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 12 

Abstract 13 

Regulating the activity of matrix metalloproteinases (MMPs) is a potential strategy for 14 

osteoarthritis (OA) therapy, although delivering this effect in a spatially and temporally 15 

localised fashion remains a challenge. Here, we report an injectable and self-healing hydrogel 16 

enabling factor-free MMP regulation and biomechanical competence in situ. The hydrogel is 17 

realised within one minute upon room temperature coordination between hyaluronic acid 18 

(HA) and a cell-friendly iron-glutathione complex in aqueous environment. The resultant gel 19 

displayed up to 300% in shear strain and tolerance towards ATDC 5 chondrocytes, in line with 20 

the elasticity and biocompatibility requirements for connective tissue application. 21 

Significantly enhanced inhibition of MMP-13 activity was achieved after 12 hours in vitro, 22 

compared with a commercial HA injection (OSTENIL® PLUS). Noteworthy, 24-hour incubation 23 

of a clinical synovial fluid sample collected from a late-stage OA patient with the reported 24 

hydrogel was still shown to downregulate synovial fluid MMP activity (100.0±17.6 % à 25 

81.0±7.5 %), with at least comparable extent to the case of the OSTENIL® PLUS-treated SF 26 

group (100.0±17.6 % à 92.3±27.3 %). These results therefore open up new possibilities in the 27 

use of HA as both mechanically-competent hydrogel as well as a mediator of MMP regulation 28 

for OA therapy.   29 

Keywords: Hyaluronic acid, iron-glutathione complex, injectable hydrogel, synovial fluid, 30 

osteoarthritis, MMP-13 inhibition.  31 

 32 

Introduction 33 

Osteoarthritis (OA) is a chronic and irreversible disease which results in continuous 34 

cartilage degradation, increased joint friction, and pain. The onset and progression of OA is 35 

closely linked to proteolytic imbalances, whereby upregulated activity of matrix 36 
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metalloproteinases (MMPs), particularly MMP-13 (collagenase), results in the pathological 37 

breakdown of articular cartilage (Yoshihara et al., 2000) (Burrage et al., 2006) (H. Li et al., 38 

2017). MMP-13 concentration strongly correlates to vascular endothelial growth factor 39 

(VEGF) concentration, which plays an important role in angiogenesis and can serve as a 40 

biomarker for OA diagnosis and therapeutic monitoring (Kim et al., 2011). In addition, the 41 

overexpression of MMP-13 is found in advanced osteoarthritic synovial fluid (Heard et al., 42 

2012). Injectable, non-cytotoxic and biomechanically viable materials that are able to inhibit 43 

MMP-13 are highly sought to restore tissue homeostasis and minimise the risks of knee 44 

replacement (M. Wang et al., 2013).  45 

Injectable materials enable the delivery and localisation of therapeutic compounds at a 46 

target diseased site. In particular, injectable materials that mimic the features of the 47 

extracellular matrix (ECM) are ideal therapeutic scaffolds since they enable cell attachment, 48 

proliferation and temporally controlled mechanical function with minimal toxic effect 49 

following degradation (Stevens & George, 2005) (Blache et al., 2020). As such, they have been 50 

widely employed as carriers for improved mesenchymal stem cell (MSC) delivery for bone 51 

repair and OA management (M. Liu et al., 2017). Hydrogel systems that contain synthetic 52 

polymers have shown promise as materials for OA management due to their injectability and 53 

versatility in presenting bioactive functionalities that downregulate MMP activity and prolong 54 

the activity of encapsulated MSCs (Clark et al., 2020). Yet, the limited degradability of many 55 

synthetic polymers and the demands of polymer synthesis make their translation to 56 

commercial products challenging. The design of injectable hydrogels from ECM-derived 57 

polymers that can correct proteolytic imbalances may provide an alternative cell-free and 58 

regulatory-friendly strategy for OA management, which avoids non-biodegradable synthetic 59 

polymers. 60 

Hyaluronic acid (HA) is an anionic non-sulfated glycosaminoglycan that constitutes one of 61 

the main components of cartilaginous ECM (Slepecky, 1967). Due to its polysaccharide 62 

backbone, a great deal of attention has been put into investigating HA functionalisation for 63 

targeted applications, aiming to accomplish tuneable physicochemical properties (Zamboni et 64 

al., 2020) and improved cell viability (Zamboni et al., 2017). However, many commercially 65 

available HA-based products are in the form of injectable materials, for instance OSTENIL® 66 

PLUS, which is routinely applied in the clinic for the treatment of osteoarthritic joints. 67 

Significantly improved knee function and pain relief were confirmed through the Visual Analog 68 

Scale (VAS) score and the Western Ontario and McMaster Universities Osteoarthritis Index 69 

(WOMAC) score (Kotevoglu et al., 2006)(Dernek et al., 2016). HA injections are usually 70 

suggested to be delivered every 1-2 weeks to the joint cavity, although they are unable to 71 

control OA-related MMP upregulation. Despite HA’s capability to interact with and stimulate 72 

chondrocytes in vivo, these products are only designed to offer a palliative, short-lived 73 

biomechanical solution that is used as a last resort prior to joint replacement. Intelligent HA 74 
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formulations that include therapeutics for OA treatment through MMP-13 inhibition, and 75 

retain mechanical stability, are highly sought. To pursue this vision, a cell-friendly iron-76 

glutathione (Fe3+-GSH) complex recently reported by our group (Gao et al., 2020) was 77 

investigated for use as both a crosslinker of HA to yield an injectable hydrogel, and as a 78 

potential therapeutic to inhibit MMP-13 activity, exploiting the competitive metal-79 

coordinating reaction between thiol complexed iron (Fe3+) and free sulfhydryl groups of active 80 

MMPs.  81 

Although some effort afforded the creation of HA-containing gels via metal coordination, 82 

e.g. INTERGELTM, unpleasant side-effects and serious complications experienced by many 83 

patients call for new safer alternatives (Tang et al., 2006). To prevent tissue damage from ·OH 84 

and peroxy-type radicals, which could be generated during hyaluronic acid degradation 85 

(Katarina Valachová et al., 2016; Katarína Valachová et al., 2015), it is important to involve 86 

reductive components into the HA-based therapeutic material, for example, thiol groups 87 

(Katarína Valachová et al., 2015).  In this case, introducing cell friendly Fe3+-GSH complex into 88 

HA hydrogels is worth investigating.  89 

Hydrogel injectability has been pursued via dynamic covalent chemistries in biopolymer-90 

based hydrogels for tissue engineering, including Schiff-base reactions (Huang et al., 2016; S. 91 

Li et al., 2020), Diels-Alder reactions (DA) click coupling reactions (Hu et al., 2019) (Spicer, 92 

2020), as well as via thermal gelation mechanisms (Zhang et al., 2019; Lee et al., 2020) 93 

compliant with injection-mediated delivery. On the one hand, the formation of covalently 94 

crosslinked hydrogels with appropriate mechanical properties in physiological conditions to 95 

reduce joint friction has up to now proven challenging. This is largely due to the fact that the 96 

presence of covalent crosslinks reduces hydrogel’s dynamic tensile, compressive and shear 97 

strain, limiting hydrogel’s ability to bear multiple load-bearing cycles, as in the case of articular 98 

cartilage. On the other hand, although thermosensitive polymer formulations have been 99 

developed, only a limited number have been made with HA formulations free of the synthetic 100 

polymer phase (Zhang et al., 2019).  101 

Other than covalent networks, redox-based self-healable and injectable polymer hydrogels 102 

were achieved that can withstand relatively high shear strain (~50 %) (Chen et al., 2019) (L. 103 

Liu et al., 2019). Likewise, metal-coordinated hybrid materials have been reported serving as 104 

electroconductive materials (Shi et al., 2015), catalyst supports (Loynachan et al., 2019), and 105 

for magnetic resonance imaging (Paquet et al., 2011) (H. Wang et al., 2019). Ultimately, 106 

composite hydrogels have been made of multiple biopolymers and bioglass and ionically 107 

crosslinked by calcium dications (Yu et al., 2019). The composite material is able to withhold 108 

quercetin, an MMP inhibitor, so that 70% reduction in MMP-13 expression was reported after 109 

48 hours, which proved key to induce cartilage repair after 12 weeks in vivo. These studies 110 

provide novel design concepts that harness the functionalities of metals and peptides, aiming 111 
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to build simple ECM mimetics with flexible mechanical properties and MMP inhibition 112 

capability. 113 

In this work, the straightforward creation of a non-toxic HA-based hydrogel that is 114 

injectable and self-healing is reported. HA combined with an iron (III)-glutathione (Fe3+-GSH) 115 

complex results in the formation of a physical hydrogel upon co-injection. We hypothesised 116 

that hydrogel-induced MMP inhibition was accomplished by harnessing the metal-117 

coordinating reaction between thiol-complexed iron(III) and the free sulfhydryl groups of 118 

active MMPs. Crucially, the Fe3+-GSH complex has the dual function of being the crosslinker 119 

within the hydrogel, and also providing a therapeutic effect for inhibiting MMP activity, as 120 

confirmed with synovial fluid clinical samples collected from patients with late-stage OA. 121 

Consequently, the hydrogel may act as a self-healable scaffold that reduces joint friction and 122 

halts cartilage degradation, whilst boosting local cell function. Delivery of this system in situ 123 

has significant potential in OA therapy, aiming to prevent the degradation of cartilage whilst 124 

correcting growth factor concentrations and cellular activity towards cartilage repair.  125 

 126 

2. Materials and methods  127 

The hyaluronic acid sodium salt (molecular weight: 1,200 kDa, cosmetic grade) was 128 

purchased from Hollyberry Cosmetic. L-glutathione (reduced) was purchased Alfa Aesar. 129 

Alamar Blue assay kit was from ThermoFisher Scientific. Human recombinant Pro-MMP 13 130 

was purchased from Antibodies.com, and the MMP activity assay kit (Fluorometric Green, 131 

ab112146) was from ABChem. All the other reagents were provided by Sigma-Aldrich. 132 

Rheology of HA solutions supplemented with Fe3+-GSH  133 

Different concentrations of Fe3+-GSH complex were added to the HA solution (Table S1) to 134 

achieve the optimal, most stable, hydrogel. To exclude the influence of HA concentration on 135 

gel formation, the final concentration of HA in the gel-forming mixture was controlled to 1.33 136 

wt.% by addition of deionised water. All test group samples were named as “Fe xxx”, in which 137 

“xxx” corresponds to the volume of Fe3+-GSH solution (µL) in the HA solution (mL). All control 138 

samples were named as “Ctrl xxx”, in which “xxx” corresponds to the volume (µL) of Fe3+-GSH 139 

solvent (120 mM HCl) per mL of HA solution. 140 

The Fe3+-GSH-supplemented HA solution was injected onto an MCR 302 Rheometer (Anton 141 

Paar) and pressed by a 25 mm parallel plate (1.5 mm gap) at 37 °C with a variable shear rate 142 

to study the viscosity of hydrogels formed with different Fe3+-GSH complex content.  143 

Preparation of Fe3+-GSH self-healing HA hydrogel (Fe 300) 144 

The Fe3+-GSH complex was prepared using our previous method (Gao et al., 2020). Briefly, 145 

123 mg (0.4 millimoles) of GSH was added to 4 mL FeCl3 aqueous solution (0.1 M), and the 146 

mixture was mildly agitated by vortex mixing for 2 min until the solution became yellow. Then, 147 
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the complex was precipitated by adding 40 mL of ethanol (×3) and collected by centrifugation 148 

at 10,000 rpm for 15 min. The Fe3+-GSH complex was dried at 37 °C for further use.  149 

10 mg of Fe3+-GSH complex was dissolved in 1 mL HCl solution (120 mM). Each 300 μL 150 

Fe3+-GSH complex solution was added to 1 mL hyaluronic acid solution (2 wt.%) and stirred at 151 

room temperature for 1 min to obtain a self-healing hydrogel (Fe3+-GSH gel). The self-healing 152 

behaviour of all hydrogels formed was characterised by determining the reversible viscosity 153 

from a low shear strain (0.01 %) for 200 s, followed by a high shear strain (500 %) 154 

measurement for 100 s at 37 °C. The testing frequency was fixed at a constant value of 5 155 

rad·s-1. Ten low-to-high shear strain cycles were measured in this process using an Anton Paar 156 

MCR 302 rheometer.  157 

Determination of hydrogel shear modulus and shear strength  158 

The shear modulus (storage modulus G’ and loss modulus G’’) of the Fe3+-GSH crosslinked 159 

hydrogel (Fe 300) was measured via a frequency sweep using an MCR 302 rheometer (Anton 160 

Paar). This method was set with a 25 mm parallel plate at 37 °C, 1.5 mm gap, from 1-100 rad/s 161 

under 5 % amplitude. G’ and G’’ were determined at 37 °C over a shear strain range of 0-500 162 

% with a constant angular frequency (5 rad·s-1). Every 1.0 mL volume of Fe3+-GSH gel was 163 

injected onto the sample plate and slightly pressed by a 25 mm parallel plate geometry with 164 

a gap of 1.5 mm. Hyaluronic acid with the same amount of HCl solution only was measured as 165 

a control for both shear modulus and shear strain. 166 

Molecular mechanism study 167 

57Fe Mössbauer spectroscopy was applied to study iron chelation and valence. 168 

Measurements were carried out using acrylic absorber discs (area: 1.8 cm2) loaded with a 169 

dried gel sample to achieve a Mössbauer thickness of 1. The 14.4 keV γ-rays were supplied by 170 

the cascade decay of 25 mCi 57Co in Rh matrix source, oscillated at constant acceleration by a 171 

SeeCo W304 drive unit, detected using a SeeCo 45431 Kr proportional counter operating with 172 

1.745 kV bias voltage applied to the cathode. All measurements were carried out at 293 K over 173 

a velocity range of ±6 mm·s−1, and were calibrated relative to α-Fe foil. Spectral data were 174 

fitted using the Recoil software package, using a single Lorentzian line shape necessitated by 175 

the low signal/noise ratio obtained for the sample (indicative of its low Fe content). 176 

Cellular tolerability study 177 

ATDC 5 chondrocytes were cultured (37 °C, 5% CO2) in a mixed medium of Dulbecco’s 178 

modified Eagle’s medium (DMEM) and Ham’s F12 medium (1:1 in volume), supplemented 179 

with 5% fetal bovine serum (FBS), and 1 % penicillin-streptomycin. A defined amount of self-180 

healing gel was transferred into individual wells of a 96-well-plate and diluted by cell culture 181 

medium to a final concentration of 0 µL (tissue culture plastics, TCPs), 5 µL, 10 µL, 20 µL, 30 182 

µL, 40 µL and 50 µL per well, followed by addition of 100 µL cell suspension (5×104 cells/mL) 183 
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in each (n=4). The cell viability was quantified by Alamar blue assay after 1-day, 3-day, 5-day 184 

culture. Cells cultured on TCPs were set as the control group.  185 

MMP-13 inhibition study with MMP-13–supplemented solution 186 

The self-healing gel, as well as an HA solution and a commercial HA gel for OA injection, 187 

OSTENIL® PLUS (both with the same HA concentration as the self-healing gel), were added to 188 

deionised water (×4). Then, 20 µL of each sample was added to individual wells of a 96-well 189 

plate, followed by adding 80 µL H2O per well. Pro-MMP 13 was activated following the 190 

manufacturer protocol. Briefly, 5 µL MMP-13 (10 µg MMP-13/20 µL sample) was dissolved in 191 

a p-aminophenyl mercuric acetate (AMPA) working solution (1 mM) to 1 µg/mL and then 192 

incubated at 37 °C for 40 min. Activated MMP-13 was diluted with AMPA solution (2 mM) to 193 

25 ng/mL and then immediately added into the sample wells (each containing 100 µL of the 194 

sample), corresponding to a final MMP-13 concentration of 12.5 ng/mL to cover the enzymatic 195 

concentration (6 ng/mL) recorded in synovial fluid samples of advanced OA patients (Heard et 196 

al., 2012). Deionised water with an equal volume of APMA solution (2 mM) was set as the 197 

blank, and deionised water with an equal volume of activated MMP-13 was set as the none 198 

treatment group. After 12-hour or 24-hour incubation, MMP-13 activity was quantified via 199 

fluorometric assay (Fluorometric Green, ab112146, Abcam) (Liang et al., 2018). 50 µL of each 200 

sample was pipetted into a new 96-well-plate, followed by 50 µL of MMP Green Substrate 201 

working solution. MMP 13-activity was recorded in fluorescence after 1-hour reaction in dark 202 

at 37 °C using a microplate reader (Thermo Scientific Varioskan® Flash, Ex/Em=490/525 nm).  203 

MMP-13 regulation study with patient collected synovial fluid  204 

Synovial fluid (SF) samples were collected from late-stage osteoarthritic patients at Chapel 205 

Allerton Hospital (Leeds, UK) under ethical approval granted by the National Research Ethics 206 

Committee (ethical approval number: 07/Q1205/27). SF samples were stored at -80 ˚C until 207 

use. A fluorometric assay kit (Fluorometric Green, ab112146) was used to measure the total 208 

proteolytic activity in both SF and hydrogel-incubated SF samples. SF samples were diluted 209 

with the MMP assay buffer (×4), and the final Fe3+-GSH crosslinked gel dose was increased 210 

(×4). 50 µL of diluted SF were mixed with 40 µL of Fe3+-GSH crosslinked gel, and 10 µL of 211 

deionised water was supplemented in each well to achieve a final concentration of 100 µL/mL 212 

[Fe3+-GSH crosslinked gel/solution]. The fluorometric assay was conducted after 24-hour 213 

incubation following the same assay protocol reported for MMP-13 activity measurement.  214 

Statistical analysis 215 

All the samples were tested with at least three replicates (n≥3) and presented as Mean±SD. 216 

Statistical significance level was calculated through one-way ANOVA with a p-value at 0.05. 217 

Final statistical results were presented as *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤0.0001.  218 
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Results and discussion 219 

Attempts to create hydrogels from HA (2 wt.%) and varying amounts of the Fe3+-GSH 220 

complex (10 mg/mL) were conducted, and the optimal hydrogel was formed from 300 μL Fe3+-221 

GSH complex (10 mg/mL) and 1 mL HA solution (2 wt.%). A significant decrease in viscosity 222 

was observed with increasing shear rate from 0.01 Hz (14,400 Pa·s) to 4 Hz (37 Pa·s), whereas 223 

the viscosity remained constant at shear rates between 4 Hz and 100 Hz (Fig. 1a). Compared 224 

with the other materials created, the stability in hydrogel viscosity suggested a balanced 225 

coordination at a Fe3+-GSH crosslinker concentration of 300 µL per mL of HA solution. On the 226 

other hand, in the HA solution control groups, replacement of the Fe-GSH complex with the 227 

HCl solution resulted in significantly lower viscosity(Fig. 1b), whereby no significant viscosity 228 

variation was observed across the control groups. 229 

 230 

Fig. 1 Flow curve of aqueous solutions supplemented with (a) either varied Fe3+-GSH complex/HA ratio 231 
or (b) varied concentration of HA, enlarged within the red box. 232 
 233 

The iron oxidation state in the optimal hydrogel (Fe 300) was ferric (Fe3+) occupying 234 

octahedral coordination (Dyar et al., 2006)) ((Khalil et al., 2013), as determined by 57Fe 235 

Mössbauer spectroscopy (Fig. 2), which also confirmed the chelation of Fe3+ to HA. The 236 

confirmed Fe3+ state in the hydrogel therefore speaks against a GSH-induced reduction to Fe2+ 237 
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and the consequent generation of toxic reactive oxygen species, supporting the safe 238 

injectability of the HA hydrogel in the OA site. In light of these characteristics, the 239 

aforementioned hydrogel Fe 300 was chosen for further investigation.  240 
 241 

 242 
Fig. 2 Fitted 57Fe Mössbauer spectrum of dry Fe3+-GSH gel at 293 K, relative to thin α-Fe foil. The clear 243 
presence of a doublet attributable to paramagnetic Fe3+ can be observed, despite the low signal/noise 244 
ratio due to the low abundance of Fe3+-GSH content in the gel. Fitted centre shift (δ) = 0.41 ± 0.02 mm 245 
s-1 and quadrupole splitting (Δ) = 0.72 ± 0.02 mm s-1 with HWHM linewidth = 0.21 ± 0.02 mm s-1. 246 
 247 

A much higher G’ value (120 Pa) was recorded for the Fe 300 gel that contained the Fe3+-248 

GSH crosslinker, compared to the HCl-HA control (10 Pa), again indicating that Fe-coordination 249 

to HA enables gel formation. Constant storage (G’= 120 Pa) and loss (G’’= 70 Pa) moduli of the 250 

self-healing gel were successfully measured in frequency sweep mode, confirming a 251 

predominantly elastic behaviour in the range of 1-40 rad·s-1, whilst the material elasticity was 252 

found to decrease at the increased angular frequency (Fig. 3a). Although the storage modulus 253 

is reduced compared to the chemically crosslinked HA hydrogel (G’=300 Pa), the elastic range 254 

was much greater (angular frequency: 1-10 rad·s-1) compared to the latter care  (Gao et al., 255 

2019). This behaviour illustrates the homogeneous nature of the gel. Conversely, the HCl-HA 256 

control sample presented an obvious decrease in moduli from high to low frequency (Fig. 3b).  257 

 258 
Fig. 3 Shear modulus of Fe3+-GSH hydrogel (a) and ctrl 300 samples (b) recorded during the frequency 259 
sweep.  260 
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Fig. 4 reveals the variability of dynamic shear modulus under shear strain (0.01-500 %) for 261 

the Fe3+-GSH crosslinked gel. A predominantly elastic gel response was observed up to 300 % 262 

shear strain, whereby both the storage and loss moduli remained constant when up to 80 % 263 

shear strain was applied with 5 rad/s (0.8 Hz) frequency.  264 

 265 
Fig. 4 Shear modulus of Fe3+-GSH gel measured via strain sweep. 266 

These results demonstrate mechanical compliance of the hydrogel with the ranges of shear 267 

strain (up to 1 %) and frequency (0.5-2.0 Hz) observed in vivo in both connective and fatty 268 

tissues (Yoo et al., 2011). In line with previous results, the storage modulus of the Fe3+-GSH 269 

coordinated gel was found to be greater (105 Pa) than that of the hyaluronic acid control (70 270 

Pa, Fig. S1), demonstrating increased mechanical competence.  271 

After 10 cycling tests from low shear strain to high strain, Fe3+-GSH crosslinked gels 272 

presented a stable complex viscosity in the range of 37-42 Pa·s and 12-16 Pa·s, respectively 273 

(Fig. 5 blue).  274 

 275 
Fig. 5 Dynamic time-dependent viscosity measurement of the initial (blue) and degraded (grey) 276 

Fe3+-GSH gel. 277 
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This dynamic reversible property confirms that Fe3+-GSH crosslinked gels are self-healing 278 

materials. The profound degradability of Fe3+-GSH crosslinked hydrogel in aqueous solution 279 

was confirmed by the decreased viscosity to 0.1-10 Pa·s after being incubated at 37 °C for 5 280 

days (Fig. 5 grey). The transition from the HA solution to the Fe3+-GSH crosslinked self-healing 281 

hydrogel was presented in Fig. 6a&b. Fig. 6c reveals the injectable property of this self-healing 282 

hydrogel, and the fact that the material can be absorbed (step 1) by a syringe and then be 283 

injected through the syringe tip (step 2), before undergoing extensive elongation (step 3).  284 

 285 
Fig. 6 Illustration of Fe3+-GSH hydrogel formation. (a): Molecular configuration and physical 286 

appearance of the HA solution; (b): Proposed coordination structure within, and physical appearance 287 
of, the Fe3+-GSH hydrogel. (c): Macroscopic properties of Fe3+-GSH gel, being loaded up (step 1), 288 

injected (step 2) and stretched (step 3).  289 
 290 

We could also observe the sticky property of this self-healing hydrogel in step 3; in line with 291 

previous viscosity analysis, the adhesive properties of HA were enhanced by Fe3+-GSH 292 

induction. This feature is key to enable confined application and adhesion of the gel to 293 

cartilage, aiming to stabilise the joint cavity and to reduce bone-to-bone friction, which is 294 

essential to preserve the cartilage interface (Abubacker et al., 2018). 295 

The dose of Fe3+-GSH crosslinked HA gel that is tolerated by ATDC 5 chondrocytes was then 296 

determined in vitro via Alamar Blue assay (Fig. 7). As expected, the hydrogel reveals a dose-297 

dependent impact on cellular metabolic activity.  At day 1, the lower dose (e.g. 5 and 10 µL) 298 

of Fe3+-GSH crosslinked HA gel did not show significant effect compared to the case of the 299 

TCPs control group (p > 0.05). However, the high dose groups (e.g. > 20 µL) significantly 300 

reduced the metabolic activity of ATCD-5 cells compared to the control group (p ≤ 0.01, 0.001, 301 

0.001, 0.05, respectively). Clearly, no significant difference in cellular activity was observed 302 
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following 1-day cell culture in either TCP or lower doses of Fe3+-GSH crosslinked hydrogel (with 303 

both 5 µL and 10 µL dose). At day 5, only the 5 µL group was well tolerated (p > 0.05), but all 304 

the other higher dose groups (e.g. > 10 µL) were significantly detrimental to the metabolic 305 

activity of the cells compared to the control group (p ≤ 0.05, 0.001, 0.0001 respectively).  306 

 307 

Fig.7 ATDC 5 cells viability when growing with Fe3+-GSH gel after day 1 and 5. No significant 308 
differences are labelled with “NS”. Significant differences are observed in each group with respect to 309 
the TCPs group at the same time point (n=4). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 310 

 311 
Furthermore, the increase in metabolic activity recorded from day 1 to day 5 in ATDC 5 cells 312 

cultured with 5-30 µL hydrogel (Table 1) was similar to that measured in cells treated with the 313 

TCPs control group (7.9 times). This observation indicates that decreased doses (e.g. ≤ 30 µL) 314 

of Fe3+-GSH hydrogel did not affect the cell proliferation (e.g. cell doubling) in this time 315 

window, in contrast to the case where higher doses (e.g. ≥ 40 µL) were applied. Given that the 316 

initial cell seeding density (5,000 cells per well) was maintained across all hydrogel groups (5-317 

50 µl), the reduced cellular metabolic activity observed with increased gel volume (> 30 µl) is 318 

likely attributed to the relatively small number of cells cultured with increased sample dosages. 319 

 320 
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Table 1 Variation in ATDC 5 cellular activity over 5-day culture with varied hydrogel dosage. 321 

Hydrogel dosage Average cellular activity increase 
0 µl (TCP)* 7.9 

5 µL 10.5 
10 µL 7.0 
20 µL 8.8 
30 µL 7.4 
40 µL 0.1 
50 µL 0 

* Cells cultured in hydrogel-free Tissue Culture Plastic (TCP). 322 
 323 

This observation may suggest that the gels under 30 µL dose were temporarily toxic after 1-324 

day. However, the proliferation of the remaining ATDC 5 cells was not affected, an explanation 325 

which is supported by the optical microscope images of cells cultured for 1 (Fig. S2) and 5 days 326 

(Fig. S3). In contrast, no cellular tolerability was observed in both 40 and 50 µL hydrogel groups 327 

over 5 days. 328 

The capability of the Fe3+-GSH crosslinked hydrogels to inhibit proteolytic activity was then 329 

assessed, whereby MMP-13 was selected as a well-known upregulated protease in late-stage 330 

OA. By selecting MMP-13-supplemented aqueous solutions as a defined in vitro environment, 331 

incubation of Fe3+-GSH hydrogel resulted in a reduction of MMP-13 activity after 12 hours 332 

(95.7±3.4 %). A significant reduction in MMP-13 activity (92.9±1.4 %) was recorded after 24 333 

hours, compared to the positive control group (p<0.001) (Fig. 8). On the other hand, no 334 

significant activity difference was observed between MMP-13-supplemented solutions and 335 

the same solutions following incubation with either soluble, complex-free GSH (103.1±7.6 %) 336 

(Gao et al., 2020) or native HA after 24 hours (98.5±5.0 %). In OSTENIL® PLUS, no reduction in 337 

MMP-13 activity was seen after 12 hours, but a significant reduction (p<0.05) in activity was 338 

observed after 24 hours (96.1±1.7 %), with respect to the pristine MMP-13 solution. A 339 

comparison between the Fe3+-GSH crosslinked gel and OSTENIL® PLUS reveals that increased 340 

MMP-13 inhibition occurred in the presence of the Fe3+-GSH crosslinked hydrogel after 12 341 

hours (p<0.01), which was maintained after 24 hours (p<0.05). These results provide indirect 342 

evidence that the hydrogel-induced MMP-13 inhibition was achieved via chelation of 343 

respective iron sites with free sulfhydryl groups of active MMPs, rather than by complexation 344 

of the free zinc sites of active MMPs (Liang et al., 2018) with either the hydrogel’s or GSH’s 345 

sulfhydryl groups, on the one hand or HA’s carboxylic groups on the other hand. These 346 

observations support the key role played by the Fe3+-GSH complex in both hydrogel 347 

crosslinking and MMP inhibition.  348 

 349 
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 350 
Fig.8 Variation of MMP-13 activity in MMP-13–supplemented solutions after 12-hour (a) and 24-hour 351 

(b) incubation with either the Fe3+-GSH crosslinked hydrogel, an HA solution or the OSTENIL® PLUS 352 
commercial injection. Data are presented as Mean ± SD, statistical analysis was carried out between 353 
each two groups and labelled as *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, otherwise means no significant 354 

difference at p=0.05 level. 355 
 356 

A sample of synovial fluid (S162) collected from patients with late-stage OA was used to 357 

investigate the MMP-regulating capability of the Fe3+-GSH crosslinked gel in near-physiologic 358 

conditions, and to further corroborate the previous findings obtained for hydrogel-mediated 359 

MMP-13 inhibition in a defined in vitro environment, as the overall proteolytic activity, 360 

including MMP-1, -2, -3, -7, -8, -9 and -13, were confirmed to have increased activity in 361 

advanced OA (Yoshihara et al., 2000). Fig. 9 reveals that lower overall MMP activity and 362 

smaller standard deviations were observed for the Fe3+-GSH crosslinked gel (81.0±7.5 %) 363 

compared to the native SF group (100.0±17.6 %), with a p-value of 0.0942. Although OSTENIL® 364 

PLUS presented a lower average value of activity (92.3±27.3 %) compared to native SF 365 

(p=0.6528), a larger standard deviation was recorded for this group versus both SF and the 366 

Fe3+-GSH crosslinked gel.  367 
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 368 

Fig.9 Variation of MMP activity recorded in a patient collected SF sample after 24-hour incubation 369 
with either the Fe3+-GSH crosslinked hydrogel or the OSTENIL® PLUS commercial injection (n=4). The 370 

SF sample was collected from a patient (donor S162) with late-stage OA. 371 
 372 

The results obtained with the clinical SF sample in the absence of MMP activating reagents, 373 

i.e. APMA, therefore confirm the new MMP inhibition functionality introduced in the Fe3+-GSH 374 

crosslinked hydrogel. These results therefore support the use of this material as both a 375 

mechanically-competent hydrogel and as a mediator of MMP regulation for OA therapy.  The 376 

confirmation of hydrogel performance with patient collected samples also lay down new 377 

possibilities on the use of human synovial fluid for the preclinical evaluation of medical devices 378 

intended for osteoarthritis management, yet minimising reliance on animal testing. 379 

 380 

Conclusions 381 

A drug-free Fe3+-GSH crosslinked injectable hydrogel was prepared with integrated self-382 

healing and MMP inhibition functionalities. The coordination mechanism to yield the hydrogel 383 

was confirmed by shear frequency sweep tests, which revealed a storage modulus more than 384 

ten times higher than the loss modulus. 57Fe Mössbauer spectroscopy revealed that Fe was 385 

present in the hydrogel as octahedrally-coordinated Fe3+, so that risks of Fe2+-mediated ROS 386 

generation and ROS-mediated toxicity were minimised, supporting the hydrogel applicability 387 

in biological environment. The hydrogel could hold up to 300% shear strain and presented a 388 

stable complex viscosity (37-42 à 12-16 Pa·s) after 10 cycling tests from low to high strain. In 389 

vitro, the gel proved to be well tolerated by ATDC 5 chondrocytes and to support cell 390 

proliferation during a five day-culture. Furthermore, the gel demonstrated the inhibition of 391 

MMP activity after 24 hour-incubation in both an MMP-13–supplemented aqueous solution 392 

and a patient collected sample of synovial fluid, in light of the metal-coordinating reaction 393 

between thiol-complexed iron(III) and free sulfhydryl groups of active MMPs is exploited to 394 

induce MMP inhibition. These results therefore demonstrate that the hydrogel’s 395 
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biomechanical competence was successfully integrated with drug-free MMP regulation 396 

capability. The simple material design, together with the hydrogel’s injectability, and 397 

biochemical and self-healing functionalities support further development of this system for 398 

drug-free OA therapies. 399 
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