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Abstract 

In the last decade, Matrix Assisted Laser Desorption Ionisation Mass Spectrometry 

(MALDI MS) has proven to be a valuable analytical tool in forensic research as it can 

detect and map molecular information of forensic relevance in trace evidence such 

as fingermarks and hair. The first published proof of concept demonstrating that it 

was possible to differentiate males and females from the peptide and protein content 

of their fingermarks was published in 2012. In that work, MALDI MS was used in 

Profiling mode (MALDI MSP) to quickly obtain spectral profiles of ungroomed marks. 

These were submitted to Partial Least Square Discriminant Analysis (PLS-DA) 

yielding sex discrimination with an accuracy between 67.5% and 74.4%, if harsh 

classification criteria were applied. Since then, this research has progressed to 

investigate the opportunity to increase the accuracy of prediction in natural marks 

(obtained with no preparation of the fingertip prior to deposition) either unenhanced 

or enhanced prior to matrix application and MALDI analysis. Extensive statistical 

modelling has been employed to determine the model with the highest sex predictive 

accuracy. Results show that in natural marks the presence of polymers (as external 
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contaminants) in fingermarks affects the peptide/protein signals to various degrees 

and only by using one type of scoring system a method has been identified to 

provide up to 86.1% predictive power in discriminating female from male marks.  

 

 

Keywords: fingermark, natural, MALDI MS, sex, machine learning 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.0 Introduction 

Fingermarks are the most commonly collected evidence from crime scenes and 

remain the major contributor to suspect identification. Any intelligence that can be 

extracted from the chemical make-up of a fingermark could greatly inform 

investigations, contributing to narrowing down the pool of suspects. The sex of an 

individual is one such type of important intelligence which can only be currently 

gathered, if requested, through DNA. However, DNA is sensitive to environmental 

conditions, susceptible of degradation and in some cases, found in too low 

abundance to yield any information. By 2012, a few groups had unsuccessfully 

attempted the determination of the sex of an individual by exploiting the lipid content 

of fingermarks and using Laser Desorption Ionisation (LDI) Mass Spectrometry [1,2].  

In recent years, Halamek’s group used a different approach to the problem by 

exploiting the presence of amino acids in fingermarks. In a first publication, the 

authors made an encouraging claim that by using a biocatalytic assay to measure 

the absorbance of the complex formed between amino acids and the L-AAO/HRP 

bioassay, it was possible to obtain a 99% predictive value for correct discrimination 

of male and female fingermarks [3]. However these results were obtained for artificial 

‘fingermark mixtures’ and no predictive value is reported for actual natural 

fingermarks or previously enhanced marks. In a second study by the same group [4], 

enhanced marks were considered by using 1,2-Indanedione, an amino acid reagent 

which is gaining momentum for fingermark enhancement on paper [5,6]. 

Fluorescence measurements, taken upon formation of a complex between 1,2-

Indanedione and amino acids, were used to discriminate the female and male 

donors’ fingermarks. This method would have the benefit of being quick and simple; 

it would also be multi-informative as, in one measurement, it could provide the 

biometric information (the ridge pattern) and the sex of the donor. The authors have 

acted on the prior knowledge that the quantities of amino acids in sweat are 

expressed twice as much in females than in males. Although this ‘prior knowledge’ 

has not been referenced in the literature by the authors, it seems to be confirmed as 

the fluorescence signal obtained in female marks is, in fact, twice as much as that 

obtained in male marks. 

Whilst the approach appears to be no doubt interesting, it does require further 

investigation as this second study only employed 4 fingermarks and no actual 



statistical analysis details are reported. In addition, further understanding the 

relationship between fluorescence signal and pressure variability in fingermark 

deposition is required. Recently, the application of Desorption Electrospray Ionisation 

(DESI) Mass Spectrometry Imaging (MSI) yielded the discrimination of female and 

male donors’ fingermarks (2 female and 2 male donors for a total of 12 fingermarks) 

exploiting their lipid composition [7]. Principal Component Analysis (PCA) was 

applied to statistically treat the data. Although the first two components 

demonstrated good separation of male and female marks, only cross validation data 

have been reported and, crucially, only 4 donors were used, with no prior application 

of an enhancement technique. Additionally, no details are reported on the type of 

marks employed.  

Therefore, to date there is no method that can actually be considered viable to 

determine sex from fingermarks.  

In a different approach published in 2012, Ferguson et al [8] provided the first 

encouraging proof of concept employing Matrix Assisted Laser Desorption Ionisation 

Mass Spectrometry (MALDI MS) to detect endogenous peptides and small proteins 

in fingermarks. These species belong to eccrine secretions and, as such, peptides 

and proteins exist in an aqueous environment composed of ~98% water and ~2% 

inorganic species (electrolytes) as well as organic molecules (amino acids and urea 

[9]). Recently, the quantity of peptides and proteins in a fingermark has been 

estimated as ranging between 0.2 - 51.0 μg [10]. Despite the relatively low 

abundance, especially compared to that of lipids, Ferguson et al. [8] demonstrated 

that by combining MALDI MS detection of peptides and proteins and Partial Least 

Square Discriminant Analysis (PLS-DA), sex discrimination was possible with an 

accuracy of prediction between 67.5 and 74.4% (or 85% if less harsh classification 

criteria were applied). However, this study only collected a relatively small number of 

donors (80). It also excluded participants from the study if falling outside of the 18-45 

years age range and if they had taken drugs or medications within the two weeks 

prior to the finger smear collection. Furthermore, ungroomed fingermark smears 

were employed, that is, artificially prepared marks with depleted lipid and 

contaminant content [11].  These types of marks are a useful model to investigate 

feasibility of a method but they do not reflect the variable molecular composition of 

the real crime scene marks species [12]). In the present study, it has been 

investigated whether a comparable achievement of high predictive power can be 



achieved by employing a larger, more representative cohort of donors, and by using: 

(i) natural marks (deposited without prior preparation of fingertips) and (ii) from 

enhanced natural marks. In the current investigation, the results of two consecutive 

studies are reported (study 1 and study 2). Firstly, in study 1, the sample size was 

expanded from 80 [8]  to 199 donors employing natural marks, with no exclusion 

criteria for donor participation (except for individuals below 18 years of age) and both 

with and without prior fingermark enhancement. In order to enhance fingermarks, 

gold vacuum metal deposition (VMD) was employed. Although this study did not 

yield meaningful results as later discussed in this paper, it informed the design of 

subsequent research (study 2). In study 2 172 donors donated natural marks which 

were analysed by MALDI MS both with and without prior enhancement by white 

powder. 

MALDI mass spectra from study 2 have been subjected to extensive statistical 

modelling, and the sex discriminating power of a range of machine learning 

classification models has been evaluated. Furthermore, a systematic analysis of 

multiple peak picking strategies, classification model choices, feature selection and 

scoring criteria approaches has been performed. Ultimately, this processing strategy 

has proved the overall approach to be practically applicable in the triaging of crime 

scene marks. 

2.0 Experimental 

2.1 Materials  

ALUGRAM® SIL G/UV254 pre-coated aluminium sheets, α-cyano-4-

hydroxycinnamic acid (α-CHCA) and trifluoroacetic acid (TFA) were purchased from 

Sigma-Aldrich (Gillingham, UK). Acetone, acetonitrile and methanol were purchased 

from Fisher Scientific (Loughborough, UK). Doubled sided conductive copper foil 

shielding tape was purchased from 3M (St. Paul, MN, USA). Indium tin oxide (ITO)-

coated slides were purchased from Delta Technologies Ltd. (Loveland, CO, USA). 

Sirchie Indestructible White “Hi-Fi” Volcano latent fingerprint enhancement powder 

was purchased from WA Products (Essex, UK). The Breeze™ single-use fibreglass 

zephyr brushes were purchased from SceneSafe (Essex, UK). 



2.2 Instrumentation and instrumental parameters 

For study 1 data, three acquisitions were made per mark on each matrix spot on an 

Autoflex MALDI TOF-TOF mass spectrometer (Bruker Daltonik GmbH, Bremen, 

Germany) equipped with a 200 Hz SmartBeam™ laser, selecting the laser spot size 

as 100 x 150 µm. Calibration was performed between each separate set of donor 

samples using Bruker Protein Calibration Standard I. Acquisition was carried out in 

the mass range 1,000 - 12,474 Da in positive linear mode. Each spectrum was 

obtained through  a total of 900 shots (300 shots from each of the three replicates). 

For study 2, data were acquired using two Bruker Rapiflex MALDI TOF-TOF mass 

spectrometers (Bruker Daltonik GmbH, Bremen, Germany) equipped with a 

neodymium-doped yttrium aluminium garnet (Nd:YAG) 355 nm SmartBeamTM 3D 

laser operating at a repetition rate of 10 kHz. In this instance, the laser spot size was 

95 x 95 µm. Calibration was performed between each separate set of donor samples 

using a Bruker Protein Calibration Standard I mixed with adrenocorticotropic 

hormone corticotropin-like intermediate peptide (ACTH CLIP) fragment [18-39] to 

provide a calibration range from 2,465 - 12,361 Da. Calibration was performed in 

quadratic mode with at least 4 calibration points. Acquisition was carried out in the 

mass range up to 12,600 Da in positive linear mode. Each spectrum was obtained 

through a total of 30,000 shots (10,000 shots from each of the three replicates 

across the mark) in a random walk mode. 

 

2.3 Methods 

2.3.1 Fingermark collection 

For study 1,  6 natural fingermarks were collected from each of the 199 participants 

rubbing their fingertips together prior to deposition on pre-cleaned TLC sheets 

(aluminium slides), totalling 1,194 samples. The marks were frozen at -80ºC in 

microscope slide boxes. For study 2, 6 natural fingermarks were collected from each 

of the 172 participants rubbing their fingertips together before depositing three prints 

from both their right and left hands on two separate aluminium slides, totalling 1,032 

samples. The slides were immediately placed inside microscope slide holder boxes 

and kept at room temperature until analysis. For both study 1 and 2, fingermarks 

were collected from participants from West Yorkshire Police and Sheffield Hallam 



University in accordance with approved SHU ethics applications HWB-

BRERF014/11 (study 1) and ER17244422 (study 2). 

2.3.2 Fingermark enhancement 

In study 1, the marks were cut in half length ways, and one half visualised with VMD, 

using gold nano-powder according to the protocol detailed by the Fingermark 

Visualisation Manual [5]. In study 2, 516 marks remained unenhanced, whereas 516 

were enhanced using Sirchie Indestructible White enhancement powder. Each donor 

fingermark set was enhanced using a separate disposable zephyr brush which was 

then disposed of to avoid cross-contamination. 

2.3.3 Fingermark preparation for MALDI MSP 

For study 1, samples were defrosted prior to analysis. As the aluminium sheets were 

removed from the glass slider containers, they were placed in a vacuum desiccator 

for 10 minutes and then subsequently mounted on the MALDI plate using double 

sided carbon tape for analysis on an Autoflex MALDI TOF-TOF (Buker Daltonics 

GmbH, Bremen, Germany). α-CHCA matrix (5 mg/ml in 25:25:50 ACN:Eth:0.5% 

TFAaq) was spotted in three locations directly onto the mark. 0.5 µL calibration 

standard was pipette mixed with matrix directly on a blank area of the slide. For 

study 2, the room temperature stored  aluminium sheets were removed from their 

glass slide containers and mounted on conductive ITO slides with double-sided 

copper tape. 0.5 µL calibration standard was pipette mixed with 0.5 µL α-CHCA 

matrix at 5 mg/mL in 70:30 ACN:0.5% TFAaq in the top centre of the slide. For each 

set of marks (non-enhanced and enhanced), three spots of 0.5 µL of α-CHCA were 

then deposited down the middle of each mark. 

2.4 Statistical analysis 

2.4.1 Study 1 

2.4.1.1 Pre-processing 

For study 1, the three spectra for 1 donor's fingermark were kept separate and used 

as technical replicates. Smoothing, baseline correction and peak picking parameters 

were selected in FlexAnalysis (Bruker's proprietary data processing software) with 

S/N >3.5. Spectra were visually assessed for polymer contamination and minimum 

intensity threshold and outliers were removed. FlexAnalysis spectra files were 

exported and converted to CSV-format files and the 2 header lines removed with a 



FlexAnalysis method script. The CSV files were converted to TXT files and imported 

into Markerview mass spectrometry processing software (Sciex, AB Sciex Pte. Ltd, 

Warrington, Cheshire) as centroided spectra with a mass tolerance of 0.5 Da. The 

filtering minimum response was 0.1 au and the maximum number of peaks limited to 

1,000. PCA was applied with Pareto scaling. The whole dataset was then exported 

to Matlab (The Mathworks, Inc., Natick, MA, USA) for statistical analysis with the 

PLS_Toolbox (Eigenvector Research, Inc., Manson, WA, USA).  

2.4.1.2 Statistical processing 

Normalized and mean centred spectra were used to build a PLS-DA classification 

model for the classes male and female. The data was split into a training and 

validation set, ensuring that all spectra of each fingermark were either in one or the 

other and that the male/female distribution was comparable for both. Internal cross-

validation (4-way split venetian blinds) was applied to assess ideal model complexity 

at 4 latent variables. Classification errors were quantified for model fit and cross 

validation accuracy during the cross-validation stage and the independent validation 

set was then used to estimate the prediction error for unknown spectra. To increase 

stability and accuracy, another model was built, using the same datasets but based 

on only those spectral variables with higher importance to the first model (Variable 

Importance on Projection selection method, VIP). The same assessment of model fit, 

CV error and prediction accuracy was applied.  

 

2.4.2 Study 2 

2.4.2.1 Pre-processing 

For study 2, three marks were obtained per donor, with each mark corresponding to 

a single mass spectrum, obtained by averaging three individual mass spectra 

acquired from three distinct matrix spots. The effects of two pre-processing 

strategies have been compared: (a) the three marks per donor have been kept 

separate for statistical processing, and (b) the three individual spectra per donor 

have instead been combined in a single averaged spectrum. 

Prior to statistical analysis with SCiLS Lab software (v 5.12.0, Bruker Daltonics, 

GmbH, Bremen, Germany), the mass spectra were converted to imzML-format files 

using R (v 3.6.1, R Foundation for Statistical Computing, Vienna, Austria) and the 



MALDIquant package, and then imported into SCiLS Lab software. All spectra were 

baseline corrected (tophat) at 200 interval width. 

Each of the data sets (natural and natural enhanced fingermarks) were averaged 

and imported into mMass (v 5.5.0) [13], where peak picking, smoothing and baseline 

correction were carried out to identify signals of interest. A S/N threshold of 1:1 was 

selected to enable peak picking of a sufficient number of peaks to perform statistical 

processing. This peak list was then imported into SCiLS Lab and used as reference 

m/z positions for LDA classification. An overall peak list was generated using 

mMass, and, again, separate trial peak lists were exported to SCiLS Lab for both the 

S/N >2:1 and 1:1 levels. 

Prior to further analysis of sex classification models using Python (and separate to 

the pre-processing steps for SCiLS Lab described above), an R script was written to 

perform initial sample processing with the MALDIquant package, including baseline 

correction, TIC normalisation and spectral smoothing. Peak picking was also 

performed here using MALDIquant. By varying both the required S/N parameter and 

required minimum occurrence rate of each peak across the sample spectra (denoted 

“minFreq” in the following text), the effect of different peak picking strategies on the 

performance of the resulting sex classification models was monitored (Table 1). 

Peak picked cross-sample spectra arrays were then exported to CSV-format for 

subsequent model training. 

 

 Required fraction of spectra needed for a peak to be included in 
the analyses (minFreq) 

S/N  1% 10% 50% 90% 

2 2867 2764 141 6 

3 2570 1773 61 - 

5 869 428 27 - 

10 335 90 6 - 

20 168 19 - - 

 

Table 1. Variable peak picking strategies used in MALDIquant yield different counts 

of peaks for downstream analysis. S/N values vary between 2 to 20 (vertical axis), 

and the required fraction of spectra needed for a peak to be included vary between 

1% and 90% (horizontal axis) denoted 'miniFreq'.  

 



2.4.2.2 Statistical processing 

A 10-fold supervised Linear Discriminant Analysis (LDA) classification was 

performed in SCiLS Lab on both the unenhanced and enhanced datasets. As a 

requirement of the LDA method, it has been assumed that all data is sampled from a 

multivariate normal distribution, with different means in each sex group, but identical 

covariance across the groups. In the training phase, the group means and dataset 

covariance are calculated. For classification, the spectra are subsequently assigned 

to the group that maximises the probability.  

In a parallel approach that was conducted separate to the SCiLS Lab analysis, the 

relative performance of a range of different classification model types has been 

systematically investigated (Table 2). All machine learning has been implemented in 

Python, utilising the scikit-learn and XGBOOST packages, with k-fold cross 

validation (CV) being used to assess the relative performance of each model. CV 

performance has been performed with k set to 5, 10, 25, and 50, to determine the 

robustness of the reported accuracy scores between different k values. During each 

individual CV k-fold split, care was taken to ensure that all three marks (technical 

replicates) from a donor were assigned to either the train or test set. 

 

Model name Reason for inclusion 
LDA Standard classification model available in the SCiLS Lab software 

Random forest Decision tree-based ensemble learning classification method 

Naïve Bayes A standard baseline model, typically used for benchmarking purposes 

XGBOOST A tree-based ensemble method using gradient boosting that has 
recently gained large popularity 

PLS-DA Classification method used in the previous study by Ferguson et al., 
(2012)4  

 

Table 2. Overview of classification models used in the current analysis 

 

In addition to using all picked m/z positions as inputs to the classifiers in Table 2, the 

impact of several feature selection strategies (Table S1) on the performance of each 

model has been investigated. The following feature selection methods have been 

included: (a) the PLS-DA VIP (Variable Importance in Projection) score, (b) random 

forest feature importance (based on the decrease in Gini impurity associated with 

each feature across trees) and (c) univariate feature selection via a chi-squared test 



to identify m/z peaks that are most likely to be dependent on sex. For each k-fold CV 

split, only the training subset of samples was used for feature selection, to ensure 

that each test set of samples remained hidden throughout cross validation. 

Neural network implementation for multi-class classification - A dense neural network 

architecture was implemented for joint prediction of sex and contaminants for the 

unenhanced fingerprint dataset using the Keras python package (with Tensorflow 

backend). The architecture consisted of two fully connected dense layers (of 100 and 

10 nodes respectively), incorporating 20% dropout and Relu activation layers 

between each dense layer. Two contrasting output layer designs have been 

compared: (i) an output layer consisted of two nodes with softmax activation for sex 

prediction only, and (ii) an output layer consisted of two pairs of two nodes, with each 

pair having an independent softmax normalisation for sex and contamination state 

prediction. In both cases, the model was trained for 100 epochs with a categorical 

cross-entropy loss function (one separate loss function for each pair in (ii)).  

 

3.0 Results and Discussion 

The study published by Ferguson et al. [8], offered an encouraging proof of principle 

that MALDI spectral profiles of peptides and proteins could differentiate between 

"female and male fingermarks". However, the study design did not permit the 

evaluation of the potential for implementation in the forensic fingerprinting workflow. 

The study employed a small donor cohort (80 donors), and lipid and contaminant 

depleted marks. It  excluded participants below 18 and over 45 years and those 

taking medications up to two weeks prior to the fingermark collection. Also, there 

was no consideration of the prior application of a CSI fingermark enhancement 

technique. All of these design features prevented any evaluation on the robustness 

of the method and on the real opportunity for casework application. For these 

reasons, study 1 was subsequently devised where marks from 199 donors were 

collected with no exclusion criteria and no prior treatment of the fingertip (thus 

producing "natural" marks). In addition, half of the marks were subjected to gold 

vacuum metal deposition (VMD), a technique normally employed by crime labs in 

high profile cases to visualise marks on semi-porous and non-porous surfaces.  



Gold nanoparticles have been previously found to enhance the MALDI signal due to 

laser energy trapping by gold nano-islands [14]. Bradshaw et al. [15] found that gold 

deposited through VMD boosted the ion signals of small molecules and enabled 

higher quality of the molecular images of the fingermark ridge pattern. MALDI MS 

Imaging compatibility with a commonly applied fingermark enhancement technique 

was proved, as well as its ability to increase the clarity of the ridge pattern 

(compared to that obtained by the sole application of VMD) for older marks.   

However, within study 1, VMD caused ion suppression of peptides and proteins 

(Figure 1). Around 20% of the marks exhibited the peptide and protein spectral 

profile expected (Fig. 1A) although the ion population was reduced in comparison 

with spectra observed in Ferguson et al. [8] Around 30% of the spectra were 

dominated by gold nanoparticle clusters where the typical difference of 187 mass 

units were observed between the peaks (Fig. 1B) and around 50% of the spectra 

exhibited complete suppression of the protein/peptide ion signals with just gold 

nanoparticle clusters being detected (Fig. 1C).  

It is speculated that these instances reflect the distribution in the participants' cohort 

of what are defined "good, average and bad donors" [16]. These attributes refer to 

the abundance (and nature) of endogenous species secreted into the sweat that is 

then transferred in a fingermark upon contact of the fingertip with a surface. It may 

be possible that a different gold layer thickness would improve the detection of lower 

abundance peptides and proteins in certain donors. However, even if this was 

possible, it would not be applicable in an operational context due to the required 

compliance with accredited processes. Given the above results, only the natural 

unenhanced marks were subjected to statistical analysis. 

During internal cross validation, the classification errors varied between ~20% for 

those spectra used to build the models and 40% for the left out cross-validation 

samples. The prediction error of the independent validation set was worse again at 

45%, approaching accuracy of random guess. Receiver operating characteristic 

(ROC) analysis was used to evaluate the performance of the method and estimate 

the probability of distinguishing between the male and female samples groups. ROC 

analysis involves changing the threshold (for example, above which the mass 

spectral characteristics fit the female group) and observing the effect on the 

predictive power of the model to produce a ROC curve. The area under the ROC 

curve (AUC) represents the probability that the diagnostic test will correctly 



distinguish between the male and female samples so that the larger the AUC, the 

higher the probability that each sample will be identified correctly. As it can be seen 

from Figure 2, the predictive power was only slightly better than "a flip of a coin" as 

males and females were classified with a 55% accuracy of prediction only. 

As the PLS-DA model used less than 20% of the spectral variance, a second model 

was built by selecting only those spectral variables that had most influence on the 

first model, using the VIP selection method. The resulting model did not show any 

improvement on the first model. This led to the conclusion that across all spectral 

variables there was too much random variance between spectra from the same 

fingermark to be able to build stable and sex relevant models. Individual inspection 

of the raw spectral data appeared to confirm this conclusion. These results were 

disappointing considered the encouraging proof of concept published in 2012 [8]. 

Failure to correctly classify donor's sex could be due to higher variability in the 

fingermark composition, typical of natural marks, including the variable presence and 

amount of potentially ion suppressing contaminants. It was also possible that the 

removal of restriction criteria to donors' participation could have contributed to 

fingermark compositional variability to a level which the statistical model was not 

able to cope with. If these were the reasons, then this study showed that sex 

discrimination from fingermarks is not possible in "uncontrolled" conditions using 

endogenous peptides and proteins.  

However, additional variability may have been unintentionally introduced in the 

system due to: (i) two different operators acquiring data from fingermarks, (ii) the 

variability in instrumental performance and environmental conditions over an 

extended 4 month period (the overall time needed to complete the analysis of all of 

the marks) and (iii) sample compositional changes or molecular migration possibly 

determined by rapid condensation during the fingermark sample defrosting step.  

It was speculated that the presence of ion suppressing contaminants could be 

attenuated by higher sensitivity instruments than the Autoflex MALDI TOF-TOF 

(Bruker Daltonik GmbH, Bremen, Germany). From a processing point of view, in this 

study, the three MALDI MS spectra acquired in three different areas of the same 

fingermark were used as technical replicates. This approach might have introduced 

further variability in the system as the matrix could have well been deposited in a 

fingermark area of lower protein/peptide content. Ion intensity variability, due to a 

combination of relatively low number laser shot accumulation and the known "sweet 



spot" phenomenon in MALDI (lack of shot to shot reproducibility due to uneven 

analyte-matrix co-crystallisation), would have further impacted spectral 

reproducibility. As there was a significant possibility that failure of study 1 was 

determined by a combination of sub-optimal study design and the time taken to 

analyse all the samples, a further study (study 2) was outlined.  

In study 2, 172 donors donated a total of 1,032 natural marks (6 per donor) which, 

this time, were kept at room temperature prior to analysis, to avoid any possible 

freeze-thaw or condensation issues upon defrosting. Furthermore, a single operator 

acquired all the MALDI MS spectral profiles and over the course of just over 1 month 

to minimise environmental and fingermark compositional variability. From a 

processing point of view, given that the three matrix spots had been acquired from 

the same donor, a reasonable approach was to average the three MALDI MS 

spectra to account for both the "sweet spots" phenomenon and fingermark 

compositional variability. In an additional approach, the spectra from the individual 

donor's marks (3 in total) were also combined in one averaged spectrum. In study 2 

VMD enhancement was replaced with an enhancing powder to produce a set of 

enhanced marks in addition to a set of unenhanced marks. Fingermark powders are 

commonly used at crime scenes. Amongst the three powders tested, namely white 

(titanium dioxide-based), black (carbon based) and aluminium powders, the titanium 

dioxide-based white powder enabled the detection of the ions of interest, the ion 

population of which rivalled that of the same unenhanced split fingermark in 

preliminary investigations. In addition, this powder was found to even increase the 

ion intensity with respect to its unenhanced counterpart in split marks (data not 

shown) and was therefore selected for this study. It is important to highlight that 

identification of biomarkers of sex by MALDI MS/MS or by any better suited 

technique such as LC MS/MS was outside the scope of this study, both in the initial 

design and on the basis of the results obtained. 

  

 Unenhanced natural marks - a single average spectrum obtained from each of 

the three fingermark areas analysed via MALDI was viewed in mMass where 

baseline subtraction, smoothing and peak picking were applied. A signal-to-noise 

threshold of 3:1 generated a peak list of 29 peaks. This was not enough signals to 

attempt a discriminant analysis (LDA). When the signal-to-noise threshold was 

lowered to 2:1, automatic peak picking generated a peak list of 48 peaks which could 



be used for linear discriminant analysis in SCiLS Lab. The spectra from the individual 

donor's marks (3 in total) were combined in one averaged spectrum (3 mass spectra 

per donor). The 10-fold LDA classification yielded an accuracy score of ~60%. It was 

noted that the separate treatment of the three marks per donor has limited the 

validity of the SCiLS Lab cross-validation calculation (illustrated in Figure S1): the 

information that there are three sample marks per donor has not been supplied to 

SCiLS Lab, and the separate marks of one person can be assigned to both the train 

and test splits simultaneously during cross validation (Figure S1, middle row). This is 

not representative of the ability of the model to generalise to unseen populations.  

To bypass this limitation, further sex classification models have been developed 

externally to SCiLS Lab, using a modified CV approach that ensured that all three 

marks per donor were assigned to either the train or test set, per k-fold split. During 

cross validation, two accuracy measures have been calculated to assess 

performance: (i) the separate mark scoring strategy, in which each mark from each 

donor is treated separately and the ability of the model to correctly label each mark 

in the test fraction of samples is assessed and (ii) the majority vote scoring strategy, 

in which for each donor in the test set, a sex prediction is made for each mark 

separately and the majority vote of the donor’s three marks is then taken. As such, if 

donor X has 3 marks {M1, M2, M3}, which a model then assigns the labels of {Male, 

Male, Female}, then overall the person is labelled as ‘Male’, and this prediction 

contributes only once to the accuracy measure. The application of the majority vote 

scoring scheme was motivated by the previous study by Ferguson et al. [8]. 

However, it was noted that, since the number of spectra per donor is less in study 2 

(3 spectra per donor) compared to the previous study (9 spectra per donor), this 

majority voting scheme is not directly comparable.  

Ferguson et al., [8] have previously demonstrated that feature selection via VIP 

scoring, in conjunction with a PLS-DA classification scheme, yielded superior 

predictive performance to PLS-DA alone. As reported in the methods section, study 

2 extends this analysis to compare a range of distinct feature selection strategies to 

determine their potential benefit on model predictive performance (Table S1). Figure 

3 illustrates the effect of feature selection for the case of the VIP scoring scheme. 

For each peak picking strategy, the m/z positions that attain the highest VIP scores 



(in red) are those that are least correlated between the male (x-axes) and female (y-

axes) samples, on average.  

Figure 4 and Figure S2 illustrate the overall k-fold accuracy scoring results for each 

model type and distinct peak picking strategy. The computed k-fold cross validation 

accuracy scores appear to be relatively robust to: (i) the choice of k (5, 10, 25 or 50) 

for cross-validation, (ii) the choice of feature selection strategy and (iii) the choice of 

scoring metric to account for the presence of technical replicates. However, a 

positive trend is observed across models between numbers of included m/z peak 

positions and mean CV accuracy scores. Overall, XGBOOST appears to perform 

superior to other trialled methods, however the performance boost is minimal, with a 

k-fold accuracy of 60-70% attainable by all model types for particular peak picking 

strategies (Table 3). The maximum reported k-fold CV score was attained by the 

XGBOOST model at 70.9% (3 s.f.), with k=25, and a peak-picking strategy of 

{S/N=5, minFreq=0.1}, under the majority scoring score and VIP feature importance 

selection strategy (as used in [8]) .  

 

Model 
Peak picking 

strategy 

Number 

of k-

folds 

Feature selection 

strategy 

Accuracy 

score (mean 

calculated 

over k-fold 

repeats) 

XGBOOST 
minFreq = 0.1 

S/N = 5 
25 PLS-DA VIP score 0.709 

XGBOOST 
minFreq = 0.1 

S/N = 5 
50 PLS-DA VIP score 0.705 

PLS-DA 
minFreq = 0.01 

S/N = 10 
50 None  0.703 

XGBOOST 
minFreq = 0.01 

S/N = 5 
10 PLS-DA VIP score 0.7 

XGBOOST 
minFreq = 0.1 

S/N = 5 
50 None  0.7 



XGBOOST 
minFreq = 0.5 

S/N = 2 
10 None  0.699 

XGBOOST 
minFreq = 0.01 

S/N = 20 
10 PLS-DA VIP score 0.696 

Random 

forest 

minFreq = 0.01 

S/N = 5 
10 None 0.695 

XGBOOST 
minFreq = 0.5 

S/N = 2 
10 PLS-DA VIP score 0.694 

XGBOOST 
minFreq = 0.01 

S/N = 5 
50 PLS-DA VIP score 0.692 

PLS-DA 
minFreq = 0.1 

S/N = 5 
25 None 0.690 

PLS-DA 
minFreq = 0.01 

S/N = 10 
10 None 0.688 

PLS-DA 
minFreq = 0.01 

S/N = 5 
50 

Random forest 

feature importance 
0.688 

PLS-DA 
minFreq = 0.1 

S/N = 5 
10 None 0.688 

Random 

forest 

minFreq = 0.01 

S/N = 5 
25 None 0.688 

XGBOOST 
minFreq = 0.1 

S/N = 3 
25 None 0.686 

XGBOOST 
minFreq = 0.01 

S/N = 10 
5 None 0.683 

LDA 
minFreq = 0.5 

S/N = 3 
25 

Univariate feature 

selection 
0.683 

XGBOOST 
minFreq = 0.01 

S/N = 3 
10 None 0.683 



XGBOOST 
minFreq = 0.1 

S/N = 5 
10 PLS-DA VIP score 0.682 

 

Table 3. Top 20 scoring models (average score calculated over k-fold repeats, with k 

specified in the ‘Number of k-folds’ column). The scoring scheme was "Majority" for 

all models. Where the feature selection strategy is specified as “None”, all peak-

picked peaks have been used for model training. 

 

Within the current analysis using 3 spectra per donor, the maximal XGBOOST 

accuracy (~71%) roughly corresponds to the 2/3 majority vote scoring employed as 

one of the harsher classification criterion in Ferguson et al., [8]. In the 2012 study [8] 

this harsher classification criterion yielded a score of 67.5% for the PLS-DA classifier 

employing 9 spectra per donor, with the distinction that, due to the larger number of 

available spectra per donor, it was additionally possible to define an ‘undecided’ sex 

label in addition to ‘male’ and ‘female’. 

It was further assessed whether sex-classification performance could be improved 

by instead training on 1 averaged mass spectrum per donor (i.e. 1 training instance 

per person), as opposed to the 3 separate spectra per donor. This alterative training 

strategy did not yield better model performance than the original training strategy 

(data not shown).   

An "on the hoof" PCA analysis identified four samples of the dataset as outliers, 

presenting themselves in a tight cluster in the PCA plot (data not shown). Upon 

inspection, the corresponding mass spectra showed to be dominated by a number of 

PEG-based polymers completely suppressing protein and peptide signals in these 

marks in the mass range 2,000-5,000 Da (Figure S3). These four samples were all 

from female donors. In their participant questionnaires they reported the use of 

toiletries including shower gel, soap, moisturiser, foundation, hair products and body 

lotions. Seventy-eight out of ninety females reported the use of some type of 

toiletry/cosmetic products but only these four samples did not have a sufficient 

number of relevant protein/peptide ion signals for classification. To assess the 

contribution of these fingerprints to the classification model performances, these four 



outlier fingerprint samples were removed from the dataset and the model 

training/evaluation repeated. Overall omission of these spectra did not lead to any 

clear improvement in model sex classification performance (data not shown). 

A more careful inspection of the spectra revealed a higher number of instances in 

which polymers were present, although to a lesser extent such that they did not 

hamper classification. Therefore, it was assessed whether improved classifier 

performance could be attained by directly accounting for such contaminants during 

model training. Here, each sample was assigned a binary state of ‘contaminated’ or 

‘non-contaminated’ (a categorisation that split the dataset approximately into two 

equal sized subsets), and each classifier in Table 2 was re-trained to classify donor 

samples as one of four categories: (i) male sample and not contaminated, (ii) female 

sample and not contaminated; (iii) male sample and contaminated and (iv) female 

sample and contaminated (Figure 5). As such, the classifier was explicitly presented 

with a distinction between contaminated and non-contaminated samples during 

training, as opposed to being required to learn this distinction unaided. Figures S4 

and S5 provide the resulting sex classification performances for the XGBOOST and 

LDA classifiers, respectively (other classifiers exhibited similar results). Overall, the 

inclusion of contamination state could not be concluded to perform consistently 

worse/better than the sex classification models reported in Figure 4.  

 

The classification schemes in Table 2 rely on the output class labels being disjoint 

(as shown in Figure 5). If one disjoint class (e.g. contaminated female samples) is 

underrepresented, or if the spectral dissimilarity is low between contaminated and 

non-contaminated instances, it is suggested that any benefit from the inclusion of 

explicit contamination information in model design could be mitigated. It was 

investigated whether a multi-label neural network-type architecture (depicted in 

Figure 6), which can instead be constructed to make predictions against multiple, 

non-disjoint properties simultaneously, might yield superior predictive power through 

the incorporation of contamination information. 

It is important to note that whereas Figure 6a is analogous to Figure 5a, the 4 output 

states in Figure 6a are not identical to Figure 5b. Figure S6 illustrates a direct 

comparison of neural network model performances for the model architectures 

presented in Figure 5a (in blue) and 5b (in orange).  The data displayed in Figure S6 



are the results from k=5 cross validation; other k-fold results were qualitatively similar 

and are not shown. Overall, there is insufficient evidence to indicate that a neural 

network architecture that accounts for sample contamination can surpass the 

previously investigated model schemes presented above in Table 2.  

 Enhanced natural marks- the statistical modelling applied to the unenhanced 

fingerprint set was subsequently applied to the twin set that was enhanced by white 

powder (except those employing a 4-output classification and the multi-class 

classification using the neural network architecture). In particular, each model has 

been trained using 3 separate fingerprints (3 averaged spectra) per donor. Each 

model has been trained/evaluated using k-fold cross validation, with variable k. The 

range of peak picking strategies in Table S1 have been trialled, based on variation of 

the S/N cut-off and minimum required peak occurrence rates through use of the 

MALDIquant R package. The donors that had previously shown polymer 

contamination in the natural marks did not show this level of contamination in the 

enhanced marks. It could be speculated that as the natural marks were deposited 

first with one hand, and the enhanced marks second with the other hand, donors are 

likely to use their dominant hand first; this would also be likely to be the same hand 

they would apply toiletries and cosmetics with. All the samples from this dataset had 

been subjected to statistical modelling. The data shown in Figure S7 indicate that the 

powdering of fingerprints does not generally lead to either an improvement or a 

reduction in the performance of models, when evaluated over a range of peak-

picking strategies and model types. 

In Ferguson et al. [8], 9 spectra per fingermark (rather than 3 per mark in study 2) 

were acquired (and treated as technical replicates differently from study 2 in which 

the 3 spectra per fingermark per donor have instead been averaged). The accuracy 

of prediction reported by Ferguson et al. [8] was 85% during cross validation. 

However, for most of the donors some of their 9 spectra were predicted as the 

"opposite sex"; therefore, If the method accuracy is expressed as accuracy for each 

single spectrum, one would arrive at a correct prediction of 68.9% of female and 

74.4% of male spectra.  

In conclusion, despite the larger compositional variability that can be anticipated in 

natural marks, the accuracy of prediction for the second of the two studies reported 

here (study 2), using the best performing classification model is similar to that 



yielded by Ferguson et al [8] (although accuracies are not completely comparable 

due to slight differences in the number of spectra per mark and how these were 

treated).  

The use of much more sensitive and rapid MALDI instrumentation (Bruker Daltonik 

Rapiflex (study 2) versus Autoflex (study 1)) has been observed to generate spectra 

containing a higher number of peptides/protein peaks with an intensity of at least 2 

orders of magnitude higher. This is partly due to the higher laser repetition rate 

(10,000 Hz) enabling the accumulation of 30,000 laser shots in this study versus 300 

in study 1 with the Autoflex, which has improved the S/N (Figure 7). It is also 

possible that a larger spot size would have led to an even ion higher intensity [16] 

but this hypothesis was not tested. Though the higher sensitivity of the Rapiflex 

instrumentation may have mitigated the much higher compositional variability 

exhibited by natural fingermarks, it did not allow a substantial improvement in the 

accuracy of prediction yielded by Ferguson et al. study [8]. Therefore, whilst on a 

strictly technical point of view the method appears to be robust and resilient to the 

variable nature of natural marks and the application of a prior fingermark 

enhancement technique, operationally it would now allow an exclusion of a 

suspect/suspect sex from a investigation. 

Due to the use of personal care products, the presence of the polymers can be more 

or less prevalent in the spectrum, in some cases partially or completely suppressing 

the peptides/protein signals. Therefore it was hypothesised that for natural marks the 

presence of polymers was the major factor leading to operationally low predictive 

power. Indeed, it has been calculated that, on average ~40-45% of polymer-

contaminated spectra are incorrectly predicted (this value range was computed for 

the XGBOOST classifier, k=5 folds, across each of the peak picking S/N strategies). 

However, within the fraction of non-polymer contaminated spectra, the median 

percentage of those incorrectly classified is also between 40-45% depending on the 

peak picking strategy. As such, there is insufficient evidence to suggest that, in the 

30% of misclassified samples by the model, there is an enrichment of polymer 

contaminated spectra. Even if machine learning algorithms "can learn" to detect and 

exclude the influence of polymer signals during prediction, incorrect classification still 

occurs if the remaining ion signals in the spectrum are too few and not 

discriminatory.  



However, interestingly, a third scoring strategy, denoted here as ‘full consensus 

scoring’, has been trialled in addition to the previously discussed majority vote and 

the separate mark scoring strategies, in the attempt to achieve improved resulting 

accuracy of prediction. Here, the three fingermark sex predictions made by a trained 

classifier for a single individual are only considered when all three marks are 

predicted to be the same sex; if a subset of the 3 marks are predicted to have 

conflicting sexes, the output is instead discarded. This leads to an observably 

greater confidence in the model output in the remaining cases of up to a maximum of 

86.1% (for XGBOOST, Figure 8a, Table S2). However, it inevitably also leads to no 

valid predictions for over 50% of the individuals on average (computed across peak 

picking strategies, feature selection strategies) for each k-fold cross validation 

assessment (Figure 8b). Other model types also exhibited trends similar to Figure 

8a, however with lower maximum full consensus scores (Table S2).  

Although lack of classification for a large subset of samples is clearly undesirable, 

generally, in an operational context, it would be better to have a method through  

which "no classification" is achieved for many individuals but a high accuracy of sex 

prediction can be obtained for a small subset of individuals, than a method by which 

all individuals can be classified but with a lower accuracy of prediction such that it is 

not operationally useful. Therefore, the use of full consensus scoring system is highly 

recommended. 

However, in the case of one recovered crime scene mark only, there will be an 

insufficient number of marks to use the majority vote or the full consensus scoring 

system in order to determine a sex prediction. Furthermore, the reported 

performance statistics for the cases of the majority vote and full consensus scoring 

schemes (or even for the separate marks scoring system which treats the 3 marks 

per individual as 3 entirely independent test set instances) cannot be assumed to be 

appropriate indicators of the expected reliability of the presented predictive models 

when predicting sex based on only one single mark.   

In order to better ascertain model performances in the practical setting where only 

one fingermark may be available, a further session of k-fold CV was performed for 

each model type, but now with only a random 1/3 marks included per individual in 

each test subset per k-fold. Model training remained consistent to previously 

described, with all 3/3 marks per individual from each CV training subset being used. 



As illustrated in Figure S8, there is a strong positive correlation between the mean 

CV scores, when only one mark is present per individual in each CV test subset, and 

the three previously discussed scoring schemes that have all utilised 3 fingermarks 

per test set individual. As such, this clearly demonstrates the applicability of the 

current predictive models for cases where only one fingermark may be available. 

Furthermore, when using only 1 mark per test set individual, the maximum model 

performance was reported as 70.9% attained by the XGBOOST classifier under 

k=25 cross validation (with a peak picking strategy of S/N=3 and min peak 

frequency=50%, under the random forest feature selection strategy) which is exactly 

on par with the top majority voting scheme scores using 3/3 marks. This 

circumstance very much indicates that the models are capable of dealing with just 1 

mark, but it also may suggest that the benefit of submitting 3 marks only truly comes 

apparent when the full consensus scheme is employed. 

Indeed, at crime scenes, investigators recover a variable number of marks ranging 

from one to a few and it is not unusual that a few are identified to an individual thus 

enabling the use of the full consensus scoring system and a predictive power of 

86.1%.  

Although even a predictive power of 86.1% may not render the method operational 

such that a suspect or a gender can be excluded from the investigations, the Police 

Force co-authoring this study suggests an alternative use of the method; in the case 

of multiple marks to screen during police investigations of high profile crimes, this 

method could inform the forensic strategy and act as some sort of triage to select the 

mark(s) to prioritise for examination. 

 

 

4.0 Conclusions 

 

The accuracy of prediction of sex of an individual from fingermarks using XGBOOST 

and the full consensus scoring system (86.1%) is essentially the same as that 

provided by a previously published proof of concept, when more relaxed 

classification criterion was adopted (85%). However, this result is important because 

it confirms the predictive power of this system in natural marks and with and without 

the prior application of an enhancing powder. The lack of fundamental improvement 

in the predictive power has been ascribed to the ion suppressing presence of PEG 



based polymers which are found routinely in personal care products and toiletries 

and that are transferred in natural fingermarks (versus absence in model ungroomed 

marks which are depleted from lipids and contaminants). However, because of the 

most representative conditions used, the study presented here provides significant 

information for the forensic community. The authors believe this to be the case 

because, with respect to a previous proof of concept, it now clarifies what type of 

operational use can be made of the method developed for sex determination from 

fingermarks; as the accuracy of sex prediction (86.1%) does not allow exclusion of 

suspects from an investigation of serious crimes, in the case of multiple marks to 

screen during police investigations, this method could inform the forensic strategy 

and act as triage to select the mark(s) to prioritise for examination. 

Additionally, this study presents, to date, the most comprehensive statistical 

modelling amongst all the studies attempting to discriminate sex from fingermarks. 

Furthermore, the accuracy of prediction of any other statistical modelling reported 

prior to the present study (however high) cannot be assumed to be maintained for 

only one submitted crime scene mark. Crucially, dissimilar to previous studies, the 

implementation of statistical models and its accuracy of prediction, has also been 

investigated for the circumstance in which only one fingermark sample is retrieved 

from a potential crime scene. 

 

The authors believe that the comprehensiveness of the statistical modelling explored 

provides the community with clear direction as to the strategy and the highest 

performing combination of model/classification criterion for future studies attempting 

to investigate biomarkers of sex, other than peptides and proteins.  

  

Code availability 

Python and R scripts written for all sex classification model training and validation 

are available upon request to the authors. 
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Figure Legends 

 

Figure 1. MALDI MS spectra of VMD enhanced natural marks from study 2. A: 

typical mass spectrum obtained when gold clusters did not interfere with 

peptide/protein ionisation. B: donors' spectra showing prevalence of gold clusters 

and scarcity of peptide/proteins signals. C: spectra showing complete peptide/protein 

ion suppression and only presence of gold clusters. Where appropriate, 

peptide/proteins signals are labelled with a star symbol. 

Figure 2. ROC analysis and AUC calculation from the application of PLSA to peptide 

and protein MALDI mass spectral profiles. 

Figure 3. Relationship between the average spectra for the male and female 

samples for a subset of tested peak picking strategies. Strategies adopted S/N ratios 

of (a-b) 2:1, (c-d) 3:1, and (e-f) 5:1, and cross-spectra minimum peak occurrence 

rates (miniFreq) of (a, c, e) 1% and (b, d, f) 10%. Each point represents a peak 

picked position and the x and y axis values indicate the average TIC normalised 

intensity at this peak picked m/z position for the female and male samples, 

respectively. The scatter points have been coloured by the calculated PLS-DA VIP 

score. 

Figure 4. 5-fold cross validation accuracy scores for five model schemes: LDA, 

random forest, naïve Bayes,  XGBOOST and PLS-DA for the (A) majority vote 

scoring and (B) separate mark scoring schemes. In each subplot, the four different 

feature selection schemes presented in Table S1 have been displayed separately 

(‘vip’ = VIP scoring, ‘all’ = all m/z peaks (i.e. non-feature selection step), ‘fs’ = 

random forest feature selection, and ‘ufs’ = univariate feature selection). In addition, 

the accuracy scores have been separated by distinct peak picking strategies, and 



ordered by the number of m/z positions associated with each strategy (see colour 

scales). 

Figure 5. Classification models employed for the non-enhanced dataset. (a) 

previous 2-output state classification scheme, in which a classification model is 

trained to label input spectra data as either ‘male’ or ‘female’. (b) Modified 4-output 

state classification scheme, in which the classifier now must label each input spectra 

by both sex and contamination state. 

Figure 6. Analysis of unenhanced fingerprint dataset via a neural network 

architecture. (a) previous 2-output state classification scheme (using a fully-

connected neural network architecture), with an output layer consisting of two nodes 

with softmax activation for male/female sex classification. (b) Multi-class output 

neural network architecture with an output layer consisting of two pairs of two nodes, 

with each pair having an independent softmax normalisation, such that each input 

sample is simultaneously classified by sex and contamination level separately. 

Figure 7. Comparison between best donors' fingermark MALDI mass spectra on 

autoflex (top panel) and rapiflex (bottom panel) MALDI Mass Spectrometers 

Figure 8. Application of "full consensus scoring" strategy. (a) Correlation between 

the previously calculated majority vote scores (x-axis) and full consensus scoring 

schemes (y-axis), for the example case of the XGBOOST classifier. Each scatter 

point corresponds to the average cross-validation accuracy score for a specific peak 

picking strategy (see colour legend), and k-fold (see legend), with each of the four 

feature selection strategies in Table S1 treated as separate scatter points. The 

diagonal line y=x is shown. (b) For each k-fold k value (x-axis), the total number of 

test set individuals included within the full consensus scoring scheme is indicated 

(green bars) and compared to the corresponding recorded full test sizes per 

individual k-fold (orange bars). Error bars illustrate 1 standard deviation over each 

m/z peak-picking strategy (Table 1) and the four distinct feature selection strategies 

(Table S1). 
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