
Personal Extreme Programming: Exploring Developers' 
Adoption

IYAWA, Gloria Ejehiohen

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/27536/

This document is the Accepted Version [AM]

Citation:

IYAWA, Gloria Ejehiohen (2020). Personal Extreme Programming: Exploring 
Developers' Adoption. In: AMCIS 2020 Proceedings. bepress. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Personal Extreme Programming 

Americas Conference on Information Systems 1 

Personal Extreme Programming: Exploring 
Developers’ Adoption 

Completed Research 

Gloria Ejehiohen Iyawa 
Sheffield Hallam University 

gloria.iyawa@gmail.com 
 

Abstract 

Personal Extreme Programming (PXP), evolving from the popular agile methodology, Extreme 
Programming (XP) and Personal Software Process (PSP), has been suggested as a methodology for 
autonomous developers who aim to incorporate the principles of XP in the development of software 
applications. However, there is limited research exploring the adoption of PXP. The purpose of this paper 
was to explore developers’ adoption of PXP. The constructs of Roger’s (1962) Diffusion of Innovation (DoI) 
Theory and Technology Acceptance Model were used to investigate developers’ adoption of PXP. Semi-
structured interviews were conducted with developers who had experience in PXP practices. Although the 
findings revealed that PXP is beneficial in software development, the challenges of PXP in software projects 
include increased chances for errors and lack of skills diversity. Autonomous software developers should, 
however, evaluate their level of software development skills, experience and amount of work required when 
considering PXP as a software methodology. 

Keywords 

Personal extreme programming, adoption, developers, extreme programming, diffusion of innovation 
theory, factors, influencing, affecting, challenges, benefits. 

Introduction 

Agile methodologies have been applied in software projects that emphasise customer interaction in 
software development. An example is Extreme Programming (XP). XP is an agile software practice that 
focuses on a team of software developers interacting with customers at regular intervals (Dima & Maassen, 
2018). The concept of XP has been explored in different settings; for example, XP has been explored in 
learning environments (Hedin, Bendix & Magnusson, 2005; Stapel, Lubke & Knauss, 2008; Murphy, Phung 
& Kaiser, 2008; Steghöfer et al. 2016). The concept of XP has also been explored in reducing rework in 
software development (Bin et al., 2003).  

Iyawa, Herselman & Coleman (2016) explain that XP facilitates a deep level of interaction between 
customers and software developers. However, Agarwal & Umphress (2008) are of the opinion that in 
certain conditions, there are limited opportunities for developers to work as part of a team; hence, requiring 
the effort of a single developer in a project and in such cases, the application of XP practices is essential. 
Personal Extreme Programming (PXP) is the combination of modified XP and Personal Software Process 
(PSP) practices by autonomous developers in developing software applications (Agarwal & Umphress, 
2008). The guidelines on how PXP should be implemented and a practical example of this approach was 
provided by Dzhurov et al. (2009).  

While PXP has been introduced since the 2000s (Agarwal and Umphress, 2008; Dzhurov et al., 2009), 
there is a dearth of studies exploring PXP in practice. It is important to understand how PXP is being 
adopted by developers to help identify the benefits and challenges of adopting PXP in software practices. 
Furthermore, identifying the benefits and challenges of PXP practices could contribute to empirical 
evidence on the knowledge of PXP practice, factors influencing and inhibiting adoption, and provide 
developers with a direction on what is required when PXP is adopted as a methodology in software projects. 
The findings could also facilitate suggestions which could improve PXP practices.  

https://scholar.google.com/citations?user=5GH34v0AAAAJ&hl=en&oi=sra


Personal Extreme Programming 

Americas Conference on Information Systems 2 

The purpose of this paper was, therefore, to explore developers’ adoption of PXP. The findings from this 
study could provide autonomous software developers, with the aim of applying PXP in software projects, a 
greater understanding of the factors influencing and affecting developers’ adoption of PXP. This paper, 
thus, contributes to the body of knowledge on PXP practices. 

The remainder of this paper is structured as follows: A review of related work and the theoretical framework 
guiding this study are presented. Next, the methodology and findings are presented. The next section 
presents a discussion of the findings. The paper concludes with a summary of the findings and 
recommendations for future work. 

Theoretical Background 

PXP, XP and PSP 

Dzhurov et al. (2009) describe autonomous developers as individuals who develop software without the 
effort of other developers. Dzhurov et al. (2009) explain that the need for autonomous developers was as a 
result of the demand for Information Technology (IT) outsourcing and the need for lower cost of software 
delivery. Due to agile methodologies being flexible and popular (Altameem, 2015; Mohammed & 
Abushama, 2013), autonomous developers often aim to adapt agile methodologies in their projects. 
Dzhurov et al. (2009) suggest that software developers who aim to adopt agile methodologies such as XP 
should rather follow the PXP methodology as it is a better fit for the needs of such developers. According to 
Agarwal & Umphress (2008), PXP combines modified XP and PSP to improve the individual experience of 
the developer and the quality of software produced. Based on the descriptions provided in the literature, 
XP and PSP represent important components of PXP.  

XP is one of several agile methodologies for developing software applications (Hneif & Ow, 2009). One of 
the reasons XP gained popularity is as a result of its flexibility regarding customer requirements (Qureshi 
& Ikram, 2015). Another reason why XP is widely supported is because it supports customer interaction in 
the development process which, in turn, facilitates constant feedback (Moniruzzaman & Hossain, 2013). 
Furthermore, Iyawa et al. (2016) found that it is less costly to adopt XP compared to traditional 
methodologies because there is less amount of rework involved when XP is applied. However, working with 
a team is not always feasible due to various reasons (Iyawa, 2016). Dzhurov et al. (2009) therefore explores 
PXP as a methodology relevant to autonomous developers.  

PSP emphasises on individuals following a disciplined process in the development of software applications 
to improve the quality of software being developed (Pomeroy-Huff, Cannon, Chick, Mullaney & Nichols, 
2009). Humphrey (2000) explains that each software engineer is unique and as a result, needs to develop 
a suitable plan that meets individual goals before work is carried out. Humphrey (2000) also states that 
individuals working as part of a team need to take responsibility in producing software which is of high 
standard.   

While PSP focuses on improving the processes of individual work and XP focuses on improving interaction 
between team members and customers, the overall goal of both PSP and XP is to improve the overall quality 
of software products (Agarwal & Umphress, 2008). Thus, XP and PSP both represent a relevant approach 
for autonomous developers to attain quality in software development. For the purpose of this study, PXP 
can be defined as the extension of existing software practices such as XP and PSP to support autonomous 
developers when developing software applications.  

Few studies have described the use of PXP in software projects. Asri et al. (2017) described the application 
of PXP in the development of a web application to support job training activities. It was emphasised that 
PXP was selected as the methodology for the project because it aimed at improving the quality of software 
projects while supporting autonomous developers. The study also provided evidence that the application of 
PXP in software projects could support the development of quality software within a short period of time. 
PXP has also been explored with other methodologies. For example, Marthasari et al. (2018) combined PXP 
with MoSCoW prioritisation in the development of a library information system. The reason for combining 
both methodologies was to rank requirements gathered based on certain priority metrics. However, the 
study revealed that combining PXP with MoSCoW prioritisation did not have any impact on the project 
completion timeframe.  



Personal Extreme Programming 

Americas Conference on Information Systems 3 

The few studies that explored PXP as a methodology revealed that it improved the quality of software 
developed. For autonomous developers, PXP provides an approach to improve individual planning and at 
the same time improve the quality of software developed.  PXP therefore presents a methodology to reduce 
the risk of software project failure while working as an autonomous developer.  

Furthermore, Agarwal & Umphress (2008) highlight the differences between PXP and XP in terms of the 
twelve core practices. PXP allows autonomous developers complete tasks on their own rather than working 
as part of a team. For example, Agarwal & Umphress (2008) explain that while pair programming is used 
in XP, it is not feasible in PXP as autonomous developers work on their own; unlike the practice of collective 
code ownership in XP, in PXP, the source code is owned by autonomous developers. While every team 
member uses a common coding standard in XP, autonomous developers have the opportunity to choose 
their own coding standards. Hence, the major difference between PXP and XP is that PXP provides a 
personalised form of XP practices that involves modifying the twelve core XP practices to suit an 
autonomous developer. 

Theoretical Models 

While different theories have been used in technology adoption studies, the literature indicates that 
constructs of the Diffusion of Innovation (DoI) theory has been frequently used in examining the adoption 
of different technologies and innovation such as mobile payment (m-payment) systems (Al-Jabri and 
Sohail, 2012) and passive positioning alarms (Olsson et al., 2016). To the best of the researcher’s knowledge, 
this is the first time the adoption of PXP is being studied. Constructs of the DoI theory include relative 
advantage, compatibility, complexity, trialability and observability (Rogers, 2003). These constructs are 
described as follows: 

• Relative advantage refers to “the degree to which an innovation is perceived as being better than 
the idea it supersedes” (Rogers, 2003, p.229).  

• Compatibility refers to “the degree to which an innovation is perceived as consistent with the 
existing values, past experiences, and needs of potential adopters” (Rogers, 2003, p.15).  

• Complexity refers to “the degree to which an innovation is perceived as relatively difficult to 
understand and use” (Rogers, 2003, p.15).  

• Observability refers to “the degree to which the results of an innovation are visible to others” 
(Rogers, 2003, p.16).  

• Trialability refers to “the degree to which the innovation may be experimented with on a limited 
basis.” (Rogers, 2003, p. 16).  

Although the constructs of the DoI theory have been adopted in various studies (Olsson et al., 2016; Al-
Jabri & Sohail, 2012), trialability will not be included in this study because PXP can be seen as 
methodological innovation rather than an artefact which needs to be tested before use on a limited basis, 
hence, not relevant to this study.  Other adoption models include Technology Acceptance Model (TAM) 
developed by Davis et al. (1989). The model explores two key constructs that determines how users accept 
technology: perceived usefulness and perceived ease of use. Perceived usefulness is described as “the degree 
to which a person believes that using a particular system would enhance his or her job performance” (Davis, 
1989, p.320). Perceived ease of use refers to the “the degree to which a person believes that using a 
particular system would be free of effort” (Davis, 1989, p. 320). Both constructs were included in this study.  

Methodology 

The target population for this study consisted of ten software developers who have applied PXP in software 
projects. The participants were purposively selected because they had experience in applying PXP principles 
in software development and understood the twelve core practices in XP.  Purposive sampling was, 
therefore, relevant to this study as it aimed to include participants who are experienced in the knowledge 
area (Etikan, Musa & Alkassim, 2016). Names of participants were codified to Autonomous Developers 
(AD) AD1, AD2… AD10. Descriptions of the participants are provided below: 



Personal Extreme Programming 

Americas Conference on Information Systems 4 

• AD1 is a recent Computer Science graduate and freelance software developer. AD1 has worked on 
three software development projects in which he applied the principles of PXP. 

• AD2 works as a lecturer at a higher institution. AD2 also works on software projects in his spare 
time. AD2 has worked on two software projects in which he applied the principles of PXP. 

• AD3 is a freelance software developer.  AD3 has worked on four software projects in which he 
applied the principles of PXP. 

• AD4 works in a software organisation, however, he works on private projects during his free time. 
AD4 has undertaken four independent software projects in which he applied the principles of PXP.  

• AD5 is a full-time Masters student. AD5 works as a freelance software developer. Within the last 
six years, he has worked on seven projects in which he applied the principles of PXP. 

• AD6 works a lecturer at a higher institution. AD6 also works as an autonomous developer in his 
spare time. He has worked on two projects in which he applied the principles of PXP.  

• AD7 is a recent graduate. AD7 also works as an autonomous developer. He has also worked on two 
projects in which he applied the principles of PXP.  

• AD8 works in a government organisation. AD8 works as an autonomous developer in her free time 
and she has worked on three software projects in which she applied the principles of PXP.  

• AD9 is a full-time Masters student. AD9 also works as a freelance autonomous developer in his free 
time. He has worked on two software projects in which he applied the principles of PXP.   

• AD10 is a recent graduate and a freelance software developer.  AD10 has worked on three software 
projects in which he applied the principles of PXP. 

Data Collection 

In order to investigate the adoption of PXP in software projects among software developers, a qualitative 
method was applied. Hammarburg et al. (2016) further explain that qualitative methods can be applied in 
studies where the research aims to understand a concept. It was, therefore, important to apply the 
qualitative method in this study as the aim of the study was to investigate the adoption of PXP among 
developers. The study was conducted in Windhoek, Namibia.  

Data was collected using semi-structured interviews. The interview was used to gain insights about the 
factors influencing and affecting the adoption of PXP by autonomous software developers. The interview 
questions were structured around the constructs of DoI and TAM to identify the relative advantage, 
compatibility, complexity, observability, perceived usefulness and perceived ease of use to identify the 
factors influencing and affecting developers’ adoption of PXP.  Prior to the interview, the interviewer 
explained the purpose of the study and had a discussion with the participants regarding their experiences 
and knowledge of XP and PXP practices. Participants were interviewed individually and each interview 
lasted approximately twenty minutes.  

Data Analysis 

The analysis aimed at understanding and interpreting what the participants’ perceived as factors 
influencing and affecting the adoption of PXP based on the constructs (relative advantage, complexity, 
compatibility, observability, perceived usefulness and perceived ease of use). The interviews were recorded 
and later transcribed. Thematic analysis was used to code the text from the interviews and translated into 
themes (Braun, Clarke & Rance, 2014). The themes generated are as follows: 

• Relative Advantage and Perceived Usefulness 

o Flexibility 

o Independence 

o Management 

o Comprehension of user stories 

• Complexity 

o Increased chances for error 



Personal Extreme Programming 

Americas Conference on Information Systems 5 

o Lack of backups during emergencies 

o Not compatible with large projects 

o Lack of skills diversity 

o Time constraints for large projects 

• Observability 

o Customer involvement 

o Software project management experience needed 

o Efficient for small projects 

• Compatibility 

o Feedback 

o Incremental requirements gathering 

• Perceived Ease of Use 

o Convenient when working on small projects 

o Task completion 

Results 

The findings of the study are categorised under five themes namely, relative advantage/perceived 
usefulness, complexity, observability, compatibility, and perceived ease of use. 

Relative Advantage and Perceived Usefulness 

Participants were asked to describe the benefits they experienced using PXP as a methodology for software 
development. The majority of the participants believed that applying the principles of PXP enabled them to 
fully focus on the job as there were fully aware that there would be no external support.  Some of the 
participants indicated: 

“It gives me the flexibility to focus on the job when necessary” AD3 

“With PXP, I am able to concentrate on the job as I am the only one involved in the requirements 
gathering and design phase, so it gives me the opportunity to focus since there is no other person 
to distract me” AD2 

“Applying PXP gave me the opportunity to concentrate on the tasks as I work solely on the 
development of the application” AD6 

Some of the participants who took part in the study pointed independence as one of the benefits of 
applying PXP practices in software development. Some participants explained: 

“One thing I like most about using extreme programming as a single developer is that I am able 
to decide when it is time to work. I work with my own calendar” AD10 

 “I was able to schedule when things would get done as I had no body to report to apart from the 
customer” AD8 

It was reported that one merit of adopting PXP is that developers can keep track and effectively manage 
the project because they are involved in carrying out all the activities in the project.  

Some of the participants also indicated that the application of PXP made the software development process 
easier since core practices such as user stories and frequent feedback enabled them comprehend user 
needs faster. User stories is an approach that the user adopts in explaining the proposed components of a 
software (Chance, 2011). 



Personal Extreme Programming 

Americas Conference on Information Systems 6 

Complexity  

Participants were asked to describe the challenges they experienced when adopting PXP. An issue was 
raised regarding not being able to participate in pair programming, hence increasing the 
chances for errors. Pair programming is a process whereby two programmers work on a code, with one 
programmer writing the code and the other programmer reviewing the code being written (Maguire et al., 
2014). Some of the participants indicated that they had to write and review their code themselves leaving 
chances for errors.  

“The major challenge I had was having to work on my code myself and finding errors myself” 
AD1 

“Well, my problem with applying Extreme Programming in my individual work is that I don’t get 
to code with other developers. The challenge is that there may be things which could be detected 
on time when there is someone looking at your code while you code” AD7 

“Unlike being in a team, as a single developer, there is nobody to discuss the progress with, as you 
are the only one who does the work” AD9 

Participants also indicated that it took them longer time to produce any deliverable compared to 
when they worked in groups. Some participants explained: 

“I found that it takes a longer period to develop an application when I work on my own” AD5 

“Working alone means doing everything yourself, which could be time-consuming to produce any 
functional software component” AD3 

Another challenge found while adopting PXP practices as an autonomous developer as indicated by the 
participants is a possible delay because of emergencies. The participants added that it was difficult to 
meet deadlines when they experienced emergencies such as illness, as such, the work would be on hold until 
they were fit to complete the job.  

Participants who took part in this study also indicated there was a lack of skills diversity when they 
worked alone. Some participants stated: 

“Working as an independent developer meant that I had to depend on my skills alone and I 
couldn’t learn from other developers” AD7 

“I noticed lack of diversity of skills in the development process, as I had to learn new things on my 
own, which took my time” AD8 

Other participants believed that PXP was time-consuming when working on large projects as they 
had to perform tasks which were meant to be distributed among different people. Some participants 
explained: 

“Time, I believe, is a major drawback when using the principles of Extreme Programming in an 
individual project because you have to do the programming, interact with the customers, test the 
application and carry out other administrative functions….”  AD2 

 “It gets complicated when you have to so many tasks at the same time, it gets even more 
complicated when it’s a large project which has to be completed within a short period of time, 
taking into consideration that you have to deal with customers in the process and make changes” 
AD 1   

“In my opinion, I wouldn’t work alone when it’s a big project even when I’m applying Personal 
Extreme Programming because it could be very demanding and would compromise on quality” 
AD 6   

“When the activities to be done are quite a lot, I would rather stick to working with three or four 
friends that are also developers rather than taking on huge projects I cannot complete on my 
own” AD 9 



Personal Extreme Programming 

Americas Conference on Information Systems 7 

Observability 

Despite having only one developer involved in the software development, participants believed that 
adopting PXP improved customer involvement as much as it would with XP. However, the majority of 
the participants believed that efficient customer involvement would require extensive software project 
management experience. It was highlighted that PXP is efficient for small projects as they are 
easier to manage.  

Compatibility 

The majority of the participants found PXP compatible with similar experiences in agile development. Some 
participants highlighted being able to gather customer feedback and improve the development process 
was a key factor which motivated them to adopt PXP despite working as an autonomous developer. One of 
the participants explained: 

“I still get feedback from my customers as I get them involved in the software development process 
and this is important when improving the application being developed” AD 6 

The participants also believed that incremental requirements gathering can be achieved with PXP 
similar to other agile methodologies.  

Perceived Ease of Use 

The majority of the participants considered PXP methodology as easy to adopt when working on small 
projects as it eases the completion of various tasks in the project. Some of the participants explained: 

“It is very easy to use PXP when you are dealing with a small project which doesn’t take time. 
Then you know you can easily complete the tasks because it is a small project...” AD 8 

“Well, it all depends, the big projects can be very stressful to complete when you work alone, but 
if you are dealing with those small ones, PXP can be very easy to use in such scenarios” AD 6 

Discussion 

The objective of this study was to explore the adoption of PXP among autonomous software developers. To 
the best of the researcher’s knowledge, this is the first time an empirical study is being conducted on the 
adoption of PXP. This study also contributes to the academic literature on the application of PXP in software 
projects. The findings of this study extends the current knowledge on PXP practices and developers’ 
adoption.  

The findings revealed various factors that influence developers’ adoption of PXP which includes 
independence and management. The findings differ from other studies on XP which suggests that while 
team members are independent, they are, to some extent, controlled by management (Rumpe & Scholz, 
2003). Participants in this study highlighted effective management as one of the main highlights of PXP. 
This can be attributed to the fact that only one developer is involved in both the administration and 
development of the project. This is in contrast with other studies that explain that software developer teams 
are different from management teams (Rumpe & Scholz, 2002). It was also noted that understanding user 
stories becomes easier when PXP is applied. This can be attributed to the fact that there is a single line of 
communication between the customer and the developer.  

The study findings also revealed that it was easier for autonomous developers to complete tasks in small 
projects when PXP is applied. The findings of this study are congruent to a study which reported 
convenience in terms of planning tasks when PXP was applied in the development of a software application 
(Asri et al., 2017). 

It was also identified that with PXP, there was a lack of diversity of skills since only one developer is involved 
in the software development process. This is in contrast with other studies that suggest diversity of skills as 
a feature of XP (Wood et al., 2013). This could be attributed to the fact that only one developer is involved 
when PXP is applied in software projects. It was also revealed that there is an increased chance for errors 
when PXP is adopted as a result of pair programming not being practised. This is also in opposition to 



Personal Extreme Programming 

Americas Conference on Information Systems 8 

previous findings which suggest that XP allows pair programming (Wood et al., 2013). This is also 
attributed to the fact that there is only one developer involved in the software development. However, this 
can be improved through experience in writing software codes and setting up extra time for cross-checking 
codes already written.  

Some of the participants believed that adopting PXP could be time consuming when embarking on a large 
project, while others believed that PXP is easy to use when working with small projects. The findings from 
this study is congruent with other studies that suggest that XP is suitable for small scale projects (Cao et al., 
2004; Schalliol, 2003). It is, therefore, necessary for autonomous developers to improve time management 
skills and work on small to medium sized projects when working as an autonomous developer. It is 
recommended that the scope of work should be considered first before adopting PXP in software projects.  

Although the lack of skills diversity was experienced among developers adopting PXP, it can be improved 
with time through experience and practise. When the developer engages in different kinds of projects, they 
can develop different skills which can be applied in different projects. Similar to other studies in the 
literature on the benefits of PXP (Marthasari et al., 2018), this study found that PXP facilitates flexible 
requirements gathering. 

In addition, the advantages of adopting PXP as found in this study provides empirical support that PXP can 
be rewarding for autonomous software developers. 

Conclusion  

The main objective of this paper was to explore the adoption of PXP among autonomous software 
developers. The study provides useful insights into the adoption of PXP using the constructs from the DoI 
theory (relative advantage, complexity, compatibility and observability) and Technology Acceptance Model 
(perceived usefulness and perceived ease of use). This study established that despite the challenges 
identified when applying PXP in software projects, independence and effective management can be 
achieved with the adoption of PXP. The study also found that PXP reduces the line of communication and 
makes it faster to understand user stories.  

From a managerial perspective, PXP would be effectively adopted when an autonomous developer has 
gathered a wide range of skills in software development.  

It would be interesting to investigate the perspectives of other stakeholders such as customers to 
understand their perspectives on PXP practices. In addition, there is a limited number of studies 
investigating PXP practices, as such, longitudinal studies can be valuable in examining the progress of PXP 
practices over time. Furthermore, one approach to improve the application of PXP in software projects is 
to incorporate PXP into learning environments, similar to XP (Murphy, Phung & Kaiser, 2008). Future 
research include carrying out longitudinal studies investigating PXP practices and incorporating PXP into 
learning environments. 

REFERENCES 

Agarwal, R. and Umphress, D. 2008. “Extreme Programming for a Single Person Team,” in Proceedings of 
the 46th Annual Southeast Regional Conference, Auburn, CA, pp.82-86. 

Al-Jabri, I. M., and Sohail, M. S. 2012. “Mobile Banking Adoption: Application of Diffusion of Innovation 
Theory,” Journal of Electronic Commerce Research (13:4), pp. 379-391. 

Altameem, E. 2015. “Impact of Agile Methodology on Software Development,” Computer and Information 
Science (8:2), pp.9-14. 

Anwer, F., and Aftab, S. 2017. “SXP: Simplified Extreme Programming Process Model,” International 
Journal of Modern Education and Computer Science (9:6), pp. 25-31. 

Asri, S. A., Sunaya, I. G. A. M., Rudiastari, E., and Setiawan, W. 2018. "Web Based Information System for 
Job Training Activities Using Personal Extreme Programming (PXP)," in Proceedings of the 2nd 
International Joint Conference Science and Technology, Bali, pp. 1-9. 

Bin, X., Xiaohu, Y., Zhijun, H., and Maddineni, S. R. 2004. “Extreme Programming in Reducing the Rework 
of Requirement Change,” in Proceedings of the Canadian Conference on Electrical and Computer 
Engineering, Niagra Falls, Ontario, pp. 1567-1570.   



Personal Extreme Programming 

Americas Conference on Information Systems 9 

Braun, V., Clarke, V., and Rance, N. 2014. How to use Thematic Analysis with Interview Data. In The 
Counselling & Psychotherapy Research Handbook, A. Vossler and N. Moller (eds.), London: Sage, pp. 
183-197.  

Cao, L., Mohan, K., Xu, P., and Ramesh, B. 2004. “How Extreme does Extreme Programming Have to be? 
Adapting XP practices to large-scale projects,” in Proceedings of the 37th Annual Hawaii International 
Conference, Big Island, pp. 1-10. 

Chance, K. 2011. “User Stories in Practice: A Distributed Cognition Perspective,” Doctoral dissertation, 
Auckland: Auckland University of Technology. 

Davis, F. D. 1989. “Perceived usefulness, perceived ease of use, and user acceptance of information 
technology,” MIS Quarterly, (13:3), 319-340. 

Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). “User acceptance of computer technology: a 
comparison of two theoretical models,” Management Science (35:8), 982-1003. 

Dima, A. M., and Maassen, M. A. 2018. “From Waterfall to Agile Software: Development Models in the IT 
Sector, 2006 to 2018 Impacts on Company Management,” Journal of International Studies (11:2), pp. 
315-326. 

Dzhurov, Y., Krasteva, I., and Ilieva, S. 2009. “Personal Extreme Programming – An agile Process for 
Autonomous Developers,” in Proceedings of the International Conference on Software, Services & 
Semantic Technologies, Sofia, pp. 253-259. 

Etikan, I., Musa, S. A., and Alkassim, S. 2016. “Comparison of Convenience Sampling and Purposive 
Sampling,” American Journal of Theoretical and Applied Statistics (5:1), pp. 1-4. 

Hedin, G., Bendix, L., and Magnusson, B. 2005. “Teaching Extreme Programming to Large Groups of 
Students,” Journal of Systems and Software (74:2), pp. 133-146. 

Hammarberg, K., Kirkman, M., and De Lacey, S. 2016. “Qualitative Research Methods: When to use them 
and How to Judge them,” Human Reproduction (31-3), pp. 498-501.  

Humphrey, W. S. 2000. “The Personal Software Process (PSP),” Pittsburgh, PA: Carnegie Mellon Software 
Engineering Institute, November, 2000. 

Hneif, M., and Ow, S.H. 2009. “Review of Agile Methodologies in Software Development,” International 
Journal of Research and Reviews in Applied Sciences (1:1), pp. 1-8. 

Iyawa, G.E. 2016. “A Framework for Improving Knowledge Management Practices in Namibian Software 
Companies,” Journal of Information and Knowledge Management (15:1), pp. 1-13. 

Iyawa, G.E., Herselman, M., and Coleman, A. 2016. “Customer Interaction in Software Development: A 
Comparison of Software Methodologies Deployed in Namibian Software Firms,” Electronic Journal of 
Information Systems in Developing Countries (77:1), pp. 1-13. 

Maguire, P., Maguire, P., Hyland, P., and Marchall, P. 2014. “Enhancing Collaborative Learning using Pair 
Programming: Who Benefits?,” All Ireland Journal of Teaching and Learning in Higher Education 
(6:2), pp. 1411-14125. 

Marthasari, G., Suharso, W., and Ardiansyah. F. A. 2018. "Personal Extreme Programming with MoSCoW 
Prioritization for Developing Library Information System." in Proceeding of the Electrical Engineering 
Computer Science and Informatics, Malang, pp. 537-541.  

Mohammed, A. M., and Abushama, H. M.  2013. “Popular Agile Approaches in Software Development: 
Review and Analysis,” in Proceedings of the International Conference on Computing, Electrical and 
Electronics Engineering, Khartoum, pp. 160-166.   

Moniruzzaman, A.B.M., and Hossain, S.A. 2013. “Comparative Study on Agile Software Development 
Methodologies,” Global Journal of Computer Science and Technology Software & Data Engineering 
(13:7), pp. 5-18. 

Murphy, C., Phung, D., and Kaiser, G. 2008. “A distance learning approach to teaching extreme 
programming,” in Proceedings of the 13th Annual Conference on Innovation and Technology in 
Computer Science Education, Madrid, pp. 199-203.   

Olsson, A., Engström, M., Lampic, C., and Skovdahl, K. 2013. “A passive positioning alarm used by persons 
with dementia and their spouses–a qualitative intervention study.” BMC Geriatrics, (13:1), pp. 1-9.  

Pomeroy-Huff, M., Cannon, R., Chick, T. A., Mullaney, J., and Nichols, W. 2009. “The Personal Software 
Process SM (PSP SM) Body of Knowledge,” Software Engineering Institute. 

Qureshi, R.J., and Ikram, J.S. 2015. “Proposal of Enhanced Extreme Programming Model,” International 
Journal of Information Engineering and Electronic Business (1), pp. 37-42. 

Rogers, E.M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.  



Personal Extreme Programming 

Americas Conference on Information Systems 10 

Rumpe, B., and Scholz, P. 2002. “A Manager’s View on Large Scale XP Projects,” in Proceedings of the 3rd 
International Conference on Extreme Programming and Flexible Processes in Software Engineering, 
Sardinia, pp. 1-4.  

Rumpe, B., and Scholz, P. 2003. “Scaling the Management of Extreme Programming Projects,” Special 
Issue on Management of Extreme Programming Projects (3:8), pp. 11-18. 

Schalliol, G. 2003. “Challenges for Analysts on a Large XP Project.” in Extreme Programming Perspectives, 
M. Marchesi, G. Succi, D. Wells, L. Williams, J. D. Wells (eds.), Indianapolis: Pearson Education, pp. 
1-5. 

Sharp, H., and Robinson, H. 2008. “Collaboration and Co-ordination in Mature eXtreme Programming 
Teams,” International Journal of Human-Computer Studies (66:7), pp. 506-518. 

Stapel, K., Lübke, D., and Knauss, E. 2008. “Best practices in extreme programming course design,” in 
Proceedings of the 30th International Conference on Software Engineering, Leipzig, pp. 769-776.   

Steghöfer, J., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., and Ericsson, M. 2016. “Teaching Agile: 
Addressing the Conflict between Project Delivery and Application of Agile Methods.” in Proceedings of 
the 38th International Conference on Software Engineering Companion, Austin, pp. 363-370. 

Wood, S., Michaelides, G., and Thomson, C. 2013. “Successful Extreme Programming: Fidelity to the 
Methodology or Good Teamworking?,” Information and Software Technology (55: 4), pp. 660-672. 

 
 
 
 

 

 

 

 


