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Abstract—The angular motion of a mockup of a satellite’s attitude control system on an 
air bearing is considered. The general purpose of the work is to verify the one-axis 
magnetic attitude control algo- rithm. This control is designed to maintain the satellite’s 
solar panels attitude towards the Sun. Spe- cific mockup motion patterns are found. These 
patterns allow comparing the ground-based control performance results and its expected 
inf light operation. Asymptotically stable precession and near pla- nar motion are 
outlined. Mathematical modelling is performed for these patterns. Their applicability for 
the laboratory experiments is shown. 
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1. INTRODUCTION 

In the work, the angular motion of a model of an attitude control system placed 
on an aerodynamic suspension is mathematically modelled. Spherical 
aerodynamic suspension is the most convenient and common way to 
experimentally represent the angular motion of a satellite [1–5]. The suspension 
is formed of two spheres nested in each other (Fig. 1). The outer sphere has a 
certain, usually small, number of openings for air outlet. Due to this, an air gap is 
created between the external and internal spheres, which practically eliminates 
friction. 

Laboratory testing of the mockup of a spacecraft’s attitude control system allows 
us to check the logic of the onboard computer and the implementation of 
algorithms for the mockup motion determination. Direct verification of the 
operation of angular motion control algorithms is usually impossible. The space- 
craft moves relative to the center of mass under the inf luence of external and 
control torques. The mockup of the attitude control system has three degrees of 
freedom; however, only rotation around the local vertical turns out to be 



unlimited; a mockup can usually “tumble” to the side at an angle of about 30°. 
The main disturbing torque acting on the model—the torque of gravitational 
forces—is much larger than the one acting on the device in orbital flight. As a 
result, the actuators may in principle be unable to compensate the disturbing 
torque. Moreover, not every attitude motion regime can be implemented on an 
aero- dynamic suspension due to the limitation of the angle of inclination.

Fig. 1. Spherical aerodynamic suspension, Specialty Components.

  

The motion of the mockup considered in the work is uniaxial orientation, possibly 
with rotation around an orientable axis, implemented using the Sdot algorithm [6, 
7]. Due to the rotation, the desired direction must be close to the local vertical. 
The main problem arises when implementing the control of magnetic coils. 
Unlike flywheels and thrusters, coils are unable to compensate the torque of 
gravity if the center of mass of the mockup is offset from the center of pressure. 
As a result, the problem arises of finding specific motion of the mockup that 
would allow checking the operation of the control algorithm and its 
implementation on the onboard computer. This mode of motion must be resistant 
to disturbances so that it can be implemented on laboratory equipment. An 
asymptotically stable precession and almost planar motion were found in the 
work, and the corresponding model motion was simulated, showing that such an 
implementation is possible. 

2. EQUATIONS OF MOTION 

Two reference frames are used: 

—laboratory frame OX1X2X3, O is the center of rotation of the mockup, OX3 is 
directed vertically upwards; 

—body frame Ox1x2x3, the axes are directed along the main axes of inertia of the 
mockup. 

The orientation of the mockup is set by angles φ,ψ and θ (rotation sequence 3-1-3) 
and α,β, and γ (rotation sequence 2-3-1) and angular velocity components. In a 



numerical simulation, a quaternion is used. The dynamic equations of the mockup 
motion in the body axes are presented as 

Jdω+ω×Jω=Mgr +Mcontr, (1)

Mgr is the torque of gravitational forces and Mcontr is the control magnetic torque. 
For satellite J is the inertia tensor calculated for the body frame located in the 
center of mass. The axes are usually directed 

along the principal inertia axes of the satellite. In the case of a mockup, two 
options are possible. We can place the reference frame associated with the 
mockup at its center of mass. In this case, the equations are the same and J is the 
inertia tensor in the principal axes. However, this approach makes it necessary to 
take into account additional perturbations acting in the center of rotation and the 
motion of the center of mass relative to the center of rotation. Therefore, a more 
natural approach is usually used: a description of the motion of the mockup 
relative to the center of rotation. This complicates the appearance of matrix J but 
simplifies the representation of disturbances acting on the satellite. Matrix J can 
be represented as 

where Iij are the components of the inertia tensor for the center of mass of the 
mockup and r is the vector connecting the center of rotation and the center of 
mass. If we choose the axes of the body frame so that when transferred to the 
center of mass they coincide with the principal axes of inertia and the off-
diagonal members of the central inertia tensor Iij  will be zero. 

Torque of gravitational force for model of mass m:



Dynamic equations are supplemented by kinematic relations: 

and

When conducting numerical simulations, kinematic relations for the quaternion 
are used. 

3. PLANE MOTION OF MOCKUP 

The motion in the horizontal plane is of particular interest from the point of view 
of modeling the dynamics of the satellite on an aerodynamic suspension. Despite 
the fact that such a suspension has three degrees of freedom, a significant part of 
the experiments is reduced to the planar motion, since only around the vertical is 
there a possibility of a complete rotation of the mockup. The control torque is 
formed by the law 

M = m × B = k cos δ (ω × S) × B. (4) 

Here k is positive gain, S is a direction given in the laboratory system, and δ is the 
angle between this direction and the magnetic induction vector. The algorithm 
ensures [7] the orientation of the vector of the angular momentum of the satellite 
along the direction S, the orientation of the axis of the maximum moment of 
inertia along the angular momentum vector and, possibly, the rotation around this 
axis. 

There is planar motion of the satellite under the control of algorithm (4) in the 
polar orbit. If in Eqs. (1) we omit the torque of gravitational forces (equations of 



the satellite’s motion relative to the center of mass), put α = γ = 0 and ω1 = ω2  = 0, 
and set the desired orientation direction S in the horizontal plane, then the motion 
in the polar orbit is described by the equation 

where χ = kB0 /C . To obtain (5), we rewrite the control torque in the form

M =  k(B⋅S)(−ω(B⋅S) + S(B⋅ω)). (6)

Then if S and B lie in the horizontal plane

M = −k (B ⋅ S)2 ω. 

Suppose that a simulator of a geomagnetic field creates in the laboratory frame a 
model field of a simplified direct dipole [8],

where ω0 = 10−3 s−1 corresponds to an orbit height of about 350 km. Then from (5) 
for Θ = π 2 we get

and from it

It is impossible to find β in the final form. Let us consider a simpler case: a 
constant field directed along the second axis of the reference frame. Then Eq. (5) 
yields 

β(t) = β(0) − β(0)(exp(−t χ) −1) χ ≈ β(0) + β(0) χ. (8) 

This simple relationship can be used to estimate the position in which the mock 
up should be. In the case of an imbalance of the mockup, this result is 



approximate, since the torque of gravity appears in the equa tion. An example of 
the numerical simulation of motion near planar is shown in Figs. 2 and 3. In these 
figures γii are the angles between the corresponding axes of the laboratory and 
body reference frames.

Fig. 2. The motion of the axis of the maximum moment of inertia. 

Fig. 3. The motion of the vertical axis. 



The initial conditions are α(0) =  γ(0) = 10°, β(0) = 6°, ω1(0) = ω2(0) = 0, ω3(0) = 
0.5°/s. The inertia tensor in the frame associated with the center of mass of the 
satellite, J = (1.3, 1.7, 1.5) kg m2, mockup mass 15 kg, position of the center of 
mass r = (0.1, 0, −3) mm, coefficient χ = 1 × 10−2 A s/kg (the control torque does 
not exceed 10−4 N m which with a simulator field of up to 140000 nT corresponds 
to magnetic coils with a dipole moment of the order of 1 A m2), and the direction 
of the field in the laboratory frame (0, 1, 0). As a result of the Sdot algorithm, 
angular velocity damping occurs, the mockup tilts by an angle of about 2° (the 
equilibrium position in the gravitational field corresponds to a slope of 1.9°), and 
rotates by angle β ≈ 42°. In this case, the equation of plane motion (8) gives 56°. 
From (6) it is seen that the imbalance of the mockup, leading to a deviation of the 
motion from the plane, causes the appearance of the positional part of the torque, 
the magnitude of which increases with the deviation. Thus, it should be expected 
that the model will tend to turn in the desired direction until the angular velocity 
is damped by the prevailing damping component in the control. The result 
obtained on the mockup should be close to the given ratio (8) but less than it. 

Similar simulation results with a noticeably larger displacement of the center of 
mass r = (1, 0, −3) mm are shown in Figs. 4 and 5 (the equilibrium position 
corresponds to a slope of about 18.4°). 

Thus, in the planar experiment, a limited verification of the algorithm Sdot’s 
operability is possible. Damping of the angular velocity and rotation in the plane 
by an angle approximately given by relation (8) 

Fig. 4. The motion of the axis of the maximum moment of inertia. 



Fig. 5. The motion of the vertical axis. 

should be observed. Checking the spin (the angular momentum should be 
directed along the axis of the maximum moment of inertia) is impossible. 

4. SPATIAL MOTION OF THE MOCKUP 

A full check of the operation of the orientation algorithm on the mockup is 
possible if the required direction deviates little from the local vertical. Moreover, 
in the simulation example above, the torque of gravitational forces exceeds the 
control torque by an order of magnitude. The control system is unable to hold the 
mockup; in any case, it turns out to be tilted in the gravitational field. Instead of 
struggling with the torque of gravitational forces, we can use it to specify the 
mode of motion of the mockup. Orientation around the vertical is provided not 
only by the control but also by the dynamic characteristics of the mockup. The 
mockup makes a motion similar to a regular precession. The mockup cannot 
rotate only around the third axis, since in this case the center of mass will begin to 
rise. The first and third components of the velocity are such that the velocity 
vector is directed vertically and the center of mass rotates in the horizontal plane. 
In (6), this gives a zero torque, since the following relation holds: 

ATω = S(B⋅ω) /(B⋅S). (9) 

If the algorithm Sdot is replaced by asymptotic damping, the mockup stops 
completely. If the required direction S does not coincide with the vertical, the 
moment is nonzero, and the angular velocity is damped to zero. The mockup falls 
to one side and stops, which is confirmed by the simulation. A similar situation is 
observed if we consider a dynamically symmetric body, which can greatly 
simplify the study of this case (the third moment of inertia is greatest). It is 



important to note that the mockup does not fall exactly into the equilibrium 
position. It is slightly different, which allows the gravitational torque to 
compensate the gyroscopic torque. In other words, the regular precession defined 
by the relations 

based on kinematics requires

cosφ = 0, ω1 = ω3tanθ, ψ = ω1 /sinθu + ψ0. (11) 

In this case, (9) is immediately satisfied. For the existence of the equilibrium 
position, it remains to satisfy the equality of the gravitational and gyroscopic 
torques, defined as 

δ = mgr3 (sin θ + ε cos θ) + (C − A) ω3
2 tan θ  =  0, (12)

where ε = −r1/r3 (r3 < 0, since the center of mass of the mockup is shifted down). 
Expression (12) associates the spin velocity around the axis of symmetry and the 
angle of nutation. Due to the presence of a dis- placement of the center of mass, it 
is impossible to realize any regular precession (in which two parameters are the 
nutation angle and rotation speed). Condition cos φ = 0 (and dφ /du = 0 following 
from it) appears together in kinematics and in expression (9) but adds a relation to 
the precession parameters. The result is only a one-parameter family of 
precessions. Equations (12) can be somewhat simplified, taking into account that 
the equilibrium position is only slightly different from that set by the action of the 
gravitational field and that this displacement is small. In other words, we put 

tanθ0  ≈ θ0  ≈ ε(−1 + µ), 

where µ characterizes the deviation from the equilibrium position in the 
gravitational field without taking into account the action of the control torque, and 
linearization of a small angle is used. Then, expanding (12) to the third power of 
a small parameter µ we get

This relation explicitly sets ω3 as a function of the equilibrium position. We can 
drop members of the order ε4 in it with a slight loss of accuracy. 



The spin speed depends on the initial conditions and is close to the initial one. If 
we consider the motion in a constant vertical field, then there exists an integral of 
the equations of motion: the projection of the angular momentum vector onto the 
vertical. Moreover, the simulation results are not significantly different from the 
rotating field. The energy integral gives 

L3f  = Aω3 tanθ sinθ + Cω3 cosθ = Jω⋅AS. (13)

Relations (12) and (13) make it possible to obtain a specific precession, which the 
mockup faces. A study of linearized equations shows that this motion is 
asymptotically stable. Thus, using the algorithm Sdot allows us to get a fairly 
stable mode of motion, suitable for implementation on laboratory equipment. 

As an example, we carry out the simulation, assuming that Θ = 60° in (7), the 
displacement of the center of mass of the mockup r = (1, 0, −3) mm, and the 
inertia tensor J = (1.3, 1.7, 1.5) kg m2; and we take into account the action of 
random perturbations with a magnitude that is smaller only by a few factors than 
the magnitude of the control torque. The result is shown in Fig. 6. 

The use of expression (12) is difficult due to its sensitivity to the accuracy of 
determining the angle of nutation θ. Nevertheless, the use of the found precession 
in laboratory experiments is possible. Preparations for such experiments are 
currently underway at the University of Brasilia. The corresponding facility is 
shown in Fig. 7. 

Fig. 6. Modeling the mockup’s precession. 



Fig. 7. Facility at the University of Brasilia.

Fig. 8. Magnetic coils.

The mockup of the orientation system is equipped with magnetic coils (Fig. 8), an 
onboard computer, a radio module, and orientation sensors (however, to 
determine the orientation, a more accurate system of independent measurements 
is usually used based on the analysis of the video images of tags of a special 
shape). It is possible to install standard satellites on the CubeSat platform. 
Helmholtz cage is used to create the required magnetic field of up to 140000 nT. 

CONCLUSIONS 

In the study, the simulation of the motion of a spacecraft mockup on a spherical 
aerodynamic suspen- sion is carried out. The mockup should be in uniaxial 
stabilization provided by magnetic coils. A mode of motion close to planar was 
selected, leading to the stabilization of the satellite and allowing qualitatively 
checking the operation of the control system. A stable precession is found that 
admits an analogy with the orbital motion of the satellite and allows us to fully 
verify the operation of the control algorithm. 
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