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ABSTRACT 
 

The understanding of tyre-road interactions plays a fundamental role in the design of advanced 
vehicle controllers for enhancing performance and safety. Although there are interesting 
contributions in the literature that look at estimating tyre-road forces, little has been done on 
estimating the self-aligning moment. This paper proposes a new method to estimate the self-
aligning moment, based on a brush model and a tyre force estimator tool. The idea is that: i) the 
parameters of a physical model (the brush model) can be optimised to match the lateral forces 
obtained through a reliable tyre force estimator tool; ii) the optimised model can then be used 
to compute the self-aligning moment, due to a key feature of the brush model, i.e. that it is a 
physical model. Hence, unlike other contributions, this method does not require experimental 
measurements of the self-aligning moment, nor the steering torque. A fitting function is also 
proposed for the length and width of the contact patch of a tyre as a function of the vertical 
load. Results show the satisfactory estimation of the lateral force and the consequent self-
aligning moment trends, based on experimental manoeuvres carried out on a handling track 
with a performance-oriented vehicle. 
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1 INTRODUCTION 

The investigation of tyre-road interactions plays a key role 
in vehicle dynamics. Key vehicle design qualities, including 
safety and performance, can be significantly enhanced with 
vehicle control techniques based on a thorough 
understanding of the interaction forces and moments 
exchanged between tyres and road.  
The literature presents several interesting contributions, 
including different vehicle models and numerous methods to 
estimate the tyre-road forces [1-5]. On the other hand, little 
research focuses on the estimation of the self-aligning 
moment. For instance, [6] proposes a Magic Formula tyre 
model that can handle inflation pressure changes which 
includes a formulation for the self-aligning moment, but 
requires experimental data to fit the model. The work from 
[7] is also based on the availability of measurements. Direct 
measurement of tyre-road interaction forces/moments is 
very challenging.  For example it can be achieved through 
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dedicated sensors, e.g. force/torque transducers, which 
however are bulky and extremely expensive, hence currently 
not implementable in common passenger cars. 
The self-aligning moment can be inferred by measuring the 
torque produced by the steering assist motor or by torque 
sensors mounted on the kingpins [7], yet this is either an 
uncommon or unpractical feature. 
This paper proposes a method to estimate the self-aligning 
moment without the need of dedicated measurements such 
as the aforementioned ones. The method is based on a brush 
model and a procedure that fits the brush model to match the 
lateral force estimated through a reliable algorithm, i.e. the 
TRICK (Tyre/Road Interaction Characterization & 
Knowledge) tool [8-9]. The TRICK tool features a 8-
degrees-of-freedom vehicle model that processes 
experimental signals acquired from a vehicle CAN bus and 
from sideslip angle measurement or estimation systems, 
producing force and slip estimates as output. The main idea 
of the paper is that since the brush model is a physical 
model, if it can well estimate the lateral force, then it can 
also be used to calculate the self-aligning moment. 
Importantly, no experimental data on self-aligning moment 
are necessary. This is a clear advantage with respect to 
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previous approaches, such as the use of well-known 
Pacejka's Magic Formula, which entails a set of coefficients 
for each quantity of interest - e.g. lateral force, self-aligning 
moment etc. - calculated based on corresponding sets of 
experimental data. 
The remainder of this paper is structured as follows. Section 
II introduces the adopted tyre-road contact model. Section 
III focuses on the application of such model to the 
estimation of lateral force and self-aligning moment. Section 
IV describes the proposed procedure and shows the results 
obtained on experimental data from a performance car on a 
handling track. Concluding remarks are in Section V. 

2 TYRE-ROAD CONTACT EQUATIONS 

The reference frame herein adopted to describe the tyre-road 
contact is defined according to ISO 8855 [10], as shown in 
Fig. 1. The origin of the reference frame is in the centre of 
tyre contact (CTC), and: i) the ݔ axis is the intersection 
between wheel plane and ground plane, and it has positive 
direction forward; (ii) the ݖ axis is perpendicular to the 
ground plane and it has positive direction upward; (iii) the ݕ 
axis lies on the ground plane, and its direction is chosen to 
ensure the frame is right-handed. The adopted reference 
frame has unit vectors (݁௫,݁௬ ,݁௭). 
The tyre-road contact equations are derived through an 
Eulerian approach. Consider a finite control area ݕ,ݔ)߁, 0) =
,ݕ,ݔ)} (ݖ ∈ ℝ: − ݈/2 ≤ ݔ ≤ ݈/2,−ܾ/2 ≤ ݕ ≤ ܾ/2}, in the 
above-defined reference frame. The contact patch is 
assumed rectangular (as in many studies, e.g. [11-12]), ݈ and 
ܾ are respectively its length and width, Fig. 2.  

 
Figure 1. ISO wheel reference system (reproduced from 

[10]). 
 

 
Figure 2. Contact patch and position vector ݎ for a generic 

point. 

The vertical dimension is assumed to be zero since the tread 
only undergoes deformations in the longitudinal and lateral 
directions. Carcass deformations are neglected. The relative 
micro-slippage speed between the point of a carcass bristle 
attached to the rigid body and the one of the tread bristle in 
contact with the road is 
 
 ,ݎ൫ݒ ൯ݐ = ௦ܸ(ݐ) + ௭݁(ݐ)߱ ∧ ݎ + ௗ

ௗ௧
,ݎ൫ݑൣ ൯൧ݐ 


where 

 ௦ܸ is the slippage speed. It is defined as the 
difference between the speed of the rigid 
equivalent tyre and that of the road; 
 ߱(ݐ) = ߱ଵ −߱ଶ  is the spin angular 
speed. ߱ଵ is the normal component of the rolling 
speed due to camber and ߱ଶ is the steering speed 
(attributed to the road); 
 ݑ൫ݎ,  ൯ is the displacement field of theݐ
tyre tread. 
 

Equation (1) can be rewritten as 
 
 ,ݎ൫ݒ ൯ݐ = ௦ܸ(ݐ) + ௭݁(ݐ)߱ ∧ ݎ + డ௨(௥,௧)

డ௥
∙ ௗ௥
ௗ௧

+ డ
డ௧
,ݎ൫ݑ ൯ݐ 


where (for a complete description of the parameters used, 
the reader is referred to the list of symbols) 
 


ௗ௥
ௗ௧

=  ݁௬  ∧  (−ܴ)݁௭ + ଵ݁௭  ∧ ݎ  ≅ − ܴ ݁௫ 
 
Assuming steady-state conditions, డ

డ௧
,ݎ൫ݑ ൯ݐ = 0, and by 

dividing (2) by ܴ, the normalised micro-slippage speed 
can be defined as 
 
 ,ݎ൫∗ݒ ൯ݐ = ௩൫௥,௧൯

 ோ
=  ௏ೞ(௧)

 ோ
+ ఠ(௧)௘೥


∧ ௥
ோ

+ డ௨(௥,௧)
డ௥

∙ ି ோ௘ೣ
 ோ

 


By replacing ௏ೞ

(௧)

ோ
= ε and ఠ

(௧)௘೥


= ߰݁௭ in (4): 
 

,ݎ൫∗ݒ ൯ݐ = ߝ +߰݁௭ ∧
௥
ோ

+ డ௨(௥,௧)
డ௫

 
 
where 

 ߝ =  ൥
௫ߝ
௬ߝ
0
൩ = ଵ

 ோ
൥
௫ܸ − ܴ

௬ܸ
0

൩ 



 ߰݁௭ ∧
௥
ோ

= ቮ
݁௫ ݁௬ ݁௭
0 0 ߰
௫
ோ

௬
ோ

0
ቮ =  ట

ோ
ቈ
ݕ−
ݔ−
0
቉ 



 ݑ =  ൥
௫ݑ
௬ݑ
0
൩ 

Finally, the components of ݒ∗൫ݎ, ൯ݐ = ∗௫ݒ] ∗௬ݒ 0]் are 
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 ∗௫ݒ = ௫ߝ − ߰ ௬
ோ
− డ௨ೣ

డ௫  

 ∗௬ݒ = ௬ߝ +߰ ௫
ோ
− డ௨೤

డ௫
 

3 LATERAL INTERACTION AND SELF-ALIGNING 
MOMENT 

The pure lateral interaction problem is studied by assuming 
a constant value of the slip parameter, ߝ௬, and assigning 
௫ߝ = 0, ߰ = 0.  
In the adherence zone ݒ௬∗ = 0, so (10) can be rewritten as 
 
 ௬ߝ = డ௨೤

డ௫
= ௏ೞ೤

ఆோ
= ௏ೞ೤

௏ೣ
= tanߙ 

 
Integrating (11) and imposing the spontaneous entrance 
condition ௬ܷఈ

(௔)(݈/2) = 0, the bristle displacement in 
adherence condition is 
 
 ௬ܷ

(௔)(ݔ) = ݔ௬ߝ −
ఌ೤ ௟

ଶ
 

 

Introducing a new coordinate, ̅ߦ =
೗
మି௫

௟
 , defined as the 

dimensionless length from the leading edge (Fig. 3), then 
(12) can be reformulated as 
 
 ௬ܷ

(௔)൫̅ߦ൯ = ݈ ̅ߦ௬ߝ− 
 

 
Figure 3. Brush model schematic with indication of some 

relevant quantities. 
 
 
From (13), considering the bristle stiffness, the tangential 
force per unit area acting on the bristle at coordinate ̅ߦ is 
 

 ߬௬൫̅ߦ൯ = ቐ
߬௬(௔) = −݇௬ ߝ௬ ̅ߦ ݈                ݂݅ ห߬௬(௔)ห ≤ ൯̅ߦ൫݌௦ߤ

߬௬(௦) = ௬൯  ݂݅ ห߬௬(௔)หߝ൫݊݃ݏ ൯̅ߦ൫݌ௗߤ− > ൯̅ߦ൫݌௦ߤ
 


݇௬ is the transversal stiffness of the bristle, formally a 
stiffness per unit area. ݇௬ can be estimated by inverting the 
following expression, obtainable from ߬௬(௔) in (14): 
 


ௗி೤
ௗఌ೤

ฬ
ఌ೤ୀ଴

= ଵ
ଶ
݇௬ܾ݈ଶ  

 

where 
ௗி೤
ௗఌ೤

ฬ
ఌ೤ୀ଴

 is obtained through the TRICK tool. From 

the leading edge, the shear stress increases linearly towards 
the contact patch. This happens as long as the shear force 
acting on the bristles is lower than the vertical pressure 
value multiplied by the static friction coefficient. When they 
coincide, ξ̅ = λ is the position of the breakaway point: 
 
 ߬௬(௔)൫̅ߦ൯ = −݇௬ ߝ௬̅ߦ ݈ = ௦ߤ− ௬൯ߝ൫݊݃ݏ൯̅ߦ൫݌ 
 ̅ߦ ݎ݋݂  = ߣ 

The transition point between adherence and sliding, defined 
by the coordinate ߣ, depends on ߝ௬. For example, if λ = 0, 
the whole contact patch is in sliding conditions. 
In this paper, the vertical pressure distribution in the contact 
patch is a fourth-degree polynomial, satisfying the boundary 
and the symmetry conditions in the following form [13]: 
 
 ൯̅̅ߦ൫݌ = ଺ே

௕௟
−1)̅ߦଵܣ −1](̅ߦ −ଶ൫1ܣ̅ߦ ൯]̅ߦ

 
where ܰ is the overall wheel normal load (integral of ݌ 
along the whole contact patch, note that ݌ is constant along 
 ଶ(ܰ) are defined asܣ ଵ(ܰ) andܣ and ,(ݕ
 
 (ܰ)ଵܣ = ଵା௔(ே)

ଵାೌ(ಿ)
ఱ

 


 (ܰ)ଶܣ = ସ௔(ே)

ଵା௔(ே) 


 ܽ(ܰ) = ܽ଴ܰ/ ଴ܰ 




Figure 4. Contact pressure distribution. 

 
The parameter ܽ(ܰ) influences the shape of the contact 
pressure distribution, e.g. when ܽ(ܰ) > 1 the contact 
pressure function shows a local minimum at ξ̅ = 0.5, Fig. 4. 
Note that the pressure distributions in Fig. 4 is obtained for 
different loads, for which the contact patch area is different. 
Also, all data presented throughout the paper is normalised 
due to confidentiality reasons. 

ܽ(ܰ) 



 

 4

The dynamic friction coefficient is considered variable with 
the slip parameter according to the function shown in Fig. 5. 
The analytical expression is [14] 
 
 (ߝ)ௗߤ = ஶߤ + ఓೞିఓಮ

௞భఌ೤మା௞మ∣ఌ೤∣ାଵ
 



 
Figure 5. Dynamic friction coefficient law. 

 
The total lateral force developed at the tyre-road interface is 
calculated by integrating (14) on the contact patch area. 
Based on (14) being piecewise: 
 
 ௬ܨ = ௬ܨ

(௔) + ௬ܨ
(௦) 

 
where ܨ௬

(௔) is the contribution of the adherence zone and 
௬ܨ

(௦) is the contribution of the slippage zone. The first term is 
 
 ௬ܨ

(௔) = ܾ݈ ∫ ߬௬(௔)൫̅ߦ൯ ݀̅ߦఒ
଴  

 
By substituting (14) into (23) the adherence force 
contribution is formulated as 
 
 ௬ܨ

(௔) = −ܾ݈ ∫ ݇௬ ߝ௬̅ߦ݀  ݈ ̅ߦ
ఒ
଴  

 
The second term of (22) is 
 
 ௬ܨ

(௦) = −ܾ݈ ∫ ௗߤ ൯̅ߦ൫݌  ∙ ଵ̅ߦ݀ ௬൯ߝ൫݊݃݅ݏ
ఒ  

 
The self-aligning moment is produced because the global 
lateral force is not applied at the centre of the contact patch: 
 
 ௭ܯ = ௭ܯ

(௔) ௭ܯ+
(௦) 

 
where ܯ௭

(௔) is the moment contribution in the adherence 
zone and ܯ௭

(௦) is the moment contribution of the slippage 
zone. The first term is defined as 
 
 ௭ܯ

(௔) = ܾ ݈ ∫ ߬௬(௔)൫̅ߦ൯ቀଵ
ଶ
− ቁ̅ߦ  ఒ̅ߦ݀ 

଴  

The second term of (26) is 
  
 ௭ܯ

(௦) = ܾ ݈ ∫ ߬௬(௦)൫̅ߦ൯ቀଵ
ଶ
− ቁ̅ߦ  ଵ̅ߦ݀ 

ఒ  
 
The self-aligning moment depends on the same physical 
parameters as the lateral force. So, it can be estimated once 
such parameters are available, i.e. after tuning the physical 
parameters on the lateral force dataset, as discussed in the 
next Section. This is a strength of the proposed approach, 
which therefore does not require experimental 
measurements of the self-aligning moment. 

4 ESTIMATION PROCEDURE AND EXPERIMENTAL 
VALIDATION 

The developed procedure is based on the knowledge of the 
estimated tyre-road interaction forces and the contact patch 
dimensions. As discussed earlier, the tyre-road estimated 
forces can be obtained via tools such as TRICK [8]. The 
contact patch dimensions can be obtained by using methods 
such as those suggested in [15-16]. Here, the TRICK tool 
was used, while the contact patch dimensions were 
evaluated using footprint experimental data obtained for 
different values of normal load. Fig. 6 shows an example of 
the results obtained, where each footprint was fairly well 
approximated as a rectangle.  


Figure 6. Typical contact patch footprint and rectangular 

approximation. 
 
Based on the available experimental data, the following 
functions are proposed to model the contact patch 
dimensions as functions of the vertical load:  
 
 ݈(ܰ) = ݇௟ଵ tanିଵ(݇௟ଶܰ)   
 ܾ(ܰ) = ܾ଴ + ݇௕ଵtanିଵ(݇௕ଶܰ) 

Whenever a non-zero vertical load is applied, the width 
assumes a finite value. Therefore (30) is formally valid for 
ܰ > 0. The coefficients in (29) and (30) were obtained 
through appropriate fitting tools in Matlab. Results are 
shown in Fig. 7 and Fig. 8. 
Once the interaction forces and the contact patch dimensions 
are available, the first step of the procedure is the selection 
of the pure interaction conditions (working points 
characterized by ߝ௫ ≅ 0) within the recorded data. In a 
second phase a regression algorithm, based on a constrained 

b 

l 
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nonlinear optimization procedure [17-18], calculates the 
optimal set of parameters that best fits the lateral force vs 
slip curves. Specifically the parameters to be optimised are: 

 ܽ଴, which characterises the pressure 
  distribution in (17-20); 
 ߤ௦, ߤஶ, ݇ଵ and ݇ଶ, which characterise the 
  dynamic friction coefficient in (21). 

 

 
Figure 7. Experimental contact patch length and fitting 

function (29). 

 
Figure 8. Experimental contact patch width and fitting 

function (30). 
 
The constraints of the optimisation, for example on the 
allowed range of the parameters to be optimised, allow their 
identification based on a physical approach, similar to [19]. 
For instance, ߤஶ cannot be larger than ߤ௦.  
 ௦ is chosen as a constant value for two reasons. First, it is aߤ
microscopical parameter that simply represents the friction 
coefficient between the individual bristle and the road. 
Secondly, despite ߤ௦ is strictly connected to the peak of the 
lateral force function which depends on vertical load, the 
dependence on vertical load is embedded in the brush 
model. In fact the contact patch area, whose limits are used 
in the integrations in (22) and (26), is a nonlinear function of 
the vertical load: it increases less than proportionally [19-
 ,௦ must not be confused with the so-called lateral gripߤ .[20

defined as Ϻ௬ = ி೤
ே

. Differently from ߤ௦, Ϻ௬ is a 
macroscopical parameter that is commonly a decreasing 
function of vertical load [21]. As a final remark, unless 
dedicated test sessions are an option, it is normally 
uncommon to have operating points near or beyond the 
lateral force peak. In the present study, data points obtained 
at large vertical loads provided more sensible information 
that helped the estimation of ߤ௦, as shown in Fig. 9. 

 
Figure 9. Model ("Mdl") vs experimental ("Exp") lateral 

force, for a small and a large value of ܰ. 

Figure 10. Lateral force: comparison of the estimates from 
the brush model and from the experimental data. 
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Overall the procedure led to satisfactory results in terms of 
lateral force fitting (calibration). Fig. 10 shows a comparison 
between the optimised brush model and experimental data 
obtained through TRICK for five values of normal load. Fig. 
11 shows the model output for a wider range of normal load. 
Having validated the brush model on the lateral force, the 
self-aligning moment can be calculated based on the same 
physical model, according to (26). The resulting curves are 
shown in Fig. 12. Sometimes it is preferred to depict the 
pneumatic trail instead of the self-aligning moment. The 
pneumatic trail is the distance, along ݔ, between the centre 
of the contact patch and the point where the total lateral 
force is applied. The resulting curves are shown in Fig.13.  
 

 
Figure 11. Estimated lateral force. 

 

 
 

Figure 12. Estimated self-aligning moment. 

5 CONCLUSION 

This study demonstrated that it is possible to estimate the 
self-aligning moment for each tyre of a vehicle based on a 
physical model of the tyre-road interaction, without 
experimental data on the self-aligning moment. The 
physical model is deemed reliable as it is tuned to fit the 

experimental lateral force behaviour, which can be obtained 
through advanced tools such as TRICK.  
 

 
Figure 13. Estimated pneumatic trail. 

Future studies are to entail an experimental validation 
on a dedicated test bench, and the extension of the model to 
include the combined (longitudinal-lateral) tyre-road 
interaction. Further investigations will also involve the 
integration of this method within advanced vehicle control 
techniques, which need accurate knowledge of the tyre-road 
interaction actions. This is also a basic requirement for 
autonomous vehicles, which require a deep understanding 
of the surrounding environment - but that comes after the 
full knowledge of the behaviour of the controlled vehicle. 

REFERENCES  

[1] M. Acosta, S. Kanarachos. Tire lateral force 
estimation and grip potential identification using 
Neural Networks, Extended Kalman Filter, and 
Recursive Least Squares, Neural Computing and 
Applications, 30(11), pp.3445-3465, 2018. 

[2] A. Rezaeian, R. Zarringhalam, S. Fallah, W. Melek, 
A. Khajepour, S. Chen, et al. Novel tire force 
estimation strategy for real-time implementation on 
vehicle applications, IEEE Transactions on Vehicular 
Technology, 64(6), 2231-2241, 2014. 

[3] W. Cho, J. Yoon, S. Yim, B. Koo, K. Yi. "Estimation 
of tire forces for application to vehicle stability 
control, IEEE Transactions on Vehicular Technology, 
59(2), pp.638-649, 2009. 

[4] A. Albinsson, F. Bruzelius, M. Jonasson, B. Jacobson. 
"Tire force estimation utilizing wheel torque 
measurements and validation in simulations and 
experiments, 12th International Symposium on 
Advanced Vehicle Control (AVEC'14), Tokyo Japan, 
pp. 294-299, 2014. 

[5] G. Napolitano Dell’Annunziata, B. Lenzo, F. Farroni, 
A. Sakhnevych, F. Timpone. A New Approach for 
Estimating Tire-Road Longitudinal Forces for a Race 
Car, IFToMM World Congress on Mechanism and 

-15 -10 -5 0 5 10 15
(deg)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Lateral Force

Load   1000 N
Load   2500 N
Load   4000 N
Load   5500 N
Load   7000 N
Load   8500 N
Load 10000 N

-15 -10 -5 0 5 10 15
(deg)

-4

-3

-2

-1

0

1

2

3

4
Self-aligning Moment

Load 4000 N
Load 4750 N
Load 5500 N
Load 6250 N
Load 7000 N

-15 -10 -5 0 5 10 15
(deg)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Pneumatic Trail

Load 4000 N
Load 4750 N
Load 5500 N
Load 6250 N
Load 7000 N



ISSN 1590-8844 
International Journal of Mechanics and Control, Vol. 21, No. 02, 2020 

 

7 

 

Machine Science (pp. 3601-3610), Springer, Cham, 
2019. 

[6] I. J. M. Besselink, A. J. C. Schmeitz, H. B.Pacejka. 
An improved Magic Formula/Swift tyre model that 
can handle inflation pressure changes, Vehicle System 
Dynamics, 48(S1), pp.337-352, 2010. 

[7] S. Song, M. C. K. Chun,  J. Huissoon, S. L. 
Waslander. Pneumatic trail based slip angle observer 
with Dugoff tire model, 2014 IEEE Intelligent 
Vehicles Symposium Proceedings (pp. 1127-1132), 
2014. 

[8] F. Farroni. TRICK Tire/Road Interaction 
Characterization & Knowledge - A tool for the 
evaluation of tire and vehicle performances in outdoor 
test sessions, Mechanical Systems and Signal 
Processing, 72, pp. 808-831, 2016. 

[9] G. Napolitano Dell'Annunziata, B. Lenzo, A. 
Sakhnevych, F. Farroni, F. Timpone, M. Barbieri. 
Towards TRICK 2.0 – A tool for the evaluation of the 
vehicle performance through the use of an advanced 
sensors system, Conference of the Italian Association 
of Theoretical and Applied Mechanics, pp. 1093-1102, 
Springer, Cham, 2019. 

[10] ISO 8855:2011, Road vehicles "Vehicle Dynamics 
and Road-Holding Ability", Vocabulary, 1992. 

[11] J. Yi, L. Alvarez, X. Claeys, X., R. Horowitz. 
Emergency braking control with an observer-based 
dynamic tire/road friction model and wheel angular 
velocity measurement, Vehicle system 
dynamics, 39(2), 81-97, 2003. 

[12] T. Akasaka, M. Katoh, S. Nihei, M. Hiraiwa. Two-
dimensional contact pressure distribution of a radial 
tire, Tire Science and Technology, 18(2), 80-103, 
1990. 

[13] G. Capone, D. Giordano, M. Russo, M. Terzo, F. 
Timpone. Ph.An.Ty.MHA: a physical analytical tyre 
model for handling analysis–the normal interaction, 
Vehicle System Dynamics, 47(1), pp. 15-27, 2009. 

[14] L. Romano, A. Sakhnevych, S. Strano, F. Timpone. A 
novel brush-model with flexible carcass for transient 
interactions, Meccanica, 54(10), pp. 1663-1679, 2019. 

[15] F. Braghin, M. Brusarosco, F. Cheli, A. Cigada, S. 
Manzoni, F. Mancosu. Measurement of contact forces 
and patch features by means of accelerometers fixed 
inside the tire to improve future car active control, 
Vehicle System Dynamics, 44(sup1), pp.3-13, 2006. 

[16] N. Roveri, G. Pepe, A. Carcaterra. OPTYRE–A new 
technology for tire monitoring: Evidence of contact 
patch phenomena, Mechanical Systems and Signal 
Processing, 66, pp.793-810, 2016. 

[17] A. Amoresano, G. Langella, V. Niola, G. Quaremba. 
Statistical method to identify the main parameters 
characterizing a pressure swirl spray, International 
Review of Mechanical Engineering (IREME), 7(6), pp. 
1007-1013, 2013. 

[18] R.H. Byrd, J.C. Gilbert, J. Nocedal. A Trust Region 
Method Based on Interior Point Techniques for 
Nonlinear Programming, Mathematical Programming, 
89(1), pp. 149–185, 2000. 

[19] F. Farroni, M. Russo, A. Sakhnevych, F. Timpone. An 
Application of TRIP-ID: MF Identification Tool for an 
Automobile Tire Interaction Curves Dataset, 2nd 

International Conference of IFToMM ITALY, Springer 
International Publishing, pp. 100-113, 2019. 

[20] A. N. Gent, J. D. Walter. The Pneumatic Tire, 
University of Akron, National Highway Traffic Safety 
Administration (NHTSA), 2006.  

[21] M. Guiggiani. The science of vehicle dynamics. 2nd 
edition, Springer International Publishing, 2018. 

LIST OF SYMBOLS 

Symbol  Quantity 

ܽ(ܰ) Contact pressure coefficient 

ܽ଴ Static load contact pressure coefficient   

ܾ Width of the contact patch 

ܾ଴ Coefficient of the contact patch width law 

݁௫ Unit vector for axis x 

݁௬ Unit vector for axis y 

݁௭ Unit vector foraxis z 

 ௬ Lateral forceܨ

௬ܨ
(௔) Adherence lateral force contribution 

௬ܨ
(௦) Sliding lateral force contribution 

݇(ܰ) Scaling factor of contact pressure coefficient 

݇௕ଵ, ݇௕ଵ Coefficients of the contact patch width law 

݇௟ଵ,݇௟ଶ Coefficients of the contact patch length law 

݇௬ Transversal stiffness of the bristle 

݇ଵ, ݇ଶ Coefficients of the dynamic friction law 

݈ Length of the contact patch 

 ௭ Self-aligning momentܯ

௭ܯ
(௔) Adherence self-aligning moment contribution 

௭ܯ
(௦) Sliding self-aligning moment contribution 

ܰ Normal load on the wheel 

଴ܰ Reference value of wheel normal load 

 Contact pressure ݌

P Position of a generic point of a carcass bristle   

 Vector position in the x-z plane ݎ
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ܴ Pure rolling radius 

 Time ݐ

,ݎ൫ݑ  ൯ Displacement field of a tread bristleݐ

௬ܷ
(௔) Displacement of a tread bristle in theݕ-

direction in adherence condition 

,ݎ൫ݒ  ൯ Speed of a point of a tread bristleݐ

,ݎ൫∗ݒ  ൯ Nondimensional speed of a point of a treadݐ
bristle 

 ௫∗ Nondimensional longitudinal speed of a pointݒ
of a tread bristle 

 ௬∗ Nondimensional lateral speed of a point of aݒ
tread bristle 

௦ܸ(ݐ) Global slippage speed 

௦ܸ௫  Global longitudinal slippage speed 

௦ܸ௬ Global lateral slippage speed 

௫ܸ  Wheel centre longitudinal speed 

௬ܸ Wheel centre lateral speed 

 Axis defined as the intersection of the wheel ݔ
plane and the ground plane 

 ݔ Axis on the ground plane, perpendicular to ݕ

z Axis perpendicular to the ground plane 

 Slip angle ߙ

 Control area ߁

ε Slip parameter 

 ௫ Longitudinal slip parameterߝ

 ௬ Lateral slip parameterߝ

λ Dimensionless coordinate of the breakaway 
point 

  ௦ Static friction coefficient of the bristleߤ

 ௗ Dynamic friction coefficient of the bristleߤ

 ஶ Asymptotical value of the dynamic frictionߤ
coefficient of the bristle 

Ϻ௬ Lateral grip 

 Dimensionless coordinate from the leading ̅ߦ
edge 

߬௬ Shear stress along ݕ 

߬௬(௔) Shear stress along ݕ in adherence condition 

߬௬(௦) Shear stress along ݕ in sliding condition 

߰ Spin parameter  

 Spin speed (ݐ)߱

߱ଵ  Normal component of the rolling speed 

߱ଶ  Steering speed 

 Component of the rolling speed parallel to the 
road 

 


