

Developments in the study and applications of bacterial transformations of selenium species

OJEDA, JJ, MERROUN, ML, TUGAROVA, AV, LAMPIS, S, KAMNEV, AA and GARDINER, PHE <http://orcid.org/0000-0002-2687-0106>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/27231/

This document is the Accepted Version [AM]

Citation:

OJEDA, JJ, MERROUN, ML, TUGAROVA, AV, LAMPIS, S, KAMNEV, AA and GARDINER, PHE (2020). Developments in the study and applications of bacterial transformations of selenium species. Critical Reviews in Biotechnology. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Developments in the Study and Applications of Bacterial Transformations of Selenium Species

Journal:	Critical Reviews in Biotechnology
Manuscript ID	BBTN-2020-0128.R1
Manuscript Type:	Review Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Ojeda, Jesus; Swansea University College of Engineering Merroun, Mohamed; University of Granada Tugarova, Anna; Russian Academy of Sciences Lampis, Silvia; University of Verona Department of Biotechnology Kamnev, Alexander; Russian Academy of Sciences Gardiner, Philip H. E.; Sheffield Hallam University, Biosciences and Chemistry
Keywords:	selenium species;, selenium nanoparticles;, selenides, selenium- containing quantum dots;, methylated selenium species;, bacterial selenium bio-transformation

2	
2	
3	
4	
5	
3 4 5 6 7 8 9 10	
7	
,	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
11 12 13 14 15 16 17 18 19 20	
10	
10	
19	
20	
21	
22	
23	
25	
24	
25	
26	
27	
28	
20	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
30	
31	
32	
33	
24	
54	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Developments in the Study and Applications of Bacterial Transformations of Selenium
2	Species
3	Jesus J. Ojeda ¹ , Mohamed L. Merroun ² , Anna V. Tugarova ³ , Silvia Lampis ⁴ , Alexander
4	A. Kamnev ³ and Philip H. E. Gardiner ^{5#}
5	¹ College of Engineering, Swansea University, Systems and Process Engineering Centre
6	Bay Campus, Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, UK
7	² Department of Microbiology, University of Granada, Granada, Spain
8	³ Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and
9	Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049,
10	Saratov, Russia
11	⁴ Department of Biotechnology, University of Verona, 37134 Verona, Italy
12	⁵ Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, SI
13	IWB, UK
14	#To whom correspondence should be addressed: Biomolecular Sciences Research
15	Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK.
16	E-mail: p.h.gardiner@shu.ac.uk
17	
18	
19	
20	

Abstract

- Microbial bio-transformations of the essential trace element selenium are now
- recognised to occur among a wide variety of microorganisms. These transformations
- are used to convert the element into its assimilated form of selenocysteine, which is at
- the active centre of a number of key enzymes, and to produce selenium nanoparticles,
- quantum dots, metal selenides and methylated selenium species that are indispensable
- for biotechnological and bioremediation applications. The focus of this review is to
- present the state-of-the-art of all aspects of the investigations into the bacterial
- transformations of selenium species, and to consider the characterization and
- biotechnological uses of these transformations and their products.

Keywords

- selenium species, bacterial selenium bio-transformation, selenium nanoparticles,
- selenides, selenium-containing quantum dots, methylated selenium species

Introduction

- The phylogenetical diversity and distribution of bacterial Se bio-transformations are now recognised to be widespread. (1, 2) A variety of methods and techniques have been used in a bid to elucidate the different mechanisms that are involved in the microbial transformation of selenium species. The emphasis in most studies has been to demonstrate that selenite or selenate is transformed by the bacterium or bacterial consortia. Invariably, the products from such reactions are selenium nanoparticles (SeNPs), metal selenide and quantum dots (3), or the methylated selenium species concomitantly produced in the headspace and solution medium. (4-6) In other investigations, the focus was to localize where the biotransformation reactions are occurring in the cells (see Scheme 1). The experiments were conducted assuming that the detected selenium species are produced solely by the biochemical reactions that take place in the microorganisms under the incubation conditions. However, this may be a simplified interpretation of what is likely to be occurring. Until recently, complex interactions between bacterium cells forming biofilms, and the probability of abiotic reactions involving selenium-containing reactants generated by the biotic processes have been given scant attention. (4, 7, 8)
- The aim of this review is to critically appraise information from recent literature on the microbial transformations of selenium species, their characterization, and to examine the developments and potential biotechnological uses of bacterial inspired selenium-containing products and related processes.

1		
2 3	57	
4	57	
5 6	58	Outline of mechanisms of bacterial transformation of selenium species
7 8	59	Over the last decade, to the best of our knowledge, there have been no reports of the
9	60	direct oxidation of reduced selenium compounds by microorganisms. Solubilization of
10	61	elemental selenium (Se ⁰) can be mediated by microbial release of reactive sulfur
11 12	62	compounds such as sulfite (SO_3^{2-}) , sulfide (S^{2-}) and thiosulfate $(S_2O_3^{2-})$ via the
13	63	formation of soluble selenosulfur complexes, as has recently been reported by Goff et
14	64	al. for a <i>Bacillus</i> sp., presenting an example of "bio-induced" chemical weathering of
15 16	65	Se ⁰ . (9) Thus from the applied microbiology and biotechnology view point the
17	66	reduction reactions of selenium oxyanions producing Se ⁰ or selenides Se ²⁻ , which
18	67	ultimately form nanostructures, and volatile selenium species, are of particular interest.
19 20	(0)	
21	68	The oxyanion, selenate (SeO $_4^{2-}$) can be reduced by microorganisms during the course
22	69	of anaerobic respiration, where it acts as the ultimate electron acceptor, and the process
23 24	70	is mediated by selenate reductases. This has been shown for bacteria such as <i>Salmonella</i>
25	71	enterica (10) and E. coli. (11) For Thauera selenatis, its selenate reductase was shown
26	72	to be very similar to thermostable nitrate reductases (pNAR) found in
27 28	73	hyperthermophilic archaea. (12) Other anaerobic methane-oxidizing bacteria have been
29	74	recently shown to be capable of coupling methane oxidation to selenate reduction (13),
30	75	suggesting a possible link between the biogeochemical cycles of selenium and methane.
31 32	76	Subedi et al. have reported the simultaneous selenate reduction and denitrification by a
33	77	consortium of bacteria from a mine-impacted natural marsh sediment.(14) Tan and co-
34	78	workers have demonstrated a competitive reduction between SeO_4^{2-} and structurally
35 36	79	similar sulfate (SO_4^{2-}) for the obligate aerobic bacterium <i>Comamonas testosterone</i> .
37	80	When the genes responsible for the reduction of SO_4^{2-} ions are deleted, the reduction of
38	81	SeO_4^2 ions to red Se ⁰ was not observed indicating that the reduction of selenate was
39 40	82	catalysed by enzymes of the sulfate reduction pathway. (15)
40	83	The pathways of the more common SeO_3^{2-} reduction by different microorganisms
42	84	include: (i) the so-called Painter-type reactions involving thiol groups (16); (ii)
43 44	85	processes involving the thioredoxin – thioredoxin reductase system; (iii) siderophore-
45	86	mediated reduction; (iv) sulfide-mediated reduction, and (v) dissimilatory reduction.
46	87	Details of these mechanisms can be found in (1). According to Rauschenbach et al. (17)
47 48	88	selenite reductases have not been characterized thus far, and investigators have failed to
49	89	identify any for Desulfurispirillum indicum strain S5, a novel obligate anaerobe
50	90	belonging to the phylum <i>Chrysiogenetes</i> , a dissimilatory selenate-, selenite-, arsenate-,
51 52	91	nitrate- and nitrite-reducing bacterium. For <i>Rhizobium selenitireducens</i> , besides nitrite
52 53	92	reductase involved in SeO_3^{2-} reduction, another protein showing selenate reductase
54	93	activity was characterized. (18) It was shown to be a member of a protein family
55 56	94	termed old-yellow-enzymes (OYE); the latter are often involved in protecting cells
50 57	95	from oxidative stress and are generally active on a wide variety of substrates.
58	96	Furthermore, a novel aerobic selenite reductase (CsrF) was identified in Alishewanella
59 60		
00		3

sp. WH16-1, a facultative anaerobic bacterium isolated from mining soil capable of reducing SeO₃²⁻ to Se⁰ nanoparticles as well as chromate (VI). (19) Recently, a selenite reductase in *Bacillus selenitireducens* specific for SeO_3^{2-} but not SeO_4^{2-} , AsO_4^{3-} or $S_2O_3^{2-}$ has been identified. (20) A generalized scheme of the biotransformation of selenium compounds in a bacterial cell is shown in Scheme 1. Selenite is reduced to Se⁰ mainly in reactions involving thiol-containing molecules and various oxidoreductases, while other proteins may also be involved in the reduction of both oxyanions. (16) Selenium oxyanions reduction results in the formation of amorphous red and other allotropic Se forms. The formation of intra- or extracellular SeNPs has been shown for the commonly studied T. selenatis (21); the plant-growth-promoting rhizobacterium Azospirillum brasilense, (16) methane-oxidising bacteria Methylococcus capsulatus and Methylosinus trichosporus (22) and many others. Information on the types of microorganisms (bacteria and fungi) involved in the reduction of selenium oxyanions has been published. (1-3, 23) Volatile methylated species have been identified during Se biotransformation and these include: dimethyl selenide (CH₃–Se–CH₃), dimethyl diselenide (CH₃–Se–CH₃) and dimethyl selenenyl sulfide (CH₃–Se–S–CH₃). (24) Interestingly, while the methane-oxidizing bacterium Methylosinus trichosporium was found to produce dimethyl diselenide and dimethyl selenenyl sulfide only, another methane-oxidizing bacterium, Methylococcus capsulatus, produced five volatile Se-containing substances. Besides the three dimethylated forms mentioned above, methyl selenol (CH₃–Se–H) and methylselenoacetate (CH_3 -Se-C (=O) CH_3) were detected in the headspace (22). Reduction of organic forms of Se can result in the formation of volatile and highly toxic H₂Se, although ultimate microbial dissimilatory reduction of selenium species to selenides is limited in environmental microorganisms. (25) Selenium oxyanions reduction mechanisms have been relatively well studied and reported in a number of articles and reviews (see for example: (1, 2, 16)). However, the formation of SeNPs (i.e., their assembly from precursors), and the factors regulating this process are yet to be elucidated. Processes for SeNPs formation inside cells with their subsequent release, as well as the removal of Se⁰ precursors after the intracellular reduction of selenium oxyanions may involve unknown transport systems. (26-30) Tugarova et al. (31, 32), have shown that proton-dependent transport is involved in SeO₃²⁻ reduction. Inhibition of proton-dependent transport resulted in Se⁰ accumulated as intracellular crystallites without formation of extracellular SeNPs.(32) It has been proposed that SeNPs formation can proceed via Ostwald ripening. (26-27) However, biogenic SeNPs in contrast to chemically synthesized ones are always capped by various biomacromolecules, mainly proteins, polysaccharides and lipids (see for example (16.31.33-36), indicating that SeNPs formation is more complex than the Ostwald ripening process would suggest. A recent proposal is that the precursor for the Se⁰ formation in methane-oxidizing bacteria is methyl selenol, and that the semi-

- - volatile methylated Se species polymerise to form particulate selenium allotropes (4). Lampis et al. proposed a possible biosynthetic mechanism of selenite reduction with the
- formation of SeNPs by the bacterium Stenotrophomonas maltophilia. They also
- identified an alcohol dehydrogenase homologue, possibly associated both with the
- biogenic synthesis of SeNPs and also involved in their stabilization. (27)

Cell-surface-bound SeNPs formation may have another role in addition to

- detoxification and that is to protect the microbial cells from high level of harmful
- effects of UV radiation via light absorption and/or scattering. Similar action of intracellular granules of polyhydroxyalkanoates (PHA; carbon and energy storage
- materials biosynthesized and accumulated by many prokaryotes) have been reported
- recently. (37, 38) Noteworthy is that both biogenic SeNPs (see (22, 32, 39, 40)) and
- chemically synthesized analogues (41, 42) have similar optical spectra of their aqueous
- suspensions, including their absorption in the UV region. Understanding the processes
- involved in the synthesis of SeNPs could be useful in the study of the biogeochemical
- origins of individual selenium -containing mineral deposits. Indeed, study of the genetic
- bases and diversity of the reduction processes will no doubt result in predictable and
- efficient production of useful industrial materials. These aspects are discussed below.

Diversity and distribution of selenium transforming organisms (gene analysis and culture-independent metagenomics)

The study of the diversity and speciation of selenium transforming microorganisms and communities by means of the metagenomic approach using high throughput sequencing analyses has been poorly represented when compared to studies based on culture dependent methods. In a majority of investigations, the focus was on highly speciated microbial cenoses inside specific conditioned environments, such as Se-amended bioreactors intended for the biosynthesis of valuable end-products, or in granular sludge from wastewater treatment plants. However, sparse information is available on the assessment of microbial communities in soil or plant rhizosphere.

- Bai and co-workers reported changes in the microbial community structure found in a bioreactor designed for the oxidation of methane coupled to selenite reduction by bacteria. (43) There was a remarkable shift in the makeup of the denitrifying anaerobic methane oxidation (DAMO) community when selenite replaced nitrate as the electron acceptor after prolonged nitrate reduction. Alpha-, Beta- and Gammaproteobacteria as well as Igavibacteria increased in the presence of selenite, whereas Methanomicrobia and Nitrospira significantly decreased when compared to the composition of the community in the presence of nitrate. At genus level, Methylococcus, Lautropia, Verribacter and Denitratisoma - all belonging to Beta- and Gammaproteobacteria -were the most abundant in the presence of SeO_3^{2-} .
- A metagenomic approach was also chosen in order to understand the composition of the
 - microbial community selected after exposure to SeO_3^{2-} in anaerobic granular sludge
- from a fullscale reactor treating brewery wastewater. (44) High-throughput sequencing

of 16S rRNA gene showed that Negativicutes, Gammaproteobacteria and Clostridia
 178 were the most abundant classes in SeO₃²⁻ reducing microbial aggregates, with
 179 *Veillonellaceae* (ca. 20%) and *Pseudomonadaceae* (ca.10%) as the main families
 represented.

High-resolution phylogenetic analysis of anoxic contaminated soil amended with selenate revealed that the relative frequency of an operational taxonomic unit (OTU) from the genus *Dechloromonas* increased markedly from 0.2% to 36%. Multiple OTUs representing less abundant microorganisms from the Rhodocyclaceae and Comamonadaceae showed significant increases as well. (45) In a study of the rhizomicrobiome of Se hyperaccumulator and non-hyperaccumulator plants grown on seleniferous soil, Cochran and co-workers investigated the effect of selenium-hyperaccumulator plants on the diversity and composition of rhizosphere microbiomes. They found higher diversity of the OTUs in the rhizosphere of hyperaccumulator plants when compared to non-accumulators and the bulk soil.(46)The microbiome of the seleniferous soil was composed of taxa belonging mainly to Crenarchaeota (Archea), Acidobacteria and Actinobacteria, in contrast to hyperaccumulator plant rhizospheres in which Acidobacteria, Crenarchaeota (Archea) and Proteobacteria were dominant. There are few examples of the exploitation of mixed microbial cultures for selenium species biotransformation. A consortium of four selenium tolerant rhizosphere aerobic bacteria belonging to Bacillus spp. was used to remove the element from Se enriched natural soils. (47) The strains were isolated from Se contaminated soils in the region of Punjab, India, by culture enrichment, and the consortium developed was tested on

 SeO_3^{2-} or SeO_4^{2-} spiked soils. While complete removal of Se was observed in SeO_3^{2-} augmented soils, 72% removal was recorded for the SeO_4^{2-} contaminated soils after 120 days. A methanogenic granular sludge from a bioreactor used for the treatment of paper waste streams has been shown to produce selenium sulfide (SeS₂) in a new process to recover Se from SeO_4^{2-} and SeO_3^{2-} polluted streams, where the former is reduced first to the latter which in turn reacts with sulfide to form SeS_2 . (48) (See also the discussion on biofilms below.)

The recent reduction in the cost of high throughput sequencing analyses will allow the accumulation of a wide range and variety of sequencing data of microbial communities involved in selenium tranformation in different environmental matrices. The information will enable better understanding of the biogeochemical cycle of selenium in the environment and will probably furnish interesting information on the microbial species involved in the biotransformation of the element. At the same time, the information would be useful in identifying appropriate cultural conditions to apply in order to obtain new microbial isolates in axenic cultures for biotechnological exploitation.

215 The role of biofilms in the biotransformation of selenium species

Selenium biotransformation has been extensively described for planktonic cells;
however, in the environment, microorganisms are commonly found as biofilms (49)
where resistance to toxic metals is up to 600 times higher than in planktonic forms. (50)
Moreover, bacteria at any stage of biofilm development are generally believed to be
physiologically distinct from those in the planktonic state. (51)

As with planktonic cells, selenium also undergoes biotransformation into less bioavailable species in biofilms. (8, 52,53) The presence of Se altered the microbial diversity and induced structural changes in the biofilms. (8,53,54) Yang et al. (53) observed that a multispecies biofilm consisting of selenium-resistant *Rhodococcus* sp., Pseudomonas sp., Bacillus sp. and Arthrobacter sp., incubated aerobically in the presence of selenate or selenite transformed the selenium oxyanions into SeNPs, with SeO_3^{2-} more readily reduced than SeO_4^{2-} . The results showed that specific regional communities within the biofilms were responsible for selenium detoxification, as indicated by the localised distribution of reduced selenium species within the biofilm structure. The formation of SeNPs (size range 50–700 nm) was observed inside the bacterial cells and also shown to be associated with proteins and polysaccharides from the extracellular polymeric substances (EPS). Bioaccumulation of Se has also been observed in more complex, heterogeneous biofilms containing not only bacteria, but also diatoms and filamentous algae. Interestingly, in the more heterogeneous biofilm community, Se partitioned differently into the various components of the biofilm, with diatoms containing approximately two-thirds of the Se. Also, density-separated algae fractions from the biofilms showed that the concentration of Se was significantly higher in the fraction not containing filamentous green algae compared to the filamentous green algal fraction. (55)

The immobilization of selenium has also been observed under anaerobic conditions. A recent study by Tan et al. (8), using biofilms from an anaerobic sludge inoculum in the presence of SeO_4^{2-} , revealed that colloidal SeNPs were formed by microbial reduction within the biofilm matrix, and retained in the biofilm system. The study also addressed how the biofilm structure was affected, not only by the presence of SeO_4^{2-} , but also by the presence of other electron acceptors such as NO_3^- and SO_4^{2-} . Relatively thin and compact biofilms were formed in the presence of SeO_4^{2-} alone, while thicker biofilms occurred in the presence of NO_3^- or SO_4^{2-} . The thicker biofilms in the presence of NO_3^- or SO_4^{2-} revealed gas pockets within the biofilm matrix, likely to be due to the microbial production of gases. With respect to Se removal, the presence of NO_3^- did not have a stimulating effect showing similar removal efficiency to that grown in the presence of SeO_4^{2-} only. In contrast, the presence of SO_4^{2-} showed higher removal efficiencies and greater biomass growth when compared to SO_4^{2-} free treatments. A possible explanation for the increase in Se removal in the presence of SO_4^{2-} could be related to abiotic reactions possibly occurring between Se-containing species and S compounds within the biofilm matrix. (8, 56)

In biofilm-mediated biotransformation the biogenic elemental Se formed is retained in the biofilm matrix. In contrast, when using planktonic cultures, one major drawback is that the biogenic Se⁰ remains in suspension as SeNPs for prolonged periods. (57-59) Under these conditions, further treatment such as electrocoagulation or precipitation is required to remove the SeNPs. (1,60, 61) The study of biofilms has provided evidence that selenium is immobilised in the biofilm matrix, thus modifying both its stability and bioavailability in the environment. (53) In addition, biofilms are to be preferred for

effective and reliable biotransformation and sequestration of selenium.

Since diet is the primary route of Se exposure and uptake in vertebrates, Se bioaccumulation in biofilms, as the base of the food chain, could serve as the primary food source for benthic invertebrates and higher trophic organisms. (62) Moreover, differences in the proportions of bacteria, filamentous algae and/or diatoms in naturally occurring biofilms could lead to variations in Se accumulation in these ecosystems, as observed by Arnold et al. (55) Depending on how Se partitions between these various components, Se exposure via ingestion by higher organisms could vary, because these organisms may preferentially feed on specific biofilm components and, thus, be exposed to different concentrations of Se. (55,62) The use of biofilms for Se sequestration represents an important and viable means of Se-laden wastewater treatment and bioremediation of selenium-contaminated areas such as mine-impacted sites. (52, 53, 63)

Selenium immobilisation by biofilms is a complex phenomenon and has distinct dynamics and controlling factors. The composition of the microbial communities is a major determining factor in Se uptake and biotransformation by biofilms, and therefore the behaviour of each would be different. While Yang et al. (53) used a multispecies biofilm consisting of selenium-resistant bacteria, and Tan et al. (64) studied inocula from a reactor treating Se-laden wastewater, other biofilm communities may be severely affected by the presence of Se. Recently it was shown how SeNPs disrupted the quorum sensing signalling system of Pseudomonas aeruginosa, provoking a reduction of 80% in the volume of the bacterial biofilm, and demonstrating the potential use of SeNPs as effective antibacterial agents. (65) Physicochemical and environmental factors affect the growth of EPS-producing cells, influence the structure and composition of the biofilm matrix, and its role in Se uptake. (66) As described by Tan et al., (64) the presence of other electron acceptors (or, in general, other reducing or oxidizing species) may also affect the efficiency of Se uptake by biofilms. Aerobic or anaerobic conditions, maturity of the biofilm, duration of the interactions are parameters which determine the extent of Se uptake and thus biotransformation. Therefore, close monitoring and regulation of the experimental conditions is recommended in order to yield maximum Se removal. (66) It is envisaged that the use of multispecies biofilms rather than isolated planktonic microorganisms for the remediation of Se-compounds in water reservoirs, the

development of more efficient biofilm-based reactors (8,64, 67,68), the use of such

bioreactors for selenium removal from wastewater (69) and the exploitation of the biofilm microbes for the manufacture of biogenic Se nanospheres and nanorods will be the focus of future research. (69, 70) It is still unclear how biofilms are affected or modified in response to the stress caused by exposure to high levels of Se oxyanions, and what effects these changes have on the metabolic pathways of the element. In addition, the effects of the presence of selenium resistant microorganisms on the composition and overall behaviour of a mixed culture are poorly understood. More importantly, the impact on molecular level mechanisms describing quorum sensing signalling processes of transcription and translation of enzyme genes are vet to be elucidated. Studies aimed at reducing the knowledge gaps and to expand our understanding of the natural microbial interactions, dynamics and ecology in these bacterial communities, will greatly enhance the advantages of the use of biofilms for the biotransformation and immobilization of selenium. Developments in the knowledge underpinning the behaviour of biofilms will lead to the production of engineered synthetic microbial consortia with increased robustness, featuring communities able to compartmentalize functions, with simultaneous execution of multiple tasks and metabolic division-of-labour. (71) Multidisciplinary approach for the characterization of selenium speciation in **bacterial** transformations Over the years, a suite of complementary microscopic, spectroscopic, chromatography-mass spectrometric and synchrotron-based techniques have emerged for the characterization of the physical (size, morphology, structure, crystallography, etc.) and chemical (oxidation state, elemental composition, local coordination, chemical speciation, etc.) properties of selenium biotransformation products (22, 31-34, 72-75). A list of the techniques and the information they provide are summarized in Table 1. The characterization of Se-containing particulates by Raman spectroscopy and Raman microscopy have been used to determine their size, morphology (76, 77), and to obtain structural data. (4, 22, 31, 32) Raman spectroscopic measurements can be used to differentiate between the various Se allotropes. The Se-Se stretching vibration mode in Raman spectra can be used to identify the structure of Se. Amorphous SeNPs exhibit a broadened Se-Se band at ~250 cm⁻¹ as reported for SeNPs biosynthesized by azospirilla. (31, 32) Raman peaks corresponding to the symmetric stretching mode of trigonal Se occurs at 234 cm⁻¹, (72) the corresponding peak for monoclinic Se is located at 264 cm⁻¹, (78) while covalently bound sulfur can be revealed by the Se–S band around 352–377 cm⁻¹. (32, 73)

The nature of the organic matter (lipids, proteins, polysaccharides) associated with biogenic SeNPs has been investigated by infrared (IR) spectroscopy. (4, 22, 31, 34) IR spectroscopy has enabled the identification of the presence of polymeric materials surrounding the NPs and demonstrated their role in increasing the thermodynamic stability of biogenic SeNPs. (33) Amorphous Se (a-Se) is thermodynamically unstable

and undergoes transformation to trigonal Se at increased temperatures. Monoclinic Se (m-Se) is metastable and could also eventually undergo conversion to the trigonal form (t-Se). (79) Transformation of SeNPs from monoclinic nanospheres to t-Se nanorods by the cells of Pseudomonas alcaliphila was revealed by the use of a combination of TEM and Raman spectroscopy. (74) Ho et al. (80) described the process of transformation of a-Se nanospheres produced by Shewanella to t-Se nanostructures (e.g. nanowires, nanoribbons, nanorods, etc.) where organic solvents such as DMSO play a major role. In addition, the anaerobic biotransformation of a-Se nanospheres to t-Se nanorods has been shown for microbial granular activated sludge at a high temperature (55 °C). (75) Results from time-dependent SeNP experiments have shown that the cells of the strain Stenotrophomonas bentonitica and their proteins are able to transform amorphous Se⁰ nanospheres to one-dimensional (1D) t-Se nanostructures (hexagons, polygons and nanowires) under mesophilic conditions. Recently, modern spectroscopic and imaging techniques based on synchrotron radiation have been used to investigate the biotransformation of selenium by multispecies biofilms avoiding damage to the sensitive samples. (53) Information from the Se K-edge EXAFS analysis was used to demonstrate the ability of the biofilm to reduce selenite to SeNPs. In addition, nanoscale Se L_{III} edge Scanning Transmission X-ray Microscopy (STXM) showed the co-localization of elemental Se with microbial cells, EPS and lipids using the carbon K-edge. Structural and chemical data from the reaction products can be used to investigate Se biotransformation mechanisms (oxidation, reduction, etc.), to study the stability of the products and to inform the development of strategies for Se remediation. Beside measurements on the bacterial material, samples from the headspace and medium should be included as a matter of course. The information produced by these measurements will serve to fill in the gaps in our understanding of the metabolic and non-metabolic processes that are involved in the biotransformation of selenium-containing species. Recently, Eswayah et al. have shown that it is possible using sorptive extraction followed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) to investigate both the volatile and semi-volatile selenium species produced during the biotransformation steps, and based on their findings have proposed the mechanisms for the formation of SeNPs. (4) All the above mentioned bulk spectroscopic and microscopic techniques are useful for the investigation of the chemical speciation and physicochemical properties of biogenic SeNPs. However, the heterogeneity that exists in SeNPs generated by complex biological systems (e.g. biofilms, granular activated sludge, microbial consortia) often makes it difficult to interpret chemical speciation and structure data by means of bulk techniques such as EXAFS spectroscopy. In recent years, the development of microscopic resolved synchrotron radiation using micro- or nano-focused based techniques (for example: micro (µ)EXAFS/XANES, µXRD, µinfrared spectroscopy, etc.) has created new opportunities for the investigation of the speciation and spatial

1		
2		
3 4	378	heterogeneity of the chemical elements associated with the selenium species (see, e.g.
5	379	(81,82) for detailed discussion of some of these techniques). Other techniques which
6	380	could provide information on the distribution of selenium species in bacteria include
7	381	laser ablation-inductively coupled plasma-mass spectrometry and matrix assisted laser
8	382	desorption ionisation-MS which can be used to localize and identify selenium-
9 10	383	containing species and biomolecules associated with the selenium particulates,
11	384	respectively.
12	504	respectively.
13	385	Both the quantitative and qualitative distribution of the different Se species, and
14 15	386	structures within complex biological/environmental samples can now be studied. The
16	387	information from <i>in-situ</i> kinetic and thermodynamic properties of the
17	388	biotransformations of SeNPs using synchrotron based techniques would provide the
18	389	basis for comprehensive understanding of the processes which control the size and
19 20		
20 21	390	structure of the selenium-containing particulates. It is particularly so, since their
22	391	environmental stability and industrial applications are intimately linked to their
23	392	structural characteristics.
24	393	Bioremediation of selenium contamination
25 26	393	bioremediation of selement containmation
27	394	Remediation technologies involving microorganisms (bioremediation) offer an
28	395	environment-friendly approach for the clean-up of pollution. (2, 8, 52, 83-85)
29	396	Bioremediation of selenium in various environmental niches results in the reduction of
30 31	397	selenium oxyanions and precipitation of solid Se ⁰ (SeNPs), together with the formation
32	398	of volatile methylated selenium compounds (2, 22, 24, 25) thus reducing the total Se
33		
34	399	burden in the immediate vicinity of the pollution source.
35 36	400	In an approach developed by Barlow et al. (86) the selenite-reducing bacteria (Bacillus
37	401	<i>subtilis</i>) were encapsulated in semi-permeable biodegradable polymeric membranes
38	402	(polymersomes) to rapidly reduce dissolved SeO_3^{2-} . The bacteria remained viable
39	402	throughout the synthesis of the polymersomes followed by proliferation when the
40 41	404	incubation temperature was raised to 37 °C, with rapid formation of biofilms and the
41		
43	405	conversion of soluble selenite (3 mM) to individual and clustered spherical SeNPs
44	406	$(\sim 200-350 \text{ nm})$. The SeNPs remained entrapped in the membrane and as a result they
45 46	407	were easily retrieved from the solution.
40 47	408	A new Cronobacter sp. isolated and enriched from domestic waste water was found to
48	409	-
49		grow heterotrophically, using organic substrates such as acetate, lactate, propionate or
50	410	butyrate as the electron donor, and to reduce selenite to SeNPs under microaerobic
51 52	411	conditions. (87) The latter conditions were favourable for its growth and resulted in
53	412	several-fold increased SeO_3^{2-} removal when lactate was used as the electron donor. In a
54	413	different study, a UASB reactor was successfully used for ex situ bioremediation, where
55	414	Se-rich soil was leached with water, followed by treatment of the leachate in which
56 57	415	90% of the Se was removed at a rate of ca. 44 μ g Se per gram of granular sludge. (88)
57 58	416	It has been shown that it is possible to remove selenite $(20-100 \text{ mg } \text{L}^{-1})$ from high-
59	417	salinity (70 g·L ⁻¹) artificial waste water with removal efficiency of up to 98% using
60		11

aerobic sequencing batch reactors with activated sludge derived from a municipal wastewater treatment plant. (89) Mass balance analysis showed that bio-volatilization was the main route of selenium removal. A similar sequencing batch reactor with activated sludge under oxygen-limiting conditions has been successfully used to reductively remove up to 98% SeO₄²⁻ (1 mM) from waste water in the presence of 3% NaCl, with most of selenium accumulating in the sludge as micrometer-sized particles. (90) Recently, biofilm of selenate-reducing bacteria was utilized in a model of a membrane biofilm reactor with H₂ as the electron donor, for simultaneous reduction and removal of SeO_4^{2-} (maximum removal efficiency up to ca. 50–61% depending on the conditions applied) and nitrate (up to 97–99.9%) from aqueous solutions.(91) It is generally accepted that microorganisms isolated from selenium-contaminated environments are more tolerant of Se compounds, and therefore more suited for selenium bioremediation. An example is the use of two *Lysinibacillus* spp. (*L. xylanilyticus* and *L. macrolides*) isolated from a Se-rich soil and shown to be capable of using both SeO_4^{2-} and SeO_3^{2-} as electron acceptors to produce Se^0 nanospheres (80–200 nm). (92) The reduction of selenite to Se²⁻ by *E. coli* resulting in the formation of insoluble and thus much less toxic metal selenides, makes selenite-reducing microorganisms possible candidates for bioremediation of not only selenium-polluted lands, but also when mercury is presnt. (93) Mercury immobilization (Hg⁰ is formed when Hg²⁺ is reduced) by biogenic SeNPs can be improved in the presence of soil-borne dissolved organic matter (DOM). DOM enhances the stability of the SeNPs resulting in up to 99% Hg immobilization. (94) The extent to which toxic methylmercury is formed in the presence of methylated selenium species and their effect on plant growth is of interest. (95) Soil bacteria with phytostimulating properties and tolerance for selenium oxyanions can be used for the dual purpose of soil bioremediation and the promotion of plant growth. Several strains of bacteria of the widely studied genus Azospirillum, many of which display plant-growth-promoting traits, have been shown to be relatively tolerant to SeO_3^{2-} and to efficiently reduce it to SeNPs (31,32, 34, 35, 96, 97) and also to selenium-sulfur mixed NPs ($Se_{8-n}S_n$) in the presence of both selenite and high concentrations of sulfate (~0.8 g L⁻¹). (73) Recently, a Herbaspirillum sp., a plant-growth-promoting endophyte specific to the tea plant Camellia sinensis (L.), has been shown to be capable of reducing selenate (via selenite) to SeNPs in culture medium. Indeed, more than two-fold higher Se content was found in the plant leaves grown on selenate-spiked soil compared to the control plants. (36) The combined utilization of selenium oxyanion conversions to Se⁰ and possibly other Se species that are relatively non-toxic and bioavailable to plants in addition to their plant growth-promotion traits are definitely of potential agricultural and agrobiotechnological significance. **Bacterial** transformations in the production of biotechnologically useful products

2		
3	458	Examples of biotechnologically useful selenium-containing products are summarized
4 5	459	in Table 2. (29,30,32,40,48,73,77,87,99,100–116)
6		
7	460	Se ²⁻ ions can form largely insoluble metal selenides in the presence of appropriate
8	461	heavy metal species, such as Hg ²⁺ , Cd ²⁺ , Cu ⁺ or Cu ²⁺ , etc. Microorganisms such as
9 10	462	Pseudomonas aeruginosa, Bacillus subtilis and Saccharomyces cerevisiae have been
11	463	shown to reduce SeO_3^{2-} in the presence of the corresponding cations to form cadmium
12	464	and zinc selenides (98–101). Incubation of the plant pathogenic fungus
13 14	465	Helminthosporum solani in aqueous solution with CdCl ₂ and SeCl ₄ has been shown to
15	466	produce small nanospheres of CdSe. (102) The Gram-negative bacterium Pantoea
16	467	agglomerans was found to form Cu ²⁺ - and Cu ⁺ -containing black nanocrystallites (Cu ₂₋
17	468	_x Se) in the presence of Cu ²⁺ –EDTA and SeO ₃ ²⁻ , (103) exhibiting the ability to
18 19	469	simultaneously reduce copper(II) to copper(I) and SeO_3^{2-} to Se^{2-} .
20		
21	470	The first complete genome data have been recently reported for <i>B. cereus</i> (strain CC-1
22 23	471	isolated from marine sediments), a selenite/selenate-reducing and metal selenide-
24	472	producing bacterium. (104) The putative genes involved in selenate/selenite reduction
25	473	as well as in salt and metal resistance were identified, and the bacterium was shown to
26 27	474	be capable of producing SeNPs (in the absence of heavy metal ions) or
27	475	photoluminescent Bi_2Se_3 , PbSe and Ag_2Se NPs when Bi^{3+} , Pb ²⁺ or Ag^+ nitrates,
29	476	respectively, are present. The addition of 5 mM glutathione (GSH) significantly
30	477	inhibited the formation of cell-bound Bi ₂ Se ₃ nanosheet-like particles and instead SeNPs
31 32	478	were formed. (105) Hence it was proposed that specific enzymes, instead of thiols, were
33	479	responsible for the formation of metal selenides in this bacterium. In contrast,
34	480	Lysinibacillus sp. was found to synthesize both extra- and intracellular Bi ₂ Se ₃
35 36	481	nanosheets, formation of which was faster when 5 mM GSH was added indicating the
37	482	existence of different mechanisms of biogenic nano-Bi ₂ Se ₃ formation. (105)
38	402	
39 40	483	Recently, there have been reports on the applications of microbial synthesized Se-
40	484	containing NPs in chemotherapy, drug delivery, as well as in cancer diagnostics,
42	485	prevention and treatment. (117–118) Biogenic SeNPs have been shown to exhibit
43	486	antioxidant and anti-tumour activity, immunostimulatory and anti-inflammatory
44 45	487	effects in animal models (106); for recent reviews, see (118,119–121). Investigations
46	488	into the antimicrobial and antibiofilm activities of microbial synthesized SeNPs have
47	489	shown that the surface bioorganic layers characteristic of biogenic nanostructures play
48 49	490	important roles in their biochemical behaviour. (122)
50	491	Bacterial selenoproteins and selenoproteomes
51	471	Dacterial sciency otenis and sciency oteomes
52 53	492	Although the focus of this review has been on the visible changes in the chemical
53 54	493	speciation of selenium species in the presence of bacteria, and the uses of the products
55	494	of the biotransformation reactions, it is important to note that selenium is an essential
56	495	element for bacteria. It is incorporated in a variety of prokaryotic selenoproteins,
57 58	496	which are involved in biochemical redox functions. The mechanism and the genes
59	497	responsible for the synthesis and insertion of selenocysteine, the amino acid at the
60		13

active centre of these proteins, have been described.(123-126) The unique genetic signature of this mechanism has provided researchers with the information that has enabled them to easily establish if a particular bacterium has the ability to synthesize selenoproteins from the examination of its complete sequenced genome.(127-129) Over 70 prokaryotic selenoprotein families have so far been identified but the biochemical roles of some are yet to be elucidated.(130) The variety of the selenoproteomes in each bacterium presents clues as to the extent to which it utilizes the element in it metabolism and its ability to tolerate exposure to high levels of selenium species. The deployment of the genomic approach for the screening and selection of suitable selenium-tolerant bacteria and to the study of selenium-rich environmental niches will yield information on how bacteria have evolved to use the element. In addition, it is probable that bacteria with the desirable characteristics, which can be harnessed to produce useful biotechnological products, will be identified. **Concluding remarks and future directions**

The complexity of bacterial biotransformation of selenium species has only recently began to emerge. It is now clear that selenium biotransformation is widespread in diverse prokaryotes, some anaerobes, and certain clostridial species, while the focus of current research has been on planktonic microorganisms and their ability to convert selenium species to reduced selenium anions, elemental selenium, metal-selenide and quantum dots, methylated volatile and semi-volatile compounds. A holistic approach is therefore now required in order to gain a better understanding of the types of reactions that are not only occurring on the surfaces and inside bacterial cells but also in the culture medium and to characterize the products of such reactions. There have been few studies which replicate the conditions in selenium-rich environmental niches in which the microorganisms thrive by interacting with each other to form biofilms, and utilize selenium oxyanions in order to conserve energy. The application of functional gene analysis and metagenomics to the study of these microbial niches will provide a better understanding of how selenium biogeochemical cycle interacts with those of other elements leading to the identification of the key factors which influence, determine and underpin selenium biotransformation. These developments will enable the discovery and introduction of innovative biotechnological applications of the products thereof.

50 531

- 52 532 **Compliance with Standards**
- 54 533 **Conflicts of interest** There are no conflicts of interest to declare

Funding This research received no specific grant from any funding agency in the
 public, commercial or not-for-profit sectors.

2		
3	536	Ethical approval
4		11
5	537	This article does not contain any studies with human participants or animals
6	538	performed by any of the authors.
7	550	performed by any of the authors.
8 9	539	
9 10		Defenered
11	540	References
12	541	
13	542	(1) Nancharaiah YV, Lens PNL. Ecology and biotechnology of selenium-respiring
14	543	bacteria. Microbiol Mol Biol Rev. 2015;79(1):61–80.
15	544	
16	545	(2) Eswayah AS, Smith TJ, Gardiner PHE. Microbial transformations of selenium
17	546	species of relevance to bioremediation. Appl Environ Microbiol. 2016;82(16):4848-
18	547	4859.
19 20	548	
20	549	(3) Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium
21 22	550	
22	550	nanoparticles: current status and future prospects. Appl Microbiol Biotechnol.
24		2016;100(6):2555–2566.
25	552	
26	553	(4) Eswayah AS, Hondow N, Scheinost AC, Merroun M, Romero-González M, Smith
27	554	TJ, Gardiner PHE. methyl selenol as precursor in selenite reduction to Se/S species by
28	555	methane-oxidizing bacteria. Appl Environ Microbiol. 2019;85:e01379-19.
29	556	
30	557	(5) Burra R, Pradenas GA, Montes RA, Vásquez CC, Chasteen TG. Production of
31	558	dimethyl triselenide and dimethyl diselenenyl sulfide in the headspace of metalloid-
32	559	resistant Bacillus species grown in the presence of selenium oxyanions. Anal Biochem.
33 34	560	2010;396(2):217-222.
34 35	561	
36	562	(6) Xu H, Barton L. Se-bearing colloidal particles produced by sulfate-reducing bacteria
37	563	and sulfide-oxidizing bacteria: TEM study. Adv Microbiol. 2013; 3(2): 205-211.
38	564	and sumde-oxidizing bacteria. TEW study: 7Kdv Wilefobiol. 2019, 5(2). 205-211.
39	565	(7) Yang SI, George GN, Lawrence JR, Kaminskyj SGW, Dynes JJ, Lai B, Pickering
40		
41	566	IJ. Multispecies biofilms transform selenium oxyanions into elemental selenium
42	567	particles: studies using combined synchrotron X-ray fluorescence imaging and scanning
43	568	transmission X-ray microscopy. Environ Sci Technol. 2016;50(19):10343–10350.
44	569	
45 46	570	(8) Tan LC, Nancharaiah YV, Lu S, van Hullebusch ED, Gerlach R, Lens PNL.
46 47	571	Biological treatment of selenium-laden wastewater containing nitrate and sulfate in an
48	572	upflow anaerobic sludge bed reactor at pH 5.0. Chemosphere 2018;211:684–693.
49	573	
50	574	(9) Goff J, Terry L, Mal J, Schilling K, Pallud C, Yee N. Role of extracellular reactive
51	575	sulfur metabolites on microbial Se(0) dissolution. Geobiol. 2019;17(3):320–329.
52	576	
53	577	(10) Connelly KRS, Stevenson C, Kneuper H, Sargent F. Biosynthesis of selenate
54	578	reductase in <i>Salmonella enterica</i> : critical roles for the signal peptide and DmsD.
55	579	Microbiology 2016;162(12):2136–2146.
56	580	
57 58	200	
58 59		
60		15
		15

1		
2		
3 4	581	(11) Yee N, Choi J, Porter AW, Carey S, Rauschenbach I, Harel A. Selenate reductase
5	582	activity in <i>Escherichia coli</i> requires Isc iron-sulfur cluster biosynthesis genes. FEMS
6	583	Microbiol Lett. 2014;361(2):138–143.
7	584 585	(12) Dridge EL Dutler CS. Thermostable properties of the periplemic selenate
8 9	585 586	(12) Dridge EJ, Butler CS. Thermostable properties of the periplasmic selenate reductase from <i>Thauera selenatis</i> . Biochimie 2010;92(10):1268–1273.
10	580 587	Teductase from Thauera selenaus. Biochimie 2010,92(10).1208–1275.
11	588	(13) Luo JH, Chen H, Hu S, Cai C, Yuan Z, Guo J. Microbial selenate reduction driven
12	589	by a denitrifying anaerobic methane oxidation biofilm. Environ Sci Technol.
13 14	590	2018;52(7):4006–4012.
14	591	
16	592	(14) Subedi G, Taylor J, Hatam I, Baldwin SA. Simultaneous selenate reduction and
17	593	denitrification by a consortium of enriched mine site bacteria. Chemosphere
18	594	2017;183:536–545.
19 20	595	
21	596	(15) Tan Y, Wang Yuantao, Wang Yu, Xu D, Huang Y, Wang D, Wang G, Rensing C,
22	597	Zheng S. Novel mechanisms of selenate and selenite reduction in the obligate aerobic
23	598	bacterium Comamonas testosteroni S44. J Hazard Mater. 2018;359:129–138.
24 25	599 600	(16) Theorem AV Kommon AA Protoing in microbiol synthesis of colonium
26	600 601	(16) Tugarova AV, Kamnev AA. Proteins in microbial synthesis of selenium nanoparticles. Talanta 2017;174:539–547.
27	602	nanoparticles. Talanta 2017,174.559–547.
28	603	(17) Rauschenbach I, Yee N, Häggblom MM, Bini E. Energy metabolism and multiple
29 30	604	respiratory pathways revealed by genome sequencing of <i>Desulfurispirillum indicum</i>
31	605	strain S5. Environ Microbiol 2011;13(6):1611–1621.
32	606	
33	607	(18) Hunter WJ. A Rhizobium selenitireducens protein showing selenite reductase
34 35	608	activity. Curr Microbiol. 2014; 68(3): 311–316.
36	609	
37	610	(19) Xia X, Wu S, Li N, Wang D, Zheng S, Wang G. Novel bacterial selenite reductase
38	611	CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in
39 40	612	Alishewanella sp. WH16-1. J Hazard Mater. 2018;342:499–509.
40	613 614	(20) Wells M, McGarry J, Gaye MM, Basu P, Oremland RS, Stolz JF. The respiratory
42	615	selenite reductase from <i>Bacillus selenitireducens</i> strain MLS10. J Bacteriol.
43	616	2019;201(7):e00614-18.
44 45	617	
45 46	618	(21) Butler CS, Debieux CM, Dridge EJ, Splatt P, Wright M. Biomineralization of
47	619	selenium by the selenate-respiring bacterium <i>Thauera selenatis</i> . Biochem Soc Trans.
48	620	2012;40(6):1239–1243.
49 50	621	
50 51	622	(22) Eswayah AS, Smith TJ, Scheinost AC, Hondow N, Gardiner PHE. Microbial
52	623	transformations of selenite by methane-oxidizing bacteria. Appl Microbiol Biotechnol.
53	624	2017;101(17):6713–6724.
54 55	625	(22) Descripted CE Kanner IA James DD Castalli CM C 1 (11 VII) 1 (
55 56	626 627	(23) Rosenfeld CE, Kenyon JA, James BR, Santelli CM. Selenium (IV, VI) reduction and toloranea by function and via anyironment. Gashiel. 2017;15(2):441–452
57	627 628	and tolerance by fungi in an oxic environment. Geobiol. 2017;15(3):441–452.
58	020	
59 60		
60		16

1		
2		
3 4	629	(24) Shirsat S, Kadam A, Naushad M, Mane RS. Selenium nanostructures: microbial
5	630	synthesis and applications. RSC Adv. 2015;5(112):92799–92811.
6	631	
7	632	(25) Eswayah AS. Bioremediation of selenium species in solution by methanotrophic
8	633	bacteria. Doctoral Dissertation, 2018; Sheffield Hallam University.
9	634	
10 11	635	(26) Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler CS, Vallini G. Delayed
12	636	formation of zero-valent selenium nanoparticles by <i>Bacillus mycoides</i> SeITE01 as a
13	637	consequence of selenite reduction under aerobic conditions. Microb Cell Fact.
14	638	2014;13(1):35.
15	639	
16	640	(27) Lampis S, Zonaro E, Bertolini C, Cecconi D, Monti F, Micaroni M, Turner RJ,
17	641	Butler CS, Vallini G. Selenite biotransformation and detoxification by
18 19	642	Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial
20	643	biogenesis of selenium nanoparticles. J Hazard Mater 2017;324:3-14.
21	644	
22	645	(28) Khoei NS, Lampis S, Zonaro E, Yrjälä K, Bernardi P, Vallini G. Insights into
23	646	selenite reduction and biogenesis of elemental selenium nanoparticles by two
24	647	environmental isolates of Burkholderia fungorum. New Biotechnol. 2017;34:1-11.
25	648	
26 27	649	(29) Tian L-J, Li W-W, Zhu T-T, Chen J-J, Wang W-K, An P-F, Zhang L, Dong J-C,
27	650	Guan Y, Liu D-F, Zhou N-Q, Liu G, Tian Y-C, Yu H-Q. Directed biofabrication of
29	651	nanoparticles through regulating extracellular electron transfer. J Amer Chem Soc.
30	652	2017;139(35):12149–12152.
31	653	
32	654	(30) Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, Qu Y. Biosynthesis of selenium
33	655	nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Coll
34 35	656	Surf A: Physicochem Eng Aspects 2019;571:9–16.
36	657	
37	658	(31) Tugarova AV, Mamchenkova PV, Dyatlova YA, Kamnev AA. FTIR and Raman
38	659	spectroscopic studies of selenium nanoparticles synthesised by the bacterium
39	660	Azospirillum thiophilum. Spectrochim Acta Part A: Mol Biomol Spectrosc.
40	661	2018;92:458–463.
41	662	
42 42	663	(32) Tugarova AV, Mamchenkova PV, Khanadeev VA, Kamnev AA. Selenite
43 44	664	reduction by the rhizobacterium Azospirillum brasilense, synthesis of
45	665	extracellular selenium nanoparticles and their characterisation. New Biotechnol. 2020;
46	666	58:17-24.
47	667	
48	668	(33) Jain R, Jordan N, Weiss S, Foerstendorf H, Heim K, Kacker R, Hübner R, Kramer
49	669	H, van Hullebusch ED, Farges F, Lens PNL. Extracellular polymeric substances govern
50	670	the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol.
51 52	671	2015;49(3):1713–1720.
53	672	
54	673	(34) Kamnev AA, Mamchenkova PV, Dyatlova YA, Tugarova AV. FTIR spectroscopic
55	674	studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7
56	675	and the formation of selenium nanoparticles. J Mol Struct. 2017;1140:106–112.
57	676	-
58 59		
60		17
		1 /

1		
2 3	677	(35) Tugarova AV, Mamchenkova P, Dyatlova Y, Kamnev A. Biochemical study of
4	678	selenite bioconversion by <i>Azospirillum brasilense</i> . FEBS Open Bio 2018;8(S1):479–
5	679	480.
6 7	680	
7 8	681	(36) Xu X, Cheng W, Liu X, You H, Wu G, Ding K, Tu X, Yang L, Wang Y, Li Y, Gu
9	682	H, Wang X. Selenate reduction and selenium enrichment of tea by the endophytic
10	683	Herbaspirillum sp. strain WT00C. Curr Microbiol. 2020;77:588–601.
11	684	The buspir titum sp. strain w 1000. Curi Microbiol. 2020,77.500 001.
12	685	(37) Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of
13	686	polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological
14	687	consequences and applications. Biotechnol Adv. 2018;36(3):856–870.
15 16	688	consequences and applications. Biotechnol Adv. 2018,50(5).850–870.
17	689	(38) Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, Hesko O,
18	690	Kucera D, Marova I, Obruca S. Light scattering on PHA granules protects bacterial
19	690 691	
20		cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol.
21	692	2018;102(4):1923–1931.
22	693	(20) Mollonia N. Touchas P. Naranii Sani F. An anning montally banian mothed for
23	694	(39) Mollania N, Tayebee R, Narenji-Sani F. An environmentally benign method for
24 25	695 696	the biosynthesis of stable selenium nanoparticles. Res Chem Intermed.
26		2016;42(5):4253–4271.
27	697	(40) Harrison CDW and day Waiiday DD Starras A.M. Daisman CDU Dia and dasting
28	698	(40) Hageman SPW, van der Weijden RD, Stams AJM, Buisman CJN. Bio-production
29	699 700	of selenium nanoparticles with diverse physical properties for recovery from water. Int
30	700	J Mineral Process. 2017;169:7–15.
31 32	701	(41) Neuron TUD Vandhanakhuti D. Lin M. Mustanka A. Antihastanial monomics of
32 33	702	(41) Nguyen THD, Vardhanabhuti B, Lin M, Mustapha A. Antibacterial properties of
34	703	selenium nanoparticles and their toxicity to Caco-2 cells. Food Control 2017;77:17–24.
35	704	(42) Cui D. Van C. Miss I. Zhang V. Chan I. Sun I. Mang I. Liang T. Li O. Sunthasia
36	705	(42) Cui D, Yan C, Miao J, Zhang X, Chen J, Sun L, Meng L, Liang T, Li Q. Synthesis,
37	706	characterization and antitumor properties of selenium nanoparticles coupling with
38	707 708	ferulic acid. Mater Sci Eng C. 2018;90:104–112.
39 40	708 709	(42) Dai VN, Wang VN, Lu VZ, Eu L. Zhang E. Lau TC. Zang DI. Miarahial salarita
40	709 710	(43) Bai YN, Wang XN, Lu YZ, Fu L, Zhang F, Lau TC, Zeng RJ. Microbial selenite
42	710	reduction coupled to anaerobic oxidation of methane. Sci Total Environ. 2019;669:168-
43	711	174.
44		(44) Canzalaz Cil C. Lang DNL. Saikaly DE. Salanita reduction by anarchia migrahia
45	713	(44) Gonzalez-Gil G, Lens PNL, Saikaly PE. Selenite reduction by anaerobic microbial
46 47	714 715	aggregates: microbial community structure and proteins associated to the produced
47 48	715	selenium spheres. Front Microbiol. 2016;7:571.
49	717	(45) Navarro RR, Aoyagi T, Kimura M, Itoh H, Sato Y, Kikuchi Y,Ogata A, Hori T.
50	717	
51		High-resolution dynamics of microbial communities during dissimilatory selenate
52	719	reduction in anoxic soil. Environ Sci Technol. 2015;49(13):7684-7691.
53	720	(16) Cookrap AT Davar I Mataclf II. Lavacha D. Sura da Jana M. Warris S.
54 55	721	(46) Cochran AT, Bauer J, Metcalf JL, Lovecka P, Sura-de Jong M, Warris S, Maaiiman BIW, van der Maar L Knight B, Bilan Smitz EAH, Blant selenium
55 56	722	Mooijman PJW, van der Meer I, Knight R, Pilon-Smits EAH. Plant selenium
57	723	hyperaccumulation affects rhizosphere: enhanced species richness and altered species
58	724 725	composition. Phytobiomes 2018;2:82-91.
59	725	
60		18

1		
1 2		
3	726	(47) Drokoch NT Sharma N. Drokoch D. Asharwa D. Domoval of aslarium from Sa
4	726 727	(47) Prakash NT, Sharma N, Prakash R, Acharya R. Removal of selenium from Se
5	727	enriched natural soils by a consortium of <i>Bacillus</i> isolates. Bull Environ Contam Toxicol. 2010;85:214–218.
6	728	10x1c01. 2010,85.214–218.
7 8	729	(48) Hageman SPW, van der Weijden RD, Stams AJM, van Cappellen P, Buisman
8 9	730	CJN. Microbial selenium sulfide reduction for selenium recovery from wastewater. J
10	732	Hazard Mater. 2017;329:110–119.
11	733	Hazard Match. 2017,329.110–119.
12	734	(49) Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial
13	735	biofilms. Nature Rev. 2007;5(12):928-938.
14 15	736	bioininis. Ivature Rev. 2007,3(12).520 550.
16	737	(50) Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic
17	738	<i>Pseudomonas aeruginosa</i> . Appl Environ Microbiol. 2003;69(4):2313-2320.
18	739	1 seadomonas del aginosa. Appi Environ Mierobiol. 2003,09(1).2515 2520.
19	740	(51) Sauer K, Camper AK, Ehrlich GD, Costerton J.W, Davies DG. Pseudomonas
20	741	<i>aeruginosa</i> displays multiple phenotypes during development as a biofilm. J Bacteriol.
21 22	742	2002;184(4):1140-1154.
22	743	
24	744	(52) Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL. Selenium:
25	745	environmental significance, pollution, and biological treatment technologies.
26	746	Biotechnol Adv. 2016;34(5):886–907.
27	747	
28 29	748	(53) Yang SI, George GN, Lawrence JR, Kaminskyj SGW, Dynes JJ, Lai B, Pickering
30	749	IJ. Multispecies biofilms transform selenium oxyanions into elemental selenium
31	750	particles: studies using combined synchrotron X-ray fluorescence imaging and scanning
32	751	transmission X-ray microscopy. Environ Sci Technol. 2016;50(19):10343-10350.
33	752	
34 35	753	(54) Yang SI. Biotransformation and interactions of selenium with mixed and pure
35 36	754	culture biofilms. Doctoral Dissertation; 2011. University of Saskatchewan, Saskatoon,
37	755	Saskatchewan, Canada.
38	756	
39	757	(55) Arnold MC, Bier RL, Lindberg TT, Bernhardt ES, Di Giulio RT. Biofilm mediated
40	758	uptake of selenium in streams with mountaintop coal mine drainage. Limnologica
41 42	759	2017;65:10-13.
42	760	
44	761	(56) Hockin SL, Gadd GM. Linked redox precipitation of sulfur and selenium under
45	762	anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol.
46	763	2003;69(12):7063-7072.
47	764	
48 49	765	(57) Buchs B, Evangelou MW, Winkel LH, Lenz M. Colloidal properties of
50	766	nanoparticular biogenic selenium govern environmental fate and bioremediation
51	767 769	effectiveness. Environ Sci Technol. 2013;47(5):2401-2407.
52	768 760	(59) Long M. Smit M. Dindon D Aslet A.C. Long DNU, D. 1. 1. 1. 1. 1. 1.
53	769 770	(58) Lenz M, Smit M, Binder P, van Aelst AC, Lens PNL. Biological alkylation and
54 55	770	colloid formation of selenium in methanogenic UASB reactors. J Environ Qual.
55 56	771 772	2008;37:1691-1700.
57	773	(59) Zhang Y, Zahir ZA, Frankenberger WT. Fate of colloidal-particulate elemental
58	774	selenium in aquatic systems. J Environ Qual. 2004;33(2):559-564.
59	, / +	
60		19

1		
2		
3	775	(60) Staicu LC, van Hullebusch ED, Lens PNL. Production, recovery and reuse of
4	776	biogenic elemental selenium. Environ Chem Lett. 2015;3(1):89-96.
5	777	biogenie elemental scientum. Environ Chem Lett. 2013,3(1).89-90.
6	778	(61) Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL. Selenium:
7	779	
8 9		environmental significance, pollution, and biological treatment technologies. In: Tan
9 10	780	LC (ed) Anaerobic treatment of mine wastewater for the removal of selenate and its co-
11	781	contaminants. Chapter 2, CRC Press, London, 2018; pp 9-71.
12	782	
13	783	(62) Janz DM, Liber K, Pickering IJ, Wiramanaden CI, Weech SA, Gallego-Gallegos
14	784	M, Driessnack MK, Franz ED, Goertzen MM, Phibbs J, Tse JJ, Himbeault KT,
15	785	Robertson EL, Burnett-Seidel C, England K, Gent A. Integrative assessment of
16	786	selenium speciation, biogeochemistry, and distribution in a northern coldwater
17 18	787	ecosystem. Integr Environ Assess Management .2014;10(4):543-554.
18	788	
20	789	(63) He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, Shang C, Luo L, Gao J, Tang
21	790	L. Selenium contamination, consequences and remediation techniques in water and
22	791	soils: a review. Environ Res. 2018;164:288–301.
23	792	
24	793	(64) Tan LC, Espinosa-Ortiz EJ, Nancharaiah YV van Hullebusch, ED, Gerlach R,
25	794	Lens PNL. Selenate removal in biofilm systems: effect of nitrate and sulfate on
26 27	795	selenium removal efficiency, biofilm structure and microbial community. J Chem
27	796	Technol Biotechnol. 2018;93(8):2380-2389.
29	797	
30	798	(65) Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y.
31	799	Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-
32	800	regulated processes: violacein production and bacterial biofilm formation. Metallomics
33	801	2019;11(6):1104-1114.
34 35	802	
36	803	(66) Gupta P, Diwan B. Bacterial exopolysaccharide mediated heavy metal removal: a
37	804	review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep.
38	805	2017;13:58-71.
39	806	
40	807	(67) Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL. Biological removal of
41	808	selenate and ammonium by activated sludge in a sequencing batch reactor. Bioresource
42	809	Technol. 2017;229:11–19.
43 44	810	
45	811	(68) Ng DH, Kumar A, Cao B. Microorganisms meet solid minerals: interactions and
46	812	biotechnological applications. Appl Microbiol and Biotechnol. 2016;100(16):6935-
47	813	6946.
48	814	
49 50	815	(69) Dessi P, Jain R, Singh S, Seder-Colomina M, van Hullebusch ED, Rene ER,
50 51	816	Ahammad, SZ, Carucci, A, Lens, PNL. Effect of temperature on selenium removal
52	817	from wastewater by UASB reactors Water Research, 2016;94:146-154.
53	818	
54	819	(70) Ali I, Peng C, Khan ZM, Naz I, Sultan M, Ali M, Abbasi IA, Islam T, Ye T.
55	820	Overview of microbes based fabricated biogenic nanoparticles for water and wastewater
56	821	treatment. J. Environ Management. 2019;230:128-150.
57	822	
58 59		
59 60		20
		20

1		
2		
3	823	(71) Johns NI, Blazejewski T, Gomes ALC, Wang HH. Principles for designing
4	824	synthetic microbial communities. Curr Opin Microbiol. 2016;1:46-153.
5	825	synthetic interoblar communities. Carr Opin Microbiol. 2010,1.40 155.
6	825	(72) Ruiz-Fresneda MA, Delgado Martín J, Gómez Bolívar J, Fernández Cantos MV,
7 8	820	Martínez MV, Bosh-Estevez G, Moreno MF, Merroun ML. Green synthesis and
8 9	828	biotransformation of amorphous Se nanospheres to trigonal 1D Se nanostructures:
10	828 829	impact on Se mobility within the concept of radioactive wastes disposal. Environ Sci:
11	829	Nano. 2018;5:2103-2116.
12	830	Nalio. 2018, 5.2105-2110.
13		(72) Vagal M. Eigher S. Maffort A. Hühner D. Scheinast A.C. Erenzon C. Staudtnar D.
14	832	(73) Vogel M, Fischer S, Maffert A, Hübner R, Scheinost AC, Franzen C, Steudtner R.
15	833	Biotransformation and detoxification of selenite by microbial biogenesis of selenium-
16 17	834	sulfur nanoparticles. J Hazard Mater. 2018;344:749–757.
18	835	(74) Zhana W. Chan Z. Lin H. Zhana L. Cas D. Li D. Discouthering and structural
19	836	(74) Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural
20	837	characteristics of selenium nanoparticles by <i>Pseudomonas alcaliphila</i> . Colloid Surf B
21	838	2011;88:196-201.
22	839	
23	840	(75) Jain R, Jordan N, Tsushima S, Hübner R, Weiss S, Lens PNL. Shape change of
24 25	841	biogenic elemental selenium nanomaterials from nanospheres to nanorods decreases
25 26	842	their colloidal stability. Environ Sci: Nano. 2017;4(5):1054-1063.
27	843	
28	844	(76) Xu D, Yang L, Wang Y, Wang G, Rensing C, Zheng S. Proteins enriched in
29	845	charged amino acids control the formation and stabilization of selenium nanoparticles
30	846	in Comamonas testosteroni S44. Sci Rep. 2018;8:4766.
31	847	
32	848	(77) Kora AJ, Rastogi L. Biomimetic synthesis of selenium nanoparticles by
33 34	849	Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J
35	850	Environ Manag. 2016;181:231–236.
36	851	
37	852	(78) Van Overschelde O, Guisbiers G, Snyders R. Green synthesis of selenium
38	853	nanoparticles by excimer pulsed laser ablation in water. APL Mater. 2013;1:042114.
39	854	
40	855	(79) Goldan AH, Li C, Pennycook SJ, Schneider J, Blom A, Zhao W. Molecular
41 42	856	structure of vapor-deposited amorphous selenium. J Appl Phys. 2016;120:135101.
42	857	
44	858	(80) Ho CT, Kim, JW, Kim WB, Song K, Kanaly RA, Sadowsky MJ, Hu H-G.
45	859	Shewanella-mediated synthesis of selenium nanowires and nanoribbons. J Mater Chem.
46	860	2010;20(28):5899–5905.
47	861	
48	862	(81) Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN. Elemental and
49 50	863	chemically specific X-ray fluorescence imaging of biological systems. Chem Rev.
50 51	864	2014;114:8499-8541.
52	865	
53	866	(82) Dolgova NV, Nehzati S, Choudhury S, MacDonald TC, Regnier NR, Crawford
54	867	AM, Ponomarenko O, George GN, Pickering IJ. X-ray spectroscopy and imaging of
55	868	selenium in living systems. BBA General Subjects. 2018;1862:2383-2392.
56	869	
57		
58 59		
60		21
~ =		21

(83) Bañuelos GS, Lin ZQ, Broadley M. Selenium biofortification. In: Pilon-Smits E, Winkel L, Lin ZQ (eds) Selenium in plants. Plant ecophysiology, vol 11. Springer, Cham, 2017; pp 231–255. (84) Schiavon M, Pilon-Smits EA. Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual. 2017;46(1):10-19. (85) Piacenza E, Presentato A, Zonaro E, Lampis S, Vallini G, Turner RJ. Microbial-based bioremediation of selenium and tellurium compounds. In: Derco J, Vrana B (eds) Biosorption, IntechOpen, 2018; pp 117–147. (86) Barlow J, Gozzi K, Kelley CP, Geilich BM, Webster TJ, Chai Y, Sridhar S, van de Ven AL. High throughput microencapsulation of *Bacillus subtilis* in semi-permeable biodegradable polymersomes for selenium remediation. Appl Microbiol Biotechnol. 2017;101(1):455-464. (87) Nguyen VK, Park Y, Yu J, Lee T. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater. Bioresource Technol. 2016;212:182–189. (88) Wadgaonkar SL, Ferraro A, Nancharaiah YV, Dhillon KS, Fabbricino M, Esposito G, Lens PNL. In situ and ex situ bioremediation of seleniferous soils from northwestern India. J Soils Sediments 2019;19(2):762-773. (89) Zhang Y, Kuroda M, Nakatani Y, Soda S, Ike M. Removal of selenite from artificial wastewater with high salinity by activated sludge in aerobic sequencing batch reactors. J Biosci Bioeng. 2019;127(5):618-624. (90) Zhang Y, Kuroda M, Arai S, Kato F, Inoue D, Ike M. Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. Water Res. 2019;154:327-335. (91) Chen X, Lai C-Y, Fang F, Zhao H-P, Dai X, Ni B-J. Model-based evaluation of selenate and nitrate reduction in hydrogen-based membrane biofilm reactor. Chem Eng Sci. 2019;195:262-270. (92) Zhang J, Wang Y, Shao Z, Li J, Zan S, Zhou S, Yang R. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. J Environ Sci. 2019;77:238-249. (93) Wang X, He Z, Luo H, Zhang M, Zhang D, Pan X, Gadd GM. Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci Total Environ. 2018;615:615-623. (94) Wang X, Pan X, Gadd GM. Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles. Sci Tot Environ. 2019;658:8-15.

1		
2		
3	017	(05) Dang E. Li Z. Zhang H. Mathulmarauru and salanium interactions: Machanisma
4	917	(95) Dang F, Li Z, Zhong H. Methylmercury and selenium interactions: Mechanisms
5	918	and implications for soil remediation. Crit Rev Environ Sci Technol. 2019;49(19);1737-
6	919	1768.
7	920	(06) Theorem AV Metalinking ED Laskshining EA Duran AM Nikiting VE
8 9	921	(96) Tugarova AV, Vetchinkina EP, Loshchinina EA, Burov AM, Nikitina VE,
9 10	922	Kamnev AA. Reduction of selenite by <i>Azospirillum brasilense</i> with the formation of
11	923	selenium nanoparticles. Microb Ecol. 2014;68(3):495–503.
12	924	
13	925	(97) Tugarova A, Mamchenkova P, Dyatlova Y, Kamnev A. Bacteria as cell factories
14	926	for producing selenium nanoparticles: their synthesis by the rhizobacterium
15	927	Azospirillum brasilense and characterisation. New Biotechnol. 2018;44S:S18.
16 17	928	
17 18	929	(98) Ayano H, Kuroda M, Soda S, Ike M. Effects of culture conditions of <i>Pseudomonas</i>
19	930	aeruginosa strain RB on the synthesis of CdSe nanoparticles. J Biosci Bioeng.
20	931	2015;119(4):440–445.
21	932	
22	933	(99) Yan Z-Y, Ai X-X, Su Y-L, Liu X-Y, Shan X-H, Wu S-M. Intracellular
23	934	biosynthesis of fluorescent CdSe quantum dots in <i>Bacillus subtilis</i> : a strategy to
24 25	935	construct signaling bacterial probes for visually detecting interaction between <i>Bacillus</i>
25 26	936	subtilis and Staphylococcus aureus. Microsc Microanal. 2016;22(1):13–21.
27	937	
28	938	(100) Fellowes JW, Pattrick RAD, Lloyd JR, Charnock JM, Coker VS, Mosselmans
29	939	JFW, Weng T-C, Pearce CI. Ex situ formation of metal selenide quantum dots using
30	940	bacterially derived selenide precursors. Nanotechnol. 2013;24(14):145603.
31 32	941	(101) Proglez L. Lafeburg DD. Ontimination of an ditions for an design colonida
33	942 943	(101) Brooks J, Lefebvre DD. Optimization of conditions for cadmium selenide
34	94 <i>5</i> 944	quantum dot biosynthesis in <i>Saccharomyces cerevisiae</i> . Appl Microbiol Biotechnol. 2017;101(7):2735–2745.
35	944 945	2017,101(7).2753-2745.
36	945 946	(102) Suresh AK. Extracellular bio-production and characterization of small
37	940 947	monodispersed CdSe quantum dot nanocrystallites. Spectrochim. Acta Part A: Mol
38 39	948	Biomol Spectrosc. 2014;130:344–349.
40	949	Biomor spectrose. 2014,150.544-547.
41	950	(103) Qi S, Yang S, Yue L, Wang J, Liang X, Xin B. Extracellular biosynthesis of Cu ₂₋
42	951	$_x$ Se nanocrystallites with photocatalytic activity. Mater Res Bull. 2019;111:126–132.
43	951 952	x se hander ystamics with photocatarytic activity. Water Kes Bull. 2019, 111.120–152.
44	953	(104) Che L, Xu W, Zhan J, Zhang L, Liu L, Zhou H. Complete genome sequence of
45 46	955 954	<i>Bacillus cereus</i> CC-1, a novel marine selenate/selenite reducing bacterium producing
46 47	954 955	metallic selenides nanomaterials. Curr Microbiol. 2019;76(1):78–85.
47 48	955 956	$\frac{1}{10000000000000000000000000000000000$
49	950 957	(105) Zhou H, Che L, Guo Z, Wu M, Li W, Xu W, Liu L. Bacteria-mediated ultrathin
50	958	Bi_2Se_3 nanosheets fabrication and their application in photothermal cancer therapy.
51	958 959	ACS Sustainable Chem Eng. 2018;6(4):4863–4870.
52	959 960	1.05 Sustainable Chem Ling. 2010,0($+$). $+005-+070$.
53 54	960 961	(106) Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A. Biogenic synthesis of novel
54 55	961 962	functionalized selenium nanoparticles by <i>Lactobacillus casei</i> ATCC 393 and its
56	962 963	protective effects on intestinal barrier dysfunction caused by enterotoxigenic
57	963 964	<i>Escherichia coli</i> K88. Front Microbiol. 2018;9:1129.
58	904 965	<i>Eschertentu con</i> 1000. 11000 1000001. 2010,7.1127.
59	705	
60		23

1		
2		
3	966	(107) Avandaño D. Chavas N. Eventes D. Sánahoz E. Jimánoz II. Chavarría M.
4	900 967	(107) Avendaño R, Chaves N, Fuentes P, Sánchez E, Jiménez JI, Chavarría M.
5		Production of selenium nanoparticles in <i>Pseudomonas putida</i> KT2440. Sci Rep. 2016 (c) 27155
6	968 060	2016;6:37155.
7	969 070	
8	970	(108) Cui Y-H, Li L-L, Zhou N-Q, Liu J-H, Huang Q, Wang H-J, Tian J, Yu H-Q. In
9 10	971	vivo synthesis of nano-selenium by <i>Tetrahymena thermophila</i> SB210. Enzym
11	972	Microbiol Technol. 2016;95:185–191.
12	973	
13	974	(109) Estevam EC, Griffin S, Nasim MJ, Denezhkin P, Schneider R, Lilischkis R,
14	975	Dominguez-Alvarez E, Witek K, Latacz G, Keck C, Schäfer KH, Kieć-Kononowicz K,
15	976	Handzlik J, Jacob C. Natural selenium particles from Staphylococcus carnosus: Hazards
16	977	or particles with particular promise? J Hazard Mater. 2017;324:22–30.
17	978	
18	979	(110) Gabalov KP, Rumina MV, Tarasenko TN, Vidyagina OS, Volkov AA,
19 20	980	Staroverov SA, Guliy OI. The adjuvant effect of selenium nanoparticles, Triton X-114
20 21	981	detergent micelles, and lecithin liposomes for Escherichia coli antigens. Appl Biochem
22	982	Microbiol 2017;53(5):587–593.
23	983	
24	984	(111) Xia X, Zhou Z, Wu S, Wang D, Zheng S, Wang G. Adsorption removal of
25	985	multiple dyes using biogenic selenium nanoparticles from an Escherichia coli strain
26	986	overexpressed selenite reductase CsrF. Nanomater. 2018;8(4):234.
27	987	
28	988	(112) Wadgaonkar SL, Mal J, Nancharaiah YV, Maheshwari NO, Esposito G, Lens
29 30	989	PNL. Formation of Se(0), Te(0), and Se(0)–Te(0) nanostructures during simultaneous
31	990	bioreduction of selenite and tellurite in a UASB reactor. Appl Microbiol Biotechnol.
32	991	2018;102(6):2899–2911.
33	992	2010,102(0).2033 2311.
34	993	(113) Xiong LH, Cui R, Zhang ZL, Yu X, Xie Z, Shi YB, Pang DW. Uniform
35	994	fluorescent nanobioprobes for pathogen detection. ACS Nano. 2014;8(5):5116–5124.
36	994 995	nuorescent nanobioprobes for pathogen detection. ACS Ivano. 2014,8(3).5110-5124.
37	995 996	(114) Mal J, Nancharaiah YV, Bera S, Maheshwari N, van Hullebusch ED, Lens PNL.
38	990 997	(a) Biosynthesis of CdSe nanoparticles by anaerobic granular sludge. Environ Sci:
39 40	997 998	Nano. 2017;4(4):824–833.
41	998 999	Nalio. 2017,4(4).824–835.
42		
43	1000	(115) Wang D, Xia X, Wu S, Zheng S, Wang G. The essentialness of glutathione
44	1001	reductase GorA for biosynthesis of Se(0)-nanoparticles and GSH for CdSe quantum dot
45	1002	formation in <i>Pseudomonas stutzeri</i> TS44. J Hazard Mater 2019;366:301–310.
46	1003	
47	1004	(116) Cui Y-H, Li L-L, Tian L-J, Zhou N-Q, Liu D-F, Lam PKS, Yu H-Q. Synthesis of
48 49	1005	CdS _{1-x} Se _x quantum dots in a protozoa <i>Tetrahymena pyriformis</i> . Appl Microbiol
49 50	1006	Biotechnol 2019;103(2):973–980.
51	1007	
52	1008	(117) Tan HW, Mo H-Y, Lau ATY, Xu Y-M Selenium species: current status and
53	1009	potentials in cancer prevention and therapy. Int J Mol Sci. 2019;20(1):75–101.
54	1010	
55	1011	(118) Sonkusre P. Specificity of biogenic selenium nanoparticles for prostate cancer
56	1012	therapy with reduced risk of toxicity: An in vitro and in vivo study. Front Oncol.
57 58	1013	2020;9:1541.
58 59	1014	
60		24
		27

1		
2		
3 4	1015	(119) Vahidi H, Barabadi H, Saravanan M. Emerging selenium nanoparticles to combat
5	1016	cancer: a systematic review. J Clust Sci. 2020;31:301–309.
6	1017	
7	1018	(120) Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine – An
8	1019	overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol.
9	1020	2018;46:223–233.
10	1021	
11 12	1022	(121) Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic
12	1023	applications of selenium nanoparticles. Biomed Pharmacotherapy. 2019;111:802-812.
14	1024	
15	1025	(122) Cremonini E, Boaretti M, Vandecandelaere I, Zonaro E, Coenye T, Lleo MM,
16	1026	Lampis S, Vallini G. Biogenic selenium nanoparticles synthesized by
17	1027	Stenotrophomonas maltophilia Se ITE 02 loose antibacterial and antibiofilm efficacy as
18	1028	a result of the progressive alteration of their organic coating layer. Microbial
19 20	1029	Biotechnol. 2018;11(6):1037–1047.
20 21	1030	
22	1031	(123) Zhang Y, Gladyshev V N. Comparative genomics of trace elements: emerging
23	1032	dynamic view of trace element utilization and function. Chem. Rev. 2009; 109: 4828-
24	1033	4861.
25	1034	
26	1035	(124) Müller S, Heider J, Böck A. The path of unspecific incorporation of selenium in
27	1036	Escherichia coli. Arch. Microbiol. 1997; 168: 421-427.
28 29	1037	
29 30	1038	(125) Böck A. Biosynthesis of selenoproteins — an overview. Biofactors 2000;11(1-2):
31	1039	77-78.
32	1040	
33	1041	(126) Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F.
34	1042	Selenocysteine: the 21st amino acid. Mol. Microbiol. 1991; 5(3): 515-520.
35	1043	
36 37	1044	(127) Peng T, Lin J, Xu Y, Zhang Y. Comparative genomics reveals new evolutionary
38	1045	and ecological patterns of selenium utilization in bacteria. ISME J 2016;10: 2048–2059.
39	1046	
40	1047	(128) Lin J, Peng T, Jiang L, Ni J-Z, Liu Q, Chen L, Zhang Y. Comparative genomics
41	1048	reveals new candidate genes involved in selenium metabolism in prokaryotes, genome
42	1049	biology and evolution, 2015; 7(3): 664–676,
43	1050	
44 45	1051	(129) Fernandes, J, Xin Hu, M. Smith, R, Go, Y-M, Jones DP. Selenium at the redox
46	1052	interface of the genome, metabolome and exposome. Free Radic Biol Med. 2019, 127:
47	1053	215-227.
48	1054	
49	1055	(130) Zhang Y. Prokaryotic selenoproteins and selenoproteomes. In: Hatfield D.,
50	1056	Schweizer U., Tsuji P., Gladyshev V. (eds) Selenium. Springer, Cham. 2016;pp 141-
51 52	1057	150
52 53	1058	
55 54	1059	
55	1060	
56	1061	
57	1062	
58		
59 60		25
00		25

Table 1

Microscopic and spectroscopic techniques used to investigate the speciation of selenium and the structure of SeNPs produced by microorganisms

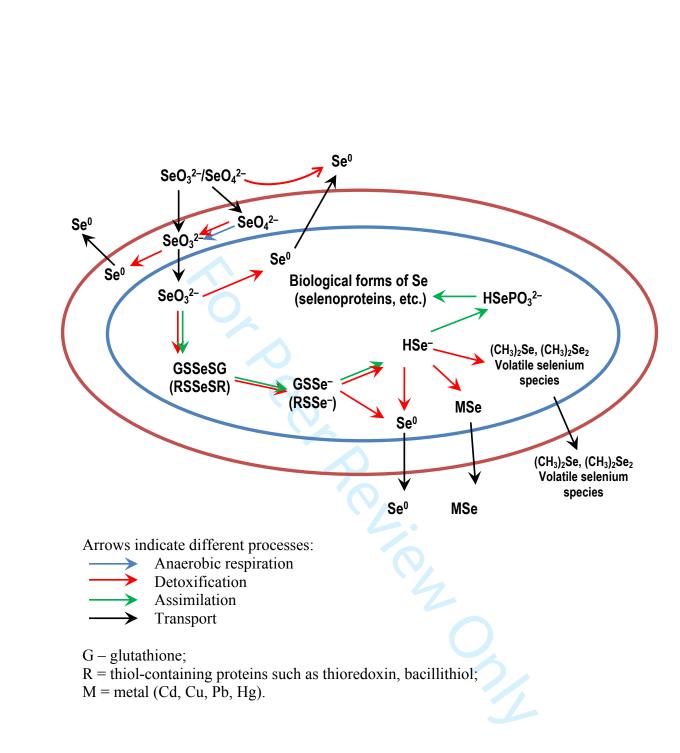
Technique	Information provided				
X-ray Absorption	Element specific technique				
Spectroscopy, XAS:	Determination of local coordination of Se:				
(X-ray Absorption Near Edge Structure, XANES*;	*Oxidation state; VI, IV, 0, -II				
Extended X-Ray Absorption Fine Structure, EXAFS**)	**Structural parameters of biogenic Se species: number and chemical identities of near neighbours atoms and the average interatomic distances up to 5-6 Å.				
X-ray Photoelectron Spectroscopy	Surface chemistry of purified biogenic SeNPs (oxidation state, nature of functional groups of organic matter adsorbed to SeNPs surfaces, etc.)				
Č	Elemental composition of surface-bound Se NPs of whole cells (outermost 10 nm of the cell wall)				
X-Ray Diffraction	Determination of size and phase of SeNPs (amorphous, monoclinic, trigonal)				
Infrared Spectroscopy	Compositional data: nature of organic matter (lipids, proteins, polysaccharides) associated with biogenic SeNPs				
	Monitoring molecular-level changes in the structure and composition of cellular macrocomponents involved in the interactions with SeNPs.				
Raman Spectroscopy	Sensitive to differences in various allotropic changes (amorphous, monoclinic, trigonal) and crystallinity of Se in SeNPs				
	Composition of SeNPs (presence of Se-S, etc.)				
Scanning Transmission	Cellular localization of the biogenic SeNPs				
Electron Microscopy (STEM) coupled with a High Angle	Elemental composition (S, Se, P, etc.)				
Annular Dark-Field (HAADF)	Crystallographic properties of the SeNPs				
Variable Pressure Field Emission Scanning Electron Microscope (VP-FESEM)	Determination of size and chemical composition of SeNPs (interactions with organic matter including proteins, EPS, etc.)				
Dynamic light scattering and zeta potential analysis	Particle size and surface charge				

Table 2

Biotechnologically useful selenium-containing nano-sized products of microbial origin and conditions of their biogenic synthesis*

Compo- sition	Micro- organisms	Electron donors (medium) / electron acceptors	Conditions	Localisation, properties, morphology, size	Notes	Refer ences
Se ⁰	Cronobact er sp.	Acetate, lactate, propionate or butyrate / selenite	Microaerobic	Extracellular (aggregates)	Selenite bioreduction rates 0.10–0.24 mM·d ⁻¹	(87)
Se ⁰	Cronobact er sp.	Graphite felt electrode / selenite	Anaerobic electrotrophic bioreduction (at –0.3 V vs. SHE)	NPs (50 to 300 nm) attached to the electrode	Selenite bioelectroreductio n rate 0.03 mM·d ⁻	(87)
Se ⁰	Pseudomo nas putida	LB broth / selenite	Aerobic	Extracellular spherical NPs and aggregates (100– 500 nm)	High selenite bioreduction rate (0.444 mM·h ⁻¹)	(107)
Se ⁰	Pseudomo nas aeruginosa	Peptone nutrient broth / selenite	Aerobic	Extracellular (cell surface-bound), spherical, amorphous (~47– 165 nm; average size ~96 nm)	Covered with a bioorganic layer (NPs characterised by a range of instrumental techniques)	(77)
Se ⁰	Tetrahyme na thermophil a	Proteose peptone medium / selenite	Aerobic	Intracellular amorphous spherical (50–500 nm), with irregular NPs	Covered with a bioorganic layer (including proteins); NPs characterised by a range of instrumental techniques)	(108)
Se ⁰	Staphyloco ccus carnosus	LB culture medium / selenite	Aerobic	Intracellular (isolated by cell disruption and separated); spherical (average sizes ~440–525 nm)	Associated with proteins. NPs showed considerable anti- nematode and antimicrobial activities	(109)
Se ⁰	A microbial community of anaerobic sludge	Lactic acid / selenate; selenium sulphide (SeS ₂)	Anaerobic bioreduction of selenate or SeS_2 (precipitated during reduction of selenite by sulphide)	Amorphous nanospheres; hexagonal acicular crystallites (not attached to biomass)	Higher pH and temperatures are favourable for obtaining crystals (without a bioorganic 'coating')	(40,4 8)
Se ⁰	<i>Escherichi</i> <i>a coli</i> (weakly virulent α- hemolytic	Culture broth / selenite	Aerobic	Intracellular spherical or ovoid NPs; 30–120 nm	Promising as an adjuvant (for the immunisation of livestock and poultry against	(110)

	strain B-5)				colibacillosis)	
Se ⁰	<i>Escherichi</i> <i>a coli</i> (selenite reductase CsrF overexpres	LB culture medium / selenite	Aerobic	Intra- and extracellular irregular nanospheres (60– 105 nm)	Covered with a bioorganic layer. High potential for adsorption and removal of dyes	(111)
Se ⁰	sing strain) Lactobacill us casei	MRS culture broth (Sigma) / selenite	Anaerobic	Intracellular spherical NPs; 50– 80 nm	Promising as a probiotic	(106)
Se ⁰	Azospirillu m brasilense	Autotrophic (in physiological solution) / selenite	Microaerobic	Extracellular, spherical (~50–100 nm), amorphous	Covered with a bioorganic layer	(32)
Se _{8-n} S _n	Azospirillu m brasilense	Malate- containing salt medium + 1 $g \cdot L^{-1}$ (NH ₄) ₂ SO ₄ / selenite	Aerobic (selenite reduction in the presence of an increased concentration of sulphates)	Extracellular, spherical (~400 nm), amoprhous	Covered with a bioorganic layer (NPs characterised by a range of instrumental techniques)	(73)
Se ⁰	Mariannae a sp.	Modified Martin medium with 1 g·L ⁻¹ glucose / SeO ₂	Aerobic (at varying SeO ₂ concentrations and pH 5–12)	Intracellular (~45 nm) or extracellular (~212 nm) crystalline spherical NPs	Extracellular localisation of NPs at alkaline pH. NPs associated with proteins	(30)
Se ⁰ , Se ⁰ –Te ⁰	Microbial community of methanoge nic granular sludge	Anaerobic granular sludge (with lactate) / selenite + tellurite	Anaerobic (simultaneous reduction of selenite and tellurite)	EPS-entrapped crystalline Se ⁰ , Te ⁰ and mixed Se ⁰ –Te ⁰ irregular anisotropic nanostructures	First demonstration of mixed Se ⁰ –Te ⁰ NPs formed by anaerobic microorgaisms	(112
CdSe	Veillonella atypica	H ₂ / selenite (with 0.1 mM AQDS as an electron shuttling compound)	Anaerobic (with further filtering the Se ² containing culture and adding Cd ^{II} GSH solution)	Fluorescent QDs; 2.3–3.6 (± 1.2) nm	Associated with a range of proteins and GSH as a capping agent	(100
CdSe	Helmintho sporum solani	Incubation in aqueous solution of $CdCl_2 / SeCl_4$	Aerobic (ambient conditions)	Extracellular monodisperse spheres (QDs; mean diameter 5.5 ± 2 nm)	Characterised by a range of instrumental techniques	(102
CdS _{0.5} Se _{0.5}	Staphyloco ccus aureus	GSH / selenite	Aerobic; intracellular reduction (further interaction with Cd ²⁺)	Intracellular uniform monodisperse nanocrystals (1.8 ± 0.5 nm; fluorescent QDs)	Low crystallinity; possible presence of a capping protein/peptide layer	(113
CdSe	Bacillus subtilis	LB culture medium / selenite	Aerobic; intracellular reduction (further	Blocks of intracellular nanocrystals with angular shape	No isolation and chemical analysis of CdSe was performed	(99)


_
1
2
3
4
5
6
7
, 0
8
9
10
11
12
14
15
16
10
13 14 15 16 17 18
18
19
20
21
20 21 22 23 24 25 26 27 28 29 30
23
24
24
25
26
27
28
29
30
31
32
33
34 35
35
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
5 0
51
52
53
54
55
56
57
58
58 59
59 60
60

			interaction with Cd ²⁺)	(fluorescent QDs)		
CdSe	Saccharom yces cerevisiae	Sterilised yeast extract peptone medium / selenite	Aerobic; Se ^{IV} - exposed cells (in fresh medium) added to CdCl ₂ solution	Intracellular QDs (isolated by cell lysis and homogenisation with further separation); ~2.8 nm	Biosynthetic protocol optimized by concentrations and times of exposure	(101)
CdSe	Shewanell a oneidensis	LB medium / selenite	Anaerobic (incubation with selenite followed by CdCl ₂ addition)	Intracellular high- purity uniform fluorescent QDs (~3.3± 0.6 nm)	Highest CdSe bioproduction rates. (Extracellular Se ⁰ NPs also obtained)	(29)
CdSe; CdSe/CdS	A methanoge nic microbial consortium	Anaerobic granular sludge (with lactate) / selenite	Anaerobic (selenite reduction in the presence of Cd ²⁺ –NTA complex)	Extracellular fluorescent CdSe and CdSe/CdS core-shell NPs (10– 190 nm)	CdSe NPs capped by extracellular polymeric substances (contain impurities of Se ⁰ NPs)	(114)
CdSe	Pseudomo nas stutzeri	GSH / selenite	Aerobic (selenite reduction in the presence of Cd ²⁺)	Intracellular fluorescent QDs (isolated by cell disruption and separated); < 10 nm	Covered with a bioorganic layer (QDs characterised by a range of instrumental techniques)	(115)
CdS _{1-x} Se _x	Tetrahyme na pyriformis	Proteose peptone medium / selenite	Aerobic (incubation with selenite followed by CdCl ₂ addition)	Intracellular fluorescent QDs (isolated by cell lysis and disruption, separated and purified); 8.3 ± 0.8 nm	Optimised biosynthetic protocol; QDs characterised by a range of instrumental techniques	(116)
Cu _{2-x} Se	Pantoea agglomera ns	Glucose- containing salt medium (with EDTA-Cu ²⁺) / selenite	Anaerobic	Extracellular uniform crystallites (~80 nm)	Capped by proteins (NPs characterised by a range of instrumental techniques)	(103)
Bi ₂ Se ₃	Lysinibacil lus sp.	Tryptic soy broth / selenite	Aerobic (selenite reduction in the presence of Bi ³⁺ nitrate)	Extracellular (also intracellular) crystalline nanosheets (~60 nm; average thickness 5–6 nm)	Covered with a bioorganic layer (proteins). Promising for photothermal therapy against cancer cells	(105)
Se ⁰ , Bi ₂ Se ₃ , PbSe, Ag ₂ Se	Bacillus cereus	Tryptic soy broth / selenite	Aerobic (selenite reduction to Se ⁰ or, in the presence of either of metal ions, to metal selenides)	Extra- and intracellular trigonal Se ⁰ NPs (without metal ions); extracellular crystalline photoluminescent PbSe and Ag ₂ Se, cell-bound Bi ₂ Se ₃ (~10–50 nm)	Adding 1% PVP to the culture medium changed the size and morphology of Bi ₂ Se ₃ and PbSe NPs	(104)

* Abbreviations: AQDS, anthraquinone-2,6-disulphonate ; EPS, extracellular polymeric substances; GSH, reduced glutathione; LB, liquid Luria-Bertani broth; NPs, nanoparticles; NTA, nitrilotriacetic acid; PVP, polyvinyl pyrrolidone; QDs, quantum dots; SHE, standard hydrogen electrode

For Peer Review Only

URL: http://mc.manuscriptcentral.com/bbtn IBTY-peerreview@journals.tandf.co.uk

