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ABSTRACT: Mass spectrometry imaging (MSI) is an established
analytical tool capable of defining and understanding complex tissues
by determining the spatial distribution of biological molecules. Three-
dimensional (3D) cell culture models mimic the pathophysiological
environment of in vivo tumors and are rapidly emerging as a valuable
research tool. Here, multimodal MSI techniques were employed to
characterize a novel aggregated 3D lung adenocarcinoma model,
developed by the group to mimic the in vivo tissue. Regions of tumor
heterogeneity and the hypoxic microenvironment were observed
based on the spatial distribution of a variety of endogenous
molecules. Desorption electrospray ionization (DESI)-MSI defined
regions of a hypoxic core and a proliferative outer layer from
metabolite distribution. Targeted metabolites (e.g., lactate, glutamine,
and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first
application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution.
Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model,
which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous
elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression.
Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological
processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture
highlighted a future methodology with potential applications in cancer research and drug development.

Mass spectrometry imaging (MSI) is a sophisticated
technology capable of simultaneously mapping a variety

of molecules within a biological sample. The benefits of
conventional MSI techniques compared to other imaging
modalities are the abilities to detect ionizable compounds in
both targeted and untargeted methods without the use of
specific labeling reagents.1 The spatial localization of a
molecule can determine the interplay of biological functions
and interactions within a tissue. This also enables a greater
biological understanding of cellular phenotypes and their
structural organization, in addition to the surrounding
microenvironment. MSI has therefore had a major influence
on cancer research and drug development by utilizing spatial
localization of biomarkers, therapeutics, their active metabo-
lites, and cellular responses.1

Depending on the biological sample and the molecules of
interest, different MSI techniques can be employed for
optimum analysis. Matrix-assisted laser desorption/ionization
(MALDI) is the most widely used MSI technique across many
applications due to its high spatial resolution and speed of
acquisition. MALDI-MSI can detect a wide range of analytes in
an untargeted manner including metabolites, lipids, peptides,

and proteins.2−4 Desorption electrospray ionization (DESI)-
MSI is also widely used due to the minimal sample preparation
requirement of this ambient ionization methodology.5 The
combination of DESI with Orbitrap and QTOF type mass
spectrometers has generated images with high mass specificity
for metabolites and small molecule therapeutics in tissue
samples.6,7 The requirement for the study of trace elements or
metal isotope distribution in tissues has also seen the
development of laser ablation-inductively coupled plasma
(LA-ICP)-MSI,8,9 a technique that has been applied to the
analysis of metal-containing therapeutics such as cisplatin.10,11

Advancements of LA-ICP-MSI have evolved to imaging mass
cytometry (IMC), a novel multiplex method capable of tissue
phenotyping, and imaging biological processes at a high spatial
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resolution (<1 μm). Detection of proteins is achieved in this
technique using metal-labeled antibodies specific to proteins
and protein modifications. IMC has demonstrated high-
dimensional single-cell analysis capabilities on numerous tissue
types12,13 and directly visualized platinum-based therapeutics
and the biological responses to treatment.14 Recent studies
have demonstrated the benefits of the use of multimodal MSI
for the same study for the extraction of complementary
molecular information to enable a wider detection of a diverse
range of analytes within corresponding samples.15,16

Parallel to the developments in MSI, aspects of preclinical
therapeutic research are exploring more sustainable and
cheaper biological models than the use of in vivo models.
Three-dimensional (3D) cell cultures offer a biologically
relevant model that can be used for early stage drug
development and screening studies.17,18 The cellular complex-
ity of 3D models mimics the biological microenvironment of
tissues in a way that 2D cultures cannot. Due to recent societal
issues regarding the use of animal models in science, the
demand for 3D cultures has grown significantly. They offer a
way in which the 3Rs principle, i.e., the reduction, replacement,
and refinement of the use of animals in scientific research can
be implemented in preclinical studies.19 Tumor spheroids are
among the most common biological systems developed. These
cellular spheres mirror the tumor microenvironment of
proliferative, hypoxic, and necrotic regions through gradients
of oxygen and nutrients. By recapitulating the cell−cell
interactions and the growth and differentiation processes of
tumors, spheroids are a valuable research tool to study realistic
drug behavior.
Over the past decade, advancements in technology,

especially the achievable spatial resolution, have enabled the
analysis of tumor spheroids by MSI. Li and Hummon20 were
the first to establish the combination of MALDI-MSI with
spheroids for the characterization of protein distributions in a
HCT116 colon carcinoma model. Proteins including Histone
H4 and cytochrome c were localized across the spheroid, and a
specific, unidentified peak (m/z 12 828) was localized within
the necrotic core. More recently, Tucker et al.21 employed high
spectral resolution Fourier transform-ion cyclotron resonance
(FT-ICR) MALDI-MSI to determine metabolite distributions
in MCF-7 breast cancer spheroids. The group mapped
metabolites associated with hypoxia through biochemical
processes including glycolysis and the hexosamine biosynthetic
pathway. By improving the understanding of cellular functions
in tumor spheroids, MSI techniques give opportunities to
unravel a drug’s absorption, distribution, and metabolism. The
Hummon group have reported numerous drug toxicity
applications with MALDI-MSI, investigating the distribution
of small molecule chemotherapeutics,22,23 combinational
drugs,24 and immunotherapy25 in colon carcinoma spheroid
cultures.
Recently, literature has debated whether tumor spheroids

fully recapitulate the heterogeneous nature of an in vivo
tumor.26 This is due to methods in which they are cultured.
Multicellular tumor spheroids (MCTS) are the most common
model formed by aggregation, rather than proliferation, via
ultralow attachment techniques. Their homogeneity negatively
impacts true biological behavior and therefore limits drug
efficacy experiments. To overcome this limitation, our group
has developed a novel 3D model which is formed via the
aggregation of clonal spheroids.27 This 3D model, termed an
“aggregoid” is cultured by isolating and aggregating tumor

spheres generated from an alginate bead culture. Similar to the
spheroid model, the aggregoid displays a gradient of oxygen
and nutrients, whereby a depletion in the core produces a
hypoxic environment. This gradient was observed by
fluorescently staining the aggregoid culture, identifying a viable
outer region and a necrotic core (Supplementary Figure 1).
The asymmetric nature of the aggregoid model produces a
heterogeneous tissue and therefore allows for a more
morphological representation of an in vivo tumor. The
aggregoid model can also be cultured to an approximate
diameter of 1 mm, which is large enough for in-depth spatial
distribution studies. MALDI-MSI analysis of this aggregoid
model was demonstrated by Palubeckaite et al.27 for the
determination of drug and endogenous metabolite distribu-
tions. Metabolites were localized in regions corresponding to
the hypoxic gradient, including m/z 426.1 within the core, and
m/z 281.3 located within the outer areas of an SAOS-2
osteosarcoma aggregoid. MALDI-MSI analysis was also
employed to detect doxorubicin, a major chemotherapeutic,
within the core of the SAOS-2 aggregoid and for mapping the
metabolic responses to the treatment.
In this study, we have characterized a novel aggregoid tumor

model created from HCC827 lung adenocarcinoma cells using
multiple MSI modalities: DESI-MSI, IMC, and LA-ICP-MSI.
We show how the aggregoid model displays similar
phenotypical characteristics to tumor spheroid cultures,
demonstrating its potential as an in vitro research tool.
Additionally, we have identified specific molecular markers
that define regions of hypoxia and key biological processes by
the analysis of metabolites, proteins and protein modifications,
and elemental compounds by their respective imaging
platforms.

■ METHODS

3D Culture Growth. Epithelial HCC827 lung adenocarci-
noma cell line (ATCC) was cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (Lonza Ltd., U.K.), supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin (Lonza Ltd., U.K.). Aggregoids were generated
based on the method of Palubeckaite et al.,27 as follows: Cells
were maintained at 37 °C, 5% CO2 and grown to 80%
confluence prior to use. To generate the initial tumor spheres,
cells were suspended in 1.2% (w/v) alginic acid (Sigma-
Aldrich, U.K.) in 0.15 M NaCl at 1 × 106 cells/mL and
extruded out of a needle into 0.2 M CaCl2 to polymerize the
alginate into beads. Beads were washed with 0.15 M NaCl
before culturing in DMEM media for 14 days to yield
spheroids ∼100 μm in diameter, and media was replaced every
72 h. Alginate beads were dissolved in an alginate buffer (55
mM sodium citrate, 30 mM EDTA, 0.15 M NaCl) to release
spheroids into solution. Spheroids were washed with PBS
(Lonza, Castleford, U.K.) before seeding spheroids into 1%
agarose-coated 96-well plate in growth medium. Spheroids
were cultured for 7 days to form aggregoids of an approximate
1 mm diameter before harvesting. Spheroid and aggregoid
development were analyzed by fluorescent staining with
Hoechst 33342 and propidium iodide staining (10 μg/mL
each) for 30 min. Fluorescent images were obtained using the
Olympus IX81 Microscope (Southend-on-Sea, U.K.) and
images were captured using Cell^F Multifluorescence and
Imaging Software (Europa Science Ltd., Cambridge, U.K.)
(Supplementary Figure 1).
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Tissue Preparation. Aggregoids were prepared for imaging
analysis based on the tissue embedding protocol. Briefly,
aggregoids were washed in PBS prior to embedding in media
made of 7.5% hydroxypropyl-methylcellulose (HPMC) and
2.5% polyvinylpyrrolidone (PVP). Embedded tissues were
flash frozen in liquid nitrogen and stored at −80 °C. Frozen
aggregoids were sectioned at 10 μm thickness using a Leica
CM3050 cryostat (Leica Microsystems, U.K.) operating at
−18 °C. Sections were thaw-mounted onto polylysine glass
slides followed by immediate desiccation with N2 and
subsequent vacuum packing for storage at −80 °C.28

DESI-MSI. Small molecule imaging was performed using a
Q-Exactive mass spectrometer (Thermo Fisher Scientific Inc.,
Germany) operated in negative mode. The mass spectrometer
was equipped with a custom-built automated DESI ion source.
The mass resolution was set to 70 000, and mass spectra were
collected in the mass range m/z 80−900 at a spatial resolution
30 μm. The electrospray solvent was MeOH/water (95:5 v/v)
set at a flow rate of 1 μL/min with nebulizing nitrogen used as
gas at pressure of 2 bar. Imaging analysis was performed by
combining individual horizontal line scans and converting into
imzML format using the imzML converter V.1.1.4.5 (www.
maldi-msi.org). The images were analyzed by SCiLS Lab MVS
Premium 3D Version 2020a (Bruker Daltonics, Germany)
employing root-mean-square (RMS) normalization.
Discriminatory Analysis. The aggregoid DESI-MSI data

file was segregated into regional clusters by spatial
segmentation processing by which the “core” and “outer”
regions were identified (SCiLS, Bruker Daltonics). Discrim-
ination between the two regions was achieved by automatically
finding m/z values by employing the receiver operating
characteristic (ROC) tool to calculate the area under the
curve (AUC) value (Supplementary Table 1). The raw data file
from the DESI-MSI was uploaded to METASPACE (https://
metaspace2020.eu/) for metabolite identification of the
discriminated m/z values by employing the Human Metab-
olome Database (HMDB) (tolerance <1 ppm). Metabolic
pathways were assigned based on the KEGG database by
importing identified m/z values into Pathos software (http://
motif.gla.ac.uk/Pathos/). The ion abundances for the m/z
values were generated into histograms for comparison between
regions using GraphPad Prism software (La Jolla, CA).
IMC Staining. Tissues were fixed with 4% paraformalde-

hyde for 10 min at room temperature (RT). Prior to staining,
tissues were permeabilized with 1× casein solution containing
0.1% Triton X-100 for 5 min at RT. Tissues were then
incubated with blocking buffer (1× casein solution) for 30 min
at RT. An antibody cocktail was made containing the
appropriate dilutions for the antibodies. Tissues were
incubated with the antibody cocktail overnight at 4 °C.
DNA Ir-Intercalator (Fluidigm) was diluted 1:400 and applied
to tissues for 30 min at RT. Washes with PBS were performed
three times between each step, with the last step washed in
deionized water for 30 s. Slides were left to air-dry until
analysis.
IMC Analysis. Images were acquired using the Hyperion

Imaging System (Fluidigm), rasterizing at 200 Hz and with the
laser tuned to fully ablate the tissue without etching the glass.
TIFF files of each acquisition were then exported for analysis
in the HALO image analysis platform (Indica Laboratories).
Using a random forest machine learning Tissue Classifier
module, each image was segmented into the background and
inner, core, and outer areas of each aggregoid. Using the

Hiplex module, the DNA intercalator was used to first segment
the nucleus of each cell, and a proxy for the cytoplasm of each
cell defined in a 1 μm radius from the nucleus, before
thresholds set to define positive cell staining for each marker.
Percentage positivity of each cell was then defined within the
inner and outer region of the aggregoid.

LA-ICP-MS Analysis. Experiments were conducted using a
NexION 350X ICPMS (PerkinElmer) coupled to an UP-213
LA system (New Wave Research) with a frequency quintupled
213 nm Nd: YAG laser. Laser parameters were optimized to a
6 μm spot size with laser power 46%, 25 μm/s scan speed, 0.07
J cm−2 laser fluence, and 20 Hz repetition rate. The sample was
ablated line by line with 6 μm raster spacing at 1.31 min
acquisition time. For the ICP-MS instrument there was a direct
flow with a rate of 1.4 L/min. The following settings were used
in standard mode with an 18 L/min plasma gas flow, 1.2 L/
min auxiliary gas flow at 1600 W RF power. Isotopes
monitored included 24 Mg, 66Zn, and 63Cu, and the instrument
was controlled using Syngistix software. Data analysis was
achieved using Iolite Software on Igor Pro (WaveMetrics,
USA).

Histological Staining. After DESI-MSI, aggregoid sections
were stained using Mayer’s hematoxylin and eosin solutions.
Sections were fixed in 4% paraformaldehyde for 10 min before
staining with hematoxylin for 1 min. Tissues were rinsed in tap
water before and after submerging in acid alcohol. Tissues were
subsequently stained with eosin for 30 s prior to washing tap
water, then subsequently washed 3 times with absolute ethanol
for 1 min. Finally, tissues were submerged in xylene substitute
for 1 min twice and mounted using DPX mountant. Stained
tissues were imaged with an Aperio CS2 digital pathology
scanner (Aperio Tech., Oxford, U.K.) at 40× and visualized
with ImageScope software (Aperio Tech.).

■ RESULTS AND DISCUSSION
Metabolite Imaging. One major hallmark of cancer is an

altered cellular metabolism to generate a sufficient energy
source contributing to the initiation, growth, and maintenance
of tumors.29 During tumor growth, a hypoxic microenviron-
ment is developed due to the gradient of oxygen and nutrients.
In the present study, the metabolic profile within the lung
adenocarcinoma aggregoid model was investigated by employ-
ing a DESI Thermo Q-Exactive MSI to classify regions of a
hypoxic core and a proliferative outer area. Initial processing of
the aggregoid images was conducted to spatially segment the
data. This is a process whereby the image is segregated into
regions; pixels within proximity that share similar spectral
characteristics are grouped together into a segment. These
segments are then classified into regions which represent
phenotypical features of a tissue. The aggregoid data was
segmented into three main regions that depicted a gradient-like
phenotype: a core, an annular zone, and an outer region
(Figure 1b,c). From the 2- and 3-dimensional images, the clear
discrimination of the regional clusters corresponded to the
histology stain of the same section after MSI analysis (Figure
1a). From this, the spectra from each region were extracted to
distinguish the distributions of key metabolites within the
aggregoid. For the purpose of separating metabolites to distinct
regions, the core and the outer zones were the main focus
when observing the distribution of species, as the intermediate
region was anticipated to be nondiscriminatory.
Within the aggregoid model, key metabolites involved in

cancer metabolism were identified with a mass error of <0.5
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ppm (Supplementary Table 1). A major metabolic substrate
that is regulated by the tumor microenvironment is lactate.
Within the aggregoid, a high intensity of lactate (m/z
89.02440) was distributed throughout indicating the presence
of metabolic activity (Figure 2b). An increase in the expression
of lactate converted from glucose via the glycolysis reaction is
thought to be the predominant pathway to promote tumor
survival and growth rather than following oxidative metabo-
lism, otherwise known as the Warburg effect.30 An elevated
expression of lactate in the core of the aggregoid also implies
the presence of hypoxia. In anaerobic conditions, the rate of
glycolysis increases due to insufficient oxygen levels to
promote tumor survival. A similar distribution of a glycolysis
intermediate, pyruvate (m/z 87.00880) was also observed
(Figure 2a). The localization of pyruvate across the aggregoid,
with elevated levels in the core validates the assumption of an
increased rate of glycolysis in response to hypoxia. A key
molecule associated with increased lactate production is the
expression of hypoxia-inducible factor alpha (HIF-1α), which
is stabilized in a hypoxic environment due to the lack of oxygen
and therefore a direct marker of hypoxia. HIF-1α is responsible
for regulating the expression of numerous genes under hypoxic
conditions. Specifically, HIF-1α promotes the transportation of

glucose into the cell by increasing the expression of the glucose
transporter 1 (Glut1).31 Additionally, HIF-1α promotes a high
glycolysis rate by inducing both pyruvate dehydrogenase kinase
(PDK) and lactate dehydrogenase A (LDH-A) to prevent the
metabolism of pyruvate into acetyl-CoA to feed the
tricarboxylic acid (TCA) cycle and rather by favoring the
conversion of lactate.32,33

The image analysis identified an increased distribution of
glutamine (m/z 145.06190) within the core of the aggregoid
(Figure 2c). Glutamine is considered a major bioenergetic
substrate that sources the TCA cycle by its metabolism to the
intermediate α-ketoglutarate achieved by the anaplerotic
pathway, glutaminolysis.34 The TCA cycle is described as the
epicenter of cell metabolism due to the extensive supply of
metabolic substrates that are utilized for energy production.35

The localization of glutamine within the core suggests the cells
within the hypoxic environment are substituting for the lack of
pyruvate sourcing the TCA cycle. Interestingly, glutamate (m/
z 146.04590), an intermediate of glutaminolysis, is distributed
toward the outer region of the aggregoid (Figure 2d). The
TCA cycle is heavily utilized by proliferating cells for growth,
the suppression of glutamine conversion to glutamate in the
core therefore implies the presence of necrosis. Several
spheroid studies have reported that the increase in diameter
decreases the cell viability due to the reduced levels of oxygen
and nutrients, thus the spheroid eventually develops an inner
necrotic core.36,37 By examining the gene expression profiles,
Daster et al.38 reported the development of a necrotic region in
multicellular spheroids larger than 500 μm. Since the diameter
of the aggregoid model is approximately 1 mm, the presence of
an inner necrotic core is highly likely. Fluorescent staining of
the aggregoid with propidium iodide validates this necrotic
region (Supplementary Figure 1) and additionally shows the
large asymmetric hypoxic area opposed to the simple radial
gradient in a typical spheroid model, which could explain the
asymmetric metabolite distribution in Figure 2a−d. In
contrast, the distributions of the major TCA cycle
intermediates citrate (m/z 191.01980), malate (m/z
133.01430), and succinate (m/z 117.01940) were observed
with more annular features within the outer proliferative region
of the aggregoid (Figure 2e−g), implying a surplus of oxygen
and nutrients surrounding the aggregoid and the absence of
cell proliferation in the core. By identifying the significant
metabolites that drive cancer metabolism, it was possible to
map the ion density images onto their corresponding pathways
to associate the metabolic activity with specific regions of the
aggregoid (Figure 3).
Proliferating cancer cells utilize fatty acids as they have

essential roles as structural components of the membrane
matrix, secondary messengers for signaling pathways, and
sources for energy production.39 Here fatty acid distribution
was imaged within the aggregoid by DESI-MSI and identified
with a mass error ≤0.7 ppm (Supplementary Table 1). The
image analysis demonstrated the presence of two polyunsatu-
rated fatty acids, FA (18:2), e.g., linoleic acid at m/z
279.23280, and FA (20:4), e.g., arachidonic acid at m/z
303.23300, within the proliferative region (Figure 4a,b). The
metabolite glutathione (GSH) (m/z 306.07650) displayed a
similar localization to the fatty acids described with elevated
levels surrounding the hotspot within the outer region (Figure
4c). GSH protects cells against reactive oxygen species (ROS),
a normal product from cellular metabolism, through the
oxidation of its sulfhydryl group to form glutathione disulfide

Figure 1. Spatial segmentation of HCC827 aggregoid model from
metabolite data by DESI-MSI. (a) H&E stain of central aggregoid
section showing three separate regions within the tissue. Slight fissures
can be observed in the tissue which formed during sectioning. Scale
bar 400 μm. (b) Spatial segmentation of central aggregoid section
identified three clustering regions that correspond to the hypoxia
gradient: necrotic core (blue), annular quiescent region (yellow), and
proliferative outer region (red). Scale bar 400 μm. (c) Realigned 3D
construct of aggregoid displaying segmentation pattern throughout
the model.
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(GSSG).40 The colocalization of GSH with the fatty acids
suggests an area of high metabolic activity. Interestingly, there
was a lack of GSH in the core of the aggregoid, which is heavily
associated with oxidative stress (Figure 4c). In hypoxia, the
expression of antioxidant genes including GSH metabolic
genes are induced to allow cells to regulate ROS. However, it
has been shown that in the presence of excess ROS, GSH is
depleted which leads to the activation of apoptosis.41 The
presence of GSH (or the lack of) can therefore be a potential
measure of oxidative stress within the aggregoid model. The
importance of defining heterogeneity within the in vitro
aggregoid model allows a further understanding of a realistic
tumor microenvironment and the true metabolic behavior of
an in vivo cancer. This information can then be utilized in
applications of drug development.
Single-Cell Tumor Characterization. IMC is a novel,

multiplex imaging platform capable of high-dimensional tissue
phenotyping and the detection of signaling activities by the
analysis of protein and protein modification markers at single-
cell resolution (1 μm). The analysis of proteins within tissues
can define essential cellular functions such as proliferation,
metabolism, gene expression, organization, and apoptosis.42

Modifications to such proteins can manipulate their spatial
distribution, composition, and their function,43 which can
contribute to tumor progression. In the present study, IMC
was employed for single-cell phenotyping of the HCC827
aggregoid model for an in-depth characterization of the tumor
microenvironment. Proteomic markers relevant to lung
adenocarcinoma were selected to identify key components of
cellular organizations, functions, and signaling.

Due to the complex heterogeneity of cancer tissues,
morphological and structural components provide a naviga-
tional aid to determine the initial tissue organization.13 In this
study, such cellular elements included DNA and epithelial
tumor markers. The DNA intercalator selected was a generic
marker, selected to identify the size and shape of the nucleus in
individual cells within the aggregoid (Figure 5a). This data was
used to spatially segment the image to calculate the percentage
positive cells for each marker (HALO, Indica Laboratories)
(Supplementary Figure 3).
Tumor markers observed within the HCC827 aggregoid

were epithelial cadherin (E-cadherin) and pan-cytokeratin
(Pan-CK). The image analysis of both markers identified
similar distributions with elevated expression levels within the
outer proliferative region of the aggregoid (Figure 5b,c). In
epithelial cells, E-cadherin and cytokeratin are responsible for
mediating cell−cell adhesion and mechanical support via
intermediate filaments, respectively. The absence of these
markers within the core is possibly due to the breakdown of
cell interactions as a result of necrosis. Simiantonaki et al.44

reported a similar correlation with cellular necrosis and a lack
of E-cadherin distribution in the core of HT-29 colorectal
carcinoma spheroids via immunohistochemistry. Interestingly,
the expression of both E-cadherin and cytokeratin can
determine epithelial-mesenchymal transition (EMT), a process
which promotes tumor progression and metastasis. In EMT,
both epithelial markers are either downregulated or lost
coupled with a gain of mesenchymal markers, N-cadherin and
vimentin.45 Studies have demonstrated that EMT signaling can
be induced by HIF-1α in tumor spheroids.46,47 Without
analyzing markers of the mesenchymal phenotype, this process

Figure 2. Distribution of metabolites regulating cancer growth and survival within the HCC827 aggregoid central section by DESI-MSI. Ion
density maps of metabolites outlining the core and the outer area on the image. Mean intensity plotted on bar graph against the core and outer
regions. Scale bar 200 μm. Intermediates of the glycolysis reaction: (a) pyruvate, m/z 87.00880 and (b) lactate, m/z 89.02440. Glutaminolysis
reaction: (c) glutamine, m/z 145.06190 and (d) glutamate, m/z 146.04590. TCA cycle: (e) citrate, m/z 191.01980; (f) malate, m/z 133.01430;
and (g) succinate, m/z 117.01940.
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cannot be confirmed. However, as necrosis and EMT have a
crucial part in tumor progression, future aggregoid analysis
with IMC has potential for applications in drug development
and resistance.
Alternatively, Tenascin C (TNC) is an extracellular matrix

(ECM) marker considered an active component of cancer.
Relatively high expression of the marker was localized within
the necrotic core of the aggregoid (Figure 5d). TNC is thought
to promote survival and invasion by regulating the expression
of proangiogenic factors such as vascular endothelial growth
factor (VEGF) modulated by HIF-1α.48 Additionally, TNC
has been associated with inducing EMT changes with the
downregulation of E-cadherin.49 Thus, the TNC marker
correlates with the distribution of the E-cadherin marker
(Figure 6b).
To distinguish regions of the tumor microenvironment and

to complement the findings from the metabolite distributions,
specific markers of proliferation and hypoxia were included. Ki-
67 is a cellular marker, present in all stages of the cell cycle
except for early G1 and G0 quiescent phases. The high
expression of Ki-67 present within the outer region of the
aggregoid therefore implies an active proliferative zone (Figure
5e). In addition, phosphorylated Histone H3 (pHH3) marker
was identified in only a few specific cells, yet still located
primarily in the outer region of the aggregoid (Figure 5f). HH3
is a nuclear core protein, and when phosphorylated at serine-
10, is specifically involved in mitotic chromatin condensa-
tion.50 Hence, the expression of pHH3 can identify cells

undergoing mitosis. It can be concluded that the cells within
the outer region of the aggregoid are highly proliferative
implying a nonhypoxic area compared to the cells within the
core, thus tightly corresponding to the distributions of the
TCA cycle intermediates from the DESI-MSI analysis.
On the other hand, Glut1 (glucose transporter 1) is a proxy

hypoxia marker. Elevated levels of the marker were observed
within the necrotic core of the aggregoid (Figure 5g). Glut1 is
a hypoxia responsive gene, which is upregulated by HIF-1α to
maintain an adequate energy supply in response to reduced
oxidative phosphorylation.51 High levels of Glut1 complement
the high lactate expression from the metabolite analysis,
implying an increase in glucose transport into cells for lactate
production via glycolysis. From the overlay image analysis, an
inverse distribution of Ki-67 and Glut1 can distinguish the two
major regions of the tumor microenvironment: proliferative
outer and hypoxic core (Figure 6c). Phosphorylated S6
ribosomal protein (pS6), an active marker for mTOR signaling
for growth and metabolism, is also regulated by hypoxia. In
contrast, the expression of pS6 was observed primarily within
the outer region of the aggregoid, with high levels within
specific cells (Figure 5h). In hypoxic conditions, the activity of
the mTOR pathway is reduced, negatively impacting on the
pS6 expression.52 Both Glut1 and pS6 markers therefore
identified metabolic signaling within the aggregoid that is
affected by hypoxia.
Alternatively, phosphorylated Histone H2AX (γH2AX) is a

marker for DNA damage and stress and can be indicative of

Figure 3. Mapping metabolites to biological pathways defined areas of tumor metabolism. The glycolysis reaction is highly expressed across the
whole aggregoid section demonstrating the Warburg effect. Conversion of glutamine to glutamate is showing reduced expression in the core. The
TCA intermediates present within the proliferative outer region. Metabolite images obtained by DESI-MSI analysis. Intermediates acetyl-CoA, α-
ketoglutarate, succinyl-CoA, fumarate, and oxaloacetate were not observed.
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cellular apoptosis.53 This therefore explains the accumulation
of γH2AX within the hypoxic core of the aggregoid (Figure 5i).
From the image analysis, however, high expression levels of
γH2AX was also observed within the proliferative outer region
(Figure 5i). Due to oxidative stress, induced by natural ROS
from metabolic activity, proliferative cells are subjected to
constant DNA damage.54 Therefore, the distribution of
γH2AX throughout the aggregoid is supported. In the future,
γH2AX marker has potential to be used for the detection of
cellular stress within the aggregoid, with elevated levels when
subject to therapeutic treatment.
This is the first report on the analysis of 3D cell culture

models with IMC. The usage of IMC to characterize the
HCC827 aggregoid model based on morphological and
structural markers specific for an epithelial tumor, growth
and proliferation, and the hypoxia gradient of the tumor
microenvironment has been demonstrated (Figure 6d).
Furthermore, with the single-cellular resolution capabilities of
IMC, it was possible to distinguish individual cells and the
matrix surrounding based on the cellular localization of such

protein markers. Therefore, IMC demonstrates promise for
high-dimensional phenotyping of 3D cell culture models at a
greater spatial resolution than is currently possible with the
other MSI modalities employed in this study.

Endogenous Elemental Analysis. Deficiencies, defects,
and accumulation of metal compounds within cells are known
to be a hallmark of cancer and disease. Within tissues, metals
have a heterogeneous distribution whereby high concen-
trations can be associated with high metabolic activity.9

Therefore, visualizing the metal composition within a tissue
can provide essential information to understanding their key
functions in different environments, such as hypoxia or
nutrient rich areas. The composition of abundant metal
isotopes 24 Mg, 66Zn, and 63Cu were selected to analyze within
the HCC827 aggregoid model. To measure the abundance of
low mass range metal ions at high sensitivity, LA-ICP-MSI was
employed.
In the cell, Mg and Zn are essential components to drive cell

growth, division, and proliferation.55,56 Observations from the
LA-ICP-MSI analysis localized both elements of high
expression solely within the outer proliferative region of the
aggregoid (Figure 7b,c). Similar to Ki-67, Mg plays a key role
in the cell cycle except for early G1 and G0 quiescent phases.57

Thus, the absence of Mg is indicative of a nonproliferative
region or necrotic core. Zn, on the other hand, has been
directly linked to the degradation of HIF-1α under normoxic
conditions.58 Under hypoxic conditions, however, this process
is downregulated to enable stabilization of HIF-1α. It is
therefore possible that the absence of Zn within the aggregoid
core is associated with the activation of HIF-1α in hypoxia;
whereby Zn is possibly exported to the proliferative zone
where high levels are required for metabolic activity.
In contrast, the Cu levels in the aggregoid were elevated

within the necrotic core (Figure 7d). Increasing evidence has
linked Cu with HIF-1α via the hypoxia signaling pathway as a
response to oxidative stress to regulate Cu-dependent
genes.59,60 These include BNIP3, a cell death factor that
induces necrosis,61 and VEGF, which stimulates angio-
genesis.62 Both are stimulating factors in hypoxia. In agreement
with this, VEGF is also known to be regulated by TNC, which
from the IMC analysis was also localized within the core of the
aggregoid (Figure 5d). In addition, HIF-1α accordingly
promotes the upregulation of the Cu-efflux transporter,
ATP7A,63 which tightly regulates levels of free Cu ions to
prevent the formation of ROS. Thus, elevated Cu concen-
trations could imply an active export of free Cu ions into the
ECM, accumulating in a less dense area of the aggregoid. As
necrotic cells are unregulated, the core therefore becomes the
source of metabolic debris.
At present, there is only a limited amount of literature on the

study of endogenous elemental compounds in 3D cultures by
LA-ICP-MSI. Yet the analysis of tumor spheroids with this
technique has had some interest regarding the localization of
platinum-based therapeutics and hypoxia-responsive drugs.10,64

Theiner et al.11 differentiated morphological characteristics of a
necrotic core, quiescent zone, and proliferative outer region
through the analysis of platinum accumulation within HCT116
colon cancer spheroids. However, the elemental compositions
in this study are consistent with literature reported in studies
employing X-ray fluorescence microscopy (XFM), an alter-
native analytical technique capable of elemental analysis at high
sensitivity. Zhang et al.65 reported similar distributions of Zn
and Cu within DLD-1 colon carcinoma spheroids implying the

Figure 4. Fatty acid species observed in proliferative outer region by
DESI-MSI. Ion density maps of metabolites outlining the core and the
outer area on the image. Mean intensity plotted on bar graph against
the core and outer regions. Scale bar 200 μm. (a) FA (18:2), m/z
279.23280; (b) FA (20:4), m/z 303.23300; (c) GSH, m/z 306.07650.
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Figure 5. Representative IMC images of biological processes at subcellular detail in the HCC827 aggregoid model. Scale bar, 100 μm. Percentage
positive cells plotted on bar graph against the core and outer regions. (a) DNA intercalator identified individual cells within the aggregoid section.
Epithelial tumor markers: (b) Pan-CK, (c) E-Cadherin, and (d) Tenascin C (TNC). Proliferation markers: (e) Ki-67 and (f) pHH3. Hypoxia
influenced markers: (g) pHH3 and (h) pS6. DNA damage marker: (i) γH2AX.

Figure 6. Structural organization of biological processes for in-depth phenotyping of HCC827 aggregoid model by IMC. (a) Optical image of
aggregoid prior to staining with antibodies and image analysis. Scale bar, 200 μm. Overlay of IMC markers displays representative images of (b)
epithelial tumor markers: Ecadherin, TNC; (c) proliferation and hypoxia, Ki-67 and Glut1; (d) overlay image combining markers of epithelial
tumor, proliferation, hypoxia, and mitosis: E-cadherin, Ki-67, Glut1, and pHH3, respectively. Scale bar, 100 μm.

Figure 7. Elemental distributions within HCC827 aggregoid sections obtained using LA-ICP-MS. (a) Optical image taken before acquisition;
necrotic region outlined by red dotted line. Scale bar 50 μm. Elemental maps of (b) 24Mg, (c) 66Zn, and (d) 63Cu within the section of aggregoid.
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accumulation of such compounds highlight regions of a
proliferative outer zone and a necrotic core, respectively.

■ CONCLUSION
We have applied advanced molecular imaging techniques for
an in-depth phenotyping of a novel aggregated tumor model.
This is the first example of an IMC application with a 3D cell
culture model. Combining the IMC data with molecular
information from DESI-MSI and LA-ICP-MSI, a detailed
characterization of the tumor microenvironment within the
aggregoid was possible. Distinct regions of a necrotic core and
a proliferative outer was distinguished by each method. The
localization of metabolites including lactate, glutamine, and
citrate within the aggregoid highlighted the metabolic activity
in relation to hypoxia. Mapping the ion density images onto
the central biological pathways enabled a clearer understanding
of the metabolite behavior within the tumor microenviron-
ment. IMC enabled single-cell phenotyping of protein signaling
activity. The protein expression complimented the metabolite
data including the expression of the Glut1 with elevated lactate
levels in the core. In addition, the endogenous elemental
compositions of Mg, Zn, and Cu corresponded to the protein
information and further validated the presence of a hypoxia
gradient. This study improved our understanding of the
molecular activity within a 3D cell culture tumor micro-
environment. Therefore, MSI analysis of tumor aggregoids
highlights a potential methodology for in vitro applications of
biomedical research and pharmaceutical development.
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