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Abstract. Osteoporosis is a systemic disease, characterised by low bone 

mineral density (BMD) with a consequent increase in bone fragility. The most 

commonly used method to examine BMD is dual energy X-ray absorptiometry 

(DXA). However DXA cannot be used reliably in children less than 5 years old 

because of the limitations in the availability of required normative data. 

Vibration analysis is a well-established technique for analysing physical 

properties of materials and so it has the potential for assessing BMD. The 

overall purpose of this study was development and evaluation of low frequency 

vibration analysis as a tool to assess BMD in children. A novel portable 

computer-controlled system that suitably vibrated the bone, acquired, stored, 

displayed and analysed the resulting bone vibration responses was developed 

and its performance was investigated by comparing it with DXA-derived BMD 

values in children. 41 children aged between 7 and 15 years suspected of having 

abnormal BMD were enrolled. The ulna was chosen for all tests due to the ease 

with which it could be vibrated and responses measured. Frequency spectra of 

bone vibration responses were obtained using both impulse and continuous 

methods and these plus the participants' clinical data were processed by a 

multilayer perceptron (MLP) artificial neural network. The correlation 

coefficient values between MLP outputs and DXA-derived BMD values were 

0.79 and 0.86 for impulse and continuous vibration methods respectively. It was 

demonstrated that vibration analysis has potential for assessing fracture risk. 

Keywords: Medical Signal Processing, Bone Vibration Analysis, Bone Mineral 

Density.  

1 Introduction 

Osteoporosis is a silent systemic disease, characterised by low bone mineral density 

(BMD) resulting in bone becoming thinner and less dense increasing fracture risk. 

The most common sites of fracture due to osteoporosis are the spine, hip and wrist, 

but almost all bones can be affected [1-2]. Men and women over 60-years-old are at 

highest risk of osteoporosis. Nevertheless, it is possible to have osteopenia (low bone 

mass) at a much earlier age. Osteogenesis imperfecta (OI) commonly called “brittle 



 

bone disease” is the name given to a group of heritable disorders, affecting the bones 

and connective tissue resulting in osteopaenia in childhood [3-5]. It is very important 

to monitor BMD during childhood (especially for children with chronic disorders) 

with the aim of preventing osteoporosis in later life [6]. 

BMD can be measured using a variety of non-invasive methods, the most common 

of which is dual energy x-ray absorptiometry (DXA). Other measurement methods 

are quantitative ultrasound (QUS) and quantitative computed tomography (QCT). 

Each method, DXA, QUS and QCT, has its own advantages and disadvantages [7]. 

Vibration analysis is a well-established industrial method for structural health 

monitoring. In the last few decades, its potential for bone health assessment in 

orthopaedics has been considered. In theory, by stimulating bone mechanically and 

analysing its response, it is possible to monitor various conditions from fractures 

through to osteoporosis [8-9]. Lippmann [10] in 1932 was the first to use a vibration 

test to examine bone. He vibrated the clavicle by tapping it and listening to the 

resulting sound using a stethoscope. There was no further significant research until 

the early 1970s when investigators tried to apply low frequency vibration analysis to 

orthopaedics. As technology has improved since the late 1980s, a considerable 

number of investigations have been carried out to develop a useful clinical tool based 

on vibration analysis techniques [11-17]. However, effectiveness of vibration analysis 

as a diagnostic tool in orthopaedics is still under investigation. 

Like the other methods (DXA, QCT and QUS), vibration analysis is painless and 

requires no injections, invasive procedures, sedation, special diet, or any other 

advance preparation. It is a completely safe (no x-ray radiation), quick and cost 

effective method. This study aims to assess feasibility and reliability of vibration 

analysis for in vivo BMD assessment.  

2 Methodology 

Ethics approval for the study was obtained from Sheffield Hallam University , 

Sheffield Research Ethics Committee and the local NHS Research  & Innovation 

Department. Forty one children aged 7 to 15 years old were recruited from those 

referred to Sheffield Children’s Hospital (SCH) to have DXA scans as part of their 

routine management. DXA scans were undertaken using a fan-beam GE Lunar iDXA 

densitometer. All children and their carers completed assent/consent forms to enter 

the study. The patients included 19 females and 22 males. They were asked to 

indicate their dominant hand and whether or not they had any previous hand fracture. 

Four patients were left handed and the rest right handed. The patients' whole body 

BMD, height and weight were obtained from their medical records following their 

DXA scan. Patient details are summarised in Table 1. 

 

 



 

 
2.1 Vibration Signal Acquisition 

The recording set up is shown in Figure.1. In order to record the data, the participant 

sat on a chair. The ulna was chosen for the study because of the ease with which it 

can be vibrated and its vibration responses be recorded from sensors placed on the 

skin [18]. The hand to be tested was placed on a soft support placed on a table of 

suitable height. The support was designed to provide a suitable position for the ulna to 

allow performance of the vibration test. The distance between the olecranon process 

and the ulnar head was measured and divided into 5 equal parts. The bone inducing 

tapping point (to induce vibration) was one fifth of the distance from the olecran on. 

 
Fig. 1 Bone vibration response recording system set up. 

 

Two schemes were used to excite the ulna: impulse and continuous. In the impulse 

method, a miniature computer controlled electrical tapper was developed by adapting 

a solenoid [19]. The solenoid shaft was fitted with a small steel cylindrical top with a 

diameter of 4mm made to ensure appropriate contact with the bone. The developed 

tapper was housed in a suitably designed vice which allowed its position to be 

adjusted horizontally and vertically. Using this vice, the tapper could be positioned 

easily in any orientation. In order to maintain a fixed distance between the tapper and 

the ulna, the tapper was encapsulated with a small hollow plastic cylinder (inner 

diameter 4.5 mm). The cylinder once placed on the ulna, allowed the moving part of 

the tapper to move freely and impact the bone. The developed tapper's voltage supply 

Table 1. Summary of patient details. 

Variable Statistical Measure Value 

Age (years) 

Mean ± SD 

Median 

Range 

11.1 ± 2.9 

11.2 

7 to 15 

Sex 
Male (%) 

Female (%) 

22 (54) 

19 (46) 

Height (cm) Mean ± SD 137.9 ± 16.3 

Weight (kg) Mean ± SD 39.0 ± 18.9 

BMI centile Mean ± SD 58.1± 37.2 

Arm length (cm) Mean ± SD 21.2 ± 3.2 

Whole body BMD (g/cm2) Mean ± SD 0.70 ± 0.19 

 



 

was 6 volts. This produced sufficient force to excite the ulna without causing pain. 

The Laboratory Virtual Instrument Engineering Workbench (LabVIEW) software and 

its associated hardware (myDAQ) were used to control the tapper. A square pulse 

with an amplitude of 5 volts and a duty cycle of 4% was generated using LabVIEW. 

This pulse was sent through myDAQ to the MOSFET power transistor that drove the 

tapper. The ulna was tapped 10 times. The time interval between the taps was 1 

second. In order to ensure consistency of results, the impulse scheme was repeated 

twice; therefore two vibration signals were obtained. Each vibration signal consisted 

of 10 vibration responses to the 10 taps.  

The continuous method of inducing bone vibration used an encapsulated eccentric 

rotating mass (ERM) vibration motor (model type: Precision Microdrives, 307-100). 

The motor supply voltage was 3 volts providing motor vibration frequency and 

amplitude of 230 Hz and 6 g respectively. The motor in this condition could 

adequately vibrate the ulna without inducing pain. 

The CM-01B vibration sensor was positioned on the skin above the ulnar head 

using Mefix self-adhesive fabric. The signal was fed to the signal conditioning 

system, amplified and low pass filtered with a cut-off frequency of 2 kHz. The 

resulting signal was then digitised using the NI myDAQ and transferred into the 

laptop computer for display and storage. The signal sample rate for both the impulse 

and continuous vibration schemes was 100,000 and duration of recording was 10 

seconds. 

 

2.2 Vibration Signal Processing 

Impulse Scheme. Two sets, each consisting of 10 vibration responses were obtained 

using the impulse scheme for each participant. The vibration responses were 

individually low-pass filtered with a 7
th

 order Butterworth digital filter and cut-off 

frequency of 2 kHz then their magnitude frequency spectra were obtained. The 

resulting twenty magnitude frequency spectra were averaged to reduce bias toward s a 

single trial. The averaged magnitude frequency spectra for the subjects were used for 

further analysis with an artificial neural network (ANN). The type of ANN used in 

this study was the multilayer perceptron (MLP). The inputs for the neural network 

were the frequency parameters up to 2 kHz which were normalised so that they lay 

between +1 and -1. Relevant parameters (sex, height, weight, age in days, dominant 

hand and length of the right hand) were also used as inputs to the MLP after 

normalising between +1 and -1. Sex was taken into account as +1 and -1 for females 

and males respectively. Similarly the dominant hand was assigned as +1 and -1 for the 

right and left hand respectively. The MATLAB function mapminmax was used for 

mapping the data between -1 and +1, formulated as follows 

 
                    𝑦 =  (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) × (𝑥 − 𝑥min )) (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 ) + 𝑦𝑚𝑖𝑛⁄                               
(1) 

 

where 𝑦𝑚𝑎𝑥  and 𝑦𝑚𝑖𝑛  were +1 and -1 for 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛  respectively. 

 

The MLP had two hidden layers. According to Masters [20] the initial number of 



 

nodes in the hidden layer can be computed as: nodes in the first hidden layer = 𝑚𝑟2 

and nodes in the second hidden layer = 𝑚𝑟 

where n and m are the number of nodes (neurons) for input and output layers 

respectively and  

                                                                         𝑟 = √
𝑛

𝑚

3
                                                                   (2) 

This formula was used as the initial estimate to determine the number of nodes in 

the hidden layers. The exact number used was then determined through training and 

evaluating the MLPs with different number of nodes that varied slightly from the 

calculated values. 

To optimise the network, the patients were randomly divided into the training, 

validation and test sets in the proportion 45%, 30% and 25% respectively, using the 

MATLAB dividerand function. The transfer function for the network was the 

hyperbolic tangent for the two hidden layers and the linear for the output layer. 

Through training and observing the MLP performance, suitable values for the 

learning rate and momentum were selected as 0.01, 0.6 respectively. 

 

Continuous Scheme. One continuous vibration response was obtained from each 

participant. The response signal was low pass filtered with a 7
th

 order Butterworth 

digital filter, cut-off frequency of 2 kHz and the magnitude frequency spectrum of 

each vibration response was obtained. The resulting frequency parameters were then 

normalised to be between -1 and +1. The frequency parameters up to 2 kHz were 

further analysed using the MLP network explained in the impulse scheme. Like the 

impulse scheme, relevant parameters (sex, height, weight, age in days, dominant hand 

and length of the right hand) were also used as inputs to the MLP after normalising 

between +1 and -1. The number of nodes for the hidden layers of the network was 

adjusted based on the number of input values , however the other specifications of the 

network remained the same. 

3 Results and Discussion 

3.1 Impulse Scheme 

Figure 2 shows the typical vibration signals obtained from a subject using the impulse 

method and the individual vibration responses for the two trials. 

Both trials have similar patterns indicating the consistency of the method to record 

the signals. Magnitude frequency spectra of 20 vibration responses obtained from 

each patient were averaged and the resulting spectrum shown in Figure 3 was used as 

input to the ANN. 

 



 

 

 
Figure 3 shows that the main peaks are located below 200 Hz. Frequency 

parameters were normalised between -1 and +1 using Formula 1 and used for the 

neural network analysis . Magnitude frequency spectra of all participants showed that 

the largest peaks were located below 50 Hz. These frequency parameters (i.e. 50 

frequency values, separated by 1 Hz, per patient) together with the patient's physical 

parameters (i.e. 6 values indicating sex, age, height, weight, dominant hand and 

length of the right hand) were fed into the MLP.  

Considering the number of nodes for the input layer to equal 56 (i.e. n) and one 

node for the output layer (i.e. m), Formula 2 was used to estimate the number of nodes 

in the hidden layers. Then through experiment the numbers that gave best results were 

selected. The best results were obtained when the numbers of nodes for the first and 

second hidden layers were selected as 16 and 6 respectively. The training set was used 

to optimise the neural network weights, the validation set was used to ensure over 

fitting did not take place and the test set was used to evaluate the network on unseen 

cases. 

The input values were fed into the trained network to estimate the corresponding 

 
(a) 

 
(b) 

Fig 2. (a) Typical vibration signals obtained from the ulna and (b) An individual  

vibration response from two trials recorded from a single patient. 

 
Fig 3. The typical magnitude frequency spectrum of the ulna in the impulse 

scheme. 



 

BMD values. Figure 4 shows the comparison between the DXA-derived BMD values 

and the calculated values obtained from the MLP using frequencies of up to 50 Hz as 

its inputs. The correlation coefficient value between the actual BMD values and the 

neural network calculated BMDs was 0.79, calculated by using. 

                                          (𝐴, 𝐵) =
1

𝑁−1
∑ (

𝐴𝑖 −𝜇𝐴

𝜎𝐴

)𝑖=𝑁
𝑖=1  (

𝐵𝑖 −𝜇𝐵

𝜎𝐵

)   (3) 

where N is the number of patients,  𝜇𝐴 and 𝜎𝐴  are the mean and standard deviation 

of A respectively, 𝜇𝐵 and 𝜎𝐵 are the mean and standard deviation of B respectively. A 

and B represent DXA and MLP calculated BMD values. 

 

 
 

Figure 5 shows the percentages of relative errors for the BMD values calculated 

from the MLP using the frequencies up to 50 Hz as inputs.  

 
The method provided an accuracy of 89.3%, determined using 

                      %𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
|𝐵𝑀𝐷𝐷𝑋𝐴 −𝐵𝑀𝐷𝐴𝑁𝑁 |

𝐵𝑀𝐷𝐷𝑋𝐴
) × 100   (4) 

The accuracy, given the amount of data used to train the MLP is acceptable. The 

BMD values for three subjects; one from the training set, one from the validation set 

and one from the test set, had more than 30% relative error, however the majority of 

the obtained values had less than 15% relative error where the BMD for 16 subjects 

were calculated with less than 5% relative error. 

The results of the impulse scheme showed that the MLP was best trained when its 

 
Fig4. Actual DXA-derived BMD values and the values calculated from the MLP for 

the impulse method. 
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Fig 5. Relative error calculated by comparing the DXA-derived BMD 

values and the values determined from the MLP used in the impulse scheme 

study. 

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

R
e

la
ti

ve
 e

rr
o

r 
(%

) 

Patient number 



 

inputs were limited to the low frequency parameters. It indicated that input 

information related to the BMD was contained in frequencies less than 50 Hz. This 

result is in agreement with the results obtained in [18] using the manual method for 

vibration analysis to assess BMD in children. 

3.2 Continuous Scheme 

Figure 6 shows a small section of a typical vibration response and a typical vibration 

frequency spectrum obtained from the ulna using the continuous scheme. 

 
The magnitude frequency spectrum of the vibration signal was obtained and its 

parameters were mapped between -1 and +1. The two highest peaks in the magnitude 

spectrums were in the frequency range of 50 Hz and 250 Hz. This frequency range 

included 2000 values that were used as input values for the MLP network. The input 

data was randomly divided into the training, validation and test groups with the 

proportions of 65%, 20% and 15% respectively. The numbers of nodes for the first 

and second hidden layers set to be 160 and 25 respectively. The other specifications 

of the network remained the same as those used for the impulse scheme. 

Figure 7 shows the estimated BMD values obtained from the MLP in the 

continuous scheme in comparison with the actual DXA-derived BMD values. 

The correlation coefficient value between the DXA-derived BMD values and the 

MLP-calculated BMD values was 0.87. Figure 8 shows the relative errors for the 

BMD values calculated by the MLP in the continuous scheme. The continuous 

scheme showed better results than the impulse scheme. However it should be 

considered that the network in the continuous scheme was tested with only 15% of the 

data sets compared to 25% for the impulse scheme. 

 
(a) 

 
(b) 

Fig 6 A typical vibration signal (a) and its corresponding frequency spectrum (b) 

obtained from the ulna using the continuous scheme. 



 

 

 

4 Conclusion 

Vibration analysis was performed on 41 children aged 7 to 15 years  using the impulse 

and continuous schemes. The vibration signals were obtained from the children’s 

right ulnae. The magnitude frequency spectra of the recorded signals were obtained 

and were further analysed using an artificial neural network model called multilayer 

perceptron (MLP). Bone mineral density (BMD) values obtained from MLP analysis 

were compared with the DXA-derived BMD values. The correlation coefficient value 

between BMD values obtained using the MLP and the DXA-derived BMD values 

was 0.79 and 0.86 for impulse and continuous schemes respectively.  

The study showed that vibration analysis implemented either in the impulse 

scheme or the continuous form using the MLP may have potential in examining BMD 

in children, but further work is needed to make it clinically deployable. 
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Fig 7. Actual DXA-derived BMD values and the values calculated from the MLP for the 

continuous method. 
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Fig 8. Relative error calculated by comparing the DXA-derived BMD values and the 

values determined from the MLP used in the continuous scheme. 
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children included in the study. 
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