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Consensus Algorithms and Deep Reinforcement
Learning in Energy Market: A Review

Olamide Jogunola, Bamidele Adebisi, Augustine Ikpehai, Segun I. Popoola, Guan Gui, Haris Gacanin, Song Ci

Abstract—Block chain (BC) and artificial intelligence (AI)
are often utilised separately in energy trading systems (ETS).
However, these technologies can complement each other and
reinforce their capabilities when integrated. This paper reviews
consensus algorithms (CA) and deep reinforcement learning
(DRL) in ETS. While the distributed consensus underpins the
immutability of transaction records of prosumers, the deluge
of data generated paves the way to use AI algorithms for
forecasting and address other data analytic related issues. Hence,
the motivation to combine BC with AI to realise secured and
intelligent ETS. This study explores the principles, potentials,
models, active research efforts and unresolved challenges in the
CA and DRL. The review shows that despite the current interest
in each of these technologies, little effort has been made at jointly
exploiting them in ETS due to some open issues. Therefore, new
insights are actively required to harness the full potentials of
CA and DRL in ETS. We propose a framework and offer some
perspectives on BC-AI integration in ETS.

Index Terms—Deep reinforcement learning, blockchain, en-
ergy market, markov decision process, consensus algorithm,
distributed ledger technology, artificial intelligence
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I. INTRODUCTION

Recent market research by PwC predicts that AI will
add up to 15.7 trillion to the world economy by 2030 [1]
while Gartner forecasts BC value addition to increase by 3.1
trillion by same year [2]. Accordingly, the last few years
have witnessed rapid advancements in many enabling tech-
nologies including communication systems, battery systems,
cloud computing, IoT, big data analytics and many more.
These developments have not only laid the foundation for the
transformative technologies seen in the energy sector today
but also accelerated the transition of energy consumers to
prosumers. Thus, energy prosumers now have abilities to
produce, consume, store and trade energy [3]–[6]. This is the
underpinning of energy trading in smart grid.

While transactions in energy trading systems (ETS) are
digitally enabled, they also create an unprecedented amount of
data for which traditional processing techniques are unsuitable.
For instance, the 27 million domestic electricity consumers
in the UK would require to process 50 terabytes of data
or 500 billion data-points annually when the smart meters
are fully deployed [7]. Moreover, variability of prosumer’s
demands, flexibility of consumption, and generation uncer-
tainty are additional challenges that create bottlenecks when
solving decision, control, security and privacy problems. The
application of artificial intelligence (AI) and BC, either in
isolation, or jointly has been relatively efficient in solving
data modelling and security challenges in vertical applications



[8]. Hence, their adoption is increasing in energy networks; 
ranging from energy management [9], [10], demand response 
[11], [12], operational control [13], [14], energy trading [15]–
[17], security and transaction management [18], etc.

AI has transformed many industries, improving predictive 
accuracy by learning from the available historical data. Ma-
chine learning (ML) algorithms have helped industries to 
predict user activities, understand consumption and purchasing 
patterns as well as provide recommendations and contents 
according to individual users’ preferences. AI systems are 
powered by ML algorithms using supervised, unsupervised, 
and Reinforcement Learning (RL) approaches [19]. Deep 
Learning (DL) is an advanced ML method that employs 
multiple processing layers to learn hierarchical representations 
of data with different levels of abstractions [20]. Supervised 
Learning (SL) requires input data and corresponding labels. 
Supervised ML algorithms include Decision Trees (DT), Sup-
port Vector Machines (SVM), Naive Bayes (NB), K-Nearest 
Neighbour (KNN), Random Forest (RF), Association Rule 
(AR) and Ensemble Learning (EL); and Deep Neural Network 
(DNN), Convolutional Neural Network (CNN), and Recur-
rent Neural Network (RNN) are supervised DL algorithms. 
Unsupervised Learning (USL) processes input data without 
labelled responses. Principal Component Analysis (PCA) and 
k-means clustering are unsupervised ML algorithms while 
Deep Autoencoder (DAE), Restricted Boltzmann Machines 
(RBM), and Deep Belief Network (DBN) are examples of 
unsupervised DL algorithms. RL trains an agent to take actions 
in a given environment to maximise pre-defined reward. Deep 
Reinforcement Learning (DRL) is a combination of both DL 
and RL and has been shown to outperform other classical ML 
prediction methods in terms of accuracy, high computational 
power, convergence speed, and long-term forecasting [21]–
[23].

DRL is a powerful, yet simple algorithm that helps an 
agent to optimise its action for maximum reward by exploring 
or transitioning between states and actions [24]. However, 
in a practical energy market that consists of multiple actors 
(prosumers, producers, consumers, traders, distribution system 
operators, etc.) with different states and actions, both the mem-
ory and time required for state transitions would increase with 
number of roles and states. Although AI provides planning, 
learning, reasoning, and problem-solving properties, trust, 
explainability, and privacy of the historical data for learning 
and prediction are ongoing debates [25]. Besides, transaction 
management among the different entities in the energy market 
is still an open issue that needs addressing. For example, 
information about prosumers generated during energy trading 
contain sensitive information. Thus, uncontrolled disclosure or 
access can lead to violation of privacy and trust or even attack. 

These challenges motivated the consideration of other dis-
ruptive technologies like BC for energy trading applications. 
BC is a trustful framework to support real-time security 
and transaction management in a distributed network. BC is 
a distributed ledger technologies (DLT), maintained by the 
network participants in a virtual peer-to-peer (P2P) network.

Sometimes, the structures of DLT are not always a block of
chains but can exist as a distributed acyclic graph (DAG) [8],
[26] as seen in IOTA. BC adopts a variety of mechanisms to
manage and share transactions across the distributed autho-
rised nodes. These mechanisms are essentially the distributed
consensus algorithms that determine the scalability, transaction
time, and efficiency of the BC solution [18]. In general, BC
manages transactions, authenticates trades as well as ensures
privacy and security of participants’ data to reduce transaction
cost and improve efficiency. Thus, integrating BC with AI
ensures privacy, trust and security of prosumers’ information
are preserved in ETS. However, BC faces some challenges in-
cluding scalability and efficiency in terms of transaction speed
and consensus delay [25]. These challenges can be addressed
by integrating AI to build a ML system on BC for improved
security, scalability and more effective personalisation and
governance [25] as well as faster consensus.

Combined AI-BC solutions have been demonstrated in
many sectors [25], [27], [28]. Although significant research
effort are made at adopting AI [22], [24] or BC [18] separately,
combined AI-BC technologies are still limited in energy
networks, aside the few cases reported in [29]–[31]. This work
focuses on the application of combined AI-BC algorithms in
ETS - a contrast to previous works which reported AI-BC
solutions in other vertical applications and industries [8], [25],
[32], [33]. Specifically, the energy trading requires analysis of
large volumes of diverse data for real-time or near real-time
response to market changes. Thus, sophisticated AI algorithms
and other emerging technologies are required. In this regard,
consensus algorithms (CA) of BC and the learning algorithms
of AI are the core components of their respective technologies
and are discussed extensively in this paper. The contributions
of this work are summarised as follows:

• a comprehensive review of the recently proposed BC and
AI-based solutions in transactive networks after which we
establish the benefits of AI-BC enabled trading in energy
market;

• we present our views and inferences from previous review
works, following the discussion of the working principle
of DLR and comparative analysis of existing algorithms;

• characterisation and working review of CA algorithms,
their operations and suitability for co-implementation
with AI;

• proposal of new AI-BC framework to reinforce security
and intelligent capabilities of ETS by further exploiting
the potentials inherent in both technologies;

• summary of open research challenges and future research
direction.

The outline of the review is shown in Fig. 1, while a compar-
ative analysis to existing surveys and applications of AI and
BC is summarised in Table I.
A brief background to AI and BC is provided in Section II with
a focus on the learning algorithms and consensus algorithms.
A detailed concept of DRL with its mathematical modelling
and related research are presented in Section III, followed



TABLE I
COMPARATIVE STUDY OF EXISTING SURVEYS ON BLOCKCHAIN AND AI WITH THIS STUDY

Technology Ref Year Objective Use-case
BC [18] 2018 Systematic review of challenges and opportunities of BC technology

in the energy sector
Energy Sector

BC [34] 2020 Overviews and highlights the benefits of BC and smart contracts in
the energy sector

Energy transaction

BC [35] 2020 Discuss the potential and applications of BC in the internet of energy
management

Energy management

BC [36] 2019 Review the deployment of decentralised transactive energy systems to
propose a DLT based management infrastructure

Energy Transaction

AI [24] 2019 Reviews models, algorithms and techniques of DRL for Power system Power system
BC and AI [25] 2018 Summarised the existing efforts with discussion on the promising

future of integrating both technologies
N/A

BC and AI [27] 2019 Proposed a BC-based distributed software-defined vehicular ad hoc
networks (VANET) framework using dueling deep Q learning ap-
proach to establish a secure architecture for VANET coordination

Vehicular networks

BC and AI [28] 2019 Proposed DRL-based performance optimisation framework for
blockchain-enabled industrial IoT systems

Industrial IoT

BC and AI [8] 2020 Surveys existing works for BC and ML technologies for communica-
tions and networking systems

Communications and
networking systems

BC and AI [32] 2019 Surveys BC applications for AI in cyber-physical systems Cyber-physical
systems

BC and AI [33] 2019 Surveys ML adoption for making BT-based smart applications resilient
against attacks

Smart applications

BC and AI This
study

Surveys the consensus algorithms of BC and the learning algorithms
of AI to ease implementation for use in energy market

Energy transaction

Fig. 1. Overview of the Review

by the working principles of BC consensus algorithm and
related research in Section IV. Framework and open research
challenges of both technologies in the energy market are
discussed in Section V, while Section VI concludes the paper
with future insights.

II. BACKGROUND

This section presents overviews of the DRL algorithm, BC
consensus algorithms, and the benefits of integrating both
technologies for the energy market.

A. Artificial Intelligence: Deep Reinforcement Learning

AI in general embodies the study of intelligent machines
perceived to perform tasks akin to human intelligence. These
tasks may be reward-based, where a particular action in an en-
vironment maximises the chances of success [24]. AI systems
are powered by ML which includes, supervised learning (SL),
unsupervised learning (USL), DL, and RL [19]. ML involves
structural data analysis comprising both linear and nonlinear
variables, mostly formulated for classification (SL) and clus-
tering (USL) problems using algorithms such as support vector
machines (SVM). DL, on the other hand, involves multi-
variate data analysis and learning based on artificial neural
networks [37], such as, convolutional neural networks (CNN)
and long short-term memory (LSTM). RL dynamically learns
from the environment by adjusting actions based on feedback
to maximise reward. Most AI-based applications focus on
the use of data to make intelligent decisions by utilising
ML, reasoning, natural language processing, and planning [19]
(depicted in Fig. 2), with active research effort into applying
the intelligence to solve real-life problems. For instance, key
enablers of the electricity market is energy storage system
as it provides means of flexibility. Applying AI in storage
system improves decisions to store excess energy surplus
production and discharge it to meet demand at a later time
while considering different constraints including load forecast,
generation capacity, prices, etc. These decisions would provide
more efficient ways of maximising DER integration, minimis-
ing electricity prices, and maximising returns to the storage
owners.

RL and DRL have found applications in the energy market,
energy storage systems (ESS), and generation optimisation,
with intelligent decisions mostly formulated as a Markov



Fig. 2. Overview of AI and ML relations, adapted from [19]

decision process (MDP) [9], [15], [38]–[41]. With MDP, a
microgrid makes decisions using the current state - comprising
of the current/predicted battery level, generation capacity,
demand flexibility, and the Q-function for each state-strategy
pair. For instance, in the energy market, a large amount
of uncertainty can be learned by RL for real-time decision
making on the optimal price to bid/offer a kWh of energy
or the appropriate time to sell/buy energy. In RL, prosumers
can participate in trading actions without extensive analytical
calculations and wide knowledge of the market model [42].

B. Distributed Ledger Technologies: Consensus Algorithms

Like the traditional database system, DLT is distributed
database that stores ledgers and transactions. DLT however
adopts several mechanisms in its data storage and sharing
by distributing the records over multiple connected nodes to
overcome the single point of failure of the traditional database
system. DLT structures could be in the form of a block of
chains refer to as BC or a DAG found in IOTA. For consistency
throughout the paper, BC is used to indicate the different
classes of DLT based on community consensus.

BC are immutable ledgers, where newly created blocks,
verified by its members using consensus algorithms are cryp-
tographically linked to the previous block in the chain. The
main features of BC include decentralisation, immutability, au-
ditability, transparency, anonymity, and security. A systematic
review of BC technology to the smart grid is provided in [18],
[43], while a working overview of the process of creating a
block and attaching it to the chain is shown in Fig. 3. Fig. 3a
illustrates the BC DLT while Fig. 3b illustrates the DAG DLT.

Irrespective of the structure of the DLT, the consensus
algorithm used in creating the new blocks determines the
efficiency, robustness, and security of the BC technology [44].
The consensus algorithm is perhaps the most crucial aspect
of the whole BC system as poor choice or modelling can
result in the BC failure. Achieving consensus particularly in
a diverse distributed system is challenging. Thus a consensus
algorithm should be resilient to nodes failure, message delays,
corrupted messages, and malicious nodes. Consensus models
are continuously been developed to ensure challenges a more
secure and robust BC system. A classification of the consensus

algorithms including their pros and cons and usage in the 
energy network are further discussed in Section IV.

1) Smart Contracts: For transactions among different enti-
ties to be valid, there exist trading contracts that set out the 
rules of trade. In BC technology, the set of rules that govern 
a transaction is termed a smart contract, which is a digital 
agreement among the parties involved [45]. It involves the set 
of rules governing their interactions relating to how and when 
to trade, who should be involved, and how payment should 
be processed. It is usually executed as a program to control 
and enforce the transfer of digital currencies in exchange 
for assets between involved parties in the BC network [46]. 
Smart contract codes are executed by the BC mining nodes 
to determine the legitimacy of a transaction. BC platform like 
Ethereum, Hyperledger Fabric, etc. are platforms that enable 
the programming of the smart contract.

As BC offers the advantage of decentralisation and secured 
data transmission, it mainly acts as an accounting tool and 
does not incentivise real-time behavioural changes like de-
mand response and load shifting which are crucial to grid 
balancing. Thus, AI can be useful in that aspect. The benefits 
of integrating both technologies are further discussed in the 
next section.

C. Technical Schemes Versus AI-BC Enabled Energy Market

The potential mass deployment of DER increases power 
sector complexity and the need for flexibility, thereby creating 
an opportunity for integrating new tools for system optimisa-
tion and energy trading. Energy system optimisation including 
trading is an on-going challenge fuelled by the increasing 
connection of DERs to the grid, where different solutions and 
models are regularly being proposed in the literature. These 
solutions can be categorised into four technical approaches. 
These are 1) game theory, 2) constrained optimisation, 3) 
auction theory, and 4) BC [47]. In game theory, a mathematical 
tool is developed to analyse the strategic decision making of 
players/prosumers in a competitive environment, where the 
decisions made directly affect the actions of other players. 
Notably, this game theory involving cooperative and non-
cooperative games has been used to reduce the cost of energy 
[48]–[51], energy balancing [52], [53], and incentivising en-
ergy trading participation [54]. Most solution models under the 
constrained optimisation approach involve mathematical pro-
gramming including linear or nonlinear programming, mixed 
integer programming, dynamic programming, or alternating 
direction method of multipliers with set objectives to minimise 
cost [55], improve efficiency [56], or for optimal energy sched-
ule [57]. In auction theory, prosumers who wish to buy and sell 
energy interact to trade, where sellers and buyers submit their 
asks and bids prices respectively. Similarly, auction theory has 
achieved the objective of local energy balancing [58]–[60]. 
As security is not designed by default during energy trading, 
a way to incentivise more participation and to secure energy 
trading transactions is to create a secured trading platform for 
participants [61]. To this, BC models including Hyperledger



Fig. 3. The process of creating a block and attaching to the respective platform: A for blockchain; B for directed acrylic graph.

[62], Elecbay [63], smart contracts [52], [64], and Ethereum
[65] are proposed for secured energy trading.

Although energy trading is achieved with these four tech-
nical approaches, each on its own is not sufficient to create 
an energy market involving a multitude of prosumers. Be-
sides, the game theory and constrained optimisation models 
relatively requires a high level of mathematical knowledge 
and are not secured by design. In addition, the dynamics of 
energy market involving forecasting demands, predictions, and 
flexibility provisions can only be achieved by the combination 
of several traditional methods, which makes individual method 
limited in its deployment. Thus, a joint integration of BC 
and AI as proposed in this study would create a secured, and 
reliable energy market system [66]. Table II summarised the 
comparative analysis of the previous energy trading schemes 
and the proposed AI-BC energy market.

D. Existing Research on AI-BC Integration

Combined AI-BC technologies in vertical applications and 
energy network are gaining traction. Study [67] summarised 
the existing efforts on BC and AI integration with a discussion 
on the promising future of both technologies. The authors 
in [8] surveyed existing works for BC and ML technologies 
for communication and networking systems, discussing the 
benefits, applications, open issues, challenges, and broader 
perspectives for integrating both technologies. Similarly, [32] 
surveyed BC applications for AI in various cyber-physical 
systems including energy network. They also identified open 
research challenges of utilising BC for AI and discussed plat-
form protocols targeting AI. ML adoption in BC-based smart 
applications resilient against attacks is further investigated in

TABLE II
COMPARATIVE STUDY OF EXISTING SCHEMES ON ENERGY TRADING 

WITH THIS STUDY

Technical
Approach

Ref Year Prediction
&
forecast

System
Optim.:
Energy
Market

Security
& Pri-
vacy

Game
Theory

[48]–[54] 2019 No Yes No

Constrained
Optimisation

[55]–[57] 2018/
2019

No Yes No

Auction
Theory

[58], [60] 2020 No Yes No

Auction
Theory

[59] 2019 Yes Yes No

Blockchain [35] 2020 No Yes Yes
AI-BC
Energy
Market

2020 Yes Yes Yes

[33] while demonstrating a case study of an energy trading 
system implementing both AI and BC.

Beyond surveys, some notable works on integrating both 
technologies are found in [27], [28], [31], [68], [69]. Specif-
ically, [28] proposed a DRL-based performance optimisa-
tion framework for BC-enabled industrial IoT system. Study 
[27] integrated both AI and BC technologies in VANET by 
proposing a BC-based distributed software-defined framework 
using a duelling deep Q learning to establish secure VANET 
coordination. The authors in [68] designed and developed 
an IoT architecture with both BC and AI to support an 
effective big data analysis. Finally, in energy network, study 
[69] presented a decentralised AI-BC based energy cloud 
management architecture, while [31] proposed a deep learning



and BC-based energy framework. In the proposed scheme, 
the deep learning serves as an intrusion detection system for 
detecting network attacks whilst utilising the generation of 
blocks using short signatures and hash functions to stop cyber 
attacks on SGs. Table I summarised the comparative analysis 
of existing surveys to this study.

The transparency and auditability features of BC ensures 
reliability while immutability and consensus reinforce the trust 
in the AI decision-making process [8]. Moreover, in terms 
of the energy network, AI can enable fast and intelligent 
decision making, for increased grid flexibility a nd renewable 
integration. Areas of application of both technologies in energy 
network include wind and solar generation forecast, grid 
stability and reliability, demand forecast, demand side man-
agement, optimised energy storage operation, and optimised 
market design and operations [70]. Other potential benefits 
of leveraging BC for AI-based energy market including im-
proved trust in AI-based decision, decentralised intelligence 
and high efficiency, a re p resented i n Table I II. A  framework 
of harnessing the potential of both technologies is proposed 
and discussed in Section V.

TABLE III
BENEFITS OF BLOCKCHAIN AND AI FOR ENERGY MARKET [8], [32]

Properties of
Blockchain

Properties of Artifi-
cial Intelligence

Integration Benefits

Distributed
ledger
technology

Data and model shar-
ing

Increased data control
and training

Data immutabil-
ity

Depend on reliable
data

Increase trust in data
modelling

Decentralised
communication

Decentralised intelli-
gence

Secured data commu-
nication and sharing

Consensus agree-
ment

Trust for decision
making

Collective decision
making

Timestamped
property

Auditability Auditable data pro-
viding more trust on
AI application

III. DEEP REINFORCEMENT LEARNING: OVERVIEW

Following the overview of both technologies in the previous
section, this section discusses in detail the transitioning of RL
to DRL, it’s mathematical modelling, algorithms, and works
reported in the literature on RL/DRL, with focus on flexibility
in the energy market.

A. Mathematical Modelling of Reinforcement Learning

In its basic form, a RL algorithm trains an agent interacting
in its environment, transitioning through different states utilis-
ing different actions. The main aim of the agent is to maximise
its total reward by using different strategies or policies. DL is
a classical ML algorithm that utilises multiple layers to extract
information from the data input. Thus DRL illustrated in Fig.
4. combines the perception function of DL with the decision
making ability of RL [24].

RL modelling usually follows a MDP, satisfying Markov’s
property which highlights that the current state within an
environment only depends on the previous state. In turn, the

Fig. 4. Deep Reinforcement Learning (adapted from [24])

TABLE IV
LIST OF MATHEMATICAL VARIABLES AND THEIR DEFINITIONS

Variable Definition Variable Definition
S γ discount factor
A α learning rate
P θ
E φ
R ω weight
G V
D π
N Q
L SoC

value function policy
action-value function 

state of charge

t

state
action

probability matrix 
environment matrix 

reward function return 
function trading replay 

memory capacity
loss function

time

future state is a consequence of its current state. The MDP 
defines t he e nvironment i n w hich t he a gent i nteracts, a nd it 
is defined a s a  t uple o f (S, A, P, R, γ ) w here S  i s t he state, 
A is the agent, P is the probability matrix, R is the reward 
function and γ is the discount factor. The definitions of all 
mathematical variables are presented in Table IV.

Formulating energy network as an MDP, the state S consists 
of a time component, load component, generation component, 
state of charge (SoC) of battery, and the energy price [9]. 
The time component refers to the hourly, half-hourly, daily, or 
yearly information, which depends on the problem model. For 
instance, the time component provides information to learn 
about energy production or consumption pattern. The load 
refers to any load component in the model, such as electrical 
load to thermal load, etc. SoC is a controllable component that 
provides flexibility w hich i s c onstraint b y ( 1). i .e. maximum, 
and minimum charging limit of the storage capacity.

SoCmin ≤ SoC ≤ SoCmax (1)

The price component determines the cost of electricity
(buy/sell). The price component could provide some cost
savings if the model considers the time of use pricing (peak
and off-peak).

The agent A in the MDP tuple represents the actors par-
ticipating in the energy market. The reward function R is
the incentive provided when some actions are performed. For
instance, reduction in cost by shifting energy consumption to



the off-peak period or cost saved when using a battery storage
device rather than grid consumption.

The state transition probability from initial state S to next
state S′ with action a at time t is described as:

P ass′ = P [St+1 = S′ St = s,At = a] (2)

where action a in an energy network could include charging or
discharging a battery, load shifting, decision to trade energy,
etc.

B. Value-Reward Function and Policy
The agent in the environment uses the reward function to

learn how to interact in the environment. The reward function
maps state and action to their rewards, and it is expressed as

Rass′ = E[Rt+1 St = s,At = a] (3)

A return function Gt exists that maps state to reward, define
as the discounted sum of rewards from each time step t. It is
expressed as

Gt =

∞∑
k=0

γkRt+k+1 (4)

where, the discounted factor, γ is expressed as

γ ∈ [0, 1] (5)

Further, the value function Vπ is the expected return from the
states. This describes the benefits of being in a state, under a
policy π and it is described as

Vπ(s) = Eπ[Gt St = s] (6)

Similarly, an action-value function Qπ exists that expresses the
return for taking action a in state S using policy π described
as

Qπ(s, a) = Eπ[Gt St = s,At = a] (7)

where policy π defines the behaviour of the agent in the MDP,
which maps state s to the probability of taking action a,
formally expressed as

π(a|s) = P [At = a|St = s] (8)

C. Reinforcement Learning: Q-Learning
In Q-learning, the agent performs the actions that will

generate the maximum reward. The total reward is called the
Q-value, expressed as the Bellman equation as

Q(s, a) = R(s, a) + γmax
a

Q(s′, a) (9)

Equation (9) presents the Q-value of state s and action a as
the immediate reward R(s, a) plus the maximum Q-value from
the next state s′. The Q-value function provides the expected
discounted long-term reward of a MG from an energy trading
decision in a time-slot. Equation (9) can be further expressed
as the Bellman iterative equation as

Q(s, a) = Q(s, a) + α[R(s, a) + γmax
a

Q(s′, a′)−Q(s, a)]

(10)
where α is the learning rate or step size. The Q-learning
algorithm is illustrated in Algorithm 1.

Algorithm 1: The Q-Learning Algorithm.

1 Initialise Q-values Q(s, a) arbitrarily for all
state-action pairs

2 for each step until learning stopped do
3 Choose an action a in the current state s based on

Q-value estimate Q(s, .)
4 Take the chosen action a and observe the outcome

state s′ and reward r
5 if s′ is terminal then
6 target = R(s, a, s′)
7 sample new initial state s′

8 else
9 target = R(s, a, s′) + γmaxa′ Qt(s

′, a′)
10 end
11 Update Qt+1(s, a) =

(1−α)Qt(s, a)+α[R(s, a, s′)+γmaxa′ Qt(s
′, a′)]

Go to next state
12 end

Algorithm 2: The Deep Q-Learning Algorithm with
Experience Replay [42], [71].

1 Initialise trading replay memory D to capacity N
2 Initialise Q with random weights ω
3 for each episode until learning stopped do
4 Collect the current market, ESS and demand

conditions
5 Forecast the renewable generation output
6 Initialise sequence s1 = x1 and preprocessed

sequence φ1 = φ(s1)
7 for each time step of the episode do
8 Select a random action at with probability ε
9 otherwise select at = argmaxaQ(φ(st), a;ω

10 Execute at and observe reward rt
11 Set st+1 = st, at, xt1 and preprocess

φt+1 = φ(st+1)
12 Store transition (φt, at, rt, φt+1) in D
13 Sample random minibatch of transition from D

Set yj =

{
rj , for terminalφj+1

rj + γmax′aQ(φj+1, a
′;ω), otherwise

14 Perform a gradient descent step on
(yj −Q(φj+1, a

′;ω))2 for the network
parameters ω

15 Reset Q
16 end
17 end



D. Transitioning from RL to DRL

To deal with the high dimensionality of state-action transi-
tions of multiple prosumers typical in the energy network, a
neural network is used to approximate the Q-value function.
DRL extends RL by using deep neural networks (DNN)
without explicitly designing the state space. The objective of
the neural network is to reduce the error in the weights ω.
Here, we train the Q-network by minimising a sequence of
loss functions Ltωt over the iteration t. Using (10), the error
function is calculated as the difference between the maximum
possible value from the next state (Q target) and the Q value
(current prediction) expressed in (11)

Lt(ωt) = Es,a,s′,r∼D [θt −Q(s, a;ωt)]
2 (11)

where θt = r+γmaxaQ(s′, a;ωt−1) is the target for iteration
t. Equation (11) samples the environment and stores the
observed experiences in a replay memory, then a small batch
is selected for learning using a gradient descent update step.
The full deep Q-learning pseudocode with experience reply is
illustrated in Algorithm 2, which is usually used to accelerate
the Q-learning process especially for a large number of MGs
by extracting features from the high-dimension state-action
space in smart grid (SG) [9]. Table V presents a summary of
the differences between RL and DRL.

TABLE V
COMPARING RL TO DRL [42]

Properties Reinforcement
learning

Deep reinforcement
Learning

Learning algo-
rithm

Q-learning Deep Q-network

Scalability Small or Medium
sized network

Extremely large sized
Network

Computational
time

Increased as the
network size in-
creases

Suitable for large net-
works

Q-function ap-
proximator

Mostly regression
models

Mostly DNN like
CNN, RNN, LSTM,
MLP, etc.

Experience re-
play

Not applicable Transition state buffer
to store previous ex-
periences

Solution meth-
ods

Tabular method
or policy-gradient
methods

Neural network and
actor-critic method
for value-function
approximation

E. Classification of DRL Algorithm in Energy Market

Most of the DRL algorithms fall into two categories, model-
based and model-free. Model-based are influenced by control
theory, while model-free is devoid from the strong mathemat-
ical computations. Model-free has the advantage of being fast
and efficient, whereas, model-based are more complex than
model-free. Most policy-based and value-based problems are
model-free [24] and are widely used in several applications
especially the energy market. Policy-based is used to learn the
best policy for the best action to maximise reward, while value-
based is to find the optimal value function. The DRL algorithm
classification is summarised in Fig. 5. In the following, we

review the literature on the use of DRL in energy market based
on the set objectives including utility improvement, profits, and
system costs.

1) Utility Improvement: Energy generation and demand
flexibility are mostly achieved by some forms of ESS through
the provision of services over multiple times-of-use within the
electricity market. In [15], an energy trading framework among
MGs is formulated based on the predicted energy profile of the
MG, i.e, battery level, consumption, generation capacity, and
energy trading history. This study further improved the utility
of the MG by proposing a deep Q-network (DQN) that exploits
the CNN to estimate the Q-value. Optimal strategies for MGs
using DRL algorithm was modelled in [41] in the local energy
market, whilst also considering the physical constraints of the
MGs. Specifically a DQN algorithm is utilised for the MG to
maximise their utilities. An energy trading game is proposed
in [72], where prosumers decide its trading strategy according
to its energy generation capacity, battery levels, consumption,
and trading history. For dynamic trading scenario, a Q-learning
strategy is further proposed. Such approach provides an opti-
mal strategy that does not depend on knowledge of the future
consumption and energy capacity of other prosumers in the
market. To accelerate the convergence speed, a hotbooting
technique is used to exploit the energy trading experience to
accelerate the learning process.

2) Prosumers’ Benefit/Profit: In the current electricity mar-
ket, prosumers have limited options of energy services to
choose from. To enable the market provide more choices to
consumers, different market mechanisms have recently been
proposed in the literature. These include peer-to-peer model
[16], [63], [73] community energy trading [74], [75], and
prosumer-grid integration [76]. In the energy market, the intra-
day market trading is modelled as a continuous process and
solved explicitly, where MG agents learn an optimal trading
policy instead of selecting the price to sell or buy energy,
which does not give maximum profit. Indirect customer-to-
customer energy trading in a localised event-driven market is
proposed in [77], which is solved using RL for customer’s
benefit maximisation. The authors of [42] presented a pro-
sumer trading behaviour in a local energy market utilising
DRL. In controlling ESS in real-time electricity market under
price uncertainty, study [38] developed a DRL technique for
a stochastic control policy to map information processed by
RNN to ESS charging/discharging actions. Specifically, the
filtered information is extracted using an exponential moving
average and RNN, solving the optimal policy by using the
proximal policy optimisation algorithm. In optimising profits
over the trading horizon, study [39] solves the real-time bid-
ding strategy of a MG utilising RL. A joint bidding and pricing
strategy was modelled in [40] using deep deterministic policy
gradient (DDPG) algorithm to determine the optimal bidding
and pricing policy in an wholesale electricity market. Deep-
Q learning with experience replay mechanism was proposed
in [42] to promote prosumers’ willingness to participate in
localised energy ecosystem thereby improving their benefits.



Fig. 5. DRL classification

3) System Costs: In reducing the electricity costs, a fitted 
Q-iteration (batch RL) to address uncertainty in providing 
flexibility d ue t o l ack o f k nowledge o f f uture d emands and 
solar PV generation in a multi-carrier energy system was 
proposed in [9]. The flexibility i s provided by controlling the 
operation modes of a battery using RL. A dynamic pricing and 
energy consumption scheduling problem between the service 
provider, utility company, and customer is studied in [78]. RL 
algorithms are developed for the service providers and the 
consumer for strategy learning with limited information. This 
helps to reduce system costs due to the learning capability of 
the algorithm.

A summary of the reviewed articles based on RL/DRL usage 
in the energy market and flexibility p rovision i s p resented in 
Table VI, highlighting their objectives and learning algorithms.

4) Inferences from the Reviewed DRL Articles: From ar-
ticles [9], [15], [38]–[42], [78], we note that the model-
free based DRL is widely applied, especially the value-based 
approach involving the DQN algorithms The rationale for the 
choice could be because of its high accuracy rate as well as 
the high speed achieved during model training [79]. So far, 
a few research explored the policy-gradient based methods 
for energy market applications. The study of DRL techniques 
for load forecasting presented in study [22] compares popular 
policy gradient algorithms including DDPG, recurrent-DPG 
(RDPG), and asynchronous advantage actor critic (A3C). The 
study concludes that prediction accuracy and convergence 
speed of DDPG and RDPG outperforms the A3C model 
but requires a significant a mount o f s tate t ransition samples 
resulting in higher computational time in model training. DRL 
is an improvement over RL by using the DQN with experience 
replay, recent advances in AI have enabled an added advantage 
by utilising DDQN or dueling DDQN which is yet to be ap-

TABLE VI
SUMMARY OF THE REVIEWED DRL PAPERS TO ENERGY MARKET

REF Objectives Physical Learning Simulation
Constraints Algorithm Period

[41]
Utility
improvement

Yes DQN 1 year

[42]
Prosumers’
benefits

N/A DQN/DNN 3 years

[72]
Utility
improvement

N/A Hotbooting
Q-learning

N/A

[78]
System cost N/A Q-learning N/A

[40]
Prosumers’
profit

N/A DDPG/DNN 30 days

[9] Electricity
cost

N/A Fitted Q-
iteration

24 hrs

[15]
Utility
improvement

N/A DQN/CNN 24 hrs

[38]
Total profit N/A PPO/RNN 1 yr

[39]
Trading
profit

N/A DQN/DNN 2 hrs

plied in the energy market. For instance, study [15] has shown
that utilising hotbooting techniques with Q-learning improves
MG utility by 22.3% relative to DQN. This established that,
while DQN is mostly used, other learning algorithms have
the potential for better result and their potentials should be
explored for energy market applications.

IV. BLOCKCHAIN DISTRIBUTED CONSENSUS ALGORITHM

Different types of distributed consensus algorithms are
actively being developed and used in different applications.
These algorithms determine the scalability, transaction time,
integrity, consistency, and efficiency of the BC solutions
[18], [44]. Broadly speaking, every BC process involves the
creation of block signifying the beginning of a transaction,



then the created block is accepted by the BC members. This
process is called reaching a consensus. After a consensus is
reached, the newly created block remains digitally immutable
and it is cryptographically attached to the chains in the BC
[46]. Reaching a consensus in a widely distributed system is
challenging, as the consensus algorithms would need to be
resilient to attack, node failures, processing delays, corrupt
messages, etc. These has resulted in the proposal of several
CAs, each with its trade-offs. The next subsection presents the
popular CAs and their suitability to integrate with AI-based
applications in ETS.

A. Proof of Work (PoW)

PoW is the pioneer consensus algorithm where at least
51% of the nodes compete to solve a complex mathematical
problem (cryptographical puzzle of generating hash output)
to validate the transaction for a reward. PoW is mostly used
by Ethereum and Bitcoin [80], [81] platforms. The validated
transaction is then permanently added to the BC. Solving the
cryptographical problem is based on trial and error method,
which most times results in increased consumption of com-
puting powers in order of 47.1 Terawatt an hour [82] and
high delays in transaction approvals. With AI applications
characterised by voluminous real-time data with high veloc-
ity, variety, and veracity, to handle real-time data streaming,
anomaly detection and real-time decision making, PoW with
high delays could be a barrier to its integration in energy
network.

B. Proof of Stake (PoS)

In solving the high energy consumption challenge of PoW,
the PoS is created to assign the process of creating new blocks
to a set of validators [83]. The validators could be randomly
selected or delegated. Although the energy consumption is
reduced as a result of the validators, the delay problem may
still prove to be a challenge for its use with AI applications.
This is because the validators may choose to delay processing
transactions, decided not to participate in the validation, or
are malicious nodes themselves [32]. Variants of PoS includes
delegated PoS and leased PoS.

C. Byzantine Fault Tolerance (BFT)

BFT algorithm originated from the work on Byzantine fault
[84], where a set of nodes agree on a joint plan of action,
for instance, to validate a transaction. BFT implementation
considers that some nodes in the network are compromised,
thus the challenge is for the set of nodes approving transactions
to ensure their messages are delivered devoid of the malicious
nodes. According to Lamport et al. [84], consensus on the
transaction is guaranteed if the number of malicious nodes
is less than 1/3 of the network nodes. BFT is mostly used
in critical systems especially in sensitive environments such
as airplane engine systems, and nuclear systems and could
be considered suitable for AI applications. When a signif-
icant amount of digital signatures approving a transaction
is collected, the consensus is reached and the transaction is

considered valid [18]. However, as the size of the network in-
creases, the message overhead increases which could result in
transaction delay, scalability, and higher memory requirements
[44]. Variant of BFT includes practical BFT and delegated
BFT.

D. Proof of Authority (PoA)

Like BFT, PoA delegates some specific nodes in the net-
work with authoritative control to form a consensus based
on majority votes in validating a transaction. This authority
could be an entity, such as an operator in the energy network,
holding a special key for approving all transactions. PoA
solves both the high energy consumption of PoW and the
problem of dependency of PoS, but it is better suited for
private BC implementation and may be prone to single point of
failure. However, in such cases, the security vulnerabilities of
private BC still applies, where validators are prone to attack,
and the validators could also be sources of attacks. For AI
applications in the energy market, PoA can be specifically
useful in practical implementation of grid-connected DERs
with the distribution network operator serving as the authority
orregulatory body.

E. Proof of Burn (PoB)

PoB involves validators spending/burning their coins to
create a new block and get rewarded [89]. By so doing,
the validators improve their stake in the network, and the
coin burning process reduces the number of coins in the
network as well as increases the value of the coins. However,
that could result in unnecessary waste of resources [18]. By
implementing a resource management scheme, spending could
be reduced in the network. In scenarios designed to incentivise
prosumers to participate in grid balancing, PoB can be applied
to burn learning models and search trees to maintain the value
across the BC [32].

F. Proof of Elapsed Time (PoET)

Like PoA, PoET selects a leader to create new blocks
in the chain by associating response time with a timer and
selecting the node with minimum expiry time as the leader
[92]. The leader selection algorithm is continuously executed
all the time. This process may also help in detecting malicious
nodes in the network, especially when a particular leader is
constantly selected or has the same minimum expiry time all
the time. It is quite energy-efficient and can scale to thousands
of nodes. PoET could find applications in AI system with
delay-tolerant applications, such as off-line system since the
AI applications need to wait until the expiry of the timer,
which could slow down data processing.

G. Proof of Capacity (PoC)

PoC is also called proof of space or proof of storage, which
works as an alternative to PoW, by storing all possible nonce
values on the nodes’ hard drive. Thus instead of finding a
random nonce as in PoW to unlock a block, it searches for
a matching nonce-hash pair in its hard drive to unlock the



TABLE VII
COMPARISON OF BLOCKCHAIN CONSENSUS ALGORITHM FOR ENERGY MARKET

Features PoW PoS PoA PoB BFT PoET PoC PoI PoAc
Blockchain
type

Public Either Private Either Private Either Public Private Private

Platform Ethereum Ethereum Ethereum - Hyperledger
Fabric /
Tendermint

Hyperledger
Sawtooth

- - -

Transaction
rate

Low Medium Medium Medium Medium Medium - - Medium

Scalability Medium Medium Medium Low Medium Medium Medium Medium
Energy sav-
ings

No Yes Partial Yes Yes Yes Partial Yes Partial

Example Bitcoin,
Ethereum

Peercoin Parity,
Geth

SlimCoin Hyperledger
Fabric

- BurstCoin,
SpaceMint

- Espers

Pros Well es-
tablished

saves en-
ergy

saves
energy

Improved se-
curity

Improved
trust

Improved
security,
consumes
less energy,
scales well

Saves en-
ergy

Saves energy Efficient
storage,
security and
network
communica-
tion

Cons Consumes
energy

Vulnerable
to attack

single
point of
failure,
vulnerable
to attack

Partly based
on PoW, thus
consumes
some energy

Increase in
message
overhead as
the size of
the network
increases

Leader
selection
waste time

Vulnerable
to attack

Vulnerable
to attack

Partly based
on PoW, thus
consumes
some energy

Reference [30],
[85]–[87]

[67] [29], [88] [89] [90], [91] [92] [93] - -

Trust model Low Low Medium Medium High Medium Medium Medium Medium
Suitability
for AI

No Maybe Maybe Maybe Yes Maybe Maybe Maybe Yes

block. Network nodes with higher disk space running a PoC
algorithm have the advantages of holding a higher stake in the
BC network [32].

H. Proof of Importance (PoI)

PoI is similar to PoA, where validating nodes are selected
based on their stake in the network. Here, the stake is based on
successful past validations. The validators are ranked based on
their frequency of successful validations. Based on the ranks,
importance is attached to the validators, and their approved
transactions out-weighs other validators in the network [32].
This increases trust in the network and can be suitable for AI
applications in energy market.

I. Proof of Activity (PoAc)

PoAc is a federated protocol of PoW and PoS, combining
its advantages and disadvantages. Here, block validation is
finalised when signatures are received from randomly selected
nodes with a higher stake in the network. It initially starts
with an empty BC, where validations are first based on PoW
for validators to receive rewards to increase their stake in the
network. Then the algorithm enables PoS for validators with an
acceptable stake in the network. PoAc is particularly efficient
for providing storage, security, and network communication
[32], which is well suited for off-line AI applications for
the energy market requiring less data availability with high
security of content.

J. Classification of Consensus Algorithms in Energy Market

In the energy market, third parties like brokers, trading
agents are usually used as intermediaries for transaction
management creating a complex system with increased cost
delayed transaction processing and communications [18]. DLT
and smart contract allow direct interaction between energy
trading entities devoid of intermediaries. Based on a con-
sumers’ consumption pattern, energy deals on the market
place can be searched and ordered against a particular de-
livery period, while transactions are securely recorded in
the blockchain, and payments processed based on the smart
contract [46]. BC in energy network has seen an increase in its
application ranging from energy trading, to demand response
to grid resilience. Specifically in the energy market, an ar-
chitecture for BC-based P2P energy trading wass proposed in
[94].

Utilising the Bitcoin BC, i.e. PoW, study [87] proposed
an energy trading framework based on private messaging and
multiple signatures. Practical implementation of PoW is found
in [30], [85], [86]. Utilising a consortium blockchain running
a consensus algorithm such as PoS or BFT, where a set of
peers acts to approve transactions was proposed in [95] to
achieve demand response in balancing electricity supply and
demand through incentive provisions. The consortium BC was
proposed to address security and privacy challenges during
energy transactions. Likewise, [96] investigated a consortium
BC to address the security challenges resulted from untrusted
and nontransparent energy market transactions. A practical



Fig. 6. An AI-BC enabled energy market

implementation of PoS is in [67], while [97] describes a
practical implementation of a PBFT consensus algorithm.

With other CAs, a BC platform was developed in [93] that
enables bilateral transactions between consumers and renew-
able producers using PoC to reduce energy costs. Recently,
study [36] proposed a proof of energy consensus protocol for
energy trading. Table VII summarises other proofs of X use
cases.1) Inferences from the Reviewed Articles: From the re-
viewed articles, the PoW algorithm is widely applicable in
energy network, for instance, a survey of 140 BC initiatives
in energy sector presented in [18] shows that 53% of the
articles utilised PoW as their CA. However, due to its high
energy consumption property, PoW is not suitable for AI-
based applications. PoS has been implemented to reduce the
energy consumption of PoW, as such several other proofs of
X algorithms evolved from PoS, e.g. BFT, while some are
hybrid of PoW and PoS, e.g. PoAc. Although PoW, PoS, and
BFT are mostly used CA in energy network, these algorithms
have their tradeoffs as highlighted in Table VII. It is therefore
recommended that other proofs of X algorithms yet to be
tested in ETS be further explored. Furthermore, most of these
algorithms consider the network and middleware layers of the
BC system. This opens opportunities for researchers to explore
application-specific consensus algorithms designed to explore
the learning capabilities of AI algorithms.

V. PROPOSED AI-BC FRAMEWORK FOR ENERGY MARKET

The previous sections discussed the models of DRL and BC
CAs and their applications in energy market. In this section,
we present a framework and summarise the open challenges

Fig. 7. An Hierarchical Architectural AI-BC enabled energy market Frame-
work

for integrating the two technologies for energy network. A 
proposed joint AI-BC framework is presented in Fig. 6, 
For clarity, the framework is re-presented in a hierarchical 
architecture of Fig. 7 with four layers: 1) Energy data layer, 
2) Prediction modelling layer, 3) Energy market layer, and 4) 
BC layer The layers are discussed in the following.



1) Energy data Layer: This layer refers to energy data gath-
ered from different sources e.g. consumption sources including 
connected sensors, home appliances, home energy manage-
ment systems, and smart meters; generating sources including 
solar PV panels, wind turbine, and energy storage systems; 
energy prices and preferences. These data are securely stored 
and exchanged via the BC layer to the appropriate end entity 
for further processing.

2) Predictive Modelling Layer: The AI-BC enable market 
platform act as a federated power plant (FPP) that utilises 
the transmitted energy data for real-time monitoring of the 
connected assets. The collected data from energy data layer 
is pre-processed on this layer. This involves processes like 
data cleaning, data integration, data transformation and data 
reduction to remove noise and transform the data into usable 
format for better prediction results. The pre-processed data is 
further classified according to the type of prosumer, either a 
residential user or a SME, as well as type of data, either a 
demand, generation, or price. The platform uses AI predictive 
modelling like RDPG to predict the values of all estimates 
over a period utilising the classified d ata. T he predicted 
values include the consumption, generation and price forecast. 
The forecast result is then stored on the BC for security 
purposes. Besides, the FPP platform only takes in data and 
provides an intelligent interface for the varied prosumers on 
the platform including the SMEs and the electricity markets 
(the wholesale market and flexibility s ervices), maximising 
the economic returns. In addition, it provides optimisation 
control and real-time services such as DSR, user preference, 
flexibility p rovisioning, i mproved c omfort a nd e fficiency for 
the connected prosumers.

3) Energy Market Layer: For energy trading relations 
among the participants on the platform, the BC module 
securely transmits the market prices from the distribution 
service operator to the AI platform. The platform uses these 
price signals and the consumption patterns of the prosumers 
to optimised trading decision on the best price and time to 
buy, sell, or store energy for maximum investment return and 
cost reductions. By responding to the market signals, local 
balancing, and lower energy prices than grid offering would 
be achieved.

4) Blockchain Layer: Since BC maintains trust, security 
and privacy of data and transaction among the prosumers, it 
is considered as a cross layer entity. For instance, the energy 
generation and consumption data from the energy data layer is 
securely stored on the BC layer as well as transmitted through 
the BC layer to the prediction modelling layer. Similarly, the 
data from the prediction modelling layer and energy market 
layer are stored on the BC layer and securely transmitted 
appropriately. The BC layer validates and manages the trans-
actions between the trading entities. Energy trade validation 
and transaction management processes involves requests to 
buy or sell energy, generation of smart contracts and certifi-
cates for transactions, and exchanges of offers and payments. 
After an agreement to trade energy is reached and a smart 
contract is created, the transaction is approved using a PoA

algorithm which seems more specifically suited and potentially 
implementable for the energy trading. This triggers the energy 
exchange process through the connected smart meters and 
subsequently, payment exchange between the trading partners 
is ensured.

A. Discussion on Future Research Direction on AI-BC Tech-
nologies for Energy Market

This section first discusses each technology’s future research 
direction before proceeding to discuss the inherent challenges 
in each technology that need to be addressed before both 
technologies can be integrated. This is closely followed by the 
open challenges in integrating both technologies. The choice 
of distributed CA in BC implementation is an evolving area 
of research. However, from the literature review, the benefits 
of CAs in ETS outweighs their disadvantages in terms of 
efficiency a nd c ost. F or i nstance, E thereum- t he m ost widely 
used BC platform, is based on PoW, which is slow and energy-
intensive due to the block verification and validation [18]. This 
resulted in the move towards a more energy-efficient, faster, 
and more scalable distributed consensus algorithm. IOTA and 
”sharding” enable DAG and parallel processing respectively 
[26], with decentralisation and security as the trade-offs.

Furthermore, the initial cost of BC deployment is higher 
than the traditional transactional methods such as relational 
databases, but with better security and privacy enhancements. 
Thus, BC on its own requires further research on how to tweak 
and adapt it in AI applications to maximise its performance 
when integrated.

On the other hand, new techniques are required to signif-
icantly reduce the training time and improve convergence of 
DRL algorithms. Whereas the learning capability of the DRL 
algorithm requires an agent to be deployed, energy market 
is essentially a multi-agent environment with many actors 
such as energy sources (CHP, wind turbine, solar PV), system 
operators and other services providers. Hence, further research 
is required to extend DRL to multi-agent system in order to 
be more amenable to ETS.

Another potential area is to investigate better reward func-
tions that allow agents to properly learn and optimise inter-
actions in the environment, incorporating risk management in 
the decision making process and constructing bids and prices 
with a profit guarantee.

In addition, most of the research papers on RL for the 
energy market neglect the effect of critical physical network 
constraints. This is important as the transmission losses and 
power limit capacity at some nodes could affect the optimal 
decision making or strategy of a prosumer.

The parallel open research challenges of integrating AI and 
BC technologies to the energy network are as follows.

• Privacy and Data Access: In the public BC ledgers, 
data are distributed and available on all the nodes on 
the network. This is a privacy concern. Moreover, the 
use of IoT devices like smart meters collects additional 
personal information which may also be stored on the



BC platform, resulting in additional vulnerability. Al-
though the use of private BC allows authorised access 
to particular information, this restricts the access to data 
by AI platform in performing analytics for informed 
decision making. Thus, research in data access between 
AI and BC platform (either private, public, or consor-
tium) whilst ensuring confidentiality and privacy of data 
is highly recommended. Interestingly, combined AI-BC 
can enable anonymous data detection and secured data 
sharing among prosumers. But this possibility requires 
more research validity into data authorisation process for 
different prosumers.

• Scalability and Accuracy: The potential number of 
transactions processed using the public BC platform is 
limited due to the time required for confirmation. This 
makes scalability a major concern with BC platforms. 
For instance, with the increasing DER integration and 
connected devices (loads, generating units, metering de-
vices, etc.), transactions are meant to be processed in 
order of millions to deter double payment and delay. 
Delayed transactions would impact on the training and 
accuracy of predictive ability of AI models affecting the 
joint integration with BC for the energy market. However, 
with a distributed ledger like IOTA platform, where the 
ledger is built on DAG and not linear blocks, this features 
scales up transaction numbers and times [98], [99]. DAG 
is an emerging technology as BC, and its integration with 
AI has not received much attention in the energy research 
community. Thus more research is needed in adopting 
DAG fully with AI in energy market applications.

• Security and Suitability: Ethereum is the mostly de-
ployed BC platform in energy market. However, it faces 
several security challenges and vulnerabilities to cyber-
attacks. Ethereum has been the target of serious attacks in 
the past and resilience to such attacks is important, espe-
cially for critical applications like the energy trading [32]. 
In particular, the consensus algorithm is implemented 
by miners in the network which can be compromised. 
The use of trusted nodes in private BC as Hyperledger 
is less vulnerable compared to public BC, but this has 
found limited interest in the energy market. To ensure 
its suitability for AI integration, additional trust and 
security layer is needed to ensure security, privacy, and 
access to data for AI implementation. Although privacy 
and security provided by BC platform for managing 
energy transactions is tighter than the traditional database 
system, BC security is still an open challenge.

• Lack of standards, interoperability, and regulations: 
Regulatory activities are by several standardisation bodies 
including IEEE, NIST, and ITU [32], looking at resolving 
these very important issues. As such, there is no devised 
BC standard yet. Similarly standardisation of big data 
development in smart grid including inteoprability of 
various devices is still in development. Integrating AI 
with BC in the energy market, therefore calls for open 
research in devising efficient universal models and proofs

of concept for integrating the two technologies. This
should be followed by definition of appropriate technical
standards, interoperability requirements and guidelines
for harnessing the potentials of the two technologies. For
instance, in the energy market, a new contract is required
to describe agreements between prosumers especially
when the use of the public grid is involved. Thus the need
to integrate the energy markets into the current regulatory
practices.

• Lack of Acceptance: The complexity and lack of long 
term use as well as the experience with BC resulted 
in associated risks of its usage in the energy network. 
While theoretical works and field trials are proving its 
applicability and efficiency in the energy network, it’s 
integration with the existing distribution network raises 
some major concerns for network operators. For instance, 
questions such as how BC fits into the existing distribu-
tion network? does BC provide incentive or charge for 
DSO to allow energy transactions through their network?
what is the effect of the charge on the overall cost 
and carbon reduction?. Further investigation is therefore 
required to address these concerns.

• Cross-domain Research: Presently, the modes of op-
eration of BC and AI are independent, which makes 
parallel process communication difficult. This barrier 
can potentially jeopardise performance-related metrics of 
integrating both technologies. Although, as seen from the 
comparative review in Section II-D that recent effort are 
investigating their joint applications as seen in [31], more 
cross-domain based research for the two technologies is 
highly needed in reaping the benefits of both technologies 
in energy network.

• Selection of appropriate Technique: As can be seen 
from the DRL classification in Fig. 5 and Table VII 
that several DRL and CA exists, selection of appropri-
ate technique for AI-BC based application may cause 
performance bottleneck if the selected technique is not 
optimal. Since the techniques are not one size fit all, 
future research work would need to focus on developing 
specific DRL and CA techniques that considers all the 
variability of the energy market for optimal performance 
metric.

VI. CONCLUSION

Integration of AI with BC in ETS is faced with many chal-
lenges ranging from data control, privacy, transaction delays
and management complexities. In this paper, we reviewed
recent works in AI and BC with respect to ETS and analyse
working principles, existing models and the barriers to AI-
BC integration in energy market applications. We carried out
detailed comparative analyses of CA and DRL algorithms
and found that although some progress has been recorded in
exploiting both technologies individually, the overall outcome
was mostly sub-optimal performance due to the weaknesses
and trade-offs inherent in each of them. Hence, we discuss the
benefits of integrating AI and BC in ETS and proposed a new



framework for exploiting both technologies in an integrated
manner. Finally, we enumerated the future research areas in
each technology that can improve adoption in ETS.
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