs during a fixation, with very little visual 

processing during saccades (Auyeung et al., 2015; Helo, Pannasch, Sirri & Rämä, 2014; Leigh 

& Zee, 2015: Vassallo et al., 2010). Saccades were not analysed in the present research as 

Mancuso et al., (2015) proposed that saccades were less impacted by TBI than fixations. These 

temporal parameters (number, duration and sequence of fixations) offer an objective measure 

of visual processing and visual attention.  

The interpretation of the time to the first fixation is important as it provides information about 

attentional resources and saliency during visual scanning (Pérez-Moreno et al., 2016). Calvo, 

Avero and Lundqvist (2006) suggested that while time to the first fixation may not be the most 
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accurate measure of attention, the first fixation duration could provide a more rigorous measure 

of attention, as gaze duration quantifies the amount of attention that is directed to an AOI. With 

this in mind, the present research included both time to first fixation and first fixation duration 

for the ADFES static and dynamic tasks and the IAPS control task. These eye-tracking metrics 

were not utilised during the MASC or the TASIT as the tasks were lengthy with multiple facial 

stimuli and, thus, many potential AOIs during each scene. The inclusion of numerous AOIs 

across different times during each scene meant time to the first fixation for a particular AOI 

was not as meaningful as the total number of fixations and total fixation duration to AOI types. 

The traditional fixation duration and fixation count metrics were collected for all social 

cognition tasks. Preliminary data analysis indicated that there were missing data values for the 

majority of tasks, although this was considerably lower compared to the first fixation and first 

fixation duration.  

There are often missing values associated with dynamic eye-tracking data due to participants 

not fixating on AOI (Scheiter & Eitel, 2017). This issue can be addressed in two ways. Firstly, 

group means can be calculated based on the differing number of raw scores (i.e. fixation 

duration or count); however, this can lead to heterogeneity of variance. The second option is to 

use missing data imputation in which was the method utilised for the current research. For time 

to the first fixation, missing scores were replaced with the total video or image display time. 

For example, missing data for the ADFES dynamic task were replaced by the length of a video 

(e.g. eight seconds), indicating that the participant did not fixate on that particular AOI. For the 

first fixation duration, missing scores were replaced with a zero to indicate that no fixations 

were made in the AOI. Missing data was not an issue for total fixation duration or fixation 

count as Tobii studio has an option to include zero scores for these two metrics.   

The analysis differed for each experiment and specific details are presented at the beginning of 

each analysis chapter.  
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5.14. Considerations for reporting inferential statistics 

To determine the general quality of data and parametric assumptions were checked per group 

using histograms, box plots and the z-test for skew and kurtosis. The z-test method calculates 

a z-score and then divides the skew and kurtosis values by their standard errors (Dancey & 

Reidy, 2007; Field, 2009; Kim, 2013). If sample sizes are small (n <50), then an absolute z-

score larger than 1.96, which corresponds to an alpha level of 0.05, indicates that the sample is 

not normally distributed. Outliers were identified using z-scores with a limit of ±3.29 (Dawson, 

2011; Field, 2009). 

There are contrasting opinions regarding the transformation of non-normal data (Feng et al., 

2014; Games & Lucas, 1966; Glass, Peckham & Sanders, 1972; Levine & Dunlap, 1982). After 

much consideration, traditional transformation methods were not deemed appropriate for the 

current data for several reasons. Firstly, a central concern for transforming data during 

hypothesis testing is that the newly transformed data may not be testing the null hypothesis, as 

developed for the original data. That is to say, the parameters of the equation used to obtain the 

observed difference between groups with a normal distribution are not the same as the equation 

associated with various types of transformation. For instance, normal distribution methods 

compare means on an arithmetic basis while, take, for example, log transformation generates 

geometric means. Consequently, the two null hypotheses are not equivalent and different 

empirical constructs are therefore being tested. As a result, any outcomes from transformed 

data must be interpreted with caution (Feng et al., 2014; Grayson, 2004). Secondly, the 

fundamental purpose of transforming data is to alter the nature of the variable and this also 

makes understanding findings more difficult, particularly if the variable is meant to be 

interpretable e.g. reaction time (Osborne, 2002). Take for example square root transformation, 

this method eliminates the equal intervals between successive values and thus reduces interval 

and ratio data to ordinal data. While this may not pose a problem for some data, there are certain 
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statistical analyses, such as ANOVA, which assume interval or ratio scales (Osborne, 2002). 

Thirdly, there is no guarantee that using transformations will make the data conform to a normal 

distribution and even after transformations have been applied, data can still display skew and 

kurtosis (Feng et al., 2014). Transforming data can lead to an increase in the variability of data, 

such as outliers (Feng et al., 2014).  

Statisticians frequently question the appropriateness of transforming data to fit statistical 

analyses (Field, 2009). Seminal research by Games and Lucas (1966) reported that ANOVA’s 

performed adequately on skewed data sets and that transforming the data sometimes created 

more disadvantages. Although it is commonly believed that non-parametric tests are unaffected 

by violations of normality this is not the case. When homogeneity of variance is violated, both 

parametric and non-parametric tests can lead to a distortion of power and a rise in the likelihood 

of a type I error with non-parametric equivalents sometimes having a greater degree of bias 

(Zimmerman, 1998). Violations of homogeneity of variance are less severe if sample sizes are 

equal, which was the case for this research, but this point is important as it highlights that non-

parametric tests are also affected by non-normal distributions.  

It was decided that transforming data, although suitable in some experimental designs, was 

more of a limitation for the current research. To keep the integrity of data, ANOVA was 

conducted on untransformed scores, even if there were violations of normality as ANOVA is 

robust to moderate violations of normality (Donaldson, 1968; Glass et al., 1972; Kim, 2013). 

As there is no objective rule as to what constitutes a ‘moderate’ violation of ANOVA (Glass et 

al., 1972, Hoekstra, Kiers & Johnson, 2012; Cottingham, Lennon & Brown, 2005) rational 

judgement was used to determine the boundaries of mild, moderate and severe. This approach 

is parallel with research advocating flexibility around knowing when to draw ‘violation’ lines 

when designing more informative ecological experiments (Cottingham et al., 2005). In general, 

if sample sizes are equal then this lessens the likelihood of normality assumptions being 
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violated (Finch, 2005). It was fully acknowledged that this decision could have consequences 

regarding type I errors if violations went beyond moderate but this risk was conceived as less 

severe compared to transforming the data. Greenhouse-Geisser correction for degrees of 

freedom was applied if Mauchly’s test was violated (Dancey & Reidy, 2017). 

With regards to post-hoc tests, while stringent corrections to α levels for multiple comparisons 

are advocated by some statisticians (Shaffer, 1995), this can increase the risk of type II errors 

and loss of power, particularly if there are numerous comparisons (Field, 2009; Kim, 2015; 

Krzywinski & Altman, 2014; Perneger, 1998; Rothman, 1990). Furthermore, it has been 

suggested that type II errors can be more pernicious compared to type I errors as these results 

are often not reported in psychological research. Lieberman and Cunningham (2009) maintain 

that as social and affective neuroscience are still relatively primitive research areas, and most 

studies are exploratory, it is more pertinent to not reject possible true effects compared to 

accepting false effects. Additionally, they highlight the fact that false effects will not be 

replicated in future studies through data aggregation and can, therefore, be approached as ‘self-

erasing’ whereas unreported true effects will rarely ever be the subject of replication. 

Nevertheless, it was acknowledged that applying no corrections to multiple comparisons 

increased the likelihood of making a type I error (Cormier & Pagano, 1999; Moyé, 1998). 

Adopting researcher judgement and adhering to Goodman’s (1993) advice that the p-value is 

used as a flexible tool within the context of a given problem, the  level for multiple 

comparisons was set at 0.01 to balance between type I and type II error avoidance. If the 

omnibus ANOVA was significant but variables violated the assumptions of normality then t-

tests were still conducted.  

The current research used the traditional approach of following significant ANOVA with 

separate ANOVA’s for each of the dependent variables. Some regard this approach as 
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controversial (Grice & Iwasaki, 2007) as it defeats one of the underlying strengths of ANOVA, 

which is to reduce the likelihood of type I errors by running multiple analyses (Share, 1984). 

However, the follow-up ANOVAs are deemed ‘protected’ by the omnibus ANOVA (Bock, 

1975). This ‘protection’ stems from the idea that if the initial multivariate test is non-significant, 

then follow-up tests will not be conducted. Nevertheless, this view is somewhat contested 

(Huberty & Morris, 1989) as a significant ANOVA may reflect a significant difference for one 

dependent variable only; the other dependent variables may be non-significant. The original 

ANOVA only protects the significant dependent variable (Bray & Maxwell, 1985).  That being 

the case, the current research applied a post-hoc correction by adjusting the α level to .01 to 

control the family-wise error rate (Stevens, 2001).  

5.15. Summary 

This chapter provides a rationale of tasks selected and a summary of research design, data 

preparation and choice of statistical approaches. The next chapter outlines findings from the 

MASC.    
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6. Chapter six: The International Affective Picture System 

(IAPS)    

6.1. Objectives and hypothesis 

Humans have a preference for faces that is exhibited early in life with young infants generating 

more attention to faces and face-like stimuli compared to distracters (Frank et al., 2009; Powell, 

Kosakowski & Saxe, 2018). This preference extends into adulthood and is also demonstrated 

through face pareidolia, the illusory perception of non-existent faces in common objects (Liu 

et al., 2014). One illustration of this is from Windhager et al.’s (2010) experiment having 

discovered that participants still generated the typical ‘T’ fixation pattern (looking at the eyes 

and mouth more) associated with face processing when viewing inanimate objects. Their 

participants developed analogies between faces and cars (e.g. viewing the headlights as the 

eyes and the grill as the nose) and exhibited the characteristic preference for eyes (i.e. they 

would look at the headlights first even if the task was for them to focus on the grill). Indeed, 

the human brain appears to display a high degree of specialization for social stimuli that may 

be modulated by a ‘social brain’ network (Brothers, 1990; Dunbar, 2009). Current evidence 

theorises that the visual cortex contains distinct and specialized neural pathways for processing 

faces (Kanwisher, McDermott & Chun, 1997; Leibo, Mutch & Poggio, 2011). For instance, 

human brains have evolved a specialised face-processing region, coined the fusiform face area, 

which is activated significantly more during the perception of faces compared to other stimuli 

(Kanwisher & Yovel, 2006). The hypothesis that humans have developed distinct face 

processing neural pathways is further supported by data reporting differences in developmental 

trajectories of the visual system for faces and everyday objects, with the former extending into 

young adulthood (Meinhardt-Injac, Persike & Meinhardt, 2014).   
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Face-specificity theories argue that faces and objects are processed differently (Galambos et 

al., 2018; Kanwisher, 2000; McKone, Kanwisher & Dunchaine, 2007). As everyday objects 

vary in their configuration it is harder to distinguish fixation patterns, although fixations would 

still be directed to the most salient parts of the object. As was mentioned in the previous 

chapters, aberrant fixation patterns in response to faces are documented in several clinical 

populations. It is less clear whether these abnormal gaze-patterns extend to other stimuli but 

the extant literature suggests that this may be the case. For example, Wang, Chawarska, Zucker, 

Scassellati and Shic (2014) reported that typically-developing toddlers displayed different 

basic attentional strategies when processing human faces compared to block designs. However, 

a group of toddlers with autism employed a similar visual strategy for processing both stimuli. 

A similar result was found by McPartland et al., (2011) who reported that a group of autistic 

children exhibited greater attentional resources to the upper, relative to lower, portions of 

upright faces, three-dimensional objects, and geometric patterns compared to a control group.  

There is a limited evidence-base suggesting that TBI can alter eye scan patterns (Adolphs et 

al., 2005; Douglas et al., 2010; Oatley et al., 2014; Wolf et al., 2014). Yet, this restricted 

research has mainly explored gaze-patterns in response to faces and has not fully investigated 

whether aberrant eye scan patterns extend to other stimuli, such as everyday objects. However, 

Douglas et al., (2010) have addressed this hypothesis when they asked ten TBI participants and 

gender and age-matched controls to view 18 images of facial expressions and 15 images of 

objects. During this task, eye movements were recorded. The group affected by TBI generated 

increased number, duration and dispersion of fixations to the facial stimuli compared to the 

control group. In contrast to the clinical findings aforementioned, this abnormal visual scan 

path was not evident for the object condition, suggesting that aberrant fixation patterns post-

TBI may be specific to faces. This difference highlighted the concern that, although TBI, 

autistic and schizophrenic cohorts share similar symptoms and biological mechanisms (Singh 



Page 217 of 531 

 

et al., 2016), the conditions are fundamentally different in aetiology and so likely to produce 

contrasts.  

Therefore, this particular study aimed to build on the work of Douglas et al., (2010) by 

exploring the visual strategies underpinning the perception of humans and objects. Douglas et 

al’s., (2010) findings are pertinent for the TBI research field and replication of their results 

would support the hypothesis that TBI can induce specific impairments to the processing of 

social stimuli (e.g. humans) compared to non-social items. The experiment also wanted to 

extend the work of Douglas and colleagues and, therefore, included images of other living 

stimuli; mammals and non-mammals. The research team were interested to investigate whether 

these four sets of different stimuli would evoke different gaze patterns and whether these 

patterns would be different in the individuals with TBI compared to the matched control group. 

As outlined in the methodology, the current experiment ranked humans as the most emotive 

stimuli followed by mammals, non-mammals, and objects.  

Hypothesis 1. The group affected by TBI would display different fixation patterns to 

control participants when viewing the human and animal stimuli, but there would be no 

difference between the groups when they viewed everyday objects.  

Hypothesis 2. Participants would generate a quicker first fixation and would have more 

and longer fixations to emotive human and animal stimuli compared to everyday 

objects.  

6.2. Procedure  

The International Affective Picture System (IAPS; Lang et al., 2008) images were presented 

on the Tobii T120 Eye Tracker. Participants were seated approximately 60-65cm away from 

the eye tracker screen in a stationary chair. Participants viewed an instruction screen and were 
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given time to ask any questions. The images remained on the screen for the whole eight seconds 

and the task could not be moved on, even if the participant named the category. The answer 

screen automatically appeared after eight seconds and the researcher noted down the 

participant's answer and moved the task on by pressing the space bar. Figure 40 outlines the 

procedure of the experiment. 

 

Figure 40. A diagram to illustrate the sequence of events for the IAPS study. 

6.3. Exploration of data 

Only eye-tracking data collected during the main image viewing (e.g. boxes 2 and 4 in Figure 

40) was analysed. To explore data trends and to check parametric assumption criteria, 

distribution plots and statistics were examined. Histograms illustrated skew and kurtosis for all 

four eye-tracking metrics (time to first fixation, first fixation duration, the total number of 
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fixations and total fixation duration), which was further confirmed by z-test statistics. There 

were two outliers in the time to first fixation dataset (z= 3.77, z= 3.38) but no other outliers for 

the other three eye-tracking metrics. Levene’s test indicated that there were minor violations 

of homogeneity of variance. It should be noted that behavioural data was not explored as all 

participants scored full marks, as predicted.  

6.4. Design 

A 4 within (category: humans, mammals, non-mammals and objects) x 2 between (group: TBI 

and control) repeated measures design was utilised to investigate potential differences in the 

four eye-tracking metrics; time to the first fixation, first fixation duration, total fixation duration 

and total fixation count.  

6.5. Results  

The descriptive statistics, outlined in Table 6, seemed to indicate  that when the participant 

groups were combined, the quickest first fixation was generated for the human stimuli followed 

by mammals, non-mammals and objects. The same pattern was present when the groups were 

split, but the control group appeared to exhibit a quicker first fixation to the non-mammal 

compared to the mammal stimuli. The group with TBI appeared to display slower first fixations 

to all stimuli compared to the control group. Overall, the longest first fixation duration was for 

non-mammals followed by objects, humans and mammals. Individuals in the group with TBI 

seemed to display  longer first fixation durations compared to individuals in the control group. 

Total fixation duration descriptive statistics indicated that both the TBI and control group 

fixated for longest on human stimuli followed by mammals, non-mammals and objects. 

However, fixation count indicated that both groups produced more fixations to the mammal 

stimuli followed by humans, non-mammals and objects. Overall, the group affected by TBI 

appeared to produce  fewer and shorter fixation counts compared to the control group. The 
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descriptive statistics were followed up by inferential statistics to determine if any of the above 

observations were statistically significant.  
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Table 6. Descriptive statistics for eye-tracking metrics for the four stimuli categories; non-mammals, mammals, objects and humans. 

Note: The ‘overall’ columns are the TBI and control groups combined. 

 Time to First Fixation First Fixation Duration Total Fixation Duration Fixation Count 

Overall TBI Control Overall TBI Control Overall TBI Control Overall TBI Control 

Stimuli Non-Mammals 

Mean 

SD 

 

0.55 

0.69 

 

0.71 

0.85 

 

0.39 

0.43 

 

0.27 

0.16 

 

0.29 

0.21 

 

0.25 

0.07 

 

4.83 

1.45 

 

4.54 

1.74 

 

5.14 

1.04 

 

15.17 

4.37 

 

14.10 

4.82 

 

16.31 

3.64 

Mammals 

Mean 

SD 

 

0.41 

0.61 

 

0.41 

0.67 

 

0.41 

0.56 

 

0.21 

0.14 

 

0.22 

0.19 

 

0.19 

0.07 

 

5.72 

1.76 

 

5.32 

2.20 

 

6.13 

1.06 

 

17.03 

5.66 

 

15.16 

5.68 

 

19.02 

5.05 

Objects  

Mean 

SD 

 

0.68 

0.80 

 

0.72 

0.96 

 

0.63 

0.60 

 

0.24 

0.05 

 

0.24 

0.06 

 

0.24 

0.04 

 

4.42 

1.49 

 

4.27 

1.75 

 

4.58 

1.19 

 

13.68 

3.95 

 

12.85 

4.19 

 

14.56 

3.59 

Humans  

Mean 

SD 

 

0.29 

0.41 

 

0.36 

0.51 

 

0.21 

0.26 

 

0.22 

0.07 

 

0.22 

0.05 

 

0.22 

0.09 

 

5.64 

1.48 

 

5.29 

1.80 

 

6.02 

0.98 

 

16.48 

4.65 

 

14.94 

4.73 

 

18.11 

4.08 
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6.5.1. Time to first fixation  

There was a significant main effect of stimuli category, (F (2.07, 68.20) = 6.17, p = .003, ηp
2 = 

0.16) but the interaction between stimuli category and group was not significant, (F (2.07, 

68.20) = 0.98, p = .384, ηp
2 = 0.03). The test of between-subjects effects was also not significant, 

(F (1, 33) = 0.53, p = .471, ηp
2 = 0.02). Post-hoc comparisons for the significant main effect of 

stimuli category were explored by conducting paired samples t tests (two-tailed). When the 

post-hoc correction was applied, participants generated significantly quicker first fixations to 

humans compared to non-mammals, (t (34), 3.63, p= .001, d=0.61, CI= -0.12-0.41) and to 

humans compared to objects, (t (34), 3.91, p≤ .001, d=0.65, CI= 0.19-0.59).  

6.5.2. First fixation duration 

There was no significant main effect of stimuli category, (F (1.68, 55.34) = 2.60, p = .092, ηp
2 

= 0.07) or group, (F (1, 33) = 0.26, p = .614, ηp
2 = 0.01) and no significant interaction between 

stimuli category and group, (F (1.68, 55.34) = 0.55, p = .551, ηp
2 = 0.02).  

6.5.3. Total fixation duration 

There was a significant main effect of stimuli category, (F (2.38, 78.39) = 56.00, p ≤ .001, ηp
2 

= 0.93) but the interaction between stimuli category and group, (F (2.38, 78.39) = 1.74, p = .177, 

ηp
2 = 0.05) and the main effect of group were not significant, (F (1, 33) = 1.50, p = .229, ηp

2 = 

0.04). Post-hoc comparisons for the significant main effect of stimuli category were explored 

by conducting paired samples t tests (two-tailed). When the post-hoc correction was applied, 

participants generated significantly longer fixations to humans compared to non-mammals, (t 

(34), -7.04, p≤ .001, d=1.17, CI= -1.05 - -0.58), humans compared to objects, (t (34), -11.54, 

p≤ .001, d=1.91, CI= -1.44 - -1.01), mammals compared to non-mammals, (t (34), -6.66, 

p= .001, d=1.11, CI= -1.16 - -0.62), mammals compared to objects, (t (34), 8.48, p≤ .001, 
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d=1.41, CI= 0.98-1.60), and finally to non-mammals compared to objects, (t (34), 3.46, p= .001, 

d=0.58, CI= 0.17-0.65).  

6.5.4. Fixation count  

There was a significant main effect of stimuli category, (F (3, 99) = 24.00, p ≤ .001, ηp
2 = 0.42) 

but the interaction between stimuli category and group, (F (3, 99) = 2.44, p = .069, ηp
2 = 0.07) 

and the main effect of group were not significant, (F (1, 33) = 3.63, p = .065, ηp
2 = 0.10). Post-

hoc comparisons for the significant main effect of stimuli category were explored by 

conducting paired samples t tests (2 tailed). When the post-hoc correction was applied, 

participants generated significantly more fixations to humans compared to non-mammals, (t 

(34), -3.07, p= .004, d=0.51, CI= -2.18 – 0.44) and objects, (t (34), -6.94, p≤ .001, d=1.16, 

CI= -3.62 - -1.98), mammals compared to objects, (t (34), 6.11, p≤ .001, d=1.02, CI= 2.24-

4.47), and non-mammals, (t (34), -4.09, p≤ .001, d=0.68, CI=-2.79 - -0.94), and to non-

mammals compared to objects, (t (34), 3.79, p= .001, d=0.63, CI= 0.69-2.29). 

6.6. Discussion 

The first aim of the current experiment was to explore whether TBI alters fixation patterns in 

comparison to controls when viewing static images of humans, animals and objects. The group 

variable had no effect on fixation patterns and TBI and control participants exhibited similar 

eye scan patterns across all the stimuli. The current findings support Douglas et al.’s (2010) 

research as there were no differences in fixation patterns between the two groups when viewing 

objects. However, a conflict in findings also occurred as Douglas et al., (2010) reported that 

their group of individuals with TBI generated increased number, duration and dispersion of 

fixations to faces compared to the control group, whereas the present group with TBI generated 

similar fixation patterns to matched-controls. This discrepancy may be related to 

methodological differences. The Douglas et al., (2010) study was centred on an emotion 



Page 224 of 531 

 

identification task and the stimuli included human faces only. The current research employed 

more general human images that included photo shots of head and shoulders and images with 

whole bodies. Furthermore, participants only had to identify the stimuli category which is 

easier than emotion identification. A notable contrast between Douglas et al., (2010) and 

current published evidence exploring fixation patterns post-TBI is that Douglas et al.’s group 

with TBI exhibited ‘hyperscanning’. The extant literature frequently documents that TBI 

cohorts display reduced fixations or a similar ratio of fixations but with altered fixation patterns 

compared to controls (Adolphs, 2005; Kenrick et al., 2017; Oatley et al., 2014; Wolf et al., 

2014). However, the current experiment found no differences between the two groups. It is 

unclear why this distinction occurred but the central concern is that TBI may induce changes 

in the visual systems which, subsequently, may activate aberrant gaze patterns with marked 

reductions in fixations to areas of saliency (Adolphs et al., 2005, Vassallo et al., 2010). This 

study emphasises the need for further work into this research field as, at present, the findings 

are inconclusive.   

The second aim of the current study was to investigate if static images of humans, mammals, 

non-mammals and objects evoked disparate fixation patterns. The findings indicated that the 

four different categories had a significant effect on time to the first fixation, with participants 

generating quicker first fixations to human images compared to non-mammals and objects. 

Furthermore, participants exhibited significantly more and longer fixations to humans and 

mammals compared to non-mammals and objects. These results are in line with the theory that 

attentional resources are directed to social stimuli (humans and mammals) compared to neutral 

(objects) or less-emotive stimuli (non-mammals) (Ono & Taniguchi, 2016; Simola et al., 2013).  

One limitation of the present study is the heterogeneous nature of the IAPS. For example, there 

were other items in several of the images, which may have acted as a distracter from the stimuli 



Page 225 of 531 

 

(e.g. man holding a newspaper, gecko on a leaf, spoon on the table). However, the images 

which were selected were based on the inclusion criteria that the target (e.g. human) was the 

main focus of the image. It could be argued that these types of visual scenes, i.e. non-isolated 

real-world images, are more representative of everyday scenarios and provide context to the 

stimuli. Indeed, previous research has administered images from the IAPS database to 

investigate the valence effect on eye movements (Acunzo & Henderson, 2011; Calvo & Lang, 

2004; Nummenmaa et al., 2006).  

The current study predicted that participants would produce more and longer fixations to the 

human images, compared to other stimuli, based on the findings that humans frequently display 

an innate natural preference for human faces (Frank, Vul & Johnson, 2009). It was further 

hypothesised that the next highest and longest fixations would be elicited by images of 

mammals. This prediction was based on evidence reporting a positive correlation between the 

degree of biological/behavioural similarity between a given species and human beings, and an 

increase in attitude level towards the species (Batt, 2009; Prokop & Randler, 2018; Wilson, 

1984). Non-mammals were expected to produce the next highest and longest fixations followed 

by objects. Objects were assigned as the final category as they were thought of as mundane and 

lacking strong emotional reaction by the researcher. However, average scores for valence and 

for arousal for each of the categories (Appendix 13), calculated after the testing had taken place, 

indicated that human images had the highest scores followed by objects, non-mammals and 

finally mammals. Interestingly, objects scored slightly higher for mean dominance compared 

to humans (mean difference = 2.23). This may present as a confounding variable as there was 

high variability between the conditions (e.g. humans generated a dominance score 75% higher 

than mammals). However, it should be noted that the main aim of the study was to capture the 

natural gaze patterns of participants when they viewed different types of stimuli. In the natural 

world, it would be typical for individuals to encounter stimuli of differing valence that would, 
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in turn, elicit different levels of arousal and dominance. In this sense, the difference between 

the average scores for the valence, arousal and dominance levels could be seen as representing 

more ‘real world’ experience, rather than being seen as a confounding variable. Valence, 

dominance and arousal may be some of the factors that help explain natural eye-gaze 

differences across different categories (humans, animals, objects) but there are also other 

factors, such as familiarity and social importance, which may also play a role. Indeed, it might 

be the case that social salience is a prominent predictor for arousal values, for example. 

However, the exact interplay of these variables was beyond the scope of this thesis, although, 

it should be noted that an important point from the current findings is that human stimuli attract 

more attention than non-human stimuli. 

This section has reviewed the literature concerning differences between ocular fixation patterns 

in response to faces and objects. The processing of humans appears to be more rapid and 

demands additional attentional resources, quantified by fixation count and duration, compared 

to objects (Ono & Taniguchi, 2017; Simola et al., 2013); with this effect also extending to 

mammals (Ono & Taniguchi, 2016; Simola et al., 2013). There were no differences between 

the group with TBI and matched controls fixation patterns, indicating that the individuals with 

TBI generated a typical number and length of fixations when viewing all of the stimuli. This 

finding varies from the literature which often reports that individuals with TBI display aberrant 

fixation patterns in comparison with control groups when viewing faces (Adolphs, 2005; 

Kenrick et al., 2017; Oatley et al., 2014; Wolf et al., 2014). In terms of object perception, the 

current results are in line with Douglas et al., (2010) who also reported that TBI and control 

participants generated similar fixation patterns when viewing everyday objects. Although this 

contrasts with autism and schizophrenia research, which documents atypical scanning patterns 

for both faces and objects, it appears that TBI does not impair visual strategies underpinning 

object perception.  
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Although the IAPS study explored visual strategies underpinning the basic perception of 

humans, animals and objects, the current research programme was also interested in more 

complex social cognition and the fixation patterns associated with this ability. It may be the 

case that, although global face recognition appears intact post-TBI, finer-grained processing of 

early social cues may be aberrant following TBI. Therefore, the next chapters explore 

mentalizing abilities and emotion and mood perception in a group of individuals who have 

sustained TBI and a group of individuals who have no TBI.  
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7. Chapter seven: Movie for the Assessment of Social 

Cognition (MASC) 

7.1. Overview  

This chapter details two experiments using the MASC (Dziobek et al., 2006); a normative study 

and a clinical study with TBI participants. To gain a better understanding of the visual scanning 

mechanisms underpinning social cognition, it is vital to explore these processes in non-clinical 

samples. This method allows the comparison of an individual with a representative group to 

determine whether there are deficits in cognitive functions (Lezak, Howieson & Loring, 2004; 

Strauss et al., 2006). Although there is research exploring isolable constructs of social cognition 

(e.g. face perception, understanding emotions, thoughts and intentions) in normative groups, a 

comprehensive understanding of the visual strategies utilised during these different but 

interconnected domains is lacking (Schurgin et al., 2014; Vaidya et al., 2014). Moreover, the 

majority of existing evidence is based on static social stimuli so this study employed the MASC 

to investigate dynamic social cognition.  

7.2. MASC normative study 

A female advantage on social cognition tasks is documented to be apparent early in life (Herlitz 

& Lovén, 2013), and may be underpinned by biological factors (Adenzato et al., 2017). For 

example, 12-month-old female infants are reported to display significantly more eye contact 

than age-matched males (Lutchmaya, Baron-Cohen & Raggatt, 2002) as well as more joint 

attention (Mundy et al., 2007). Joint attention refers to when two or more people 

simultaneously focus their attention on social cues, such as gestures, eye gaze or salient objects 

in the environment (Jones & Carr, 2004). This purported female advantage is thought to extend 

into adulthood (Olderbak, Wilhelm, Hildebrandt & Quoidback, 2018), and is expressed as 

better ability on emotion recognition (Saylik, Ramen & Szameitat, 2018; Wingenbach, Ashwin 
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& Brosnan, 2018), theory of mind (ToM) (Adenzato et al., 2017; Wacker, Bölte & Dziobek, 

2017), and empathy tasks (Christov-Moore et al., 2014; Tracy & Giummarra, 2017) compared 

to males. One theoretical explanation for this purported female superiority is the primary 

caretaker hypothesis; that females have evolved a proficiency in emotion recognition to 

increase offspring survival (Babchuk, Hames & Thompson, 1985). Hampson, van Anders and 

Mullin (2006) found that women were faster at recognising both positive and negative emotions 

compared to men. Hampson et al., (2006) found no evidence to suggest that the female 

advantage was learned through previous childcare experience or perceptual speed. The authors 

concluded that the observed sex differences in facial expression recognition were rooted in 

evolution and were not associated with domain-general learning.  In contrast to Hampson et 

al’s conclusions, Wright, Riedel, Sechrest, Lane and Smith (2018) reported that individual 

differences for emotion recognition accuracy was mediated by sex but also by trait emotional 

awareness; a trait variable associated with early learning.  It is logical to presume that social 

cognition has evolutionary, developmental and cultural precursors. It is more than likely that 

these factors influence the ongoing debate and current equivocal findings regarding the 

supposed female advantage on social cognition tasks compared to males (Geary, 2006).  

In a meta-analytic review, Thompson and Voyer (2014) investigated the purported sex 

differences in non-verbal emotion recognition tasks and reported a small but consistent female 

advantage (effect size d = 0.19; according to Cohen’s 1977 original distinction) across a range 

of studies. Thompson & Voyer (2014) noted that their findings might fit well with Hyde’s 

(2005) gender similarities hypothesis; that most sex differences on psychological tasks are 

small to non-existent. However, the authors emphasised that care must be taken that findings 

are neither under or over-interpreted and that other potential moderators, such as age and type 

of emotion, are also considered. In other work, Grimshaw, Bulman-Fleming and Ngo (2004) 

reported no significant difference between males and females in emotion identification on a 
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signal-detection task. Calvo and Lundqvist (2008) found similar results for males and females 

on an emotion identification task under varied display-duration conditions. Interestingly, 

Russell, Tchanturia, Rahman and Schmidt (2007) reported a male advantage compared to 

females on the Happé ToM task (Happé, Brownell & Winner, 1999). Males were more accurate 

than females on both the physical and mental state ToM conditions with large and medium 

effect sizes (Cohen’s d) respectively. In general, it appears that the female advantage on social 

tasks is small, variable, and lacking specificity (Wright, Riedel, Sechrest, Lane & Smith, 2018). 

What is less studied are other factors related to these proposed sex differences.   

Individuals perceive what they attend to, or fixate on, so recording fixations in response to 

social stimuli can offer objective indices of male and female visual scanning patterns and can 

distinguish any sex differences. If there is variability, then this might underpin some of the 

reported sex differences in upstream social cognition abilities reported in the literature. Few 

studies have explored these basic visual processes in males and females, those that have 

generally support the female superiority assumption. Hall, Hutton and Morgan (2010) used 

eye-tracking technology to investigate emotion decoding and found that females identified 

facial expressions faster and more accurately than males. Fixation duration and fixation count 

to the eyes correlated with accuracy and reaction time, indicating that eye scan patterns 

informed behavioural responses similarly for both sexes. Vassallo, Cooper and Douglas (2009) 

recorded eye scan patterns in response to male and female faces. Both sexes exhibited similar 

accuracy scores across the task although females exhibited more rapid reaction times when 

identifying facial expressions compared to males. Both sexes fixated more on the eyes 

compared to other facial regions but males also fixated longer on nose and mouth regions 

compared to females. Vassallo et al., (2009) theorised that this affinity for less salient facial 

features might impede male efficiency during emotion identification.   
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Stoesz and Jakobson (2013) explored the processing differences between static and dynamic 

speeded identity and emotion expression judgements in male and female groups. The authors 

found disparate processing patterns between static and dynamic displays with the latter yielding 

longer responses in both sexes. Blais, Fiset, Roy, Saumure-Régimbald and Gosselin (2017) 

also compared male and female visual strategies underpinning static and dynamic facial affect 

identification. Blais et al., (2017) reported that participants displayed different visual strategies 

for the two stimuli.  The dynamic condition induced fewer fixation counts to the eyes and 

mouth compared to the static condition in both sexes. Both Stoesz and Jakobson (2013) and 

Blais et al., (2017) findings suggest that there are differences in the visual strategies 

underpinning the processing of static and dynamic social stimuli. This finding also underlines 

the importance of using dynamic stimuli when exploring sex differences in emotion perception, 

as static stimuli might not be valid measures of ‘real-world’ vision. The subsequent study 

explored emotion perception as well as other mindreading abilities in a normative sample of 

males and females.   

In conclusion, the evidence is equivocal regarding a potential female advantage on social 

cognition tasks. Possible reasons are task-specific demands, and/or use of non-naturalistic 

static stimuli and varied methodologies across studies.  

7.2.1. Objectives and hypotheses 

The following research investigated whether males and females differed on accuracy scores on 

the MASC, a task that taps into several constructs of social cognition. Visual strategies in 

response to dynamic social interactions were also explored. 

Hypothesis 1. Females would have higher accuracy scores on the MASC compared to 

males.  
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Hypothesis 2. All participants would exhibit more and longer fixations to the eyes 

followed by the mouth and then the nose.  

Hypothesis 3. Males and females would exhibit different eye fixation patterns in 

response to the MASC stimuli. 

Hypothesis 4. There would be fixation patterns for the different subcategories of the 

MASC. 

7.2.2. Participants 

The MASC normative study was a standalone study based on a separate normative sample 

from the group with TBI and matched controls in the rest of the thesis. Forty-four participants, 

16 male (age M = 22.36, SD = 5.73), and 28 female (age M = 20.60, SD = 4.07) (overall age M 

= 21.25, SD = 4.75, range = 18-37) took part in the study. The majority of the cohort were 

undergraduate students (N =35), the remainder were recruited through a snowballing technique 

(N =9). Males and females did not differ in age (t (42) = 1.19, p = .239, d = 0.36). All 

participants had normal or corrected to normal vision which was assessed by asking the 

participant. Sheffield Hallam University ethics board approved the research. All participants 

provided written informed consent before taking part in the research.  

7.2.3. Procedure  

The MASC was presented on the Tobii T120 Eye Tracker. Participants were seated 

approximately 60-65cm away from the eye tracker screen in a stationary chair. The video was 

paused 45 times (after each different clip) and participants were asked questions about the 

characters’ feelings, thoughts or intentions using a multiple-choice format (see chapter five for 

further details regarding the MASC design and procedure). 
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7.2.4. Exploration of data 

Exploring histograms, box-plots and absolute z-scores for skewness and kurtosis, it was 

determined that the MASC behavioural accuracy data were relatively normally distributed. 

There were no outliers when raw scores were converted into z-scores with a cut-off point of 

±3.29. Levene’s test of homogeneity of variance was also non-significant for correct scores 

and the three error categories of the MASC (hypermentalizing, undermentalizing and no 

mentalizing). The eye-tracking data were examined with the same plots and tests. There were 

no outliers but there were mild to moderate violations of normality regarding skew, kurtosis 

and homogeneity of variance.  

7.2.5. Design 

A 2*(4) ANOVA was conducted to explore any differences between male and female responses 

for behavioural accuracy data of the MASC. Two 2*(3) repeated measures ANOVAs were 

conducted to investigate potential differences in fixation duration and count between males and 

females. Two further 2*(3)*(7) ANOVAs were conducted to test for potential differences in 

fixation duration and count on the subcategories of the MASC. Post-hoc corrections were 

applied to follow-up tests (α = .01).  

7.2.6. Behavioural data  

The descriptive statistics appeared to indicate that males and females exhibited similar 

accuracy and error scores on the MASC (Table 7).  
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Table 7. Descriptive statistics for males and females for the four response options during the 

MASC.  

MASC Score Male Mean (SD) Female Mean (SD) 

Correct 34.81 (3.94) 35.54 (3.27) 

Hypermentalizing 4.88 (2.63) 4.57 (2.25) 

Undermentalizing 3.63 (1.71) 3.75 (2.50) 

No mentalizing  1.69 (1.82) 1.14 (1.18) 

 

Results of the ANOVA showed no significant effect of sex on response selection (correct 

response, hypermentalizing, undermentalizing and no mentalizing), (F (3, 40) = 0.51, p = .677, 

ηp
2 = 0.04).  

7.2.7. Eye-tracking data 

7.2.7.1. Fixation duration across the MASC in seconds 

Females tended to look more at the eyes compared to males whilst males appeared to display 

longer fixation durations to the nose and mouth (Table 8).  

Table 8. Descriptive statistics for male and female fixation duration (seconds) across the three 

AOI set during the MASC.  

AOI Male Mean (SD) Female Mean (SD) 

Eyes 0.71 (0.41) 0.78 (0.49) 

Nose 0.77 (0.36) 0.69 (0.23) 

Mouth 0.81 (0.33) 0.70 (0.33) 

 

There was no significant effect of AOI, (F (1.46, 61.13) = 0.55, p = .898, ηp
2 = 0.001) on 

fixation duration, no significant interaction between AOI and sex, (F (1.46, 61.13) = 0.59, p 
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= .506, ηp
2 = 0.01) and the between-subjects test for sex was also non-significant, (F (1, 42) = 

0.69, p = .411, ηp
2 = 0.02).  

7.2.7.2. Fixation duration subcategories of the MASC in seconds 

Mean fixation duration scores for each subcategory of clips were obtained by collapsing 

together eye-tracking data for each clip tapping that construct (Table 3). Males and females 

performed similarly across all subcategories (Table 9).   

Table 9. Descriptive statistics for male and female fixation durations (seconds) across the 

subcategories of the MASC. 

MASC Score Groups Combined 

Mean (SD) 

Male Mean (SD) Female Mean (SD) 

Emotions 1.56 (0.43) 1.56 (0.36) 1.56 (0.47) 

Thoughts 0.95 (0.30) 0.94 (0.29) 0.96 (0.31) 

Intentions 1.27 (0.40) 1.29 (0.32) 1.25 (0.43) 

Warm 1.24 (0.47) 1.20 (0.39) 1.27 (0.52) 

Cold 1.03 (0.31) 1.05 (0.27) 1.01 (0.34) 

Perceptive 2.59 (0.86) 2.60 (0.78) 2.58 (0.92) 

Cognitive 2.54 (0.78) 2.63 (0.63) 2.49 (0.86) 

 

There was a significant main effect of MASC subcategory, (F (1.54, 64.46) = 292.15, p ≤ .001, 

ηp
2 = 0.87) and a significant interaction between subcategory and AOI, (F (1.88, 79.05) = 3.94, 

p = .026, ηp
2 = 0.09). There were no main effects of AOI, (F (1.46, 61.31) = 0.10, p = .842, ηp

2 

= 0.002) and the interactions between subcategory and sex, (F (1.54, 64.46) = 0.65, p = .485, 

ηp
2 = 0.02), AOI and sex, (F (1.46, 61.31) = 0.24, p = .720, ηp

2 = 0.01), and subcategory, AOI 

and sex, (F (1.88, 79.05) = 0.36, p = .688, ηp
2 = 0.01) were all non-significant. The test of 

between-subjects effects was also not significant (F (1, 42) = 0.02, p = .896, ηp
2 ≤ 0.001).  
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Results of post-hoc comparisons of subcategory were conducted with paired-samples t tests (2 

tailed) and are presented in Table 10. In brief, participants generated longer fixations to videos 

displaying emotions compared to intentions and thoughts, and to emotional compared to non-

emotional visual scenes. Simple effects tests exploring the interaction between subcategory 

and AOI found a significant difference on the emotion subcategory between fixations to eyes 

(M = 0.74, SD = 0.40) and nose (M = 0.41, SD = 0.24) (p ≤ .001), and the eyes and mouth (M 

= 0.41, SD = 0.29) (p =.003).  

Table 10. Significant post-hoc paired-samples t tests exploring the significant effect of 

subcategory in the omnibus ANOVA exploring fixation duration in seconds. 

 

Subcategory Comparison Mean difference (SD) 

(seconds) 

t 95% CI  Sig 

Emotions – Thoughts 0.61 (0.20) 20.08 0.55 – 0.67  ≤ .001 

Emotions – Intentions 0.30 (0.17) 11.90 0.25 - 0.35  ≤ .001 

Emotions – Warm 0.32 (0.14) 15.52 0.28-0.36  ≤ .001 

Emotions -  Cold 0.54 (0.19) 18.43 0.48-0.60  ≤ .001 

Emotions – Perceptive -1.02 (0.47) -14.33 -1.17 -  -0.88  ≤ .001 

Emotions -  Cognitive -0.97 (0.44) -14.82 -1.11 - -0.84  ≤ .001 

Thoughts – Intentions -0.32 (0.16) -13.52 -0.36 - -0.27  ≤ .001 

Thoughts  - Warm -0.29 (0.23) -8.30 -0.36 - -0.22  ≤ .001 

Thoughts – Cold -0.07 (0.10) -4.83 -0.11 - -0.04  ≤ .001 

Thoughts – Perceptive -1.64 (0.59) -18.43 -1.81- -1.46  ≤ .001 

Thoughts – Cognitive -1.59 (0.51) -20.44 -1.74 - -1.43  ≤ .001 

Intentions – Cold 0.24 (0.12) 13.47 0.21-0.28  ≤ .001 

Intentions - Perceptive -1.32 (0.49) -17.72 -1.47 - -1.17  ≤ .001 

Intentions - Cognitive -1.27 (0.40) -20.85 -1.40 - -1.15  ≤ .001 

Warm – Cold 0.22 (0.23) 6.40 0.15-0.29  ≤ .001 

Warm – Perceptive -1.34 (0.44) -20.17 -1.48 - -1.21  ≤ .001 

Warm – Cognitive -1.29 (0.43) -19.74 -1.43 - -1.16  ≤ .001 

Cold – Perceptive -1.56 (0.58) -17.80 -1.74 - -1.38  ≤ .001 

Cold – Cognitive -1.51 (0.49) -20.62 -1.66 - -1.36  ≤ .001 
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7.2.7.3. Fixation count across the MASC 

Females appeared to make  more fixations to the eyes, nose and mouth compared to males 

(Table 11). From the descriptive statistics, males and females seemed to exhibit  different 

fixations patterns, with females generating more fixations to the eyes than the nose and mouth 

while males made more fixation counts to the nose followed by the mouth and eyes.  

Table 11. Descriptive statistics for male and female fixation counts across the three AOI set 

during the MASC. 

 

 

 

There was no significant effect of AOI, (F (1.31, 55.00) = 0.47, p = .546, ηp
2 = 0.01), no 

significant interaction between AOI and sex, (F (1.31, 55.00) = 0.34, p = .623, ηp
2 = 0.01) and 

no significant between-subjects test for sex, (F (1, 42) = 1.56, p = .219, ηp
2 = 0.04). 

7.2.7.4. Fixation count subcategories 

The fixation count means for each subcategory was obtained by collapsing together the eye-

tracking data for each clip tapping that subcategory (Table 3). Separate analyses by sex  

indicated that females exhibited more fixations to all subcategories of the MASC compared to 

males (Table 12).  

 

 

 

 

AOI Male Mean (SD) Female Mean (SD) 

Eyes 0.93 (0.75) 1.21 (1.00) 

Nose 1.13 (0.55) 1.16 (0.49) 

Mouth 0.95 (0.49) 1.01 (0.64) 
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Table 12. Descriptive statistics for male and female fixation counts across the subcategories 

of the MASC. 

MASC Score Groups Combined 

Mean (SD) 

Male Mean (SD) Female Mean (SD) 

Emotions 3.24 (0.95) 3.01 (0.82) 3.38 (1.01) 

Thoughts 3.01 (0.84) 2.67 (0.72) 3.20 (0.87) 

Intentions 3.81 (1.15) 3.42 (1.02) 4.04 (1.17) 

Warm 3.93 (1.32) 3.54 (1.04) 4.16 (1.43) 

Cold 3.17 (0.93) 2.86 (0.80) 3.34 (0.97) 

Perceptive 7.60 (2.41) 6.76 (2.11) 8.07 (2.47) 

Cognitive 7.69 (2.24) 7.00 (2.06) 8.09 (2.28) 

Results of the analyses showed a significant main effect of subcategory, (F (1.35, 56.60) = 

357.64, p ≤ .001, ηp
2 = 0.90). The main effects of AOI was non-significant, (F (1.27, 53.47) = 

0.18, p = .735, ηp
2 = 0.004),  and the interactions between subcategory and AOI, (F (1.65, 

69.15) = 0.56, p = .540, ηp
2 = 0.01), subcategory and sex, (F (1.59, 66.96) = 2.09, p = .0.141, 

ηp
2 = 0.05), AOI and sex, (F (1.27, 53.47) = 0.29, p = .646, ηp

2 = 0.01), and subcategory, AOI 

and sex, (F (1.65, 69.15) = 0.31, p = .690, ηp
2 = 0.01) were all non-significant. The test of 

between-subjects effects was also not significant, (F (1, 42) = 0.02, p = .896, ηp
2 ≤ 0.001). 

Paired samples t tests (2 tailed) were conducted to explore the significant effect of subcategory 

and are presented in Table 13. In brief, participants made more fixation counts to videos 

displaying actors intentions compared to emotions or thoughts. Participants also elicited more 

fixations to warm (emotional) versus cold (non-emotional) scenes.   
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Table 13. Significant post-hoc paired-samples t tests exploring the significant effect of 

MASC subcategory in the omnibus fixation count ANOVA. 

Subcategory Comparison Mean difference (SD) t 95% CI Sig 

 

Emotions – Thoughts 0.24 (0.34) 4.54 0.13-0.34 ≤ .001 

Emotions – Intentions -0.57 (0.57) -6.71 -0.74 - -0.40 ≤ .001 

Emotions – Warm -0.69 (0.51) -8.92 -0.85 - -0.53 ≤ .001 

Emotions – Perceptive -4.35 (1.58) -18.30 -4.83 - -3.87 ≤ .001 

Emotions -  Cognitive -4.45 (1.53) -19.30 -4.91 - -3.98 ≤ .001 

Thoughts – Intentions -0.81 (0.50) -10.63 -0.96 - -0.65 ≤ .001 

Thoughts  - Warm -0.93 (0.59) -10.38 -1.11 - -0.75 ≤ .001 

Thoughts – Cold -0.16 (0.33) -3.24 -0.26 - -0.06 .002 

Thoughts –Perceptive -4.59 (1.62) -18.81 -5.08 - -4.10 ≤ .001 

Thoughts – Cognitive -4.68 (1.53) -20.35 -5.15 - -4.22 ≤ .001 

Intentions – Cold 0.65 (0.36) 12.00 0.54-0.76 ≤ .001 

Intentions – Perceptive -3.78 (1.35) -18.64 -4.19 - -3.37 ≤ .001 

Intentions –Cognitive -3.87 (1.14) -22.59 -4.22 - -3.53 ≤ .001 

Warm –Cold 0.77 (0.67) 7.62 0.56-0.97 ≤ .001 

Warm –Perceptive -3.66 (1.24) -19.61 -4.04 - -3.29 ≤ .001 

Warm – Cognitive -3.76 (1.34) -18.55 -4.16 - -3.35 ≤ .001 

Cold – Perceptive -4.43 (1.57) -18.73 -4.90 - -3.95 ≤ .001 

Cold – Cognitive -4.52 (1.38) -21.74 -4.94 - --4.10 ≤ .001 

 

In summary, findings showed no significant effect of sex on response selection on the MASC. 

The eye-tracking data indicated that there were no sex differences for the number or duration 

of fixations exhibited by males and females. There were significant interactions between the 

subcategories of the MASC and AOI on the emotion category, with both males and females 

displaying longer fixations on the eyes compared to the nose and mouth. Furthermore, the 

significant effect of subcategory signifies that clips incorporating different elements of social 

cognition produced different fixation durations and counts, suggesting that the task may be 
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sensitive to these additional socio-cognitive distinctions (although these were not different as 

an effect of sex). 

7.2.8. Discussion 

This normative study investigated early visual processing in young males and females using an 

eye-tracking methodology in conjunction with the MASC.  Research exploring potential sex 

differences in early attentional and visual processing in response to social stimuli is limited. 

Understanding the initial stage of social cognition, i.e. social perception, is imperative as 

disparities during this stage of the processing could explain sex differences in upstream 

cognitive processes that are often reported in the literature.  

Males and females generated similar accuracy scores on the MASC and the tendency to 

hypermentalize, undermentalize, or show an absence of ToM inferences was not statistically 

different between the two groups. These findings do not support the theory that females possess 

superior mindreading and emotion perception compared to males (Wacker et al., 2017; 

Wingenbach et al., 2018). Moreover, the current research established no significant differences 

between male and female visual strategies when watching the MASC.  This finding remained 

true even when the MASC data were segregated into the seven subcategories and behavioural 

errors were quantified into the separate response options.  

Interestingly, there was no main effect of AOI and descriptive data revealed equivalent fixation 

duration for the eyes, nose and mouth with all data collapsed across the entire MASC. This 

finding was unexpected as the majority of eye-tracking evidence suggests that humans exhibit 

significantly longer dwell times on the eyes compared to other facial features (Guo & Shaw, 

2015; Laidlaw & Kingstone, 2017; Wells, Gillespie & Rotshtein, 2016). This result may have 

occurred as previous research is heavily based on static stimuli which are documented to elicit 

differential fixation patterns compared to dynamic displays of emotions (Stoesz & Jakobson, 
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2013; Blais et al., 2017). It should be noted that the descriptive statistics indicated a potential 

difference in fixation duration patterns between the two groups. Males spent longer looking at 

the mouth, nose then eyes while females had longer dwell times on the eyes than the mouth 

and nose, although these differences were not large enough to reach statistical significance. 

Nevertheless, this pattern mirrors that of Vassallo et al., (2009) who reported that males spent 

significantly more time viewing the nose and mouth.  

The subcategory analyses indicated that there were disparate fixation durations across the 

subcategories, although this was not related to sex differences. Fixation duration latency was 

longer for both groups on combined clips thought to measure perceptive (non-verbal) and 

cognitive (verbal) components of social cognition during the MASC. The shortest fixation 

durations were recorded for clips measuring thoughts about others and on cold (non-emotional) 

clips. All participants displayed longer fixation durations on the eyes compared to the nose and 

mouth on clips thought to index the emotion subcategory. Social judgements and behaviours 

are complex and dynamic and research exploring the visual strategies underpinning the 

different dimensions of social cognition (e.g. recognising emotions vs. interpreting thoughts) 

is limited. Conceivably, social perception and cognition rely on an amalgamation of bottom-

up and top-down processes which, in turn, could result in disparate visual strategies. Bottom-

up processing is theorised to be rapid and unconscious, driven by saliency to sensory input in 

the environment (Theeuwes, 2010). For example, emotion perception is believed to be largely 

automatic and driven by bottom-up processing (Carretié, Hinojosa, Martín -Loeches, Mercado 

& Tapia, 2004). Top-down processing is theorised to be slower compared to bottom-up 

processing and relies on previous experiences, learned expectations and social context, which, 

consecutively, shape future behaviour/decisions. Top-down processes are primarily conscious, 

under the control of the individual (Theeuwes, 2010), and mediate higher-order social 

cognition abilities, such as ToM judgements, as well as potentially playing a role in the 
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modulation of social perception (Cook, Barbalat & Blakemore, 2012). One possible 

explanation for the current finding is that the human visual-attention system is innately drawn 

to emotive stimuli, which is usually portrayed by facial expressions (Croker & McDonald, 

2005; Frith, 2009; Jack & Schyns, 2015). Rapidly decoding and reacting to mood states more 

than likely has evolutionary benefits (e.g. self-preservation).  

There was no significant effect of AOI for fixation count with participants generating similar 

counts to the eyes, nose and mouth, although the mouth AOI was viewed least compared to the 

eyes and nose. When the analysis included the subcategories of the MASC, all participants 

displayed greater fixation counts during perceptive (non-verbal) and cognitive (verbal) clips. 

Similar to fixation duration, results of post-hoc analyses demonstrated that subcategory of clips 

could be distinguished based on fixation counts.  

Essentially, the data from this initial normative study demonstrated that all participants, 

regardless of sex, exhibited different visual strategies for most of the MASC subcategories. Of 

fundamental importance is the current data demonstrated that the MASC reliably differentiates 

between socio-cognitive variables and induces contrasting visual strategies for fixation count 

and duration to facial features. This result underscores the benefits of utilising eye-tracking 

methodologies during the exploration of the subtle boundaries between emotion and cognition. 

Furthermore, the findings highlight the need for future research to take into consideration these 

bottom-up and top-down processes when exploring social cognition in normative and clinical 

cohorts.    

A potential limitation of this introductory study is the ability of the analyses to detect small, 

possibly subtle, behavioural and/or eye-tracking differences between males and females. 

Whilst the study may have been powered to detect large or moderately sized differences, it may 

not have been powered to detect small differences. If subtle differences exist between males 
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and females, which may impact on social behaviour, then this needs to be addressed in future 

research.  

In summary, there appeared to be no significant sex differences between males and females on 

the MASC in terms of ToM judgements and fixation patterns. Participants did elicit contrasting 

gaze patterns in response to the subcategories of the MASC suggesting diversity in visual 

attention during distinct social cognition demands/domains. These findings emphasise the 

necessity of evaluating each stage of social cognition processing. Russell et al., (2007) 

recommended that task-specific demands need to be considered when drawing conclusions 

about sex differences on social cognition tasks. The MASC was chosen for the current research 

as the task-specific demands were considered more ecologically valid compared to other social 

cognition assessments (Dziobek et al., 2006). Nevertheless, the current normative study 

investigated both low-level (visual processing) and higher-level (ToM) abilities and found no 

sex differences. This raises the question as to why some studies have found sex differences on 

social cognition assessments and whether these differences are generalisable to real-world 

settings. The ability to perceive, process and respond to verbal and non-verbal aspects of social 

cognition is vital for everyday functioning and is often impaired after brain injury (Barker, 

Andrade, Romanowski, Morton & Wasti, 2005). The normative study data informed the main 

patient by supporting the hypothesis that the MASC assessment was sensitive to different 

emotional and social contexts as shown by disparate gaze patterns in response to the MASC 

subcategories.  

7.3. MASC TBI Study 

There is some evidence from eye-tracking research of correlations between TBI and abnormal 

gaze patterns in response to social stimuli (Adolphs et al., 2005, Vassallo et al., 2010; Wolf 

et al., 2015), although most of this evidence comes from the use of static stimuli which lacks 
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ecological validity. The present study compared fixation patterns and mindreading abilities of 

a TBI and matched-control group on the MASC. The MASC has been deemed a valuable and 

ecologically valid measure of social cognition (Dziobek et al., 2006; Lahera et al., 2013) and 

is now widely used to assess social cognition in a range of clinical populations including 

individuals with Asperger's syndrome (Dziobek et al., 2006; Lahera et al., 2013), borderline 

personality disorder (Preißler, Dziobek, Ritter, Heekeren & Roepke, 2013; Sharp et al., 2011), 

and schizophrenic and bi-polar populations (Neuhaus, 2013). Despite its reliability and 

prevalence in other research fields, the MASC has not been used in the TBI literature hence 

the normative study undertaken to establish task parameters, reliability and sensitivity.  

7.3.1. Objectives and hypothesis  

The experiment investigated the differences in visual scanning behaviour between a TBI and 

matched-control cohort in response to the MASC.     

Hypothesis 1. The group with TBI would exhibit significantly fewer and shorter 

fixation to AOI, particularly the eyes, compared to the control group.  

Hypothesis 2. TBI participants would produce significantly fewer correct answers on 

the MASC compared to controls and also score higher on the three error categories.  

Hypothesis 3. It was hypothesised that different subcategories of the MASC would 

elicit different fixation patterns in both the TBI and control groups.  

7.3.2. Exploration of data 

Exploring histograms, box-plots and absolute z-scores for skewness and kurtosis, the MASC 

behavioural data was relatively normally distributed with one outlier (z score=3.34) on the 

hypermentalizing condition. Levene’s test of homogeneity of variance was non-significant for 
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the three error categories of the MASC. Eye-tracking data were examined following the same 

procedure. There was one outlier in the following conditions; fixation duration mouth across 

the whole MASC (z score= -3.37), intentions fixation duration mouth (z score= 3.36), warm 

fixation duration eye (z score= 3.39), cold fixation duration eye (z score= 3.78), and cold 

fixation count eye (z score= 3.45). There were mild to moderate violations of normality 

regarding skew, kurtosis and homogeneity of variance for all eye-tracking indices.    

7.3.3. Design 

A 2*(4) ANOVA was conducted to explore putative differences between TBI and control 

responses for behavioural data of the MASC. Two 2*(3) repeated measures ANOVAs were 

conducted to investigate potential differences in fixation duration and count between the TBI 

and control groups. Two further 2*(7)*3 ANOVAs were conducted to test for differences in 

fixation duration and count on the subcategories of the MASC. pots-hoc corrections were 

applied to all follow-up tests (α = .01).  

7.3.4. Behavioural data  

As demonstrated in Table 14, the descriptive statistics indicated that the group with individuals 

affected by TBI had lower accuracy scores and higher error scores on the MASC compared to 

the control group. Statistical analyses were conducted to determine if these differences were 

significant.  
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Table 14. Descriptive statistics for the MASC accuracy scores for TBI and control groups, 

including the three error categories.  

MASC Score TBI Mean (SD) Control Mean (SD) 

Correct 28.11 (5.66) 34.28 (4.38) 

Hypermentalizing 7.39 (4.09) 4.89 (2.42) 

Undermentalizing 6.94 (2.60) 3.56 (1.95) 

No mentalizing 2.56 (1.95) 2.22 (1.48) 

 

Results of the ANOVA showed a significant effect of group on response selection (correct 

response, hypermentalizing, undermentalizing and no mentalizing) (F (4, 31) = 7.23, p ≤ .001, 

ηp
2 = 0.48). Separate univariate ANOVAs on the response variables revealed significant 

differences between the TBI and control groups on the MASC correct, (F (1, 34) = 13.39, p 

= .001, ηp
2 = 0.28), and undermentalizing responses, (F (1, 34) = 19.59, p ≤ .001, ηp

2 = 0.37). 

When post-hoc correction was applied, the hypermentalizing response was non-significant, (F 

(1, 34) = 4.98, p = .032, ηp
2 = 0.13). The no mentalizing condition was also non-significant (F 

(1, 34) = 0.34, p = .567, ηp
2 = 0.01).   

7.3.5. Eye-tracking data 

7.3.5.1. Fixation Duration across the MASC in seconds 

The group with TBI appeared to have shorter fixation durations to the eyes and nose compared 

to controls while both groups displayed similar fixation durations to the mouth (Table 15).  

 

Table 15. Descriptive statistics for the TBI and control group for fixation duration across the 

MASC in seconds. 
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AOI TBI Mean (SD) Control Mean (SD) 

Eyes 0.16 (0.20) 0.35 (0.36) 

Nose 0.24 (0.15) 0.35 (0.23) 

Mouth 0.43 (0.22) 0.42 (0.29) 

 

The analysis showed a significant main effect of AOI, (F (1.51, 51.16) = 4.04, p = .034, ηp
2 = 

0.11) but the interaction between AOI and group was not significant, (F (1.51, 51.16) = 1.24, 

p = .290, ηp
2 = 0.04). The tests of between-subjects effects was also significant, (F (1, 34) = 

5.61, p = .024, ηp
2 = 0.14) with the control group exhibiting significantly longer fixation 

durations (M= 1.11, SD= 0.40) compared to the TBI group (M= 0.82, SD= 0.33). 

To explore the significant main effect of AOI, three paired samples t tests were conducted. 

When the post-hoc correction was applied, the difference between the eyes and the nose, (t (35), 

-0.80, p= .43, d=0.36, CI= -0.14-0.06), the eyes and mouth, (t (35), -2.15, p= .038, d= 0.13, 

CI=-0.33- -0.01) and the nose and mouth, (t (35), -2.35, p= .025, d= 0.39, CI= -0.24- -0.02), 

were all non-significant.  
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Graph 1. Estimated marginal means for fixation duration across the three AOI of 

the MASC 

 

7.3.5.2. Fixation duration subcategories 

The fixation duration means for each subcategory was obtained by collapsing together eye-

tracking data for each clip tapping that subcategory (Table 3). Descriptive statistics in Table 

16 indicated that the group affected by TBI generated shorter fixation durations to all three 

AOI across all of the subcategories. Inferential statistics were conducted to determine if this 

difference was significant.  

The analysis showed a significant main effect of subcategory, (F (1.83, 62.08) = 15.16, p 

≤ .001, ηp
2 = 0.31) but no significant effect for AOI, (F (1.62, 55.05) = 3.35, p= .052, ηp

2 = 

0.09). The interaction between subcategory and AOI was significant, (F (2.38, 80.75) = 4.18, 

p= .014, ηp
2 = 0.11) and was investigated further by evaluating the simple main effects of AOI 
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for each of the subcategories. When the post-hoc correction was applied, the only significant 

differences were between the eyes (M= 0.18, SE= 0.35) and the mouth (M= 0.36, SE= 0.35) 

on the cold condition (p= .004) and the nose (M= 0.22, SE= 0.03) and the mouth on the cold 

condition (p= .003). The interactions between subcategory and group, (F (1.83, 62.08) = 1.44, 

p= .245, ηp
2 = 0.04), AOI and group, (F (1.62, 55.05) = 1.09, p= .333, ηp

2 = 0.03) and 

subcategory, AOI and group, (F (2.38, 80.75) = 1.21, p= .309, ηp
2 = 0.03) were not significant. 

The tests of between-subjects effects was significant, (F (1, 34) = 5.95, p= .020, ηp
2 = 0.15) 

with the control participants initiating longer fixation durations (M= 7.10, SD= 2.94) compared 

to the TBI participants (M= 5.00, SD= 2.20). Post-hoc comparisons of subcategory were 

conducted with paired samples t tests (2 tailed) and are presented in Table 17. In sum, 

participants made longer fixation durations to videos displaying emotions compared to 

thoughts or intentions. They also made longer fixations to videos displaying warm (emotional 

items) compared to cold (non-emotional items) and perceptive compared to cognitive 

interactions.  
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Table 16. Descriptive statistics for the TBI and control group for fixation duration across AOI 

and subcategory of the MASC.  

MASC Score Groups combined  

Mean (SD) 

TBI Mean (SD) Control Mean (SD) 

Emotions 

   Overall 

   Eyes 

   Nose 

   Mouth 

1.00 (0.45)  

0.82 (0.36) 

0.16 (0.22) 

0.24 (0.15) 

0.42 (0.21) 

 

1.19 (0.45) 

0.35 (0.39) 

0.39 (0.28) 

0.45 (0.32) 

Thoughts 

   Overall 

   Eyes 

   Nose  

   Mouth 

0.78 (0.30)  

0.66 (0.27) 

0.12 (0.12) 

0.19 (0.12) 

0.35 (0.21) 

 

0.91 (0.28) 

0.30 (0.30) 

0.28 (0.18) 

0.33 (0.23) 

Intentions 

   Overall 

   Eyes 

   Nose  

   Mouth 

0.82 (0.44)  

0.69 (0.34) 

0.15 (0.18) 

0.25 (0.16) 

0.30 (0.13) 

 

0.96 (0.49) 

0.31 (0.33) 

0.32 (0.22) 

0.34 (0.12) 

Warm 

   Overall 

   Eyes 

   Nose  

   Mouth 

0.99 (0.43)  

0.81 (0.34) 

0.15 (0.18) 

0.26 (0.16) 

0.40 (0.20) 

 

1.17 (0.44) 

0.38 (0.38) 

0.38 (0.25) 

0.40 (0.28) 

Cold 

   Overall 

   Eyes 

   Nose  

   Mouth 

0.76 (0.30)  

0.65 (0.27) 

0.12 (0.12) 

0.18 (0.13) 

0.35 (0.18) 

 

0.87 (0.30) 

0.24 (0.27) 

0.26 (0.18) 

0.37 (0.24) 

Perceptive 

   Overall 

   Eyes 

   Nose  

   Mouth 

0.89 (0.56)  

0.71 (0.43) 

0.16 (0.23) 

0.26 (0.19) 

0.28 (0.12) 

 

1.07 (0.62) 

0.34 (0.36) 

0.36 (0.26) 

0.37 (0.14) 

Cognitive 

   Overall 

   Eyes 

   Nose  

   Mouth 

0.79 (0.43)  

0.65 (0.34) 

0.15 (0.20) 

0.22 (0.15) 

0.28 (0.13) 

 

0.93 (0.47) 

0.29 (0.32) 

0.31 (0.22) 

0.32 (0.16) 
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Table 17. Significant post-hoc paired-samples t tests exploring the significant effect of 

subcategory in the omnibus ANOVA exploring fixation duration in seconds. 

Subcategory Comparison Mean difference (SD) t value 95% CI Sig 

 

Emotions – Thoughts 0.22 (0.19) 6.89 0.16-0.29 ≤ .001 

Emotions – Intentions 0.18 (0.23) 4.84 0.11-0.26 ≤ .001 

Emotions -  Cold 0.24 (0.21) 6.99 0.17-0.31 ≤ .001 

Emotions -  Cognitive 0.22 (0.21) 6.21 0.15-0.29 ≤ .001 

Thoughts  - Warm -0.21 (0.18) -6.99 -0.27- -0.15 ≤ .001 

Intentions – Warm -0.17 (0.21) -4.73 -0.24- -0.10 ≤ .001 

Intentions –Cognitive 0.03 (0.04) 4.84 0.02-0.05 ≤ .001 

Warm –Cold 0.23 (0.20) 6.77 0.16-0.30 ≤ .001 

Warm – Cognitive 0.200 (0.20) 6.06 0.13-0.27 ≤ .001 

Perceptive – Cognitive 0.10 (0.17) 3.63 0.04-0.16 ≤.001 

 

Note: See Table 16 for means and SD.  

7.3.5.3. Fixation count across the MASC  

The group with TBI appeared to generate fewer fixations to the eyes and nose compared to 

controls while both groups displayed similar numbers of fixations to the mouth (Table 18).  

Table 18. Descriptive statistics for fixation count across the MASC.  

AOI TBI Mean (SD) Control Mean (SD) 

Eyes 0.46 (0.40) 1.26 (1.10) 

Nose 0.87 (0.46) 1.24 (0.73) 

Mouth 1.23 (0.63) 1.21 (0.68) 

 

The analysis showed a non-significant main effect of AOI, (F (1.43, 48.60) = 2.41, p = .115, 

ηp
2 = 0.07) and no interaction between AOI and group, (F (1.43, 48.60) = 3.06, p = .072, ηp

2 = 

0.08). The tests of between-subjects effects was significant, (F (1, 34) = 7.60, p = .009, ηp
2 = 
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0.18) with the control group exhibiting significantly more fixations (M= 3.71, SD= 1.48) 

compared to the TBI group (M= 2.56, SD= 0.97). 

Graph 2. Estimated marginal means for fixation count across the three AOI of the 

MASC.  

 

 

7.3.5.4. Fixation count subcategories 

The fixation count means for each subcategory was obtained by collapsing together eye-

tracking data for each clip tapping that subcategory (Table 3). Descriptive statistics in Table 

19 seemed to indicate  that control participants exhibited more fixations to the eyes and nose 

compared to the TBI participants but both groups made similar numbers of fixations to the 

mouth. All participants appeared to generate a greater number of fixations to the mouth, then 

the nose and eyes.  
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The analysis showed a significant main effect of subcategory, (F (1.86, 63.11) = 17.68, p 

≤ .001, ηp
2 = 0.34). The effect for AOI was not significant, (F (1.53, 51.98) = 3.04, p= .070, 

ηp
2 = 0.08). The interaction between subcategory and AOI was significant, (F (2.44, 83.06) = 

2.90, p= .050, ηp
2 = 0.08) and was investigated further by evaluating the simple main effects 

of subcategory separately for the three AOI. When the post-hoc correction was applied, none 

of the pairwise comparisons were significant, but the difference between the eyes (M= 0.62, 

SE= 0.10) and the mouth (M= 1.03, SE= 0.09) on the cold condition was reaching significance 

(p= .012). The interactions between subcategory and group, (F (1.86, 63.11) = 2.35, p= .108, 

ηp
2 = 0.07), AOI and group, (F (1.53, 51.98) = 3.10, p= .066, ηp

2 = 0.08) and subcategory, AOI 

and group, (F (2.44, 83.06) = 2.19, p= .108, ηp
2 = 0.06) were not significant. The tests of 

between-subjects effects was significant, (F (1, 34) = 8.02, p= .008, ηp
2 = 0.19) with control 

participants initiating more fixation counts (M= 23.53, SD= 10.55) compared to the TBI 

participants (M= 15.40, SD= 6.09). Post-hoc comparisons of subcategory were conducted with 

paired samples t tests (2 tailed) and are presented in Table 20. In brief, participants made more 

fixations to videos displaying emotions compared to thoughts or intentions, and to emotional 

compared to non-emotional displays.  
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Table 19. Descriptive statistics for fixation count across AOI and subcategory. 

MASC Score Groups Combined 

Mean (SD) 

TBI Mean (SD) Control Mean (SD) 

Emotions 

   Overall 

   Eyes 

   Nose 

   Mouth 

3.08 (1.46)  

2.49 (1.03) 

0.42 (0.38) 

0.86 (0.51) 

1.22 (0.59) 

 

3.66 (1.62) 

1.21 (1.09) 

1.30 (0.85) 

1.16 (0.68) 

Thoughts 

   Overall 

   Eyes 

   Nose  

   Mouth 

2.51 (1.00)  

2.04 (0.75) 

0.37 (0.30) 

0.72 (0.34) 

0.96 (0.59) 

 

2.97 (1.03) 

0.98 (0.83) 

0.98 (0.55) 

1.00 (0.55) 

Intentions 

   Overall 

   Eyes 

   Nose  

   Mouth 

2.66 (1.46)  

2.07 (0.92) 

0.39 (0.34) 

0.81 (0.44) 

0.87 (0.36) 

 

3.26 (1.67) 

1.09 (0.99) 

1.12 (0.65) 

1.05 (0.40) 

Warm 

   Overall 

   Eyes 

   Nose  

   Mouth 

3.26 (1.51)  

2.64 (1.07) 

0.49 (0.40) 

0.93 (0.52) 

1.22 (0.60) 

 

3.88 (1.65) 

1.31 (1.12) 

1.37 (0.85) 

1.21 (0.65) 

Cold 

   Overall 

   Eyes 

   Nose  

   Mouth 

2.43 (1.01)  

2.01 (0.71) 

0.35 (0.26) 

0.64 (0.33) 

1.01 (0.52) 

 

2.85 (1.11) 

0.89 (0.78) 

0.91 (0.52) 

1.05 (0.53) 

Perceptive 

   Overall 

   Eyes 

   Nose  

   Mouth 

2.84 (1.77)  

2.09 (1.06) 

0.41 (0.36) 

0.88 (0.53) 

0.82 (0.34) 

 

3.58 (2.04) 

1.19 (1.08) 

1.23 (0.75) 

1.17 (0.51) 

Cognitive 

   Overall 

   Eyes 

   Nose  

   Mouth 

2.69 (1.47)  

2.06 (0.92) 

0.39 (0.36) 

0.79 (0.43) 

0.88 (0.36) 

 

3.33 (1.66) 

1.12 (1.00) 

1.14 (0.66) 

1.06 (0.41) 

Note: Overall refers to the three AOI (eyes, nose, mouth) combined.  
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Table 20. Significant post-hoc paired-samples t tests exploring the significant effect of 

subcategory in the omnibus ANOVA exploring fixation count. 

Subcategory Comparison Mean difference (SD) t 95% CI Sig 

 

Emotions – Thoughts 0.57 (0.62) 5.51 0.36-0.78 ≤ .001 

Emotions – Intentions 0.41 (0.54) 4.58 0.23-0.60 ≤ .001 

Emotions – Warm -0.18 (0.16) -7.01 -0.23- -0.13 ≤ .001 

Emotions -  Cold 0.65 (0.58) 6.63 0.45-0.84 ≤ .001 

Emotions -  Cognitive 0.39 (0.50) 4.59 0.21-0.56 ≤ .001 

Thoughts  - Warm -0.75 (0.62) -7.30 -0.96- -0.54 ≤ .001 

Intentions – Warm -0.59 (0.56) -6.43 -0.78- -0.41 ≤ .001 

Warm –Cold 0.83 (0.59) 8.40 0.63-1.03 ≤ .001 

Warm –Perceptive 0.42 (0.63) 3.98 0.21-0.63 ≤ .001 

Warm – Cognitive 0.57 (0.53) 6.40 0.39-0.75 ≤ .001 

 

7.3.5.5. Correlations 

When the groups were combined, Spearman’s rank-order correlations suggested that there were 

no significant correlations between the behavioural scores (correct and errors) on the MASC 

and eye-tracking metrics (r’s ≤ 0.32, p ≥ .055). When the groups were separated, Spearman’s 

rank-order correlations suggested that there were no significant correlations between the 

behavioural scores (correct and errors) on the MASC and eye-tracking metrics (r’s ≤ 0.43, p 

≥ .072) for the group with TBI but there were significant correlation between MASC ‘no 

mentalizing’ errors and fixation duration (r = .74, p ≥ .001) and counts (r= .67, p= .002) to the 

nose.  

7.3.6. Discussion  

Individuals affected by TBI scored significantly lower on the MASC correct responses and 

significantly higher on the undermentalizing responses compared to the control group. This 
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finding is consistent with previous research that has reported mindreading impairments in 

groups living with the effects of TBI (Bibby & McDonald, 2005; Fazaeli, Yazdi, Sharifi, 

Sobhani-Rad & Ehsaei, 2018). It further suggests that individuals with TBI tend to 

undermentalize, that is, they produce insufficient mental state attributions compared to 

excessive or no mental state attributions. This finding is important and indicates that it may be 

over-simplistic to report that TBI can result in general mindreading deficits. Indeed, the group 

with TBI did not differ from the control group on the no mentalizing condition. This implied 

that the group with TBI could understand the characters internal mental states and used this 

knowledge to interpret behaviour but they had difficulty using this knowledge to activate 

relational-emotional internal representations. The current results suggest that TBI attenuates or 

blunts mindreading abilities rather than destroying them or exaggerating them.  

Dissociation between hypermentalizing and undermentalizing is also reported in other clinical 

populations and may be related to the conditions symptomology. One illustration is the 

disparity on mindreading tasks between schizophrenic and borderline personality disorder 

(BPD) groups. While individuals with schizophrenia are reported to generate more 

undermentalizing errors, individuals with BPD generate more hypermentalizing errors 

(Andreou et al., 2015; Sharp et al., 2013; Vaskinn et al., 2015). These findings are in line with 

the typical characteristics of the conditions. For instance, schizophrenic cohorts frequently 

exhibit below-average social cognition abilities, e.g. facial affect recognition impairments 

(Grave, Soares, Martins & Madeira, 2017; Yildirim, Yalinçetin, Sevilmis, Kutay & Alptekin, 

2018) while BPD cohorts are documented to exhibit excessive social responses, e.g. often 

evaluating others as malevolent (Scott, Levy, Adams & Stevenson, 2011) and presenting as 

hypervigilant (Sieswerda, Arntz, Mertens & Vertommen, 2007).  
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Peyroux et al., (2019) reported that schizophrenic individuals who were experiencing positive 

symptoms (e.g. hallucinations, delusions) were more likely to hypermentalize while negative 

symptoms (e.g. apathy, blunted emotions) corresponded to undermentalizing errors. The 

authors theorised that the different categories of ToM errors are dependent on the clinical 

characteristics of the condition and stressed the necessity of measuring symptoms concerning 

cognitive functioning. Naturally, the distinction between a lack of mentalizing, 

hypermentalizing and undermentalizing could have potential ramifications for appropriate 

post-TBI mindreading assessments and interventions and calls for the development of more 

sophisticated resources. 

One ambiguity of the MASC concerns the interchangeable use of the terms social cognition, 

ToM, mentalizing and mindreading. Although some of the core concepts are similar for the 

aforementioned terms, it has been argued that at least ToM and mentalizing are distinct 

psychological abilities in terms of theoretical conceptualisations, research findings and clinical 

presentation (Górska & Marszał, 2014). The original test authors refer to the MASC as a 

mindreading tool and a video-based instrument for the assessment of social cognition (Dziobek 

et al., 2006). During the Spanish validation of the MASC, the authors refer to the error 

differentiations as; excessive ToM, reduced ToM and total absence of mental inference (Lahera, 

de Salut Mar, Boada & Nozaleda, 2014) but the terms undermentalizing and overmentalizing 

were also included. Indeed, ToM and mindreading appear to be synonymous in some articles, 

for instance, Turner and Felisberti (2017) recently reported that mindreading could also be 

referred to as ToM.  

ToM has been defined as the capability to accurately attribute mental states to others to 

understand and predict social behaviour (Baron-Cohen, Golan, Chakrabarti & Belmonte, 2008). 

ToM requires the understanding that beliefs can influence behaviour and that this 
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understanding or perspective must be adopted to predict what will happen. First-order mental 

states include thoughts such as ‘he thinks’ while second-order mental states include thoughts 

such as ‘he thinks she thinks’(Coull, Leekam & Bennett, 2006). ToM is most traditionally 

measured through false belief paradigms where participants are required to understand that 

others may have different mental states from themselves and may, therefore, hold a false belief 

(Wimmer & Perner, 1983). One example is the Sally-Anne test (Baron-Cohen, Leslie & Frith, 

1985) where a participant is shown a cartoon of Sally hiding a marble in a basket. Sally then 

leaves the room and while she is out Anne moves Sally marble into another box. Sally then 

comes back into the room and the participant is asked where they think Sally will look for the 

marble. Fonagy and Gergely (2007) criticised the traditional definition of ToM as being too 

narrow, specifically in regards to the relational and emotional components of understanding 

others behaviour and, therefore, attempts have been made to distinguish affective and cognitive 

ToM (Kalbe et al., 2007, 2010). 

In their recent paper, Wacker et al., (2017) defined mindreading as the social-cognitive capacity 

to infer other people’s emotions, cognitions and mental states. Within the mindreading 

umbrella, they included ‘affective processes’ such as facial affect recognition and empathy and 

‘cognitive processes’ such as the attribution of thoughts and intentions, referred to as ToM, and 

understanding faux pas. Turner and Felisberti (2017) referred to mindreading as the ability to 

attribute mental states, including thoughts, intentions and emotions, to oneself and other people. 

They too divided mindreading into cognitive and affective components, outlined how these 

were dissociable at a neural level, and reported that they could be implicit (e.g. eye gaze) or 

explicit (e.g. mental state reasoning). As well as understanding the mental states of others, 

mentalizing also involves the regulation and transference of one’s emotions (Górska & Marszał, 

2014). Mentalizing can be defined as a reflection on imaginative affective mental states, 

allowing humans to understand the behaviour of other people concerning their intentions, goals 
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and desires (Fonagy & Luyten, 2009; Wyl, 2014). It is thought that by understanding other 

people’s intentions, feelings and beliefs, one can regulate their own emotions, possibly through 

the mirror neuron system (Sperduti, Guionnet, Fossati & Nadel, 2014). Inconsistencies also 

exist with mindreading assessments. For example, the Reading the Mind in the Eyes Test 

(RMET) is often cited as a traditional mindreading task where, in fact, Oakley, Brewer, Bird 

and Catmur (2016) convincingly argued that it is an emotion perception task. This distinction 

is significant as it could be theorised that individuals who perform poorly on the RMET could 

potentially be able to understand others mental states, and on the contrary, individuals who 

perform well could potentially display impairments in understanding mental states. Although 

it could be argued that emotion recognition is moderately related to mindreading tasks there 

are clinical dissociations between the two processes lending support to the proposal that 

emotion recognition and mental state inference are discrete cognitive processes (Mitchell & 

Phillips, 2015). 

The group affected by TBI exhibited significantly fewer and shorter fixation durations to the 

three AOI compared to the control group across the entire MASC. This demonstrated that the 

individuals living with TBI generated less attention to the salient areas of the visual scene 

compared to the control group. Nevertheless, there did not appear to be a relationship between 

eye scanning patterns and the number of errors on the MASC for the group with TBI, thus 

suggesting that abnormal social perception (i.e. fixation patterns) does not account for 

impairments in mindreading abilities post-TBI. Interestingly, there were correlations between 

no mentalizing errors and fixation duration and counts to the nose in the control group. As the 

nose is argued to provide fewer diagnostic cues for how or what someone is feeling, compared 

to the eyes and mouth (Calvo et al., 2018; Eisenbarth & Alpers, 2011;  Schurgin et al., 2014), 

it is unsurprising that more and longer fixations to the nose are related to increased errors. It 
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appears that if control participants were unable to gather the necessary cues to determine mood 

state, they defaulted to non-mentalizing, rather than hyper or undermentalizing.   

Exploration of the descriptive statistics revealed that both groups seemed to generate  longer 

fixation durations on the mouth compared to the eyes and the nose. Although the follow-up 

tests for fixation duration on AOI were non-significant when the post-hoc correction was 

applied, this is worth noting as the pattern is aberrant compared to typical face scanning patterns 

(Guo & Shaw, 2015; Keil, 2009; Laidlaw & Kingstone, 2017; Wells, Gillespie & Rotshtein, 

2016). This raises concerns regarding the confounding variable of the MASC being dubbed 

into English and the reliability of employing the assessment in conjunction with eye-tracking 

technology.  

The subcategories of the MASC elicited disparate fixation durations for the three AOI (eyes, 

nose, mouth), although this was not related to group differences. When the groups were 

combined, participants had more and longer fixation durations to the mouth compared to the 

eyes and nose during the cold condition. This could be associated with the fact that cold items 

rely on verbal compared to emotional cues and thus attention is drawn to the mouth to process 

speech. However, it could also be the result of dubbing. Fixation duration and count was longer 

for both groups on combined clips thought to measure emotions and warm processes during 

the MASC. The fewest and shortest fixation durations were recorded for clips measuring 

thoughts about others and on cold (non-emotional) clips. These findings mirror data from the 

normative study and may result from the evolution of the human visual system to implicitly 

generate more and longer fixation counts to emotive stimuli for self-preservation.  

7.4. Overall Discussion  

Originally, the MASC was made in German and has subsequently been dubbed into English. 

Although Dziobek et al., (2006) reported that dubbing did not interfere with participant’s task 
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focus, and Koolstra et al., (2002) proposed that dubbing does not affect information processing, 

this artefact could still be considered a confounding variable. Several participants from both 

the normative and clinical studies commented on the dubbing and how the video and sound 

were discordant. While the dubbing may not have a considerable effect on behavioural data 

(Perego, Orrego-Carmona & Bottiroli, 2016) eye-tracking data may be more sensitive to this 

incongruence and may have altered the viewer’s visual and cognitive processing strategies. 

There is an interaction between auditory and visual information during speech production and 

interference with this process can cause confusion. A prime example of this is the McGurk 

effect where a voice pronounces a consonant and a dubbed face mouths another consonant 

leading to the perception of a third sound (McGurk and Macdonald, 1976). Poorly synchronised 

audio and video can also create a ‘pop-out’ effect where the viewer’s attention is drawn to the 

speaker’s mouth (Smith, Batten & Bedford, 2014). One concern with employing the MASC 

was that participant’s visual attention may have been implicitly drawn to the mouth AOI due 

to the dubbing. During the normative study, participants generated fewer fixations to the mouth 

compared to the eyes and nose. However, fixation durations to the mouth were longer 

compared to the eyes and nose. The clinical findings revealed that participants elicited more 

and longer fixations to the mouth. Therefore, it is difficult to disentangle whether results are 

based on typical visual strategies or whether the confounding variable of dubbing altered gaze 

patterns. This could explain why the typical triangular model of eye movements, known as a 

‘T pattern’ (William & Henderson, 2007), was not documented during either of the MASC 

studies. Future English research wanting to employ dynamic social cognition assessments in 

conjunction with eye-tracking technology may consider employing non-dubbed stimuli such 

as the TASIT or the Edinburgh Social Cognition Test (ESCoT, Baksh, Abraham, Auyeung & 

MacPherson, 2018).  
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The MASC appears to be a reliable assessment for measuring the different dimensions of social 

cognition. No ceiling effects were produced during either the normative or clinical study which 

can sometimes be an issue when social cognition is explored in normative samples. The finding 

that the subcategories of the MASC generated different eye fixation patterns in both the 

normative and clinical studies highlights the need for research to explore the various domains 

of social cognition. Furthermore, the finding that the group affected by TBI were more likely 

to provide over-simplistic mental state attributions compared to excessive or no mental state 

attributions underscores the need for future research to assess error categories and to not 

generalise or over-simplify impairments.  

 While the MASC is comparatively more ecologically valid to static social cognition tasks, 

dynamic assessments of social cognition have been criticised for not being ‘pure’ as they draw 

on other cognitive processes such as executive functions. Heavey, Phillips, Baron-Cohen and 

Rutter (2000) comment on how naturalistic stimuli, such as videos, necessitate the participant 

to perceive salient social cues, retain information from across the different scenes and then 

integrate this information to derive a conclusion regarding mental states. This argument must 

be taken into consideration when working with TBI cohorts as executive functioning is often 

reported as impaired in the TBI literature (Barker, Andrade, Morton, Romanowski & Bowles, 

2010; Barker, Andrade, Romanowski, Morton & Wasti, 2006). Heavey et al., (2000) point out 

this ‘contamination’ of other cognitive processes is concomitant with real-life social 

interactions. To reduce this confounding variable, Dziobek et al., (2006) avoided distracting 

(e.g. music) or prompting (e.g. direct camerawork) stimuli. 

In summary, there were no sex differences between a normative group of males and females 

when they interpreted the MASC. This null finding included both the behavioural accuracy 

scores and eye scan patterns. This result is in contrast to the theory that females display a natural 
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superiority deciphering social interactions compared to males (Olderbak et al., 2018). However, 

the different subcategories of the MASC appeared to elicit contrasting gaze patterns suggesting 

diversity in visual attention during distinct social cognition demands/domains. In regards to the 

clinical MASC study, the group with TBI scored significantly lower on the MASC correct 

responses and significantly higher on the undermentalizing responses compared to the control 

group. This could indicate that individuals affected by TBI understood the characters internal 

mental states but they had difficulty choosing the correct response, typically displaying an 

attenuated or blunted selection pattern. The group with TBI made significantly fewer and 

shorter fixation durations to the three AOI compared to the control group across the entire 

MASC. Nevertheless, there was no relationship between eye scanning patterns and the number 

of errors on the MASC, demonstrating that abnormal social perception (i.e. fixation patterns) 

does not account for impairments in mindreading abilities post-TBI.  Mirroring the findings 

from the normative study, the subcategories of the MASC elicited disparate fixation durations 

for the three AOI, highlighting the necessity of evaluating each stage of social cognition 

processing. The next chapter goes on to compare and contrast static and dynamic emotion 

perception in a TBI and matched control group.  
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8. Chapter eight: The Amsterdam Dynamic Facial 

Expression Set (ADFES) 

8.1. Objectives and hypothesis 

The previous chapter explored different domains of social cognition (e.g. thoughts, feelings 

and intentions) during dynamic interactions. The current chapter builds upon chapter six by 

using simple facial expression stimuli to collect a comprehensive overview of fixation patterns 

in response to the six basic emotions. The ADFES (Van der Schalk et al., 2009) experiments 

explored and compared the visual strategies underpinning the identification of static and 

dynamic facial expressions in a TBI and control group. Comparisons on emotion labelling 

accuracy and fixation patterns were analysed, as well as reaction time during the static 

condition. Further investigations examined variations in the fixation patterns for the six basic 

emotions to determine if attention was directed to different diagnostic facial regions. The study 

of specific visual scan-path profiles characterised by different emotion expressions is sparse, 

with existing evidence proposing that eye movements may be stimulus-driven, that is, the 

salient properties of the emotional face (e.g. smile expressing happiness) capture attention, 

thereby producing differential emotion-driven fixation patterns (Schurgin et al., 2014; Vaidya, 

Jin & Fellows, 2014). This chapter aimed to augment the existing evidence relating to fixation 

profiles for the six basic emotions. Interactions between the visual scanning data, labelling 

accuracy and response time were also explored.  

Hypothesis 1. The control group would be more accurate at recognising static and 

dynamic emotions compared to the group affected by TBI.  

Hypothesis 2. The group with TBI would display different visual scanning patterns 

compared to the control group on both the static and dynamic conditions.  

Hypothesis 3. The six basic emotions would elicit different visual scan-path profiles.  
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Hypothesis 4. The individuals with TBI would be slower at identifying emotions 

compared to control participants.  

Hypothesis 5. More and/or longer fixations to AOI, particularly the eyes, would be 

associated with higher levels of accuracy for identifying emotions as well as quicker 

response times. 

8.2. ADFES static 

8.2.1. Participants  

Due to a technical issue with the eye-tracker, one TBI participant’s data was not available for 

the static condition. To keep sample sizes equal, the control participant for the missing TBI 

data was also excluded from the ADFES static analysis. Remaining participant demographic 

details are presented in Table 21.  

Table 21. Participant demographics for the ADFES. 

 TBI (n = 17) 

M (SD) 

Control (n = 17) 

M (SD) 

Mann-Whitney Test 

 

Gender m = 15, f = 2 m = 15, f = 2  

Current Age 44.18 (11.58) 43.00 (12.10) p = .708 

Age at Injury (years) 36.71 (14.17) -  

Post Injury Years 7.47 (7.73) -  

Years of Education 14.82 (4.38) 15.47 (3.74) p = .454 

*Verbal IQ 83.13 (19.08) 95.06 (8.85) p = .013 

*Performance IQ 92.93 (14.73) 104.29 (11.85) p = .027 

*Overall IQ 84.73 (17.73) 99.65 (10.61) p = .008 

*Two TBI participants were unable to complete all components of the WASI and, therefore, 

Mann-Whitney U calculations are based on partial data.  
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8.2.2. Procedure 

The ADFES static task required participants to identify 36 static facial expressions, displayed 

for eight seconds, as quickly but as accurately as possible (Appendix 5). Reaction time data 

was collected during the static experiment by participants pressing a corresponding keyboard 

button. This keypress documented whether the response was correct or incorrect and it also 

moved the experiment on to the next image. The ADFES static experiment was administered 

on the Tobii T120 eye tracker. Participants were seated approximately 60-65cm away from the 

eye tracker screen (see chapter five for methodological details).  

8.2.3. Exploration of data 

Exploring histograms, box-plots and absolute z-scores for skewness and kurtosis, the emotional 

labelling accuracy scores for the indiviudals with TBI was slightly skewed (z = 1.98) but the 

kurtosis score was within the set parameters (see chapter five for specific details on parametric 

assumption checks) with no outliers. The emotion accuracy data for the control group violated 

the skewness (z= -3.58) and kurtosis (z= 4.93) parameters but this is likely related to ceiling 

effects. There were no outliers for the control group. Levene’s statistic was significant (p 

≤ .001) indicating that the data violated the assumption of homogeneity of variance. The 

reaction time data indicated that some conditions had skewness and kurtosis (e.g. TBI group in 

response to sad videos; skewness= 4.80, kurtosis= 7.60), there were no outliers in the data set 

but Levene’s test was significant for the disgusted (p= .003), fearful (p= .013) and sad 

(p= .009) conditions. 

The data sets for the four eye-tracking metrics, that is time to first fixation, first fixation 

duration, total fixation duration and fixation count to the AOI (eyes, nose and mouth) were 

examined with the same procedure as the behavioural data. There were generally mild to 

moderate violations of ANOVA assumptions concerning the distribution of the data. A 
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minority of conditions generated greater violations, for example, the control groups first 

fixation duration to the mouth for videos depicting anger generated a skewness statistic of 6.81 

and a kurtosis statistic of 13.85. There were no outliers but several of the conditions violated 

the assumption of homogeneity of variance, as indicated by significant Levene’s statistics.   

8.2.4. Analysis 

Although the data sets violated some parametric assumptions, ANOVA was still used to 

analyse the data and justification for this decision can be found in the methodology section 

under ‘considerations for reporting inferential statistics’. Two 2*(6) ANOVAs were conducted 

to explore group differences for emotion labelling accuracy and reaction time on the ADFES 

static task. Four 2*(6) mixed-design ANOVAs were conducted for the four eye-tracking 

metrics (time to first fixation, first fixation duration, total fixation duration and total fixation 

count). Two further 2*(6)*(2) mixed-design ANOVAs were conducted to explore whether 

participants fixated more and for longer on internal facial features compared to other areas of 

the visual scene. Spearman’s Rho correlational analyses were conducted to explore 

relationships between behavioural data and eye-tracking metrics.  

8.2.4.1. Emotion labelling accuracy 

From the mean scores (Table 22), it appeared that the group with TBI had fewer correct answers 

compared to the control group during the ADFES static task. Specifically, it appears that the 

group affected by TBI scored lower than the control group when identifying negative emotions. 

The differences between the two cohorts were less pronounced during the surprised and happy 

conditions. There was also considerably greater variability in the performance of the 

individuals with TBI compared to controls as indicated by the larger standard deviations, 

predominately during the identification of fear and disgust. It is also unusual that a ceiling 

effect was not found for the group with TBI for happy faces as the ability to recognise happiness 
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usually remains intact after TBI. Nevertheless, variability for the happy condition is low, 

indicating the majority of TBI participants did score close to full marks during the recognition 

of happy faces.   

Table 22. Mean and SD for correct scores on the ADFES static test for the TBI and control 

group. 

ADFES Score TBI Mean (SD) Control Mean (SD) 

Overall 28.35 (6.62) 34.65 (1.50) 

Anger 4.00 (1.73) 5.65 (0.86) 

Disgust 4.24 (2.14) 6.00 (0.00) 

Fear 3.76 (2.05) 5.41 (0.71) 

Happy 5.94 (0.24) 6.00 (0.00) 

Sad 4.94 (1.25) 5.71 (0.59) 

Surprise 5.47 (1.23) 5.88 (0.33) 

 

The analysis showed a significant main effect of emotion, (F (10.26, 110.15) = 10.26, p ≤ .001, 

ηp
2 = 0.24) and a significant interaction between emotion and group, (F (3.44, 110.15) = 5.14, 

p = .001, ηp
2 = 0.14). Pairwise comparisons using simple effects test revealed that the TBI group 

scored fewer correct answers when identifying angry (p = .001), disgusted (p = .002) and 

fearful (p = .004) faces compared to controls. The tests of between-subjects effect was also 

significant, (F (1, 32) = 14.61, p = .001, ηp
2 = 0.31) with the estimated marginal means 

indicating that the group with TBI had significantly lower accuracy scores (M =4.73, SE= 0.19) 

compared to the control group (M = 5.78, SE= 0.19).  

8.2.4.2. Reaction times 

It should be noted that only correct scores were included in the reaction time analysis. Table 

23 suggests that the group affected by TBI had slower reaction times for correct answers across 

all six emotions as well as larger SDs compared to the control group. As expected, both groups 
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recognised happy faces the most rapidly with angry, fearful and sad faces producing prolonged 

response times.  

Table 23.  Descriptive statistics for reaction time for correct responses on the ADFES static 

test for the TBI and control group (milliseconds). 

ADFES Score TBI Mean (SD) Control Mean 

(SD) 

Overall 4743.61 (3080.25) 2785.24 (1206.44) 

Anger 4500.35 (2673.73) 3265.03 (1704.20) 

Disgust 4720.33 (4338.31) 2372.87 (851.21) 

Fear 5350.31 (3322.14) 3198.37 (1772.11) 

Happy 2879.02 (1122.40) 2439.28 (973.57) 

Sad 5142.48 (4998.24) 2849.91 (1009.19) 

Surprise 3649.15 (2026.67) 2585.99 (928.38) 

 

There was a significant main effect of emotion, (F (2.41, 77.25) = 5.14, p = .005, ηp
2 = 0.14) 

with pairwise comparisons, indicating that participants had quicker response times to happy 

faces compared to angry and fearful faces (p ≤ .001) and to surprised faces compared to fearful 

faces (p = .001). There was a significant main effect of group for correct response reaction time, 

(F (1, 32) = 4.86, p =.035, ηp
2 = 0.13) with the marginal means revealing that the group with 

TBI exhibited significantly longer response times compared to the control group. There was no 

significant interaction between emotion and group, (F (2.41, 77.25) = 2.21, p = .107, ηp
2 = 0.07).  

8.2.4.3. Eye-tracking analyses  

Overall, the TBI and control participants displayed different eye scan patterns when viewing 

static faces. Table 24 suggests that the control participants typically generated the first fixation 

on the eyes whereas individuals affected by TBI tended to fixate first on the nose. TBI 

participants typically displayed longer first fixation durations across all emotions suggesting 
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that they had a more delayed eye scan pattern compared to control participants. The control 

group consistently had the longest overall fixation duration for the eyes followed by the mouth 

and then the nose. The group with TBI displayed slightly shorter total fixation durations across 

the whole task, although this effect appeared minimal, and the fixation duration pattern was 

variable with TBI participants fixating on the eyes and the mouth for the longest periods. 

Control participants displayed the highest number of fixations to the eye region whereas TBI 

participants exhibited the most fixations to the nose region.  
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Table 24. Descriptive statistics for eye-tracking metrics across the six emotion conditions. 

 Anger Disgust Fear Happy Sad Surprised 

TBI Control TBI Control TBI Control TBI Control TBI Control TBI Control 

Time to first Fixation 

(Seconds) 

Eyes 

Mean 

SD 

 

2.98 

2.48 

 

1.43 

1.03 

 

4.14 

2.38 

 

1.79 

1.75 

 

2.99 

2.37 

 

1.24 

1.43 

 

4.17 

2.58 

 

1.58 

1.30 

 

3.70 

2.85 

 

1.22 

1.12 

 

3.33 

2.49 

 

1.25 

1.44 

Nose 

Mean 

SD 

 

2.00 

1.51 

 

2.41 

1.27 

 

1.77 

1.53 

 

2.12 

1.33 

 

1.74 

1.47 

 

2.93 

1.55 

 

2.44 

1.83 

 

2.94 

1.60 

 

1.61 

1.08 

 

2.37 

1.51 

 

2.24 

1.57 

 

2.99 

1.56 

Mouth 
Mean 

SD 

 
4.05 

2.58 

 
4.06 

2.36 

 
2.30 

2.28 

 
2.20 

1.56 

 
3.22 

2.15 

 
2.58 

2.05 

 
2.90 

2.73 

 
2.69 

2.08 

 
3.65 

2.81 

 
3.61 

2.54 

 
3.62 

2.69 

 
3.06 

2.03 

First Fixation Duration 

(Seconds) 

Eyes 

Mean 

SD 

 

0.30 

0.23 

 

0.31 

0.13 

 

0.37 

0.42 

 

0.25 

0.07 

 

0.25 

0.17 

 

0.33 

0.11 

 

0.32 

0.30 

 

0.29 

0.23 

 

0.31 

0.24 

 

0.30 

0.09 

 

0.38 

0.39 

 

0.30 

0.13 

Nose 

Mean 

SD 

 

0.31 

0.34 

 

0.23 

0.08 

 

0.36 

0.21 

 

0.27 

0.08 

 

0.31 

0.12 

 

0.22 

0.09 

 

0.28 

0.19 

 

0.19 

0.09 

 

0.29 

0.12 

 

0.27 

0.14 

 

0.29 

0.15 

 

0.21 

0.07 

Mouth 

Mean 
SD 

 

0.27 
0.18 

 

0.22 
0.14 

 

0.30 
0.17 

 

0.32 
0.15 

 

0.29 
0.17 

 

0.29 
0.13 

 

0.37 
0.30 

 

0.32 
0.18 

 

0.29 
0.21 

 

0.23 
0.14 

 

0.27 
0.20 

 

0.25 
0.13 

Total Fixation Duration 

(Seconds) 

Eyes 

Mean 

SD 

 

1.64 

1.56 

 

2.64 

1.25 

 

1.00 

1.04 

 

2.05 

1.28 

 

1.45 

1.31 

 

2.67 

1.38 

 

1.00 

1.06 

 

1.92 

1.20 

 

1.33 

1.29 

 

2.76 

1.38 

 

1.71 

1.49 

 

2.81 

1.35 

Nose 

Mean 

SD 

 

1.14 

0.70 

 

0.67 

0.37 

 

1.19 

0.52 

 

0.82 

0.33 

 

1.32 

0.66 

 

0.77 

0.58 

 

0.91 

0.65 

 

0.54 

0.29 

 

1.31 

0.57 

 

0.79 

0.54 

 

1.06 

0.80 

 

0.55 

0.27 

Mouth 

Mean 

SD 

 

0.67 

0.63 

 

0.69 

0.84 

 

1.49 

1.07 

 

1.34 

1.05 

 

0.87 

0.67 

 

1.17 

1.02 

 

1.42 

0.97 

 

1.23 

0.85 

 

0.98 

0.91 

 

0.90 

0.92 

 

0.93 

0.88 

 

1.03 

1.02 

Fixation Count  Eyes 

Mean 

SD 

 

3.29 

2.18 

 

7.54 

3.95 

 

2.16 

1.85 

 

6.35 

3.78 

 

3.42 

2.33 

 

8.14 

4.69 

 

1.97 

1.80 

 

5.90 

3.34 

 

3.08 

2.59 

 

8.16 

4.21 

 

3.40 

2.60 

 

8.19 

4.67 

Nose 
Mean 

SD 

 
3.57 

2.09 

 
2.49 

0.92 

 
3.59 

2.29 

 
2.76 

0.88 

 
4.17 

2.04 

 
2.58 

1.28 

 
2.58 

1.55 

 
2.16 

1.01 

 
3.89 

2.05 

 
2.71 

1.14 

 
3.32 

2.17 

 
2.12 

1.00 

Mouth 

Mean 

SD 

 

1.71 

1.39 

 

1.79 

1.79 

 

3.04 

1.94 

 

3.31 

1.96 

 

2.26 

1.62 

 

2.83 

1.95 

 

2.84 

2.00 

 

3.03 

2.11 

 

2.11 

1.68 

 

2.22 

2.03 

 

2.27 

1.78 

 

2.59 

1.88 
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8.2.4.3.1. Time to first fixation 

The omnibus analysis showed a significant main effect of emotion, (F (3.51, 112.28) = 3.36, p 

= .007, ηp
2 = 0.10) and significant interactions between AOI and group, (F (1.47, 47.16) = 6.07, 

p = .009, ηp
2 = 0.16) and between emotion and AOI, (F (10, 320) = 8.61, p ≤ .001, ηp

2 = 0.21). 

There were no significant main effects of AOI, (F (1.47, 47.16) = 2.48, p = .109, ηp
2 = 0.07), 

or of group, (F (1, 32) = 2.38, p = .133, ηp
2 = 0.07) and no significant interactions between 

emotion and group, (F (3.51, 112.28) = 0.61, p = .691, ηp
2 = 0.02) and AOI, emotion and group,  

(F (6.83, 218.57) = 1.08, p = .375, ηp
2 = 0.03). 

Simple effects tests 1 were conducted to investigate the significant interaction between AOI 

and group. The output indicated that the group with TBI took significantly longer (p = .002) to 

instigate the first fixation to the eyes (M = 3.55) compared to the control group (M = 1.42).  

To analyse the significant interaction between emotion and AOI, pairwise simple effects tests 

were again conducted. Participants took significantly longer to instigate a first fixation to the 

mouth (M = 4.06) compared to the eyes (M = 2.21) (p = .002) and to the mouth compared to 

the nose (M = 2.21) (p ≤ .001) when identifying angry faces. Moreover, participants exhibited 

a delayed first fixation to the mouth (M = 3.63) compared to the nose (M = 1.99) (p ≤ .001) 

during the recognition of sad faces. 

8.2.4.3.2. First fixation duration 

There was no significant effect of group, (F (1, 32) = 1.27, p = .268, ηp
2 = 0.04), AOI, (F (1.63, 

52.45) = 0.97, p = .0.371, ηp
2 = 0.03) or emotion, (F (2.62, 83.86) = 0.85, p = .0.455, ηp

2 = 0.03). 

No significant interactions were found between AOI and emotion, (F (4.22, 134.88) = 1.91, p 

                                                 

1 Only significant simple effects tests are reported throughout this chapter.  
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= .109, ηp
2 = 0.06), AOI and group, (F (1.63, 52.25) = 0.50, p = .571, ηp

2= 0.02), emotion and 

group, (F (2.62, 83.86) = 0.55, p = .625, ηp
2 = 0.02) or AOI, emotion and group, (F (4.22, 

134.88) = 1.16, p = .331, ηp
2 = 0.04).  

8.2.4.3.3. Total fixation duration  

There was a significant effect of AOI, (F (2.22, 70.93) = 9.54, p = .0.001, ηp
2 = 0.230) and 

emotion, (F (3.90, 124.71) = 4.31, p = .0.003, ηp
2 = 0.12) as well a significant interaction 

between AOI and emotion, (F (8.54, 273.26) = 12.63, p ≤ .001, ηp
2 = 0.28) and between AOI 

and group, (F (2.22, 70.93) = 4.76, p = .004, ηp
2 = 0.13). The interactions between emotion and 

group, (F (3.90, 124.71) = 0.46, p = .761, ηp
2 = 0.01) and AOI, emotion and group, (F (8.54, 

273.26) = 1.68, p = .096, ηp
2 = 0.05) were not significant. Additionally, no significant main 

effect of group was found, (F (1, 32) = 0.15, p = .703, ηp
2 = 0.005).  

The significant interaction between AOI and group was further analysed using simple effects 

tests. Pairwise comparisons suggested that there was a significant difference between the TBI 

(M=1.16) and control (M=0.69) group on the nose AOI (p =.006), signifying that TBI 

participants exhibited significantly longer fixation durations to the nose compared to controls. 

There was no significant difference for the fixation duration on the eyes between the TBI 

(M=1.36) and control (M =2.48) groups (p = .013).  
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Graph 3. Estimated marginal means for Fixation Duration across the ADFES Static . 

 

 

The interaction between AOI and emotion was also investigated with simple effects analyses 

and the results indicated that for angry, fearful, sad and surprised faces there were significantly 

longer fixations to the eyes compared to the nose and mouth (all p’s ≤ .003). Happy faces 

produced longer fixation durations to the eyes (M =1.46) compared to the nose (M =0.72) (p 

=.005) and longer durations to the mouth (M =1.33) compared to the nose (p = .001).  

8.2.4.3.4. Fixation duration for internal facial areas vs. external areas  

Internal facial areas included the eyes, nose and mouth while external areas included all other 

areas of the face (i.e. the chin, forehead and cheeks) and the rest of the visual scene (i.e. the 

shoulders and chest of the actor and the background area of the image).  
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There was a significant effect of AOI, (F (1, 32) = 36.85, p ≤ .001, ηp
2 = 0.54) and emotion, (F 

(3.90, 124.71) = 4.31, p =.003, ηp
2 = 0.12) as well a significant interaction between AOI and 

emotion, (F (4.41, 141.19) = 5.88, p ≤ .001, ηp
2 = 0.16). There was no significant interaction 

between emotion and group, (F (3.90, 124.71) = 0.46, p = .761, ηp
2 = 0.01), AOI and group, (F 

(1, 32) = 3.02, p = .092, ηp
2 = 0.09) or emotion, AOI and group, (F (4.412, 141.193) = 2.13, p 

= .0.074, ηp
2 = 0.06). There was also no significant main effect of group, (F (1, 32) = 0.15, p 

= .703, ηp
2 = 0.01). Table 25 indicted that participants generated shorter fixation durations to 

internal facial features in response to happy faces compared to negative and surprised faces. It 

was also evident that participants displayed longer fixation durations to external areas 

compared to internal areas when viewing angry faces.  

Table 25. Significant simple effects analysis exploring the interaction between AOI and 

emotion (fixation duration in seconds). 

Emotion Mean difference (SE) Sig. 

Internal   

   Fearful-Angry -0.40 .009 

   Disgusted-Happy 0.44 .008 

   Fearful-Happy 0.62 .001 

   Sad-Happy 0.52 .001 

   Surprised-Happy 0.11 .001 

External   

   Angry-Disgusted 0.51 .001 

   Angry-Sad 0.46 .001 

   Angry-Surprised 0.41 .001 

Note: The emotion listed first in the table generated the longest fixation duration. 

8.2.4.3.5. Fixation count  

There was a significant effect of AOI, (F (2.04, 65.24) = 17.53, p ≤ .001, ηp
2 = 0.35) and 

emotion, (F (5, 160) = 9.60, p ≤ .001, ηp
2 = 0.23) but the between subjects factor of group was 
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not significant, (F (1, 32) = 4.00, p = .054, ηp
2 = 0.11). There was a significant interaction 

between AOI and group, (F (2.04, 65.24) = 9.13, p ≤ .001, partial ηp
2 = 0.22), AOI and emotion, 

(F (8.65, 276.77) = 10.51, p ≤ .001, ηp
2 = 0.25) and between AOI, emotion and group, (F (8.65, 

276.77) = 2.09, p = .033, ηp
2 = 0.06). No significant interaction was found between emotion 

and group, (F (5, 160) = 1.37, p = .0.240, ηp
2 = .04).  

To explore the significant interaction between AOI, emotion and group two 6 within (emotion: 

happy, surprise, fear, anger, sad, and disgust) x 3 within (AOI: eyes, nose and mouth) repeated-

measures ANOVAs were conducted with the groups split. The ANOVA for the TBI group 

indicated a significant effect of emotion, (F (5, 80) = 5.54, p ≤ .001, ηp
2 = 0.26) and a significant 

interaction between emotion and AOI, (F (6.43, 102.86) = 7.61, p ≤ .001, ηp
2 = 0.32). The effect 

of AOI was not significant, (F 1.40, 22.44) = 1.53, p = .237, ηp
2 = 0.09). To further investigate 

the interaction between AOI and emotion, parried-samples comparisons through simple effects 

analysis were examined. The data in Table 26 suggested that the TBI participants made more 

fixations to the nose compared to the mouth during the viewing of angry, fearful and sad faces.  

Table 26. Significant post-hoc tests exploring the interaction between AOI and emotion for 

the TBI group. 

Emotion TBI Group Mean difference (SE) Sig 

Anger   

   Nose-Mouth 1.86 (0.51) .002 

Fear   

   Nose-Mouth 1.90 (0.54) .003 

Sad   

   Nose-Mouth 1.78 (0.48) .002 

Note: The AOI listed first in the table received the most fixation counts. 

The ANOVA for the control group indicated a significant effect of emotion, (F (5, 80) = 7.94, 

p ≤ .001, ηp
2 = 0.33) and AOI, (F 1.17, 18.66) = 9.60, p ≤ .001, ηp

2 = 0.53) and a significant 
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interaction between emotion and AOI, (F (4.53, 72.50) = 10.89, p ≤ .001, ηp
2 = 0.41). To further 

investigate this interaction, parried-samples comparisons through simple effects analysis were 

examined, with significant results presented in Table 27. The results suggested that control 

participants made more fixations to the eyes compared to the nose and mouth across all six 

emotions.  

Graph 4. Estimated Marginal Means for Emotion*AOI*Group for Fixation Count 

for the Group with  TBI 
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Table 27. Significant post-hoc tests exploring the interaction between AOI and emotion for 

the control group (fixation count). 

Emotion Control Group Mean difference (SE) Sig. 

Anger   

   Eyes-Nose 5.05 (1.06) .001 

   Eyes-Mouth 5.75 (1.16) .001 

Disgust   

   Eyes-Nose 3.59 (0.93) .001 

Fear   

   Eyes-Nose 5.56 (1.32) .001 

   Eyes-Mouth 5.31 (1.35) .001 

Happy   

   Eyes-Nose 3.74 (0.81) .001 

   Eyes-Mouth 2.87 (0.97) .009 

Sad   

   Eyes-Nose 5.45 (1.16) .001 

   Eyes-Mouth 5.94 (1.29) .001 

Surprise    

   Eyes-Nose 6.07 (1.19) .001 

   Eyes-Mouth 5.60 (1.33) .001 
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Graph 5. Estimated Marginal Means for Emotion*AOI*Group for Fixation Count 

for the Group with TBI 

 

8.2.4.3.6. Fixation count for internal facial areas vs. external areas  

There was a significant effect of AOI, (F (1, 32) = 29.81, p = .001, ηp
2 = 0.48) and emotion, (F 

(5, 160) = 9.60, p = .001, ηp
2 = 0.23) as well a significant interaction between AOI and emotion, 

(F (5, 160) = 14.69, p ≤ .001, ηp
2 = 0.20) and between AOI and group, (F (1, 32) = 7.73, p 

= .009, ηp
2 = 0.13). The interactions between emotion and group, (F (5, 160) = 1.37, p = .24, 

ηp
2 = 0.04) and AOI, emotion and group, (F (5, 160) = 1.61, p = .161, ηp

2 = 0.05) were not 

significant. The main effect of group was not significant, (F (1, 32) = 4.00, p = .054, ηp
2 = 0.11).  

Simple effects analysis exploring the AOI by emotion interaction indicated that participants, 

as a whole, exhibited significantly more fixations to the internal facial features compared to 
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external areas across all six emotions (p’s ≤ .001). To explore the significant interaction 

between AOI and group simple effects tests were again conducted and demonstrated that the 

control group (M = 12.48) made significantly more fixation to the internal AOI compared to 

the TBI group (M = 8.78) (p = .004). 

8.2.4.4. Correlations 

To explore potential relationships between visual fixation patterns and behavioural data, 

correlational analyses were conducted. Spearman’s Rho correlations were generated by 

combining both TBI and control participants into one group to explore the overall relationships 

of the data. The post-hoc correction α level of .01 was applied to correlational analyses. The 

only significant relationship was between ADFES emotion labelling accuracy and response 

time (r= -0.44, p= .004).  See Appendix 17 for correlational matrix. When the groups were 

separated out, there were no significant correlations for either the group with TBI (r= -0.56, 

p= .019) or the control group (r= -.27, p= .298).  

8.3. Discussion 

The visual strategies underpinning facial affect recognition have been extensively investigated 

in normative (Schurgin et al., 2014; Vassallo et al., 2009) and clinical cohorts, particularly in 

autistic (Black et al., 2017; Klin et al., 2002) and schizophrenic (Asgharpour, Tehrani-Doost, 

Ahmadi & Moshki, 2015; Bortolon et al., 2016; Sasson et al., 2015) groups. However, research 

exploring fixation patterns in response to static facial affect post-TBI is scant. The present 

research investigated the visual scanning patterns of TBI and control participants when they 

viewed photographs of facial expressions displaying six different emotions (anger, disgust, fear, 

happy, sad and surprise).  
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Overall, the TBI participants were less accurate and slower at identifying static facial 

expressions compared to control participants. This finding is consistent with existing empirical 

work documenting that TBI is associated with impairments in facial affect recognition 

(Babbage et al., 2011; Biszak & Babbage, 2014; May et al., 2017) and delayed response times 

(Celeghin et al., 2019; Ietswaart et al., 2008). Slower reaction times may be equated to 

secondary effects of impaired neuropsychological functioning such as slowed processing speed 

or attention deficits, which are well documented after TBI (Miotto et al., 2010; Dymowski, 

Owens, Ponsford & Willmott, 2015). Alternatively, delayed reaction times could be associated 

with aberrant eye scan patterns. For instance, if the TBI participants were failing to fixate on 

the most salient AOI, namely the eyes and the mouth, then it would lead to protracted reaction 

times (Wells et al., 2016). However, this assumption was not supported by the correlational 

analysis, although the non-significant findings could be equated to the stringent post-hoc 

correction which was applied. Curtailed α levels can increase the risk of Type II errors and loss 

of power, particularly if there are numerous comparisons (Field, 2009; Kim, 2015; Krzywinski 

& Altman, 2014; Perneger, 1998; Rothman, 1990), and this should be taken into consideration 

when evaluating the current findings. It should be noted that measuring TBI participant’s 

reaction times has been deemed problematic as their responses are often delayed and, therefore, 

reliability of the task could be affected (Celeghin et al., 2019). Although the current study 

intended to circumvent delayed reactions by adopting a simple and consistent methodology, 

findings should still be interpreted with caution.  

The control group consistently exhibited a rapid first fixation to the eyes across all emotions 

while the group affected by TBI took significantly longer to instigate this first fixation to the 

eyes. Laidlaw and Kingstone (2017) proposed that the eyes are the most important facial feature 

due to the amount of social and emotional information which can be extracted from the area. 

The finding that control participants displayed natural gravitation towards the eyes corroborates 
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with research suggesting that human beings naturally focus attention on the most salient area 

of the visual scene (Wells et al., 2016). The group affected by TBI displayed an irregular gaze 

pattern compared to controls with quicker first fixations to the nose and subsequent sporadic 

fixations to the mouth and eye regions. The nose provides fewer emotive cues during facial 

expression identification compared to the eyes and mouth (Wells et al., 2016). It is not clear 

why the TBI participants routinely made the first fixation to the nose. One explanation could 

be that the group with TBI displayed screen centre bias (Bindemann, 2010; Tatler, 2007) which 

would roughly correspond to the position of the nose (Barabanschikov, 2015; Scheller, Büchel 

& Gamer, 2012). Alternatively, it could be argued that individuals with TBI were exhibiting 

similar markers to autistic individuals by implicitly avoiding eye contact; this theory is known 

as the Eye Avoidance Hypothesis (Madipakkam, Rothkirch, Dziobek & Sterzer, 2017). Tanaka 

and Sung (2016) suggested that atypical eye contact displayed by autistic individuals could be 

an adaptive avoidance response as the eyes are viewed as socially threatening. Research by 

Singh et al., (2016) highlighted the pathophysiological similarities between paediatric TBI and 

autistic symptoms, including poor facial affect recognition. The authors outlined the 

resemblance between subcortical and sensory cortical disruption in both cohorts as well as 

decreased white matter in similar brain areas. The aberrant eye scan patterns of the group living 

with TBI could result from disrupted cortical pathways underpinning saccade or fixation 

generation, thus leading to an inability to appropriately evaluate the social threat. 

There were no significant differences between the TBI and control groups for first fixation 

duration. This is an insightful finding as it indicated that fixations for the group with TBI were 

not impaired per se but rather the pattern of the fixations was aberrant and deviated from the 

natural eye scan pattern of the control group. Turkstra (2005) likewise reported that there were 

no significant quantitative differences between TBI and control participants gaze times and 

discussed the possibility of a qualitative distinction between visual strategies among the groups. 
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However, Turkstra’s (2005) interpretation must be taken with caution as she did not employ 

standardised eye-tracking techniques in her research and instead visually calculated the 

percentage of time that each participant displayed eye to face gaze towards a partner. 

Furthermore, Turkstra’s (2005) cohort consisted of adolescents and young adults who may 

display different eye scan patterns compared to adults (Ebner, He & Johnson, 2011). 

Additionally, current formulations make distinctions between impairments associated with 

brain injuries acquired during childhood, adolescence and adulthood (Barker et al., 2010), 

therefore, the generalisability of Turkstra’s (2005) findings to adult TBI populations are 

debatable.  

Participants exhibited the longest fixation durations on the eyes followed by the mouth and 

then the nose. This finding is in line with previous eye-tracking research which has reported 

that the eye region of the face is generally the most fixated area (Guo & Shaw, 2015; Laidlaw 

& Kingstone, 2017; Wells et al., 2016). Humans typically display a triangular model of eye 

movements, known as a ‘T pattern’, where they alternate between fixating on the eyes and the 

mouth (Smith et al., 2005; William & Henderson, 2007). This ‘T pattern’ was established in 

the present research when the control data was explored using heat maps (Appendix 16), but 

the same pattern was non-existent in the TBI data. The group affected by TBI did display longer 

fixation durations to the eyes, although the total duration was almost half compared to controls, 

followed by the nose and then the mouth. Additionally, while the control group made more 

fixations to the eyes, the group with TBI tended to fixate more on the nose. This pattern is 

inconsistent with the ‘T pattern’ and is more in line with Peterson and Eckstein’s (2012) 

downward shift theory of saccadic eye movement. Fixations to the eye region have both a social 

(joint attention) and perceptual function (identification of mood state). Decreased fixation 

duration to the eye region could have potentially adverse effects on social functioning. Firstly, 

emotion perception would be slower or emotion state could go unnoticed, and secondly, 
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maintaining sufficient eye contact preserves social value and precipitates social relationships 

(Peterson & Eckstein, 2012). Peterson and Eckstein (2012) included a free viewing and a forced 

viewing condition during their normative face-scanning research. During the free viewing 

condition, participants viewed a human face with no instructions, therefore allowing them to 

exhibit their natural visual scanning pattern. During the forced fixation condition, participants 

were instructed to fixate on an ill-favoured facial feature (e.g. forehead). Peterson and Eckstein 

(2012) reported that the forced condition produced a detrimental effect on emotion perception 

performance, leading the researchers to conclude that human gaze behaviour is primed to 

optimize evolutionary performance and deviations from this are disadvantageous. As the eyes 

are frequently reported to be the most salient feature for identifying mood state (Wells et al., 

2016), the group affected by TBI aberrant fixation duration pattern to the nose compared to 

controls could explain the group with TBI lower accuracy scores.  

Two eye-tracking studies (Vassallo et al., 2010, 2011) reported that individuals with TBI 

exhibited a more widespread scanning strategy and made similar fixation durations to both 

internal and external facial areas compared to controls. However, in the current research, both 

the TBI and control group spent significantly longer fixating on internal facial features 

compared to external areas. This finding conforms with existing research documenting that 

internal facial features (eyes, nose, mouth) are more attended to compared to external features 

(hair, face, forehead, ears) during social interactions (Mehoudar et al., 2014; Schurgin et al., 

2014). Although the current group of individuals with TBI fixated for longer on internal facial 

features, they did not appear to be fixating on the most salient internal features (the eyes), but 

instead displayed longer fixation durations on less important features (the nose), indicating that 

TBI disrupts fixation patterns. Moreover, the group affected by TBI made significantly fewer 

fixations to internal facial features compared to controls across all six emotions.  
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In conclusion, the group with TBI performed significantly poorer compared to the control 

group on the facial expression identification task. Furthermore, the group with TBI also 

displayed slower reaction times for correct responses compared to the control group. There was 

a significant difference between the TBI and control participants’ fixation patterns concerning 

the number, duration and pattern of fixations. In terms of fixation patterns, the group affected 

by TBI took significantly longer to instigate the first fixation to the eyes compared to the control 

group. This finding is pertinent as it is theorised that the eye region reveals the most detail 

about mood state (Guo & Shaw, 2015; Laidlaw & Kingstone, 2017; Wells et al., 2016) and, 

therefore, delayed fixation to that regions could arguably lead to delayed or erroneous emotion 

recognition. Interestingly, there were no group differences for the first fixation duration, 

indicating that this particular eye-tracking metric remained intact and appropriate post-TBI. 

However, there was a significant difference between the two groups for total fixation duration 

and fixation count, with the TBI participants generating more and longer fixation durations to 

the nose compared to controls. The results also signified that the control group exhibited more 

and longer fixations to the eyes compared to the group with TBI. This finding links in with 

research from Adolphs et al., (2005) and Oatley et al., (2014) who reported that individuals 

with TBI appeared to naturally avoid the eye region of the face when participating in facial 

affect recognition tasks. The correlations between the behavioural data and the eye-tracking 

metrics were all non-significant once the multiple comparisons correction was applied. This 

suggests that the group affected by TBI poor emotion labelling accuracy and slower response 

times were not related to aberrant fixation patterns.  
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8.4. ADFES dynamic 

8.4.1. Participants 

The ADFES dynamic analysis was based on the full cohort of participants recruited for the 

present research (TBI group n= 18, control group n = 18). Participant demographics can be 

found in chapter five.    

8.4.2. Procedure 

The ADFES dynamic task, as described in more detail in chapter five, required participants to 

identify 36 facial expressions by watching video clips of an actor displaying a neutral face for 

0.5 seconds before the onset of the emotion began. Once the emotion reached the apex, the 

pose was held for five seconds and then the answer screen would appear. The participant would 

verbally tell the researcher which emotion they believed the actor was displaying and then the 

researcher would move the experiment on by pressing the spacebar (Appendix 6). Parallel to 

the ADFES static experiment, the dynamic experiment was administered on the Tobii T120 

eye tracker. Participants were seated approximately 60-65cm away from the eye tracker screen. 

No reaction time data was recorded for the dynamic task.  

8.4.3. Exploration of dynamic data 

To explore data trends and to check parametric assumption criteria, distribution plots and 

statistics were examined. For the dynamic condition, plots indicated that data for correct scores 

was relatively normal with no significant scores on the z-test and no outliers. The assumption 

of homogeneity of variance was violated but as sample sizes were equal the effect was 

mitigated. Plots indicated several eye-tracking variables which had moderate and severe skew 

and kurtosis which was confirmed by several z-test scores over 1.96. There were no outliers in 

the time to first fixation or fixation count conditions but there were four outliers in the first 
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fixation duration condition and four in the total fixation duration conditions. A minority of 

variables violated the assumption of homogeneity of variance. Parallel to the static ADFES 

analysis, ANOVA was employed to compare eye-tracking metrics as the analysis is 

documented to be robust to moderate violations of normality (Donaldson, 1968; Glass et al., 

1972; Kim, 2013). 

8.4.4. Analysis 

The same design was used to analyse both the ADFES static and dynamic tasks.   

8.4.4.1. Emotion labelling accuracy 

The descriptive statistics in Table 28 appeared to indicate that the group with TBI scored lower 

on the emotion labelling task compared to the control group, with particularly low scores across 

the negative emotions. Furthermore, the group affected by TBI displayed greater performance 

variability compared to controls, as indicated by the larger standard deviations, predominately 

during the identification of anger, fear and disgust. 

Table 28. Mean and SD for correct scores on the ADFES dynamic test for the TBI and 

control group. 

ADFES Score TBI Mean (SD) Control Mean (SD) 

Overall 28.39 (4.50) 32.89 (2.22) 

Anger 4.28 (2.02) 5.72 (0.57) 

Disgust 3.94 (1.55) 5.39 (1.20) 

Fear 3.44 (1.62) 4.78 (0.94) 

Happy 5.94 (0.24) 6.00 (0.00) 

Sad 4.78 (0.81) 5.06 (0.73) 

Surprise 5.72 (0.67) 6.00 (0.00) 
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The analysis showed a significant main effect of emotion, (F (3.58, 121.87) = 18.85, p ≤ .001, 

ηp
2 = 0.36) and a significant interaction between emotion and group, (F (3.58, 121.87) = 4.10, 

p = .005, ηp
2 = 0.11). The tests of between-subjects effect was also significant, (F (1, 34) = 

18.88, p ≤ .001, ηp
2 = 0.36) with the estimated marginal means indicating that the group with 

TBI had significantly lower accuracy scores (M =4.69, SE= 0.13) compared to the control 

group (M =5.49, SE= 0.13).  

Pairwise comparisons using simple effects test revealed that the group with TBI scored fewer 

correct answers when identifying angry (p = .006), disgusted (p = .004) and fearful (p = .005) 

faces compared to controls.  

8.4.4.2. Eye-tracking data 

The statistics in Table 29 depict that overall, control participants consistently fixated on the 

eyes first and then moved onto the nose or mouth. The TBI group tended to fixate on the mouth 

first, except during the disgusted condition where the first fixation was directed to the eyes, 

followed by a variable pattern between the eyes and nose. There was a clear pattern concerning 

total fixation duration where the control group had longer fixations on the eyes and mouth 

across all emotions, while the group affected by TBI displayed a more variable pattern, mainly 

fixating for the longest on the eyes but fluctuating between the nose and mouth. This pattern 

was mirrored for fixation count where the control participants made more fixations on the eyes 

and the mouth across all emotion categories, while TBI participants made more overall 

fixations to the eyes but exhibited a mixed fixation pattern for the nose and mouth. Taken as a 

whole, the descriptive statistics suggest that the TBI and control groups have different eye 

scanning patterns when viewing dynamic facial expressions.  
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Table 29. Descriptive statistics for eye-tracking metrics across the six emotion conditions. 

 Anger Disgust Fear Happy Sad Surprised 

TBI Control TBI Control TBI Control TBI Control TBI Control TBI Control 

Time to first Fixation 

(seconds) 

Eyes 

Mean 
SD 

 

1.58 
1.32 

 

1.25 
1.19 

 

2.35 
1.66 

 

1.41 
1.29 

 

1.98 
1.19 

 

1.35 
1.26 

 

1.96 
1.22 

 

1.57 
1.35 

 

2.23 
1.23 

 

1.70 
1.62 

 

1.68 
1.39 

 

1.32 
1.40 

Nose 

Mean 

SD 

 

1.94 

1.54 

 

1.89 

1.15 

 

2.04 

1.45 

 

1.80 

0.84 

 

1.81 

1.31 

 

2.22 

1.12 

 

2.18 

1.22 

 

2.40 

0.77 

 

2.03 

1.26 

 

2.04 

0.83 

 

1.62 

1.16 

 

2.13 

1.25 

Mouth 

Mean 

SD 

 

3.16 

1.67 

 

2.46 

1.55 

 

2.32 

1.42 

 

1.77 

1.17 

 

2.75 

1.69 

 

2.34 

1.52 

 

2.30 

1.39 

 

1.83 

1.22 

 

2.80 

1.59 

 

2.33 

1.67 

 

2.64 

1.67 

 

2.17 

1.47 

First Fixation Duration 

(seconds) 

Eyes 

Mean 

SD 

 
0.12 

0.20 

 
0.28 

0.22 

 
0.20 

0.16 

 
0.21 

0.11 

 
0.30 

0.19 

 
0.27 

0.20 

 
0.24 

0.16 

 
0.22 

0.18 

 
0.24 

0.20 

 
0.22 

0.13 

 
0.20 

0.14 

 
0.22 

0.16 

Nose 

Mean 

SD 

 
0.36 

0.25 

 
0.35 

0.57 

 
0.22 

0.10 

 
0.36 

0.48 

 
0.28 

0.20 

 
0.39 

0.75 

 
0.28 

0.19 

 
0.27 

0.17 

 
0.25 

0.13 

 
0.37 

0.51 

 
0.36 

0.23 

 
0.26 

0.37 

Mouth 

Mean 

SD 

 
0.25 

0.25 

 
0.33 

0.24 

 
0.28 

0.20 

 
0.39 

0.23 

 
0.26 

0.19 

 
0.28 

0.19 

 
0.51 

0.45 

 
0.42 

0.28 

 
0.30 

0.23 

 
0.36 

0.26 

 
0.28 

0.22 

 
0.29 

0.21 

Total Fixation Duration 

(seconds) 

Eyes 

Mean 
SD 

 

1.61 

1.18 

 

2.14 

1.59 

 

1.73 

1.38 

 

2.17 

1.63 

 

1.29 

0.95 

 

1.90 

1.48 

 

1.21 

1.03 

 

1.82 

1.66 

 

1.13 

1.02 

 

1.55 

1.36 

 

1.53 

1.21 

 

1.74 

1.49 

Nose 

Mean 
SD 

 

1.14 
0.88 

 

0.85 
0.88 

 

0.99 
0.72 

 

0.93 
0.55 

 

0.95 
0.66 

 

0.77 
0.81 

 

0.89 
0.56 

 

0.73 
0.52 

 

0.89 
0.56 

 

0.81 
0.61 

 

0.77 
0.55 

 

0.96 
0.83 

Mouth 

Mean 

SD 

 

0.59 

0.66 

 

1.10 

1.10 

 

1.15 

0.89 

 

1.44 

0.98 

 

0.72 

0.66 

 

1.19 

1.12 

 

1.46 

1.05 

 

1.72 

1.15 

 

0.91 

0.92 

 

1.22 

1.08 

 

0.95 

0.10 

 

1.02 

0.90 

Fixation Count  Eyes 

Mean 

SD 

 

4.00 

2.01 

 

6.36 

4.91 

 

2.36 

2.11 

 

4.60 

3.75 

 

3.33 

2.55 

 

6.36 

5.29 

 

3.59 

3.15 

 

5.79 

5.21 

 

2.86 

2.56 

 

4.85 

4.22 

 

4.01 

2.01 

 

6.14 

5.11 

Nose 

Mean 

SD 

 
3.00 

2.44 

 
2.38 

1.19 

 
2.97 

2.08 

 
2.56 

1.23 

 
2.93 

1.94 

 
2.14 

1.03 

 
2.73 

1.75 

 
2.12 

1.24 

 
2.66 

1.72 

 
2.32 

1.00 

 
3.09 

1.81 

 
2.15 

1.38 

Mouth 

Mean 

SD 

 

1.41 

1.35 

 

2.44 

1.90 

 

2.41 

1.57 

 

3.09 

1.84 

 

1.87 

1.64 

 

2.81 

2.23 

 

2.82 

1.79 

 

3.59 

2.42 

 

1.85 

1.45 

 

2.57 

2.02 

 

1.89 

1.62 

 

2.93 

2.19 
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8.4.4.2.1. Time to first fixation 

There were no significant main effects of emotion, (F (5, 170) = 1.98, p = .084, ηp
2 = 0.05), 

AOI, (F (1.41, 47.87) = 3.11, p = .070, ηp
2 = 0.08) and group, (F (1, 34) = 1.51, p = .227, ηp

2 = 

0.04). There were also no significant interactions between emotion and group, (F (5, 170) = 

1.50, p = .193, ηp
2 = 0.04), AOI and group, (F (1.41, 47.87) = 0.91, p = .377, ηp

2 = 0.03) or 

between AOI, emotion and group, (F (7.98, 271.43) = 8.10, p = .594, ηp
2 = 0.02). There was a 

significant interaction between emotion and AOI, (F (7.98, 271.43) = 6.50, p ≤ .001, ηp
2 = 

0.160) which suggests that the time to first fixation for the different AOI were different across 

the six emotions. To further explore this, simple effects tests were conducted and the results 

indicated that participants took significantly longer to instigate a first fixation to the mouth 

compared to the eyes (p = .001) and to the mouth compared to the nose (p = .002) when viewing 

angry faces.  

8.4.4.2.2. First fixation duration 

There were no significant main effects for emotion, (F (2.19, 74.28) = 0.93, p = .404, ηp
2 = 

0.02), AOI (F (1.73, 58.85) = 1.97, p = .154, ηp
2 = 0.06) or group, (F (1, 34) = 0.19, p = .664, 

ηp
2 = 0.006). There were no significant interactions between emotion and group, (F (2.19, 

74.28) = 1.24, p = .298, ηp
2 = 0.04), AOI and group, (F (1.73, 58.85) = 0.23, p = .768, ηp

2 = 

0.007), or AOI and group or emotion, (F (2.80, 95.29) = 0.84, p = .471, ηp
2 = 0.02).  The 

interaction between emotion and AOI was not significant, (F (2.80, 95.29) = 2.55, p = .064, ηp
2 

= 0.07).  
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8.4.4.2.3. Total fixation duration 

There was a significant main effect of emotion, (F (2.19, 74.47) = 11.69, p ≤ .001, ηp
2 = 0.26) 

and AOI, (F (2.37, 80.62) = 5.21, p = .005, ηp
2 = 0.13) but no significant effect of group, (F (1, 

34) = 2.93, p = .096, ηp
2 = 0.08) and also all interactions were not significant (p ≥ .464) bar 

emotion and AOI, (F (3.70, 125.93) = 4.89, p ≤ .001, ηp
2 = 0.126). To further investigate the 

interaction between AOI and emotion, paired-samples comparisons through simple effects 

analysis were examined and the significant results are presented in Table 30. The findings 

suggested that participants fixated for longer on the eyes compared to the nose and mouth 

across the majority of emotions.         

Table 30. Significant post-hoc tests exploring the interaction between AOI and emotion (total 

fixation duration). 

Emotion Mean difference (SE) Sig. 

Anger   

   Eyes-Nose 0.88 (0.32) .009 

   Eyes-Mouth 1.32 (0.34) .004 

Disgust   

   Eyes-Nose 0.99 (0.27) .001 

Fear   

   Eyes-Nose 0.73 (0.27) .010 

Happy   

   Mouth-Nose 0.78 (0.18) .001 

Note: The AOI listed first in the table received the longest fixation duration. 

 

8.4.4.2.4. Fixation duration for internal facial areas vs. external areas  

Mirroring the static condition, internal facial areas included the eyes, nose and mouth while 

external areas include all other areas of the face (i.e. the chin, forehead and cheeks) and the rest 
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of the visual scene (i.e. the shoulders and chest of the model and the background area of the 

photo).  

There was a significant effect of AOI, (F (1, 34) = 38.89, p ≤ .001, ηp
2 = 0.53) and emotion, (F 

(2.19, 74.47) = 11.69, p ≤ .001, ηp
2 = 0.26) as well a significant interaction between AOI and 

emotion, (F (2.11, 71.67) = 5.87, p = .004, ηp
2 = 0.15). There was no significant interaction 

between emotion and group, (F (2.19, 74.47) = 0.83, p = .451, ηp
2 = 0.02), AOI and group, (F 

(1, 34) = 1.69, p = .202, ηp
2 = 0.05) or emotion, AOI and group, (F (2.11, 71.67) = 0.16, p 

= .867, ηp
2 = 0.005). There was also no significant main effect of group, (F (1, 34) = 2.93, p 

= .096, ηp
2 = 0.08).  

The significant interaction between AOI and emotion was analysed with paired-sample 

contrasts through simple effects analysis.  Participants spent significantly longer fixating on 

internal facial areas across all emotions compared to external areas of the visual scene (p ≤.001).  

8.4.4.2.5. Fixation count  

There was a significant main effect of emotion, (F (5, 170) = 9.14, p ≤ .001, ηp
2 = 0.212) and 

AOI, (F (2.03, 69.17) = 8.24, p ≤ .001, ηp
2 = 0.20) but no significant tests of between-subjects 

effects for group, (F (1.13, 34.71 = 1.13, p = .295, ηp
2 = 0.03). Only the emotion and AOI 

interaction was significant, (F (7.81, 265.44) = 8.16, p ≤ .001, ηp
2 = 0.19), and the emotion and 

group, (F (5, 170) = 1.45, p = .21, ηp
2 = 0.04), AOI and group, (F (2.03, 69.17) = 2.42, p = .10, 

ηp
2 = 0.07), and emotion, AOI and group, (F (7.81, 265.44) = 1.85, p = .99, ηp

2 = 0.03) were 

not significant.  

To further investigate the interaction between AOI and emotion, parried-samples comparisons 

through simple effects analysis were examined and the significant results are presented in Table 
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31. Participants made more fixations to the eyes compared to the nose and mouth when looking 

at angry, fearful, happy and surprised faces.  

Table 31. Significant post-hoc tests exploring the interaction between AOI and emotion 

(fixation count). 

Emotion Mean difference (SE) Sig. 

Anger   

   Eyes-Nose 2.49 (0.78) .003 

   Eyes-Mouth 3.26 (0.83) .001 

Fear   

   Eyes-Nose 2.31 (0.76) .005 

   Eyes-Mouth 2.51 (0.85) .006 

Happy   

   Eyes-Nose 2.26 (0.73) .004 

Surprise    

   Eyes-Nose 2.45 (0.78) .003 

   Eyes-Mouth 2.67 (0.86) .004 

Note: The AOI listed first in the Table received the most fixation counts. 

8.4.4.2.6. Fixation count for internal facial areas vs. external areas  

There was a significant effect of AOI, (F (1, 34) = 22.25, p ≤ .0.001, ηp
2 = 0.40) and emotion, 

(F (5, 170) = 9.14, p ≤ .0.001, ηp
2 = 0.21) as well a significant interaction between AOI and 

emotion, (F (5, 170) = 5.30, p ≤ .001, ηp
2 = 0.14). The interactions between AOI and group, (F 

(1, 1) = 3.37, p = .0.75, ηp
2 = 0.09), emotion and group, (F (5, 170) = 1.45, p = .210, ηp

2 = 0.04) 

and AOI, emotion and group, (F (5, 170) = 0.69, p = .633, ηp
2 = 0.02) were not significant. The 

main effect of group was also not significant, (F (1, 34) = 1.13, p = .295, ηp
2 = 0.03). Significant 

pairwise comparisons investigating the interaction between emotion and AOI indicated that 

angry faces generated more fixations to internal compared to external areas while fearful faces 

evoked more fixations to external compared to internal areas (Table 32). 
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Table 32. Significant post-hoc tests exploring the interaction between AOI and emotion 

(fixation count). 

Emotion Mean difference (SE) Sig. 

Fear   

   External-Internal -1.54 (0.25) .001 

Note: The AOI listed first in the table received the longest fixation duration. 

 

8.4.4.3. Correlations 

When the groups were combined, there were no significant correlations between the ADFES 

dynamic emotion labelling accuracy scores and the four eye-tracking metrics (all r’s ≤ 0.003, 

p ≥ .493). When the groups were separated, there were no significant correlations for the group 

with TBI (all r’s ≤ 0.26, p ≥ .304) or controls (all r’s ≤ 0.47, p ≥ .047). 

8.5. Discussion 

Overall, the individuals with TBI were less accurate at identifying dynamic facial expressions 

compared to the control group. This data corroborates with existing research documenting 

facial affect recognition impairments post-TBI (Knox & Douglas, 2009; McDonald et al., 

2003) and the findings from the static task. Although dynamic facial expressions provide 

additional cues through facial motion, which is documented to enhance emotion recognition 

(Alves, 2013; McCamy et al., 2014), the current group affected by TBI still displayed deficits 

when trying to decipher dynamic facial expressions. These findings supplement the limited 

extant evidence base exploring dynamic facial affect recognition post-TBI. Furthermore, the 

results have higher generalisability compared to static stimuli which are often criticised for 

poor ecological validity (Knox & Douglas, 2009).  

Interestingly, McDonald and Saunders (2005) reported that only one individual from a group 

of 34 severe TBI participants displayed impairments in recognising dynamic facial expressions. 
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This finding could be equated with the task which McDonald and Saunders (2005) used as they 

employed the Emotion Evaluation Test (EET) from The Assessment of Social Inference Test 

(McDonald et al., 2003). Although the authors omitted the sound, contextual cues through body 

language could have been perceived, potentially influencing performance levels. It could be 

argued that the TASIT offers a more realistic account of social interactions compared to the 

ADFES, which presents viewers with a posed headshot of an actor displaying an apex emotion, 

making McDonald and Saunders (2005) results more ecologically valid. Nevertheless, Knox 

and Douglas (2009) also used the EET (with sound omitted) in their research, reporting that 

individuals with TBI scored significantly lower on the EET compared to the control group. It 

is unclear why these differences occurred, one explanation could be that TBI is heterogeneous 

and each research cohort will present with a variety of injury aetiology and pathology. Another 

explanation could be that McDonald and Saunders (2005) recruited a higher percentage of 

females. It is frequently documented that women exhibit superior emotion recognition skills 

compared to males (Olderbak et al., 2019; Wingenbach et al., 2018) so cognitive reserve, that 

is the ability for the brain to use pre-existing cognitive processing approaches to aid 

compensatory approaches (Stern, 2012), could act as a moderator between pathology and 

clinical impairments. Cognitive reserve could potentially account for the discrepancies 

between findings. The aforementioned points underscore some of the challenges of mapping 

brain and behaviour changes post-TBI and highlight the importance of controlling for variables 

such as sex and pathology location.  

Although there were significant differences between the two groups for emotion labelling 

accuracy, the TBI and control group exhibited similar eye scan patterns throughout the ADFES 

dynamic task. There were also no significant correlations between the accuracy data and the 

eye-tracking data suggesting that the lower emotion recognition scores exhibited by the group 

affected by TBI were not related to aberrant fixation patterns. These findings conflict with the 
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literature reporting abnormalities in visual strategies in response to faces post-TBI (Adolphs et 

al., 2005; Douglas et al., 2010; Kenrick et al., 2017; Wolf et al., 2014), although the majority 

of this research is based on static stimuli. As everyday social interactions are dynamic, dynamic 

research stimuli are likely to elicit more naturalistic eye scan patterns compared to static stimuli. 

Furthermore, the use of these dynamic tools has the potential to advance the understanding of 

typical and non-typical visual strategies underpinning emotion perception.  

In sum, the group living with TBI exhibited lower emotion recognition accuracy scores when 

identifying dynamic facial expressions compared to a matched control group. Both the TBI and 

control groups displayed similar eye scanning patterns when viewing faces. Lower behavioural 

scores were not correlated with eye-tracking data, suggesting that non-typical eye scan patterns 

did not account for group discrepancies in emotion recognition accuracy.  

8.6. Comparison of static versus dynamic stimuli 

As the static task presented faces for 8 seconds and the dynamic task presented them for 5.5 

seconds, a straightforward comparison was not possible. To account for this variation in time, 

the data was made equivalent across the two tasks by dividing the dynamic task first fixation 

duration, total fixation duration and fixation count by 0.6875 (this is the ratio of 5.5/8 seconds 

for the task duration). This adjustment was not made to the time to first fixation analysis 

because these were already equivalent metrics. Several 2(task)*(6-emotion)*(3-AOI)*(2-

group) ANOVA were conducted and it was decided that only interactions involving both group 

and task would be reported. The only significant interaction involving group and task was the 

time to first fixation analysis (F(1.5, 47.3) = 4.25, p = .030, ηp
2 = 0.12). This was the task by 

AOI by group interaction. To explore this further, separate ANOVAs for each group were 

conducted and revealed that there was only a significant effect for the group with TBI (F(1.5, 

23.5) = 4.99, p = .024, ηp
2 = 2.38) (please see graph 6). To explore this task by AOI interaction 
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for the group with TBI, the main effects of AOI for each task were explored. This showed that 

only the static task produced a significant main effect of AOI (F (2,15) = 8.52, p = .003, ηp
2 = 

0.53). Breaking this main effect down further with pairwise 

 comparisons, with the post-hoc adjustment applied, showed that the time to first fixation for 

the nose was significantly slower than the mouth during the static task (p = .005).  

Graph 6. Graph to illustrate the interaction between AOI and task for ADFES comparison. 

 

 

 

 

 

 

 

 

 

8.7. Overall discussion 

The group with TBI displayed impairments in recognising both static and dynamic facial 

expressions compared to a group of matched controls, supporting the view that facial 

expression recognition is disrupted post-TBI. One hypothesis of the current research was that 

aberrant fixation patterns contributed to poor facial expression identification scores. While the 

group affected by TBI exhibited aberrant eye fixation patterns compared to controls when 

viewing static faces, there were no significant differences in visual strategies between the TBI 
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and control groups when viewing dynamic faces. These findings appear to demonstrate that 

dynamic and static stimuli evoke disparate visual strategies and there may be a dissociation 

between static and dynamic processing systems, an approach which is advocated by others 

(Kilts et al., 2003; McDonald & Saunders, 2005). fMRI and electroencephalogram evidence 

suggests that static and dynamic facial expressions elicit different brain activation patterns 

(Foley, Rippon, Thai, Longe & Senior, 2011; Garrido-Vásquez, Pell, Paulmann & Kotz, 2018; 

Schultz & Pilz, 2009; Trautmann-Lengsfeld et al., 2013; Zinchenko et al., 2018) so it is not 

surprising that they also produce different gaze patterns.  

Blais et al., (2017) explored visual strategies underpinning static and dynamic facial expression 

recognition in a normative sample using eye-tracking and the bubbles technique. The authors 

reported that the same facial features (eyes, nose and mouth) were utilised during both 

conditions when identifying emotions but, participants exhibited more fixations to the left eye 

and mouth during static conditions and more fixations to the centre of the face during dynamic 

conditions. The authors proposed that one possible explanation for this difference is that 

humans can process biological motion outside of the fovea and peripheral to the fixation 

location (Gurnsey et al., 2008; Thompson et al., 2007). Therefore, more fixations to the centre 

of the face during dynamic conditions may allow an individual to process motion cues from 

the eyes and mouth without directly fixating on the features. As discussed in chapter three, 

visual resolution and sensitivity are decreased outside of the fovea. Direct fixations on the eyes 

during dynamic conditions would result in the nose, and particularly the mouth, to be in the 

periphery of vision, where high-acuity vision is attenuated. Fixating on the centre of the face 

allows for a diffuse visual scanning strategy with less visual information falling in the periphery 

of the visual field. However, the present findings indicated that the control participants 

displayed more and longer fixations on the eyes during the static and dynamic conditions while 

the group with TBI fixated more on the nose only when viewing static faces. Therefore, the 
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results of the present research corroborate with Blais et al., (2017) static findings, that non-

clinical groups exhibit more fixations on the eyes and mouth, but contradict their dynamic 

findings, that the nose received the most fixations.  

A second explanation to account for the lack of disparity between the gaze patterns of the two 

groups on the dynamic condition is the role of biological motion. The natural movement of 

facial muscles during emotion expression causes certain facial features to appear more salient, 

for instance, the mouth turning upwards during a smile or the enlarged sclera’s (white of eyes) 

during fear, therefore drawing attention to them (Horstmann & Ansorge, 2009; Tobin, Favelle, 

& Palermo, 2016). The present findings illustrated that the individuals affected by TBI fixation 

pattern differed between static and dynamic stimuli, with a shift to attending to the eyes more 

in the dynamic condition. It could be suggested that the movement associated with dynamic 

expressions implicitly captured the attention and eliminated the differences in gaze patterns 

observed during the static condition. Indeed, Calvo et al., (2018) highlighted that research with 

static faces had produced non-conclusive findings and that motion benefits facial affect 

recognition. In their research, Calvo et al., (2018) reported that different dynamic facial 

expressions elicited different ocular fixation patterns. The researchers proposed that this 

represented a selective attention pattern to expression-specific diagnostic face regions, possibly 

related to contrasting facial muscle patterns associated with different emotions. The premise 

that dynamic and static facial expressions could potentially evoke different eye scan patterns 

raises questions regarding the validity of existing research which have based their findings on 

static stimuli. It also highlights the fact that individuals with TBI are observing these motion 

cues during the dynamic task, and possibly during everyday social interactions, yet are still 

failing to correctly identify facial expressions. It appears that facial affect recognition 

impairments post-TBI do not fully stem from aberrant gaze patterns, suggesting that there is a 
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disruption to later social cognitive processing, either during the social knowledge retrieval or 

response selection stages Penn et al., 2007).  

A limitation of the present study is that it did not collect reaction time data for the dynamic 

task. Evidence suggests a distinction between speeded and non-speeded face viewing which 

appears to affect fixation patterns (Hsiao & Cottrell, 2008). It would be interesting to compare 

speeded and non-speeded static and dynamic tasks to explore if the time element of the design 

had an effect of fixation patterns. Another limitation of the static condition is that the stimuli 

were presented for a relatively long time (eight seconds) allowing for a high number of 

saccades and fixations. As research reports that face identification can be achieved in as few as 

two fixations (Hsiao & Cottrell, 2008), the visual data after initial fixations may not be directly 

relevant to the task. Alternating stimulus display times, particularly introducing very short or 

fleeting facial expressions, could yield interesting results. Although the present research is 

innovative, being the first to explore eye scan patterns of TBI and control groups when viewing 

dynamic and static facial expressions, one limitation, similar to the Blais et al., (2017) study, 

was the use of simulated rather than natural facial expressions. There are qualitative differences 

between simulated and spontaneous emotions (Cohn & Schmidt, 2011; Ross & Pulusu, 2013), 

and future research could take this into account. Furthermore, laboratory experiments often 

eliminate the contextual effects of social interactions. Although the exploration of the 

relationship between context effects and social cognition is still in its infancy, emerging 

research surmises a positive interaction, with participants scoring higher on context, included 

conditions compared to context removed conditions (Barrett et al., 2011; Ibañez & Manes, 

2012). To address this concern, the next two chapters will outline findings from the Movie for 

the Assessment of Social Cognition (Dziobek et al., 2006) and The Awareness of Social 

Inference Test (McDonald et al., 2003), two dynamic social cognition assessments which 

introduce context into the experimental design.    
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When a direct comparison was made between the static and dynamic tasks, there was minimal 

difference between them, gaze patterns for both the group with TBI and controls were similar 

across both tasks. The group with TBI did exhibit a significantly slower first fixation to the 

nose compared to the mouth during the static task. These findings do not fully support the 

hypothesis that visual strategies underpinning the recognition of static and dynamic facial 

expressions are different (Blais et al., 2017). In fact, the findings point more towards a 

similarity in gaze patterns between static and dynamic conditions. This may have implications 

for scholars who have reprimanded the use of static stimuli (e.g. Knox & Douglas, 2009) 

although, common sense would prevail that the use of dynamic stimuli does increase ecological 

validity. Moreover, this study was exploratory in nature and further research is needed to ensure 

that this was not a result of a type I error.  

In conclusion, the group with TBI performed significantly lower compared to controls when 

tasked with correctly identifying six basic static and dynamic emotions. Furthermore, the TBI 

group were significantly slower at identifying static expressions. The current findings indicated 

that the group affected by TBI exhibited abnormal visual strategies when viewing static facial 

expressions compared to the control group. There were no group differences for the dynamic 

facial expressions which suggested that the group with TBI displayed similar eye scanning 

patterns to the control group. There were also no significant correlations between facial 

expression recognition scores and eye-tracking metrics for either the static or dynamic 

conditions. This result implies that impairments in emotion perception post-TBI may not stem 

from low-level visual or spatial frequency disruptions but may be related to higher-level 

cognitive processes. The contrasting visual strategies elicited by the group with TBI for static 

and dynamic facial expressions demonstrate modality-specific processing differences. It could 

be postulated that the visual processing of dynamic facial expressions remains intact as the 

biological motion associated with the unfolding of emotion draws the perceiver’s attention to 
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the salient facial features (Horstmann & Ansorge, 2009; Tobin et al., 2016). Static expressions 

could require a degree of explicit processing, as the stimuli do not have the natural cues of 

biological motion. Referring back to Penn et al., (1997) social cognition model, it seems 

plausible to suggest that the group affected by TBI displayed impairments during the very 

initial stages of social cognition, the perception of social cues, during the static condition, and 

thus the remaining two stages (retrieval of social knowledge and response selection) were 

negatively affected. However, during the dynamic task, the group affected by TBI perception 

of social cues was similar to controls, indicating that there were no low-level visual disruptions; 

yet, they still scored lower on the emotion identification part of the task compared to controls. 

Consequently, poor performance on the recognition of dynamic facial expressions may result 

from the disruption of higher-level upstream cognitive processes compared to low-level visual 

deficits. The amalgamation of static and dynamic stimuli has subsequently exposed disparities, 

warranting further investigation. It has also highlighted the processing differences between the 

two modes and underscored the necessity for research to utilise more ecologically valid social 

measures.  
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9. Chapter nine: The Assessment of Social Inference Test 

(TASIT) 

9.1. Objectives and hypothesis 

The present chapter will outline and discuss the findings from The Assessment of Social 

Inference Test (TASIT; McDonald et al., 2003). All three sub-components of the TASIT were 

administered to thoroughly explore social cognition; the Emotion Evaluation Test (EET), the 

Social Inference-Minimal (SI-M) test, and the Social Inference-Enriched (SI-E) test. Through 

the EET, the understanding of communication components such as facial expressions, tone of 

voice, and gestures were investigated. The SI-M provided a measure of the participants’ ability 

to read paralinguistic features, facial expressions and tone of voice in either sincere or sarcastic 

situations. Finally, the SI-E assessed the participants’ ability to use contextual cues (i.e. tone 

of voice and facial expressions) to determine if everyday conversations were deceptive or 

sarcastic.  

Given the literature discussed previously, differences in behavioural and eye-tracking 

responses on the various sub-tasks of the TASIT were expected between the TBI and control 

group. Three hypotheses were constructed: 

Hypothesis 1. The group affected by TBI would have significantly lower accuracy 

scores across the TASIT compared to the control group. 

Hypothesis 2. TBI Participants would exhibit different fixation patterns compared to 

the control group.  

Hypothesis 3. The seven different emotions of the EET would generate different 

fixation patterns.  
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Hypothesis 4. There will be positive interactions between fixation duration and counts 

to the AOI and accuracy scores across the TASIT.  

9.2. Participants  

Due to a malfunction with the eye-tracking equipment, one of the control participant’s data was 

corrupted for the SI-M and SI-E tests. Therefore, the sample size for these two sub-tasks 

consisted of 18 TBI participants and 17 age and sex-matched controls. See Table 33 for revised 

demographic data for the SI-M and SI-E tests. Please note that the EET data is based on the 

full cohort described in the methodology (chapter five).           

9.3. Procedure 

The TASIT, as described in detail in chapter five, was administered on the Tobii T120 eye 

tracker. Participants were seated approximately 60-65cm away from the eye tracker screen. 

Participants watched each sub-task independently with breaks in between. The EET consists 

of 28 short videos, the SI-M has 15 videos and the SI-E has 16 videos, all lasting between 15-

60 seconds. Each sub-task took approximately 20 minutes to administer and would begin with 

written instructions on the screen. Participants watched the videos and answered subsequent 

questions about them. The EET has a multiple-choice answer format where participants were 

required to choose from seven emotions. The SI-M and SI-E asked four questions about what 

the actor was doing, saying, thinking and feeling. The researcher moved the experiment on by 

pressing the space bar after the participant had confirmed they had read and understood the 

instructions on the screen. Please see Appendix 9, 11 and 12 for the design and protocol of the 

EET, SI-M and SI-E.  
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Table 33. Participant demographics for the SI-M and SI-E. 

Descriptive 

statistic 

Gender Current 

Age 

Age at 

injury 

(years) 

Post-injury 

years 

Years of 

education 

Verbal IQ Performance 

IQ 

Overall IQ 

Number  

   TBI 

   Control 

 

m= 15, f= 3 

m= 14, f=3 

 

- 

 

- 

 

 

- 

 

- 

 

- 

 

- 

 

- 

Mean 

   TBI 

   Control 

 

- 

 

44.94 

44.71 

 

36.44 

- 

 

8.50 

- 

 

14.83 

15.53 

 

84.06 

96.06 

 

91.00 

105.41 

 

90.25 

100.88 

SD 

   TBI 

   Control 

 

- 

 

11.69 

12.05 

 

13.79 

- 

 

8.68 

- 

 

4.25 

3.76 

 

18.71 

8.35 

 

17.50 

11.61 

 

17.66 

10.14 

Range 

   TBI 

   Control 

 

- 

 

26-62 

25-63 

 

17-59 

- 

 

1-28 

- 

 

10-23 

11-23 

 

57-135 

82-113 

 

55-111 

79-121 

 

55-120 

81-116 

Mann-Whitney U 

test 

 p = .858   p = .443    p=.005** p = .009** p = .014** 

* Two TBI participants opted out of the WASI (IQ test) 

** Significant at α = .05 
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9.4. Exploration of data 

The behavioural and eye-tracking metrics for all sub-tasks were explored using histograms, 

box-plots, and absolute z-scores for skewness and kurtosis. The behavioural data was relatively 

normally distributed with mild violations. The eye-tracking data had moderate violations of 

normality regarding skewness and kurtosis, homogeneity of variance, and outliers. However, 

as violations were moderate and not severe, and because the study had approximately equal 

sample sizes, the effects of violation would have been mitigated (Finch, 2005). Therefore, 

parametric analyses were used to analyse the TASIT data with post-hoc corrections applied to 

all follow-up analyses (α = .01).  

9.5. EET 

For the EET, a 2*(7) ANOVA was conducted to explore potential differences in emotion 

perception. A further 2*(7)*(3) repeated measures ANOVA was conducted to investigate 

potential differences in fixation duration and count between the TBI and control groups. 

9.5.1. Behavioural data 

As demonstrated in Table 34, the descriptive statistics indicated that the group with TBI had 

lower overall accuracy scores on the EET compared to the control group.  
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Table 34. Descriptive statistics for the number of correct responses for the TBI and control 

groups for the EET. 

TASIT EET Score TBI Mean (SD) Control Mean (SD) 

Overall Correct 19.67 (3.99) 24.28 (1.60) 

Happy  3.11 (1.13) 3.28 (0.67) 

Surprised 3.22 (0.81) 3.67 (0.49) 

Neutral 2.00 (0.91) 2.72 (0.83) 

Sad 2.72 (1.32) 3.50 (0.71) 

Angry 3.00 (1.08) 3.56 (0.51) 

Anxious 2.89 (1.32) 3.94 (0.24) 

Revolted 2.72 (1.02) 3.56 (0.62) 

 

The analysis showed a significant main effect of emotion, (F (6, 204) = 6.85, p ≤ .001, ηp
2 = 

0.17), but the interaction between emotion and group was non-significant, (F (6, 204) = 1.08, 

p = .375, ηp
2 = 0.03). The test of between-subjects effects was also significant, (F (1, 34) = 

20.28, p ≤ .001, ηp
2 = 0.37) with the group means indicating that the TBI participants had 

significantly fewer correct responses across the EET compared to the control group. When 

comparing the descriptive statistics, it appeared that the TBI group scored lower on negative 

emotions compared to positive, particularly interpreting sad, anxious and revolted displays of 

emotion, compared to the control group.   

9.5.2. Eye-tracking data 

9.5.2.1. Fixation duration across the EET in seconds 

The group with TBI had shorter fixation durations to the eyes and nose compared to controls, 

while both groups displayed similar fixation durations to the mouth (Table 35).  
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Table 35. Descriptive statistics for the TBI and control group for fixation duration across the 

EET in seconds. 

EET Emotions Groups combined 

Mean (SD) 

TBI Mean (SD) Control Mean (SD) 

Angry 

   Eyes 

   Nose 

   Mouth 

3.97 (3.01) 

1.15 (1.25) 

1.59 (1.80) 

1.23 (0.90) 

2.92 (2.12) 

0.92 (1.08) 

0.93 (1.16) 

1.07 (0.90) 

5.03 (3.43) 

1.37 (1.40) 

2.26 (2.10) 

1.40 (0.90) 

Revolted 

   Eyes 

   Nose 

   Mouth 

3.76 (3.06) 

0.78 (0.97) 

1.43 (2.05) 

1.54 (1.56) 

3.01 (1.99) 

0.72 (0.97) 

0.82 (1.04) 

1.48 (1.35) 

4.50 (3.76) 

0.85 (0.99) 

2.05 (2.60) 

1.61 (1.78) 

Anxious 

   Eyes 

   Nose 

   Mouth 

2.44 (2.74) 

0.41 (0.61) 

1.43 (1.99) 

0.60 (0.87) 

1.53 (2.10) 

0.51 (0.74) 

0.60 (1.06) 

0.42 (0.76) 

3.35 (3.05) 

0.32 (0.44) 

2.27 (2.36) 

0.77 (0.96) 

Happy 

   Eyes 

   Nose 

   Mouth 

4.41 (2.35) 

0.93 (1.13) 

0.86 (1.02) 

2.62 (1.70) 

4.04 (2.32) 

0.62 (0.96) 

0.69 (0.68) 

2.73 (1.74) 

4.79 (2.38) 

1.24 (1.23) 

1.02 (1.28) 

2.53 (1.71) 

Sad 

   Eyes 

   Nose 

   Mouth 

8.56 (6.68) 

3.84 (3.53) 

2.16 (3.16) 

2.56 (2.60) 

6.92 (5.48) 

3.40 (3.91) 

1.05 (1.13) 

2.47 (2.59) 

10.21 (7.50) 

4.28 (3.16) 

2.37 (3.99) 

2.65 (2.67) 

Surprised 

   Eyes 

   Nose 

   Mouth 

2.18 (1.95) 

0.63 (1.05) 

0.94 (1.22) 

0.61 (0.68) 

1.64 (1.77) 

0.70 (1.28) 

0.51 (0.66) 

0.43 (0.46) 

2.72 (2.01) 

0.55 (0.79) 

1.38 (1.49) 

0.79 (0.82) 

Neutral 

   Eyes 

   Nose 

   Mouth 

4.84 (2.92) 

1.92 (2.22) 

1.59 (1.49) 

1.33 (1.23) 

4.36 (2.76) 

1.85 (2.36) 

1.13 (1.23) 

1.38 (1.51) 

5.32 (3.08) 

1.98 (2.14) 

2.06 (1.61) 

1.27 (0.90) 

Overall (emotions 

combined) 

3.82 (2.82) 2.93 (2.32) 4.69 (3.05) 

   Eyes 0.98 (1.21) 0.87 (1.29) 1.57 (1.58) 

   Nose 1.37 (1.65) 0.72 (0.89) 1.57 (1.56) 

   Mouth 1.47 (1.16) 1.35 (1.16) 2.68 (1.88) 
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The analysis showed a significant main effect of emotion, (F (1.83, 62.17) = 38.99, p ≤ .001, 

ηp
2 = 0.53), and a significant interaction between emotion and AOI, (F (4.19, 142.35) = 12.29, 

p ≤ .001, ηp
2 = 0.27). The main effect of AOI, (F (1.70, 57.87) = 0.09, p = .884, ηp

2 = 0.003), 

and the interactions between emotion and group, (F (1.83, 62.17) = 1.67, p = .198, ηp
2 = 0.05), 

AOI and group, (F (1.70, 57.87) = 2.17, p = .130, ηp
2 = 0.06), and emotion, AOI and group, (F 

(4.19, 142.35) = 1.26, p = .289, ηp
2 = 0.04) were all non-significant. The tests of between-

subjects effects was also not significant, (F (1, 34) = 2.84, p = .101, ηp
2 = 0.08).  

The significant interaction between emotion and AOI were explored through three one-way 

ANOVAs, with emotion as the independent variable (IV) and fixation duration as the 

dependent variable (DV). There was a significant effect of eyes, (F (1.40, 48.90) = 36.35, p 

≤ .001, ηp
2 = 0.51), nose, (F (2.53, 88.41) = 5.99, p = .002, ηp

2 = 0.15) and mouth, (F (1.40, 

48.90) = 36.35, p ≤ .001, ηp
2 = 0.51) on fixation duration in response to different facial 

expressions, with follow-up paired-samples t tests in Appendix 15. In brief, the post-hoc tests 

indicated that participants made longer fixations to the eyes when viewing sad faces compared 

to all other emotions. Participants also spent significantly longer looking at the eyes of neutral 

faces compared to the other emotions (bar sad). The group elicited longer fixations to the nose 

when viewing angry, sad and neutral faces and more fixations to the mouth when looking at 

happy and sad faces.  

9.5.2.2. Fixation count across the EET 

The group affected by TBI had fewer fixations compared to controls across all of the emotions 

and most of the AOIs within the emotions (Table 36).  
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Table 36. Descriptive statistics for the TBI and control group for fixation count across the 

EET. 

EET Emotions Groups combined 

Mean (SD) 

TBI Mean (SD) Control Mean (SD) 

Angry 

   Eyes 

   Nose 

   Mouth 

8.80 (5.52) 

2.67 (2.76) 

2.98 (2.74) 

3.14 (1.98) 

6.54 (3.75) 

1.93 (2.14) 

1.69 (1.70) 

2.92 (1.99) 

11.06 (6.15) 

3.42 (3.16) 

4.26 (3.01) 

3.38 (1.99) 

Revolted  

   Eyes 

   Nose 

   Mouth 

7.12 (4.93) 

1.68 (1.66) 

2.75 (3.00) 

2.69 (2.13) 

6.36 (4.07) 

1.66 (1.68) 

2.02 (2.35) 

2.68 (2.02) 

7.89 (5.68) 

1.70 (1.69) 

3.48 (3.45) 

2.71 (2.29) 

Anxious  

   Eyes 

   Nose 

   Mouth 

4.21 (4.25) 

1.02 (1.24) 

2.02 (2.52) 

1.17 (1.65) 

3.00 (3.51) 

1.12 (1.39) 

0.92 (1.13) 

0.96 (1.65) 

5.41 (4.68) 

0.91 (1.11) 

3.11 (3.05) 

1.39 (1.65) 

Happy 

   Eyes 

   Nose 

   Mouth 

9.22 (4.19) 

2.17 (2.12) 

2.25 (1.77) 

4.79 (2.60) 

8.79 (3.99) 

1.42 (1.38) 

2.07 (1.65) 

5.30 (2.88) 

9.64 (4.45) 

2.92 (2.49 ) 

2.43 (1.92) 

4.29 (2.26) 

Sad 

   Eyes 

   Nose 

   Mouth 

12.81 (8.24) 

5.22 (3.77) 

3.44 (3.98) 

4.15 (3.26) 

11.15 (7.00) 

4.96 (4.08) 

2.21 (2.51) 

3.99 (3.09) 

14.47 (9.21) 

5.49 (3.53) 

4.67 (4.81) 

4.32 (3.49) 

Surprised 

   Eyes 

   Nose 

   Mouth 

4.29 (3.28) 

1.08 (1.16) 

1.87 (2.15) 

1.34 (1.29) 

3.37 (2.89) 

1.02 (1.19) 

1.19 (1.32) 

1.16 (1.15) 

5.21 (3.47) 

1.13 (1.16) 

2.54 (2.60) 

1.53 (1.42) 

Neutral 

   Eyes 

   Nose 

   Mouth 

9.56 (5.42) 

3.75 (3.72) 

3.03 (2.46) 

2.78 (2.03) 

7.81 (4.34) 

2.98 (3.08) 

2.12 (2.10) 

2.71 (2.29) 

11.31 (5.93) 

4.52 (4.21) 

3.94 (2.50) 

2.84 (1.78) 

Overall 7.38 (4.61) 5.82 (3.72) 8.94 (4.97) 

   Eyes 2.02 (1.84) 1.57 (1.58) 2.48 (2.01) 

   Nose 2.54 (2.44) 1.57 (1.56) 3.51 (2.80) 

   Mouth 2.82 (1.80) 2.68 (1.88) 2.96 (1.76) 
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The analysis showed a significant main effect of emotion, (F (3.40, 115.65) = 41.78, p ≤ .001, 

ηp
2 = 0.55) and a significant interaction between emotion and AOI, (F (5.85, 198.88) = 10.77, 

p ≤ .001, ηp
2 = 0.24). The main effect of AOI, (F (1.60, 54.41) = 0.44, p = .602, ηp

2 = 0.01) and 

the interactions between emotion and group, (F (3.40, 115.65) = 1.79, p = .146, ηp
2 = 0.05), 

AOI and group, (F (1.60, 54.41) = 2.26, p = .124, ηp
2 = 0.06), and emotion, AOI and group, (F 

(5.85, 198.88) = 1.88, p = .088, ηp
2 = 0.05) were all non-significant. The tests of between-

subjects effects was also not significant, (F (1, 34) = 2.96, p = .094, ηp
2 = 0.08).  

The significant interaction between emotion and AOI were explored through three one-way 

ANOVAs, with emotion as the IV and fixation count as the DV. There was a significant effect 

of eyes, (F (1.40, 48.90) = 36.35, p ≤ .001, ηp
2 = 0.44), nose, (F (4.17, 146.02) = 5.87, p ≤ .001, 

ηp
2 = 0.14) and mouth, (F (3.94, 138.06) = 30.97, p ≤ .001, ηp

2 = 0.47) on fixation count in 

response to different facial expressions, with follow-up paired-samples t tests presented in 

Appendix 16. In summary, the group made more fixations to the eyes and nose when viewing 

neutral and sad faces. The mouth was looked at more when participants viewed happy and sad 

faces.  

9.5.3. Correlations 

One-tailed Spearman’s Rho correlations were run to explore relationships between the 

behavioural data (accuracy for emotion recognition) and eye-tracking data (fixation duration 

and fixation count). When the groups were combined and the α-level had been adjusted to 

account for multiple comparisons (α= .01) there were no significant correlations (all, r's ≤ 0.29, 

all p’s ≥ .043). When the groups were separated there were also no significant correlations for 

the group with TBI (all r’s ≤ -0.23, p ≥ .352) or controls (all r’s ≤ 0.58, p ≥ .013). 
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9.6. SI-M 

A 2*(3) ANOVA was conducted to investigate group differences during the understanding of 

conversational meanings. A further 2*(4) ANOVA was conducted to investigate the difference 

between the groups in understanding different facets of social interactions. With eye-tracking 

data, a 2*(3)*(3) repeated measures ANOVA was conducted to investigate potential 

differences in fixation duration and count between the TBI and control groups. 8.6.1 

Behavioural data 

9.6.1. Accuracy for conversation style 

As demonstrated in Table 37, the descriptive statistics appeared to indicate  that the TBI group 

had lower overall accuracy scores across the conversational styles (simple-sarcasm, 

paradoxical-sarcasm and sincere) compared to the control group.  

Table 37. Descriptive statistics for the accuracy of the TBI and control groups for the 

different conversational constructs during the SI-M. 

SI-M Score TBI Mean (SD) Control Mean (SD) 

Simple-sarcasm 15.28 (3.63) 17.71 (2.11) 

Paradoxical-sarcasm 15.94 (4.01) 18.18 (2.24) 

Sincere  15.39 (3.31) 19.76 (1.48) 

 

There was no significant effect of conversation style, (F (1.59, 52.47) = 1.37, p = .260, ηp
2 = 

0.04) and no interaction between conversation style and group, (F (1.59, 52.47) = 1.63, p= .203, 

ηp
2 = 0.05). The tests of between-subjects effects was significant, (F (1, 33) = 21.03, p ≤ .001, 

ηp
2 = 0.39) and referring to the estimated marginal means, the group with TBI scored 

significantly lower across the three conversation styles of the SI-M (M= 15.54, SD= 3.65) 

compared to the control group (M= 18.55, SD= 1.94).   
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9.6.2. Accuracy for comprehension probes 

The descriptive statistics for the four different comprehension probes (beliefs, meanings, 

intentions, feelings) suggested that the group affected by TBI were less accurate at 

understanding what the actor was trying to do, what they were trying to say, what they were 

thinking, and what they were feeling (Table 38).  

Table 38. Descriptive statistics for the accuracy of the TBI and control groups for the four 

comprehension probes during the SI-M. 

SI-M Score TBI Mean (SD) Control Mean (SD) 

Intentions 11.39 (2.73) 13.82 (1.07) 

Meaning 11.78 (2.21) 13.82 (0.95) 

Beliefs 11.11 (2.47) 13.71 (1.05) 

Feelings  12.89 (1.75) 14.00 (0.94) 

There was a significant effect of comprehension probe, (F (2.38, 78.36) = 3.19, p = .038, ηp
2 = 

0.09) but there was no interaction between comprehension probe and group, (F (2.38, 78.36) = 

1.37, p= .261, ηp
2 = 0.04). To further explore the significant effect of comprehension probe, 

paired-samples t tests were conducted. When the post-hoc correction was applied, none of the 

follow-up tests were significant. The tests of between-subjects effects was significant, (F (1, 

33) = 17.67, p ≤ .001, ηp
2 = 0.35) and referring to the estimated marginal means, the group with 

TBI scored significantly lower across the four comprehension probes of the SI-M (M= 11.67, 

SD= 2.29) compared to the control group (M= 13.84, SD= 1.00).   

9.6.3. Eye-tracking data 

9.6.3.1. Fixation duration across the SI-M in seconds 

The descriptive statistics seemed to indicate that participants tended to spend more time fixated 

on the mouth than the nose and eyes during all three conversation styles (Table 39). The sincere 
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videos appeared to elicit the longest fixations, followed by the sarcastic and then paradoxical 

videos.  

Table 39. Fixation duration for SI-M across the conversation styles. 

Conversational Style Overall mean (SD) TBI mean (SD) Control mean (SD) 

Simple-sarcasm 

   Eyes 

   Nose  

   Mouth  

1.70 (1.54) 

0.34 (0.54) 

0.55 (0.67 

0.81 (0.79) 

1.77 (1.47) 

0.44 (0.65) 

0.51 (0.56) 

0.82 (0.75) 

1.63 (1.65) 

0.23 (0.37) 

0.58 (0.78) 

0.81 (0.86) 

Paradoxical-sarcasm 

   Eyes 

   Nose 

   Mouth 

0.74 (0.66) 

0.21 (0.26) 

0.29 (0.39) 

0.24 (0.28) 

0.80 (0.62) 

0.26 (0.30) 

0.24 (0.30) 

0.30 (0.33) 

0.68 (0.72) 

0.15 (0.19) 

0.35 (0.48) 

0.18 (0.20) 

Sincere 

   Eyes 

   Nose 

   Mouth 

2.79 (1.82) 

0.59 (0.82) 

0.95 (0.92) 

1.25 (1.23) 

3.02 (2.24) 

0.68 (1.00) 

1.01 (0.98) 

1.34 (1.51) 

2.53 (1.26) 

0.49 (0.59) 

0.89 (0.88) 

1.15 (0.88) 

 

The analysis showed a significant main effect of conversational style, (F (1.34, 44.16) = 23.59, 

p ≤ .001, ηp
2 = 0.42) and AOI, (F (2, 66) = 6.29, p = .003, ηp

2 = 0.16). The interactions between 

conversation style and group, (F (1.34, 44.16) = 0.25, p = .78, ηp
2 = 0.01), AOI and group, (F 

(1.78, 58.82) = 0.39, p =0.657, ηp
2 = 0.01), conversation style and AOI, (F (2.39, 78.98) = 2.62, 

p = .070, ηp
2 = 0.07), and conversation style, AOI and group, (F (2.39, 78.98) = 0.15, p =.894, 

ηp
2 = 0.01) were all non-significant. The tests of between-subjects effects was also not 

significant, (F (1, 33) = 0.52, p = .476, ηp
2 = 0.02).  

To explore the significant main effect of conversation style, two-tailed paired samples t tests 

were conducted and the post-hoc correction was applied. Participants generated significantly 

longer fixation durations during the sarcastic videos compared to paradoxical videos, (t (34) = 

5.67, p ≤.001, d = 0.96, CI= 0.61-1.30), sincere videos compared to sarcastic videos, (t (34) = 
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-3.00, p =.005, d = 0.51, CI= -1.82- -0.35), and sincere videos compared to paradoxical videos, 

(t (34) = -6.50, p ≤.001, d = 1.09, CI= -2.68- -1.41).  

Additional two-tailed paired-samples t tests were conducted to investigate the significant main 

effect of AOI. When the post-hoc correction was applied, participants exhibited significantly 

longer fixations to the mouth (M =2.30, SD= 1.69) compared to the eyes (M =1.13, SD= 1.07), 

(t (34) = -3.24, p = .003, d = 0.55, CI= -1.90- -0.44).  

9.6.3.2. Fixation count across the SI-M 

From the descriptive statistics presented in Table 40, there appeared to be a similar pattern for 

both the TBI and control participants, with both groups having higher fixation counts for the 

sarcastic and sincere compared to paradoxical videos.   

Table 40. Descriptive statistics for the AOI for the TBI and control groups across the three 

conversational styles (fixation count). 

Conversational Style Overall mean (SD) TBI mean (SD) Control mean (SD) 

Sarcasm 

   Eyes 

   Nose 

   Mouth 

4.52 (3.21) 

0.95 (1.27) 

1.55 (1.46) 

2.02 (1.58) 

4.62 (2.74) 

1.22 (1.49) 

1.48 (1.76) 

1.92 (1.43) 

4.41 (3.72) 

0.67 (0.96) 

1.61 (1.75) 

2.13 (1.76) 

Paradoxical 

   Eyes 

   Nose 

   Mouth 

1.97 (1.48) 

0.62 (0.63) 

0.75 (0.78) 

0.61 (0.50) 

2.12 (1.44) 

0.76 (0.71) 

0.73 (0.69) 

0.63 (0.56) 

1.82 (1.56) 

0.46 (0.52) 

0.76 (0.89) 

0.59 (0.46) 

Sincere 

   Eyes 

   Nose 

   Mouth 

5.73 (3.41) 

1.67 (2.06) 

1.94 (1.56) 

2.12 (1.69) 

5.44 (3.71) 

1.55 (1.62) 

1.91 (1.67) 

1.98 (1.90) 

6.04 (3.16) 

1.79 (2.49) 

1.98 (1.49) 

2.27 (1.48) 
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The analysis showed a significant main effect of conversational style, (F (1.39, 45.91) = 22.40, 

p ≤ .001, ηp
2 = 0.40). The other main effect of AOI, (F (1.69, 55.77) = 2.96, p = .068, ηp

2 = 

0.08), and the interactions between conversation style and group, (F (1.39, 45.91) = 0.37, p 

= .617, ηp
2 = 0.01), AOI and group, (F (1.69, 55.77) = 0.38, p = .648, ηp

2 = 0.01), conversation 

style and AOI, (F (2.26, 74.71) = 2.40, p = .091, ηp
2 = 0.07), and conversation style, AOI and 

group, (F (2.26, 74.71) = 0.44, p =.671, ηp
2 = 0.01) were all non-significant. The tests of 

between-subjects effects was also not significant, (F (1, 33) = 0.002, p = .965, ηp
2 ≤ 0.001).  

To explore the significant main effect of conversation style, two-tailed paired-samples t tests 

were conducted with post-hoc corrections applied. Participants generated significantly more 

fixations during the sarcastic videos compared to paradoxical videos, (t (34) = 7.24, p ≤.001, d 

= 1.22, CI= 1.83-3.26), and to sincere (M = 5.73, SD = 3.41) videos compared to paradoxical 

videos, (t (34) = -6.30, p ≤.001, d = 1.06, CI= --4.97- -2.54).   

9.6.4. Correlations 

One-tailed Spearman’s Rho correlations explored the relationships between the behavioural 

data (accuracy for conversation style and comprehension probe) and eye-tracking data (fixation 

duration and fixation count). When the groups were combined and once the α-level had been 

adjusted to account for multiple comparisons (α= .01), there were no significant correlations 

(all, r's ≤ 0.001, all p’s ≥ .110). When the groups were separated, there were still no correlations 

for the group with TBI (all r’s ≤ 0.51, p ≥ .032) but there were significant correlations for the 

control group between fixation duration to the eyes and intentions (r= 0.74, p= .001), fixation 

count to the eyes and intentions (r= 0.73, p= .001) and between fixation duration to the eyes 

and simple sarcasm (r= 0.69, p= .002). 
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9.7. SI-E 

A 2*(2) ANOVA was conducted to investigate group differences during the understanding of 

conversational meanings. A further 2*(4) ANOVA was conducted. Again, this analysis 

investigated the difference between the groups in understanding different facets of social 

interactions. A 2*(2)*(3) repeated measures ANOVA was conducted to investigate potential 

differences in fixation duration and count between the TBI and control groups.  

9.7.1. Behavioural data 

9.7.1.1. Accuracy for conversational style 

As demonstrated in Table 41, the descriptive statistics appeared to indicate  that the group 

affected by TBI had lower overall accuracy scores across the two conversational styles 

(sarcastic and lie) compared to the control group.  

Table 41. Descriptive statistics for the behavioural data of the TBI and control groups during 

the sarcastic and lie conditions of the SI-E. 

SI-E Score TBI Mean (SD) Control Mean (SD) 

Sarcastic 22.56 (4.77) 29.41 (3.37) 

Lie 25.33 (4.38) 27.76 (3.11) 

The effect of conversation style was non-significant, (F (1.00, 33.00) = 0.64, p = .428, ηp
2 = 

0.02) but there was a significant interaction between conversation style and group, (F (1.00, 

33.00) = 9.86, p= .004, ηp
2 = 0.23). Simple effects analysis revealed that the group with TBI 

scored significantly lower on the sarcastic vignettes (M = 22.56, SD = 4.77) compared to 

controls (M = 29.41, SD = 3.37) (p ≤ .001). The tests of between-subjects effects was also 

significant, (F (1, 33) = 16.31, p ≤ .001, ηp
2 = 0.33). Referring to the estimated marginal means, 

the group affected by TBI scored significantly lower across the two conversation styles of the 

SI-E (M= 23.94, SD= 4.78) compared to the control group (M= 28.58, SD= 3.24).   
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Although the t tests were non-significant once the post-hoc correction was applied, the follow-

up tests indicated that the control group had higher recognition scores for the sarcastic videos 

compared to the videos depicting lies (t (16) = -2.83, p = .012, d = 0.69, CI= --2.88- -0.41) 

while the group with TBI exhibited the reverse pattern, (t (17) = 2.22, p = .040, d = 0.52, CI= 

0.13-5.42). 

9.7.1.2. Accuracy for comprehension probes 

The descriptive statistics for the four different comprehension probes (intentions, meanings, 

beliefs, and feelings) suggested that the group living with TBI were less accurate at 

understanding what the actor was trying to do, what they were trying to say, what they were 

thinking, and what they were feeling (Table 42).  

Table 42. Descriptive statistics for the behavioural data of the TBI and control groups for the 

four comprehension probes during the SI-E. 

SI-E Score TBI Mean (SD) Control Mean (SD) 

Intentions 11.28 (2.49) 14.82 (1.63) 

Meaning 11.17 (2.60) 14.47 (1.70) 

Beliefs 13.33 (1.81) 14.47 (0.72) 

Feelings  12.11 (2.47) 14.12 (2.45) 

 

There was a significant effect of comprehension probe, (F (2.46, 81.19) = 3.25, p = .034, ηp
2 = 

0.09) and a significant interaction between comprehension probe and group, (F (2.46, 81.19) = 

4.69, p= .008, ηp
2 = 0.12). Simple effects analysis revealed that the group with TBI scored 

significantly lower on the ‘intention’ probes (M = 11.28, SD = 2.49) compared to controls (M 

= 14.82, SD = 1.63) (p ≤ .001). The same effect was found for the ‘meaning’ probes, with the 

group with TBI scoring significantly lower (M = 11.17, SD = 2.60) compared to the control 

group (M = 14.47, SD = 1.70) (p ≤ .001). The tests of between-subjects effects was also 
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significant, (F (1, 33) = 21.41, p ≤ .001, ηp
2 = 0.39). Referring to the estimated marginal means, 

the group affected by TBI scored significantly lower across the four comprehension probes of 

the SI-E (M= 11.97, SD= 2.34) compared to the control group (M= 14.47, SD= 1.63).   

9.7.2. Eye-tracking data 

9.7.2.1. Fixation duration across the SI-E in seconds 

Table 43 appears to suggest that individuals with TBI had shorter fixation durations to the eyes, 

nose and mouth compared to controls (Table 43).  

Table 43. Descriptive statistics for fixation duration to the AOI for the TBI and control 

groups across the two conversational styles of the SI-E. 

Conversational Style Overall mean (SD) TBI mean (SD) Control mean (SD) 

Sarcasm 

   Eyes 

   Nose 

   Mouth 

0.98 (0.92) 

0.37 (0.45) 

0.35 (0.39) 

0.26 (0.25) 

0.85 (0.70) 

0.31 (0.37) 

0.29 (0.30) 

0.25 (0.19) 

1.11 (1.10) 

0.43 (0.53) 

0.41 (0.47) 

0.28 (0.30) 

Lie 

   Eyes 

   Nose 

   Mouth 

0.38 (0.57) 

0.14 (0.24) 

0.11 (0.20) 

0.13 (0.22) 

0.25 (0.30) 

0.12 (0.19) 

0.07 (0.11) 

0.06 (0.08) 

0.51 (0.75) 

0.17 (0.30) 

0.14 (0.25) 

0.20 (0.29) 

The analysis showed a significant main effect of conversational style, (F (1, 33) = 44.18, p 

≤ .001, ηp
2 = 0.57) with participants exhibiting longer fixations for sarcastic videos compared 

to lie videos. The main effect of AOI, (F (1.22, 40.16) = 0.92, p = .405, ηp
2 = 0.03) and the 

interactions between conversation style and group, (F (1.00, 33.00) = 0.002, p = .969, ηp
2 

≤0.01), AOI and group, (F (1.22, 40.16) = 0.01, p = .991, ηp
2 ≤ 0.01), conversation style and 

AOI, (F (1.61, 53.26) = 2.54, p = .099, ηp
2 = 0.07), and conversation style, AOI and group, (F 

(1.61, 53.26) = 1.42, p =.249, ηp
2 = 0.04) were all non-significant. The tests of between-subjects 

effects was also not significant, (F (1, 33) = 1.13, p = .296, ηp
2 = 0.03).  
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9.7.2.2. Fixation count across the SI-E 

From the descriptive statistics presented in Table 44, the TBI cohort appeared to produce fewer 

fixation counts to all AOI across the sarcastic and lie conditions compared to control 

participants.  Both the TBI and control participants generated fewer fixation counts during the 

videos depicting lies compared to videos where the actors were being sarcastic. Inferential 

statistics were conducted to determine if these apparent differences were significant.  

Table 44. Descriptive statistics for fixation counts to the AOI for the TBI and control groups 

across the two conversational styles of the SI-E. 

Conversational Style Overall mean (SD) TBI mean (SD) Control mean (SD) 

Sarcasm 

   Eyes 

   Nose  

   Mouth  

3.90 (2.74) 

1.33 (1.25) 

       1.39 (1.22) 

1.18 (0.82) 

3.62 (2.04) 

1.21 (1.10) 

1.24 (0.83) 

1.16 (0.72) 

4.20 (3.37) 

1.45 (1.42) 

1.55 (1.55) 

1.20 (0.95) 

Lie 

   Eyes 

   Nose 

   Mouth 

1.48 (1.94) 

0.47 (0.63) 

0.49 (0.74) 

0.52 (0.77) 

1.12 (0.98) 

0.44 (0.53) 

0.35 (0.39) 

0.33 (0.31) 

1.86 (2.58) 

0.49 (0.74) 

0.65 (0.98) 

0.72 (1.03) 

The analysis showed a significant main effect of conversational style, (F (1, 33) = 75.77, p 

≤ .001, ηp
2 = 0.70) with participants displaying more fixations during the sarcastic vignettes 

compared to vignettes depicting lies. The main effect of AOI, (F (1.36, 44.95) = 0.28, p = .673, 

ηp
2 = 0.01) and the interactions between conversation style and group, (F (1, 33) = 0.08, p 

= .780, ηp
2=  0.002), AOI and group, (F (1.36, 44.95) = 0.20, p = .732, ηp

2 = 0.01), conversation 

style and AOI, (F (1.58, 52.23) = 1.29, p = .279, ηp
2 = 0.04), and conversation style, AOI and 

group, (F (1.58, 52.23) = 1.49, p =.236, ηp
2 = 0.04) were all non-significant. The tests of 

between-subjects effects was also not significant, (F (1, 33) = 0.76, p = .390, ηp
2 = 0.02).  
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9.7.3. Correlations 

One-tailed Spearman’s Rho correlations explored the relationships between the behavioural 

data (accuracy for conversation style and comprehension probe) and eye-tracking data (fixation 

duration and fixation count). When the groups were combined and once the α-level had been 

adjusted to account for multiple comparisons (α= .01), there were no significant correlations (r 

≤ 0.39, p ≥ .022). When the groups were separated, there were still no significant correlations 

for the group with TBI (all, r's ≤ 0.56, all p’s ≥ .016) or controls (all, r's ≤ 0.56, all p’s ≥ .019). 

9.8. Discussion 

The EET was administered to measure the participants understanding of social communication 

components such as facial expressions, tone of voice and gestures. The analysis indicated that 

the group with TBI were significantly less accurate identifying emotions compared to the 

control group. This is in line with similar research reporting that individuals with moderate-

severe TBI displayed poor emotion identification across all emotions on the TASIT (McDonald 

et al., 2003; Rosenberg et al., 2019). These findings support the suggestion that TBI disrupts 

emotion perception. However, there were no differences between the two groups on the eye-

tracking analysis, suggesting that TBI and control participants exhibited similar fixation 

patterns across the EET. There were also no significant correlations between eye-tracking 

metrics and accuracy scores for the group with TBI. This result indicated that poor emotion 

perception post-TBI is not related to aberrant gaze patterns. There were significant correlations 

for the control group which indicated that more and longer fixations to the eyes were related to 

increased understanding of intentions and simple sarcasm. Understanding other people’s 

intentions and sarcasm are complex social processes and focusing more on the eyes would 

allow the individual to gather as many diagnostic cues as possible.  

Recently, investigators have examined if certain regions of the face may be more diagnostic 

when identifying specific emotions. One objective from the current study was to explore 
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whether participants produced different fixation patterns to AOI when judging different 

emotions. The significant interaction between AOI and emotion for fixation duration and 

fixation count during the EET indicated that distinct fixation patterns emerged for the seven 

basic emotions. Similar to Schurgin et al., (2014), Pérez-Moreno et al., (2016) and Calvo et al., 

(2018), the current findings point to a goal-driven influence on eye gaze patterns, as distinct 

patterns of fixations were observed for both emotional and neutral faces. Moreover, visual 

strategies appeared to reflect attention to the most diagnostic area of the face for each emotion 

(e.g. mouth for identifying happiness and nose for recognising disgusted faces) suggesting that 

gaze patterns may also be stimulus-driven (Calvo et al., 2018; Eisenbarth & Alpers, 2011;  

Schurgin et al., 2014).  

The results from the EET indicated that individuals with TBI fail to capture and evaluate verbal 

and non-verbal social cues in comparison to control participants. In line with Eisenbarth and 

Alpers (2011) and Schurgin et al., (2014), the current findings illustrated that ocular fixation 

patterns may follow both stimulus-driven and goal-driven perceptual strategies when 

identifying facial affect. However, group did not have an effect on fixation patterns and there 

were no significant differences between the TBI and control participants in terms of fixation 

duration or count to the predetermined AOI. This signified that the TBI participant’s lower 

scores on the EET were not associated with deficits in low-level social perception but must be 

related to impairments in the higher-level stages of social processing.  

The SI-M measured the participant’s ability to read paralinguistic features, facial expressions 

and tone of voice in either sincere, simple-sarcastic and paradoxical-sarcastic exchanges. The 

group with TBI cored significantly lower across all three of the conversation styles of the SI-

M, in comparison to the control group, with simple-sarcasm vignettes being the hardest for the 

group affected by TBI to decipher, followed by sincere, and then paradoxical-sarcastic 
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exchanges. There was also a significant difference between the TBI and control groups on the 

comprehension probes of the SI-M, with the group with TBI exhibiting difficulty in 

understanding the actor’s intentions, feelings and the meaning of the conversation compared to 

the control group. The current findings are similar to McDonald et al., (2003) who reported 

that their TBI group were inferior to controls when asked to identify simple and paradoxical-

sarcastic exchanges. Unexpectedly, McDonald et al., (2003) reported that individuals with TBI 

performed better than controls on the sincere items, suggesting that this finding reflected a 

failure in the group affected by TBI to be distracted by innuendo. Nevertheless, this effect was 

not replicated in a follow-up study by McDonald et al., (2004) when they compared SI-M 

scores between a group of severe TBI participants and matched controls. Furthermore, the 

present research found that the group with TBI exhibited lower accuracy scores when 

recognising sincere exchanges compared to controls. It could be the case that McDonald et al.’s 

(2003) findings were related to a type I error.  

With regards to the SI-M eye-tracking data, all participants generated significantly longer 

fixation durations to the simple-sarcastic and sincere exchanges compared to paradoxical-

sarcastic exchanges. Additionally, both groups elicited more and longer fixations during the 

simple-sarcastic videos compared to paradoxical-sarcastic videos, and to the sincere videos 

compared to paradoxical-sarcastic videos. These findings appear to suggest that the simple-

sarcastic exchanges were the most challenging to decipher, as evidenced through increased 

attentional resources measured through ocular fixations. This suggestion is corroborated with 

the behavioural data which indicated that both groups scored lowest on the simple-sarcasm 

conditions compared to the other two conditions. It is logical to assume that simple-sarcastic 

exchanges would be more difficult to understand compared to paradoxical exchanges where 

you have the additional aid of nonsensical verbal utterances (Appendix 10). Similar to the 

findings of the MASC, it appears that different domains of socio-cognitive processing (i.e. 
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different social communication styles: sincere, simple-sarcasm, and paradoxical-sarcasm) 

elicited different visual strategies. This more than likely reflects a contrast in the magnitude of 

processing necessary for deciphering the social interaction.  

The eye-tracking literature frequently reports that participants typically fixate for longer on the 

eyes compared to other facial features (Guo & Shaw, 2015; Laidlaw & Kingstone, 2017; Wells 

et al., 2016). However, during the SI-M, participants tended to fixate for longer on the mouth 

compared to the eyes. This finding may be related to the dynamic nature of the study and the 

frequent movements of the mouth during speech, highlighting the essentiality of including 

more ecologically valid measures during social cognition research.  

There was no difference between the TBI and the control groups visual strategies when viewing 

the social exchanges of the SI-M. This suggests that both groups elicited a similar number of 

fixations with comparable durations to the eyes, nose and mouths of the actors.  Correlational 

analyses revealed that there were no significant relationships between fixation duration or 

fixation count and accuracy scores for identifying the conversation style (sarcastic or sincere) 

or comprehension probes (what the actor was intending to do or say and what they were 

thinking and feeling). Accordingly, it appears that individuals with TBI difficulty in accurately 

deciphering sincere and sarcastic social exchanges may not be attributed to aberrant eye scan 

patterns.  

The SI-E assessed the participant's ability to use contextual cues (i.e. tone of voice and facial 

expressions) to determine if everyday conversations were deceptive (the actor was lying) or 

sarcastic. Again, the group with TBI were significantly poorer at understanding the actor’s 

intentions, feelings and beliefs and the overall meaning of the social exchange compared to the 

control group. The group affected by TBI were significantly poorer at recognising sarcastic 

conversations compared to the control group which is in line with previous research (Channon, 
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Pellijeff & Rule, 2005; McDonald & Pearce, 1996). Interestingly, there was no significant 

difference between the two groups during the lie vignettes. These findings are consistent with 

McDonald et al., (2003) who also found that their TBI participants displayed impairments when 

trying to decipher sarcastic exchanges, but scored in a typical range during the lie conditions 

when compared with matched controls. These results imply that TBI diminishes the ability to 

comprehend sarcasm but the aptitude to recognise lies remains intact, a model that McDonald 

(2000) previously outlined in a review paper of neuropsychological studies of sarcasm. There 

are conceptual differences between sarcasm and lying; when an individual is being sarcastic 

they want their conspecifics to identify that they are speaking insincerely, while someone who 

is telling a lie aims to hide their insincerity. It has been argued that understanding sarcasm 

requires more cognitive effort compared to understanding sincere and untruthful exchanges 

(Deliens, Antoniou, Clin & Kissine, 2017; Miron-Spektor, Efrat-Treister, Rafaeli & Schwarz-

Cohen, 2011), mainly because understanding sarcasm necessitates first-order theory of mind 

(ToM; understanding what someone is thinking or feeling) and second-order ToM (predicting 

what one person thinks or feels about what another person is thinking or feeling). Further 

research exploring the intricacies of sarcasm and deception comprehension post-TBI is 

warranted as there is insufficient evidence at present. This research area is important as sarcasm 

permeates modern society and individuals who fail to understand this social construct are 

usually viewed as socially inept (Haiman, 1998).  

All participants exhibited more and longer fixations during the sarcastic vignettes compared to 

vignettes depicting lies. This suggests that participants directed more attentional resources to 

the sarcastic videos compared to the lie videos. Similar to the EET and the SI-M, group did not 

have an effect on fixation patterns and there were no significant differences between the TBI 

and control participants in terms of fixation duration or count to the predetermined AOI. These 

findings appear to indicate that individuals with TBI have an intact ‘visual’ social perception, 
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as their ocular fixation patterns were similar to the matched control group. Nevertheless, the 

individuals in the TBI group still scored significantly lower compared to the control group 

when identifying mood states and deducing whether a conversational exchange was sincere or 

sarcastic. This suggests that post-TBI deficits may lie in the second or third stage of social 

cognitive processing, which is the retrieval of social knowledge or response selection.  

In conclusion, the group affected by TBI found it harder to recognise emotions compared to a 

group of matched control participants. The present research also found distinct fixation patterns 

in response to seven different emotions and between sincere, sarcastic and deceptive social 

exchanges. Overall, the group living with TBI displayed lower accuracy scores when 

identifying simple-sarcastic, paradoxical-sarcastic and sincere exchanges, although there was 

a more pronounced impairment for the deciphering of simple-sarcastic conversations. 

Interestingly, the group affected by TBI displayed no deficits when interpreting lies when 

compared with the control group. Sarcastic remarks often transpire during every day social 

interactions and impairments in understanding these exchanges are reported in several clinical 

populations including autistic (Deliens, Papastamou, Ruytenbeek, Geelhand & Kissine, 2018) 

and schizophrenic cohorts (Kantrowitz, Hoptman, Leitman, Silipo & Javitt, 2014). During 

human relations, literal and non-literal meanings of speech unfold simultaneously with 

numerous communication devices such as facial expressions and body language. Unfortunately, 

the majority of existing research has employed context-void and uni-modal stimuli, focusing 

solely on visual or vocal components of social processing. The present study builds upon the 

current evidence base exploring indirect forms of speech post-TBI. Eye-tracking data during 

the interpretation of these different conversational exchanges revealed that differences in foveal 

fixation patterns did not appear to explain the low accuracy scores exhibited by the individuals 

in the group with TBI for the identification of mood state and conversational meaning. The 

previous sections have attempted to explore if there were differences between a TBI and 
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matched-control group when viewing static and dynamic social stimuli. The chapter which 

follows moves on to consider whether some of the a-typical visual strategies, reported in the 

previous studies of this thesis, extend to common day objects and animals.  
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10. Chapter ten: Overall discussion  

10.1. Chapter overview  

This chapter will summarise the main results of the research programme. Findings will be 

discussed in relation to previous studies and theories. Following this, implications of the 

research, including social cognition assessment and TBI rehabilitation, will be discussed. The 

limitations of the current research and potential future research directions will be also be 

outlined. 

10.2. Research review 

The overarching aim of this thesis was to explore the visual strategies underpinning social 

cognition, including emotion perception, ToM and social concepts such as lies and sarcasm. 

This was achieved by using static and dynamic social stimuli with individuals with TBI and a 

matched control cohort. TBI is a major public health concern (Roozenbeek et al., 2013; 

Humphreys et al., 2013), and is documented as a primary cause of chronic psychological 

impairments (Johnson & Griswold, 2017; Li et al., 2016). Reports from individuals affected by 

TBI and their families frequently indicate that social and emotional impairments after injury 

have the most adverse effect on the quality of life (Fleminger & Ponsford, 2005; Humphreys 

et al., 2013; McDonald et al., 2002; Ubukata et al., 2014). TBI survivors usually experience a 

breakdown in familial and social relationships (Bodley-Scott & Riley, 2015; Carlozzi et al., 

2015), which subsequently leads to social isolation and the increased risk of developing mental 

health conditions (Bjork & Grant, 2009; Bornhofen & McDonald, 2008; Fralick et al., 2016).  

The mechanisms underpinning these social and emotional changes post-TBI are not fully 

understood; despite frequent documentation that TBI disrupts social cognition, particularly 

facial affect recognition (Babbage et al., 2011; McDonald, 2013; McDonald et al., 2018; Spell 
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& Frank, 2000). It is unknown whether facial affect recognition impairments post-TBI are due 

to a disruption of low-level functions, such as visual processing, or more complex high-level 

cognitive functions. Research exploring low-level visual processes post-TBI is sparse, and the 

relationship between visual processes and social functioning is not sufficiently explored. If 

low-level visual processes are disrupted by TBI then this could impair the ability to capture, 

monitor and evaluate social stimuli, consequently having an adverse effect on upstream higher-

order cognitive functions, such as emotion perception and ToM.  

The current research utilised a range of static and dynamic social cognition assessments, in 

combination with eye-tracking technology, to examine the recognition of the six basic emotions 

(anger, disgust, fear, happiness, sadness and surprise) as well as other bi-modal social cues 

such as tone of voice, body language and gestures. Together, the four studies present an 

empirical exploration of social cognition in TBI and control cohorts and the overall findings 

are summarised below.  

10.3. Summary of overall findings  

The clinical MASC data indicated that the group affected by TBI had lower accuracy scores 

compared to the control group, supporting the evidence base documenting that social cognition 

is disrupted post-TBI (Babbage et al., 2011; Ubukata et al., 2014). The individuals in the TBI 

group also scored significantly higher on the undermentalizing condition compared to the 

control group. Undermentalizing refers to reduced ToM, meaning that a person is capable of 

mentalizing, but does it incorrectly (Vaskinn et al., 2015). In the context of brain injury, this is 

an insightful finding as it suggests that individuals with TBI may still be able to execute ToM 

if they receive psychosocial rehabilitation. Indeed, ToM training post-TBI, although in its 

infancy, has proved beneficial (Lundgren & Brownell, 2015; Zettin & Galetto, 2016).    
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The group with TBI also displayed differences in gaze patterns compared to the control group, 

eliciting significantly fewer and shorter fixations to the three AOI. Typically, during natural 

vision, eye movements are only directed to salient information and it is seldom that random 

fixations are made (Hayhoe, Shrivastave & Nruczek, 2003; Peterson & Eckstein, 2012). In the 

case of the MASC, the most salient areas would be the faces of the characters, namely the eyes 

but also the nose and mouth, as these features express mood state (Eisenbarth & Alpers, 2011; 

Guo & Shaw, 2015; Laidlaw & Kingstone, 2017; Wells, Gillespie & Rotshtein, 2016). 

Arguably, if the group affected by TBI were eliciting fewer and shorter fixations to facial 

features then they were going to find it more challenging to decipher the social situation. 

Research has proposed a relationship between fixation patterns and social cognition (Funahashi, 

2014; Wolf, Philippi, Motzkin, Baskaya & Koenigs, 2014). Indeed, aberrant visual strategies 

have been associated with low social functioning and high social disability in schizophrenic 

and autistic individuals (Bo, Li, Jiang, Wang & Wang, 2018; Klin et al., 2002), as well as 

impairments in deciphering mental states (Grynszpan & Nadel, 2015; Itier & Batty, 2009). 

However, the current research failed to find a relationship between fixation patterns and 

accuracy scores on the MASC. This finding indicated that abnormal social perception (i.e. 

fixation patterns) does not account for impairments in mindreading abilities post-TBI.  

An interesting finding from the MASC study was that both the TBI and control groups 

generated disparate fixation patterns for the three AOI in response to the subcategories of the 

MASC. Although it is generally well-established that ocular fixation patterns appear to differ 

in response to the six basic emotions (Barabanschikov, 2015; Calvo et al., 2018; Pérez-Moreno 

et al., 2016; Schurgin et al., 2014), there does not appear to be any published data exploring 

visual strategies in response to different domains of social cognition (i.e. deciphering thoughts, 

emotions and intentions). The hypothesis that different domains of social cognition produce 

disparate attentional orienting and time course of fixations on diagnostic regions of the social 
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scene was also supported by the non-clinical study. This finding suggested that different 

domains of social cognition activate different attentional resources, as evidenced through 

contrasting gaze patterns. This finding highlights the possibility of studying the initial stages 

of social processes in isolation to gain a deeper understanding of social cognition overall. This 

might prove fruitful for future research wanting to index social cognition in clinical and non-

clinical groups.    

The data from the MASC normative study indicated that there were no significant differences 

between males and females on the MASC in terms of ToM judgements and fixation patterns. 

This is an important finding as there is currently discourse in the literature regarding a female 

advantage on social cognition tasks (Olderbak et al., 2018). The findings are in line with 

previous research documenting non-significant differences between male and female gaze 

patterns (Hall et al., 2010), although, there is evidence contesting these findings (Vassallo et 

al., 2009). It appears that sex differences on social tasks and fixation patterns are small, variable 

and surrounded by controversy regarding specificity (Wright, Riedel, Sechrest, Lane & Smith, 

2018). Thus, the current findings expand the knowledge base surrounding this controversial 

research field, as well as presenting results which indicated that there are no significant 

differences between male and female processing abilities for social stimuli.  

Fixation duration scores for the control group in the clinical MASC study were half the value 

of those for the two groups (males and females) in the normative study. One explanation for 

this anomaly could relate to age as the MASC normative participants mean age (M = 21.25) 

was half compared to the MASC clinical control group (M = 43.83). It is documented that there 

are age-related changes in visual exploratory behaviour towards faces. Indeed, Chasby, Hupont, 

Avril, Luherne-du Boullay and Chetouani (2017) reported that older adults exhibited longer 

fixation durations over the lower-face area compared to younger adults. Alternatively, age-
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related socio-emotional differences may account for discrepancies. Hamel et al., (2013) found 

that age-related video game-experienced participants displayed larger saccade amplitudes and 

a broader distribution of fixations across the screen. The younger adults reacted faster to 

peripheral objects compared to older adults, with the authors concluding that the younger 

participants displayed superiority in general detection compared to the older adults. Although 

these findings highlighted the importance of accounting for age in social cognition and eye-

tracking research, the area is generally underexplored. Moreover, existing research typically 

has wide-ranging groups (e.g. young adults in their 20’s and older adults 70+) making it 

difficult to distinguish when these age-related changes might appear. The implications for age-

related differences could be significant, especially in clinical research where age could 

potentially be a confounding variable.  

In line with the MASC data, the ADFES static task also suggested that the group with TBI 

visual strategies differed from the control group concerning the number and duration of 

fixations, again, supporting preceding research documenting aberrant fixation patterns in TBI 

samples (Douglas et al., 2010; Kenrick et al., 2017; Oatley et al., 2014; Vassallo et al., 2011; 

Wolf et al., 2014). Individuals with TBI took significantly longer to instigate the first fixation 

to the eyes compared to the control group, as well as exhibiting more and longer fixations to 

the nose. In contrast, there were no differences in gaze patterns between the TBI and control 

group during the dynamic ADFES task. This is an interesting finding and is in line with 

research reporting that static and dynamic stimuli elicit different visual strategies. Blais et al., 

(2017) found that during the viewing of both static and dynamic facial expressions, the same 

facial features (the eyes, nose and mouth) were fixated on the most but there was a significant 

difference in the underlying visual strategy patterns. Participants exhibited more fixations to 

the left eye and mouth during the static condition and more fixations to the centre of the face 

during the dynamic condition. Blais et al., (2017) suggested that one possible explanation for 
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this difference is that humans can process biological motion outside of the fovea (Gurnsey et 

al., 2008; Thompson et al., 2007). Consequently, more fixations to the centre of the face during 

dynamic conditions may allow an individual to process motion cues from the eyes and mouth 

without directly fixating on the features, whereas this visual strategy would be insufficient for 

static stimuli. It could be the case that the biological motion during the dynamic task acted as 

a natural attention-cue for TBI participants (Horstmann & Ansorge, 2009; Tobin et al., 2016), 

thus, eliminating the gaze pattern differences observed in the static task. Nevertheless, the 

biological motion did not appear to guide the group with TBI during the MASC and, therefore, 

this theory is not fully supported and more research would be needed to disentangle the 

inconsistencies. One explanation for this variation in results could be that the MASC is film-

like, with numerous fast-paced scene changes and multiple characters, whereas the ADFES 

dynamic task depicts one actor in isolation and, consequently, is less attention-demanding. It 

could be argued that the MASC has more ecological validity compared to the ADFES dynamic, 

thus, findings from the MASC may be more representative of real-world visual strategies.  

The group affected by TBI were significantly poorer at correctly identifying static and dynamic 

facial expressions compared to the control group, again, corroborating previous research 

documenting facial expression recognition impairments post-TBI (Babbage et al., 2011; 

McDonald et al., 2003). Similar to the MASC findings, the correlational analyses for the 

ADFES static and dynamic data were non-significant, suggesting that the group affected by 

TBI’s poor emotion labelling accuracy and slower response times on the static task were not 

related with aberrant fixation patterns. The ADFES studies inform the evidence base that 

dynamic and static stimuli evoke disparate visual strategies in TBI populations, pointing to 

dissociation between static and dynamic processing systems. The comparison of the two 

experiments calls attention to the reliability of static stimuli in social cognition research.  



Page 334 of 531 
 

The ADFES findings also highlighted a relationship between AOI and emotion. These results 

suggested that gaze patterns were goal-driven, as distinct visual strategies appeared to reflect 

attention to the most diagnostic area of the face for each emotion (e.g. mouth for identifying 

happiness and nose for recognising disgusted faces). This theory corroborates with pre-existing 

research documenting differences in gaze patterns in response to different emotions (Calvo et 

al., 2018; Eisenbarth & Alpers, 2011; Pérez-Moreno et al., 2016; Schurgin et al., 2014). The 

findings are also in line with the MASC normative and clinical data which found that 

participants displayed different gaze patterns in response to the seven subcategories of the 

MASC. It appeared to be the case that low-level visual processes, such as fixation duration and 

count, are stimulus-driven, and that attentional resources are automatically directed towards 

the most diagnostic and salient feature of the social scene (Schurgin et al., 2014; Vabalas & 

Freeth, 2016).   

The TASIT findings indicated that the group living with TBI consistently scored lower on all 

three subtests of the TASIT, suggesting that, compared to controls, they found it difficult to 

understand emotions and mood states.  During the EET, the group with TBI scored lower across 

all emotions compared to the control group, showing diminished recognition of spontaneous 

emotional expressions. This is similar to other studies specifically using the EET (McDonald 

et al., 2003; McDonald et al., 2018), and research with similar designs (Hornak et al., 1996; 

Knox & Douglas, 2009; Ubukata et al., 2014). In line with similar research (McDonald, Fisher, 

Flanagan & Honan, 2017; McDonald et al., 2003), the group affected by TBI had lower scores 

across the sincere, simple-sarcastic and paradoxical-sarcastic conversational exchanges 

compared to the control group. TBI participants also displayed difficulties in understanding the 

actor’s beliefs, meanings, intentions, and feelings compared to controls. The SI-E results 

indicated that the group with TBI had significantly lower accuracy scores for the sarcastic but, 

interestingly, there was no significant difference between the two groups during the lie 
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vignettes. These findings are consistent with McDonald et al., (2003) who also found that 

individuals with TBI displayed impairments when trying to decipher sarcastic exchanges, but 

scored in a typical range during the lie conditions when compared with matched controls. It 

appears to be the case that the ability to comprehend sarcasm is diminished post-TBI but the 

ability to recognise lies remains intact. This hypothesis has previously been presented by 

McDonald (2000). This specific finding highlights the conceptual differences between sarcasm 

and lying and suggests that these processes may be mediated by disparate neural networks. 

Another finding from the TASIT was that the groups performed similarly across videos 

depicting emotions and thoughts, but the group affected by TBI had significantly lower 

accuracy scores on the intention and meaning vignettes compared to controls. These combined 

findings support the hypothesis that global social cognition impairments are present post-TBI, 

spanning across verbal and non-verbal processes (Bird & Parente, 2013; McDonald et al., 

2014).  

The TASIT presents complex audio-visual social stimuli where verbal and non-verbal social 

cues need to be integrated to correctly identify mental or emotional states. It was hypothesised 

that abnormal low-level visual processing would have a relationship with the TASIT 

performance. However, there were no group differences in visual strategies across the three 

sub-tests of the TASIT and no significant correlations between accuracy scores and eye-

tracking metrics. This finding suggests that the individuals affected by TBI’s poor performance 

on the TASIT was not related to social perception deficits (i.e. disrupted fixation patterns) but 

must be reliant on impairments in upstream cognitive processes, such as the retrieval of social 

knowledge or response selection. Furthermore, this finding supports the null findings of the 

ADFES dynamic task but conflicts with the MASC and ADFES static results which indicated 

that the group with TBI did display abnormal gaze patterns compared to controls.  
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An interesting finding from the TASIT eye-tracking analysis was that all participants displayed 

distinct fixation patterns in response to the seven basic emotions of the EET. This result 

supports findings from the ADFES and MASC where visual strategies reflected the attention 

to the most diagnostic area of the social scene, as well as previous research documenting similar 

findings (Calvo et al., 2018; Eisenbarth & Alpers, 2011; Schurgin et al., 2014). The implication 

of this finding could extend to post-TBI interventions where individuals are coached to re-

direct their gaze to the most salient visual area. However, the current research findings are not 

clear-cut, and the group affected by TBI did not consistently display aberrant gaze patterns in 

response to all social stimuli. Therefore, this approach may prove unsuccessful and further 

work is needed to see if development is warranted.  

Finally, the IAPS study indicated that there were no differences between the TBI and control 

group’s fixation patterns when viewing humans, animals and objects. This finding is in contrast 

with Douglas et al., (2010) who reported that a group of individuals affected by TBI generated 

abnormal gaze patterns (i.e. increased number, duration and dispersion of fixations) in response 

to faces, but typical gaze patterns in response to objects when compared to matched controls. 

Differences in gaze patterns were observed across the IAPS in response to stimuli category 

indicating that emotional displays (e.g. humans and mammals) generated more rapid and 

sustained attentional demands compared to non-emotional displays (e.g. objects). This result 

was expected as previous research has reported similar findings (Crouzet et al., 2010; Frank et 

al., 2009; Powell, Kosakowski & Saxe, 2018). Overall, the IAPS findings suggest that, on a 

very basic level (i.e. static displays), individuals with TBI appear to generate typical gaze 

patterns in response to social and non-social stimuli compared to matched controls.       

In sum, the behavioural data from the current research programme lends support to the proposal 

that social cognition is disrupted post-TBI, particularly facial affect recognition. From the 
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MASC and ADFES static experiments, it appeared that TBI may have visual strategies 

compared to controls. However, results uncovered in the TASIT, ADFES dynamic and IAPS 

studies suggest the antithesis, with the TBI and control group generating similar eye scan 

patterns. It is not evident why the results are non-uniform. One explanation could be that the 

stimuli used were so variable that is difficult to directly compare them, particularly the MASC 

which was dubbed from German into English. Nevertheless, the overall analyses of eye-

tracking data suggested that differences in fixation patterns did not appear to explain the low 

accuracy scores exhibited by the group affected by TBI for the identification of facial 

expressions, mood state and conversational meaning. There were also no significant 

correlations between facial expression recognition scores and eye-tracking metrics for either 

the static or dynamic ADFES conditions. This result implies that impairments in emotion 

perception post-TBI may not stem from low-level visual or spatial frequency disruptions, but 

may be related to higher-level cognitive processes. These inconsistent results highlight that 

gaze patterns are highly complex and, although they may be disrupted post-TBI, the visual 

system may still collect the necessary information it needs to process social interactions (i.e. 

this may be demonstrated through the non-significant correlations between eye-tracking 

metrics and accuracy scores). Combined, the findings of the four studies enhance the 

understanding of the nature of social cognition in both normative and TBI cohorts and suggest 

that further research is needed to understand the mechanisms underpinning social cognition 

impairments post-TBI.  

10.4. Evaluation of research 

This research aimed to fill a gap in knowledge about fixation strategies in response to static 

and dynamic social stimuli post-TBI. Eye-tracking offers an experimental strategy to unravel 

the low-level visual processes underpinning social and emotion perception. Not only is this 
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exploration constructive from a social cognition theoretical perspective, but it could also 

facilitate the development of emotion perception rehabilitation programmes post-TBI. The 

research also tapped into the different verbal and non-verbal domains of social cognition (e.g. 

deciphering thoughts, emotions and intentions), providing a fine-grained analysis of the low-

level social process in normative and TBI samples.  

A second strength of the research was the inclusion of dynamic stimuli. The majority of extant 

studies have employed static stimuli which lack ecological validity and mundane realism 

(Alves, 2013; Knox & Douglas, 2009), making it hard to generalise results. Therefore, the 

current research builds upon the small evidence base using dynamic research (McDonald et al., 

2003; Rosenberg et al., 2019). Furthermore, the current research was also able to directly 

compare low-level processes in response to static and dynamic stimuli, with findings indicating 

differences in underlying visual strategies, highlighting the methodological concern that static 

stimuli are not a true representative of real-world social cognition (Juslin et al., 2018; Namba 

et al., 2018).   

Although the current research tried to utilise the most contemporary social cognition 

assessments, the tools could still be criticised on the basis that they are limited (e.g. still 

frequently using the six basic Ekman (1992) emotions) and posed expressions (Juslin et al., 

2018; Namba et al., 2018). Furthermore, the social stimuli were not designed to be used in 

conjunction with eye-tracking. At present, there are no specifically designed social cognition 

tools which have been developed to be used with eye-tracking and, therefore, the reliability 

and validity of this methodology are not certain. The MASC has previously been used in 

combination with eye-tracking in the autism literature (Bast, Baumeister, Dziobek, 

Banaschewski & Poustka, 2016) but this does not detract from the fact that the assessment was 

not originally designed for use with eye-tracking. One of the issues with using non-specific 
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eye-tracking stimulus is that the design of AOIs, upon which the analysis depends, will not 

have been considered. The size and placement of AOIs are important and the design of the 

stimulus should balance selectivity and sensitivity. Although including more ecologically valid 

tools, such as the MASC and TASIT, provides a potentially more realistic insight into social 

cognition functioning post-TBI, there were limitations to their inclusion. Both the MASC and 

TASIT include small AOIs, due to the movie-like feel of the tools, while the ADFES displays 

quite large AOIs. Too small AOIs are at risk of excluding valid gaze data while larger AOIs 

increase sensitivity and runs the risk of collecting extraneous gaze data. Tobii Pro has also 

highlighted that the space between AOIs should be factored into the design of eye-tracking 

stimuli, advising researchers to implement a one-degree measure between AOIs to ensure 

sufficient spacing, a factor not considered during the MASC or TASIT. The present research 

aimed to utilize the most contemporary pre-existing social cognition tools to offer insightful 

findings regarding low-level visual strategies underpinning social cognition post-TBI. Future 

research could focus on designing social cognition tools which are specifically designed to be 

used in conjunction with eye-tracking, thus eliminating the confounding variables of selectivity 

and sensitivity encountered during the current programme of research.  

The present research only analysed visual strategies in terms of fixation count and duration. 

This decision was theoretically-driven by research documenting that the majority of visual 

processing occurs during a fixation, with very little visual processing during saccades 

(Auyeung et al., 2015; Helo, Pannasch, Sirri & Rämä, 2014; Leigh & Zee, 2015: Vassallo et 

al., 2010), as well as research indicating that saccades were less impacted by TBI than fixations 

(Mancuso et al., 2015). With this in mind, the current thesis only provides a partial exploration 

of gaze patterns underpinning social cognition. Indeed, there is evidence documenting that TBI 

alters saccades (Antoniades & Kennard, 2015) so future research could investigate potential 

differences in saccade patterns in TBI and matched control groups. It may be the case that, 
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although fixation count and fixation duration appear similar between TBI and controls on 

certain social cognition tasks, the pattern of these fixations (i.e. where the individual looks first, 

second, third and so on) could be different. Aberrant saccade patterns could potentially lead to 

delayed behavioural reactions which, in a dynamic and fast-paced social environment, could 

cause social difficulties. On a similar note, it should also be highlighted that there are 

limitations in terms of precision of the Tobii T120 eye-tracking equipment, and more fine-

grained analysis may be possible with upgraded Tobii products.   

Screening for risk, whilst necessary for the safety of the researcher, the participants themselves 

(e.g. ensuring the participant was deemed well enough to undertake the research), and others 

(e.g. the research was carried out on a University campus), this exclusion criteria could have 

restricted the representativeness of the TBI sample and, therefore, affected the external validity 

of the research findings. In a narrative literature review of studies exploring treatments for 

neurological disorders, Trivedi and Humphreys (2015) reported that exclusion criteria’s 

prevent approximately 3 in 4 individuals from participating in neurological research, including 

TBI studies. This raises concerns regarding the generalizability of findings, as well as ethical 

questions around excluding individuals from vulnerable or marginalised populations (e.g. 

individuals who do not have mental capacity) and, thus, creating a research knowledge shadow. 

Indeed, there tends to be a ‘protection by exclusion’ mindset when it comes to research with 

individuals lacking mental capacity (Shepherd, Wood, Griffith, Sheehan & Hood, 2019) but 

leading research organisations, such as the UK’s National Institute for Health Research, are 

seeking to identify under-represented groups to develop innovative clinical trials. Trivedi and 

Humphreys (2015) recommended that exclusion criteria should only be implemented when 

there is a strong rationale. However, this recommendation is somewhat idealistic when applied 

to real-world studies where research groups must go through rigorous ethical procedures. 

Furthermore, concomitant effects of TBI will also limit or skew the representativeness of 
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recruited samples as individuals with low motivation or mood disorders are unlikely to be able 

to participate in research, particularly lengthy repeated measures designs. More work is needed 

around the field of inclusion and exclusion criteria in TBI research and specific 

recommendations on how to overcome some of the barriers often incurred during ethics and 

recruitment. One limitation of the current research was that clinicians did not document how 

many potential participants were excluded during the current screening process. Future 

research could capture this data to determine the proportion of individuals with TBI who are 

excluded from potential research projects and the reasons for these exclusions.  

The current programme of research utilised consecutive recruitment, which means that every 

individual meeting the inclusion criteria were approached until the overall sample size was 

achieved. It was hoped that this approach might counterbalance some of the deleterious effects 

of the restrictive exclusion criteria as well as reducing the risk of inducing bias by seeking 

specific impairments relevant to the research (e.g. only recruiting individuals who displayed 

social cognition impairments daily). However, one of the limitations of consecutive recruitment 

in the present research is that it resulted in a wide variation of TBI severity and causes.  

Indeed, time since injury was very wide-ranging in the current sample of TBI individuals. The 

present research methodology was based on previously published research which had also 

recruited samples with large differences in the time since injury. To ensure that the research 

was exploring chronic impairments, rather than acute impairments, the current programme 

employed the inclusion criterion that individuals had to be one-year post-TBI to be recruited. 

It could be argued that social cognition deficits may improve over time with brain plasticity or 

that individuals who had sustained their injury many years ago may have developed coping 

strategies. However, social cognition impairments post-TBI are documented to be enduring 

(from around one year) and do not appear to improve (Blair & Cipolotti, 2000; Tranel et al., 
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2002; Ietswaart et al., 2008; Milder’s et al., 2003). Indeed, it appears that social cognition, 

particularly emotion perception and ToM deficits, remain stable over time. There are accounts 

that socioemotional impairments post-TBI may worsen over time. This may be related to 

reduced social feedback as individuals with TBI often experience relationship breakdowns 

years after the injury (Wood & Yurdakul, 1997), and frequently do not return to work or 

hobbies (Humphrey et al., 2013). Therefore, the individual’s social network reduces and they 

have fewer opportunities to have interpersonal interactions and social skills may weaken even 

further. This social isolation may even lead to frustration and aggressive behaviours which are 

also reported to increase over time (Williams et al., 2020). What is unclear is whether this 

deterioration is associated with a decline in social cognition (e.g. emotion recognition 

worsening over time) or whether it is related more to proxy ratings. There are reports that it 

takes proxy’s (e.g. family/friends) a significant amount of time to come to terms with 

socioemotional changes post-TBI (e.g. at least a year but possibly more – Spikman et al., 2013). 

Future research could explore this area to determine whether social cognition deficits remain 

stable over time but environmental factors exacerbate them, or whether there is a deterioration 

in social skills (e.g. poorer emotion recognition 10 years post-injury compared to five years 

post-injury) and the factors for this (e.g. brain cell death, age). Indeed, controlling for time 

since injury may shed light on the persistence of social cognition deficits post-TBI.  

TBI is heterogeneous in cause, pathology, and severity and poses as a methodological issue 

during the design and analysis of most TBI research. However, this is mainly the case for 

clinical trials which contain treatment and non-treatment groups where there could be an 

imbalance of baseline characteristics (Roozenbeek, Lingsma & Maas, 2012). As the current 

research programme was a non-clinical trial, and the individuals with TBI were matched to 

controls, heterogeneity was considered to be a low confounding variable. However, this 

minimal attention to heterogeneity may be a key factor contributing to the high percentage of 
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TBI research which reports inconsistent findings. It could be suggested that studies should 

recruit more homogeneous samples (e.g. only include individuals with severe TBI who have 

had a fall) which should, technically, eliminate this confounding variable. However, from a 

practical point of view, strict inclusion criteria would increase the screening and recruitment 

timeframe, it would lower the percentage of individuals eligible for the study (creating a barrier 

to taking part in research), and the results would also not be generalizable to the TBI population. 

It may be the case that research with larger sample sizes could control for heterogeneity during 

analyses, although for instance, determining cut-offs for severity is not standardized across the 

research field (Stein, 2015). Stein put it nicely when he wrote: “Complaining about patient 

heterogeneity and the experimental variance caused by it needs to be replaced with more pro-

active management and less ambitious, more carefully focused enrolment criteria for TBI 

trials”. This is something which the researcher will keep in mind for future research.  

One potential confounding variable in the current research programme is the diversity of the 

individuals with TBI in terms of verbal IQ (ranging from the mid-50s to more than 135). 

However, despite this heterogeneity, overall group differences in social cognitive functioning 

were still found. Nevertheless, it could be argued that this variance may have masked results 

from the individual research studies. The researcher decided not to exclude participants with 

the lowest/highest performance from analysis for several reasons. Firstly, IQ was employed as 

a third matching criterion, not a screening measure. While gender and age were the primary 

matching criteria, it was hoped that the introduction of the third criteria would reduce the risk 

of confounding variables between the group with TBI and the control group. Existing eye-

tracking studies with TBI populations only employ age and gender as the matching criterion 

(Douglas et al., 2010; Vassallo et al., 2011), while many emotion perception studies with TBI 

participants use age, gender and years of education to match participants (Croker & McDonald, 

2005; Milders et al., 2003; Spikman et al., 2013), not IQ. With many TBI studies not screening 
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for IQ (e.g. Milders et al., 2003; Spell & Frank, 2000; Spikman et al., 2013) it did not seem 

necessary to exclude participants based on this optional factor. This point was even more 

pertinent as it is well known that recruitment for TBI studies is protracted and often sample 

sizes, and thus power, are small and low. Secondly, when considering the nature of the high 

and low scores, it was decided by the researcher that they were legitimate ‘real world’ 

observations. TBI is documented to negatively affect IQ (Königs, Engenhorst & Oosterlaan, 

2015; Parker & Rosenblum, 1996), particularly in severe TBI, which the majority of 

participants had sustained. Indeed, with the heterogeneous nature of TBI (Maas, 2016) 

combined with the observation that the recruitment streams were from low socioeconomic 

areas, it did not seem surprising to the researcher that there was large variability within the IQ 

scores of individuals with TBI. Moreover, as discussed in detail during chapter five, the current 

research programme was opposed to transforming the data and felt strongly about maintaining 

the integrity of the raw data. Thirdly, research has demonstrated that there is no correlation 

between social cognition and IQ (Baksh, Abrahams, Auyeung & MacPherson, 2018; Mohn, 

Sundet & Rund, 2014), consequently, as this thesis was interested in social cognition post-TBI, 

it did not seem appropriate to exclude participants or control for low IQ levels during statistical 

analysis. Fourthly, to account for potential verbal deficits, all of the studies employed a forced-

choice format, mitigating communication impairments. The researcher found the WASI time 

consuming to administer, particularly with individuals who had sustained TBI. As the WASI 

was part of a larger neuropsychological test battery which often fatigued both individuals with 

and without TBI, combined with the points above, on reflection, future research studies might 

consider removing this as a matching criterion.  

The present sample size was based on previous research which implemented similar 

methodology. Although the sample size was moderate, it is acknowledged that the study may 

not have had sufficient power to detect small differences between the groups. As p values are 
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influenced by sample sizes, and to ensure that misleading conclusions were not presented, 

effect sizes were included to try and mitigate any uncertainties (Cabella et al., 2017). One of 

the challenges of the research project was the slow and low rate of referrals for individuals with 

TBI. This may have been a result of too stringent inclusion/exclusion criterion or time 

constraints experienced by both the referring consultants. One way to combat both of these 

barriers would be to collaborate with several NHS Trusts, thus increasing referral streams.  

As discussed earlier in the thesis, it is likely that social cognition impairments are influenced 

by pre and post-TBI variables, for example, pre-morbid personality traits, pre and post-TBI 

mood disorders, psychiatric conditions, and/or substance abuse use. Factors such as mood or 

substance abuse would more than likely exacerbate social cognition problems post-TBI. If the 

individual experienced more than one of these factors (e.g. an individual started taking 

recreational drugs to alleviate low mood) then this is likely to significantly impact on social 

functioning. These factors are also likely to have an impact on motivation and, therefore, the 

chances of an individual taking part in research is decreased, particularly if the design is 

repeated measures/ longitudinal. Individuals with mood or substance abuse might also be 

excluded from research to control for confounding variables. On the other hand, individuals 

may also display ‘reserved’ social functioning which may benefit them during the adjustment 

period post-TBI (Frank, 2011; Sela-Kaufman et al., 2013) and social cognition may appear less 

impacted. Extant literature on social reserve is mainly focused on neurodegenerative diseases 

and while the evidence base is slowly growing for TBI it is still insufficient (Nunnari, Bramanti 

& Marino, 2014). Future research could explore the role of cognitive reserve in brain injury 

psychosocial outcomes.  
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10.5. Implications  

Normative data is particularly important in clinical neuropsychology as it allows the 

comparison of an individual with a representative group to determine whether there are deficits 

in cognitive functions (Lezak, Howieson & Loring, 2004; Strauss et al., 2006). The normative 

MASC data demonstrated that there were differences in fixation patterns in response to 

different domains of social cognition, which was further replicated in the clinical MASC data. 

The MASC is a popular social cognition tool which is frequently cited in the literature (Lahera 

et al., 2014; Martinez et al., 2017; Preißler et al., 2010). If the subcategories of the MASC were 

further validated then future research could include them in their analysis, providing a finer-

grained analysis of mindreading abilities compared to the current scoring system. Despite its 

reliability and prevalence in other research fields, the MASC has not been used in the TBI 

literature; hence, the clinical study undertaken in the current programme of research has 

preliminarily established task parameters, reliability and sensitivity with a TBI cohort.  

The MASC normative study also found that there were no sex differences in either eye-tracking 

metrics or accuracy scores on the MASC. This finding has implications for the extant evidence 

base documenting that there is a female superiority on social cognition tasks (Olderbak et al., 

2018). Males performed on par with females across the different subcategories of the MASC 

and they displayed similar gaze patterns in terms of fixation counts and fixation durations. It 

appears that the purported female advantage in non-verbal emotion recognition tasks are small 

and it might be the case that the introduction of dynamic stimuli eliminates these sex 

differences. Indeed, recent research has suggested that there are significant differences in visual 

strategies underpinning static and dynamic social processing (Blais et al., 2017; Stoesz and 

Jakobson, 2013). These findings highlight the need for future research to employ dynamic, 

rather than static, stimuli. Moreover, findings from normative sex research have implications 
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for clinical studies as some scholars theorise that sex may be a protective factor for social 

cognition abilities post-TBI. Unfortunately, normative and clinical evidence is equivocal 

regarding a potential female advantage on social cognition tasks and findings are complex 

(Rigon et al. 2008; Zupan et al., 2017). Possible reasons are task-specific demands, and/or use 

of non-naturalistic static stimuli and varied methodologies across studies. Future research could 

aim to disentangle these inconsistent findings with ecologically valid stimuli. 

Although the current gaze data findings were non-uniform, there were significant differences 

between the TBI and control groups fixation patterns on two social cognition assessments (one 

static and one dynamic). These findings should not go unnoticed and, although there were no 

significant correlations between eye-tracking metrics and emotion accuracy scores, the fact that 

TBI appears to disrupt gaze patterns, although inconsistently, warrants that low-level visual 

processes be taken into consideration when assessing psychosocial processing post-TBI, both 

in clinical and research settings. These findings also suggested that eye-tracking might be a 

useful tool to measure post-TBI changes, potentially as a diagnostic tool, even for mild TBI 

which is notoriously difficult to detect. Indeed, recent reports have suggested that eye-tracking 

can be used as a potential diagnostic biomarker and outcome measure for brain injury 

(Samadani, 2016).  

As previously discussed, social cognition is an area which is often not assessed nor rehabilitated 

post-TBI. Social cognition functioning after brain injury can vary greatly depending on a range 

of injury-related (e.g. severity, pathology location, mechanism of trauma), personal factors (e.g. 

pre-morbid personality factors and mood/psychiatric conditions) and social influences (e.g. 

employment status, social network size, culture). All of these elements would affect cognitive 

and behavioural changes post-TBI and would need to be factored into psychosocial 

rehabilitation or intervention treatments. Psychosocial assessment and rehabilitation post-TBI 
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is still in its infancy (Kelly et al., 2017) but there is evidence which suggests that visual 

scanning training may be beneficial (Cicerone et al., 2011; Neumann, Zupan, Tomita & Willer, 

2009). However, the paucity of eye-tracking studies with TBI populations, particularly those 

focusing on social cognition, combined with the lack of consistency between findings in the 

current research programme, might challenge the efficacy underpinning the incorporation of 

visual scanning training in post-TBI interventions. With the lack of evidence-based research 

supporting the theory that low-level visual processes are disrupted after TBI, and that these 

low-level processes can be successfully rehabilitated, it would be inappropriate for public 

health services to offer visual scanning training post-TBI. However, it is important to note that 

although the present findings were inconsistent, a number of the current studies did find 

aberrant gaze patterns in the group affected by TBI. This is also supported by pre-existing 

research which has also documented aberrant gaze patterns in groups of individuals affected 

by TBI (Vassallo et al., 2010, 2011).  Therefore, gaze patterns following TBI need to be 

investigated further, particularly as visual scanning training could offer a clinically practical 

and low-cost intervention. Indeed, one of the novel aspects of the current programme of 

research was that no other studies had explored gaze-patterns in a sample of TBI individuals 

when they viewed static and dynamic social stimuli. When searching the autism or 

schizophrenia eye-tracking literature, both have a plethora of research and this is what the TBI 

evidence-base is lacking. Future research needs to replicate the basic design of the current 

thesis, i.e. exploring the low-level visual processes underpinning social cognition post-TBI. 

This knowledge will provide the evidence-base with a clearer picture of whether low-level 

processes are disrupted as a result of TBI and whether they are related to social cognition 

impairments. Future research should consider implementing dynamic, ‘real world’ social 

stimuli which are specifically designed to be used with eye-tracking technology. A superior 

method would be to record gaze patterns during non-posed dyadic interactions and this is 
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becoming increasingly possible with the rapid development of eye-tracking technology. For 

example, Rogers, Speelman, Guidetti and Longmuir (2018) used dual eye-tracking to uncover 

personal gaze patterns during face-to-face social interactions. This type of study design would 

also eliminate the limitations of labelling and forced-choice paradigms which the current 

research, and indeed many studies exploring social cognition post-TBI, have employed. A 

potential confounding variable in TBI research is communication problems, such as aphasia 

(Marsh & Hillish, 2006). Forced choice paradigms mitigate these communication challenges 

and support participants who are reticent to guessing but who might implicitly be able to 

provide the correct response. Nevertheless, forced-choice paradigms are far removed from real-

world social interactions and, therefore, data collected using this method lack mundane realism. 

Furthermore, there is a large variation in people’s vocabularies and they may not resonate with 

one of the forced labels (e.g. fearful) but they may thinking of a synonym (e.g. scared). To 

ensure this latter point is alleviated, researchers should ensure that participants understand the 

meaning of each label and could provide definitions and synonyms, similar to the verbatim 

instructions of the TASIT.  

While the overall findings of the current research do not present a clear picture of the 

underpinnings of social cognition deficits post-TBI, it appears possible that one or more stages 

of social processing may be disrupted. This finding has implications regarding the knowledge 

base concerning the underlying mechanisms of disrupted social cognition post-TBI. As 

correlations were all non-significant between eye-tracking metrics and accuracy scores on the 

social cognition assessments, it is unlikely that impairments are due to low-level visual 

processing disturbances, although this should not be ruled out until further research is explored. 

It appears more likely that impairments must occur in the subsequent ‘higher-order’ stages of 

social cognition; interpretation and processing of social information, and response selection 

(Adolphs, 2010; Ostrom, 1984; Penn et al., 1997). It may be difficult to disentangle the 
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underlying mechanisms of social cognition impairments post-TBI as the three stages of the 

process all heavily rely on interconnected brain regions, particularly frontal circuitry (Amodio 

& Frith, 2006; Bicks et al., 2015; Wittmann et al., 2018; Xiao et al., 2017), which are vulnerable 

to damage during TBI (Bigler, 2013). However, future studies could investigate the brain areas 

which sub-serve these higher-order processes and test these processes directly for impairment. 

This knowledge could inform post-TBI assessment and rehabilitation. Indeed, Yeates (2014) 

suggested that more success could be gained in the field of neurorehabilitation if the underlying 

impairment mechanisms were fully understood. Furthering the knowledge base could 

potentially allow clinicians to target specific deficits rather than resorting to a global 

intervention approach (Yeates, 2014).  

10.6. Conclusion 

The current research presented in this thesis expands on the existing literature pertaining to 

social cognition in typical cohorts as well as impairments as a direct effect of TBI. There is a 

plethora of data documenting social cognition impairments post-TBI yet the mechanisms 

underpinning these are not well understood (Babbage et al., 2011; Knox & Douglas, 2009; 

McDonald 2013). The current research employed static and dynamic social stimuli, contrasting 

to previous research, as well as a fine-grained analysis measuring both low-level (visual 

strategies) and high-level (identifying facial expressions) social cognition in a TBI and control 

group. In line with existing research, findings revealed that the group affected by TBI 

consistently scored lower on emotion perception and mindreading tasks compared to the 

control group. The consistency of these findings strongly supports the theory that TBI disrupts 

social cognition. The current research found that the group living with TBI scored significantly 

lower on all of the facial affect recognition assessments, therefore, the overall findings expand 

on the well-established knowledge base concerning facial affect recognition impairments post-
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TBI (Babbage et al., 2011). Of particular interest was the finding that the group with TBI 

appeared to have diminished abilities to recognise sarcasm but intact abilities to recognise lies. 

This appears to suggest that these two social processed are modulated by different brain 

networks and that the underpinnings of sarcasm processing may be more susceptible to damage 

during TBI. Further research exploring the intricacies of sarcasm and deception comprehension 

post-TBI is needed as both processes are vital for successful social functioning (Haiman, 1998).  

The group affected by TBI also exhibited aberrant visual strategies compared to controls on 

the ADFES static and the MASC but not on the remaining tasks. Referring back to Penn et al., 

(1997) social cognition model, it may be the case that the individuals in the TBI group 

displayed selective impairments during the very initial stages of social cognition, the perception 

of social cues, but this was not consistent across all tasks. Furthermore, correlational analysis 

exploring the relationship between fixation patterns and emotion perception scores were also 

non-significant. It might be more probable that TBI disrupts the remaining two stages of social 

cognition (retrieval of social knowledge and response selection). However, the low-level 

differences found during the MASC and ADFES static experiments cannot be discounted and 

highlight the need for further investigation into eye-tracking post-TBI.  
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Appendices 

Appendix 1. Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983)  
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Appendix 2. Michigan Alcoholism Screening Test (MAST; Selzer, 1971) 
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Appendix 3. Drug Abuse Screening Test (DAST; Skinner, 1982) 
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Appendix 4. Diagram to illustrate an emotion (sad) unfolding for the ADFES dynamic condition  
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Appendix 5. Diagram to illustrate the sequence of events for the static condition 

 

Diagram to illustrate the sequence of events for the static condition. The participants pressed the space bar to move the instructions on at their own 

pace. The facial expression image appeared for eight seconds before automatically moving onto the answer screen. Only eye tracking data collected 

during screen five was analysed.  
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Appendix 6. Diagram to illustrate the sequence of events for the dynamic condition 

  

The participant would indicate when they had read the instructions and the researcher would move the test on by pressing the space bar. The video 

lasted for 5.5 seconds before automatically moving onto the answer screen. Only eye tracking data collected during screen four was analysed. 
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Appendix 7. An example of a MASC clip and associated question   

Picture 1. Cliff is the first one to arrive at Sandra’s house for the dinner party. He and Sandra 

seem to enjoy themselves when Cliff is telling a story about his vacation in Sweden. 

 

 

 

 

 

 

Picture 2. When Michael arrives, he dominates the conversation, directing his speech to 

Sandra alone. 
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Picture 3. Slightly annoyed by Michael’s bragging story, Sandra shortly looks in Cliff’s 

direction and then asks Michael: ‘‘Tell me, have you ever been to Sweden?’’ 

 

 

 

 

 

 

Question 17.  Why is Michael telling this story? 

for Sandra to realize that he is the best guy to date 

he wants to impress Sandra 

he thinks the story is interesting 

the incident just happened today 
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Appendix 8. Diagram to illustrate the sequence of events for the MASC 
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 Appendix 9. Diagram to illustrate the sequence of events for the Emotion Evaluation Test (EET)  
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Appendix 10. An example of sample scripts and probe questions used during the Social 

Inference–Minimal Test Sample and Social Inference–Enriched Test in the TASIT 

Sample Scripts and Probe Questions Used in Social Inference–Minimal Test 

SINCERE OR SIMPLE SARCASTIC ITEMS---PARALINGUISTIC CUES ONLY 

(ENACTED EITHER SARCASTICALLY OR SINCERELY) 

Ruth: Great movie, wasn’t it? 

Michael: Oh, yeah, great. 

Ruth: I thought it was terrific. I was on the edge of my seat. 

Michael: Oh, me too, on the edge of my seat 

Ruth: Well, weren’t you surprised by the ending? 

Michael: Oh, yeah, the ending was a huge surprise. 

Ruth: I thought the actors were very good. I really liked that main girl. 

Michael: She was unbelievable, and the guy opposite her—what a performance! 

Ruth: It’s a shame it’s closing. I’d like to see it again. 

Michael: Yeah, what a shame. I feel I could see it another dozen times. 

Probe questions 

Act: Is Michael agreeing with Ruth about the movie? 

Say: Does he mean the actors were good? 

Think: Does he think the movie was bad? 
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Feel: Did he enjoy the movie? 

PARADOXICAL SARCASM---SCRIPT IS NONSENSICAL EXCEPT IF ONE 

SPEAKER IS ASSUMED TO BE INSINCERE 

Gary: Have you got your ticket? 

Keith: Nope. I tore it up and threw it away. 

Gary: Good. And your passport’s safe? 

Keith: Sure, I threw that in the bin along with my ticket. 

Gary: So, you’ve got everything. 

Probe questions 

Do: Is Keith seriously trying to make Gary think he’s lost his ticket? 

Say: Does Keith mean he has got his ticket and passport? 

Think: By the end of the scene, does Gary think Keith has his ticket? 

Feel: Is Keith grateful that Gary checked about his ticket?  
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Appendix 11. Diagram to illustrate the sequence of events for the Social Inference–Minimal Test 
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Appendix 12. Diagram to illustrate the sequence of events for the Social Inference–Enriched Test 
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Appendix 13. Image numbers, category and category mean valence, arousal and 

dominance for IAPS images.  

 

 

IAPS Number Category Mean Valence Mean Arousal  Mean Dominance 

2495 Human  5.22 3.19 5.77 

2020 Human  5.68 3.34 5.99 

2830  Human 4.73 3.64 5.33 

2211 Human 5.19 4.05 5.25 

2010 Human 4.38 3.56 5.03 

2000 Human 6.51 3.32 6.65 

2516 Human 4.90 3.50 5.54 

2002 Human 4.95 3.35 5.89 

2030 Human  6.71 4.54 5.60 

2512 Human 4.86 3.46 4.86 

2102 Human 5.16 3.03 5.16 

2513 Human 5.80 3.29 5.16 

2101 Human 4.49 3.46 5.25 

2019 Human 6.07 4.31 5.89 

2190 Human 4.83 2.41 5.92 

2005 Human  6.00 4.07 6.00 

1630  Mammal (deer) 7.26 4.45 6.12 

1920 Mammal (dolphin)  7.90 4.27 6.50 

1410 Mammal (ferret)  7.00 4.17 6.05 

1660 Mammal (gorilla) 6.49 4.57 5.46 

1720 Mammal (lion) 6.79 5.32 4.63 

1350 Mammal (pig) 5.25 4.37 5.60 

1440 Mammal (seal pup) 8.19 4.61 6.05 

1820 Non-mammal (alligator) 5.35 5.67 4.66 

1603 Non-mammal (butterfly) 6.90 3.37 6.57 

1275 Non-mammal (cockroach)  3.30 4.81 5.11 

1910 Non-mammal (fish) 6.71 3.29 6.44 

1121 Non-mammal (gecko) 5.79 4.83 5.89 

1908 Non-mammal (jelly fish) 5.28 4.88 4.75 

1903 Non-mammal (prawn) 5.5 4.25 6.01 

1931 Non-mammal (shark) 4.00 6.80 3.51 

1080 Non-mammal (snake) 4.24 5.69 4.33 

1947 Non-mammal (squid) 5.85 4.35 5.84 

1390 Non-mammals (wasps) 4.50 5.29 4.75 

7010 Object (basket) 4.94 1.76 6.70 

7090 Object (book) 5.19 2.61 6.65 

7006 Object (bowl) 4.88 2.33 6.18 

7057 Object (cup and saucer) 5.35 3.39 5.33 

7058 Object (dice)  5.29 3.98 5.29 

7043 Object (drill) 5.17 3.68 5.89 

7175 Object (lamp) 4.87 1.72 6.47 

7009  Object (mug) 4.93 3.01 6.33 

7026 Object (picnic table) 5.38 2.63 6.19 

7056 Object (pliers)  5.07 3.07 5.07 

7000 Object (rolling pin) 5.00 2.42 6.14 

7014 Object (scissors)  5.15 3.25 6.21 

7004  Object (spoon) 5.04 2.00 6.74 

7032  Object (trainers) 4.82 3.18 5.90 

7052 Object (washing pegs) 5.33 3.01 6.43 
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Category Mean Valence Mean Arousal Mean Dominance 

Human 85.48 56.52 89.29 

Mammals 48.88 31.76 40.41 

Non-mammals 57.42 53.23 57.86 

Objects 76.41 42.04 91.52 
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Appendix 14. Counterbalancing design  

Set A Set B 

HADS CORVIST 

VOSPB DAST 

MAST VOSPB 

CORVIST WASI 

DAST HADS 

WASI MAST 

MASC ADFES dynamic 

ADFES static Control (IAPS) 

TASIT ADFES static 

ADFES dynamic  MASC 

Control (IAPS) TASIT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 506 of 531 
 

Appendix 15. Definitions of Tobii descriptive statistics  

Time to First Fixation (Seconds). 

Time to first fixation is the amount of time it takes until the participant fixates on an active 

AOI from the start of the media (video or picture). The measuring of time begins when the 

media containing the AOI is first displayed. For time measurement to start an AOI does not 

have to be active and the activation state of the AOI (active/inactive) does not affect the time 

measurement start point. Even if the AOI is inactive time measurement will begin. Time 

measurement will only stop when the participant fixates on an active AOI.   

If media containing the same AOI is displayed several times during the recording but there are 

also aspects of the media where the AOI is not present then the time to first fixation will be 

calculated by the addition of each recorded media time displaying the AOI until the active AOI 

is fixated on by the participant. Media not containing the AOI is excluded from the recording 

time calculation.  

If the participant does not fixate on an AOI by the end of the recording then the time to first 

fixation value will not be provided and will not be incorporated in the descriptive statistics 

calculations (e.g. when computing the N value).   

First Fixation Duration (Seconds) 

This calculation measures the first fixation duration on an active AOI.  If the participant does 

not fixate on an AOI by the end of the recording then the first fixation value will not be provided 

and will not be incorporated in the descriptive statistics calculations (e.g. when computing the 

N value). ‘Cut off’ fixations affect the descriptive statistics for this calculation.  

Total Fixation Duration (Seconds) 

This calculation is the sum of the duration for all fixations within an active AOI. The N value 

is therefore based on the number of recordings. ‘Cut off’ fixations affect the descriptive 

statistics for this calculation.  If the participant does not fixate on an AOI by the end of the 

recording then the total fixation duration value will not be provided and will not be incorporated 

in the descriptive statistics calculations (e.g. when computing the N value). 
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Total Fixation Duration (Zeros) 

This is calculated in the same way as Total Fixation Duration, however, if at the end of the 

recording the participant has not fixated on an active AOI, the total fixation duration will be 

documented as zero and the recording will be included in the descriptive statistics calculations 

(e.g. when computing N and means). 

Fixation Count (Count) 

This calculates the number of times the participant fixates on an active AOI. If the participant 

stops fixating on an AOI and moves their attention to another area of the media but later fixates 

again on the AOI then all fixation counts will be amalgamated at the end of the media.  If the 

participant does not fixate on an AOI by the end of the recording then the fixation count value 

will not be provided and will not be incorporated in the descriptive statistics calculations (e.g. 

when computing the N value). 

Fixation Count (Zeros) 

This is calculated in the same way as Fixation Count, however, if at the end of the recording 

the participant has not fixated on an active AOI, the fixation count value will be documented 

as zero and the recording will be included in the descriptive statistics calculations (e.g. when 

computing N and means).  
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Appendix 16. Heat maps for the static ADFES task 

 

A heat map to illustrate the disparity between eye scan patterns for a male TBI participant (A) and a matched control participant (B) when viewing 

a static sad facial expression. The heat map displays the number and length of fixations using the different colours with red indicating maximum 

levels.  

 

A B 
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Appendix 17. Post-hoc tests for the TASIT EET (fixation duration)  

Post-hoc paired samples t tests exploring the effect of emotion on fixation duration to the eyes 

following the significant ANOVA interaction between AOI and emotion.  

Emotion Mean difference (SD) t 95% CI Sig 

Anger-Disgust 0.36 (0.63) 3.46 0.15-0.58 .001* 

Anger-Anxious 0.73 (0.98) 4.48 0.40-1.07  ≤.001* 

Anger-Happy 0.22 (0.82) 1.59 -0.06-0.49 .121 

Anger-Sad -2.70 (2.79) -5.80 -3.64- -1.75  ≤.001* 

Anger-Surprise 0.52 (0.96) 3.26 0.20-0.84 .002* 

Anger-Neutral -0.77 (1.42) -3.25 -1.25- -0.29 .003* 

Disgust-Anxious 0.37 (0.73) 3.03 0.12-0.62 .005* 

Disgust-Happy -0.15 (0.76) -1.16 -0.41-0.11 .253 

Disgust-Sad -3.06 (2.93) -6.26 -4.05- -2.67  ≤.001* 

Disgust-Surprise 0.16 (0.81) 1.16 -0.12-0.43 .253 

Disgust-Neutral -1.14 (1.49) -4.56 -1.64- -0.63  ≤.001* 

Anxious-Happy -0.52 (0.83) -3.76 -0.80- -0.24 .001* 

Anxious-Sad -3.43 (3.08) -6.69 -4.47- -2.39  ≤.001* 

Anxious-Surprise -0.21 (0.62) -2.08 -0.42- -0.01 .045 

Anxious-Neutral -1.51 (1.80) -5.03 -2.11- -0.90  ≤.001* 

Happy-Sad -2.91 (2.75) -6.35 -3.84- -1.98  ≤.001* 

Happy-Surprise 0.30 (0.85) 2.14 0.02-0.59 .039 

Happy-Neutral -0.99 (1.47) -4.03 -1.49- -0.49  ≤.001* 

Sad-Surprise 3.22 (2.91) 6.62 2.23-4.20  ≤.001* 

Sad-Neutral 1.92 (2.39) 4.84 1.12-2.73  ≤.001* 

Surprise-Neutral 0.36 (0.74) 2.94 0.11-0.61 .006* 

  *Significant at α = .01.  
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(2) Post-hoc paired samples t tests exploring the effect of emotion on fixation duration to the 

nose following the significant one-way ANOVA interaction between AOI and emotion. 

Emotion Mean difference (SD) t 95% CI Sig 

Anger-Disgust 0.16 (1.17) 0.81 -0.24-0.55 .422 

Anger-Anxious 0.16 (1.13) 0.85 -0.22-0.54 .404 

Anger-Happy 0.73 (1.03) 4.50 0.39-1.08  ≤.001* 

Anger-Sad -0.57 (1.86) -1.83 -1.20-0.06 .076 

Anger-Surprise 0.65 (0.91) 4.29 0.34-0.96  ≤.001* 

Anger-Neutral -0 ≤.0011 (1.18) -0.001 -0.40-0.40 .999 

Disgust-Anxious 0.001 (1.29) 0.005 -0.43-0.44 .996 

Disgust-Happy 0.58 (1.43) 2.42 0.09-1.06 .021 

Disgust-Sad -0.73 (2.04) -2.14 -1.41- -0.04 .040 

Disgust-Surprise 0.49 (1.17) 2.52 0.09-0.89 .017 

Disgust-Neutral -0.16 (1.43) -0.67 -0.64-0.32 .508 

Anxious-Happy 0.57 (1.45) 2.37 0.08-1.07 .023 

Anxious-Sad -0.73 (1.56) -2.80 -1.26- -0.20 .008* 

Anxious-Surprise 0.49 (1.21) 2.43 0.08-0.90 .020 

Anxious-Neutral -0.16 (1.42) -0.67 -0.64-0.32 .505 

Happy-Sad -1.30 (2.35) -3.33 -2.10- -0.51 .002* 

Happy-Surprise -0.09 (0.73) -0.70 -0.33-0.16 .486 

Happy-Neutral -0.73 (1.16) -3.79 -1.13- -0.34 .001* 

Sad-Surprise 1.22 (2.28) 3.20 0.45-1.99 .003* 

Sad-Neutral 0.57 (2.46) 1.38 -0.27-1.40 .176 

Surprise-Neutral -0.65 (1.00) -3.89 -1.00—0.31  ≤.001* 

  *Significant at α = .01.  
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(3) Post-hoc paired samples t tests exploring the effect of emotion on fixation duration to the 

mouth following the significant one-way ANOVA interaction between AOI and emotion. 

Emotion Mean difference (SD) t 95% CI Sig 

Anger-Disgust -0.31 (1.09) -1.69 -0.68-0.06 .099 

Anger-Anxious 0.64 (0.75) 5.12 0.38-0.89  ≤.001* 

Anger-Happy -1.40 (1.41) -5.93 -1.87- -0.92  ≤.001* 

Anger-Sad -1.33 (2.08) -3.84 -2.03- -0.62 .001* 

Anger-Surprise 0.63 (0.72) 5.21 0.38-0.87  ≤.001* 

Anger-Neutral -0.09 (1.09) -0.52 -0.46-0.28 .609 

Disgust-Anxious 0.95 (1.14) 5.00 0.56-1.33  ≤.001* 

Disgust-Happy -1.09 (1.51) -4.33 -1.60- -0.58  ≤.001* 

Disgust-Sad -1.02 (1.60) -3.83 -1.56- -0.48 .001* 

Disgust-Surprise 0.93 (1.18) 4.75 0.53-1.33  ≤.001* 

Disgust-Neutral 0.21 (1.29) 1.00 -0.22-0.65 .324 

Anxious-Happy -2.03 (1.62) -7.53 -2.58- -1.49  ≤.001* 

Anxious-Sad -1.96 (2.25) -5.25 -2.72- -1.21  ≤.001* 

Anxious-Surprise -0.01 (0.61) -0.13 -0.22-0.20 .901 

Anxious-Neutral -0.73 (1.25) -3.52 -1.15- -0.31 .001* 

Happy-Sad 0.07 (1.69) 0.24 -0.50-0.64 .808 

Happy-Surprise 2.02 (1.37) 8.85 1.56-2.48  ≤.001* 

Happy-Neutral 1.30 (1.17) 6.68 0.91-1.70  ≤.001* 

Sad-Surprise 1.95 (2.15) 5.45 1.22-2.68  ≤.001* 

Sad-Neutral 1.23 (1.77) 4.17 0.63-1.83  ≤.001* 

Surprise-Neutral -0.72 (1.03) -4.19 -1.07- -0.37  ≤.001* 

  *Significant at α = .01.  
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Appendix 18. Post-hoc tests for the TASIT EET (fixation count)  

(1) Post-hoc paired samples t tests exploring the effect of emotion on fixation count to the eyes 

following the significant one-way ANOVA interaction between AOI and emotion. 

Emotion Mean difference (SD) T 95% CI Sig 

Anger-Disgust 1.00 (1.74) 3.44 0.41-1.58 .002* 

Anger-Anxious 1.66 (2.33) 4.26 0.87-2.45  ≤.001* 

Anger-Happy 0.50 (1.75) 1.72 -0.09-1.09 .095 

Anger-Sad -2.54 (3.05) -5.01 -3.58- -1.52  ≤.001* 

Anger-Surprise 1.60 (2.29) 4.18 0.82-2.37  ≤.001* 

Anger-Neutral -1.08 (2.38) -2.71 -1.88- -0.27 .010* 

Disgust-Anxious 0.66 (1.27) 3.11 0.23-1.09 .004* 

Disgust-Happy -0.50 (1.56) -1.90 -1.02-0.03 .066 

Disgust-Sad -3.54 (2.99) -7.12 -4.56- -2.53  ≤.001* 

Disgust-Surprise 0.60 (1.34) 2.69 0.15-1.05 .011 

Disgust-Neutral -2.07 (2.58) -4.82 -2.95—1.20  ≤.001* 

Anxious-Happy -1.16 (1.88) -3.68 -1.79- -0.52 .001* 

Anxious-Sad -4.21 (3.18) -7.94 -5.28- -3.13  ≤.001* 

Anxious-Surprise -0.06 (1.00) -0.37 -0.40-0.27 .714 

Anxious-Neutral -2.73 (3.24) -5.07 -3.83- -1.64  ≤.001* 

Happy-Sad -3.05 (3.20) -5.71 -4.13- -1.97  ≤.001* 

Happy-Surprise 1.10 (1.86) 3.53 0.47-1.72 .001* 

Happy-Neutral -1.58 (2.52) -3.78 -2.43- -0.73 .001* 

Sad-Surprise 4.14 (3.39) 7.34 3.00-5.29  ≤.001* 

Sad-Neutral 1.47 (3.33) 2.65 0.36-2.60 .012 

Surprise-Neutral -2.67 (3.12) -5.14 -3.73- -1.62  ≤.001* 

  *Significant at α = .01.  
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(2) Post-hoc paired samples t tests exploring the effect of emotion on fixation count to the nose 

following the significant one-way ANOVA interaction between AOI and emotion. 

Emotion Mean difference (SD) t 95% CI Sig 

Anger-Disgust 0.23 (1.90) 0.73 -0.41-0.87 .474 

Anger-Anxious 0.96 (1.64) 3.52 0.41-1.52 .001* 

Anger-Happy 0.73 (1.90) 2.30 0.08-1.37 .028 

Anger-Sad -0.46 (2.42) -1.14 -1.28-0.36 .264 

Anger-Surprise 1.11 (1.50) 4.41 0.60-1.62  ≤.001* 

Anger-Neutral -0.05 (1.76) -0.18 -0.65-0.54 .855 

Disgust-Anxious 0.73 (1.94) 2.27 0.08-1.39 .029 

Disgust-Happy 0.50 (2.30) 1.30 -0.28-1.28 .201 

Disgust-Sad -0.69 (2.52) -1.64 -1.54-0.17 .111 

Disgust-Surprise 0.88 (1.90) 2.79 0.24-1.53 .009* 

Disgust-Neutral -0.28 (2.17) -0.78 -1.02-0.45 .439 

Anxious-Happy -0.23 (2.12) -0.66 -0.95-0.49 .514 

Anxious-Sad -1.42 (2.22) -3.84 -2.17- -0.67  ≤.001* 

Anxious-Surprise 0.15 (1.12) 0.80 -0.23-0.53 .429 

Anxious-Neutral -1.02 (1.89) -3.22 -1.66- -0.38 .003* 

Happy-Sad -1.19 (2.91) -2.45 -2.17- -0.20 .019 

Happy-Surprise 0.38 (1.44) 1.60 -0.10-0.87 .118 

Happy-Neutral -0.78 (1.75) -2.69 -1.37- -0.19 .011 

Sad-Surprise 1.57 (2.35) 4.02 0.78-2.37  ≤.001* 

Sad-Neutral 0.40 (2.59) 0.94 -0.47-1.28 .355 

Surprise-Neutral -1.17 (1.79) -3.91 -1.77- -0.56  ≤.001* 

  *Significant at α = .01.  
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(3) Post-hoc paired samples t tests exploring the effect of emotion on fixation count to the 

mouth following the significant one-way ANOVA interaction between AOI and emotion.  

Emotion Mean difference (SD) t 95% CI Sig 

Anger-Disgust 0.45 (1.32) 2.05 0.005-0.90 .048 

Anger-Anxious 1.97 (1.97) 6.01 1.31-2.64  ≤.001* 

Anger-Happy -1.65 (2.26) -4.39 -2.41- -0.89  ≤.001* 

Anger-Sad -1.01 (2.28) -2.65 -1.78- -0.23 .012 

Anger-Surprise 1.80 (1.51) 7.14 1.29-2.31  ≤.001* 

Anger-Neutral 0.37 (1.61) 1.37 -0.18-0.91 .179 

Disgust-Anxious 1.52 (1.77) 5.15 0.92-2.12  ≤.001* 

Disgust-Happy -2.10 (2.16) -5.82 -2.83- -1.37  ≤.001* 

Disgust-Sad -1.46 (1.85) -4.72 -2.09- -0.83  ≤.001* 

Disgust-Surprise 1.35 (1.44) 5.64 0.86-1.84  ≤.001* 

Disgust-Neutral -0.08 (1.82) -0.27 -0.70-0.53 .786 

Anxious-Happy -3.62 (2.64) -8.24 -4.51- -2.73  ≤.001* 

Anxious-Sad -2.98 (2.75) -6.50 -3.91- -2.05  ≤.001* 

Anxious-Surprise -0.17 (1.11) -0.93 -0.55-0.20 .357 

Anxious-Neutral -1.61 (2.05) -4.70 -2.30- -0.91  ≤.001* 

Happy-Sad 0.64 (2.57) 1.50 -0.23-1.51 .143 

Happy-Surprise 3.45 (2.28) 9.09 2.68-4.22  ≤.001* 

Happy-Neutral 2.02 (2.03) 5.95 1.33-2.71  ≤.001* 

Sad-Surprise 2.81 (2.38) 7.09 2.00-3.61  ≤.001* 

Sad-Neutral 1.38 (2.26) 3.65 0.61-2.14 .001* 

Surprise-Neutral -1.43 (1.66) -5.18 -2.00- -0.87  ≤.001* 

  *Significant at α = .01.  
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Supplementary Materials 

Case notes for TBI participants collected from A&E records and medical files 

Participant A.N.  

Participant A.N is a 26 year old male who sustained his brain injury at the age of 19 through 

an assault when he was punched in the face on a night out and knocked unconscious. He was 

rushed to A&E and on arrival to hospital had a GCS of 2 (Eyes= 1, Verbal= 2, Motor= 4). In 

the CT scanner A.N vomited which led to a likely case of pulmonary aspiration due to vomit 

at the back of the throat which resulted in intubation and ventilation.   

A CT scan on the 28/07/2007 revealed a right temporoparietal shift fracture of the skull, a right 

temporoparietal acute subdural haematoma (SDH) with midline shift, a traumatic subarachnoid 

hemorrhage, cerebral oedema and massive right side brain swelling with right vesicles effaced. 

The non-depressed fracture was on the right spheno-temproal region of the brain and extended 

superiously into the right parietal bone. Beneath the fracture there was an acute sub-dural 

haematoma having a maximum depth of approximately 10mm. There was subarachnoid blood 

related to this extending into the Sylvian fissure and superiorly into the central sulcus. Scan 

interpretation reported that it was difficult to exclude extra dural blood here. Extra axial blood 

was producing some mass effect with parietal effacement of the right lateral ventricle and 

approximately 5mm midline shift towards the left but no other intracranial abnormality. It was 

estimated that there was grade 2 diffuse axonal injury associated with the injury.  

A.N was operated on the same day he was admitted to A&E and underwent a decompressive 

craniectomy for the evacuation of right SDH and temporal clot and a cranioplasty operation to 

replace a skull defect. A.N then spent 12 days in a coma and demonstrated PTA for 14 days. 

On the 29/07/2007 GCS dropped to 2 (Eyes= 1, Verbal= 0, Motor= 1) and remained stable 

until 06/08/2007 where it elevated to 6 (Eyes= 1, Motor= 4, Verbal= 1) and on the 08/08/2007 
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to 10 (Eyes= 4, Motor= 5, Verbal= 1) and 10/08/2007 11 (Eyes=3, Motor=5, Verbal= 3). LOC, 

PTA and GCS all indicate that patient A.N sustained a severe brain injury in the 

temporoparietal region of the brain. A CT scan on 13/08/2007 demonstrated no hydrocephalus 

or acute haemorrhage but there was some herniation of the brain through the craniectomy site 

and despite decompression there remained relative asymmetry of the quadrigeminal cistern and 

suprasellar cistern.     

A.N was readmitted to A&E 17/10/2007 11 weeks after his initial accident. A CT scan showed 

that A.N was suffering from traumatic hydrocephalus and acute haemorrhage as a complication 

of the former decompressive craniectomy and evacuation surgery. The scan showed a large 

cranial defect with brain tissue herniated through the cavity. There was a low density area in 

the parietal region suggesting an infarct together with dilation of the adjacent ventricle but no 

recurrent haemorrhage was demonstrated. Both lateral, third and fourth ventricles were 

somewhat dilated which suggests post traumatic hydrocephalus. A.N experienced left 

hemiplegia and therefore underwent a craniectomy to insert a Ventriculoperitoneal (VP) shunt 

via a tempo-parietal bone flap (18/10/2007). GCS at this point was 14/15. A.N also had a 

titanium cranioplasty where surgeons replaced the bone flap removed for the VP shunt.  

A further CT scan on the 07/12/2007 demonstrated a large right fronto-temporal craniotomy 

with no significant midline shift. The ventricles were slightly prominent but there was an 

intraventricular shunt in the left lateral ventricle which is less dilated than the right side. There 

was no intracerebral haemorrhage nor obvious increased intracranial pressure nor evidence of 

recurring hydrocephalus.    

After the surgery A.N experienced epileptic drifts and was started on anti-epilepsy medication 

including Epilim, Phenytoin and Sodium Valprate. The last epileptic seizure experienced by 
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A.N was in January 2008 and anti-epilepsy medications were withdrawn from September 2008 

with no further epileptic seizures occurring.    

Participant L.J.  

Participant L.J. is a 40 year old male who sustained his brain injury at the age of 19 as a result 

of a road traffic accident (RTA) (05/08/1993). A CT scan on the day of admission revealed that 

patient L.J. had a small area of petechial haemorrhage contiguous with the left caudate nucleus. 

A second small area of the haemorrhage was evident on slice 2 in a more anterior position in 

the left frontal lobe posteriorly. A follow up CT scan five days after the injury revealed further 

small petechial haemorrhages on slice 9 in the right frontal region anteriorly with no new major 

haemorrhage apparent. L.J. spent 14 days in a coma and had PTA for 2 months indicating a 

severe brain injury.  

Participant W.Y.  

Participant W.Y. is a 53 year old male who sustained his brain injury at the age of 38 as a result 

of a fall which caused concussion and a subsequent frontal and bilateral subarachnoid 

haemorrhage (31/07/1999). He had emergency surgery for internal carotid artery aneurysms 

where one aneurysm was clipped and another one was coiled. After the surgery W.Y. then 

suffered a cerebrovascular accident which left him with homonymous hemianopia and residual 

left side weakness.      

Participant S.G 

Participant S.G is a 54 year old male who sustained a severe TBI at the age of 24 years old 

after a RTA where he was a front seat passenger in a car (14/09/1985). Upon arrival to hospital 

S.G was unconscious and he spent several days in a semi-comatose state. Medical notes 

reported that S.G displayed PTA for six days after he sustained his injury and that he suffered 
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a severe parietal-temporal region injury but no scan data was included. S.G received no 

neurosurgery and remained in hospital for six weeks. S.G presented with a history of alcohol 

and substance abuse and was treated for depression after the injury. He also presented with 

parasomnia and post-concussion syndrome.   

Participant N.W 

Participant N.W is a 43 year old male who sustained a TBI when he fell off a 20 foot scaffolding 

and landed on a concrete yard when he was 40 years old. Upon arrival to hospital on 08/10/2012 

N.W presented with a GCS score of 3, no PTA score was documented but notes indicted that 

N.W was agitated and had to be tied down to his bed.  

A C.T scan on 08/10/2012 revealed a bleed on the left hand side of the brain. There was 

herniation of brain content through defect and a large intraparenchymal haematoma superiorly 

in the left frontal lobe. Haemorrhagic bilateral frontal lobe contusions and right temporal lobe 

contusions were present as well as a decrease in mass effect with no midline shift. There was 

a linear fracture through the left parietal bone extending to the left lambdoid suture and a large 

left sided acute subdural haematoma, max depth 13mm, causing significant midline shift and 

effacement of the basal cisterns. Furthermore, there was associated subarachnoid haemorrhage 

and further small acute subdural haematoma in the parafalcine region in addition to some acute 

haemorrhage in the right frontal lobe in association with longstanding encephalomalacia in this 

region. There was also further encephalomalacia seen in right temporal region. No 

hydrocephalus was documented. The diagnosis was a severe TBI and with the CT scan 

indicating that there was a skull fracture and a large left subdural haemorrhage urgent 

neurosurgical opinion was advised. A cranioplasty was performed and 30-40% of the skull was 

removed as well as a left decompressive craniectomy, drainage of acute subdural haematoma 

and insertion of an intracranial pressure monitoring device (ICP). A reconstructive cranioplasty 
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following previous left fronto-parietal craniectomy was also performed which required a bone 

flap and N.W was required to wear a protective helmet.  N.W was in an induced coma for ten 

days and received, in total, 96 days of professional medical care.  

N.W had previously sustained a brain injury 10 years previously (aged 30) when he was hit 

over the head with a baseball bat. He was travelling abroad at the time and very limited medical 

notes are available. The notes imply that N.W may have endured a SDH and a fractured skull 

leading to a big blood clot on the back of the brain.  

Participant M.M 

Participant M.M is a 33 year old male who sustained a TBI when he was 30 years of age during 

an epileptic seizure (10/08/2012). M.M has suffered chronic epileptic seizures from childhood. 

He sustained a temporal and subdural skull fracture during the fall and was diagnosed with an 

acute brain injury. He was admitted to hospital on 10/08/2012 at 11.30am and at 14.00 he had 

a GCS of 14/15. M.M was discharged on 13/08/2012. First viewed as mild TBI but low GOAT 

scores (14/08/2012: 94, 15/08/2012: 86, 16/08/2012: 73) suggests prolonged PTA.  

A C.T scan on 10/08/2012 displayed minimal contusion in right temporal lobe and associated 

oedema throughout the posterior half of right cerebral hemisphere. There was a localised 

subarachnoid haemorrhage within right parietal region but no midline shift or hydrocephalus. 

A right temporal bone fracture breaching the mastoid air cells extending anteriorly to just above 

the right temporomandibular joint was present but there was no ossicular discontinuity within 

right ear. There was minimal blood within right mastoid air cells extending into the middle ear 

cavity. The fracture also appeared to extend into the roof of the right external auditory canal 

with the fractured skull and right temporal contusion complicated by reduced hearing. The right 

side also had lower motor neurone and there seemed to be damage to the right seventh nerve 

palsy.  
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A C.T scan on 16/08/2012 displayed an area in the posterior right temporal lobe approximately 

25x25 mm containing a central high attenuation area. The area represents contusional brain 

trauma and had matured since the previous scan 10/08/2012. There was no sign of 

hydrocephalus, subdural haematoma or mass effect and the subarachnoid blood had resolved. 

Cerebella atrophy was unchanged from previous scan and presumably related to anti-epilepsy 

medication.  

Participant D.J 

Participant D.J is a 31 year old male who sustained a TBI when he was intoxicated and 

assaulted on a night out. D.J was punched in the face resulting in him falling and hitting his 

head on the floor aged 29. He sustained the injury in the late hours on 30/06/2013 and was 

admitted to hospital with a GCS score of 9 and severe PTA (GOATS 9/100). D.J was intubated 

in A&E for a C.T scan and GCS increased to 13 but then dropped to 10 so he was rescanned 

but no changes were documented.  

The CT scan revealed extradural blood and contusions. There were contusional injuries within 

the right frontal and temporal lobes with small foci of subarachnoid and intraparenchymal 

haemorrhage. Furthermore, there was diffuse effacement of sulci but no midline shift. A skull 

fracture extended from parietal bone into temporal bone and there was an account for contre-

coup pattern of injury within right frontotemporal region. No other skull fractures were 

demonstrated from the scan.  

A second C.T scan on 01/07/2013 displayed areas of haemorrhagic contusion within the right 

frontal and temporal lobes. There was a small amount of overlying subarachnoid blood but no 

significant mass effect present. A fracture on the left side of the skull involving the parietal and 

temporal bones was recorded. There was no evidence of haemorrhage elsewhere, no midline 
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shift and no change from the scan on 30/06/2013. D.J displayed an overall PTA and retrograde 

amnesia of six days. 

Participant G.M 

Participant J.M is a 60 year old female who sustained a TBI when she was a front seat passenger 

in a RTA on 30/12/1987 aged 31. J.M was unconscious on the scene of the accident and was 

hospitalised for two weeks. PTA was documented as more than seven days which constitutes 

a severe TBI. No scans were performed during her stay in hospital. The consultant at the time 

made some observational notes stating that J.M displayed patchy PTA for four weeks and she 

seemed to have reasonable cognitive recovery by 20 months but she had developed fatigability 

and it seemed likely that she suffered minor concussive injury. He also suggested that she more 

than likely had significant frontal and temporal contusions with reactive brain swelling.  

In 1991, J.M requested an MRI scan which revealed that the brain ventricles were a normal 

shape, size and disposition for her age. The scan revealed no evidence or abnormal white matter 

signal change to suggest PT gliosis following TBI. There was prominence of the Sylvain 

fissures suggesting a minor atrophy involving the tips of temporal lobes which were slightly 

more marked on the left hand side. Overall, the scan was normal with a suggestion of minor 

bilateral temporal lobe atrophy. A further scan was conducted on 04/09/2006 and revealed 

normal intracranial appearances with no sequela of a previous head injury in terms of 

generalised atrophy, hemosiderin deposits or focal encephalomalacia.  

J.M has suffered with significant memory disorders since the accident and with the evidence 

from the MRI scans it was suggested that this may indicate a bilateral temporal lobe disorder. 

Moreover, J.M's dyspraxia symptoms might point to possible right posterior frontal lobe area 

damage and her dysexecutive symptoms suggest widespread bilateral frontal contusions. 
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However, it should be noted that MRI data does not really support these theories as the scans 

were relatively normal.   

Participant J.F 

Participant J.F is a 63 year old male who sustained a TBI as a pedestrian in a RTA on 

12/10/2011 aged 59. He received 37 days of acute care and was discharged on 18/11/2011. J.F 

was hit by a motorcycle going approximately 30mph. On admission, GCS score was 7, LOC 

approximately 5-10 minutes and PTA was documented for 14 days.   

A C.T scan on 12/10/2011 displayed acute subdural blood overlaying the right parietal frontal 

lobes, extending into intracerebral sulcus with a maximum depth of 4mm. There was sulcal 

effacement underlying acute blood and slight midline shift to the left. The scan revealed 

extensive areas of acute intraparenchymal haemorrhage in the frontal lobes bilaterally and a 

fracture through the midline occipital bone extending from the foramen magnum 5.2cm 

superiorly. There was also a fracture through the right occipital condyle extending anteriorly 

through the medial petrous temporal bone and medial wall of right carotid canal. Injury may 

have extended to the right mastoid air cells which were partially opaque. There were multiple 

locules of intracerebral air adjacent to right petrous temporal bone in basal cisterns and 

complex compound occipital and base of skull fractures with possible associated contra-coup 

injury and acute subdural blood. As a result of the scan, urgent neuro-surgical opinion was 

advised and a right frontal craniotomy and insertion of intracranial pressure transducer was 

undertaken.  

C.T scan on 19/10/2011 revealed extensive bi-frontal contusions which were more marked on 

the right than the left side of the brain. Compared to the earlier scan at time of admission, the 

follow-up scan displayed enlargement of contusions both in terms of haemorrhagic component 

and adjacent swelling with small amounts of contusional injury to the tip of the right temporal 
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pole. There was an increase in the amount of swelling associated with frontal contusions with 

slight increase in effacement of the frontal horns together with a mild shift of midline. 

Furthermore, there was a very thin subdural collection over the right hemisphere but this was 

not enlarged and not a major factor with respect to local mass effect. There were no new 

features but the appearance were those of maturing contusions in both frontal and right 

temporal lobes which were associated with increased swelling compared to on admission. 

A further C.T scan on 21/10/2011 showed maturation of the contusions and mass effect and 

midline shift towards the left, particularly in anterior cranial fossa, had significantly increased. 

The basal cisterns were significantly effaced and there was a subdural collection seen on right 

side which had increased to a max depth of 6mm.   

A C.T scan on 24/10/2011 displayed images of the craniotomy. There was progressive 

contusion and/or ischaemic change in the right frontal lobe with extensive left sided inferior 

contusional change and damage to anterior right temporal lobe. A midline occipital fracture 

was clearly demonstrated with a significant midline mass effect and subfalcine shift to the left. 

Moreover, the scan revealed a haemorrhagic transformation of the contusion and a mass 

particularly in right frontal lobe.   

Participant M.O 

Participant M.O is a 47 year old male who sustained a closed TBI during a RTA when he fell 

off his motor bike on 08/07/2000 aged 31. From his medical notes there is reference to a CT 

scan which displayed multiple contusions and multiple subarachnoid hematomas with no 

midline shifts leading the medical team to document his brain injury as severe. There is 

reference to M.O’s father who told neuro-rehabilitation staff that M.O was on a ventilator for 

six weeks. On 05/09/2000 M.O was still displaying signs of PTA, he was confused and 

confabulating. M.O was admitted to neuro-rehabilitation on 02/10/2000 and was discharged on 
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07/05/2001. M.O re-attended neuro-rehabilitation on 24/01/2011 and underwent a period of 

assessment for decreased mobility; he was discharged on 04/02/2011. A CT scan was 

conducted on 17/01/2014 which displayed no intra or extra axial haemorrhage. There was 

established low attenuation in the deep and subcortical white matter of both cerebral 

hemispheres mainly in parietal lobes but also in right frontal lobes. Given the young age of the 

patient the changes represent gliosis secondary to intracranial injury related to the RTA in 2000. 

Small vessel ischemic change of such degree would seem unlikely in someone this age. There 

was no acute territorial infraction on the scan.  

Participant K.R     

Participant K.R is a 33 year old female who sustained a minor brain injury when she fell from 

a horse on 31/05/2006 aged 23. There was a loss of consciousness and her safety hat was 

fractioned and she experienced a graze on her forehead. She had complete amnesia of the event 

when arriving in A&E, she had a bad headache at the back of her head, nausea and vomiting 

and scored 14 on the GCS. K.R's CT scan detected no abnormalities. PTA was documented for 

three to four days after the accident. In October 2007, K.R was still experiencing ongoing 

memory problems and displayed mild impairments in cognitive function. K.R had previously 

sustained a head injury at the age of 21 when she again fell off a horse but there are no medical 

notes available for this fall. K.R does recollect that she had PTA and was only in hospital for 

one day or maybe just over night. Her husband took two weeks off work to help K.R and to 

help look after their children during this previous fall. K.R returned to work four weeks after 

the original injury. An MRI scan was conducted which came back as entirely normal with 

normal intracranial appearances and no evidence of previous intracranial trauma. The 

hippocampi and temporal lobes were normal and there was no hemosiderin deposition. The 

collaborating clinical consultant recommended that K.R cognitive and behavioural presentation 
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indicated pathology which did not encroach on either frontal lobes, or occipital cortex, but may 

be present in other cortical or subcortical brain regions.  

Participant A.H  

Participant A.H is a 60 year old male who sustained a closed TBI following a fall down stairs 

when a step gave way on 13/08/2013 aged 57. The fall caused a massive extradural bilateral 

traumatic subarachnoid haemorrhage which needed evacuation via brain surgery. A.H had no 

memory or recollection of how the accident occurred, what happened during or immediately 

after the accident and the first thing he can remember is waking up on a ward in the hospital. 

A.H complained of a constant headache in the left-hand side of his head and displayed memory 

impairments with PTA of up to two weeks. A.H was admitted to Magnolia neuro-rehabilitation 

on 03/09/2013 where the notes indicated that he sustained a bilateral small SDH which was 

treated conservatively and needed intracranial pressure monitoring. A second minor head 

injury was sustained in 2015 when he was intoxicated and fell in the street. GCS was 15 at the 

scene (E= 4, V= 5, M = 6) but A.H refused medical treatment and no further medical details 

were available.     

Participant J.M 

Participant J.M is a 53 year old male who sustained a traumatic subarachnoid haemorrhage 

after a fall on 14/05/2014. He was admitted to A&E, scanned and then transferred to a different 

hospital as an urgent case. A craniotomy was conducted for a subarachnoid haemorrhage.  

Participant M.W 

Participant M.W is a male participant who sustained a severe TBI on 12/03/2015 at the age of 

58 when he fell from his push bike without wearing a helmet. On admission, M.W had a GCS 

rating of 8. A CT scan on arrival to hospital displayed subdural blood in the left hemisphere, 
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DAI, severe extensive damage in the left temporal lobe and subarachnoid blood in the left 

temporal area extending in the lesser degree to the frontal lobe. There was an acute subdural 

haemorrhage overlying the left cerebral hemispheres extending into the left tentorial margin 

measuring 1cm at maximum thickness. In addition, there were concussion injuries in the left 

temporal pole with intraparenchymal haemorrhage. There was mass effect with sulcal 

effacement and slight midline shift of approximately 5mm and a displaced right parietal 

fracture extending inferiorly into the squamous-temporal region and furthermore into the skull 

base near to the carotid canal on the right side. This was a complex fracture with a further 

transverse component but no obvious bony injury involving the carotid canal. Overlying this 

fracture was marked soft tissue haematoma in the scalp and there was a small amount of blood 

adjacent to the fracture in the posterior temporal fossa. There was fluid seen in the sphenoid 

sinus and the ethmoid air cells with possible un-displaced fractures of the sphenoid 

posterolaterally on the right side and the right zygomatic arc.   

On 14/03/2015 intracranial pressure was initially controlled but then increased leading to a 

bulging decompressive craniectomy. A CT scan on 16/03/2015 was conducted and a direct 

comparison was made with the scan on 14/03/2015 after the decompressive craniectomy for 

the post traumatic left temporal intracerebral haemorrhage and the extra axial haematoma. 

There was persistent mild mass effect in the left hemisphere with effacement of the left lateral 

ventricle and very mild subfalcine shift to the right. There was also bulging to the left 

hemisphere through the craniectomy site, particularly at its superior and temporal regions.  

A CT scan on 26/03/2015 was conducted for a left sided decompressive craniectomy. The 

contusional haemorrhage within the left temporal lobe continued to show evidence of evolution. 

The degree of cerebral swelling was reducing and the convexity sulci were more clearly 

visualised. There was some mild herniation of the left cerebral hemisphere through the 

craniectomy defect and the small subdural haematoma overlying the left frontal lobe was 
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reduced in size and the free intracranial had been resorbed. The volume of visible subarachnoid 

haemorrhage within the high right convexity sulci had reduced and no hydrocephalus was 

present. Grey and white matter differentiation was preserved with no evidence of hypoxic brain 

injury on CT imaging. Blood was visible within the sphenoid sinus and there was fluid filling 

both middle ear clefts and the petrous mastoid air cells. A complex base of skull fracture and 

minimally displaced right squamous-temporal bone fracture extending into the right parietal 

bone were diagnosed.   

A later CT scan on 23/04/2015 with a volumetric study was performed prior to manufacture of 

the cranioplasty after the craniectomy. The scan displayed some modest herniation of the brain 

which was reasonably large and overlying the CSF collection that expands the soft tissues of 

the scalp. There was no hydrocephalus or mass effect present. M.W was discharged from 

hospital on 29/05/2015.  

On 13/08/2015 there was a very brief mention of a cerebral abscess in the medical notes but no 

other notes were available. A CT scan on 21/10/2015 revealed extreme brain atrophy on the 

left lobe but that prominent sulcal patterns suggested global rather than focal atrophy. The 

ventricles of the brain were enlarged, not due to blockages in circulation, but because they had 

expanded to fill the space left by the atrophy.  

Participant A.A 

A.A is a 47 year old female who was admitted to A&E on 03/01/2015 after a fall down the 

stairs resulting in a closed head injury. The fall is thought to have occurred after pulmonary 

embolus but it was unclear if the fall was mechanical or a syncopal episode. A.A presented 

with shortness of breath and dizziness. On 04/01/2015 GCS suddenly dropped to 5 (E= 1, V= 

1, M= 3) and A.A was intubated and ventilated. A CT scan revealed large acute fronto-parietal 

SDH measuring 1.6 cm in max depth with significant shift and mass effect. There was right 
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frontal lobe contusion and intra-parenchymal haemorrhage measuring 1.9 cm with surrounding 

oedema. Extension of bleed went into the subarachnoid spaces; a 9 mm pericapsular 

intraparenchymal bleed was also noted on the left. There was significant mass effect with 

effacement of right lateral ventricle and midline shift to the left with early subfalcine herniation. 

There was also prominence of the temporal horns of the left lateral ventricle suggesting 

evolving hydrocephalus. There was a right sided acute subdural haematoma with mass effect 

and midline shift and uncal herniation. The patient was transferred to a specialist neuro-hospital 

where she underwent surgical evacuation of the haematoma. A right sided craniotomy for 

evacuation of acute SDH and insertion of ICP monitor. Surgery included the patient being in a 

supine position with the head resting on a horse shoe head rest turned to the left.  A trauma flap 

incision was made on the right hand side and burr holes for a craniotomy and bone flap elevated 

for acute subdural haematoma to be evacuated. There was an active bleed from breaching veins 

to the dura which could be visualised and had coagulated. There was a washout and haemostasis 

using SurgiSeal and flow seal and the dura was left opened. An ICP was inserted in the subdural 

and a bone flap was fixed using Crani fix. A gravity drain was also inserted and secured and 

closure was attained using vicryl and clips to the skin with a silk for drain and ICP 7. A.A was 

admitted to the ITU ward with a tracheotomy, NG tube and PICC line. A repeat head CT scan 

on 16/01/2015 displayed a decrease in the haematoma size and the patient was discharged from 

ITU where she continued neurological physiotherapy.  

On 02/02/2015 A.A developed an intracranial bleed. A MRI head scan displayed previous right 

sided craniotomy and evacuation of haematoma. Old blood products in the right frontal lobe 

and prominent perivascular space on the left side in basal ganglia region. No new abnormality 

but some fluid opacification in right mastoid air cells. Intermittent papillary dilation would be 

a very unusual sign of intracranial haemorrhage or tumour. Haemorrhage or tumour causing 

unilateral papillary dilation would have to be within the brain stem or causing compression of 
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the brain stem. Neither of these pathologies would be likely to cause an intermittent clinical 

sign. Two days later medical checks revealed a GCS of 14 and although the patient was alert 

and could follow simple commands she was confused. She was able to explain she was in 

hospital but she was unsure which one. She was able to detail what month it was but was 

unaware of the day, date or year. A CT scan on 06/02/2015 revealed a possible infract in the 

left internal capsule accounting for right hemiparesis in addition to clear contusional SDH.   

On 10/04/2016 A.A experienced traumatic optic neuropathy on the right side. This led to new 

temporal field loss which excluded sellar lesion or aneurysm. A comparison was made with 

previous scan dated 25/02/2015 and it revealed evidence of previous trauma and neuro-surgery. 

There were areas of gliosis and old blood products were seen in the right frontal lobe. There 

was also high T2 signal in the right thalamus and right medial temporal lobe and in the right 

matter of the right corona radiata and occipital lobe which were consistent with injury due to 

the intracranial mass effect previously experienced. The sella pituitary and anterior optic 

pathways were intact. No vascular lesions were visible and no new abnormality was present 

when compared to the previous scan. It was possible that temporal field loss was related to the 

original intracranial mass effect and subsequent white matter degeneration in the right 

hemisphere.  

Participant I.E 

Participant I.E is a 39 year old male who sustained a SDH following a fall during an assault on 

New Year’s Eve in 2012 where he fell backwards and hit his head on the concrete path. I.E 

presented with a GCS of 8 (E= 1, V= 1, M= 6). I.E’s pupils were equal and reactive to light but 

he displayed left hemiplegia with GCS dropping to 3 which resulted in sedation and ventilation. 

A CT scan was conducted and a small right acute subdural haematoma with midline shift was 

reported. This was initially managed conservatively with ICP but this continued to rise despite 
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the best medical management and the decision was made to operate. The patient was operated 

on using a left lateral position on a bean bag and in-line immobilisation with the head on a 

horse shoe head rest. A large question mark incision was made in the skull and a whole bone 

flap was elevated revealing a very oozy haemostasis. A bone flap was lifted after four burr 

holes were joined with craniotomy. Again, this was very oozy. The dura was opened in cruciate 

fashion and an acute SDH was evacuated under high pressure. There was brain herniation and 

haemostasis, hitch stitches, surgical patties and floseal required as oozing from various points. 

A neuropatch was placed over the dural flaps and some surgical tape over the area around key 

burr holes. A gravity drain was inserted and closure was completed in layers. Post-operatively, 

I.E developed staphylococcus aureus pneumonia and a haemophilus infection. After the injury, 

I.E experienced on-going headaches and weakness in the left had side of his body.  

Participant P.P 

Participant P.P is a 50 year old male who sustained a closed head injury which may have 

occurred after falling off some ladders on 28/01/2011, although this is not confirmed in the 

medical notes. He was treated in hospital after the accident and there was a brief medical extract 

stating a severe frontal brain injury with a subdural haematoma and spinal damage. P.P 

received neuro-rehabilitation after the injury but no further medical details could be found.   

Participant A.D 

Participant A.D is a 28-year-old male who is thought to have sustained a brain injury after an 

assault. The clinical consultant was able to document that A.D sustained a severe frontal brain 

injury and he was in a coma for three weeks. No other medical notes could be located.  
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