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Abstract

Auxetic materials, which have negative Poisson’s ratio, show potential to be used in many
interesting applications. Finite element analysis (FEA) is an important phase in imple-
menting auxetic materials, but may become computationally expensive because simula-
tion often needs microscale details and a fine mesh. It is also necessary to check that
topological aspects of the microscale reflects faithfully not only micro but macromechan-
ical behaviour. This work presents a phenomenological approach to the problem using
data-driven spline-based techniques to properly characterize orthotropic auxetic material
requiring neither analytical constraints nor micromechanics, expanding on previous meth-
ods for isotropic materials. Hyperelastic energies of auxetic orthotropic material are deter-
mined from experimental data by solving the equilibrium differential functional equations
directly, so no fitting or analytical estimation is necessary. This offers two advantages; i) it
allows the FEA study of orthotropic auxetic materials without requiring micromechanics
considerations, reducing modeling and computational time costs by two to three orders of
magnitude; ii) it adapts the hyperelastic energies to the nature of the material with preci-
sion, which could be critical in scenarios where accuracy is essential (e.g. robotic surgery).
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1. Introduction

Auxetic materials, a term first coined by Evans [1], have the property of negative Pois-
son’s ratio. In the case of an isotropic material, the transverse section enlarges when the
specimen is longitudinally stretched. In the case of an orthotropic material, Poisson’s ratio
varies with loading orientation. For example, it is considered that a material shows aux-
eticity νxy < 0 during a tensile uniaxial test if, when the longitudinal strain εx in loading is
positive, the transverse strain εy is also positive (instead of the negative value that a con-
ventional material takes [2]). Initially rarely observed, such as in the case of iron pyrites
[3], following the first report of man- made auxetic foam [4] multiple applications and
developments have been reported [5, 6, 7, 8]. Implementation in industry [9, 10, 11, 12]
requires efficient methods to predict the mechanical behavior of auxetic materials [13, 14].
If specimens undergo only small strains, a linear theory can be applied to perform the
required simulations [8]. However, in many potential applications of auxetic materials,
such as foam or structures for tissue engineering [15] or protective equipment [16], the
auxetic material can exhibit large levels of strain. The large strains imparted in these ap-
plications often cause a nonlinear mechanical response, driven by a change in entropy of
the material’s micro structure [17, 18, 19].

There are different ways of characterizing and simulating complex materials such as
auxetic foams. One option is an analytical phenomenological approach, which obtains
an approximate solution of the stored energy density functions that defines their behav-
ior. When these analytical functions do not give accurate predictions, some data-driven
procedures may be employed both to compute material parameters [20, 21] and to select
the best approximate functions/model (e.g. Bayesian methods [22, 23, 24, 25], Neural
Networks [26, 27]); and for corrections for these models [28]. Once determined, data-
driven materialñ models can be implemented in FEA to perform simulations at the con-
tinuum level with reasonable modeling and computational costs. There is little prior work
of this type for auxetics, and previous studies focus on isotropic auxetic foams, propos-
ing models based on modifications of (the hyperfoam) Ogden’s and the Blatz-Ko foam
models [29, 30]. Because of their microstructure, many auxetic materials are anisotropic
[7, 2, 31, 32, 33]. To the authors’ knowledge, a continuum-based model for anisotropic
auxetic foams has not been developed. Direct FEA approaches, in which a very detailed
mesh considers the microstructure of the foam [34], aim to catch both the micro and
macromechanical behavior, either using a very fine mesh or, more efficiently, employing
Gauss-point-based multiscale approaches as e.g. FE2 [35, 36]. Multiscale homogeniza-
tion approaches are common in the simulation of hyperelastic conventional and auxetic
foams; see for example [37, 38, 39, 40, 41], among others. Classical second order homog-
enization approaches have also been applied to conventional foams, see e.g. [42, 43],
including second order (adaptive) computational homogenization approaches based on

2



databases [44, 45]. These typically contain the analysis of a periodic cell structure rep-
resenting the foam microstructure [46, 47, 48, 49]. Some works pursue a more realistic
representation of the stochastic structure of foams based on computational homogenization
[50, 51]. Indeed, typical auxetic foams do not have the typical hexagonal honeycomb-like
cell structure (see for example Fig. 1 in [52]). A realistic representation of the complex
microstructure should be pursued in multiscale analyses, where special aspects includ-
ing rib contact and changes from auxetic to conventional behavior should be considered.
Then, computational homogenization approaches seem a good choice for modeling aux-
etic foams, but are costly for two reasons. Firstly, and most expensive, the generation of
an adequate, truly Representative Volume Element (RVE) for the specific anisotropic aux-
etic foam is not simple, requiring specialized modelers or expensive procedures, as shown
by e.g. [53]. Secondly, computational homogenization approaches are substantially more
expensive in terms of computational needs (both CPU time and hardware) than continuum
analysis, even though computational tasks (specially in hyperelasticity, where few state
variables are present) may be alleviated by techniques including pre-computed representa-
tions (e.g. Stochastic Numerically Explicit Potentials S-NEXP [37]) and reduced models
(as e.g. Proper Orthogonal Decompositions [50]). The construction of surrogate models
is being pursued in several works (see e.g. [54] and therein references), where Proper
Generalized Decomposition approaches (PGD) may be useful [55, 56].

Our proposed method aims to be a trade-off between the analytical phenomenologi-
cal approach and the expensive full or multiscale procedures for stochastic auxetic foams.
The scope of interest is modeling materials in biomechanics, medicine and other chal-
lenging disciplines where materials, such as biological tissues [57], show complex and
unique properties which may not be easily accommodated with particular existing analyti-
cal stored energies. To this end, the methodology in this work follows the spline-based so-
lution procedures which were performed successfully in isotropic conventional, isotropic
auxetics, and orthotropic conventional materials [58, 59, 60]. The difficulty and specificity
of application of this method to auxetic foams is caused by the different unconventional
conditions that these materials can produce in the derivatives of the stored energy terms,
e.g. non-injective but stable forms due to auxecticity. Herein, these conditions are studied
and specific algorithms are developed to successfully solve the problem. This assumption
allows to capture the high strain characteristics of orthotropic auxetic foam in all auxetic
orientations.

The structure of the paper is as follows. In Sec. 2, a theoretical explanation of the
orthotropic auxetic formulation is detailed, together with numerical considerations that
shall be employed in the development of the methodology. For obtaining a proper solution
of the mechanical behavior, we analyze valid ranges for the corresponding stored energy
terms in Sec. 3. Algorithms for the data-driven methodology, developed specifically for
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this material case, are explained in Sec 4. A theoretical verification and experimental
validation of developed techniques are then performed in Sec 5. Finally, based on the
strain energy functions determined in the previous examples, in Sec. 6, an FEA simulation
is performed to study the mechanics of a sample with non-uniform geometry under high
stress gradients.

2. Auxetic orthotropic hyperelastic formulation and numerical representation of stored
energy terms

There are two main approaches to large strain hyperelasticity. One is based on the
micromechanical behavior (e.g. chain-based models in polymers, as the Arruda-Boyce
model [61]), and the other one is phenomenological. The former requires the understand-
ing and detailed description of the physical processes involved in the specific material
at the microscale [62], which thereafter is linked to the macroscale, following, for ex-
ample, minimization techniques [63], an affine assumption [61], or similar micro-macro
connections [64]. The latter, often referred to as the mathematical theory of nonlinear elas-
ticity [65, 66], allows for more flexibility and adaptability to a larger scope of materials
which behavior does not necessarily respond to predefined constituents and a given mi-
crostructural layout. In order to fulfill Bernstein’s integrability conditions [67, 68], along
with objectivity and frame-invariance from the outset, these models assume a continuum
stored energy that may be defined in terms of some strain invariants. The invariants are
often selected such that simplified forms (e.g. uncoupling) yield a good approximation of
the experimentally observed behavior. In rubber-like materials, Mooney-Rivlin-Spencer
invariants [69], or principal stretches or logarithmic strains along the Valanis-Landel un-
coupling [70], are often selected. In highly compressible isotropic conventional foams, the
Blatz-Ko J-invariants are a common selection [71].

Below, avoiding a microstructural description of the material (which would sacrifice
a desired generality), we select a phenomenological approach employing reference loga-
rithmic strain invariants, based on orthotropic symmetry conditions parallel to those of the
infinitesimal theory.

2.1. Hyperelastic orthotropic formulation
The hyperelastic formulation aims to recover the mechanical behavior at all deforma-

tion levels. Motivated by the Valanis-Landel uncoupling, for the infinitesimal anisotropic
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case, we may assume an uncoupled form

Ψ (ε, a1, a2) = U (εv) +W
(
εd, a1, a2

)
(1)

= U (εv) + ω11

(
εd

11

)
+ ω22

(
εd

22

)
+ ω33

(
εd

33

)
+ 2ω12

(
εd

12

)
+ 2ω13

(
εd

13

)
+ 2ω23

(
εd

23

)
(2)

where ε is the infinitesimal deformation tensor, εd is the deviatoric part, εv = tr(ε) is the
dilatation, and the deviatoric invariants in the material preferred directions ai (principal
material directions which are perpendicular to the symmetry planes) are εd

i j = εi j − ε
v
m =

εd : Li j, where Li j := ai⊗aj are the structural tensors obtained by the dyadic (outer) product
of the symmetry plane directions and εv

m = εv/3. Ψ is the total hyperelastic stored strain
energy density function, U and ωi j are the stored strain energy densities for volumetric
and deviatoric contributions, respectively. For the small strain case, we use,

U(εv) = 1
2κ(ε

v)2 (3)

ω(εd
i j) = µi j(εd

i j)
2 (4)

where κ is the infinitesimal bulk modulus and the coefficients µi j are the typical shear
moduli of the infinitesimal theory corresponding to contributions εd

i j. These equations
explain the meaning of the stored energy terms. Since preferred directions ai are invariant
(fixed) in the reference configuration, we can write the reference logarithmic strains E =

ln U, where U is the right stretch tensor from the right polar decomposition, as (see details
in [72]):

Ev := tr(E) = ln J =

∫
dλ1

λ1
+

∫
dλ2

λ2
+

∫
dλ3

λ3
=

∫
dεv (5)

Ed
i j := Ed : Li j =

∫
dεd

i j =

∫
dεi j −

∫
1
3dεv = Ei j −

1
3 Ev (6)

where J = λ1λ2λ3 is the Jacobian of the deformation, λk, k = 1, 2, 3 are the princi-
pal stretches and Ed

i j = Ed : Li j are the isochoric logarithmic strain invariants (Li j are
structural tensors in the reference configuration). Note that in principal strain directions
Ed

i = ln λd
i and Ed = ln Ud = ln J−1/3U , where λd

i = J−1/3λi are the principal isochoric
stretches. Due to Eqs. (5)-(6), a parallelism between the infinitesimal framework and the
large strains one is obtained. The parallelism with infinitesimal strains is beneficial for
several practical reasons. First, since our common understanding is built on infinitesimal
strains, much of it is preserved for the large strains context; i.e. at any large deformation
level, an infinitesimal superposed deformation is interpreted in the same way as in the
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reference configuration [72]. Furthermore, the interpretation of shear logarithmic terms is
equal to that of infinitesimal deformations, and differs from quadratic deformations, result-
ing in an accurate measure of the physics behind simple shear deformations (refer to [72]).
Second, intuitive additive operators are preserved (e.g. volumetric strains are the trace
of the strain tensor and isochoric strains and deviatoric strains are identical), and push-
forward and pull-back operations are performed with rotations (not changing the metric
[73]). These observations are important in anisotropy and have facilitated the implemen-
tation of large strain anisotropic multiplicative plasticity and viscoplasticity preserving the
additive structure of infinitesimal strain algorithms [74, 75, 76].

Due to to the parallelism with small strains, a large strain version of Eq. (2) can be
immediately proposed, containing nonlinear scalar functions to be determined

Ψ (E, a1, a2) = U (Ev) +W
(
Ed, a1, a2

)
(7)

= U (Ev) + ω11

(
Ed

11

)
+ ω22

(
Ed

22

)
+ ω33

(
Ed

33

)
+ 2ω12

(
Ed

12

)
+ 2ω13

(
Ed

13

)
+ 2ω23

(
Ed

23

)
(8)

The first derivative with respect to the referencial logarithmic strain tensor E yields the
corresponding work-conjugate generalized Kirchhoff stress tensor T, i.e. denoting (•)′ as
the derivative of the functions respect to their arguments

dΨ

dE
≡ T =

3∑
i, j=1

ω′i j(E
d
i j)Ld

i j +U′(Ev)I (9)

where Ld
i j = Li j : Pd, and Pd = dEd/dE = IS − 1

3 I⊗ I is the deviatoric projector tensor, with
IS being the symmetric fourth order identity tensor and dEv/dE = I is the second order
identity tensor. Note that ω′′i j(E

d
i j) =: 2µi j(Ed

i j) and U′′(Ev) =: κ(Ev) may be interpreted
as the incremental infinitesimal constants. Although not very used in the literature, the
generalized Kirchhoff stress tensor T is the proper work-conjugate stress measure of the
referential logarithmic strains E in the most general anisotropic case [77, 73]. Its in-axis
components are coincident with the Kirchhoff in-axis stresses (hence the name), but out-
of-axis are slightly different. For isotropic materials, T is the rotated Kirchhoff stress
tensor, because pull-back and push-forward operations for this tensor are also performed
with rotations (another advantage in anisotropic materials). The tangent modulus for this

6



stress-strain work-conjugate pair is,

dT
dE
≡

d2Ψ

dE⊗ dE
≡ C =

3∑
i, j=1

ω′′i j(E
d
i j)Ld

i j ⊗ Ld
i j +U′′(Ev)I⊗ I (10)

and conversions to any other stress-strain measure follow immediately using one-to-one
mapping tensors obtained from the deformation gradient [73]. Experiments are usually
performed in the preferred material directions. Then, for further reference, considering a
system or experiment such that the loading is in the preferred material directions (so prin-
cipal stresses, strains and material preferred directions are coincident), from Eq. (9), the
following system of functional equations is obtained for the in-axis box (which contains
principal stress and strain directions in this particular experimental setting),

T1 = 2
3ω
′
11(Ed

11) − 1
3ω
′
22(Ed

22) − 1
3ω
′
33(Ed

33) +U′(Ev) (11)

T2 = −1
3ω
′
11(Ed

11) + 2
3ω
′
22(Ed

22) − 1
3ω
′
33(Ed

33) +U′(Ev) (12)

T3 = −1
3ω
′
11(Ed

11) − 1
3ω
′
22(Ed

22) + 2
3ω
′
33(Ed

33) +U′(Ev) (13)

Once the in-axis functions are known, the determination of shear energy derivatives is
straightforward just by using off-axis experimental data and the projection along the cor-
responding structural tensor Li j = ai ⊗ aj. For instance, if a pure shear test is performed
rotated 45◦ in-plane with normal vector in direction k, then in-axis functions cancel out
and we have directly ω′i j(E

PS ,d
i j ) = TPS , where EPS ,d

i j and TPS are the deviatoric projected
experimental data of the pure shear for strain and stress, respectively.

2.2. Considerations for data-based manipulation of functions
In Section 2.1, considering the infinitesimal setting, and pursuing its recovery at any

deformation level, we have posited the general decomposition of the stored energy. How-
ever in contrast to the usual analytical hyperelastic models, we have not restricted the form
of these functions, but will determine their shape directly from experimental data without
employing underlying analytical functions or classical material parameters. This gives the
desired flexibility to model a wide range of materials at the continuum scale, from tests
at that scale, without having to describe the microscale behavior or layout, an important
aspect in the auxetic materials targeted in this work.

The goal of this method is to solve a system of functional equations that relates the
experimental curves with the derivatives of the strain energy functions. A functional rep-
resentation is required for the experimental data and for the stored strain energy functions.
This conversion transforms a set of N pairs of discrete data {xi, yi} (i = 1, ...,N) into a func-
tion y(x) that may be evaluated at any point in the continuous domain. For this purpose,
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a piece-wise defined spline function is built from the data set. To eliminate experimental
noise a smoothing treatment of the data can be considered before the final representation
of the spline function. A choice to this regard is a least-squares B-spline function. The
conversion of the discrete (experimental) set of points into the spline representation is
denoted from now on as

{x, y} y(x) (14)

The function y(x) is an approximation of the real function yr(x), partly because the avail-
able experimental information is limited to a discrete set of points and partly because of
the choice of the format for the functional conversion (regression B-spline format in this
work). However, usually the size of the data sets facilitates that the error in the approxima-
tion is several orders of magnitude lower than the usual numerical noise of experimental
data and may be considered exact for engineering purposes. The inherent advantages of
this numerical treatment are straightforward when either a function composition or an in-
verse function evaluation is required. From {xi, yi} y(x), the inverse function is simply
obtained by generating the spline with the arguments swapped, i.e. {yi, xi}  x(y). If
we have another function {y j, z j}  z(y), it is immediate to obtain the composition of
functions

z(y(x)) := {xi, z(yi)} = {xi, zi} ẑ(x) (15)

Note that in Eq. (15) we use z(y) from the set {y j, z j} to resample the function at the zi

values in order to be immediately combined with the xi and yi values. We say then that
we have the set {xi, yi, zi} synchronized, which allow the construction of any function as a
combination of any of the variables x, y, z. See reference [60] for further information.

As a simple demonstrative example, consider a uniaxial test in material preferred di-
rection 3 (the cross section is the symmetry plane 1 − 2). Assume that functions ω′11, ω

′
22

are known. Our goal is to determine the corresponding strain relation caused by Poisson’s
ratio on transverse directions 1 and 2, namely the function E3d

22(E3d
11). Superindex number

“3” indicates the preferred direction in which the load is applied in the test, superindex
“d” indicates deviatoric part, and subindices denote the strain component. For the case of
small strains, the required equation is,

µ22ε
3d
22 = µ11ε

3d
11 (16)

and gives the solution in a straightforward manner, namely

ε3d
22 =

µ11

µ22
ε3d

11 (17)
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For large strains, the equivalent equation to Eq. (16) is

ω′22(E3d
22) = ω′11(E3d

11) (18)

We can write the pursued relation E3d
22(E3d

11) in parametric representation, using t as inter-
mediate variable

E3d
22 = t (19)

E3d
11 = ω′−1

11
(
ω′22(t)

)
(20)

where superindex “−1” denotes the inverse function evaluation. Equivalently, the same
relation is obtained from E3d

11 = t and E3d
22 = ω′−1

22

(
ω′11(t)

)
. Since the evaluation of the

inverse function is simple using the mentioned spline-based procedure, we can build the
objective function from discrete data, so that we have the large strain nonlinear equivalent
to Eq. (17) as a function in spline format

{t, ω′−1
22

(
ω′11(t)

)
} E3d

22(E3d
11) (21)

Alternatively we can compute {ω′−1
11

(
ω′22(t)

)
, t} E3d

22(E3d
11). Of course, if both strain en-

ergy functions are non-injective, the evaluation of the inverse function might be undefined.
The procedure to handle these cases will be addressed below.

3. Some auxetic orthotropic stability considerations

Auxeticity may cause negative values of the second derivative of strain energy func-
tions. For this study, a bimodular material is considered in this section. It is defined with
one linear behavior of µii for evaluation in positive branch εid

ii > 0, and another linear be-
havior for negative branch evaluation, which has similarities to the small strain approach.
In particular for our material, auxeticity may imply negative shear coefficients, i.e. µii < 0.
However, not all the negative values are possible. Stability criteria on physical mechanical
behavior suggest boundaries on the possible values of the energy second derivative. Since
the present approach allows for a wide range of behaviors, in this section, some stability
aspects of a bimodular linear material are covered to establish such boundaries.

Consider a uniaxial test performed to an ideal orthotropic material that shows a linear
response in the tensile branch, and another different, but still linear, behavior for the com-
pression branch. In this case, we could analytically describe the uniaxial test equilibrium
equations performed in some preferred direction i as (note that parentheses are employed
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here for κ and µ-function arguments)

Ti = 2µii(Eid
ii )Eid

ii − 2µ j j(Eid
j j)E

id
j j (22)

0 = 2µ j j(Eid
j j)E

id
j j − 2µkk(Eid

kk)E
id
kk (23)

Ti = 3κ(Eiv)Eiv (24)

As in the previous section, subindices refer to the preferred direction they represent,
first superindex i refers to the load direction of the performed uniaxial test, and the “d, v”
letters indicate deviatoric (isochoric) and volumetric contributions. Note that µ and κ val-
ues depend on their arguments (i.e. one value for positive argument branch, and another
one for the negative argument branch). A Drucker stability criterion during loading re-
quires,

Yi =
dTi

dEi
ii

> 0, i = 1, 2, 3 (25)

for both compressible and tensile branches of the uniaxial test in direction i, and Yi repre-
sents the Young modulus in the corresponding direction. In order to perform the derivation
of Eq. (25), we leave Eq. (22) in terms of Eid

ii , (note that in this equation µii(·), µ j j(·) paren-
thesis are reserved for function arguments)

Ti = 2µii(Eid
ii )Eid

ii + 2µ j j(−νd
i jE

id
ii )νd

i jE
id
ii (26)

Actually, Poisson-like νd
i j ratios are also dependent on Eid

ii , that is, νd
i j(E

id
ii ). In order to

obtain νd
i j(E

id
ii ), and taking into account that µ and κ values are piecewise constant (i.e.

the value of the constant depends on the region), derivation of Eq.(23) with respect to Eid
ii

yields—no sum on repeated indices

d(2µ j jEid
j j)

dEid
j j

dEid
j j

dEid
ii

=
d(2µkkEid

kk)

dEid
kk

dEid
kk

dEid
ii

=
d(2µkkEid

kk)

dEid
kk

d(−Eid
ii − Eid

j j)

dEid
ii

(27)

νd
i j =

dEid
j j

dEid
ii

=
µkk(Eid

kk)

µ j j(Eid
j j) + µkk(Eid

kk)
(28)

If we explicitly state all the dependencies on the strain driving the uniaxial test Ei
ii

νd
i j(E

id
ii ) =

µkk(Eid
kk(E

id
ii ))

µ j j(Eid
j j(E

id
ii )) + µkk(Eid

kk(E
id
ii ))

(29)
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we see that finding νd
i j(E

id
ii ) implies solving the implicit functional equation

νd
i j(E

id
ii ) =

µkk

(
[νd

i j(E
id
ii ) − 1]Eid

ii

)
µ j j

(
−νi j(Eid

ii )
)

+ µkk

(
[νd

i j(E
id
ii ) − 1]Eid

ii

) (30)

As observed, it is not possible to find νd
i j(E

id
ii ) explicitly because the values of the shear

coefficients µ in turn depend on νd
i j(E

id
ii ) themselves. In the case of large strains, the equiv-

alent equation to Eq. (30) is

dEid
j j

dEid
ii

= −
ω′′kk

(
−Eid

ii − Eid
j j(E

id
ii )

)
ω′′j j

(
Eid

j j(E
id
ii )

)
+ ω′′kk

(
−Eid

ii − Eid
j j(E

id
ii )

) (31)

If the stability condition Eq. (25) is applied to the Equations (24), (26), (30), the
condition for this bimodular orthotropic material is (parenthesis reserved for function de-
pendencies)

Yi =
dTi

dEi
ii

=
Ti

Ei
ii

=
Ti

Eid
ii + 1/3Ev

=
Ti

Eid
ii + [9κ]−1Ti

=
1

Eid
ii /Ti + [9κ]−1

=

[[
2µii(Eid

ii ) + 2µ j j

(
−νd

i j(E
id
ii )Eid

ii

)
νd

i j(E
id
ii )

]−1
+ [9κ]−1

]−1
> 0 (32)

This condition yields the following observations. As the compressibility increases, the
term [9κ]−1 gains importance, and the shear moduli coefficients may take negative values.
On the contrary, in the limit of incompressibility, νd

i j = νi j, the Poisson ratio, Ed
i j = Ei j, and

Eq. (32) becomes

Yi(Eii) = 2µii(Ei
ii) + 2µ j j

(
−νi j(Ei

ii)E
i
ii

)
νi j(Ei

ii) > 0 (33)

Since the variables µii, µ j j, νi j keep a dependence with Ei
ii we assign the superindices

“+”,“−” for the corresponding evaluation at Ei
ii = {+1,−1} respectively. Then the con-

dition under incompressibility reduces to

µ+/−
ii + µ+/−

j j ν
+/−
i j > 0 (34)

This implies that negative values of ν+/−
i j facilitate that µ+/−

j j also adopts negative values,
if stability is satisfied as a whole for i = 1, 2, 3 in Eq. (25). Note that superindices
“+/−” do not imply that the related variable is evaluated in the positive/negative branch
respectively. This is true for µii and νi j in Eq.(34), but not for µ j j as observed in Eq.(33)
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for its corresponding dependence.
As a conclusion, in incompressible orthotropic materials, a negative Poisson’s ratio

facilitates negative shear moduli coefficients, and compressibility further facilitates this.
These situations can be easily found in orthotropic auxetic materials.

4. Determination of the auxetic orthotropic stored energy

In this section we develop the algorithms required to solve auxetic orthotropic configu-
rations. The purpose of these algorithms is to find the energy derivative functions directly
from experimental data using stress-strain equilibrium equations. Breakdown into compo-
nents of equilibrium tensorial Eq. (9) for a uniaxial test performed in direction i, yields for
the three preferred axial directions,

Ti = 2
3ω
′
ii(E

id
ii ) − 1

3ω
′
j j(E

id
j j) −

1
3ω
′
kk(E

id
kk) +U′(Eiv) (35)

0 = −1
3ω
′
ii(E

id
ii ) + 2

3ω
′
j j(E

id
j j) −

1
3ω
′
kk(E

id
kk) +U′(Eiv) (36)

0 = −1
3ω
′
ii(E

id
ii ) − 1

3ω
′
j j(E

id
j j) + 2

3ω
′
kk(E

id
kk) +U′(Eiv) (37)

After algebraic manipulation, we obtain the functional equations

Eq. (35) − Eq. (36) ⇒ Ti = ω′ii(E
id
ii ) − ω′j j(E

id
j j) (38)

Eq. (36) − Eq. (37) ⇒ ω′j j(E
id
j j) = ω′kk(E

id
kk) (39)

Eq. (35) + Eq. (36) + Eq. (37) ⇒ Ti = 3U′(Ev) (40)

The presented algorithms are based on function refresh schemes [60]. The main purpose
of the algorithms presented in this work is to compute the axial strain energy derivative
functions for auxetic foams. A possible algorithm employs only experimental stress-strain
data in the load direction, with the load directions being the three preferred directions.
That is, it employs data Ti(Eid

ii ) for the three i = 1, 2, 3 preferred directions. Using Ed
ii +

Ed
j j + Ed

kk = 0 (i , j , k , i), one functional refresh algorithm could be,{
Eid

ii , Ti(Eid
ii ) + ω′j j(E

id
j j(E

id
ii ))

} (38)
 ω′ii(E

id
ii ) (41){

−ω′−1
j j

(
ω′kk(E

id
kk)

)
− Eid

kk , ω
′−1
j j

(
ω′kk(E

id
kk)

)} (39)
 Eid

j j(E
id
ii ) (42)

for i = 1, 2, 3 and corresponding indices j and k obtained by permutation. Note that in
Eq. (41) the function ω′ii(E

id
ii ) is obtained by evaluating the known functions at sampled

values of Eid
ii . We say here that Eid

ii is the running variable. The same happens in Eq. (42)

12



with Eid
kk as the running variable. The running variables of the same experimental set are

synchronized, (i.e. {Eid
ii , E

id
j j, E

id
kk} = {Eid

ii , E
id
j j(E

id
ii ),−Eid

ii − Eid
j j(E

id
ii )}, because this way it is

not necessary to perform any interpolation to obtain E j j in Eq. (41). The function Eid
j j(E

id
ii )

has been directly obtained with the synchronized value of Eid
kk in Eq.(42).

Some additional development is needed to include orthotropic auxeticity, due to the
stability conditions already explained in section 3. The functions ω′ii(E

id
ii ) may adopt non-

injective forms, and negative slopes for negative values of the strain function argument.
This implies that the strain relation may not always be found even when the energy deriva-
tive functions are known. For instance, if ω′j j(E

d
j j) turns out to be non-injective, then the

following evaluation is undefined, Eid
j j = ω′−1

j j (ω′kk(E
id
kk)). If the other involved function is

injective, we can still find the relation directly through Eid
kk = ω′−1

kk (ω′j j(E
id
j j)). However, this

is not always desirable because these evaluations may incur extrapolation (the functions
are defined spline-wise in a finite domain). There is a general solution that avoids these
difficulties, which uses the extension of Eqs. (27)-(30) to large strains. To facilitate the
notation, define x := Eid

ii and the function R(x) := Eid
j j(E

id
ii ). Then, the functional equation

to be solved is,

R(x) =

∫ xmax

xmin

−
ω′′kk (−x − R(x))

ω′′j j (R(x)) + ω′′kk (−x − R(x))
dx (43)

which can be solved via functional refresh method as

R[N](x) =

∫ xmax

xmin

−
ω′′kk

(
−x − R[N−1](x)

)
ω′′j j

(
R[N−1](x)

)
+ ω′′kk

(
−x − R[N−1](x)

)dx (44)

where the spline format and domain synchronizations simplify all these operations. Su-
perindices inside square brackets [N] and [N − 1] refer to the corresponding iteration. For
the initial iteration (i.e. R[0](x)) either the zero function or the isotropic incompressible
relation may be used, that is, R[0](x) = 0 or R[0](x) = −1

2 x respectively.
Finally, taking into account the discussed aspects, we detail here two functional refresh

algorithms for determining deviatoric energy functions of auxetic materials from available
experimental data. Algorithm 1 requires the following input data: T1(E1

11), stress of uni-
axial test in load direction 1 versus strain in load direction 1; E1

22(E1
11), transverse strain

in direction 2 versus strain in load direction 1; E1
33(E1

11), transverse strain in direction 3
versus strain in load direction 1; T2(E2

22) stress of uniaxial test in load direction 2 versus
strain in load direction 2. An alternative algorithm is Algorithm 2, which requires instead
the data T1(E1

11), E1
22(E1

11),T2(E2
22),T3(E3

33).
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Algorithm 1 Available experimental data: T1(E1
11), E1

22(E1
11), E1

33(E1
11),T2(E2

22)

1: for Initial guess: {i, j} = {1, 2}, {2, 3}, {3, 1} do

ω′[0]
ii (Ed

ii) = 0 (45)

Eid
j j(E

id
ii ) = −1

2 Eid
ii (46)

2: end for
3: Synchronize experimental data of test 1

{E1
11, E

1
22, E

1
33,T1} = {E1∗

11, E
1
22(E1∗

11), E1d
33(E1∗

11),T1(E1∗
11)} (47)

4: Compute synchronized volumetric and deviatoric strains of set 1, and volumetric strain
functionU′(Ev),

E1v = E1
11 + E1

22 + E1
33 (48)

E1d
ii = E1

ii −
1
3 E1v (49){

E1v , T1

}
 U′(Ev) (50)

5: Compute synchronized volumetric and axial deviatoric strains of test 2

E2v = U′−1(T2/3) (51)

E2d
22 = E2

22 −
1
3 E2v (52)

6: while not convergence of axial deviatoric energy functions ω′ii(E
d
ii) do

7: Refresh ω′11(E11) using synchronized values of set 1 and previous function ω′[N−1]
22{

E1d
11 , T1 + ω′[N−1]

22 (E1d
22)

}
 ω′[N]

11 (Ed
11) (53)

8: Refresh E2d
33(E2d

22) via Eq.(44), with R(x) := E2d
33(E2d

22), and {i, j, k} = {2, 3, 1}.
9: Refresh ω′22(E22) using synchronized values of set 2 and previous function ω′[N−1]

33{
E2d

22 , T2 + ω[N−1]
33 (E2d

33)
}
 ω′[N]

22 (Ed
22) (54)

10: Refresh ω′33(E33) using synchronized values of set 1 and updated function ω′[N]
22{

E1d
33 , ω

′[N]
22 (E1d

22)
}
 ω′[N]

33 (Ed
33) (55)

11: end while
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Algorithm 2 Available experimental data: T1(E1
11), E1

22(E1
11),T2(E2

22),T3(E3
33)

1: for Initial guess: {i, j} = {1, 2}, {2, 3}, {3, 1} do

{Ei
ii,Ti} ω′[0]

ii (56)

Eid
j j(E

id
ii ) = −1

2 Eid
ii (57)

2: end for
3: while not convergence of ω′11(Ed

11), ω′22(Ed
22), ω′33(Ed

33) do
4: Refresh E1d

22(E1d
11) via Eq.(44), with R(x) := E1d

22(E1d
11), and { j, k} = {2, 3}.

5: Find best synchronized range of E1v via Eq.(58) or Eq.(59), with definitions
Rd(x) := E1d

22(E1d
11), R(x) := E1

22(E1
11),

R(E1d
11 + 1

3 E1v) = Rd(E1d
11) + 1

3 E1v (58)

Rd(E1
11 −

1
3 E1v) = R(E1

11) − 1
3 E1v (59)

6: Synchronize the complete set of test 1, {E1
11, E

1
22, E

1
33, E

1v, E1d
11 , E

1d
22 , E

1d
33 ,T1}.

7: RefreshU′[N](Ev) : {E1v,T1} U
′[N](Ev).

8: Refresh ω′[N]
11 (Ed

11) : {E1d
11 ,T1 + ω′[N−1]

22 (E1d
22)} ω′[N]

11 (Ed
11)

9: for {i, j, k} = {2, 3, 1}, {3, 1, 2} do
10: Refresh Eid

j j(E
id
ii ) from ω′[N−1]

j j (Ed
j j), ω

′[N−1]
kk (Ed

kk) via Eq.(44).
11: Refresh ω′[N]

ii (Ed
ii) : {Eid

ii ,Ti + ω′[N]
j j (Eid

j j)} ω′[N]
ii (Ed

ii)
12: end for
13: end while
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5. Theoretical verification and experimental validation

Firstly, we show that the numerical spline-based stored energy functions, and the cor-
responding algorithms, are capable of recovering analytical models based on a similar
description of the orthotropic large strain stored energy in terms of uncoupled functions
of logarithmic strain invariants (which mimic, and recover the infinitesimal counterpart at
all deformation levels). To this end, pseudo-experimental data are generated from virtual
tests performed using theoretical prescribed energies. These tests are thereafter prescribed
to the numerical procedure. We show that the spline-based reverse-engineered energies
match the analytical ones numerically, and that the predicted stresses also replicate those
from the analytical function.

Obviously, when considering infinitesimal deformations and the extension of the Valanis-
Landel decomposition to orthotropic materials, the uncoupled representation of the stored
energy function in terms of logarithmic invariants is an approximation of the material
behavior. In general, the actual behavior may present coupled terms, specially at very
large deformations. Different coupled terms could be included in the stored energy (e.g.
employing multidimensional splines), and these may be determined from a full set of data
(including all possible loading modes and their combination up to large strains) in a purely
data-driven approach. We are simply omitting them because their determination would re-
quire a large amount of tests and the procedure would be substantially more complex:
note that since we are solving for the stored energy, not for stresses, we need to account
for the equilibrium equations of each test in the function determination process. Since our
approach is capabñle of exactly (i.e. to any desired precision) capturing the set of experi-
mental data presented to the model, using additional tests we are also able to quantify the
assumption error associated to the specific uncoupling in terms of logarithmic invariants
(i.e. the actual relevance of neglected coupling terms). In our case, we will use four in-
dependent experimental curves to solve four functional unknowns, so the residual of the
errors when recovering the reference experimental curves is a numerical zero. Now, if we
use two extra independent test curves not employed for the energy determination, and we
try to reproduce them using our obtained energies, we can assess the differences between
our model and the reality (assumption error) to determine the accuracy of the assumptions.

5.1. Verification of the procedure
As a reference energy derivative function for this verification we can choose any ana-

lytical function as long as it results in stable behavior. A simple polynomial form is used
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for a verification of the computational procedure

f (x) =

4∑
n=0

cnxn (60)

This function is employed to define the (theoretical, assumed unknown) energy derivative
functions, with coefficients cn detailed in Table 1 for the argument rangesω′11([−0.10, 0.08]),
ω′22([−0.12, 0.10]), ω′33([−0.10, 0.08]),U′([−0.23, 0.20]).

f c4 c3 c2 c1 c0

ω′11 −1.2756E + 04 3.0974E + 03 −1.5733E + 02 6.0070E + 01 4.5525E − 02
ω′22 −1.9285E + 03 2.9568E + 02 3.9730E + 01 7.9928E + 00 2.4412E − 02
ω′33 −7.7979E + 03 −8.8494E + 02 6.0190E + 01 3.7911E + 01 5.1855E − 02
U′ −1.0592E + 02 8.6799E + 01 −1.1754E + 01 8.2847E + 00 5.2721E − 03

Table 1: Coefficients for energy derivative function characterization in the range of application
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Figure 1: Pseudo-experimental test produced from reference energy derivative functions. a) Complete uni-
axial test (compressible and tensile branches) performed on preferred direction 1: Kirchhoff stress vs. lon-
gitudinal logarithmic strain in load direction, T1(E1

11). b) Idem on preferred direction 2, T2(E2
22). c) Idem on

preferred direction 3, T3(E3
33). d) Logarithmic strain relation over the uniaxial test performed on preferred

direction 1: transverse logarithmic strain vs. longitudinal logarithmic strain, E1
22(E1

11). Superindices indicate
preferred direction along with the test is performed.

In particular, these specific coefficient configurations are based on characterization
of a real specimen, detailed in the second example (see below). If we use these en-
ergy derivatives for simulating uniaxial tests in directions 1 and 2, and generate the re-
quired “experimental” functional data for Algorithm 1 (i.e. piece-wise spline functions
T1(E1

11), E1
22(E1

11), E1
33(E1

11),T2(E2
22)), we obtain the curves shown in Figure 1. Applying

Algorithm 1, we solve the required functional equations to obtain a result consisting of
the set of recovered energy derivatives in the piecewise spline form shown in Figure 2.
Whereas the original stored energy function and the recovered ones have obviously dif-
ferent analytical expressions, it is seen in this figure that they visually match. Indeed,
note that cubic splines have fourth order convergence with progressive refinement, so few
pieces are needed to obtain a high precision.
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Figure 2: Comparison of reference vs. recovered energy derivative functions. a) ω′11(Ed
11), b) ω′22(Ed

22), c)
ω′33(Ed

33), d) U′(Ev). Ed
ii: deviatoric logarithmic strain in preferred direction i. Ev: volumetric logarithmic

strain.

5.2. Experimental validation
When analyzing a real material, we have no available reference energy functions to

check the goodness of the obtained ones using our procedure. However, we can determine
the energy derivative functions from experimental stress-strain data obtained from some
experiments, and then use these energies to simulate the tests and compare the resultant
stress-strain curves with the experimental ones. Since the above-presented algorithms are
developed to analyze the behavior of auxetic foams, to this end we employ experimental
data from a real auxetic polyurethane foam.

The fabrication of the specimen is briefly described. First, the open cell polyurethane
foam (PUR30FR, Custom Foams) was compressed using a 2mm walled aluminum box
section mold. The foam and mold were heated in an oven (MCP Tooling Technologies
LC/CD) at 170◦C for 20 minutes, then removed from the oven and cooled to room tempera-
ture. According to Duncan et. al. [78], at 160◦C the foam presents the most negative value
of the Poisson’s ratio. However, temperatures above this point reduce expansion of the
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specimen after thermal treatment, better preserving the imposed cell structure. The final
product is shown in Figure 3. The specimens were glued to end tabs to be gripped by the
machine for tension-compression tests. The strain rates of the tests were 0.014± 0.002s−1.
Cubic samples were selected to allow compression and tensile tests of the same sample.
Although end effects may cause some error in measurement of characteristics, the purpose
of the present work is to show the methodology, not to perform an accurate experimental
characterization of these foams, which would require several tests on different specimens
and an averaging of results.

Figure 3: From left to right, samples for compressive and tensile uniaxial test for directions x, y and z

The stress-strain data were collected via Instron machine model 3369, 500N load cell
and sample frequency of 25Hz. Strain data were measured using digital image correlation.
A single camera Imager M-Lite with 5 Mega-pixel resolution was used, together with the
AF MICRO NIKKOR lens with 60 mm optical zoom recording at 25 FPS. Figure 4 shows
the experimental set up.
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Figure 4: Test set-up. a1) Camera for digital image correlation. a2) Instron machine for compressive and
tensile uniaxial test. b) Contour plot of transverse strain at maximum compression, c) Contour plot of
transverse strain at maximum tension. Legend shows strain in b) and c).
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After smoothing to eliminate experimental noise and appropriate treatment of experi-
mental data, we had six reference spline functions representing the experimental data sets.
Since we solve four functional equations, we know that we need a minimum of four inde-
pendent experimental functions; more curves could be used to obtain an average behavior.
For this example we use the set T1(E1

11), T2(E2
22), T3(E3

33), E1
22(E1

11) to characterize the
material and we use the two additional curves to check the error from the assumption of
uncoupled deviatoric orthotropic contribution plus isotropic volumetric part.

Figure 5 shows some iterations and the convergence process of the energy derivative
functions using the procedure described in Algorithm 2, until the system of functional
equations is finally solved.
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Figure 5: Iterative convergence of energy derivative functions using procedure described in algorithm 2. a)
ω′11(Ed

11), b) ω′22(Ed
22), c) ω′33(Ed

33), d)U′(Ev). Input functional data are the complete (both compressive and
tensile branches) stress-strain curves from the uniaxial tests T1(E1

11),T2(E2
22),T3(E3

33), and the transverse
strain vs. longitudinal strain data from the uniaxial test performed in preferred direction 1, E1

22(E1
11).

Figure 6 compares reference and simulated test curves. As observed in Figs. 6a-d the
input experimental data are fully recovered. It is noticeable that extra curves Fig. 6e and
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Fig. 6f are not recovered. This is because they are not part of the functional system of
equations to be solved. However they provide information about how close we are from
the assumption of uncoupled orthotropic deviatoric and isotropic volumetric contribution
of the specimen.

The assumption of uncoupled orthotropic deviatoric and isotropic volumetric contribu-
tions is seen to be reasonably accurate for E3

11(E3
33) in Fig. 6f, but less so for E2

33(E2
22) Fig.

6e. An accurate assessment of the reasons behind the discrepancies shown in Figure 6e,
despite the accuracy shown in Figure 6f for the other plane, would need the microstructural
insight given by multiscale analyses, with a proper description of the auxetic cell topolo-
gies and their evolution during deformation. However, the following phenomenological
explanation can also be devised. Like other models in the literature, our model considers
uncoupled volumetric behavior. The volumetric behavior has been determined from the
curves for auxetic behavior. This means that the Poisson’s ratio is negative, see e.g. Fig.
6d. Figure 6f corresponding to the E3

11(E3
33) behavior also presents auxetic behavior, so it

is predicted with good accuracy even though this curve has not been used in the material
characterization. However, due to the specific manufacturing process of the auxetic foam,
the behavior E2

33(E2
22) shown in Figure 6e is conventional (non-auxetic, meaning that an

increment in E2
22 produces a decrease of E2

33). In this case the volumetric function, which
has been characterized for auxetic behavior, is not capable of accurately predicting the
completely opposite Poisson behavior present in this axis, even though it is still capable
of showing a conventional behavior compatible with the prescribed curves. Of course, the
inclusion of different coupled terms could improve this prediction, so a simple procedure
of this kind that captures simultaneously auxetic and conventional behaviors with high
accuracy would be valuable and is a topic of ongoing research.
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Figure 6: Recovery and contrast with reference data of original tests using combination of set of 4 func-
tional experimental data: T1(E1

11),T2(E2
22), T3(E3

33), E1
22(E1

11). a) T1(E1
11), b) T2(E2

22), c)T3(E3
33), d) E1

22(E11),
e)E2

33(E2
22), f) E3

11(E3
33). Recovery data describes a continuous function and ”◦” symbol in dashed lines just

contributes to a better readibility

Since the energies are the solution for the curves employed in the determination of the
stored energy, namely Figs. 6a-d, we can assess the accuracy of the assumptions using
Figs. 6e-f. We propose a parameter of assumption error ρ, the cumulative (integral area)
relative error in absolute terms (i.e. positive differences) between the reproduced yrep(x)
and the reference real yre f (x) test curves (see Fig. 6e and Fig. 6f), that is,

ρ(E) =
1

2E

∫ E

−E

∣∣∣∣∣yrec(x) − yre f (x)
yre f (x)

∣∣∣∣∣dx (61)

where E is the logarithmic strain limit in the abscissae of the curves that defines the range
of assessment. This criterion assesses the error of continuous functions in a similar way
that the statistical R2 measure applies to discrete values. The meaning of the ρ values is
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intuitive, so for example the values ρ = 0, 0.5, 1, 2 imply respectively an error of 0%, 50%
(one curve is 50% bigger than the other one), 100% (values of one curve doubles the other
one) and 200% (values of one curve triples the other one). This definition computes the
relative error. Absolute positive values are also considered because errors are cumulative.
Since the obtained area increases with the strain range E, the result must be divided by the
range of assessment, 2E. The proposed approach is to complete the set of uniaxial stress-
strain and strain-strain test curves for the three orthotropic directions (i.e. the 6 test curves
of Fig. 6) and to use the extra two curves not employed in solving the energies in order
to compute the assumption error parameter using Eq. (61). The value of the logarithmic
strain semi-range is E = 0.1, and the result is ρe(0.1) = 8.927 for the conventional behavior
in Fig.6e and ρ f (0.1) = 0.1511 for the auxetic behavior shown in Fig.6f.

6. Finite element analysis implementation example

The strength of this approach is that for FEA simulations it implies an important re-
duction in terms of characterization and computational times respect microstructural ap-
proaches. For this purpose, we present an example of FEA of an orthotropic auxetic foam.
With this example we show that the spline format of the derivative energy functions can
be implemented as efficiently as classical hyperelastic energies having analytical format.
In the example we show that instead of using an analytical proposal for the volumetric
part, the pressure is naturally determined for each integration point by the evaluation of
the derivative of the volumetric strain energy function obtained from experimental data,
U′. This is possible because the function U′ is part of the solution of the functional
equations of the stress-strain equilibrium, enabling the method to recover naturally quasi-
incompressible cases if data corresponds to that of a quasi-incompressible material, an
advantage already observed in the isotropic compressible formulation (see Figure 14 of
Reference [58]).

Energy derivative functions are based on experimental results performed on the speci-
men of the previous section, as shown in Figure 5. The evaluation of the energy functions
is that of a cubic spline for interpolation and linear for extrapolation (i.e. outside the do-
main in which they have been determined from experimental data). In order to complete
the model for our example, we take the positive branch of the defined ω′11(Ed

11) for shear
energy derivatives, that is ω′12(Ed

12) = ω′13(Ed
13) = ω′23(Ed

23) = ω′+11(E+d
11 ). The geometry

to be modeled has sharp corners and a pierced square hole in its center. In this way we
can assess the mechanical behavior in a non uniform orthotropic auxetic geometry with
high gradients expected. The mesh shown in Figure 7 contains 17, 280 brick elements.
This choice obeys a criterium of mesh convergence and computational costs. For this
simulation the computational time is 1h, 3min, 11s in a desktop PC computer running
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our in-house finite element program Dulcinea in a single processor and compiled with the
Absoft fortran90 compiler. Global equilibrium equations have been solved using a plain
Newton-Raphson method.

y

x

z

Figure 7: Geometry and mesh of the sample to be simulated for 20% stretching along the z-axis. Dimensions
in mm.
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b)a)

Figure 8: Deformation evolution of the sample after 20% stretching simulation. a) Detail of comparison
between undeformed and deformed configurations in the upper-left quarter of the sample. In blue, relaxed
configuration, initial state. In red, sample silhouette after stretching to the final state. b) Final deformation
shape of the complete sample, with the upper-left quarter region detailed in “a)” highlighted in red.
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Figure 9: Load-displacement curve in the specimen (specimen stretched 20%).

The specimen is stretched to 20% of its original length. We can see the evolution
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of the deformation silhouette in Figure 8. We observe that the planes of symmetry must
remain throughout the deformation because of the geometric and loading symmetry con-
ditions. The load-displacement curve at the top of the specimen is shown in Figure 9.
The predicted von Mises and pressure results are shown in Figure 10. High von Mises
gradient is observed around the internal edges. Pressure appears more uniform along the
ZX-plane sections. In order to compare computational times to problems solved using
micro-macro FEA approaches we can compare to the simulations made by Tikarrouchine
et. al. [36]. They used the computational homogenization FE2 approach. Therein, they
use a macroscopic mesh of only 90 elements (C3D8-Abaqus), and a microscopic one that
is an RVE representing the material behavior at a point of integration of the macroscopic
level. The RVE of the microscopic level contains 6857 elements (C3D4-Abaqus) at each
point of integration. This simulation required 72h with 18 processors working in parallel;
note furthermore that Dulcinea is a research code in which computational efficiency is not
a priority (simplicity of maintenance and scientific output is prioritized), whereas Abaqus
is a professional, highly optimized code. Furthermore, since they state that the parallel
process was 18× faster than using a single process, their equivalent computational time is
1296h, which is more than 1000× slower than our model, which required 1.05h. Of course,
other more efficient homogenization methods are available in the literature (as discussed
in the Introduction Section), but undoubtedly, a continuum approach is still substantially
more efficient for the general purpose of FEA simulation of the behavior of structures.
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a) b)

c) d)

Figure 10: a) Von Mises and c) pressure [kPa] distributions after simulation of 10% stretching of the sample.
b) Von Mises and d) pressure [kPa] distributions after simulation of 20% stretching of the sample. Color
scales are common to both deformation levels.
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7. Conclusions

In this work we have developed a continuum-equivalent data-driven computational
approach to model orthotropic auxetic foams in a finite element context. The approach has
necessitated several developments.

First, a theoretical background to model orthotropic auxetic foams has been developed,
and special conditions given by auxecticity have been addressed. The method necessitates
the resolution of a system of functional equations, in which experimental tests are the
functional data and the energy derivatives are the corresponding functional unknowns. The
presented algorithms bypass the studied difficulties in the determination of the solution for
auxetic orthotropic materials, but they also cover conventional materials.

Second, we have verified the algorithmic data-driven approach using analytical ener-
gies as a reference, showing that both the reference functions and their predictions are
captured to any desired precision using the recovered spline-based energies.

Third, the experimental validation from a real specimen has been performed via uniax-
ial tests along with the orthotropic preferred directions. The experimental (functional) data
are recovered to any desired precision. The additional test curves are employed to quantify
the accuracy of the employed assumptions, which is difficult to do in analytical models due
to superposition of errors, because they are difficult to separate in curves not employed in
the characterization of the model. From this analysis, we observe that the model is capa-
ble of capturing auxetic behavior in orthotropic foams, but since it lacks complex coupled
terms, it has difficulties in capturing simultaneously auxetic and conventional behaviors in
different axes.

Fourth, FEA implementation of the obtained energies is performed in order to assess
the computational efficiency of the method. Obtained computational times are in line with
those of analytical hyperelastic models, and two or three orders of magnitude faster than
multiscale analyses available in literature.
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